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Generating Realistic Optical Transport
Network Topologies

Claunir Pavan, Rui Manuel Morais, José R. Ferreira da Rocha, and Armando Nolasco Pinto
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Abstract—We address the problem of generating
physical realistic optical transport network topolo-
gies. This type of network has characteristics that dif-
fer from scale-free networks, such as the Internet.
Based on the analysis of a set of real transport topolo-
gies, we identify and assess relevant characteristics.
A method to generate realistic topologies is proposed.
The proposed method is validated by comparing the
characteristics of computer-generated and real-world
optical transport networks.

Index Terms—Network topology design; Physical
topology; Network survivability; Transport networks.

I. INTRODUCTION

C omputer-generated (CG) network topologies are
often employed to perform simulations and

analysis of algorithms in telecommunications net-
works. The reason for using CG topologies is due to
the lack of available real-world networks in a large
number for extensive studies [1]. Usually, completely
random topologies do not have the required character-
istics [2]. Therefore, their use can lead to incorrect de-
cision making, such as underestimation of the impact
of failures in a network. Thus, it is crucial to have a
method to generate network topologies that resemble
real-world transport networks.

Network topology generators [3–11] are extensively
available in the literature. In [3] the author presents a
model for generating random graphs in which the
nodes are distributed over a plane, and links are
added to the graph using a probability function based
on the Euclidean distance between the nodes. In [4,5]
the multilevel hierarchy found in the Internet is used
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o generate Internet-like topologies. In [6] the authors
xtract the autonomous system and router level to-
ologies from the Internet, and from that realistic
ore, topologies are generated. In [7] the authors show
hat the nodal degree distribution of the autonomous
ystem level topologies follow a power law. From that,
everal topology generators have been built based on
ower laws [8–11].

However, previous efforts have been focused on to-
ologies resembling the Internet, which is a scale-free
etwork [12]. Scale-free networks contain a few nodes
ith a very high number of links, while most nodes
ave just a few links. The nodal degree distribution
ends to follow a power law [12].

In this paper, we are concerned with optical trans-
ort networks with survivable topologies. The charac-
eristics of this kind of network differs from scale-free
etworks. For instance, it is extremely rare to find
odes that have significantly more or fewer links than
he average. Thus, topologies that resemble the Inter-
et or topologies based on power laws are not suitable

or optical transport network analysis.

The starting point of our work is an extensive
nalysis of real-world transport networks to identify
heir relevant characteristics. Next a model is pro-
osed to generate topologies that resemble optical
ransport networks.

The paper is organized as follows: In Section II, we
resent a set of real-world optical transport networks
nd analyze their main characteristics. In Section III,
e develop a method for generating topologies with

hese characteristics. The validation of the method is
rovided in Section IV. In Section V, the main conclu-
ions of this paper are summarized.

II. TRANSPORT NETWORK TOPOLOGY CHARACTERISTICS

To identify and study the key variables of real
ransport networks, we have collected a set of 29 to-
ologies of real survivable transport networks (all
hat we have found). The number of nodes ranges
rom 9 to 100 (see Table I). Next we analyze the char-
cteristics of these network topologies, with the aim of
2010 Optical Society of America
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identifying the relevant variables for the adequate
characterization of transport networks.

In general, a real-world transport network topology
can be seen as a graph over a two-dimensional plane.
The nodes are distributed according to the expected
traffic demand in each geographic area. Thereby, we
often can identify regions with more nodes than the
others. Here a region stands for a number of cities or
countries (it depends on the geographic span). Figure
1 shows a possible set of regions on the European Op-
tical Network (EON) topology. Although regions with-
out any or very few nodes are pretty likely to be found,
we can frequently find a set of nodes that form a cycle
when the region holds a set of at least three nodes.
Cycles of nodes allow survivability because each pair
of nodes has two disjoint interconnecting paths. When
a node is unique within a region, the survivability
tends to be provided by connecting the node to at least
two nodes of neighbor regions, forming a cycle; in the
case of regions with two nodes, the nodes tend to be
directly connected and each one tends to be directly
connected to at least a single node in a neighbor re-
gion.

Besides this holistic view, we were able to identify a

TABLE I
REAL-WORLD REFERENCE NETWORKS

Number Network N L ���

1 VIA Network [13] 9 12 2.67
2 BREN [14] 10 11 2.20
3 RNP [15] 10 12 2.40
4 vBNS [16] 12 17 2.83
5 CESNET [17] 12 19 3.17
6 NSFNET [18] 14 21 3.00
7 Italy [19] 14 29 4.14
8 Austria [20] 15 22 2.93
9 Mzima [21] 15 19 2.53
10 ARNES [22] 17 20 2.35
11 Germany [23] 17 26 3.06
12 Spain [24] 17 28 3.29
13 LambdaRail [25] 19 23 2.42
14 Memorex [26] 19 24 2.53
15 CANARIE [27] 19 26 2.74
16 EON [28] 19 37 3.89
17 ARPANET [29] 20 32 3.20
18 PIONIER [30] 21 25 2.38
19 Cox [31] 24 40 3.33
20 SANET [32] 25 28 2.24
21 NEWNET [33] 26 31 2.38
22 Portugal [34] 26 36 2.77
23 RENATER [35] 27 35 2.59
24 GEANT2 [36] 32 52 3.25
25 LONI [37] 33 37 2.24
26 Metrona [38] 33 41 2.48
27 Omnicom [39] 38 54 2.84
28 Internet 2 [40] 56 61 2.18
29 USA 100 [41] 100 171 3.42
ew variables that characterize transport network to-
ologies. The most relevant are the nodal degree, �;
he number of hops, h; link-disjoint pairwise connec-
ivity, �; node-disjoint pairwise connectivity, �; and
lustering coefficient, c. In the following we present
ach variable in more detail and relate them to the set
f real-world transport networks, shown in Table I.

To determine the distribution of �, h, �, �, and c, we
erformed a variety of goodness-of-fit nonparametric
tatistical tests. Using the one-sample Kolmogorov–
mirnov test [42], we verified that the nodal degree of
1 networks from Table I follows a Poisson distribu-
ion at the 0.05 significance level, and 4 networks (18,
1, 23, 27) follow a Poisson distribution at the 0.01
ignificance level. Figure 2 presents the nodal degree
elative frequency distribution (gray bars) for the
SA 100 network and the Poisson probability func-

ion, with �= ���=3.42 (solid curve).

We have noticed that the networks failing the test
t both significance levels (networks 17, 25, 26, 28)
re quasi-regular; i.e., the nodal degree is almost the
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ig. 1. Physical topology of the European Optical Network (EON).
he nodes are interconnected with optical cables and distributed
cross a geographic area. Some regions are more densely populated
ith nodes and links than others. Regions with a cluster of nodes
ften present cycles (see the strong links).
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same for all nodes and the variance is small. These re-
sults confirm the results obtained in [12,43]. Accord-
ing to [43], the nodal degree of optical transport net-
works tends to follow a Poisson distribution. These
networks are also called exponential networks be-
cause the probability that a node is connected to k
other nodes tends to decrease exponentially for larger
k [12].

In survivable topologies, the minimum nodal degree
is required to be two, i.e., �min�2. Note that this fea-
ture is necessary but not sufficient for survivability
purposes. The nodal degree in our reference networks
ranges from 2 to 10, and the average nodal degree
ranges from ���=2.18 to ���=4.14 [see Fig. 3(a)]. Con-
sidering all networks, we have obtained ���*=2.8. We
use the asterisk index to indicate that the value of the
parameter is obtained from the set of networks rather
than a particular network. The standard deviation for
nodal degree ranges from 0.4 to 2.

Nodes are reachable through a single-hop or a mul-
tihop interconnection. The latter requires the crossing
of intermediary nodes and links. The average number
of hops, �h�, is determined by the physical network to-
pology and the routing algorithm. In this work we as-
sume a shortest path routing. Assuming bidirectional
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Fig. 3. The minimum, average, and maximum values of (a) the no
nectivity, and (d) the node-disjoint pairwise connectivity for 29 real
aths, the average number of hops, �h�, is by defini-
ion the summation of the number of hops of all pos-
ible node pairs divided by the number of possible
ode pairs,

�h� =
2

N�N − 1� �
i=1

N−1

�
j=i+1

N

hij, �1�

here N is the total number of nodes and hij is the
umber of hops between the nodes i and j.

In Fig. 3(b) we can see that the number of hops var-
es between 1 and 21. Regarding the average number
f hops, �h�, the values range from 2 to 8.5 and the
tandard deviation is in the range of 0.7 to 4.6. Con-
idering all networks we have �h�*=3.4. We observed
hat larger networks are sparser, which tends to lead
o a higher average number of hops, �h�.

Since a failure may affect various shared resources,
he connectivity must be sufficient to allow recovery
echniques to be employed. Recovery techniques usu-
lly rely on node and/or link-disjoint paths to ensure
hat both the working and backup paths will not be af-
ected by the same single failure [44]. Connectivity is

measure that depends on the number of disjoint
aths. Link-disjoint pairwise connectivity, �ij, is the
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number of link-disjoint paths between the node pair
ij. That is, between the nodes i and j there are �ij
paths in which the intermediary links are not shared.
The value of �ij also indicates the allowed number of
link failures. For instance, a network topology with
�ij=2 for all pairs of nodes tolerates single link fail-
ures [4,45]. For �ij=3 at most two link failures are tol-
erated and so forth. Adding the link-disjoint pairwise
connectivity of all node pairs and dividing by the num-
ber of possible bidirectional node pairs, we obtain the
average link-disjoint pairwise connectivity, ���, for a
network,

��� =
2

N�N − 1� �
i=1

N−1

�
j=i+1

N

�ij. �2�

Referring to Fig. 3(c) we can see that survivable net-
works have at least two link-disjoint paths between
each pair of nodes, �ij�2. Furthermore, this value
goes up to seven in our sample, �ij�7. The standard
deviation obtained is in the range of 0 to 0.9. We have
noticed that the average link-disjoint pairwise connec-
tivity, ���, increases with ���. Considering all net-
works, we have ���*=2.25.

Two paths are node-disjoint if they have no nodes in
common other than the source and destination. Node-
disjoint pairwise connectivity, �ij, is the number of
node-disjoint paths between the node pair ij. The
value of �ij also indicates the tolerance to node fail-
ures. Since a node-disjoint path also implies a link-
disjoint path, a network with �ij�2 for all node pairs
allows survivability against both node and link fail-
ures [46]. We can obtain the average node-disjoint
pairwise connectivity, ���, for a network with

��� =
2

N�N − 1� �
i=1

N−1

�
j=i+1

N

�ij. �3�

In terms of node-disjoint pairwise connectivity [Fig.
3(d)], we have noticed that ��� tends to increase with
���. Some of our real-world reference topologies do not
tolerate node failures; see the networks in which the
minimum node-disjoint pairwise connectivity is 1. For
our reference networks, the values of node-disjoint
pairwise connectivity satisfies 1��ij�7, with stan-
dard deviation in the range of 0 to 1. The average
node-disjoint pairwise connectivity, ���, for survivable
topologies against single node failures ranges between
2 and 3. Considering all networks we have ���*=2.21.

The clustering coefficient of a node, ci, quantifies
how close its neighbors are to being a full mesh. The
neighborhood of a node, ni, is the set of nodes that are
directly connected to the node i. The value of ci varies
from 0 to 1, being 1 if the neighborhood forms a full
mesh and 0 if none of the neighbors are directly con-
ected [47]. For undirected and connected graphs, the
lustering coefficient of a node [47] is defined as

ci =
2ti

�i��i − 1�
, �4�

here ti is the number of triangles that exists involv-
ng the node i and its neighbors, ni, and �i is the nodal
egree of the node i. The clustering coefficient of the
etwork, �c�, is the average clustering coefficient of all
odes in the network,

�c� =
1

N�
i=1

N

ci. �5�

The clustering coefficient of the nodes in our real
etworks ranges from 0 to 1. The clustering coefficient
f the network ranges from 0 to 0.69, with standard
eviation in the range of 0 and 0.4. Considering all
etworks, we have obtained �c�*=0.19.

III. PROPOSED METHOD

The proposed method is based on the Waxman
odel [3]. This choice was made because topologies

enerated with the Waxman model tend to follow a
oisson distribution for the nodal degree [48,49] (the
ame trend of real-world optical transport networks).
o more accurately satisfy survivable transport net-
ork characteristics, our method differs from the
axman model in the following ways: (a) the plane is

ivided into regions and (b) node placement and con-
ectivity obey certain constraints.

In the Waxman approach, the probability of a pair
f nodes being directly connected is

P�i,j� = 	 exp
− d�i,j�


�
, �6�

here d�i , j� is the Euclidean distance between the
odes i and j, 
 is the maximum distance between any
wo nodes, and � and 	 are parameters in the range of
0,1]. Increasing the value of � leads to a larger ratio
f long links to short links, whereas the probability of
inks between any pair of nodes increases with 	. Fig-
re 4 shows a network topology generated with the
axman model. As can be seen in Fig. 4, the Waxman
odel produces topologies with nodes of degree 1.
lso, it does not guarantee a connected topology [4,5].
oreover, as the Waxman model distributes the nodes

andomly over the whole plane, links crossing the
hole plane tend to appear. Therefore, the networks
enerated do not have the connectivity characteristics
f real-world survivable transport networks.

Our proposed method models a survivable transport
etwork as a set of interconnected smaller subnet-
orks and introduces constraints to guarantee the
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characteristics showed in the previous section. As pre-
sented in Table II, our method requires a set of nine
inputs: the number of nodes, N; minimum and maxi-
mum mean nodal degrees, ���min and ���max, used to
specify the minimum and maximum number of links;
the area of the plane A (the plane is assumed to be a
square with side X=�A); the number of regions, R,
used as part of the strategy to resemble the connectiv-
ity of transport networks; and the minimum distance
between the nodes, d, which restricts the distance be-
tween the nodes. The � and 	 are parameters of the
embedded Waxman link probability [3]. The number
of simulations is specified by �.

The method consists of the following steps:
• Divide the plane into R regions.
• Assign and place the N nodes into the regions.
• Interconnect the nodes inside each region.
• Interconnect the nodes between different regions.
• Add links to satisfy the mean nodal degree

criterion.

The plane is partitioned into R equal area regions.
Each region has an area of

Ar = 
Xr
x
Xr

y, �7�

where 
Xr
x and 
Xr

y are the dimensions of the region r.
The number of horizontal and vertical divisions on the

Fig. 4. A network generated by the Waxman model with �=0.4 and
	=0.4.

TABLE II
INPUT VARIABLES FOR THE PROPOSED METHOD

Variable Description

N Number of nodes
���min Minimum average nodal degree
���max Maximum average nodal degree

A Area of the plane in arbitrary units
R Number of regions
d Minimum distance between two nodes
� Waxman link probability parameter
	 Waxman link probability parameter
� number of simulations
lane depends on the given R, which is first decom-
osed into two numbers (p1, p2). The number p1 is
he largest prime number such that R is divisible by
1. The number p2 is the ratio between R and p1.
hen 
Xr

x=X /p2 and 
Xr
y=X /p1. Thus, the plane is di-

ided into p1 rows and p2 columns; see Fig. 5 in which
=6. In case of R being a prime number, 1 is added to
to allow this plane division strategy. The extra re-

ion remains without nodes.

Given the area of a region, Ar, and the minimum
istance between two nodes, d, the maximum number
f nodes that can be placed into a region is roughly

nmax =
Ar

d2 . �8�

o distribute the nodes the regions are chosen at ran-
om and the nodes are assigned to them, obeying the
imit nmax. Thereafter, the nodes are randomly placed
ver the respective regions, obeying the given mini-
um distance between the nodes, d (which represents
blocked area around the nodes). In Fig. 5(b), the

laced nodes are shown as black squares, whereas the
ray squares represent the blocked area.

After the above procedure, we may have regions
ithout nodes, with one, two, or more than two nodes.

f a region has two or more nodes, an additional pro-
edure is required, that is, if there are two nodes, they
re directly connected; if there are more than two
odes, they are connected as a cycle. For regions with
ore than three nodes, the way the nodes are directly

onnected follows the Waxman link probability [3].
ee a scenario for this phase in Fig. 5(b).

(b)(a)

(c) (d)

ig. 5. (a) The plane and regions. (b) Node placing, connection, and
locked areas. (c) Region interconnection. (d) A possible network to-
ology over a six-region plane.
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Once the nodes inside each region are intercon-
nected, new links should be added to interconnect the
regions. This process also follows the Waxman link
probability; however, each node of the selected pair be-
longs to different regions. To guarantee that the gen-
erated topology will be survivable, some precautions
should be taken: If a region has only one node, this
node must be connected to at least two nodes of neigh-
bor regions; if the region has only two nodes, each one
must be connected to a node in neighbor regions; if a
region has more than two nodes, at least two nodes
must be connected to nodes of neighbor regions. Two
nodes of a region can be connected to the same desti-
nation node in a neighbor region only if node-disjoint
paths are not required.

At this phase we have a connected and survivable
network topology (at least against single link fail-
ures). However, new links should be added until the
given minimum mean nodal degree, ���min, is reached.
This procedure is done following the Waxman link
probability. Afterwards, a new topology is stored for
each new link between ���min and ���max. This proce-
dure will generate several network topologies with the
same node distribution, but with different average
nodal degrees, ���. If the number of simulations, �, is
more than 1, the nodes and links should be cleared
from the plane and all procedures for the node distri-
bution are done again with the same inputs.

The number of topologies that are generated during
the algorithm run, T, depends on ���min, ���max, �, and
N, and it is given by

T = ��� ���maxN − ���minN

2 � + 1�. �9�

Given the minimum average nodal degree, ���min;
maximum average nodal degree, ���max; and total
number of nodes, N, we achieve the number of differ-
ent topologies that are generated during the algo-
rithm run. The expression ����maxN− ���minN� /2 gives
the number of bidirectional links that remains to be
included in an initial topology with ���min, until ���
= ���max. The � is the number of algorithm runs. The
floor function is applied because it is not always pos-
sible to obtain topologies with the given ���min and
���max, with N nodes. Figure 5(d) shows an example of
a network topology, and Fig. 6 shows the flow chart of
the algorithm.

IV. EXPERIMENTS AND RESULTS

To validate the proposed method, we have imple-
mented a program following the flow chart in Fig. 6.
Before starting the generation of topologies we have to
calibrate the generator. This means we need to find
out adequate values for the input parameters.
For transport network topologies, the number of
odes N varies from 10 to 100 nodes. The mean nodal
egree is 2� ����4 as can be seen in Fig. 3(a). The
rea of the plane, A, must be large enough to accom-
odate N nodes. Using the number of nodes, N, and

he minimum distance between the nodes, d, the
alue of A must be larger than Nd2. The number of re-
ions, R, depends on the size of the plane and the
umber of nodes. A plane with more regions leads to
ore cycles and higher �h�. We noticed that for trans-

ort networks a suitable range of values is between
�R�20.

For the experiments conducted in this work we have
ssumed the same N and ��� of the real-world refer-
nce networks. The plane was assumed to be A
1002. The plane was partitioned into 12 regions, R
12, and the minimum distance between the nodes
as considered to be 2, d=2. In [3] the author used
=0.4 and 	=0.4. To verify whether these values are
ppropriate for our method, we used the one-sample
olmogorov–Smirnov test to obtain the best-fit curve

o the link length distribution over all real-world to-
ologies. Figure 7 shows that the curve fits well with
he same values originally used by Waxman in [3],
ith mean error less than 2%. Therefore we use �
0.4 and 	=0.4.

The minimum, average, and maximum values for
he nodal degree, �; number of hops, h; link-disjoint
airwise connectivity, �; and node-disjoint pairwise
onnectivity, �, for the generated networks have been
alculated and are graphically represented in Fig. 8.

To identify whether the variables of computer-
enerated topologies follow the same distribution of
he real-world ones, we have used the two-
ndependent-sample Kolmogorov–Smirnov test [42].

Regarding nodal degree, the tests have revealed
hat all computer-generated topologies follow the

Input
N, min, max,
A, R, d, α, β,

Divide the plane
into R regions

Assign a random
number of nodes
to each region

Place nodes into
the regions

Connect nodes
into the regions

Interconnect
regions

Save
topology

Add a link
randomly

no

≤ max? yes

End

no

yes

yes

no

Clear nodes and
links from the

plane

Simulations
< ?

min?

ig. 6. A plane is divided into R regions. A random number of
odes is assigned and placed in each region. After the nodes are in-
erconnected, new links are added while the mean nodal degree is
etween ���min and ���max.
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same distribution of the respective real-world topolo-
gies at the 0.05 significance level. Referring to Fig.
8(a), we can see that the network topologies have
�min�2 and �max�8 and ��� ranges from 2 to 4 with
standard deviation in the range of 0.6 to 2.6. Consid-
ering all networks, we have ���*=2.8. Figure 9 shows
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Figure 8(b) shows that the number of hops ranges
from 1 to 20. The average number of hops, �h�, ranges
from 2 to 8.3 with a standard deviation in the range of
0.7–4.3. Considering all networks, we have �h�*=3.2.

In terms of both link- and node-disjoint pairwise
connectivity, all the computer-generated topologies
follow the same distribution of the respective real-
world topologies at the 0.05 significance level. Figure
8(c) shows that all computer-generated network to-
pologies have at least two link-disjoint paths between
each pair of nodes, �ij�2, and at most six, �ij�6. The
average link-disjoint pairwise connectivity, ���,
ranges from 2 to 3 independently of the network size
and presents a standard deviation in the range of
0.1–1. Considering all networks, we have ���*=2.3.

The node-disjoint pairwise connectivity satisfies 1
��ij�6 [see Fig. 8(d)]. The average node-disjoint pair-
wise connectivity, ���, for survivable topologies
against single node failures ranges between 2 and 3
with a standard deviation in the range of 0–1.1. Con-
sidering all networks, we have ���*=2.26.

In terms of the clustering coefficient of the network,
all the computer-generated topologies follow the same
distribution of the respective real-world topologies at
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Fig. 10. Comparison between the clustering coefficient of real and
computer-generated networks. The minimum and maximum devia-
tion between each pair of networks (real and computer generated) is
0 and 0.23, respectively. The average deviation is 0.07.

TAB
SUMMARY OF THE VAL

Variable

Minimum Average*

Real CG Real C

� 2 2 2.80 2.
h 1 1 3.40 3.
� 2 2 2.25 2.
� 1 1 2.21 2.
c 0 0 0.19 0.
he 0.05 significance level. The clustering coefficient of
odes in our computer-generated networks ranges

rom 0 to 1. The clustering coefficient of the networks
anges from 0 to 0.65 with standard deviation in the
ange of 0–0.4. Considering all networks, we have ob-
ained �c�*=0.16. Figure 10 shows a comparison be-
ween the clustering coefficient of real and computer-
enerated networks. The average deviation is 0.07.

In Table III we summarize the values of key vari-

ig. 11. Example of a computer-generated network topology for
=19, L=37, A=1002, R=12, d=2, 
=71, �=0.4, and 	=0.4. Pos-

ible cycles inside regions are shown as highlighted links.

III
S OF KEY VARIABLES

Maximum Std. Deviation

Real CG Real CG

10 8 0.4–2.0 0.6–2.6
21 20 0.7–4.6 0.7–4.3
7 6 0.0–0.9 0.1–1.0
7 6 0.0–1.0 0.0–1.1
1 1 0.0–0.4 0.0–0.4
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ables obtained from both real and computer-generated
network topologies. We can see that, although a given
number of nodes and links may produce a huge num-
ber of topologies, the computer-generated topologies
effectively show statistics similar to the real-world op-
tical transport networks. Figure 11 shows an example
of a computer-generated network. The topology has
the same number of nodes and links as the EON to-
pology. The EON topology has � varying from 1 to 7
with a mean of 3.89, h varying from 1 to 5 with a
mean of 2.3, � from 2 to 7 with a mean of 2.9, and �
from 2 to 6 with a mean of 2.6. The computer-
generated topology has � from 1 to 6 with a mean of
3.89, h varying from 1 to 5 with a mean of 2.4, � from
2 to 6 with a mean of 3 and � from 2 to 6 with a mean
of 2.8. Therefore, the statistics are similar to the ones
presented in the EON network. Similar results were
obtained with more than 50,000 computer-generated
network topologies, when compared with the real-
world network statistics.

V. CONCLUSIONS

We have studied the problem of generating realistic
topologies for survivable transport networks. After
identifying relevant characteristics of real-world
transport networks, we proposed a method for gener-
ating survivable network topologies in which those
characteristics have similar statistics to real-world
networks. The proposed method is based on con-
straints that allow survivability and adequate nodal
degree, number of hops, and link- and node-disjoint
pairwise connectivity. We implemented and verified
the proposed method by comparing the obtained re-
sults with practical networks. The values of the vari-
ables obtained from more than 50,000 computer-
generated topologies are in agreement with those
from the real-world reference networks, which vali-
dates the proposed method.
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