
     

 

 

 

 

 

USING JAVA LANGUAGE FOR CONTROL ALGORITMS  

 

 

 

Valter F. Silva1, José A. Fonseca2, José L. Oliveira2, Alexandre M. Mota2 

 

 

1 – Escola Superior de Tecnologia e Gestão de Leiria, Morro do Leno, Alto Vieiro, 2401 Leiria  
vfs@est.ipcb.pt 

2 – Departamento de Electrónica e Telecomunicações, Universidade de Aveiro, 3810-193 Aveiro, 
{jaf,jlo,alex}@det.ua.pt 

 

 

 

 

Abstract: constrained resources devices used often in embedded systems are normally 
programmed using languages considered of low level. This has important implications in 
program development and maintenance. In fact, the code becomes less legible and the 
memory management in not an easy task. This problem can be overcome if the use of a 
high level language with garbage collector mechanism is considered. However, it is often 
a belief that from these high level languages results slowly programs, and so, they are 
unsuitable for embedded applications. In this paper this problem is addressed to show the 
applicability of Java to develop programs for constrained resources devices. An example 
of a control system for temperature control is presented to illustrate the advantages of the 
approach. 

 

Keywords: Control systems, Java, virtual machine, garbage collector. 

 

 

 

 

 

 

1. INTRODUCTION 

 

The idea that Java is a "fat" and slow language still 
persists in our days. Many works, like the use of a hot 
spot virtual machine (Sun, 2001), show that this is not 
correct. Also, the current possibility to use the Java 
virtual machine in systems with limited resources 

contributes to change that belief. However, it has not 
been shown yet that Java is suitable to be used in the 
control of real time systems such as temperature 
control, or, more exigent ones, like mobile robots. In 
this paper this issue is addressed by presenting some 
experiences in which Java is used as the programming 
language for some control algorithms running in an 
embedded system with limited resources. Also, some 
performance comparison with the C language is done. 



     

The results show that, in spite of being slower, Java is 
perfectly adequate for that purpose. 

 

2. CONTROLLING EMBEDDED SYSTEMS 

2.1 Typical Architecture of Systems for embedded 
Control 

Typical systems for embedded control are based on 
microprocessors or micro -controllers. Normally these 
are connected to some acquisition device such as an 
A/D Converter or to a more specific device, like a 
temperature measurement solid-state chip. After the 
pre-processing of the data acquired, the CPU does 
some calculations and determines a resultant output 
that will actuate in the system through a D/A unit and 
interface electronics.  

In embedded systems the controller CPU is in 
principle a low-processing power device (e.g. an 8 bit 
micro -controller). This is reflected in the program 
development. For example, normally, for these 
devices, the programmer can only use integer 
arithmetic, which is a major limitation for control 
systems. To overcome this problem the programmer 
can build his/her own library, or can use the compiler 
floating point library if one is available. However, the 
use of floating point arithmetic at this level can waste 
many resources, namely memory and execution time. 
Another issue in programming these systems is the 
use of the C language and, in some specific situations, 
Assembly. This originates a need to perform a very 
careful programming to achieve the correct 
encapsulation and memory management and can be a 
hard work to do. 

The next step in devices for real-time control shows 
in industrial applications. They consist in another 
kind of devices with some resources that offer more 
possibilities than micro-controllers such as a 
simplification in the use of floating point arithmetic 
and some similarity with desktop PCs. However, 
these systems are more complex and expensive than 
micro -controllers. Many companies offer in their 
product line systems with these characteristics. One 
example is JUMPtec, a German company that offers 
many systems with various levels of resources, from 
very simple ones to more complex systems based in 
Pentium processors. In this paper, one of the 
intermediate systems in the JUMPtec line was used 
for the experiments carried on. 

 

2.2 JUMPtec System 

The JUMPtec system used in this work is called 
JUMPTec WebToNet. It includes a 386SX processor, 
2 MBytes of RAM and 2 MBytes of flash memory. 
This system offers also many input/output interfaces 
namely a serial port, a parallel port and an Ethernet 
card. A view of the system can be obtained in figure 
1. 

The system integrates a Web Server, and so, it can be 
accessed from any web browser. The management, 
control and monitoring of the system is done using 
this web server and an application supplied by 
JUMPtec. For example the disk management is done 
via the web browser with the help of the Web server. 
This web server runs in background, so it is possible 
to keep communicating with the embedded system 
while running another application. The operating 
system used is the Dr-DOS, which is an Ms-DOS 
compatible OS oriented to constrained resources 
systems. The JUMPtec system has assigned an IP 
address and a host name like any other system in a 
network. So, for the web browser, its web server is 
just a "normal" one, without any specific constrains. 
The JUMPtec system is compatible with a desktop 
PC, so the usual programs for desktop can be used. 

 

 

Fig. 1. Some views of the JUMPtec system. 

 

2.3 Programming control systems 

As it was said before, the languages typically used to 
program embedded control systems are C and 
Assembly. These languages lead to programs with 
very good performance. However, the development 
time is relatively long and the portability is not the 
best. If the target system changes, it is almost certain 
that the program must be adapted even if the compiler 
is the same. The opposite is also true, i.e., if there is a 
decision to substitute the compiler even without 
changing the system, it is probable that the program 
must change too. 

In some, fortunately rare, situations the use of 
Assembly is yet required, either to increase speed or 
to spare memory. However, the development of a not 
very complex Assembly piece of code takes a large 
amount of time and pushes the programmer to be 
extremely cautious with the program flow. Even 
when using C, with which the development is much 



     

quicker, the programmer must care about memory 
management. 

The memory management problem can be solved if a 
language with a Garbage Collector is used. This 
mechanism cleans the objects in memory that are not 
used any more. A language that supports this 
mechanism is Java. Also, when using Java, the 
development time can be reduced, because this is a 
very structured language and it is object oriented. 
This last issue is very important not only from the 
code structure point of view but also because most 
programmers are nowadays trained in object-oriented 
languages. This will certainly increase the popularity 
of Java even for embedded systems programming. 

 

3. PROGRAMMING CONTROL ALGORITHMS IN 
JAVA 

When considering the use of Java in embedded 
systems, the idea that it is "fat" and slow still persists. 
However, nowadays, it is already possible to write 
Java programs to run in devices with limited 
resources when compared with a PC, like mobile 
phones and other hand held devices. The variety of 
this kind of devices (e.g. in mobile phones) is great, 
so Java, by offering platform independence, can be 
very useful for fast development. This is the case, for 
example, of the small devices/terminals for the 
UMTS mobile network for which the Java 
programming language is being used (KVM applets). 
This will be an important test to verify the assumption 
about the interest of Java for limited devices. 

When talking about Java, it is interesting to refer that 
the devices with constrained resources, typical of the 
electronic consumer market, were the target platforms 
for the early form of the language. However, the 
substantial growth of the required resources to 
support the Java platform delayed the use of Java in 
those systems until lighter versions were offered. So, 
there is again a strong interest in porting Java to the 
embedded world, in order to make available to the 
programmers the features that made it become 
popular in the desktop world. But to use Java in a 
specific processor, the virtual machine must be ported 
to the new target, as well all the necessary classes 
must be present in the system (Silva, et al., 2001). 

Java 2 Micro Edition (J2ME) is a recent edition of 
Java very flexible and easy to parameterise as it is 
targeted to a large number of devices. To help in 
achieving flexibility, the edition provides 
configurations and profiles. Configurations define the 
minimum functionalities for a device family. Profiles 
are more oriented to a particular device, defining 
more classes or, in addition, more specific functions 
(called native functions). The architecture overview is 
presented in figure 2. 

Currently, Java 2 Micro Edition defines two 
configurations: the CLDC, Connected Limited Device 
Configuration and the CDC, Connected Device 

Configuration. The CDC uses the usual Java virtual 
machine and the CLDC uses the new Kilo Virtual 
Machine (KVM), available in open source in Sun 
Microsystems site (Sun, 2002). Like the name shows, 
KVM is oriented to devices with some Kbytes of 
memory and reduced processing capacity. The code is 
relatively easy to port to any platform. This KVM is 
prepared to run in systems were some sockets stack 
and others features characteristic of operating system 
not based on DOS are available. 

In (Silva et al., 2001) it is presented the integration of 
the virtual machine (KVM) and all the necessary 
classes of J2ME for Windows, Linux and DOS and 
consequently for the JUMPtec system described in 
section 2.2. Some modifications made to the virtual 
machine are described and also the necessary steps to 
add some new features to it, like the floating point 
support, not included in the original version. 

Java Application

Operating System

Hardware

Virtual machine

Configuration
Profile

 

Fig. 2. System architecture 

The idea behind the referred work was to show that it 
is possible to use Java with systems limited in 
resources. Thus a first step towards the use of the 
language in programming control systems can be 
achieved. 

Besides embedded systems resources, another 
problem concerning control systems is the need to 
impose a specific sampling interval. This requires 
often the knowledge of hardware details of the target 
system such as the timers’ programming 
specifications. Java offers a simple solution for this, 
which is the time window generation. 

In Java it is possible to develop a class derived from 
the Thread class and sleep the task the desired time. 
This is very easy to do and leads to very simple code 
in the main application. In fact, it just requires the 
creation of an object of this class and to start its 
execution. This feature is important because it is 
totally independent of the hardware and of the 
operating system. Using it, it is possible to generate 
some Java soft real-time applications within just a 
few minutes.  

On the other hand, the use of KVM with hard-real 
time applications in any platform is not yet possible. 
There are two proposals for a real-time Java standard 
published (Bollella, et al., 2000; Consortium, 2000). 



     

They have in common the belief that there is no such 
thing as real-time garbage collection, and to avoid the 
non-determinism of normal GCs they propose 
extended memory models where some areas are 
manually managed. This approach does not solve the 
GC problem, but leaves the memory management in 
the hands of the program developer, whereas we 
believe that one of the main benefits of Java is the 
automatic memory management. 

However, some research is already made and in the 
present there are at least two Java systems with hard 
real-time capabilities: Jamaica (Siebert, 1999; Siebert, 
2000; Siebert and Walter, 2001) and PERC 
(NewMonics, 2002). These systems are hybrid, so, 
the Java code is converted to the platform native code 
and linked with some specific Java features, like the 
garbage collector. 

In the University of Karlsrhue, Germany, a Java 
virtual machine totally implemented in hardware with 
hard-real time capabilities is in development 
(Fuhrmann et al., 2001). This project also has some 
others imp ortant features for embedded systems, like 
interrupt service routines. On the other hand, because 
is implemented in hardware, it is not portable to any 
other system. 

 

4. EXPERIMENTS WITH JAVA USING THE 
JUMPTEC SYSTEM 

In order to demonstrate the possibility of using Java 
for control applications, some experiences were made 
having the described JUMPtec system as the target 
platform. The first experience is just a simple 
program which, depending on the contents of a frame 
received in the serial port, activates some bits of the 
parallel port and reads some of the parallel port inputs 
(Silva, et al., 2001). In this program, also the Ethernet 
connection is tested recurring to a specific frame. 
This first test uses all the subsystems available on the 
JUMPtec. 

The next experience made was just a simple test 
consisting in a cycle turning on and off a led available 
on the back of the JUMPtec system (see figure 1). 
The voltage signal at the led can be used to measure 
the cycle time. The JUMPtec has also a parallel port 
but the accessible outputs of this port are lines 
switched by relays. The switching times are too slow 
to be useful to make the measurements. The test was 
done using Java, C++, C and assembly (Silva et al., 
2002). The results showed that Java is clearly slower 
than the others languages. Even comparing with the 
other object orient language, C++, Java is one order 
of magnitude slower. However, there are some 
advantages in using Java, namely the size of the 
application to be downloaded to the JUMPtec. This 
characteristic opens an important possibility to use 
mobile agents in this kind of devices (Mahmoud, 
2001). 

After, the impact of using floating point or integer 
arithmetic was evaluated. To do this, a set of 
calculations, similar to the execution of a control 
algorithm, was included in each cycle of the previous 
experiment. The final program was tried in a desktop 
PC (turning On and Off a bit in the parallel port) and 
in the JUMPtec system. C and Java were the 
languages used in this case. It should be noticed that 
the JUMPtec system doesn’t include a floating point 
unit. The obtained cycles time are presented in table 
1. 

Table 1 Test results  

Language Arithmetic JUMPtec PC 

Floating 
point 

14 ms  33.5 µs Java 

Integer 1.28 ms  25 µs 

Floating 
Point 

12.5 ms  8.6 µs 
C 

Integer 65 µs 0.6µs 

With theses tests, we can also verify the importance 
of using the floating point unit.  

In the table it can be seen that the absence of a 
floating point unit in the JUMPtec has an important 
effect in the performance of an application with 
floating point arithmetic. For example, considering 
the same program in C with integer arithmetic and in 
C with floating point arithmetic, the last is about 200 
times slower than the first. In contrast, in the desktop 
PC, with floating point unit, the program using only 
integer arithmetic is only 14 times faster than the one 
using floating point arithmetic. If we look only for the 
row correspondent to the integer arithmetic and to the 
JUMPtec column, it can be realised that the same 
program in Java is twenty times slower than in C. 

An important result here is the fact that, considering 
just floating point arithmetic in a system without 
specific FP unit like the JUMPtec, Java performs at 
the same level as C. This means that, for control 
applications in constrained resources devices, there 
will be an equivalence of performance and so, the 
other properties of Java clearly point to this language 
as a good substitute of C. 

After these experiments, a real application close to 
systems used in industry was tried. It consists in the 
temperature control of a small kiln similar to the ones 
used in ceramics. Three algorithms were tested in the 
control of the kiln temperature: an on-off algorithm, a 
ramp algorithm and a PI algorithm. 

The system architecture is presented in figure 3. The 
system incorporates a HP model 34970A data 
acquisition and switch unit. This device acquires the 
temperature from the kiln, and acts in the kiln with 
the help of a power controller. The interaction 
between the JUMPtec and the system is made via a 



     

serial interface. To access this interface in the 
JUMPtec a class developed in a previous work (Silva 
et al., 2002) was used. 

The communication between the JUMPtec and the 
HP is based in a specific command sequence. To have 
a correct encapsulation of the details implementations 
of the commands sequences a class with some 
relevant methods was also specifically developed. 

The temperature acquired during operation of the 
system is stored in the hard disk (implemented by a 
flash memory) of the JUMPtec. After the desired 
operation time this data is downloaded to the PC via 
Ethernet. Because the JUMPtec includes a web 
server, this data can also be saved in a “html” file and 
viewed in a Web Browser. 

HP data aquisition
and switch unit

Temperature

Power

JUMPtec System

Serial port

Kiln

Internet

Power
module

 

Fig. 3. System architecture 

The class code of the controller is very simple and 
can run in any platform where a virtual machine is 
available. The developed code was tested in a PC and 
in the JUMPtec system without any change or 
recompilation. 

For the On Off temperature controller, the code is: 
 
class OnOff extends Thread{ 
OnOff (String file, float setPoint){ 
//Initialise the file 
//the HP and the Set Point 
  } 
public void run(){ 
 while (true){ 
//controller code 
sleep (2000); //sleeps for 2 seconds 
  } 
} 
 

The class code presented has a constructor 
responsible for the initialisation of the file to store the 
read temperature and for initialisation of the set point. 
As it can be seen in the code, there is no specific 
reference to timers programming and thus this code 
can be run in any hardware or OS where a virtual 
machine is present. 

But, this is not the only class necessary to the system. 
The complete program has also a main class 
responsible for the starting of this thread. The main 
class is independent of the algorithm in use. It just 

creates an object of the class presented and executes 
the run method of the object. 

This program example has just a thread. However 
Java permits the use of multiple threads. Multi-
threads systems can be used for more complex tasks, 
for example in a multi-sensor system, or for better 
encapsulation. In the case of this controller a thread 
for temperature acquisition and another for power 
calculation can be used, so some data between these 
threads must be shared. 

When considering using more than one thread sharing 
data between them, mutual exclusion must be carried 
on. In Java, the mechanisms necessary to guarantee 
mutual exclusion are handled by the virtual machine. 
The programmer only has to indicate the classes or 
fields for which the virtual machine has to guarantee 
mutual exclusion. This is done with the qualifier 
synchronized provided by the Java language. 

With a multi-thread system, the thread scheduling and 
management must be performed. This operation is 
done by the virtual machine even if the operating 
system does not have multi-task capabilities, as it is 
the case of the Dr-DOS OS used in the JUMPtec 
system. 

 

5. CONCLUSIONS 

In this paper the advantages of using a high level 
language such as Java to program embedded systems, 
particularly control algorithms, were presented. This 
change in the language brings several benefits, 
namely the reduction of the program development 
time and the simplification of the memory 
management. Java is an object oriented language and 
so, the resultant programs are very structured and 
easy to read. On the other hand, the platform 
independence and the garbage collection can be very 
important features for embedded systems because of 
the reduction in the time necessary to develop or port 
an application. 

Some performance comparisons between Java and C 
in programs using either integer arithmetic or floating 
point are also presented and discussed. The 
measurements demonstrate the applicability of Java in 
system with some performance limitations and that 
Java can perform practically as well as C when using 
FP arithmetic in systems without FP unit. 

Some experiences to control the temperature of a real 
kiln were also done using a JUMPtec system with 
constrained resources. To demonstrate the platform 
independence, the same program was executed in a 
desktop PC. With Java the programmer can be 
unaware of hardware details as, for example, the ones 
required to define the sampling time window as they 
can be totally managed by the virtual machine. 

 

 



     

REFERENCES 

Bollella, G., Brosgol, B., Dible, P., Furr, S., James, 
G., Hardin, D., Turnbull, M. (2000), The Real 
Time Specification for Java, Addison-Wesley, 
June. 

J Consortium (2000), Real-Time Core Extension, P.O. 
Box 1565, Cupertino, CA 95015-1565, 
Setembro. 

NewMonics (2002). NewMonics Web site. 
http://www.newmonics.com 

S. Fuhrmann, M. Pfeffer, J. Kreuzinger, Th Ungerer e 
U. Brinkschulte (2001), Real-time Garbage 
Collection for a Multithreaded Java 
Microcontrollor, In 4ª IEEE Symposium on 
Object Oriented Real-time Distributed 
Computing (ISOR), Magdeburg, Germany. 

Siebert, F. (1999), Hard Real-Time garbage 
collection in the Jamaica Virtual Machine, In 
The 6th International Conference on Real-Time 
Computing Systems and Applications (RTCSA 
’99), Hong Kong, Dezember, IEEE. 

Siebert, F. (2000), Eliminating external fragmentation 
in a non-moving garbage collector for java, In 
Compilers, Architectures and Synthesis For 
Embedded Systems (CASES 2000), San José, 
November  

Siebert, F., Walter, A. (2001), Deterministic 
execution of Java’s primitive bytecode 
operations, In Java Virtual Machine Research & 
Technology Symposium ’01, Monterey, CA, 
April. 

Silva, V. F., Oliveira, J.L., Fonseca, J.A. (2001), 
Ambiente de execução de aplicações Java para 
sistemas de recursos limitados, Acta da 4ª 
Conferência de Redes de Computadores, 29-30 
Novembro, Covilhã, Portugal. 

Sun Microsystems (2001). The java HotSpot Virtual 
Machine. May. http://java.sun.com/products/ 
hotspot/docs  

Sun Microsystems (2002). Sun Microsystems Web 
site. http://www.sun.com 

Valter Silva, José A. Fonseca, José L. Oliveira 
(2002), Java Environment for a JUMPtec 
WebToNet Embedded System, In Architecthure of 
Computer Systems – Java for Embedded 
Systems, Karlsrhue, Alemanha, April. 


