

Arcwise Connectedness of Solution Sets to Lipschitzean Differential Inclusions.

VASILE STAICU - HE WU

Sunto. – Si dimostra che è connesso per archi l'insieme delle soluzioni del problema di Cauchy $\dot{x} \in F(x)$, $x(0) = \xi$, dove $F: X \to 2^X$ è una multifunzione Lipschitziana a valori chiusi, ed X è uno spazio di Banach separabile.

We consider for ξ in \mathbb{R}^n the Cauchy problem

$$(P_{\xi}) \qquad \qquad \dot{x} \in F(x), \qquad x(0) = \xi,$$

and we denote by $\mathcal{I}(\xi)$ the set of solutions of (P_{ξ}) defined on a given interval I, i.e., the set of absolutely continuous functions $x: I \to R^n$ such that $x(0) = \xi$ and $\dot{x}(t) \in F(x(t))$ a.e. in I.

It is known that $\mathcal{I}(\xi)$ is a compact connected subset of $C(I, \mathbb{R}^n)$ when F is an upper semicontinuous multifunction from \mathbb{R}^n into the compact convex subsets of \mathbb{R}^n (hence also when F is a continuous single valued map). However $\mathcal{I}(\xi)$ is not arcwise connected as an example in ([1], p. 203) shows.

The aim of this note is to prove that $\mathcal{I}(\xi)$ is arcwise connected if F is a Lipschitzean multifunction from a real separable Banach space X into the closed nonempty subsets of X. We obtain this result by using the existence of a continuous selection from $\xi \to \mathcal{I}(\xi)$.

Let T>0, I=[0,T] and let X be a real separable Banach space with norm $|\cdot|$. Denote by C(I,X) the Banach space of continuous functions $x\colon I\to X$ with the norm $\|x\|_\infty=\sup\{|x(t)|\colon t\in I\}$ and by AC(I,X) the Banach space of absolutely continuous functions

$$x: I \rightarrow X$$
 with the norm $||x||_{AC} = |x(0)| + \int_0^T |\dot{x}(t)| dt$.

Let $F: X \to 2^X$ be a multivalued map satisfying the following assumptions:

- (H_1) the values of F are closed nonempty subsets of X.
- (H_2) there exists L>0 such that $d(F(x), F(y)) \le L|x-y|$, for all $x, y \in X$, (here $d(\cdot, \cdot)$ stands for the Hausdorff distance).

The main result of this note is the following:

THEOREM. – For every $\xi \in X$ the set $\mathcal{I}(\xi)$ is arcwise connected in C(I,X).

To prove it we shall use the following:

LEMMA. – ([2], [3]) Let F satisfy (H_1) - (H_2) , let $\xi_0 \in X$ and let $x_0 \in \mathcal{I}(\xi_0)$. Then there exists a continuous map $\varphi \colon X \to AC(I, X)$ such that $\varphi(\xi_0) = x_0$ and $\varphi(\xi) \in \mathcal{I}(\xi)$ for every $\xi \in X$.

PROOF OF THEOREM. – Fix $\xi_0 \in X$ and let x, y be in $\mathcal{I}(\xi_0)$. By the Lemma, there exists a continuous map $\varphi \colon X \to AC(I,X)$ such that $\varphi(\xi_0) = x$ and $\varphi(\xi) \in \mathcal{I}(\xi)$ for every $\xi \in X$. Since $y(\cdot)$ is continuous on I, we have that the map $\lambda \to \varphi(y(\lambda T))$ is continuous from [0,1] to AC(I,X). Moreover $\varphi(y(\lambda T)) \in \mathcal{I}(y(\lambda T))$, for each $\lambda \in [0,1]$. Following an idea in [5] we define for $\lambda \in [0,1]$

$$x_{\lambda}(t) = \begin{cases} y(t) & \text{if } 0 \leq t \leq \lambda T, \\ \varphi(y(\lambda T))(t - \lambda T) & \text{if } \lambda T \leq t \leq T, \end{cases}$$

and remark that $x_0(\cdot)=x(\cdot)$ and $x_1(\cdot)=y(\cdot)$. It is easy to see that $\dot{x}_{\lambda}(t)\in F(x_{\lambda}(t))$ for a.e. $t\in I$ and $x_{\lambda}(0)=\xi_0$, so that, $x_{\lambda}\in \mathcal{I}(\xi_0)$. To complete the proof it remains to be proved that $\lambda\to x_{\lambda}$ is continuous from [0,1] to C(I,X). Let $\varepsilon>0$ and $\lambda_0\in [0,1]$ be fixed. We show that there exists $\delta>0$ such that for any λ in [0,1] with $|\lambda-\lambda_0|<\delta$ we have $\|x_{\lambda}-x_{\lambda_0}\|_{\infty}<\varepsilon$. For $t\in I$ we distinguish three situations:

(i)
$$0 \le t \le \lambda_0 T \le \lambda T$$
, (ii) $\lambda_0 T \le t \le \lambda T$ and (iii) $\lambda_0 T \le \lambda T \le t \le T$.

In the case (i) we have $|x_{\lambda}(t) - x_{\lambda_0}(t)| = |y(t) - y(t)| = 0$. If $\lambda_0 T \le t \le \lambda T$ then $|x_{\lambda_0}(t) - x_{\lambda}(t)| = |\varphi(y(\lambda_0 T))(t - \lambda_0 T) - y(t)|$. Since $\varphi(y(\lambda_0 T))(\cdot)$ and $y(\cdot)$ are uniformly continuous on I, there exists $\delta_1 > 0$ such that for any t' and t'' in I with $|t' - t''| < \delta_1$ we have

$$\begin{split} &|\varphi(y(\lambda_0\,T))(t')-\varphi(y(\lambda_0\,T))(t'')|<\varepsilon/2 \quad \text{ and } \quad |y(t')-y(t'')|<\varepsilon/2\,. \end{split}$$
 Let $|\lambda_0-\lambda|<\delta_1/T.$ Then $|t-\lambda_0\,T|\leqslant |\lambda-\lambda_0\,|T\leqslant \delta_1$ and $|x_{\lambda_0}(t)-x_{\lambda}(t)|\leqslant |\varphi(y(\lambda_0\,T))(t-\lambda_0\,T)-$

$$-\varphi(y(\lambda_0 T))(0)|+|\varphi(y(\lambda_0 T))(0)-y(t)|<\varepsilon/2+\varepsilon/2=\varepsilon.$$

Finally, if (iii) holds then

$$\begin{aligned} |x_{\lambda_0}(t) - x_{\lambda}(t)| &= |\varphi(y(\lambda_0 T))(t - \lambda_0 T) - \varphi(y(\lambda T))(t - \lambda T)| \leqslant \\ &\leqslant |\varphi(y(\lambda_0 T))(t - \lambda_0 T) - \varphi(y(\lambda_0 T))(t - \lambda T)| + \\ &+ |\varphi(y(\lambda_0 T))(t - \lambda T) - \varphi(y(\lambda T))(t - \lambda T)| \;. \end{aligned}$$

Since $\lambda \to \varphi(y(\lambda T))$ is continuous from [0,1] to C(I,X) there exists $\delta_2 > 0$ such that

$$|\lambda - \lambda_0| < \delta_2 \text{ implies } \|\varphi(y(\lambda T))(\cdot) - \varphi(y(\lambda_0 T))(\cdot)\|_{\infty} < \varepsilon/2$$

so that for $|\lambda - \lambda_0| < \delta_2$ we have

(2)
$$|\varphi(y(\lambda T))(t - \lambda T) - \varphi(y(\lambda_0 T))(t - \lambda T)| < \varepsilon/2.$$

Moreover since $t \to \varphi(y(\lambda_0 T))(t)$ is uniformly continuous on I, there exists $\delta_3 > 0$ such that

$$|t'-t''| < \varepsilon_3$$
 implies $|\varphi(y(\lambda_0 T))(t') - \varphi(y(\lambda_0 T))(t'')| < \varepsilon/2$.

Then if $|\lambda - \lambda_0| < \delta_3/T$ we have that $|t - \lambda T - t + \lambda_0 T| \le |\lambda - \lambda_0| T \le \delta_3$ and

(3)
$$|\varphi(y(\lambda_0 T))(t - \lambda T) - \varphi(y(\lambda_0 T))(t - \lambda_0 T)| < \varepsilon/2.$$

By (1), (2) and (3), we have that if $|\lambda - \lambda_0| < \min \{\delta_2, \delta_3/T\}$ then $|x_{\lambda}(t) - x_0(t)| < \varepsilon$.

Let $\delta:=\min\{\delta_{\lambda}/T, \delta_{2}, \delta_{3}/T\}$. We have shown that if $\lambda_{0} \leq \lambda$ and $|\lambda-\lambda_{0}| < \delta$ then, for any t in I, $|x_{\lambda_{0}}(t)-x_{\lambda}(t)| < \varepsilon$, that is $||x_{\lambda_{0}}-x_{\lambda}||_{\infty} < \varepsilon$. For $\lambda \leq \lambda_{0}$ the proof is similar.

Proposition. – $\mathcal{F} := \cup \{\mathcal{F}(\xi): \xi \in X\}$ is arcwise connected in C(I, X).

PROOF. – Let x, y in \mathcal{T} and let ξ and ξ_0 in X be such that $x \in \mathcal{T}(\xi_0)$ and $y \in \mathcal{T}(\xi)$. If $\xi \neq \xi_0$ then, by Corollary 4.3 in [6], there exists a continuous map $h: [0, 1] \to AC(I, X)$ such that h(0) = x, h(1) = y and, for $\lambda \in [0, 1]$ $h(\lambda) \in \mathcal{T}(\xi_{\lambda})$, where $\xi_{\lambda} = (1 - \lambda) \xi_0 + \lambda \xi$.

If $\xi = \xi_0$, then the existence of a continuous map $h: [0, 1] \to C(I, X)$ such that h(0) = x, h(1) = y follows from the Theorem.

REMARK. – Similar properties of solution sets to differential inclusions have been obtained by F. S. De Blasi and G. Pianigiani in [4], by using the Baire cathegory method.

REFERENCES

- [1] J. P. Aubin A. Cellina, Differential inclusions, Springer-Verlag, Berlin, 1984.
- [2] A. CELLINA A. ORNELAS, Representation of the attainable set for Lipschitzian differential inclusions, Rocky Mountain J. Math., to appear.
- [3] R. M. COLOMBO A. FRYSZKOWSKI T. RZEZUCHOWSKI V. STAICU, Continuous selection of solution sets of Lipschitzian differential inclusions, Funkcial. Ekvac., to appear.
- [4] F. S. DE BLASI G. PIANIGIANI, On the Hukuhara-Kneser property for non-convex valued differential inclusions, Preprint, 51 (1990), Istituto Matematico, Università di Siena.
- [5] C. J. HIMMELBERG F. S. VAN VLECK, A note on solution sets of differential inclusions, Rocky Mountain J. Math., 12 (1982), 621-625.
- [6] V. STAICU, Continuous selections of solution sets to evolution equations, Proc. Amer. Math. Soc., to appear.
 - V. Staicu: Faculty of Mathematics, University of Bucharest, Romania

H. Wu: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, P. R. China

Pervenuta in Redazione il 9 ottobre 1990