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HIGHER-ORDER HAHN’S QUANTUM VARIATIONAL CALCULUS

ARTUR M. C. BRITO DA CRUZ, NATÁLIA MARTINS, AND DELFIM F. M. TORRES

Abstract. We prove a necessary optimality condition of Euler–Lagrange type
for quantum variational problems involving Hahn’s derivatives of higher-order.

1. Introduction

Many physical phenomena are described by equations involving nondifferentiable
functions, e.g., generic trajectories of quantum mechanics [15]. Several different ap-
proaches to deal with nondifferentiable functions are followed in the literature of
variational calculus, including the time scale approach, which typically deal with
delta or nabla differentiable functions [14, 20, 23], the fractional approach, allowing
to consider functions that have no first order derivative but have fractional deriva-
tives of all orders less than one [3, 12, 16], and the quantum approach, which is
particularly useful to model physical and economical systems [8, 10, 22].

Roughly speaking, a quantum calculus substitute the classical derivative by a
difference operator, which allows to deal with sets of nondifferentiable functions.
Several dialects of quantum calculus are available [13, 18]. For motivation to study
a nondifferentiable quantum variational calculus we refer the reader to [4, 8, 10].

In 1949 Hahn introduced the difference operator Dq,ω defined by

Dq,ω [f ] (t) :=
f (qt+ ω)− f (t)

(q − 1) t+ ω
,

where f is a real function, and q ∈ (0, 1) and ω > 0 are real fixed numbers [17].
The Hahn difference operator has been applied successfully in the construction of
families of ortogonal polynomials as well as in approximation problems [6, 11, 25].
However, during 60 years, the construction of the proper inverse of Hahn’s difference
operator remained an open question. Eventually, the problem was solved in 2009 by
Aldwoah [1] (see also [2, 7]). Here we introduce the higher-order Hahn’s quantum
variational calculus, proving the Hahn quantum analog of the higher-order Euler–
Lagrange equation. As particular cases we obtain the q-calculus Euler–Lagrange
equation [8] and the h-calculus Euler–Lagrange equation [9, 19].

Variational functionals that depend on higher derivatives arise in a natural way
in applications of engineering, physics, and economics. Let us consider, for example,
the equilibrium of an elastic bending beam. Let us denote by y(x) the deflection
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of the point x of the beam, E(x) the elastic stiffness of the material, that can vary
with x, and ξ(x) the load that bends the beam. One may assume that, due to
some constraints of physical nature, the dynamics does not depend on the usual
derivative y′(x) but on some quantum derivative Dq,ω [y] (x). In this condition, the
equilibrium of the beam correspond to the solution of the following higher-order
Hahn’s quantum variational problem:

(1.1)

∫ L

0

[
1

2

(
E(x)D2

q,ω [y] (x)
)2

− ξ(x)y
(
q2x+ qω + ω

)
]

dx −→ min .

Note that we recover the classical problem of the equilibrium of the elastic bending
beam when (ω, q) → (0, 1). Problem (1.1) is a particular case of the problem
(P) investigated in Section 3. Our higher-order Hahn’s quantum Euler–Lagrange
equation (Theorem 3.10) gives the main tool to solve such problems.

The paper is organized as follows. In Section 2 we summarize all the necessary
definitions and properties of the Hahn difference operator and the associated q, ω-
integral. In Section 3 we formulate and prove our main results: in §3.1 we prove
a higher-order fundamental Lemma of the calculus of variations with the Hahn
operator (Lemma 3.8); in §3.2 we deduce a higher-order Euler–Lagrange equation
for Hahn’s variational calculus (Theorem 3.10); finally we provide in §3.3 a simple
example of a quantum optimization problem where our Theorem 3.10 leads to the
global minimizer, which is not a continuous function.

2. Preliminaries

Let q ∈ (0, 1) and ω > 0. We introduce the real number

ω0 :=
ω

1− q
.

Let I be a real interval containing ω0. For a function f defined on I, the Hahn
difference operator of f is given by

Dq,ω [f ] (t) :=
f (qt+ ω)− f (t)

(q − 1) t+ ω
, if t 6= ω0 ,

and Dq,ω [f ] (ω0) := f ′ (ω0), provided f is differentiable at ω0. We sometimes call
Dq,ω [f ] the q, ω-derivative of f , and f is said to be q, ω-differentiable on I if
Dq,ω [f ] (ω0) exists.

Remark 2.1. The Dq,ω operator generalizes (in the limit) the forward h-difference
and the Jackson q-difference operators [13, 18]. Indeed, when q → 1 we obtain the
forward h-difference

∆h [f ] (t) :=
f (t+ h)− f (t)

h
,

when ω → 0 we obtain the Jackson q-difference operator

Dq [f ] (t) :=
f (qt)− f (t)

t (q − 1)
, if t 6= 0 ,

and Dq[f ] (0) = f ′ (0) provided f ′ (0) exists. Notice also that, under appropriate
conditions,

lim
ω→0,q→1

Dq,ω [f ] (t) = f ′ (t) .

The Hahn difference operator has the following properties:
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Theorem 2.2 ([1, 2, 7]). Let f and g be q, ω-differentiable on I and t ∈ I. One
has:

(1) Dq,ω[f ](t) ≡ 0 on I if and only if f is constant;
(2) Dq,ω [f + g] (t) = Dq,ω [f ] (t) +Dq,ω [g] (t);
(3) Dq,ω [fg] (t) = Dq,ω [f ] (t) g (t) + f (qt+ ω)Dq,ω [g] (t);

(4) Dq,ω

[
f

g

]

(t) =
Dq,ω [f ] (t) g (t)− f (t)Dq,ω [g] (t)

g (t) g (qt+ ω)
if g (t) g (qt+ ω) 6= 0;

(5) f (qt+ ω) = f (t) + (t (q − 1) + ω)Dq,ω [f ] (t).

For k ∈ N0 = N ∪ {0} define [k]q :=
1− qk

1− q
and let σ (t) = qt + ω, t ∈ I. Note

that σ is a contraction, σ(I) ⊆ I, σ (t) < t for t > ω0, σ (t) > t for t < ω0, and
σ (ω0) = ω0. The following technical result is used several times in our paper:

Lemma 2.3 ([1, 7]). Let k ∈ N and t ∈ I. Then,

(1) σk (t) = σ ◦ σ ◦ · · · ◦ σ
︸ ︷︷ ︸

k-times

(t) = qkt+ ω [k]q;

(2)
(
σk (t)

)−1
= σ−k (t) =

t− ω [k]q
qk

.

¿From now on I denotes an interval of R containing ω0. Following [1, 2, 7] we
define the notion of q, ω-integral (also known as the Jackson–Nörlund integral) as
follows:

Definition 2.4. Let a, b ∈ I and a < b. For f : I → R the q, ω-integral of f from
a to b is given by

∫ b

a

f (t) dq,ωt :=

∫ b

ω0

f (t) dq,ωt−

∫ a

ω0

f (t) dq,ωt,

where
∫ x

ω0

f (t) dq,ωt := (x (1− q)− ω)

+∞∑

k=0

qkf
(

xqk + ω [k]q

)

, x ∈ I ,

provided that the series converges at x = a and x = b. In that case, f is called
q, ω-integrable on [a, b]. We say that f is q, ω-integrable over I if it is q, ω-integrable
over [a, b] for all a, b ∈ I.

Remark 2.5. The q, ω-integral generalizes (in the limit) the Jackson q-integral and
the Nörlund’s sum [18]. When ω → 0, we obtain the Jackson q-integral

∫ b

a

f (t) dqt :=

∫ b

0

f (t) dqt−

∫ a

0

f (t) dqt,

where
∫ x

0

f (t) dqt := x (1− q)
+∞∑

k=0

qkf
(
xqk
)
.

When q → 1, we obtain the Nörlund’s sum
∫ b

a

f (t)∆ωt :=

∫ b

+∞

f (t)∆ωt−

∫ a

+∞

f (t)∆ωt,



4 A. M. C. BRITO DA CRUZ, N. MARTINS, AND D. F. M. TORRES

where
∫ x

+∞

f (t)∆ωt := −ω

+∞∑

k=0

f (x+ kω) .

It can be shown that if f : I → R is continuous at ω0, then f is q, ω-integrable
over I [1, 2, 7].

Theorem 2.6 (Fundamental Theorem of Hahn’s Calculus [1, 7]). Assume that
f : I → R is continuous at ω0 and, for each x ∈ I, define

F (x) :=

∫ x

ω0

f (t) dq,ωt.

Then F is continuous at ω0. Furthermore, Dq,ω [F ] (x) exists for every x ∈ I with

Dq,ω [F ] (x) = f (x). Conversely,
∫ b

a
Dq,ω [f ] (t) dq,ωt = f (b)− f (a) for all a, b ∈ I.

The q, ω-integral has the following properties:

Theorem 2.7 ([1, 2, 7]). Let f, g : I → R be q, ω-integrable on I, a, b, c ∈ I and
k ∈ R. Then,

(1)
∫ a

a
f (t) dq,ωt = 0;

(2)
∫ b

a
kf (t) dq,ωt = k

∫ b

a
f (t) dq,ωt;

(3)
∫ b

a
f (t) dq,ωt = −

∫ a

b
f (t) dq,ωt;

(4)
∫ b

a
f (t) dq,ωt =

∫ c

a
f (t) dq,ωt+

∫ b

c
f (t) dq,ωt;

(5)
∫ b

a
(f (t) + g (t)) dq,ωt =

∫ b

a
f (t) dq,ωt+

∫ b

a
g (t) dq,ωt;

(6) Every Riemann integrable function f on I is q, ω-integrable on I;
(7) If f, g : I → R are q, ω-differentiable and a, b ∈ I, then
∫ b

a

f (t)Dq,ω [g] (t) dq,ωt = f (t) g (t)

∣
∣
∣
∣

b

a

−

∫ b

a

Dq,ω [f ] (t) g (qt+ ω) dq,ωt.

Property 7 of Theorem 2.7 is known as q, ω-integration by parts. Note that
∫ t

σ(t)

f (τ) dq,ωτ = (t (1− q)− ω) f (t) .

Lemma 2.8 (cf. [1, 7]). Let b ∈ I and f be q, ω-integrable over I. Suppose that

f(t) ≥ 0 ∀t ∈
{

qnb+ ω [n]q : n ∈ N0

}

.

(1) If ω0 ≤ b, then
∫ b

ω0

f(t)dq,ωt ≥ 0.

(2) If ω0 > b, then
∫ ω0

b

f(t)dq,ωt ≥ 0.

Remark 2.9. There is an inconsistency in [1, 7]. Indeed, Lemma 6.2.7 of [1] is only
valid if b ≥ ω0 and a ≤ b. Similarly with respect to Lemma 3.7 of [7].

Remark 2.10. In general it is not true that
∣
∣
∣
∣
∣

∫ b

a

f (t) dq,ωt

∣
∣
∣
∣
∣
≤

∫ b

a

|f (t) |dq,ωt, a, b ∈ I.
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For a counterexample see [1, 7]. This illustrates well the difference with other
non-quantum integrals, e.g., the time scale integrals [21, 24].

For s ∈ I we define

(2.1) [s]q,ω :=
{

qns+ ω [n]q : n ∈ N0

}

∪ {ω0} .

The following definition and lemma are important for our purposes.

Definition 2.11. Let s ∈ I and g : I × (−θ̄, θ̄) → R. We say that g (t, ·) is
differentiable at θ0 uniformly in [s]q,ω if for every ε > 0 there exists δ > 0 such that

0 < |θ − θ0| < δ ⇒

∣
∣
∣
∣

g (t, θ)− g (t, θ0)

θ − θ0
− ∂2g (t, θ0)

∣
∣
∣
∣
< ε

for all t ∈ [s]q,ω , where ∂2g =
∂g

∂θ
.

Lemma 2.12 (cf. [22]). Let s ∈ I. Assume that g : I×(−θ̄, θ̄) → R is differentiable

at θ0 uniformly in [s]q,ω, and

∫ s

ω0

∂2g (t, θ0) dq,ωt exist. Then,

G (θ) :=

∫ s

ω0

g (t, θ) dq,ωt,

for θ near θ0, is differentiable at θ0 with G′ (θ0) =

∫ s

ω0

∂2g (t, θ0) dq,ωt.

3. Main Results

We define the q, ω-derivatives of higher-order in the usual way: the rth q, ω-
derivative (r ∈ N) of f : I → R is the function Dr

q,ω[f ] : I → R given by Dr
q,ω[f ] :=

Dq,ω[D
r−1
q,ω [f ]], provided Dr−1

q,ω [f ] is q, ω-differentiable on I and where D0
q,ω[f ] := f .

Let a, b ∈ I and a < b. We introduce the linear space Yr = Yr ([a, b] ,R) by

Yr :=
{
y : I → R |Di

q,ω[y], i = 0, . . . , r, are bounded on [a, b] and continuous at ω0

}

endowed with the norm ‖y‖r,∞ :=
∑r

i=0

∥
∥Di

q,ω [y]
∥
∥
∞
, where ‖y‖

∞
:= supt∈[a,b] |y (t)|.

The following notations are in order: σ(t) = qt + ω, yσ(t) = yσ
1

(t) = (y ◦ σ)(t) =

y (qt+ ω), and yσ
k

= y ◦ yσ
k−1

, k = 2, 3, . . . Our main goal is to establish necessary
optimality conditions for the higher-order q, ω-variational problem1

(P)

L [y] =

∫ b

a

L
(

t, yσ
r

(t) , Dq,ω

[

yσ
r−1
]

(t) , . . . , Dr
q,ω [y] (t)

)

dq,ωt −→ extr

y ∈ Yr ([a, b] ,R)

y (a) = α0 , y (b) = β0 ,

...

Dr−1
q,ω [y] (a) = αr−1 , Dr−1

q,ω [y] (b) = βr−1 ,

where r ∈ N and αi, βi ∈ R, i = 0, . . . , r − 1, are given.

Definition 3.1. We say that y is an admissible function for (P) if y ∈ Yr ([a, b] ,R)
and y satisfies the boundary conditions Di

q,ω [y] (a) = αi and Di
q,ω [y] (b) = βi of

problem (P), i = 0, . . . , r − 1.

1In problem (P) “extr” denotes “extremize” (i.e., minimize or maximize).
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The Lagrangian L is assumed to satisfy the following hypotheses:

(H1) (u0, . . . , ur) → L(t, u0, . . . , ur) is a C1(Rr+1,R) function for any t ∈ [a, b];
(H2) t → L(t, y(t), Dq,ω [y] (t), . . . , Dr

q,ω [y] (t)) is continuous at ω0 for any admis-
sible y;

(H3) functions t → ∂i+2L(t, y(t), Dq,ω [y] (t), · · · , Dr
q,ω [y] (t)), i = 0, 1, · · · , r, be-

long to Y1 ([a, b] ,R) for all admissible y.

Definition 3.2. We say that y∗ is a local minimizer (resp. local maximizer) for
problem (P) if y∗ is an admissible function and there exists δ > 0 such that

L [y∗] ≤ L [y] (resp. L [y∗] ≥ L [y] )

for all admissible y with ‖y∗ − y‖r,∞ < δ.

Definition 3.3. We say that η ∈ Yr ([a, b] ,R) is a variation if η (a) = η (b) = 0,
. . . , Dr−1

q,ω [η] (a) = Dr−1
q,ω [η] (b) = 0.

We define the q, ω-interval from a to b by

[a, b]q,ω :=
{

qna+ ω [n]q : n ∈ N0

}

∪
{

qnb+ ω [n]q : n ∈ N0

}

∪ {ω0} ,

i.e., [a, b]q,ω = [a]q,ω ∪ [b]q,ω , where [a]q,ω and [b]q,ω are given by (2.1).

3.1. Higher-order fundamental lemma of Hahn’s variational calculus. The
chain rule, as known from classical calculus, does not hold in Hahn’s quantum
context (see a counterexample in [1, 7]). However, we can prove the following.

Lemma 3.4. If f is q, ω-differentiable on I, then the following equality holds:

Dq,ω [fσ] (t) = q (Dq,ω [f ])
σ
(t) , t ∈ I.

Proof. For t 6= ω0 we have

(Dq,ω [f ])σ (t) =
f (q (qt+ ω) + ω)− f (qt+ ω)

(q − 1) (qt+ ω) + ω
=

f (q (qt+ ω) + ω)− f (qt+ ω)

q ((q − 1) t+ ω)

and

Dq,ω [fσ] (t) =
fσ (qt+ ω)− fσ (t)

(q − 1) t+ ω
=

f (q (qt+ ω) + ω)− f (qt+ ω)

(q − 1) t+ ω
.

Therefore, Dq,ω [fσ] (t) = q (Dq,ω [f ])
σ
(t). If t = ω0, then σ (ω0) = ω0. Thus,

(Dq,ω [f ])σ (ω0) = (Dq,ω [f ]) (σ (ω0)) = (Dq,ω [f ]) (ω0) = f ′ (ω0)

and Dq,ω [fσ] (ω0) = [fσ]
′
(ω0) = f ′ (σ (ω0))σ

′ (ω0) = qf
′

(ω0). �

Lemma 3.5. If η ∈ Yr ([a, b] ,R) is such that Di
q,ω [η] (a) = 0 (resp. Di

q,ω [η] (b) =

0) for all i ∈ {0, 1, . . . , r} , then Di−1
q,ω [ησ] (a) = 0 (resp. Di−1

q,ω [ησ] (b) = 0) for all
i ∈ {1, . . . , r}.

Proof. If a = ω0 the result is trivial (because σ (ω0) = ω0). Suppose now that
a 6= ω0 and fix i ∈ {1, . . . , r}. Note that

Di
q,ω [η] (a) =

(
Di−1

q,ω [η]
)σ

(a)−Di−1
q,ω [η] (a)

(q − 1)a+ ω
.
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Since, by hypothesis, Di
q,ω [η] (a) = 0 andDi−1

q,ω [η] (a) = 0, then
(
Di−1

q,ω [η]
)σ

(a) = 0.
Lemma 3.4 shows that

(
Di−1

q,ω [η]
)σ

(a) =

(
1

q

)i−1

Di−1
q,ω [ησ] (a) .

We conclude that Di−1
q,ω [ησ] (a) = 0. The case t = b is proved in the same way. �

Lemma 3.6. Suppose that f ∈ Y1 ([a, b] ,R). One has
∫ b

a

f (t)Dq,ω [η] (t) dq,ωt = 0

for all functions η ∈ Y1 ([a, b] ,R) such that η (a) = η (b) = 0 if and only if f (t) = c,
c ∈ R, for all t ∈ [a, b]q,ω.

Proof. The implication “⇐” is obvious. We prove “⇒”. We begin noting that

∫ b

a

f (t)Dq,ω [η] (t) dq,ωt

︸ ︷︷ ︸

=0

= f (t) η (t)

∣
∣
∣
∣

b

a
︸ ︷︷ ︸

=0

−

∫ b

a

Dq,ω [f ] (t) ησ (t) dq,ωt.

Hence,
∫ b

a

Dq,ω [f ] (t) η (qt+ ω) dq,ωt = 0

for any η ∈ Y1 ([a, b] ,R) such that η (a) = η (b) = 0. We need to prove that, for
some c ∈ R, f (t) = c for all t ∈ [a, b]q,ω , that is, Dq,ω [f ] (t) = 0 for all t ∈ [a, b]q,ω.

Suppose, by contradiction, that there exists p ∈ [a, b]q,ω such that Dq,ω [f ] (p) 6= 0.

(1) If p 6= ω0, then p = qka + ω [k]q or p = qkb + ω [k]q for some k ∈ N0. Observe

that a (1− q)− ω and b (1− q)− ω cannot vanish simultaneously.
(a) Suppose that a (1− q) − ω 6= 0 and b (1− q) − ω 6= 0. In this case we can
assume, without loss of generality, that p = qka+ ω [k]q and we can define

η (t) =

{

Dq,ω [f ]
(

qka+ ω [k]q

)

if t = qk+1a+ ω [k + 1]q

0 otherwise.

Then,

∫ b

a

Dq,ω [f ] (t) · η (qt+ ω) dq,ωt

= − (a (1− q)− ω) qkDq,ω [f ]
(

qka+ ω [k]q

)

·Dq,ω [f ]
(

qka+ ω [k]q

)

6= 0,

which is a contradiction.
(b) If a (1− q)−ω 6= 0 and b (1− q)−ω = 0, then b = ω0. Since q

kω0+ω [k]q = ω0

for all k ∈ N0, then p 6= qkb+ ω [k]q ∀k ∈ N0 and, therefore,

p = qka+ ω [k]q,ω for some k ∈ N0.

Repeating the proof of (a) we obtain again a contradiction.
(c) If a (1− q)− ω = 0 and b (1− q)− ω 6= 0 then the proof is similar to (b).
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(2) If p = ω0 then, without loss of generality, we can assume Dq,ω [f ] (ω0) > 0.
Since

lim
n→+∞

(

qna+ ω [k]q

)

= lim
n→+∞

(

qnb+ ω [k]q

)

= ω0

(see [1]) and Dq,ω [f ] is continuous at ω0, then

lim
n→+∞

Dq,ω [f ]
(

qna+ ω [k]q

)

= lim
n→+∞

Dq,ω [f ]
(

qnb+ ω [k]q

)

= Dq,ω [f ] (ω0) > 0.

Thus, there existsN ∈ N such that for all n ≥ N one hasDq,ω [f ]
(

qna+ ω [k]q

)

> 0

and Dq,ω [f ]
(

qnb+ ω [k]q

)

> 0.

(a) If ω0 6= a and ω0 6= b, then we can define

η (t) =







Dq,ω [f ]
(

qNb+ ω [N ]q

)

if t = qN+1a+ ω [N + 1]q

Dq,ω [f ]
(

qNa+ ω [N ]q

)

if t = qN+1b + ω [N + 1]q

0 otherwise.

Hence,

∫ b

a

Dq,ω [f ] (t) η (qt+ ω) dq,ωt

= (b− a) (1− q) qNDq,ω [f ]
(

qNb+ ω [N ]q

)

·Dqω [f ]
(

qNa+ ω [N ]q

)

6= 0,

which is a contradiction.
(b) If ω0 = b, then we define

η (t) =







Dq,ω [f ] (ω0) if t = qN+1a+ ω [N + 1]q

0 otherwise.

Therefore,
∫ b

a

Dq,ω [f ] (t) η (qt+ ω) dq,ωt

= −

∫ a

ω0

Dq,ω [f ] (t) η (qt+ ω) dq,ωt

= − (a (1− q)− ω) qNDq,ω [f ]
(

qNa+ ω [k]q

)

·Dq,ω [f ] (ω0) 6= 0,

which is a contradiction.
(c) When ω0 = a, the proof is similar to (b). �

Lemma 3.7 (Fundamental lemma of Hahn’s variational calculus). Let f, g ∈
Y1 ([a, b] ,R) . If

∫ b

a

(f (t) ησ (t) + g (t)Dq,ω [η] (t)) dq,ωt = 0

for all η ∈ Y1 ([a, b] ,R) such that η (a) = η (b) = 0, then

Dq,ω [g] (t) = f (t) ∀t ∈ [a, b]q,ω .
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Proof. Define the function A by A (t) :=
∫ t

ω0
f (τ) dq,ωτ . Then Dq,ω [A] (t) = f (t)

for all t ∈ [a, b] and
∫ b

a

A (t)Dq,ω [η] (t) dq,ωt = A (t) η (t)

∣
∣
∣
∣

b

a

−

∫ b

a

Dq,ω [A] (t) ησ (t) dq,ωt

= −

∫ b

a

Dq,ω [A] (t) ησ (t) dq,ωt

= −

∫ b

a

f (t) ησ (t) dq,ωt.

Hence,

∫ b

a

(f (t) ησ (t) + g (t)Dq,ω [η] (t)) dq,ωt = 0

⇔

∫ b

a

(−A (t) + g (t))Dq,ω [η] (t) dq,ωt = 0.

By Lemma 3.6 there is a c ∈ R such that −A (t) + g (t) = c for all t ∈ [a, b]q,ω.

Hence Dq,ω [A] (t) = Dq,ω [g] (t) for t ∈ [a, b]q,ω, which provides the desired result:

Dq,ω [g] (t) = f (t) ∀t ∈ [a, b]q,ω. �

We are now in conditions to deduce the higher-order fundamental Lemma of
Hahn’s quantum variational calculus.

Lemma 3.8 (Higher-order fundamental lemma of Hahn’s variational calculus). Let
f0, f1, . . . , fr ∈ Y1 ([a, b] ,R). If

∫ b

a

(
r∑

i=0

fi (t)D
i
q,ω

[

ησ
r−i
]

(t)

)

dq,ωt = 0

for any variation η, then

r∑

i=0

(−1)
i

(
1

q

) (i−1)i
2

Di
q,ω [fi] (t) = 0

for all t ∈ [a, b]q,ω.

Proof. We proceed by mathematical induction. If r = 1 the result is true by
Lemma 3.7. Assume that

∫ b

a

(
r+1∑

i=0

fi (t)D
i
q,ω

[

ησ
r+1−i

]

(t)

)

dq,ωt = 0

for all functions η such that η (a) = η (b) = 0, . . . , Dr
q,ω [η] (a) = Dr

q,ω [η] (b) = 0.
Note that

∫ b

a

fr+1 (t)D
r+1
q,ω [η] (t) dq,ωt

= fr+1 (t)D
r
q,ω [η] (t)

∣
∣
∣
∣

b

a

−

∫ b

a

Dq,ω [fr+1] (t)
(
Dr

q,ω [η]
)σ

(t) dq,ωt

= −

∫ b

a

Dq,ω [fr+1] (t)
(
Dr

q,ω [η]
)σ

(t) dq,ωt
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and, by Lemma 3.4,

∫ b

a

fr+1 (t)D
r+1
q,ω [η] (t) dq,ωt = −

∫ b

a

Dq,ω [fr+1] (t)

(
1

q

)r

Dr
q,ω [ησ] (t) dq,ωt.

Therefore,

∫ b

a

(
r+1∑

i=0

fi (t)D
i
q,ω

[

ησ
r+1−i

]

(t)

)

dq,ωt

=

∫ b

a

(
r∑

i=0

fi (t)D
i
q,ω

[

ησ
r+1−i

]

(t)

)

dq,ωt

−

∫ b

a

Dq,ω [fr+1] (t)

(
1

q

)r

Dr
q,ω [ησ] (t) dq,ωt

=

∫ b

a

[r−1∑

i=0

fi (t)D
i
q,ω

[

(ησ)
σr−i

]

(t) dq,ωt

+

(

fr −

(
1

q

)r

Dq,ω [fr+1]

)

(t)Dr
q,ω [ησ] (t)

]

dq,ωt.

By Lemma 3.5, ησ is a variation. Hence, using the induction hypothesis,

r−1∑

i=0

(−1)
i

(
1

q

) (i−1)i
2

Di
q,ω [fi] (t)

+ (−1)r
(
1

q

) (r−1)r
2

Dr
q,ω

[(

fr −
1

qr
Dq,ω [fr+1]

)]

(t)

=

r−1∑

i=0

(−1)
i

(
1

q

) (i−1)i
2

Di
q,ω [fi] (t) + (−1)

r

(
1

q

) (r−1)r
2

Dr
q,ω [fr] (t)

+ (−1)r+1

(
1

q

) (r−1)r
2 1

qr
Dr

q,ω [Dq,ω [fr+1]] (t)

= 0

for all t ∈ [a, b]q,ω, which leads to

r+1∑

i=0

(−1)
i

(
1

q

) (i−1)i
2

Di
q,ω [fi] (t) = 0, t ∈ [a, b]q,ω .

�

3.2. Higher-order Hahn’s quantum Euler–Lagrange equation. For a varia-
tion η and an admissible function y, we define the function φ : (−ǭ, ǭ) → R by

φ (ǫ) = φ (ǫ, y, η) := L [y + ǫη] .

The first variation of the variational problem (P) is defined by

δL [y, η] := φ′ (0) .
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Observe that

L [y + ǫη] =

∫ b

a

L

(

t, yσ
r

(t) + ǫησ
r

(t) , Dq,ω

[

yσ
r−1
]

(t) + ǫDq,ω

[

ησ
r−1
]

(t) ,

. . . , Dr
q,ω [y] (t) + ǫDr

q,ω [η] (t)

)

dq,ωt

= Lb [y + ǫη]− La [y + ǫη]

with

Lξ [y + ǫη] =

∫ ξ

ω0

L

(

t, yσ
r

(t) + ǫησ
r

(t) , Dq,ω

[

yσ
r−1
]

(t) + ǫDq,ω

[

ησ
r−1
]

(t) ,

. . . , Dr
q,ω [y] (t) + ǫDr

q,ω [η] (t)

)

dq,ωt,

ξ ∈ {a, b}. Therefore,

(3.1) δL [y, η] = δLb [y, η]− δLa [y, η] .

Considering (3.1), the following lemma is a direct consequence of Lemma 2.12:

Lemma 3.9. For a variation η and an admissible function y, let

g (t, ǫ) := L

(

t, yσ
r

(t) + ǫησ
r

(t) , Dq,ω

[

yσ
r−1
]

(t) + ǫDq,ω

[

ησ
r−1
]

(t) ,

. . . , Dr
q,ω [y] (t) + ǫDr

q,ω [η] (t)

)

,

ǫ ∈ (−ǭ, ǭ). Assume that:
(1) g (t, ·) is differentiable at 0 uniformly in t ∈ [a, b]q,ω;

(2) La [y + ǫη] =

∫ a

ω0

g (t, ǫ) dq,ωt and Lb [y + ǫη] =

∫ b

ω0

g (t, ǫ) dq,ωt exist for ǫ ≈ 0;

(3)

∫ a

ω0

∂2g (t, 0) dq,ωt and

∫ b

ω0

∂2g (t, 0) dq,ωt exist.

Then

φ′ (0) = δL [y, η] =

∫ b

a

( r∑

i=0

∂i+2L
(

t, yσ
r

(t) , Dq,ω

[

yσ
r−1
]

(t) , . . . , Dr
q,ω [y] (t)

)

·Di
q,ω

[

ησ
r−i
]

(t)

)

dq,ωt,

where ∂iL denotes the partial derivative of L with respect to its ith argument.

The following result gives a necessary condition of Euler–Lagrange type for an
admissible function to be a local extremizer for (P).

Theorem 3.10 (Higher-order Hahn’s quantum Euler–Lagrange equation). Under
hypotheses (H1)–(H3) and conditions (1)–(3) of Lemma 3.9 on the Lagrangian L,
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if y∗ ∈ Yr is a local extremizer for problem (P), then y∗ satisfies the q, ω-Euler–
Lagrange equation
(3.2)

r∑

i=0

(−1)
i

(
1

q

) (i−1)i
2

Di
q,ω [∂i+2L]

(

t, yσ
r

(t) , Dq,ω

[

yσ
r−1
]

(t) , . . . , Dr
q,ω [y] (t)

)

= 0

for all t ∈ [a, b]q,ω.

Proof. Let y∗ be a local extremizer for problem (P) and η a variation. Define
φ : (−ǭ, ǭ) → R by φ (ǫ) := L [y∗ + ǫη]. A necessary condition for y∗ to be an
extremizer is given by φ′ (0) = 0. By Lemma 3.9 we conclude that

∫ b

a

(
r∑

i=0

∂i+2L
(

t, yσ
r

(t) , Dq,ω

[

yσ
r−1
]

(t) , . . . , Dr
q,ω [y] (t)

)

·Di
q,ω

[

ησ
r−i
]

(t)

)

dq,ωt = 0

and (3.2) follows from Lemma 3.8. �

Remark 3.11. In practical terms the hypotheses of Theorem 3.10 are not so easy
to verify a priori. One can, however, assume that all hypotheses are satisfied and
apply the q, ω-Euler–Lagrange equation (3.2) heuristically to obtain a candidate. If
such a candidate is, or not, a solution to problem (P) is a different question that
always requires further analysis (see an example in §3.3).

When ω → 0 one obtains from (3.2) the higher-order q-Euler–Lagrange equation:

r∑

i=0

(−1)
i

(
1

q

) (i−1)i
2

Di
q [∂i+2L]

(

t, yσ
r

(t) , Dq

[

yσ
r−1
]

(t) , . . . , Dr
q [y] (t)

)

= 0

for all t ∈ {aqn : n ∈ N0}∪{bq
n : n ∈ N0}∪{0}. The higher-order h-Euler–Lagrange

equation is obtained from (3.2) taking the limit q → 1:
r∑

i=0

(−1)
i
∆i

h [∂i+2L]
(

t, yσ
r

(t) ,∆h

[

yσ
r−1
]

(t) , . . . ,∆r
h [y] (t)

)

= 0

for all t ∈ {a+ nh : n ∈ N0} ∪ {b+ nh : n ∈ N0}. The classical Euler–Lagrange
equation [26] is recovered when (ω, q) → (0, 1):

r∑

i=0

(−1)
i di

dti
∂i+2L

(

t, y (t) , y′ (t) , . . . , y(r)(t)
)

= 0

for all t ∈ [a, b].
We now illustrate the usefulness of our Theorem 3.10 by means of an example

that is not covered by previous available results in the literature.

3.3. An Example. Let q = 1
2 and ω = 1

2 . Consider the following problem:

(3.3) L [y] =

∫ 1

−1

(

yσ(t) +
1

2

)2 (

(Dq,ω [y] (t))
2
− 1
)2

dq,ωt −→ min

over all y ∈ Y1 satisfying the boundary conditions

(3.4) y(−1) = 0 and y(1) = −1.
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This is an example of problem (P) with r = 1. Our q, ω-Euler–Lagrange equation
(3.2) takes the form

Dq,ω [∂3L] (t, y
σ (t) , Dq,ω [y] (t)) = ∂2L (t, yσ (t) , Dq,ω [y] (t)) .

Therefore, we look for an admissible function y∗ of (3.3)-(3.4) satisfying

(3.5) Dq,ω

[

4

(

yσ +
1

2

)2 (

(Dq,ω [y])
2
− 1
)

Dq,ω [y]

]

(t)

= 2

(

yσ(t) +
1

2

)(

(Dq,ω [y] (t))2 − 1
)

for all t ∈ [−1, 1]q,ω. It is easy to see that

y∗(t) =







−t if t ∈ (−1, 0) ∪ (0, 1]

0 if t = −1

1 if t = 0

is an admissible function for (3.3)-(3.4) with

Dq,ω [y∗] (t) =







−1 if t ∈ (−1, 0) ∪ (0, 1]

1 if t = −1

−3 if t = 0,

satisfying the q, ω-Euler–Lagrange equation (3.5). We now prove that the candidate
y∗ is indeed a minimizer for (3.3)-(3.4). Note that here ω0 = 1 and, by Lemma 2.8
and item (3) of Theorem 2.7,

(3.6) L [y] =

∫ 1

−1

(

yσ(t) +
1

2

)2 (

(Dq,ω [y] (t))
2
− 1
)2

dq,ωt ≥ 0

for all admissible functions y ∈ Y1 ([−1, 1] ,R). Since L [y∗] = 0, we conclude that
y∗ is a minimizer for problem (3.3)-(3.4).

It is worth to mention that the minimizer y∗ of (3.3)-(3.4) is not continuous
while the classical calculus of variations [26], the calculus of variations on time
scales [14, 20, 23], or the nondifferentiable scale variational calculus [4, 5, 10], deal
with functions which are necessarily continuous. As an open question, we pose the
problem of determining conditions on the data of problem (P) assuring, a priori,
the minimizer to be regular.
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