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Abstract

In this paper, we investigate the extremal properties of randomly sub-sampled station-

ary sequences. Motivation comes from the need to account for the effect of missing values

on the analysis of time series and the comparison of schemes for monitoring systems with

breakdowns or systems with automatic replacement of devices in case of failures.
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1 Introduction

The extremal properties of sub-sampling stationary sequences is a rapidly developing sub-

ject and it has been a topic of active research over the last years, mainly due to its wide

applicability to the analysis of environmental and financial processes. Sub-sampling may

occur according to some deterministic pattern, or may occur randomly. Much of the early

work on this topic paid attention on the effect of deterministic sub-sampling on the extremal

properties of stationary sequences; see Scotto (2005), Hall et al. (2004), Martins and Ferreira

(2004), Ferreira and Matins (2003), Scotto et al. (2003), Hall and Scotto (2003), Scotto and

Ferreira (2003), Scotto and Turkman (2002) and Robinson and Tawn (2000). In contrast,

the effect of random sub-sampling has not received much attention in the literature. We

refer to the work of Weissman and Cohen (1995) who considered the case of i.i.d. random

sub-sampling as a particular case of some mixture models. More recently, Hall and Hüsler

(2006) have obtained some generalizations of Weissman and Cohen’s results for sequences

where the sub-sampling pattern has a weak dependence structure.

One reason for the interest in extremes observed at random sampling rates comes from

the need to compare schemes for monitoring systems with breakdowns or systems with au-

tomatic replacement of devices in case of failures. Examples are encountered, for instance,

in ocean engineering. The probabilistic description of the wave climate in specific sites and

ocean areas is an important prerequisite for the design and assessment of coastal and offshore

structures. The wave climate is commonly described from time series of sea-state parameters,

such as the significant wave height and the mean zero upcrossing period. These, as well as

other sea-state parameters, provide information about the sea-state that has occurred and

about the way the sea-state evolves with time. Most of the early available data has been

collected by waverider buoys (at present, however, satellite data is becoming widely available

and some climate descriptions are based on this type of data). An important aspect for a

correct probabilistic description of the wave climate is to work with complete records of wave
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measurements. Missing values, however, are frequently encountered in time series analysis

of wave measurements, mainly when waverider buoys are used for collecting data sets. The

main reasons are damage by shipping, freak waves which appeared out of a calm sea and a

failure on the reading device. Similar problems arise in environmental studies. For example,

extreme value analysis is of particular interest in assessing the impact of high air pollution

levels, because air quality guidelines are formulated in terms of the high level of permitted

emissions. This methodology has been used in the analysis of levels of ozone (Smith, 1989,

Nui, 1997, and Tobias and Scotto, 2005) and nitrogen dioxide (Coles and Pan, 1996). Ozone

data is usually collected from sampling stations integrated within a local automatic network

for the control of atmospheric pollution in a specific area. In this case, missing observations

appear when the equipment is not working properly or it is out of service.

As the title of the paper suggest, the aim of this work is to extend the results known for

deterministic sub-sampled processes to random-generated sub-sampling processes. In partic-

ular, we investigate the maximum limiting distribution and its corresponding extremal index,

when the underlying process is represented as a moving average driven by heavy-tailed inno-

vations and the sub-sampling process is strongly mixing. Our results both exemplify some of

the findings of Hall and Hüsler (2006) and offer more precise details for this particular class

of models.

The examples given in the previous paragraphs illustrate the need to account for non-i.i.d.

patterns of missing-values since, in general, when an equipment is out of order its recovery

time may be considerably long. In this paper we also pay special attention to discrete-valued

sequences. Motivation to include discrete data models comes from the need to account for

the discrete nature of certain data sets, often counts of events, objects or individuals. Ex-

amples of applications can be found in the analysis of time series of count data that are

generated from stock transactions (Quoreshi, 2006), where each transaction refers to a trade
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between a buyer and a seller in a volume of stocks for a given price, and also in experimental

biology (Zhou and Basawa, 2005), social science (McCabe and Martin, 2005), international

tourism demand (Nordström, 1996, Garcia-Ferrer and Queralt, 1997, Brännäs et al. 2002,

and Brännäs and Nordström, 2006), and queueing systems (Ahn et al. 2000).

The rest of the paper is organized as follows: Section 2 provides a background description

of basic theoretical results related to conventional and non-negative integer-valued moving

averages with regularly varying tails. Moreover, a suitable representation for the randomly

sub-sampled process is described. In Section 3 we obtain the limiting distribution of the max-

imum term of the sub-sampled moving average sequence and the expression of its extremal

index. Finally, in Section 4 the results are applied to conventional and discrete autoregressive

processes.

2 Preliminaries

For the purpose of this work we shall consider stationary sequences X = (Xn)n∈IN0 of the

form

Xn =
∞∑

j=0

βj ∗ Zn−j , (1)

where Z = (Zn)n∈ZZ is an i.i.d. sequence of random variables (rv’s) with distribution function

FZ belonging to the domain of attraction of the Fréchet distribution with parameter α > 0,

(hereafter FZ ∈ D(Φα)):

P (|Z1| > x) = x−αL(x), x > 0, (2)

where L is slowly varying at infinity and

lim
x→∞

P (Z1 > x)
P (|Z1| > x)

= p, lim
x→∞

P (Z1 < −x)
P (|Z1| > x)

= q, (3)
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for some p + q = 1 with 0 ≤ p ≤ 1. We further assume that the coefficients (βj)j∈IN0 are such

that
∞∑

j=0

|βj |δ < ∞, δ < min(α, 1). (4)

Throughout the paper we consider two different cases:

(a) The ∗-operator denotes multiplication and Z is an i.i.d. sequence of continuous rv’s.

In this case X represents a conventional (i.e., continuous-valued) moving average model.

(b) The ∗-operator denotes binomial thinning, say ◦, and Z represents an i.i.d. sequence

of non-negative integer-valued rv’s; that is

β ◦ Z =
Z∑

s=1

Bs(β), β ∈ [0, 1],

where (Bs(β)) forms an i.i.d. sequence of Bernoulli rv’s satisfying P [Bs(β) = 1] = β. In

this case X represents a discrete analogue of case (a). It is important to stress the fact that

discreteness of the process X is ensured by the ◦-operator since this operator incorporates the

discrete nature of the variates and acts as the analogue of the standard multiplication used

in the continuous-valued moving average model. Note that thinning is a random operation

which reflects the behavior of many natural phenomenons. For instance, if Zn represents

the number of individuals of a certain specie at time n, β ◦ Zn will represents the number

of survivors at the next time instant with β representing the probability of surviving. The

concept of thinning is well known in classical probability theory and has been in use in the

Bienaymé-Galton-Watson branching processes literature as well as in the theory of stopped-

sum distributions.

We further consider within the discrete case the general class of models consisting of all

stationary sequences defined by (1) in which all thinning operations involved are indepen-

dent, for each n. Nevertheless, dependence is allowed to occur between the thinning operators
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βj ◦Zn and βi ◦Zn, j 6= i (which belong to Xn+j and Xn+i respectively). We therefore obtain

a rich class of discrete models which share some properties with the conventional case. For

particular examples and estimation procedures see Brännäs and Hall (2001).

The tail properties of Xn have been studied by Davis and Resnick (1985) for the conven-

tional case and by Hall (2001) for the discrete case. The result below summarises the tail

behavior of the random variables W = β ∗ Z and Xn, when FZ ∈ D(Φα).

Theorem 2.1 Let Z be a random variable with FZ ∈ D(Φα), α > 0.

1. For both meanings of the ∗-operator , FW ∈ D(Φα) and

(a) for the conventional case

lim
n→∞

1− FW (n)
1− FZ(n)

= p(β+)α + q(β−)α,

with β+ = max(β, 0) and β− = max(−β, 0);

(b) for the discrete case

lim
n→∞

1− FW (n)
1− FZ(n)

= βα.

2. If FZ ∈ D(Φα) then, for both meanings of the ∗-operator, FX ∈ D(Φα), and for all

τ > 0 and some sequence of constants (un)

lim
n→∞n(1− FZ(un)) = τ ′ ⇒ lim

n→∞n(1− FX(un)) = τ,

with

τ ′ =
τ∑∞

j=0 p(β+
j )α + q(β−j )α

. (5)

for the conventional case and

τ ′ =
τ∑∞

j=0 βα
j

, (6)

for the discrete case.
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The result above implies that every random variables Zn contributes to the tail P (X > x).

This contribution depends on the size of the weight βj for both meanings of the ∗-operator ,

as well as on the sign of the weight βj in the conventional case.

Now we define the randomly sub-sampled sequence Y = (Yn)n∈IN0 obtained from X and

induced through a strictly increasing function g(n) : IN0 → IN0 as follows:

Yn = Xg(n), n ≥ 0.

In addition, let U = (Un)n∈IN0 be a Bernoulli stationary sequence independent of X having

marginal distribution with parameter γ (0 ≤ γ ≤ 1). The Uns are used as indicator variables

that signal which observations are sampled whereas the g(·) function gives the sampled time,

that is the increasing sequence of ns for which Un = 1. As an example take

U1 = 1, U2 = 0, U3 = 1, U4 = 0, U5 = 0, U6 = 1, U7 = 1, . . . ,

providing

g(1) = 1, g(2) = 3, g(3) = 6, g(4) = 7, . . . .

The sequences U considered in this paper will either be i.i.d. or strongly mixing.

The study of the extremal properties of stationary sequences is frequently based on the

verification of appropriate dependence conditions which assure that the limiting distribution

of the maximum term is of the same type as the limiting distribution of the maximum of i.i.d.

rv’s with the same marginal distribution F . For stationary sequences, usual conditions used

in the literature are Leadbetter’s D(un) condition (Leadbetter et al. 1983) and condition

D(k)(un), k ∈ IN, (Chernick et al. 1991). For completeness and reader’s convenience the

definition of conditions D(un) and D(k)(un) are given below.

Definition 2.1 The condition D(un) is said to hold for a stationary sequence (Xn)n∈IN with

marginal distribution F , if for any integers i1 < . . . < ip < j1 < . . . < jq < n such that
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j1 − ip ≥ ln we have

|Fi1,...,ip,j1,...,jq(un, . . . , un)− Fi1,...,ip(un, . . . , un)Fj1,...,jq(un, . . . , un)| ≤ αn,ln

with αn,ln → 0 for some sequence (ln), ln = o(n).

Definition 2.2 The condition D(k)(un), k ≥ 1, holds for a stationary sequence (Xn)n∈IN if

there exist sequences (sn) and (ln) of integers, and (un) of reals, such that sn →∞, snαn,ln →
0, snln

n → 0, and

lim
n→∞nP (X1 > un ≥ M2,k, Mk+1,rn > un) = 0, (7)

where rn =
[

n
sn

]
, Mi,j =

{−∞ if i > j

maxi≤t≤j Xt if i ≤ j
.

The main result is due to Chernick et al. (1991), in which the extremal index is computed

by knowledge of the joint distribution of k consecutive terms.

Theorem 2.2 (Chernick et al. 1991) Suppose that for some k ≥ 1 the conditions D(un)

and D(k)(un) hold for un = un(τ), ∀τ > 0. Then, the extremal index of (Xn)n∈IN exists and

is equal to θ iff

P (M2,k ≤ un|X1 > un) → θ, as n →∞, ∀τ > 0.

A convenient way to apply the above result may be through the following:

Theorem 2.3 (Chernick et al. 1991) Suppose (Xn)n∈IN and (X(m)
n )n∈IN, m ≥ 1, are sta-

tionary sequences defined on the same probability space such that for some sequence of con-

stants {un}

lim
ε→0

lim sup
n→∞

nP ((1− ε)un < X1 ≤ (1 + ε)un) = 0,

lim
m→∞ lim sup

n→∞
nP (|X1 −X

(m)
1 | > εu) = 0, ε > 0.

Then
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1. If condition D(un) holds for (X(m)
n )n∈IN, for each m, then it holds for (Xn)n∈IN as well.

2. If (X(m)
n )n∈IN has extremal index θ(m), (Xk)n∈IN has extremal index θ iff

lim
m→∞ θ(m) = θ.

3 Extremal behavior

The main task of this section is to derive the extremal behavior of the sub-sampled Y process.

The main result is formalized through the following theorem.

Theorem 3.1 Let X be a moving average process defined as previously. Assume that (|βj |)j≥0

forms a decreasing sequence. Consider the sub-sampled sequence Y obtained by random

sub-sampling according to an auxiliary stationary sequence U. Furthermore, assume that

FZ ∈ D(Φα) satisfying limn→∞ n(1− FZ(un)) = τ ′ with τ ′ defined as in (5) for the conven-

tional case, and defined as in (6) for the discrete case. Then, the distribution of Yk satisfies

lim
n→∞n(1− FY (un)) = τ ′,

and it holds that:

1. The sequence Y has extremal index

θC =
∑∞

j=1 P (g(2)− g(1) = j)(
∑j−1

i=0 p(β+
i )α + q(β−i )α)

∑∞
j=0 p(β+

j )α + q(β−j )α
, (8)

for the conventional case, with β+
j and β−j defined as in Theorem 2.1, and

θD =
∑∞

j=1 P (g(2)− g(1) = j)
∑j−1

i=0 βα
i∑∞

j=0 βα
j

, (9)

for the discrete case.

9



2. Moreover the limiting distribution of the maximum Mn(Y ) = max1≤g(k)≤n{Yk} is given

by

lim
n→∞P (Mn(Y ) ≤ un) = exp{−θ∗x−α},

where θ∗ equals θC for the conventional case and θD for the discrete case.

Proof. By Theorem 2.3, to prove (8) we first obtain the extremal index of the the auxiliary

finite-order sub-sampled moving average sequence

Y
(m)
k =

m∑

j=0

βj ∗ Zg(k)−j ,

for fixed m > 0. We also temporarily take βj = 0 for j > m. Note that the local dependence

D(m+1)(un) condition trivially holds for Y(m) = (Y (m)
k ). For simplicity in notation we define

M
(m)
2,m+1 = max2≤k≤m+1 Y

(m)
k , and

µ
(m)
m+1(un) = P (Y (m)

1 > un ≥ M
(m)
2,m+1).

By Theorem 2.2 we have that the extremal index of the sequence Y(m), for both meanings

of the ∗-operator, is given by

θ(m) = lim
n→∞

nµ
(m)
m+1(un)

nP (Y (m)
1 > un)

.

Moreover by arguments as in Chernick et al. (1991, Prop. 2.1)

lim
n→∞nµ

(m)
m+1(un) = lim

n→∞n
m∑

j=0

P (M (m)
2,m+1 ≤ un, βj ∗ Zg(1)−j > un)

= lim
n→∞n

m∑

j=0

[P (βj ∗ Zg(1)−j > un)− P (M (m)
2,m+1 > un, βj ∗ Zg(1)−j > un)].

Now

lim
n→∞nP (M (m)

2,m+1 > un, βj ∗ Zg(1)−j > un) =

lim
n→∞





nP (M (m)
2,m+1 > un, βj ∗ Zg(1)−j > un,

∨

0≤i′≤m
2≤t≤m+1

βi′ ∗ Zg(t)−i′ > un)
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+ nP (M (m)
2,m+1 > un, βj ∗ Zg(1)−j > un,

∨

0≤i′≤m
2≤t≤m+1

βi′ ∗ Zg(t)−i′ ≤ un)





= lim
n→∞nP (βj ∗ Zg(1)−j > un,

∨

0≤i′≤m
2≤t≤m+1

βi′ ∗ Zg(t)−i′ > un),

since as in Chernick et al. (1991, p. 842) and with the convention that βj = 0 for j > m it

follows that

lim
n→∞nP (M (m)

2,m+1 ≤ un, βj ∗ Zg(1)−j > un,
∨

0≤i′≤m
2≤t≤m+1

βi′ ∗ Zg(t)−i′ > un) = 0.

This makes explicit the precise way in which a single large Z asymptotically dominates the

behavior of the maximum of the sequence Y(m). For the conventional case, it follows that

lim
n→∞nµ

(m)
m+1(un) = lim

n→∞n
m∑

j=0

P (βj ∗ Zg(1)−j > un,
∨

0≤i′≤m
2≤t≤m+1

βi′ ∗ Zg(t)−i′ ≤ un)

= lim
n→∞n

m∑

j=0

P (βj ∗ Z1 > un,
∨

2≤t≤m+1

βg(t)−g(1)+j ∗ Z1 ≤ un)

= lim
n→∞n

m∑

j=0

[P (
∨

2≤t≤m+1

β+
g(t)−g(1)+j ∗ Z1 ≤ un)

+ P (
∨

2≤t≤m+1

β−g(t)−g(1)+j ∗ Z1 ≤ un)− P (
∨

1≤t≤m+1

β+
g(t)−g(1)+j ∗ Z1 ≤ un)

− P (
∨

1≤t≤m+1

β−g(t)−g(1)+j ∗ Z1 ≤ un)]

= lim
n→∞n

m∑

j=0

[P (β+
g(2)−g(1)+j ∗ Z1 ≤ un) + P (β−g(2)−g(1)+j ∗ Z1 ≤ un)

− P (β+
j ∗ Z1 ≤ un)− P (β−j ∗ Z1 ≤ un)],

since (|βj |)j∈IN0 forms a decreasing sequence with βj = 0 for j ≥ m + 1. Conditioning on

V = g(2)− g(1) we obtain

lim
n→∞nµ

(m)
m+1(un) =

m∑

j=0

P (g(2)− g(1) = j)(
j−1∑

i=0

p(β+
i )α + q(β−i )α).
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Following Davis and Resnick (1985) the tail behavior of Y
(m)
k is given as follows:

lim
n→∞

P (Y (m)
k > un)

P (Z1 > un)
=

m∑

j=0

p(β+
j )α + q(β−j )α,

yielding

θ(m) =
∑m

j=1 P (g(2)− g(1) = j)(
∑j−1

i=0 p(β+
i )α + q(β−i )α)

∑m
j=0 p(β+

j )α + q(β−j )α
.

Finally as an application of Lemma 3.1 in Hall and Hüsler (2006, p. 547), condition D(un)

holds for the sub-sampled sequence Y, and hence by Theorem 2.3 the extremal index θC is

θC = lim
m→∞ θ(m).

The discrete case follows as an application of the results given in Hall (2001) and Hall et al.

(2004).

4 Examples

We now illustrate the effect of random sub-sampling on the extremal index of an AR(1)

process

Xk = β ∗Xk−1 + Zk,

considering two different cases: (a) the conventional case with β ∈ (−1, 0) and the sequence of

innovations Z satisfying (2) and (3); and (b) the discrete case with Z being a sequence of non-

negative integer-valued rv’s. This type of autoregressive sequence is known as INteger-valued

AutoRegressive process of order one (INAR(1) in short) process and has been considered by

several authors in the literature; see Aly and Bouzar (2005) for details. It is worth noting

that in the former case, Hall and Hüsler’s results can not be applied since condition D
′′
(un)

does not hold. In contrast, the AR(1) model with β ∈ (0, 1) satisfies D
′′
(un) condition.

Furthermore, for the sequence U two different cases will be considered:
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• Independent and identically distributed failure instants: in this case U forms an i.i.d

sequence with P (Uk = 1) = γ = 1− P (Uk = 0), providing

P (g(2)− g(1) = j) = γ(1− γ)j−1, j = 1, 2, ...;

• Failures via a Markov Chain: within this framework U forms an stationary Markov

sequence defined by 



P (Uk = 1|Uk−1 = 1) = η

P (Uk = 1|Uk−1 = 0) = ν
.

This model defines a system where the probability of failure depends only on whether

there occurred or not a failure just before. Given any values of η, ν ∈ [0, 1] it is easy to

obtain that

P (U1 = 1) =
ν

1− η + ν
.

Note that for a fixed value of κ = ν
1−η+ν ∈ [0, 1], the parameters ν and η are not entirely

arbitrary since if κ > 1/2 then η ∈ [2 − 1/κ, 1]. The sequence U is regenerative with

finite mean duration of renewal epochs and hence it is strongly mixing. Moreover

P (g(2)− g(1) = j) =





η j = 1

(1− ν)j−2(1− η)ν j ≥ 2
.

4.1 Conventional case with negative parameter

In this case, the sub-sampled sequence Y generated through the i.i.d sequence U has extremal

index

θC =
1− β2α

1− (1− γ)β2α
. (10)

When γ = 1, (i.e., no sub-sampling), the extremal index in (10) becomes θC = 1−β2α which

may be derived from the results given in Davis and Resnick (1985). Moreover, if the sub-

sampled sequence Y is generated through the stationary Markov sequence U, the extremal
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index becomes

θC =
1− β2α[1− (ν − η)(1− β2α)]

1− (1− ν)β2α
.

4.2 Discrete case

In the discrete case, the extremal index of the sub-sampled sequence Y generated through

the i.i.d sequence U, takes the form

θD =
1− βα

1− (1− γ)βα
;

whereas for the stationary Markov sequence, the extremal index is given by

θC =
1− βα[1− (ν − η)(1− βα)]

1− (1− ν)βα
.
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