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Abstract

Hidden k-logics can be considered as the underlying logics of program specification.
They constitute natural generalizations of k-deductive systems and encompass de-
ductive systems as well as hidden equational logics and inequational logics. In our
abstract algebraic approach the data structures are sorted algebras endowed with a
designated subset of their visible part, called a filter, which represents a set of truth
values.

We present a hierarchy of hidden k-logics. The hidden k-logics in each class are
characterized by three different kinds of conditions. Namely, properties of their
Leibniz operator, closure properties of the class of their behavioral models, and
by properties of equivalence systems. Using equivalence systems we obtain a new
and more complete analysis of the axiomatization of the behavioral models. This is
achieved by means of the Leibniz operator and its combinatorial properties.
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1 Introduction

In the algebraic approach to program specification one intends to model pro-
grams by algebras which are considered as abstract machines in which the
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routines are to be run. Traditionally, equational logic has been used as the
underlying logic; this is one way of giving a precise algebraic semantics for
programs, against which the correctness of a program can be tested. How-
ever, there are properties inherent to object oriented (OO) programs which
disable a straightforward application of equational methods. In this case, a
more appropriate model for the abstract machine is a state transition system.
A state of an OO program, like a state of a transition system, can be viewed
as encapsulating all pertinent information about the abstract machine when
it reaches that state during execution of the program. The standard equality
predicate can then be replaced by behavioral equivalence; and in this way, the
intrinsic properties of state transition systems can be translated into equa-
tional logic. Intuitively, two elements are considered behaviorally equivalent
in a given implementation A if they cannot be “distinguished” in A by any
visible program taking them as input. This analogy with state-transition sys-
tems suggests that the methods of coalgebra, in particular coinduction, might
be useful in verifying behavioral validity. In fact, a considerable amount of
research has been done on developing various forms of coinduction, usually
in combination with the methods of standard equational logic, to verify be-
havioral validity for wide classes of hidden equational logics (see [18]). Our
approach to behavioral specification differs substantially from that taken in
most of the previous work in this area in the sense that it is greatly influenced
by the theory of abstract algebraic logic (AAL) (see [6]). This is, in fact, the
new feature of our work (see [29,30] and [31]).

AAL is an area of algebraic logic that focuses on the study of the relationship
between logical equivalence and logical truth. More precisely, AAL is centered
on the process of associating a class of algebras to a logical system (see [6]). A
logical system, a deductive system as it has been called in the AAL field, is a
pair formed by a signature Σ and a substitution-invariant closure relation on
the set of terms over Σ. Using deductive systems (more precisely, k-deductive
systems) we can deal with sentential logics, first-order logic (see [6]), equational
logic and the logic of partially ordered algebras, as parts of a single unified
theory.

The main paradigm in AAL is the representation of the classical propositional
calculus in the equational theory of Boolean algebras by means of the so
called Lindenbaum-Tarski process. In its traditional form, the Lindenbaum-
Tarski process relies on the fact that the classical propositional calculus has
a biconditional “↔” that defines logical equivalence. The set of all formulas
is partitioned into logical equivalence classes and then the familiar algebraic
process of forming the quotient algebra, called the Lindenbaum-Tarski algebra,
is applied. There are many deductive systems that do not have a biconditional,
and hence the Lindenbaum-Tarski process cannot be applied directly. However,
there is an abstract notion of logical equivalence in every deductive system
called the Leibniz congruence and in this way the Lindenbaum-Tarski process
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can be generalized so as to apply to several deductive systems.

The Leibniz congruence Ω(T ) on the term algebra over a theory T is char-
acterized in the following way: for any pair α, β of terms, α ≡ β (Ω(T )) if
for every term ϕ and any variable p occurring in ϕ, ϕ(p/α) ∈ T if and only
if ϕ(p/β) ∈ T . The Leibniz congruence is extended in a natural way to the
power set of an arbitrary algebra. Given a Σ-algebra A and a designated sub-
set F of A, the pair 〈A, F 〉 is called a matrix. The relation Ω(F ) identifies
any two elements which cannot be distinguished by any property defined by
a formula. More precisely, for any pair of elements a, b of A, a ≡ b (Ω(F )) if
for each formula ϕ(x, u0, . . . , uk−1), and all parameters c̄ ∈ Ak, ϕA(a, c̄) ∈ F
if and only if ϕA(b, c̄) ∈ F . Moreover, Ω(F ) is a congruence on A.

In order to apply results and tools of AAL to the theory of specification of
abstract data types, we have to look at the specification logic as a deductive
system (i.e., as a substitution-invariant closure relation on an appropriate set
of formulas) and behavioral equivalence as some generalized notion of Leibniz
congruence. The class of deductive systems has to be expanded in order to
include multisorted as well as one-sorted systems. The notion of k-deductive
systems is generalized by considering the data to be heterogeneous in the
sense that the data elements may be of different kinds. Specifically, there are
the basic data, like integers, reals and Booleans, whose properties are well-
known and for which well-defined and easily manipulated representations are
available; and there are the auxiliary data such as arrays, lists, stacks, whose
properties are specified by their behavior under the programs with visible
output. Thus, we use distinct representations for each kind of data elements.
We also distinguish the basic data and the auxiliary data by splitting the
data in two kinds: the ones to which the user has direct access to (visible
data) and those that the user only has access to by the meaning (output)
of programs with visible output (hidden data). This advantage is central in
the specification of OO systems. For some programs it is worth considering
those kinds of encapsulated data representation either for security reasons or
to simplify the process of updating and improving program implementations.
The Leibniz congruence has to be considered in the context of the dichotomy
of visible vs. hidden; namely, the formulas we used in the characterization of
the Leibniz congruence also have to be restricted to an appropriate proper
subset of all formulas, namely the visible formulas (called contexts).

We call these generalized deductive systems hidden k-logics. We have been
using them as underlying logics of program specification within the dichotomy
visible vs hidden. They encompass deductive systems as well as the hidden
versions of equational and inequational logics and Boolean logics, which are
1-dimensional multisorted logics with Boolean as the only visible sort and
with equality-test operations for some of the hidden sorts in place of equality
predicates (see [34]). Using hidden k-logics we obtain a unified treatment of
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all these kinds of logics and, we can import tools and results from AAL to the
specification and verification theory of OO systems.

Hidden k-logics were firstly introduced in [31], where the authors dedicated a
special attention to the equational case to derive properties of the behavioral
logic of hidden equational logics; the main result is the characterization of the
behaviorally specifiable logics as the finitely equivalential ones. An extensive
study concerning hidden k-logics was presented in [29]. The author has shown
that hidden k-logics are a natural generalization of deductive systems. More-
over, he has used some theorems and arguments of AAL in order to establish
results in the specification and verification theory of OO programs.

In this paper, an abstract algebraic approach is followed by considering data
structures as sorted algebras endowed with a designated subset of the visible
part of the algebra, called a filter, which represents the set of truth values. The
properties of the specification are formalized by visible conditional equations.
The restriction to visible axioms is natural since only visible programs are used
in defining behavioral equivalence. In the equational case, allowing hidden
equations as axioms may produce unexpected consequences in the behavior of
the system. A straightforward consequence of allowing a hidden axiom is that
it is trivially a behavioral theorem and we do not know a priori if it is actually
a behavioral theorem of the original system we intend to specify. The correct
procedure should be the following: given a hidden equation e and a hidden
equational logic L, if we are able to show that e is behaviorally valid in L, then
we may add it as a new axiom without altering the behavioral consequence
relation. This can be done with any set of conditional equations. And we may
be able to show that now some of the original axioms are redundant (i.e.,
consequences of the remaining ones together with the newly adjoined hidden
axioms). Thus we can discard them and in this way we obtain a simpler
specification (in [31] we illustrate this procedure by using the specification of
stacks).

The present work is a significant contribution for the development of the gen-
eralized theory of AAL described above. The main aim of this paper is to
establish a hierarchy of general hidden k-logics. The classes in the hierarchy
are characterized by closure properties of the class of behavioral models. For
instance, the protoalgebraic logics are characterized by the closure of their
class of behavioral models under subdirect products.

This classification of hidden k-logics in terms of their behavior, as well as the
characterizations by closure properties of the class of behavioral models, and
the corresponding hierarchy of such classes of logics has never been considered
in the context of hidden equational logics and observational logics. A similar
axiomatization of behavioral equivalence has been considered by Bidoit and
Hennicker (see for example [2]). They defined an axiomatization to be a set
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of first order formulas which defines the Leibniz congruence over any filter.
Here we go further, by presenting an extensive analysis of the various kinds
of formulas that can be used in the axiomatization.

1.1 Outline of the paper

We start by presenting some basic notions and results on multisorted universal
algebra which will be needed in the sequel. Then, we recall the notion of a
hidden k-logic and we review some elementary aspects of its semantics.

As we said above, hidden k-logics are very important since they comprehend,
not only the hidden and standard equational and inequational logics, but also
Boolean logics and all sentential logics in the sense of AAL. The Leibniz con-
gruence is introduced in this general context and its most relevant properties
are formulated (for details see [31] and [29]).

The notion of protoalgebraic logic is generalized to the hidden case (Definition
18). The class of protoalgebraic logics seems to be the widest class whose
behavior can be reasonably managed. This class is characterized syntactically
by the existence of a special double sorted set of visible k-formulas. Closure
properties of the set Ω(Th(L)) := {Ω(T ) : T ∈ Th(L)} are also discussed.

In Subsection 4.2, we introduce the notion of equivalence systems in the con-
text of hidden k-logics and we develop their fundamental theory. Informally,
an equivalence system of a hidden k-logic L is a sorted set of visible k-formulas
which defines, for each theory T of L, the Leibniz congruences on the term al-
gebra over T (Theorem 28). Hence, an equivalence system of a logic L provides
an axiomatization for its behavioral logic. Equivalence systems are the natural
generalization of the well known phenomenon in the classical propositional cal-
culus where the equivalence of formulas can be expressed by the equivalence
symbol “↔” (see [35]), i.e., for each theory T , ϕ ≡ ψ (Ω(T )) iff T ` ϕ ↔ ψ.
The formal definition of equivalence system, given here, is syntactic, but we
present model theoretical characterizations for a sorted set of formulas to be
an equivalence system. Proposition 31 is a very useful tool; we show, using
this proposition, that the specification of stacks is not finitely equivalential
(see Subsection 4.4.3).
Using the theory of equivalence systems, in subsection 4.3, we establish a hier-
archy in the class of hidden k-logics by properties of the respective equivalence
systems. The classes considered in that hierarchy are the protoalgebraic, the
parameterized finitely equivalential, the equivalential and the finitely equiv-
alential logics.
Such classes are also characterized by properties of the Leibniz operator, as
well as by closure properties of the class of behavioral models. The character-
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izations are established using Theorem 35 which provides an axiomatization
of the class of behavioral models using equivalence systems. This theorem is
essentially a consequence of the fact that the equivalence systems of a hidden
k-logic define the Leibniz congruence on A over F for each model 〈A, F 〉 of
L (Theorem 28).

To clarify the several abstract notions of equivalence systems we present some
examples in Subsection 4.4; in particular, we show an example of a hidden
equational logic which is not equivalential.

We finish Section 4 by presenting a further topic of research: the definability
of the set of behavioral theorems. We just develop the introductory theory,
but the analogy with the theory of equivalence systems suggests that the same
tools will work. At the end of the paper we establish connections with related
work.

2 Hidden algebra

Let SORT be a nonempty set whose elements are called sorts. A type over
SORT is a nonempty finite sequence S0, . . . , Sn of sorts in SORT. We will
write a type as S0, . . . , Sn−1 → Sn. The set of all types is denoted by TYPE.
The dichotomy visible vs hidden is taken in account from the beginning: the set
of sorts is split in two parts, visible and hidden, in the definition of signature.
A hidden (sorted) signature is a triple Σ = 〈SORT, VIS, 〈OPτ : τ ∈ TYPE〉〉,
where SORT is a countable nonempty set of sorts, VIS is a subset of SORT,
which we call the set of visible sorts, and OPτ is a countable set of operation
symbols of type τ . The sorts in HID := SORT \ VIS are called hidden sorts.
Σ is said to be standard if there is a ground term of every sort.

Example 1 (FLAGS) The hidden signature of Flags, Σflags, is the signature
used to specify the semaphore systems. These systems are used to schedule
resources in the following way. We associate a flag to each resource. When
a resource is being used by some process, its flag is put “up” to indicate
forbidden access. After being used, its flag is put “down”, which means that
the resource is available to be used by another process. The user does not
have access to the flag itself (i.e., flag is the hidden sort). The only access is
through the operation up?, which is used to test the state of the semaphore
and returns a Boolean value. In case of the implementation which has as its
Boolean part the 2-element Boolean algebra, the result of up? is true or false
with the meaning that the resource is available or not, respectively. Σflags is
the hidden signature 〈SORT, VIS, OP〉 presented in Fig. 1.

♦
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SORT : bool, f lag
VIS : bool

Operation symbols:

up : flag → flag;
rev : flag → flag;
dn : flag → flag;
up? : flag → bool;
true : → bool;

false : → bool;
¬ : bool → bool;
∧ : bool, bool → bool;
∨ : bool, bool → bool.

flag
 bool


up?


up, dn, rev


true,

false


Fig. 1. Signature of Flags, Σflags.

By a Σ-algebra 1 (we simply say an algebra, if Σ is clear from the context)

we mean a pair A =
〈
〈AS : S ∈ SORT〉, 〈OPA

τ : τ ∈ TYPE〉
〉
, where A =

〈AS : S ∈ SORT〉 is a nonempty sorted set and for each τ ∈ TYPE (τ =
S0, . . . , Sn−1 → Sn), OPA

τ = 〈OA : O ∈ OPτ 〉, where OA is an operation on
A of type τ , that is OA : AS0 × · · · × ASn−1 → ASn . We call the sorted set
A = 〈AS : S ∈ SORT〉 the universe (or carrier) of A and the sets AS, for
S ∈ SORT, are called the domains of A.

We say that a sorted set A is locally countable (finite), if for every sort S, AS

is a countable (finite) set; and A is said to be globally finite, if A is locally
finite and AS is empty except for a finite number of sorts. Note that, if SORT
is finite then global and local finiteness are equivalent. We write B ⊆GF A if
B is a sorted subset of A and B is globally finite. The set of all globally finite
sorted subsets of A is denoted by PGF(A), i.e., PGF(A) = {B : B ⊆GF A}.

1 Throughout this paper we assume that AS 6= ∅, for all S ∈ SORT. With this
assumption we exclude some data structures of practical interest. However, the
metamathematics is simpler in this case and most results of universal algebra hold
in their usual form. More generally, the assumption holds automatically if Σ is
standard.
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2.1 Homomorphisms and congruences

A mapping f : A → B between the universes of two Σ-algebras A and B is a
(Σ-algebra) homomorphism from A to B, denoted by f : A → B, if for each
operation symbol O of type S0, . . . , Sn−1 → Sn and all a0 ∈ AS0 , . . . , an−1 ∈
ASn−1 , fSn(OA(a0, . . . , an−1)) = OB(fS0(a0), . . . , fSn−1(an−1)). An injective ho-
momorphism f is called a monomorphism. If f is surjective, it is called an
epimorphism. We say that h is an isomorphism if it is both an injective
and a surjective homomorphism. By a sorted congruence on a Σ-algebra A
we mean a sorted binary relation θ ⊆ A2 such that, for each S ∈ SORT,
θS is an equivalence relation on AS and for every operation symbol O, say
of type S0, . . . , Sn−1 → Sn, and all a0, a

′
0 ∈ AS0 , . . . , an−1, a

′
n−1 ∈ ASn−1 , θ

satisfies the congruence condition (sometimes called substitutivity condition):
OA(a0, . . . , an−1) ≡ OA(a′0, . . . , a

′
n−1) (θSn), whenever ai ≡ a′i (θSi

) for each
i < n. We will represent congruence relations by the symbol ≡ or by the Greek
letter θ . The set of all congruences on A is denoted by Con(A). If h : A → B
is a homomorphism from A to B then ker(h) is a sorted congruence on A.
Let F be a sorted set of pairs of an algebra A; the congruence generated by
F on A, denoted by Θ(F ), is the intersection of all congruences of A that
contain F , i.e., the smallest congruence on A which contains F . The quotient
of A by the congruence θ is the algebra A/θ = 〈A/θ, OPA/θ〉, where for each
operation symbol O of type S0, . . . , Sn−1 → Sn and all ai/θSi

∈ ASi
/θSi

, i < n,
OA/θ(a0/θS0 , . . . , an−1/θSn−1) = OA(a0, . . . , an−1)/θSn .

The homomorphism theorems of (unsorted) universal algebra all extend nat-
urally to sorted universal algebra (see [32]). In particular, the first homomor-
phism theorem says that a surjective homomorphism h : A → B of sorted al-
gebras can be factored uniquely by the natural mapping nat : A → A/ker(h).

Theorem 2 (Homomorphism Theorem) Let h : A → B be a homomor-
phism from A to B. Then, there is a unique monomorphism g : A/ker(h) → B
such that g(a/ker(h)) = h(a). Moreover, if h is surjective then g is an iso-
morphism.

2.2 Products and Filtered Products

The direct product of a family of Σ-algebras Ai, i ∈ I, is denoted by
∏

i∈I Ai.
Its universe is

∏
i∈I Ai = 〈∏

i∈I(Ai)S : S ∈ SORT〉, and its operations are
defined componentwise as usual. If I is the empty set, then

∏
i∈I Ai is by

definition a trivial algebra. For each i ∈ I, the projection πi :
∏

i∈I Ai → Ai is
a surjective homomorphism from

∏
i∈I Ai onto Ai. B is a subdirect product

of a family of Σ-algebras Ai if B ⊆ ∏
i∈I Ai and πi(B) = Ai, for each i ∈ I.

8



We denote a subdirect product by B ⊆SD
∏

i∈I Ai.

Let I be a nonempty set. A filter on I is a set F of subsets of I which satisfies
the following conditions:

• I ∈ F ;
• if J ∈ F and J ⊆ K ⊆ I, then K ∈ F ;
• if J, K ∈ F then J ∩K ∈ F .

A filter F that does not contain the empty set (∅ 6∈ F) is called a proper filter.
Using Zorn’s Lemma we can prove that every proper filter can be extended to
a proper filter F , which is maximal with respect to set inclusion (i.e., there is
no proper filter on I strictly including F). A proper filter F which is maximal
with respect to set inclusion is called an ultrafilter. Sometimes it is convenient
to consider the equivalent condition: either X ∈ F or X ∈ F but not both,
for every X ⊆ I.

Let Ai, i ∈ I, be a family of Σ-algebras and F a filter on I. We define a sorted
binary relation θ(F) =

〈
(θ(F))S : S ∈ SORT)

〉
on

∏
i∈I Ai by,

〈ai : i ∈ I〉 ≡ 〈bi : i ∈ I〉((θ(F))S) iff {i ∈ I : ai = bi} ∈ F ,

for all 〈ai : i ∈ I〉, 〈bi : i ∈ I〉 ∈ ∏
i∈I(Ai)S. In fact, θ(F) is a congruence

on
∏

i∈I Ai. Thus, we can form the quotient (
∏

i∈I Ai)/θ(F), which is called
the reduced product of the family Ai, i ∈ I, by the filter F . When F is an
ultrafilter, (

∏
i∈I Ai)/θ(F) is called an ultraproduct.

2.3 Data structures

The visible part of a sorted set A is the sorted set 〈AV : V ∈ VIS〉, which
we denote by AVIS. A visible k-data structure (or simply a k-data structure)
over Σ is a pair A = 〈A, F 〉, where A is a Σ-algebra and F ⊆ Ak

VIS; A is
called the underlying algebra of A and F is called the filter of A. An example
of a 2-data structure is any model of the free hidden equational logic over Σ
(HELΣ) considered below (Definition 9). The standard model of HELΣ is of
the form 〈A, idAVIS

〉, where A is a Σ-algebra and idAVIS
is the identity relation

on the visible part of A, but one gets more general 2-data structures as models
by taking any congruence relation on the visible part of A in place of idAVIS

.
We can also consider the free Boolean logic over Σ, if Σ has a Boolean sort.
Here the standard models are the 1-data structures 〈A, {true}〉, where A is
a Σ-algebra such that AVIS is the two-element Boolean algebra. In a general
model, AVIS is an arbitrary Boolean algebra and {true} is replaced by an
arbitrary filter on AVIS.
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2.3.1 Data structure homomorphisms, products and filtered products

Let Σ be a hidden signature and A = 〈A, F 〉, B = 〈B, G〉 be k-data structures
over Σ. We say that A = 〈A, F 〉 is a k-data substructure of B = 〈B, G〉,
in symbols A ⊆ B, if A ⊆ B and G ∩ Ak

VIS = F . Let h : A → B be a
sorted homomorphism between the underlying algebras. We say that h is a
data structure homomorphism from A to B if h(F ) ⊆ G, or equivalently, if
F ⊆ h−1(G), and we denote it by h : A → B. If F = h−1(G), h is said to
be strict. We say that h is surjective if it is surjective as a sorted algebra
homomorphism and it is denoted by h : A ³ B. Moreover, h is said to be
injective if it is injective as an algebra homomorphism and h(F ) = G∩h(Ak),
equivalently h−1(G) = F and we denote it by h : A ½ B. We say that h
is a data structure isomorphism if it is injective and surjective, i.e., h is an
algebra isomorphism and h(F ) = G. In this case we write A ∼= B. We also
use the notation A ∼=;⊆ B to say that there is a k-data structure C such that
A ∼= C ⊆ B.

Let Ai = 〈Ai, Fi〉, i ∈ I, be a family of k-data structures. We define the direct
product of Ai, i ∈ I to be the k-data structure

∏
i∈I Ai :=

〈 ∏
i∈I Ai,

∏
i∈I Fi

〉
,

where
∏

i∈I Ai is the direct product of the family of algebras Ai, i ∈ I, and,∏
i∈I Fi =

〈 ∏
i∈I(Fi)V :V ∈ VIS

〉
. The index set may be empty. In this case∏

i∈I Ai is the trivial one-element algebra.

A k-data structure B ⊆ ∏
i∈I Ai is called a subdirect product of the family Ai,

i ∈ I, in symbols B ⊆SD
∏

i∈I Ai, if the projections πi : B → Ai are surjective
for all i ∈ I.

Let F be a lattice filter of 〈P(I),∩,∪〉. For each visible sort V we define:

(DF∏
i∈I

Ai
)V :=

{
f̄ ∈ (

∏
i∈I(Ai)V )k : {i ∈ I : 〈f0(i), . . . , fk−1(i)〉 ∈ (Fi)V } ∈ F

}

∏F
i∈I Ai := 〈∏

i∈I Ai, D
F∏

i∈I
Ai
〉.

We now define a relation θ(F) on
∏

i∈I Ai by

θ(F)S := {〈f, g〉 ∈ (
∏

i∈I Ai)
2
S : {i : f(i) = g(i)} ∈ F}.

Let (
∏

i∈I Ai)/F := (
∏

i∈I Ai)/θ(F) and D(
∏

i∈I
Ai)/F := DF

(
∏

i∈I
Ai)

/θ(F).

(
∏

i∈I Ai)/F is the usual reduced product of algebras. The data structure fil-
tered product of the family Ai, i ∈ I, by F is

(
∏

i∈I Ai)/F :=
〈
(
∏

i∈I Ai)/F , D(
∏

i∈I
Ai)/F

〉
.

If F is an ultrafilter then the data structure filtered product is called a data
structure ultrafiltered product.

Let K be a class of k-data structures. We define
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H(K) := {B : there exists a surjective data-structure homomorphism
h : A → B, for some A ∈ K}

S(K) := {A : A ∼=;⊆ B, for some B ∈ K}

P(K) := {A : A ∼= ∏
i∈I Bi, for some Bi ∈ K, i ∈ I}

PSD(K) := {A : A ∼=;⊆SD (
∏

i∈I Bi), for some Bi ∈ K, i ∈ I}

Pu(K) := {A : A ∼= (
∏

i∈I Bi)/F , for some Bi ∈ K, i ∈ I, and
some ultrafilter F of P(I)}.

We say that a class K is closed under data substructures, products, ultra-
products and subdirect products if S(K) = K, P(K) = K, Pu(K) = K and
PSD(K) = K, respectively.

The following theorem states some basic properties concerning these classes
of structures. We will omit the proof since it can be easily obtained from its
one-sorted version.

Theorem 3 Let K be a class of k-data structures. Then,

(i) SH(K) ⊆ HS(K);
(ii) PS(K) ⊆ SP(K);
(iii) PH(K) ⊆ HP(K);
(iv) S,H,P,SP,SH,HP,HSP are closure operators on the class of all k-

data structures.

2.3.2 Leibniz Congruence

Let 〈A, F 〉 be a k-data structure. A congruence relation θ on A is VIS-
compatible (or simply compatible) with F if for all V ∈ VIS and for all
ā, ā′ ∈ Ak

V , ai ≡ a′i(θV ) for all i < k, implies that (ā ∈ FV iff ā′ ∈ FV ).
Equivalently, we have that θ is compatible with F if and only if for every
V ∈ VIS, FV is the union of the cartesian product of θV -classes i.e.,

FV =
⋃

ā∈FV
(a0/θV )× (a1/θV )× · · · × (ak−1/θV ).

We now point out some properties of the relation of compatibility that will be
used below without further reference. If a congruence θ is compatible with F ,
then any congruence that is contained in θ is also compatible with F . But θ
being compatible with F does not imply that θ is compatible with any G con-
tained in F . However, if θ is compatible with each member of a set U of filters
(U ⊆ P(Ak)) then it is compatible with its intersection

⋂
U . The fact that a

congruence θ is compatible with F also does not imply that it is compatible
with any G that contains F .
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It is not difficult to see that the largest congruence compatible with a filter F
always exists. In fact, given two congruences θ0 and θ1 of A compatible with
F , the relative product θ0 ◦ θ1 is also compatible with F . This implies that
the join θ0 ∨ θ1, is also compatible with F . Hence, the set {θ ∈ Con(A) : θ
is compatible with F} is directed under set theoretical inclusion and so, the
union is also a congruence compatible with F (for the details see [31]).

Definition 4 Let 〈A, F 〉 be a k-data structure. Then the Leibniz congruence
of F on A is the largest congruence relation on A compatible with F . We
denote it by ΩA(F ); we simply write Ω(F ), when A is clear from the context.

One of the main properties of the Leibniz congruence is its preservation under
inverse images of surjective homomorphisms. This is given in the following
lemma. Let h : B → A be a mapping between sets. If b̄ = 〈b0, . . . , bk−1〉 ∈
Bk, then h(b̄) := 〈h(b0), . . . , h(bk−1)〉 ∈ Ak, and if ā = 〈a0, . . . , ak−1〉 ∈ Ak,
h−1(ā) := { b̄ ∈ Bk : h(b̄) = ā }.

Lemma 5 ([31]) Let A = 〈A, F 〉 be a k-data structure over Σ, and let B be
a Σ algebra and h : B → A a surjective homomorphism. Then h−1(ΩA(F )) =
ΩB(h−1(F )).

If A = 〈A, F 〉 is a k-data structure over Σ, we can form the quotient structure
A/Ω(F ) = 〈A, F 〉/Ω(F ) = 〈A/Ω(F ), F/Ω(F )〉, where A/Ω(F ) is the quo-
tient of A by Ω(F ) and F/Ω(F ) = { (a0/Ω(F ), . . . , ak−1/Ω(F )) : 〈a0, . . . , ak−1〉 ∈
F }. A is said to be reduced if Ω(F ) is the identity congruence on A. In [31] it
is shown that the quotient of any k-data structure by the Leibniz congruence
is always reduced. In 2-data structures the filters are themselves sets of pairs.
Hence, a strict relationship between them and their Leibniz congruence can
be established (see [29]). For example, given a 2-data structure A = 〈A, F 〉
and a congruence θ on A we have: (a) θ is compatible with F if and only if
θVIS ◦ F ◦ θVIS ⊆ F and (b) if F is reflexive (on AVIS) and transitive then θ is
compatible with F if and only if θVIS ⊆ F .

From (b), if Θ(F∪{〈a, a′〉})VIS = F and, F is reflexive and transitive (on AVIS),
then Θ(F ∪ {〈a, a′〉}) is compatible with F . Hence, Θ(F ∪ {〈a, a′〉}) ⊆ Ω(F ).
Therefore we have that Θ(F ∪ {〈a, a′〉})VIS = F implies a ≡ a′ (Ω(F )).

3 Hidden logic

Let X = 〈XS : S ∈ SORT〉 be a fixed locally countable sorted set of variables.
We define the sorted set TeΣ(X) of terms in the signature Σ as usual, and
by defining, in the natural way, operations in TeΣ(X) we get the term algebra
over the signature Σ. It is well known that TeΣ(X) has the universal mapping
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property over X in the sense that, for every Σ-algebra A and every sorted map
h : X → A, called an assignment, there is a unique sorted homomorphism
h∗ : TeΣ(X) → A, which extends h. In particular a map from X to the
set of terms, and its unique extension to an endomorphism of TeΣ(X), is
called a substitution. Substitutions are represented by the Greek letters σ, τ, . . .
Since X is assumed fixed throughout the paper, we normally write TeΣ in
place of TeΣ(X); moreover, we may write simply Te when Σ is clear from
context. We also define a mapping h̄∗ : Tek

Σ → Ak by h̄∗(〈ϕ0, . . . , ϕk−1〉) :=
〈h∗(ϕ0), . . . , h

∗(ϕk−1)〉. In the sequel, if it is clear from the context, we will
denote all these mappings by the same symbol h.

Let t(x0 :S0, . . . , xn−1 :Sn−1) ∈ TeΣ(X)S. For each Σ-algebra A, the interpre-
tation of t in A is a mapping, called a derived operation (or term operation)
on A, tA : AS0 × · · · × ASn−1 → AS such that tA(a0, . . . , an−1) = h(t), where
h is any assignment such that h(xi) = ai, for i = 0, . . . , n− 1.

Assume a fixed order in all variables of all types with the property that for any
finite set of variables X of mixed type, and any sort S, there exists a variable of
type S which is larger than all the variables in X. Given any ordinary sorted
signature Σ = 〈SORT, OP〉, DER(Σ) = 〈SORT, OPDER(Σ)〉 is the signature
whose set of sorts is the same as that of Σ, and OPDER(Σ) is the set of special
terms of the form t(x0, x1, . . . , xn−1) where 〈x0, x1, . . . , xn−1〉 is any n-tuple of
variables, in the same order as they occur in the fixed order, such that every
variable occurring in t appears exactly once in the list. Each term of this
form is considered an operation symbol of DER(Σ) of type S0, . . . , Sn−1 → S.
Thus OPDER(Σ) = TeΣ(X). We can consider DER(Σ) as an enrichment of Σ
by identifying each operation symbol O ∈ OP of type S0, . . . , Sn−1 → S with
the unique term O(x0 :S0, . . . , xn−1 :Sn−1):S, where 〈x0, . . . , xn−1〉 is the first
subsequence, without repetitions, of the fixed ordering of variables whose sorts
are respectively S0, . . . , Sn−1. We should note that if A is a DER(Σ)-algebra
then a binary relation on A is a congruence on A only if it is a Σ-congruence
on the reduct A¹Σ.

To provide a context that allows us to deal simultaneously with specifica-
tion logics that are sentential (for example logics with a Boolean sort) and
equational, we introduce the notion of a k-term for any nonzero natural num-
ber k. A k-term of sort S over Σ is just a sequence of k Σ-terms, all of the
same sort S. We indicate k-terms by overlining, so ϕ̄ :S = 〈ϕ0 :S, . . . , ϕk−1 :S〉.
When we do not want to make the common sort of each term of ϕ̄ explicit,
we simply write it as ϕ̄. Tek

Σ denotes the sorted set of all k-terms over Σ, i.e.,
Tek

Σ = 〈(TeΣ)k
S : S ∈ SORT〉. The set of all visible k-terms (Tek

Σ)VIS is the
set 〈(Tek

Σ)V : V ∈ VIS〉. A k-variable is the special k-term x̄ consisting of k
distinct variables 〈x0 :S, . . . , xk−1 :S〉 all of them of the same sort.

For the purposes of this work it is convenient to define a hidden logic as an
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abstract closure relation on the set of k-terms, independently of any specific
choice of axioms and rules of inference. By a closure relation on a (sorted)
subset Λ of Tek

Σ we mean a binary relation ` ⊆ P(Λ) × Λ between subsets
of Λ of k-terms and individual k-terms in Λ satisfying for all Γ, ∆ ⊆ Λ the
following conditions: (1) Γ ` γ̄ for each γ̄ ∈ Γ; (2) Γ ` ϕ̄ and ∆ ` γ̄ for
each γ̄ ∈ Γ, imply ∆ ` ϕ̄. The closure relation is finitary (or compact) if
Γ ` ϕ̄ implies ∆ ` ϕ̄ for some globally finite subset ∆ of Γ. It is substitution-
invariant if Γ ` ϕ̄ implies σ(Γ) ` σ(ϕ̄) for every substitution σ : X → TeΣ.
Every closure relation ` on Tek

Σ has a natural extension to a relation, also
denoted by `, between subsets of Tek

Σ. It is defined by Γ ` ∆ if Γ ` ϕ̄ for each
ϕ̄ ∈ ∆.

Definition 6 A hidden logical k-system (or simply a hidden k-logic) 2 over
a hidden signature Σ is a pair L = 〈Σ,`L〉, where Σ is a hidden signature
and `L is a substitution-invariant closure relation on the set (Tek

Σ)VIS of vis-
ible k-terms. A hidden k-logic is specifiable if `L is finitary. We call `L the
consequence relation of L (if it is clear from the context, we simply write `
for `L).

We say that a hidden k-logic over a hidden signature Σ is standard if Σ is
standard. A hidden k-logic with VIS = SORT will be called a visible k-logic,
or simply a k-logic. By a sentential logic we mean a homogeneous (one-sorted)
specifiable visible 1-logic. As usual, in this framework terms (k-terms) will be
called formulas (k-formulas, resp.) and the set TeΣ (Tek

Σ) will be represented
by Fm(L) (Fmk(L), resp.).

Given any set of visible k-formulas Γ, we define the set of all consequences of
Γ, in symbols CnL(Γ), as the set of k-formulas CnL(Γ) = { ϕ̄ ∈ (Fmk(L))VIS :
Γ `L ϕ̄}. By a theorem of L we mean a (necessarily visible) k-formula ϕ̄ such
that `L ϕ̄, i.e., ∅ `L ϕ̄. The set of all theorems is denoted by Thm(L). A set
of visible k-formulas T closed under the consequence relation, i.e., T `L ϕ̄
implies ϕ̄ ∈ T , is called a theory of L. The set of all theories is denoted by
Th(L). It can be shown that the set of all theories Th(L) constitutes a closed
set system, i.e., it is closed under arbitrary intersections. If Γ is a set of visible
k-formulas, the set of all consequences of Γ, CnL(Γ), is the smallest L-theory
that contains Γ. Moreover, Γ `L ϕ̄ if and only if for each T ∈ Th(L), Γ ⊆ T
implies ϕ̄ ∈ T . Hence, T is a theory of L if and only if CnL(T ) = T .

By the substitution-invariance of L we have that Th(L) is closed under inverse
substitutions, that is, for any T ∈ Th(L) and any substitution σ : Te →
Te, σ−1(T ) ∈ Th(L). To see this let T ∈ Th(L) and ϕ̄ ∈ Fmk(L). Suppose that
σ−1(T ) `L ϕ̄. Hence, by substitution invariance of L, σ(σ−1(T )) `L σ(ϕ̄). Since

2 A similar notion of a general logic, also defined as a closure relation, is due to
Meseguer [28]. Meseguer’s system is called entailment system and combines a closure
relation with the notion of institution (see also [16]).
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σ(σ−1(T )) ⊆ T , T `L σ(ϕ̄). So, σ(ϕ̄) ∈ T because T ∈ Th(L); and therefore,
ϕ̄ ∈ σ−1(T ). The shorthand way of expressing the invariance of Th(L) under
σ−1 is by the inclusion, σ−1(Th(L)) ⊆ Th(L), where σ−1(Th(L)) = {σ−1(T ) :
T ∈ Th(L)} and σ−1(T ) = 〈σ−1(TV ) : V ∈ VIS〉.

A (visible) k-sequent is a finite sequence 〈ϕ̄0 :S0, . . . , ϕ̄n−1 :Sn−1, ϕ̄n :Sn〉 of (vis-
ible) k-formulas that we write in the following form:

ϕ̄0 :S0, . . . , ϕ̄n−1 :Sn−1

ϕ̄n :Sn

. (1)

A visible k-formula ψ̄ is directly derivable from a set Γ of visible k-formulas
by a visible k-sequent such as (1), if there is a substitution h : X → TeΣ

such that h(ϕ̄n) = ψ̄ and h(ϕ̄0), . . . , h(ϕ̄n−1) ∈ Γ. Given a set AX of visible
k-formulas and a set IR of visible k-sequents, we say that ψ̄ is derivable from
Γ by the set AX and the set IR if there is a finite sequence of k-formulas,
ψ̄0, . . . , ψ̄n−1 such that ψ̄n−1 = ψ̄, and for each i < n either (a) ψ̄i ∈ Γ, or (b)
ψ̄i is a substitution instance of a k-formula in AX or (c) ψ̄i is directly derivable
from {ψ̄j : j < i} by one of the k-sequents in IR. We write Γ `AX,IR ψ̄ if ψ̄ is
derivable from Γ by AX and IR. It is straightforward to show, that a hidden
k-logic L is specifiable iff there exists a (possibly) infinite set of axioms and
rules of inference such that, for any visible k-term ψ̄ and any set Γ of visible
k-terms, Γ `L ψ̄ iff ψ̄ is derivable from Γ by the given set of axioms and rules.

A visible k-sequent such as (1) is said to be a valid rule of L if {ϕ̄i : i < n} `L
ϕ̄, or equivalently, every T ∈ Th(L) is closed under (1). We say that (1)
is an admissible rule if for all σ : X → Te, σ(ϕ̄) ∈ Thm(L) whenever
σ(ϕ̄i) ∈ Thm(L), for every i < n. Admissible rules in sentential logics have
been intensively studied by Rybakov and his collaborators (see [40]). There are
admissible rules which are not valid rules. One typical example is the sequent

x.x ≈ x

y ≈ z

in the equational theory of semigroups: it is an admissible rule, since x.x ≈ x
is not a theorem of the theory of semigroups, but it is not a valid rule.

Considering the admissible rules of a logic we define another logic: the admis-
sible part of L. The admissible part of L, in symbols Lad, is the logic defined,
for every Γ ⊆ Fmk(L) and every ϕ̄ ∈ Fmk(L), in the following way:

Γ `Lad ϕ̄ if
Γ

ϕ̄
is an admissible rule of L.

It can be proven that Lad is a hidden logic; however, it may not be specifiable.
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3.1 Semantics

The semantics for hidden k-logics is given by considering the set of k-tuples
F of a given k-data structure A = 〈A, F 〉 as the “truth values” of A. A
visible k-formula ϕ̄ :V is said to be a semantic consequence of a set of visible
k-formulas Γ in A, in symbols Γ |=A ϕ̄, if, for every assignment h : X → A,
h(ϕ̄) ∈ FV whenever h(ψ̄) ∈ FW for every ψ̄ :W ∈ Γ. A visible k-formula ϕ̄ is
a valid k-formula, or simply a validity of A, and, conversely, A is a model (or
a correct abstract machine) of ϕ̄, if |=A ϕ̄. A k-sequent such as (1) is a valid
rule, or simply a validity of A, and, conversely, A is a model of the k-sequent,
if {ϕ̄0, . . . , ϕ̄n−1} |=A ϕ̄n. A visible k-formula ϕ̄ is a semantic consequence of
Γ for an arbitrary class K of k-data structures over Σ, in symbols Γ |=K ϕ̄, if
Γ |=A ϕ̄ for each A ∈ K. Similarly, a k-formula or rule is a validity of K if it
is a validity of each member of K. The following theorem states that for any
class K of k-data structures |=K is always a hidden k-logic.

Theorem 7 ([29]) Let K be a class of k-data structures, all of them over the
same hidden signature Σ. Then |=K is a hidden k-logic.

A is a model of a hidden k-logic L if every consequence of L is a semantic
consequence of A, i.e., Γ `L ϕ̄ implies Γ |=A ϕ̄. The class of all models of L
is denoted by Mod(L). If L is a specifiable hidden k-logic, presented by a set
of axioms and rules of inference, then A is a model of L if and only if every
axiom and every rule of inference of L is a validity of A. The designated filter
F of A is said to be an L-filter of A if A is a model of L.

The L-filters of the term algebra TeΣ are just the L-theories. The set of all
L-filters of A, denoted by FiL(A), endowed with set-intersection and the join
defined, for each F ⊆ FiL(A), by

∨F :=
⋂ {G ∈ FiL(A) :

⋃F ⊆ G}, is a com-
plete lattice. It can be shown that the inverse image, by a homomorphism, of
an L-filter is always an L-filter. A k-data structure A = 〈A, F 〉 is a behavioral
model of L (or a reduced model in the AAL sense) if it is reduced and a model of
L. The class of all behavioral models is denoted by Mod∗(L). Bidoit et al. call
this class of models, in the context of observational logics, black box semantics
(see [4]). We say that a k-data structure A = 〈A, F 〉 is strictly minimal for L
if there is a strict surjective homomorphism h : 〈Fm(L), Thm(L)〉 → 〈A, F 〉,
i.e., h(Fm(L)) = A and h−1(F ) = Thm(L).

The following completeness theorem holds for hidden k-logics 3 .

3 Strictly speaking, this completeness theorem only holds when the models of L
are restricted to k-data structures with a nonempty domain of each sort, but we
are assuming that our algebras have nonempty carrier sets for each sort, hence this
condition holds.
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Theorem 8 ([31]) For any hidden k-logic L, `L = |=Mod(L) = |=Mod∗(L).
That is, for every set of k-formulas Γ and any k-formula ϕ̄ the following
conditions are equivalent,

(i) Γ `L ϕ̄;
(ii) Γ |=Mod(L) ϕ̄;
(iii) Γ |=Mod∗(L) ϕ̄.

3.2 Examples

3.2.1 Hidden equational logic

As a consequence of the restriction to visible k-terms in our formalization of
hidden k-logics, the non-visible part of our hidden equational logic is truly
hidden. Indeed, no representation of the equality predicate between elements
of the hidden domains even exists in the object language. When reasoning
about hidden data in the object language, only visible properties express-
ible in the form of conditional equations are allowed. The reason behind this
restriction was explained in the introduction. We also consider an equational
logic enriched by hidden equality predicates in which some visible axioms may
be replaced by hidden ones whose behavioral equivalence has been verified.
Technically, this is accomplished by simply modifying the signature and mak-
ing all sorts visible (in [31], the authors studied the consequences of applying
AAL to hidden equational logic). In this approach hidden equational logic is
a special class of 2-logics in which a 2-formula 〈s, t〉 is intended to represent
an equation, which we denote by s ≈ t; similarly, sequents are intended to
represent conditional equations.

Definition 9 (Free hidden equational logic) Let Σ be a hidden signature
and VIS its set of visible sorts. The free hidden equational logic over Σ, in
symbols HELΣ, is the specifiable hidden 2-logic presented by the following equa-
tions and conditional equations:

for all V,W ∈ VIS,

(i) x :V ≈ x :V ;
(ii) x:V ≈ y :V → y :V ≈ x :V ;
(iii) x :V ≈ y :V , y :V ≈ z :V → x :V ≈ z :V ;
(iv) s :V ≈ s′ :V → t(x/s):W ≈ t(x/s′):W for every t ∈ TeW , s, s′ ∈ TeV

and every x ∈ XV .

An applied hidden equational logic over Σ (or simply a HELΣ) is any hidden
2-logic L over Σ that satisfies all axioms and rules of inference of the free
HELΣ (the subscript Σ may be omitted if it is clear from the context). The
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expression “hidden equational logic” comes from the fact that the equality
predicate is restricted so as to be applied only to visible data elements; the
other equality predicates are “hidden”. In hidden equational logics a 2-data
structure, sometimes called an abstract machine in the context of computer
science, is a pair A = 〈A, F 〉, where A is a sorted algebra over Σ and F is a
binary relation on AVIS. The set F may be seen as a possible interpretation
of the equality in A. If A is a Σ-algebra, then we can define a DER(Σ)-
algebra A′ by interpreting each operation symbol t in DER(Σ) as tA. Clearly,
a relation θ ⊆ A2 is a congruence on A if and only if it is a congruence on A′.
Let us define DER(Σ)VIS as the subsignature of DER(Σ) containing only the
operation symbols with visible range (i.e., all the attributes). A VIS-sorted set
F ⊆ A2

VIS is a VIS-congruence if F ∪ idAHID
is a congruence on A′¹DER(Σ)VIS . It

can be proved that a data structure A = 〈A, F 〉 is a model of the free HELΣ

L if and only if its filter F is a VIS-congruence. The theories of the free HELΣ

are the VIS-congruences on the term algebra.

In view of the completeness theorem, the extralogical axioms and inference
rules correspond to identities and conditional identities of the class of models
of L, respectively (see the remarks at the beginning of this subsection). In
particular, the visible (unrestricted) conditional equation

t0(x̄) ≈ s0(x̄), . . . , tn−1(x̄) ≈ sn−1(x̄) → tn(x̄) ≈ sn(x̄) (2)

is a valid rule of a model A = 〈A, F 〉 of the free HELΣ if, for every assignment
ā of elements of A to x̄ (of the appropriate sorts),

tAn (ā) ≡ sA
n (ā) (F ) if tA0 (ā) ≡ sA

0 (ā) (F ), . . . , tAn−1(ā) ≡ sA
n−1(ā) (F ).

A theory of L is also called an L-congruence on the term algebra. For any
set E of equations, the theory of L generated by E, CnL(E), is the smallest
L-congruence that contains the pair 〈t, t′〉 for each equation t ≈ t′ in E. The
conditional equation (2) is a quasi-identity of A if it is a valid rule of 〈A, F 〉,
where F = idAVIS

. Models of the free HELΣ of the form 〈A, idAVIS
〉 are called

equality models. The class of all equality models of a HELΣ L is denoted by
Mod=(L). Since every equality model is uniquely determined by its algebraic
reduct, we shall not be concerned with distinguishing them in the sequel. Thus,
for every HELΣ L we identify Mod=(L) with {A : 〈A, idAVIS

〉 ∈ Mod=(L) }.

Example 10 (Flags - revisited) The hidden equational logic of Flags, de-
noted by Lflags, is the hidden equational logic with the hidden sorted signature
Σflags whose axioms are the axioms of Boolean algebra plus the extralogical
ones given in Fig. 2. ♦
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Extralogical axioms:

up?(up(F )) ≈ true;
up?(dn(F )) ≈ false;
up?(rev(F )) ≈ ¬(up?(F ))

Fig. 2. Flags logic.

Axioms:
x ¹ x;
Inference rules:

x ¹ y , y ¹ z

x ¹ z
;

x0 ¹ y0, . . . , xn−1 ¹ yn−1

O(x0, . . . , xn−1) ¹ O(y0, . . . , yn−1)
,

for any operation symbol O.

Fig. 3. Free inequational logic.

3.2.2 Other hidden k-logics

Example 11 (Free inequational logic) Let Σ be any one-sorted signature.
The free inequational logic is the one-sorted 2-logic over Σ defined by the
axioms and inference rules in Fig. 3. As in the equational case, we use a
special symbol to denote the 2-formula 〈ϕ, ψ〉; namely we write ϕ ¹ ψ for
〈ϕ, ψ〉. This logic is relevant in the context of ordered universal algebra (see
[42]) and abstract algebra. We can generalize the inequational logic to the
sorted case and, more generally, to the hidden sorted case in the same way we
generalized the equational logic to the hidden equational logic. ♦

Example 12 (Stacks of natural numbers with Booleans) The signatu-
re is obtained from the signature of stacks of natural numbers (Fig. 6) by
adjoining a new sort bool, for the Boolean operation symbols, and one new
attribute eq : nat, nat → bool, the equality test for natural numbers. The
sort bool is the only visible sort. The axioms and inference rules are obtained,
roughly speaking, by applying eq to each of the axioms and inference rules
of the specification of stacks (see Fig. 4). The operation symbol eq is called
an equational test function and the models are called generalized equality
test models. These models have been studied in [34].

♦
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Axioms:
eq(x, x)
eq(top(popn(empty)), zero), for all n;
eq(top(push(x, y)), x);
eq(top(popn+1(push(x, y))), top(popn(y))), for all n;

Inference rules:
eq(x, y)

eq(y, x)

eq(x, y), eq(y, z)

eq(x, z)

eq(x, y)

eq(s(x), s(y))

eq(s(x), s(y))

eq(x, y)

Fig. 4. Stacks of natural numbers with booleans.

4 Axiomatization of behavioral equivalence

Intuitively, two hidden data elements of the same type are behaviorally equiva-
lent if any procedure whose parameter is of this type returns the same visible
result when executed with either of the two objects as input. The notion arises
from the alternative view of a data structure as a transition system in which
the hidden data elements represent states of the system and the operations
(called methods) that return hidden, as opposed to visible, elements, induce
transitions between states. Moreover, it generalizes the equivalence of states in
automata theory (two states S1, S2 are said to be equivalent if for any input,
we go from the state S1 to a final state if and only if the same happens with the
state S2). Behavioral equivalence has proven to be a useful device to import the
techniques and intuitions of transition systems into the algebraic paradigm.
The behavioral consequence relation is used to reason effectively about behav-
ioral equivalence. It can be seen as a 2-logic that is not in general specifiable.
The basis of the proof theory of behavioral consequence has been coinduction,
in some form, in combination with ordinary equational deduction (see [19]).
In the following definition, given by Reichel in [37], the intuitive notion of
behavioral equivalence is formalized. First, we need to introduce the notion of
a context. A k-context over Σ is a k-term ϕ̄(z :S, x0 :S0, . . . , xm−1 :Sm−1), with
a distinguished variable z of sort S and parametric variables x0, . . . , xm−1. A
visible k-context is a k-context of a visible sort. The set of all k-contexts over
Σ with distinguished variable z of sort S is denoted by Ck

Σ[z :S]. We call the
(visible) 1-contexts simply (visible) contexts. We denote the set of all contexts
over Σ by CΣ[z :S].

Definition 13 Let A be a Σ-algebra. Two elements a, a′ ∈ AS are said to be
behaviorally equivalent in A, in symbols a ≡beh

A a′, if, for every visible context
ϕ(z :S, u0 :S0, . . . , um−1 :Sm−1) ∈ CΣ[z :S] and for all b0 ∈ AS0 , . . . , bm−1 ∈
ASm−1, ϕA(a, b0, . . . , bm−1) = ϕA(a′, b0, . . . , bm−1).
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We generalize the behavioral equivalence relation to k-data structures in the
following way:

Definition 14 Let A = 〈A, F 〉 be a k-data structure over a hidden signature
Σ. Then, a, a′ ∈ AS are said to be behaviorally equivalent in A, in sym-
bols a ≡beh

A a′, if, for every visible k-context ϕ̄(z :S, x0 :S0, . . . , xm−1 :Sm−1) ∈
Ck

Σ[z :S]V and all b0 ∈ AS0 , . . . , bm−1 ∈ ASm−1,

ϕ̄A(a, b0, . . . , bm−1) ∈ FV iff ϕ̄A(a′, b0, . . . , bm−1) ∈ FV .

It is straightforward to show that ≡beh
A is an equivalence relation on A. More-

over, ≡beh
A is a congruence on A, in fact it coincides with the Leibniz con-

gruence on A over F , as the following theorem states. Consequently, it gives
an alternative characterization of the Leibniz congruence. This result is well
known for the one-sorted case (see for example [6]).

Theorem 15 ([31]) Let Σ be a hidden signature and let A = 〈A, F 〉 be a
k-data structure over Σ. Then, ≡beh

A = Ω(F ).

In the hidden equational case we have:

Theorem 16 ([31]) Let A = 〈A, F 〉 be a model of the free HELΣ. Then,
a ≡beh

A a′ (Ω(F )S) iff, for every visible context ϕ(z :S, u0 :S0, . . . , um−1 :Sm−1) ∈
CΣ[z :S]V and all b0 ∈ AS0 , . . . , bm−1 ∈ ASm−1,

ϕA(a, b0, . . . , bm−1) ≡ ϕA(a′, b0, . . . , bm−1) (FV ).

4.1 Protoalgebraic logics

We associate to each sorted algebra A an operator, called the Leibniz operator,
from the set of filters on A to the set of congruences on A. The Leibniz
operator maps each filter F into the Leibniz congruence on A over F . Some
classes of hidden k-logics are defined in terms of properties of this operator.
The protoalgebraic hidden k-logics are those for which the Leibniz operator
on the term algebra, when restricted to the set of theories, is monotonic. The
weakly algebraizable hidden k-logics are those for which the Leibniz operator
on the term algebra is both monotonic and injective, when restricted to the
set of theories. It seems that the protoalgebraic logics form the widest class
for which it is possible to obtain interesting algebraic properties.

For each sorted algebra A and each k we define the Leibniz k-operator :

Ωk
A : P(Ak

VIS) → Con(A)
F 7→ ΩA(F ),

where ΩA(F ) is the Leibniz congruence on A over F . Explicit reference to the
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dimension k is usually omitted, and if the algebra A is clear from the context
we simply denote the Leibniz operator by Ω. We say that ΩA is injective
if it is an injective mapping, and ΩA is said to be monotonic if ∀ F,G ∈
P(Ak

VIS), F ⊆ G implies Ω(F ) ⊆ Ω(G). If F ⊆ P(Ak
VIS), then Ω(F) denotes

the set {Ω(F ) : F ∈ F}. Let L be a hidden k-logic. We call the pairs, i.e.
the equations, in Ω(Thm(L)) behavioral theorems and the pairs (equations) in
Ω(T ) behavioral consequences of T .

As a consequence of Lemma 5, we have that Ω(Th(L)) is closed under inverse
surjective substitutions.

Lemma 17 ([29]) Let L be a hidden k-logic. Then, Ω(Th(L)) is closed under
inverse surjective substitutions.

Those hidden k-logics with the property that their Leibniz operator on the
term algebra is monotonic when restricted to L-theories are called protoalge-
braic. They constitute what seems to be the widest class of hidden logics for
which a reasonable algebraic theory can be developed. In the context of AAL,
protoalgebraic logics were introduced by Blok and Pigozzi in [5].

Definition 18 (Protoalgebraic Logic) Let L be a hidden k-logic. We say
that L is a protoalgebraic hidden k-logic if Ω is monotonic when restricted to
Th(L), i.e., ∀ T, G ∈ Th(L), T ⊆ G ⇒ Ω(T ) ⊆ Ω(G).

There are many examples of protoalgebraic logics. The well known proposi-
tional and intuitionistic calculus are protoalgebraic. From Theorem 16, it can
be shown that every HEL is protoalgebraic (see [29]). Non protoalgebraic sen-
tential logics have been studied individually, since as far as we know there
is no subclass of non protoalgebraic logics for which one can develop an in-
teresting algebraic theory. As examples of non protoalgebraic logics we have
the inf-sup fragment of the classic propositional calculus, Belnap’s Logic and
the {∨,∧,¬,>,⊥}-fragment of the intuitionistic propositional calculus (for
references and more examples see [14]).

Let L be a protoalgebraic hidden k-logic. We say that L is behaviorally specifi-
able if there is a specifiable hidden 2-logic L′, in the same language, such that
Ω(Th(L)) = Th(L′). It is shown in [29], Theorem 2.3.2, that for a protoalge-
braic hidden k-logic to be behaviorally specifiable it is enough that Ω(Th(L))
be closed under intersections, under inverse surjective substitutions and also
closed under unions of directed sets.

Next we give an alternative characterization for a hidden k-logic to be pro-
toalgebraic in terms of the Leibniz operator. Let F be a set of theories. It is
straightforward to see that

⋂ {Ω(F ) : F ∈ F} is compatible with
⋂F . Hence,⋂ {Ω(F ) : F ∈ F} ⊆ Ω(

⋂F). The opposite inclusion holds only in the special
case of protoalgebraic logics.

22



Theorem 19 ([29]) Let L be a hidden k-logic. Then L is protoalgebraic if
and only if for all F ⊆ Th(L), Ω(

⋂F) =
⋂ {Ω(T ) : T ∈ F}.

Corollary 20 ([29]) If L is protoalgebraic then Ω(Th(L)) is closed under
(arbitrary) intersections.

The converse of this corollary holds in the case where L-theories are definable
by a set of equations in the sense of the following definition. This notion of
equational definability generalizes the concept of explicit definability of the
truth predicate introduced by Czelakowski. Moreover, in 1-deductive systems,
if the data structures in the class K are all reduced, the two notions coincide.

Definition 21 Let K be a class of k-data structures over a hidden signature
Σ. We say that the filters of the k-data structures in K are equationally de-
finable by a complex sorted set of equations E = 〈EV (x̄ :V ) : V ∈ VIS〉, where
EV = 〈EV,S(x̄ :V ) : S ∈ SORT〉 with EV,S being a set of equations of sort S
for each S ∈ SORT (i.e., EV,S(x̄ :V ) = {δi(x̄ :V ) ≈ εi(x̄ :V ) : i ∈ I}), if for
each data structure A = 〈A, F 〉 ∈ K we have:

FV =
{
ā ∈ Ak

V : ∀S ∈ SORT,∀〈δ, ε〉 ∈ EV,S(x̄), δA(ā) ≡ εA(ā) (Ω(F )S)
}
.

An immediate property of such a class K is the fact that the Leibniz operator
restricted to the L-filters of any data structure in K is injective.

Proposition 22 ([29]) Let L be a hidden k-logic. If the class of all models
of L has its filters equationally definable by a sorted set of equations, say
E = 〈EV (x̄ :V ) : V ∈ VIS〉, then, for any sorted algebra A, ΩA is injective
when restricted to the L-filters of A.

Theorem 23 ([29]) Let L be a hidden k-logic. Assume the class of all models
of L, of the form 〈Fm(L), T 〉 with T being an L-theory, has its filters equation-
ally definable by a sorted set of equations E = 〈EV (x̄ :V ) : V ∈ VIS〉. Then, L
is protoalgebraic if and only if Ω(Th(L)) is closed under finite intersections.

4.1.1 Protoequivalence systems

We now consider another metamathematical characterization of protoalge-
braicity. It is similar in form to the well-known “Mal’cev conditions” in uni-
versal algebra.

Let x̄ and ȳ be k-variables of the same sort S. By a pre-protoequivalence system
for L we mean a double VIS-sorted set ∆ = 〈∆V :V ∈ VIS〉 where each ∆V is
a globally finite VIS-sorted set

∆V (x̄ :V, ȳ :V, ẑ :Q̂) = 〈∆V,R(x̄ :V, ȳ :V, ẑ :Q̂):R : R ∈ VIS〉,
where ∆V,R(x̄ :V, ȳ :V, ẑ :Q̂):R is a set of k-formulas of visible sort R and whose
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variables are the two fixed k-variables x̄ and ȳ, both of sort V , and a finite
list ẑ = 〈z0 :Q0, . . . , zm−1 :Qm−1〉 of auxiliary variables of type different from
V with at most one variable of each sort.

Definition 24 Let L be a hidden k-logic. A pre-protoequivalence system ∆ is
said to be a protoequivalence system for L if the following consequences hold
in L for each visible sort V .

(i) `L δ̄(x̄ :V, x̄ :V, ẑ :Q̂):R, for each R ∈ VIS and
each δ(x̄ :V, ȳ :V, ẑ :Q̂) ∈ ∆V,R(x̄ :V, ȳ :V, ẑ :Q̂);

(ii) ∆V (x̄ :V, ȳ :V, ẑ :Q̂), x̄ :V `L ȳ :V . (V-detachment)

A protoequivalence system is said to be standard if the sequence of auxiliary
variables ẑ is empty. We write the first condition in the above definition in the
following abbreviated way: `L ∆V (x̄ :V, x̄ :V, ẑ :Q̂) (called V-identity).

The following theorem shows that a specifiable and standard hidden k-logic is
a protoalgebraic logic if and only if it has a standard protoequivalence system.

Theorem 25 Let L be a specifiable hidden k-logic. Then L is protoalgebraic
if and only if it has a protoequivalence system. Moreover, if L is standard then
the protoequivalence system can be taken to be standard.

PROOF. Assume L has a protoequivalence system ∆. Let T, G ∈ Th(L) such
that T ⊆ G. It is enough to prove that Ω(T ) is compatible with G. Suppose
ϕ̄ :V and ψ̄ :V are k-formulas such that ϕi ≡ ψi (Ω(T )V ) for i < k and ϕ̄ ∈ GV .
For each R ∈ VIS and each δ̄(x̄ :V, ȳ :V, ẑ :Q̂) ∈ ∆V,R(x̄ :V, ȳ :V, ẑ :Q̂) we have
δ̄(ϕ̄ :V, ψ̄ :V, ẑ :Q̂) ≡ δ̄(ϕ̄ :V, ϕ̄ :V, ẑ :Q̂) (Ωk(T )R).

Since δ̄(ϕ̄, ϕ̄, ẑ) ∈ TR, ∆V (ϕ̄, ψ̄, ẑ) ⊆ T ⊆ G by the fact that Ω(T ) is compati-
ble with T . Then, since ϕ̄ ∈ GV and ∆V (ϕ̄, ψ̄, ẑ), ϕ̄ `L ψ̄, by V -detachment,
we have ψ̄ ∈ GV . So, Ω(T ) is compatible with G, and hence L is protoalgebraic.

Assume now that L is protoalgebraic. For each sort V , let

x̄ = 〈x0 :V, . . . , xk−1 :V 〉 and ȳ = 〈y0 :V, . . . , yk−1 :V 〉
be fixed k-variables of sort V . Let ΦV be the VIS-sorted set of formulas defined
for each sort R ∈ VIS by ΦV,R = {ϕ̄ ∈ Fmk

R : `L σȳ→x̄(ϕ̄)}, where σȳ→x̄ is the
substitution that takes yi to xi (σ(yi) = xi), for each i < k, and leaves the
remaining variables fixed. We have that ΦV is a theory. In fact, let ϕ̄ ∈ Fmk

R

such that ΦV `L ϕ̄. Then by substitution invariance, σȳ→x̄(ΦV ) `L σȳ→x̄(ϕ̄).
By definition of ΦV , `L σȳ→x̄(ΦV ). So, σȳ→x̄(ϕ̄) is a theorem and thus ϕ̄ belongs
to ΦV,R. We are now going to prove that

x̄ ≡ ȳ (Ω(ΦV )k
V ). (3)
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In order to do this we have to show that for every i < k and every visible
k-formula ϕ̄(z :V, u0 :S0, . . . , un−1 :Sn−1) : R, with distinguished variable z and
parametric variables u0, . . . , un−1, and for all parameters ϑ̂ = 〈ϑ0, . . . , ϑn−1〉 ∈
TeS0 × · · · × TeSn−1 we have that

ϕ̄(xi, ϑ0, . . . , ϑn−1) ∈ ΦV,R iff ϕ̄(yi, ϑ0, . . . , ϑn−1) ∈ ΦV,R. (4)

We first note that σyi→xi
(ϕ̄(xi, ϑ̂)) = σyi→xi

(ϕ̄(yi, ϑ̂)). Hence, σȳ→x̄(ϕ̄(xi, ϑ̂)) =

σȳ→x̄(ϕ̄(yi, ϑ̂)). Then, ϕ̄(xi, ϑ̂) ∈ ΦV,R iff `L σȳ→x̄(ϕ̄(xi, ϑ̂)) iff

`L σȳ→x̄(ϕ̄(yi, ϑ̂)) iff ϕ̄(yi, ϑ̂) ∈ ΦV,R.

This shows (4). And hence (3) holds. Next we prove that

ΦV , x̄ :V `L ȳ :V. (5)

To see this, let T be the L-theory generated by the sorted set of k-formulas
obtained from ΦV by adjoining x̄ to ΦV,V . Since L is protoalgebraic and ΦV ⊆
T , Ω(ΦV ) is compatible with T . But x̄ ∈ TV and x̄ ≡ ȳ (Ωk(ΦV )V ) by (3). So
ȳ ∈ TV by compatibility, and this is what we have in (5). Since L is finitary,
there exists a globally finite subset Φ′

V of ΦV such that

Φ′
V , x̄ :V `L ȳ :V. (6)

Let τ be a substitution that maps every variable of sort V distinct from the
variables x0, . . . , xk−1, y0, . . . , yk−1 to the variable x0, and, for every sort S
different from V , it maps each variable of sort S that occurs in Φ′

V to a fixed
but arbitrarily chosen one of them (note that there is only a finite number of
such sorts since Φ′

V is globally finite). Let ẑ be the list of these fixed variables.
In case Σ is standard, i.e., if there is a ground term of every sort, then τ
maps each variable of sort S different from V to a fixed ground term of sort
S. Let ∆V (x̄ :V, ȳ :V, ẑ) := τ(Φ′

V ), and ∆ = 〈∆V : V ∈ VIS〉. For every
ϕ̄ ∈ ∆V,R(x̄ :V, ȳ :V, ẑ), σȳ→x̄(τ(ϕ̄)) = τ(σȳ→x̄(ϕ̄)) since τ leaves x̄ and ȳ fixed
and maps no variable into yi but yi itself. By definition of ΦV , σȳ→x̄(ϕ̄) is
a theorem of L. So τ(σȳ→x̄(ϕ̄)) is also a theorem since the set of theorems
is closed under substitutions. Thus, σȳ→x̄(τ(ϕ̄)) is a theorem, which implies,
again by definition of ΦV , that τ(ϕ̄) ∈ ΦV,R. So ∆V (x̄ :V, ȳ :V, ẑ) = τ(Φ′

V ) ⊆
ΦV . This shows that the V -identity holds. From (6) we get τ(Φ′

V ), x̄ `L ȳ
since τ leaves x̄ and ȳ fixed. Equivalently, ∆V (x̄ :V, ȳ :V, ẑ), x̄ `L ȳ, that is,
V -detachment also holds. 2

In the one-sorted case (1-deductive systems), when L is protoalgebraic, many
properties of the operator ΩTe when restricted to Th(L) still hold for ΩA

when restricted to FiL(A), with A being an appropriate one-sorted algebra
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(e.g. monotonicity and injectivity). This phenomenon is called the transfer
principle (see [13]). The following theorem shows that the monotonicity of the
Leibniz operator transfers from Th(L) to FiL(A) for any algebra A. In the
next section we also show that the definability of the Leibniz congruences on
the term algebra over the theories, by equivalence systems, transfers to any
L-filter of any data structure A = 〈A, F 〉 (see Theorem 28).

Theorem 26 ([29]) Let L be a protoalgebraic hidden k-logic. Then, for any
algebra A and any F, G ∈ FiL(A), F ⊆ G implies Ω(F ) ⊆ Ω(G).

4.2 Equivalence systems

Equivalence systems in AAL generalize the notion of equivalence in CPC (the
classical propositional calculus). Some k-deductive systems do not have an
equivalence symbol. However, there may exist a set of formulas that plays the
role of the equivalence symbol. The notion of equivalence system can also be
formulated for hidden k-logics and the main results of AAL concerning equiv-
alence systems still hold in this more general context as we will see below.
Equivalence systems for hidden k-logics are very different, in form, from the
protoequivalence systems since instead of being VIS-sorted sets of k-formulas
with two distinguished, visible, k-variables; the equivalence systems are SORT-
sorted sets of visible k-formulas with two distinguished ordinary variables and
possibly some parameters. We define equivalence systems in a syntactic way
and then we prove that, in fact, equivalence systems are exactly the special
sorted sets that define the Leibniz congruence of any theory. In fact, we show
that equivalence systems define the Leibniz congruence of each filter of any
model (see Theorem 28). In Theorem 30, we show that, given a protoequiva-
lence system, we can construct a parameterized equivalence system.

4.2.1 Parameterized equivalence systems

Let L be a hidden k-logic. A SORT-sorted system of VIS-sorted sets of k-
formulas E = 〈ES : S ∈ SORT〉, with ES(x :S, y :S, û :Q̂) = 〈ES,V (x :S, y :S, û :Q̂) :
V ∈ VIS〉, where ES,V (x :S, y :S, û :Q̂) ⊆ Fmk

V (L) is called a pre-equivalence
system with parameters for L. Let Γ(x, y, û :Q̂) be a set of k-formulas with
parameters. The expression ∀̃ ϑ̂ Γ(x, y, ϑ̂ :Q̂) will denote the set of all possible
substitution instances of formulas in Γ obtained by substituting arbitrary for-
mulas of the appropriate sort for the parameters û, i.e., ∀̃ ϑ̂ Γ(x, y, ϑ̂ :Q̂) :=
{ϕ̄(x, y, ϑ̂) : ϕ̄ ∈ Γ, ϑ̂ ∈ Te

Q̂
}. We extend this notation to the case of the

interpretation of a set of k-formulas in a given k-data structure A = 〈A, F 〉
by ∀̃ ĉ ΓA(x, y, ĉ :Q̂) := {ϕ̄A(x, y, ĉ) : ϕ̄ ∈ Γ, ĉ ∈ A

Q̂
}.

Definition 27 Let L be a hidden k-logic. We say that a pre-equivalence sys-
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tem E = 〈ES(x :S, y :S, û :Q̂) : S ∈ SORT〉 is a parameterized equivalence
system for L if the following conditions hold 4 :

(i) `L ∀̃ ϑ̂ES(x :S, x :S, ϑ̂ :Q̂); (parameterized S-identity)

(ii) ∀̃ ϑ̂ ES(x :S, y :S, ϑ̂ :Q̂) `L ∀̃ ϑ̂ES(y :S, x :S, ϑ̂ :Q̂);

(iii) ∀̃ ϑ̂ ES(x :S, y :S, ϑ̂ :Q̂), ∀̃ ϑ̂ES(y :S, z :S, ϑ̂ :Q̂) `L ∀̃ ϑ̂ES(x :S, z :S, ϑ̂ :Q̂);

(iv) ∀̃ ϑ̂ ES0(x0 :S0, y0 :S0, ϑ̂ :Q̂), . . . , ∀̃ ϑ̂ESn−1(xn−1 :Sn−1, yn−1 :Sn−1, ϑ̂ :Q̂) `L

∀̃ ϑ̂ESn(O(x0, . . . , xn−1):Sn, O(y0, . . . , yn−1):Sn, ϑ̂ :Q̂),

for each operation symbol O of type S0, . . . , Sn−1 → Sn;

(parameterized S-replacement)
(v) for every V ∈ VIS, (parameterized V -detachment)

∀̃ ϑ̂ EV (x0 :V, y0 :V, ϑ̂ :Q̂), . . . , ∀̃ ϑ̂EV (xk−1 :V, yk−1 :V, ϑ̂ :Q̂), x̄ `L ȳ.

There are several hidden k-logics which admit equivalence systems, even with-
out parameters. (At the end of this section, some examples will be presented.)

A parameterized equivalence system E such that for each sort S, ES is globally
finite, is called a finite parameterized equivalence system. We say that a hidden
k-logic L is parameterized equivalential if it has a parameterized equivalence
system; L is called parameterized finitely equivalential if it has a finite para-
meterized equivalence system. In the context of AAL, equivalential logics were
first introduced by Prucnal and Wroński (see [36]) and later studied in detail
by Czelakowski in [12]. In section 4.3, we discuss different kinds of equivalence
systems and we relate the corresponding classes of logics with closure proper-
ties of the class of behavioral models. For parameterized equivalential logics,
the Leibniz congruence on the underlying algebra over the designated filter
can be characterized by using the parameterized equivalence system, in the
following way:

Theorem 28 Let L be a hidden k-logic and E = 〈ES(x :S, y :S, û :Q̂) : S ∈
SORT〉 a pre-equivalence system. Then the following conditions are equivalent:

(i) E is a parameterized equivalence system for L;
(ii) For every T ∈ Th(L), Ω(T )S = { 〈t, t′〉 ∈ Te2

S : T `L ∀̃ ϑ̂ ES(t, t′, ϑ̂)};
(iii) For every A = 〈A, F 〉 ∈ Mod(L), Ω(F )S = { 〈a, b〉 ∈ A2

S : ∀̃ ĉ EA
S (a, b, ĉ) ⊆

F}.

4 In case of HEL’s the equivalence system may be defined only using the hidden
part since the visible part can be taken always as EV = {x :V ≈ y :V } for each
visible sort V (see [29]).
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PROOF. (i) ⇒ (iii) Let θ be defined for each S ∈ SORT as the relation on
AS, θS = {〈a, b〉 ∈ A2

S : ∀̃ ĉ EA
S (a, b, ĉ) ⊆ F}. From the definition of a para-

meterized equivalence system we can show that θ is a congruence compatible
with F . In fact, the proof of reflexivity is straightforward. To prove symmetry,
let a, b ∈ AS. Suppose that

a ≡ b (θS), (7)

that is ES(a, b, ĉ) ⊆ F , for every ĉ ∈ A
Q̂
. Let ĉ ∈ A

Q̂
and h : X → A be

an assignment such that h(x) = a, h(y) = b and h(ui) = ci. By definition
of parameterized equivalence system, taking the special tuple of terms û for
ϑ̂ we have, ∀̃ ϑ̂ ES(x, y, ϑ̂) `L δ̄(y, x, û), for every δ̄ ∈ ES,V (y, x, û). By (7),

h(δ̄) ∈ F , for every δ̄ ∈ ∀̃ ϑ̂ ES(x, y, ϑ̂). Hence, by Theorem 8, h(δ̄(y, x, û)) =
δ̄A(b, a, ĉ) ∈ FV , for every δ̄ ∈ ES,V (y, x, û), i.e., (b, a) ∈ θ. By a similar
argument we can prove that θ is transitive and a congruence.

To prove that θ is compatible with F , let ā, b̄ ∈ Ak
V such that ā ≡ b̄ (θk

V ).
Suppose that ā ∈ FV . By definition of parameterized equivalence system,
we have that

⋃
i<k ∀̃ ϑ̂ ES(xi, yi, ϑ̂), x̄ `L ȳ. Then by taking the assignment

h : X → A, such that h(x̄) = ā and h(ȳ) = b̄, and applying again Theorem 8
and the hypothesis: ā ≡ b̄ (θk

V ) and ā ∈ FV , we get that h(ȳ) = b̄ ∈ FV . To see
that θ is the largest congruence compatible with F , let θ′ be any congruence
compatible with F . Assume that a ≡ b (θ′S). Then for all δ̄(x, y, û) ∈ ES,V

and all ĉ ∈ Ak
Q̂
, δA

i (a, a, ĉ) ≡ δA
i (a, b, ĉ) (θ′S), i < k. Since δ̄A(a, a, ĉ) ∈ FV , by

compatibility, we have that δ̄A(a, b, ĉ) ∈ FV . Hence, a ≡ b (θS). Therefore, θ
is the largest congruence compatible with F , which shows that θ = Ω(F ).

(iii) ⇒ (ii) It is straightforward. Take 〈A, F 〉 to be the k-data structure
〈Fm(L), T 〉 and then apply (iii).

(ii) ⇒ (i) Suppose that (ii) holds. The properties of Ω(T ) as a congruence
relation compatible with T translate directly into the properties that specify
E as an equivalence system with parameters. For example, suppose that O
is an operation symbol of type S0, . . . , Sn−1 → Sn. Let T ∈ Th(L) and for
each i < n, let ϕi, ψi ∈ TeSi

such that ∀̃ ϑ̂ ESi
(ϕi, ψi, ϑ̂) ⊆ T . Then ϕi ≡

ψi (Ω(T )Si
), i < n. Thus O(ϕ0, . . . , ϕn−1) ≡ O(ψ0, . . . , ψn−1) (Ω(T )Sn) and

thus ∀̃ ϑ̂ ESn(O(ϕ0, . . . , ϕn−1), O(ψ0, . . . , ψn−1), ϑ̂) ⊆ T . Since this is true for
all T ∈ Th(L), the parameterized S-replacement holds. 2

Corollary 29 ([29]) Let L be a parameterized equivalential hidden k-logic
and let E = 〈ES(x :S, y :S, û :Q̂) : S ∈ SORT〉 be a parameterized equivalence
system for L. Let E ′ = 〈E ′

S(x :S, y :S, v̂ :P̂ ) : S ∈ SORT〉 be a pre-equivalence
system with parameters for L. Then, the following are equivalent:

(i) E ′ is a parameterized equivalence system for L;
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(ii) For every sort S and every ϕ, ψ ∈ TeS,

∀̃ ϑ̂ ES(ϕ :S, ψ :S, ϑ̂ :Q̂) La`L ∀̃ ξ̂ E ′
S(ϕ :S, ψ :S, ξ̂ :P̂ ),

where Γ L a`L Υ means that, Γ `L δ̄ for every δ̄ ∈ Υ, and Υ `L γ̄ for
every γ̄ ∈ Γ.

Specifiable protoalgebraic logics may be characterized in terms of equivalence
systems.

Theorem 30 Let L be a specifiable hidden k-logic. Then L is protoalgebraic
if and only if L has a parameterized equivalence system.

PROOF. Suppose that E is an equivalence system with parameters for L.
By Theorem 28, E defines the Leibniz congruence over each theory of L. Let
T, G ∈ Th(L) such that T ⊆ G. Let ϕ, ψ ∈ TeS. Suppose that ϕ ≡ ψ (Ω(T )S).
Then ∀̃ ϑ̂ ES(ϕ, ψ, ϑ̂) ⊆ T ⊆ G. Hence, ϕ ≡ ψ (Ω(G)S). So Ω(T ) ⊆ Ω(G), and
L is protoalgebraic.

Assume now that L is protoalgebraic. Let ∆ = 〈∆R(x̄ :R, ȳ :R, ẑ :P̂ ) : R ∈
VIS〉 be a protoequivalence system for L (we know that such a system ex-
ists from Theorem 25). For each pair of sorts S, V with V ∈ VIS, take
ES,V (x :S, y :S, û :Q̂, ẑ :P̂ ) to be the union of all sets of k-formulas of the form

∆R,V (ν̄(x :S, û :Q̂):R, ν̄(y :S, û :Q̂):R, ẑ :P̂ ),

where R ranges over all visible sorts and ν̄(x :S, û :Q̂):R ranges over all k-
formulas of sort R whose distinguished variable is x :S. Take ES = 〈ES,V :
V ∈ VIS〉 and E = 〈ES : S ∈ SORT〉. We are going to prove that E defines
the Leibniz congruences on the tem algebra over the theories of L.

Let T ∈ Th(L) and let ϕ, ψ ∈ TeS. Assume that

∀̃ ϑ̂ ∀̃ ξ̂ ES(ϕ, ψ, ϑ̂, ξ̂) ⊆ T, (8)

i.e., for every visible sort R, every ν̄(x :S, û :Q̂) ∈ Tek
R, and any choice of

parameters ϑ̂ ∈ Te
Q̂
, and ξ̂ ∈ Te

P̂
,

∆R(ν̄(ϕ, ϑ̂), ν̄(ψ, ϑ̂), ξ̂ :P̂ ) ⊆ T. (9)

It follows that also

∆R(ν̄(ψ, ϑ̂), ν̄(ϕ, ϑ̂), ξ̂ :P̂ ) ⊆ T. (10)

To show this, consider any ν̄(x :S, û :Q̂):R ∈ Tek
R and any δ̄ ∈ ∆R,V and define
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τ(x :S, y :S, û :Q̂, ẑ :P̂ ) := δ̄(ν̄(x, û), ν̄(y, û), ẑ :P̂ ).

By considering x to be the distinguished variable of τ and y, û, ẑ as parametric
variables, by (8) we have that

∀̃ ϑ̂ ∀̃ ξ̂ ∀̃υ̂ ∆V (τ(ϕ, ϕ, ϑ̂, ξ̂), τ(ψ, ϕ, ϑ̂, ξ̂), υ̂) ⊆ T.

On the other hand, it follows from V -identity that τ(ϕ, ϕ, ϑ̂, ξ̂) ⊆ TV . However,
by V-detachment we have

τ(ϕ, ϕ, ϑ̂, ξ̂), ∆V (τ(ϕ, ϕ, ϑ̂, ξ̂)τ(ψ, ϕ, ϑ̂, ξ̂), υ̂) `L τ(ψ, ϕ, ϑ̂, ξ̂).

Hence, τ(ψ, ϕ, ϑ̂, ξ̂) ∈ TV , which implies, by definition of τ , that

δ̄(ν̄(ψ, ϑ̂), ν̄(ϕ, ϑ̂), ξ̂) ∈ TV , for every δ̄ ∈ ∆R,V , i.e, (10) holds.

By R-detachment, we conclude from (9) and (10) that

ν̄(ϕ, ϑ̂) ∈ TR iff ν̄(ψ, ϑ̂) ∈ TR.

Therefore, by the characterization of Ω(T ) (see Theorem 28), ϕ ≡ ψ (Ω(T )S).

Conversely, if ϕ ≡ ψ (Ω(T )S), then for every pair of visible sorts R, V , every
δ̄(x̄ :R, ȳ :R, ẑ :P̂ ):V ∈ ∆R,V , every ν̄(x :S, û :Q̂):R ∈ Tek

R, and any choice of

parameters ϑ̂ :Q̂ ∈ Te
Q̂

and ξ̂ :P̂ ∈ Te
P̂

δ̄(ν̄(ϕ, ϑ̂), ν̄(ψ, ϑ̂), ξ̂) ≡ δ̄(ν̄(ϕ, ϑ̂), ν̄(ϕ, ϑ̂), ξ̂) (Ωk(T )V ).

By parametric V -identity, δ̄(ν̄(ϕ, ϑ̂), ν̄(ϕ, ϑ̂), ξ̂) ∈ TV . So by compatibility of
Ω(T ) with T , δ̄(ν̄(ϕ, ϑ̂), ν̄(ψ, ϑ̂), ξ̂) ∈ TV . Thus, for every V ∈ VIS,

∆R,V (ν̄(ϕ, ϑ̂), ν̄(ψ, ϑ̂), ξ̂) ⊆ TV , i.e., ∆R(ν̄(ϕ, ϑ̂), ν̄(ψ, ϑ̂), ξ̂) ⊆ T.

Since this inclusion holds for every visible sort R, every ν̄(x :S, û :Q̂):R ∈ Tek
R,

and every choice of parameters ϑ̂ ∈ Te
Q̂
, we finally conclude that

∀̃ ϑ̂ ∀̃ ξ̂ ES(ϕ, ψ, ϑ̂, ξ̂) ⊆ T . 2

4.2.2 Equivalence systems without parameters

When there are no parametric variables, the definition of an equivalence sys-
tem takes the following simpler form. A pre-equivalence system E = 〈ES :
S ∈ SORT〉 without parameters is said to be an equivalence system (without
parameters) if the following conditions hold:

(i) `L ES(x :S, x :S); (S-identity)

(ii) ES(x :S, y :S) `L ES(y :S, x :S);

(iii) ES(x :S, y :S), ES(y :S, z :S) `L ES(x :S, z :S);

(iv) ES0(x0 :S0, y0 :S0), . . . , ESn−1(xn−1 :Sn−1, yn−1 :Sn−1) `L (S-replacement)
ESn(O(x0, . . . , xn−1):Sn, O(y0, . . . , yn−1):Sn),

for each operation symbol O of type S0, . . . , Sn−1 → Sn;

(v) for every V ∈ VIS,
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EV (x0 :V, y0 :V ), . . . , EV (xk−1 :V, yk−1 :V ), x̄ `L ȳ. (V -detachment)

An equivalence system without parameters E such that, for each sort S, ES

is globally finite is called a finite equivalence system. We say that a hidden
k-logic L is equivalential if it has an equivalence system without parameters;
L is called finitely equivalential if it has a finite equivalence system. These
definitions of equivalential and finitely equivalential logics can be regarded as
their characterization by “Mal’cev conditions”.

The next proposition shows that for finitely equivalential logics, each equiva-
lence system without parameters contains a finite equivalence system.

Proposition 31 Let L be a specifiable hidden k-logic. If L is a finitely equiv-
alential logic then each equivalence system for L contains a finite equivalence
system.

PROOF. Let E be an equivalence system for L and E ′ be a finite equivalence
system for L (we know that such E ′ exists since L is finitely equivalential).
From Corollary 29, we have that for each sort S, ES and E ′

S are interderivable,
that is, ES La`L E ′

S. Since L is specifiable (i.e., finitary), for every δ ∈ E ′
S,V

there is a finite subset of ES, say Eδ
S such that Eδ

S `L δ. Then, taking E0
S,V :=⋃ {Eδ

S : δ ∈ E ′
S,V }, we have that E0

S `L E ′
S. Moreover, since E ′ is a finite

equivalence system, E ′
S is globally finite and consequently E0

S is also globally
finite. Clearly, we have that E ′

S `L Eδ
S. So, E0 = 〈E0

S :S ∈ SORT〉 is a finite
equivalence system contained in E. 2

A theory T of a hidden k-logic is a Leibniz theory, if for every G ∈ Th(L),
Ω(T ) = Ω(G) implies that T ⊆ G, i.e., T =

⋂{G ∈ Th(L) : Ω(G) = Ω(T )}.
The Leibniz operator is said to preserve the union of (upward) directed sets of
L-theories if Ω(

⋃
X) =

⋃
Ω(X), for every (upward) directed X ⊆ Th(L).

Theorem 32 Let L be a hidden k-logic. If the Leibniz operator preserves
unions of directed sets of L-theories, then Ω(Th(L)) is an algebraic closed
set system over Con(Fm(L)).

PROOF. Assume Ω preserves unions of directed subsets of Th(L). Let T, U ∈
Th(L) such that T ⊆ U . Then {T, U} is directed, so Ω(T ) ∪ Ω(U) = Ω(T ∪
U) = Ω(U), i.e., Ω(T ) ⊆ Ω(U). Hence, L is protoalgebraic, and then by
Corollary 20, Ω(Th(L)) is closed under intersections. Let Y ⊆ Ω(Th(L)) be
directed. For each θ ∈ Y , define Mθ to be the set

⋂ {T ∈ Th(L) : Ω(T ) = θ}.
Then {Mθ : θ ∈ Y } is also directed, since the mapping θ 7→ Mθ is an order-
isomorphism between Ω(Th(L)) and the set of Leibniz theories of L. Thus⋃

Y =
⋃ {θ : θ ∈ Y } =

⋃ {Ω(Mθ) : θ ∈ Y } = Ω(
⋃ {Mθ : θ ∈ Y }). 2
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In the next theorem we characterize finitely equivalential logics in terms of
the Leibniz operator.

Theorem 33 Let L be a protoalgebraic and specifiable hidden k-logic over a
standard signature Σ. L is finitely equivalential if and only if for every upward
directed set X of L-theories Ω(

⋃
X) =

⋃
Ω(X).

PROOF. Assume that E is a finite equivalence system for L, and let X ⊆
Th(L) be directed. Then for every sort S and all ϕ, ψ ∈ TeS, ϕ ≡ ψ (Ω(

⋃
X)S) iff

ES(ϕ, ψ) ⊆ ⋃
X iff ES(ϕ, ψ) ⊆ T for some T ∈ X. Therefore, Ω(

⋃
X) =⋃

Ω(X).

Conversely, assume that Ω(
⋃

X) =
⋃

Ω(X) for every directed X ⊆ Th(L).
From Theorem 32, Ω(Th(L)) is an algebraic closed set system.

Let us recall that Mθ is the set
⋂ {T ∈ Th(L) : Ω(T ) = θ}. We claim that,

If θ is finitely generated as an Ω(Th(L))-set, then Mθ is finitely generated as
an L-theory.

Actually, let X be the set of all finitely generated theories included in Mθ. X
is obviously upward directed and

⋃
X = Mθ. Thus θ = Ω(Mθ) = Ω(

⋃
X) =⋃

Ω(X). Since Ω(X) is directed and θ is finitely generated, we have that θ =
Ω(T ) for some T ∈ X. Thus, Mθ = T since Mθ is the smallest L-theory whose
Leibniz congruence is θ. So Mθ is finitely generated.

Let S be any sort and x, y distinct variables of sort S. Let θ be the Ω(Th(L))-
set generated by {x, y}. Then by the result above, Mθ is finitely generated
as an L-theory. But Mθ is also generated as an L-theory by the infinite set
∀̃ ϑ̂ ES(x, y, ϑ̂) for some parameterized equivalence system (there is such an
equivalence system by Theorem 30 since we are assuming that L is protoal-
gebraic). Thus there is a globally finite subset E ′

S of ∀̃ ϑ̂ ES(x, y, ϑ̂) that also
generates Mθ. In particular we have

E ′
S `L ES(x :S, y :S, û :Q̂). (11)

Moreover, E ′
S will contain only a finite number of variables, say υ0 :P0, . . . ,

υn−1 :Pn−1 different from x and y which, since XS is countable for each sort
S, we can also assume them to be different from all the parametric vari-
ables û :Q̂. Thus, E ′

S may be written as E ′
S(x, y, υ0, . . . , υn−1). Let E ′′(x, y) =

E ′
S(x, y, ν0, . . . , νn−1), where νi is a ground term of sort Pi for each i < n.

Consider any ϕ, ψ ∈ TeS and any choice of parameters ϑ̂ ∈ Te
Q̂
. Let σ be

any substitution such that σ(x) = ϕ, σ(y) = ψ, σ(υi) = νi for each i < n,
and σ(û) = ϑ̂. By applying σ to both sides of (11) we obtain, by the substitu-
tion invariance of L, that E ′′

S(ϕ, ψ) `L ES(ϕ, ψ, ϑ̂). Since this holds for every
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choice of parameters ϑ̂ :Q̂ we get E ′′
S(ϕ, ψ) `L ∀̃ ϑ̂ES(ϕ, ψ, ϑ̂), and since the

consequence in the opposite direction obviously holds, we finally have that

E ′′
S(ϕ, ψ) La `L ∀̃ ϑ̂ES(ϕ, ψ, ϑ̂) for all ϕ, ψ ∈ TeS. (12)

Take E ′′ = 〈E ′′
S(x :S, y :S) : S ∈ SORT〉. Then it follows from (12) and the

fact that E is an equivalence system for L with parameters, using Corollary
29, that E ′′ is a finite equivalence system for L without parameters. 2

Corollary 34 Let L be a specifiable hidden k-logic. If L is finitely equivalen-
tial then L is behaviorally specifiable.

PROOF. Suppose that L is finitely equivalential. Then, it has a finite equiva-
lence system which obviously is a protoequivalence system. Hence, L is protoal-
gebraic. From Corollary 20 and Lemma 17, Ω(Th(L)) is closed under intersec-
tions and under inverse surjective substitutions, respectively. From Theorem
33, Ω(Th(L)) is also closed under unions of directed sets. Therefore, Ω(Th(L))
is the set of theories of a specifiable hidden 2-logic (see [29] and the remarks
preceding Theorem 19). This shows that L is behaviorally specifiable, since it
is protoalgebraic. 2

In [29], we define the behavioral equivalence |=beh
L as |=Mod∗(L), and it is well

known that for any class K of k-data structures |=K is finitary if and only if
K is a quasivariety. Thus, a necessary and sufficient condition for a hidden
k-logic to be behaviorally specifiable is that the class of the algebraic reducts
of the behavioral models is a quasivariety, that is the class can be axiomatized
by a set of conditional equations. Moreover, the axiomatization gives directly
the presentation by axioms and inference rules for the behavioral logic of L.
There are examples of hidden k-logics which are not finitely equivalential, but
the class of the algebraic reducts of their behavioral models is a quasivari-
ety. An example of such logics is the KMP, the smallest normal modal logic
that satisfies modus ponens (see [24]). Therefore, the converse of the previous
corollary is not true in general. It is still an open problem to find, in terms of
equivalence systems, necessary and sufficient conditions for a hidden k-logic
to be behaviorally specifiable. In [31], the authors studied this question for
hidden equational logics and they showed that the converse of this corollary
holds for hidden equational logics.
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4.3 Hierarchy of hidden k-logics

In this section we characterize, by algebraic properties, some classes of log-
ics defined by syntactical properties of their equivalence systems; namely, the
properties of having a parameterized equivalence system, a finite parameter-
ized equivalence system, an equivalence system and a finite equivalence system.
The characterizations are established using closure properties of the class of
behavioral models, as well as by properties of the Leibniz operator. Moreover,
some of those characterizations only hold under the assumption that the sig-
nature must be standard. Otherwise we only get necessary conditions. Namely,
in Theorem 38 and Theorem 39 the signature Σ of the hidden k-logic L has to
be standard 5 (this is one of the main difficulties in dealing with heterogeneous
systems). The following theorem will be useful in obtaining such characteri-
zations. It is an immediate consequence of applying to behavioral models the
fact that parameterized equivalence systems define the Leibniz congruence
over the filters (recall that behavioral models are reduced k-data structures
A = 〈A, F 〉, i.e., Ω(F ) = idA). The theorem gives an axiomatization of the
class of behavioral models which is finite when L has a finite parameterized
equivalence system.

Theorem 35 Let L be a parameterized finitely equivalential hidden k-logic
with E its finite parameterized equivalence system. Then, a model 6 A of L
is reduced if and only if for each S ∈ SORT, it satisfies the following Horn
sentence,

∀x, y [ (∀û ∧ {DV (δ̄(x :S, y :S, û :Q̂)) :

δ̄ ∈ ES,V (x :S, y :S, û :Q̂), V ∈ VIS} ) → x ≈ y] . (13)

Moreover, if L is finitely equivalential, then (13) is in fact a universal Horn
sentence. In this case, Mod∗(L) is closed under the formation of data sub-
structures and filtered products.

PROOF. Let A = 〈A, F 〉 be a behavioral model of L. Let a, b ∈ AS and
ĉ ∈ A

Q̂
such that for all δ̄ ∈ ES,V , δ̄A(a, b, ĉ) ∈ DA

V = FV . Since E is a finite

parameterized equivalence system for L we have that a ≡ b (Ω(F )S). Since A
is reduced, a = b. That is, A satisfies the first-order formula (13).

5 The condition that Σ must be standard is not too restrictive, since each L has a
standard conservative extension (see [30]).
6 Here we consider the models as first order structures in the expanded language
LH obtained by adding the new k-relational symbol D which will be interpreted as
the filter F (see [29]).
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Conversely, suppose that A, considered as a first-order structure in the lan-
guage LH , satisfies the first-order formula (13). Let a, b ∈ AS such that
a ≡ b (Ω(F )S). Then, since E is a parameterized equivalence system, from
Theorem 28 we obtain that for all δ̄ ∈ ES,V and every ĉ ∈ A

Q̂
, δ̄A(a, b, ĉ) ∈

DA
V = FV . So, a = b. That is, A is reduced.

The second part of this theorem is a consequence of the multisorted version
of the Quasivariety Theorem (see Theorem 5.3.24 in [32]). 2

The next theorem provides a semantic characterization of protoalgebraic logics
among all members in the class of specifiable hidden k-logics.

Theorem 36 Let L be a specifiable hidden k-logic. L is protoalgebraic if and
only if Mod∗(L) is closed under subdirect products.

PROOF. Suppose that L is protoalgebraic. Then by Theorem 30 it has a pa-
rameterized equivalence system with parameters, say E = 〈ES(x :S, y :S, û :Q̂):
S ∈ SORT〉. Let Bi = 〈Bi, Gi〉, i ∈ I, be a family of behavioral models of L and
let A = 〈A, F 〉 be a subdirect product of

∏
i∈I Bi. We recall that the projection

πi : A ³ Bi is onto, for every i ∈ I. Let a, b ∈ AS. Suppose that a ≡ b (Ω(F )S).
Since A is a model of L, by Theorem 28, EA

S (a, b, ĉ) ⊆ F , for all ĉ ∈ A
Q̂
.

Hence, by the definition of subdirect product, EBi
S (a(i), b(i), ĉ(i)) ⊆ Gi, for

each i ∈ I and all ĉ(i) ∈ A
Q̂
. Since, for every sort S, (πi)S : AS → (Bi)S

is onto, for every i, ĉ(i) ranges over all d̂i ∈ (Bi)Q̂
, as ĉ ranges over A

Q̂
.

Hence, we have EBi
S (a(i), b(i), d̂i) ⊆ Gi, for each i ∈ I and all d̂i ∈ (Bi)Q̂

. So

a(i) ≡ b(i) (Ω(Gi)S). Since each Bi is reduced, a(i) = b(i), for every i ∈ I.
Hence a = b.

To prove the converse, let A be an algebra and let F and G be two filters of
A such that F ⊆ G. Let θ := Ω(F ) ∩ Ω(G). We define B := 〈A/θ, F/θ〉. We
have that B is isomorphic to a subdirect product of A1 = 〈A/Ω(F ), F/Ω(F )〉
and A2 = 〈A/Ω(G), G/Ω(G)〉, by the mapping h(a/θ) := (i1(a), i2(b)) (where
i1 and i2 are the canonical morphisms from A into A/Ω(F ) and A/Ω(G),
respectively). Both A1 and A2 are behavioral models of L. Hence, B has to be
reduced as well. This means that θ is the largest congruence of A compatible
with F , i.e., Ω(F ) = θ. Therefore Ω(F ) ⊆ Ω(G). 2

The class of behavioral models of a parameterized finitely equivalential speci-
fiable logic is closed under subdirect products and ultraproducts. Moreover,
in the standard case this property characterizes this class.
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Theorem 37 Let L be a specifiable hidden k-logic over a hidden signature
with a finite number of sorts. L is parameterized finitely equivalential if and
only if Mod∗(L) is closed under subdirect products and ultraproducts.

PROOF. Suppose L is parameterized finitely equivalential. By Theorem 35,
we know that the class of behavioral models Mod∗(L) is axiomatized by a set
of special Horn sentences. Hence, it is closed under ultraproducts (see Theorem
5.3.24 in [32]). By the previous theorem Mod∗(L) is closed under subdirect
products.

Suppose now that the class Mod∗(L) is closed under ultraproducts and sub-
direct products. Then, by Theorems 30 and 36, there is a parameterized
equivalence system for L, say E. We are going to identify the sorted set
ES with the unsorted set

⋃
V ∈VIS ES,V . Let I = 〈IS : S ∈ SORT〉 be a

sorted set of indices such that S 6= S ′ ⇒ IS ∩ IS′ = ∅, and, for every S,⋃
V ∈VIS ES,V = {δ̄i(x :S, y :S, û :Q̂) : i ∈ IS}. Note that, by hypothesis (the set

of sorts is finite) we have that any subset J of I is globally finite if and only
if, for each sort S, JS is finite. We are going to show that there is a globally
finite sorted subset of E that is a parameterized finite equivalence system for
L. By way of contradiction, assume that this property fails.

For each globally finite subset J of I, we choose a model AJ = 〈AJ , FJ〉 of L
for which the set ΦJ , defined by

(ΦJ)S :=
{
〈a, b〉 ∈ (AJ)2

S : ∀ ĉ ∈ (AJ)
Q̂

(δ̄i)
AJ (a, b, ĉ) ∈ FJ , for all i ∈ J ∩ IS

}
,

contains Ω(FJ) strictly (i.e. Ω(FJ) ( ΦJ). Note that this model always exists
by our assumption. Moreover, we can assume AJ reduced, by taking its reduc-
tion if necessary. Consider now the lattice I = 〈PGF(I),∩,∪〉, where PGF(I)
is the set of all globally finite sorted subsets of I. Take U to be any ultrafilter
on I that contains the subsets of PGF(I) of the form:

Ĵ := {K ∈ PGF(I) : J ⊆ K}, for each J ∈ PGF(I).

We define the following ultraproduct

B =
( ∏

J∈PGF (I)AJ

)/
U .

We denote the filter of B by DU∏
AJ

. We know that for every J ∈ PGF(I) there

are a sort SJ and a pair 〈aSJ
J , bSJ

J 〉 ∈ (AJ)2
SJ

such that aSJ
J 6≡ bSJ

J (Ω(FJ)SJ
)

(i.e., aSJ
J 6= bSJ

J ) and 〈aSJ
J , bSJ

J 〉 ∈ (ΦJ)SJ
. Take dS ∈ (

∏
J∈PGF (I) AJ)S fixed and

define fS, gS ∈ (
∏

J∈PGF (I) AJ)S in the following way:

fS(J) =





aSJ
J , if S = SJ ;

dS(J), otherwise.
gS(J) =





bSJ
J , if S = SJ ;

dS(J), otherwise.
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Note that fS and gS are defined in such a way that for every J ∈ PGF(I)
fS(J) ≡ gS(J) (ΦJ). We claim that:

Claim. There exists S ∈ SORT such that fS 6≡ gS (U).

In fact, suppose that for every S ∈ SORT, fS ≡ gS (U), i.e, {J : fS(J) =
gS(J)} ∈ U . Then,

⋂
S∈SORT {J : fS(J) = gS(J)} ∈ U because we are assum-

ing that the number of sorts is finite. But
⋂

S∈SORT {J : fS(J) = gS(J)} = ∅.
So, such a sort S must exist. Let us call it H.

Let iH ∈ IH . Define K ⊆ I such that KH = {iH} and KS = ∅, for any sort S
different from H.

Since fH(K) ≡ gH(K) (ΦK), ∀ ĉ ∈ (AK)
Q̂

δ̄AK
iH

(fH(K), gH(K), ĉ) ∈ (FK)V . Let

L ⊆ PGF(I) be the following set

L := {J ∈ PGF(I) : ∀ ĉ ∈ (AJ)
Q̂

δ̄AJ
iH

(fH(J), gH(J), ĉ) ∈ (FJ)V }.
Obviously K ∈ L. Moreover, K̂ ⊆ L and by definition of U , K̂ ∈ U . Thus,
L ∈ U . Therefore,

〈∀ ĉ ∈ (AJ)
Q̂

δ̄AJ
iH

(fH(J), gH(J), ĉ) : J ∈ PGF(I)〉 ⊆ DU∏
AJ

, for each iH ∈ IH .

This implies that δ̄AJ
iH

(fH(J), gH(J), ĉ)/U = δ̄B
iH

(fH/U , gH/U , ĉ/U) ∈ DU∏
AJ

/U .

Since E is a parameterized equivalence system, 〈fH/U , gH/U〉 ∈ ΩB(DU∏
AJ

/U).

And finally, since by hypothesis we have that Mod∗(L) is closed under ultra-
products, B is reduced. Thus, fH/U = gH/U , i.e., fH ≡ gH (U), which contra-
dicts the choice of H. Hence, we can conclude that some globally finite subset
of E must be a parameterized finite equivalence system itself. 2

Theorem 38 Let L be a specifiable hidden k-logic over a hidden signature
Σ. If L is equivalential then Mod∗(L) is closed under data substructures and
products. Moreover, if Σ is standard then the converse holds.

PROOF. Suppose that L is equivalential. Then it is parameterized equiv-
alential. Therefore, by Theorem 30, it is protoalgebraic and, hence, by Theo-
rem 36, Mod∗(L) is closed under subdirect products and, in particular, under
products. Let E be an equivalence system for L and A = 〈A, F 〉 ∈ Mod∗(L)
and B = 〈B, G〉 be a data substructure of A. For all b, b′ ∈ BS, we have that
b ≡ b′(Ω(G)S) iff EB

S (b, b′) ⊆ G. Since B ⊆ A, then EB
S (b, b′) = EA

S (b, b′).
From the fact that G = F ∩B2, we have that EB

S (b, b′) ⊆ G iff EA
S (b, b′) ⊆ F .

So, b ≡ b′(Ω(G)S) iff b ≡ b′(Ω(F )S) iff b = b′. Therefore, B is reduced.

Conversely, assume that Σ is standard and suppose that Mod∗(L) is closed
under products and data substructures and hence closed under subdirect prod-
ucts. Thus, by Theorem 36, L is protoalgebraic and, hence, by Theorem 30,
it is a parameterized equivalential hidden k-logic. So, L has a parameterized
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equivalence system, say

E = 〈ES(x :S, y :S, û) : S ∈ SORT〉.
Let us define E ′ to be the system of sorted sets such that for each unrestricted
sort S and each visible sort V , E ′

S,V (x :S, y :S) is the set of all formulas obtained
by replacing the parameters in each δ̄ ∈ ES,V by all possible terms generated
only by the variables x or y (for each sort S there is at least one such term
that contains no variables other than x and y since we assume Σ standard),
i.e., E ′

S,V (x :S, y :S) := {δ̄(x :S, y : S, τ̂ :Q̂) : δ̄ ∈ ES,V , τi ∈ Te{x, y}Qi
}.

We are going to prove that E ′ is an equivalence system, by showing that it
defines the Leibniz congruence over any filter of an arbitrary model of L.
Let A = 〈A, F 〉 be a model of L and take any a, b ∈ AS. Let B be the
subalgebra of A generated by {a, b}. Since Σ is standard, BS 6= ∅, for every S ∈
SORT. Moreover, each element of B is of the form τA(a, b), for some τ(x, y) ∈
Te{x, y}Qi

. Clearly, 〈B/(Ω(F )∩B2), (F ∩Bk)/(Ω(F )∩B2)〉 is isomorphic to
a data substructure of A/Ω(F ). Consequently, it is reduced since A/Ω(F ) =
〈A/Ω(F ), F/Ω(F )〉 is reduced and by hypothesis Mod∗(L) is closed under
data substructures. So, Ω(F ) ∩B2 is the largest congruence on B compatible
with F ∩Bk, which means that Ω(F ∩Bk) = Ω(F ) ∩B2. So, we have

a ≡ b (Ω(F )S) iff a ≡ b
(
(Ω(F ) ∩B2)S

)

iff a ≡ b
(
Ω(F ∩Bk)S

)

iff EB
S (a, b, ĉ) ⊆ F ∩Bk, ∀ ĉ ∈ B

Q̂

iff EB
S (a, b, τ̂B(a, b)) ⊆ F ∩Bk, ∀ τ̂ ∈ Te{x, y}

Q̂

iff EA
S (a, b, τ̂A(a, b)) ⊆ F, ∀ τ̂ ∈ Te{x, y}

Q̂

iff (E ′
S)A(a, b) ⊆ F.

Thus, by Theorem 28, E ′ is an equivalence system. 2

Theorem 39 Let L be a specifiable hidden k-logic over a hidden signature Σ.
If L is finitely equivalential then Mod∗(L) is closed under data substructures,
products and ultraproducts. Moreover, if Σ is standard and has only a finite
number of sorts, the converse is also true.

PROOF. The first part holds by Theorem 35, since the class of behavioral
models is axiomatized by a set of universal Horn formulas. Suppose now
that Mod∗(L) is closed under data substructures, products and ultraprod-
ucts. Then, by the previous theorem, there is an equivalence system E for
L. Since Mod∗(L) is closed under subdirect products and ultraproducts, us-
ing an ultraproduct argument, as we did in the proof of Theorem 37, there
is a subset of E which is a finite equivalence system for L. So, L is finitely
equivalential. 2
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4.4 Examples

4.4.1 Unsorted hidden logics

Sentential logics The classical propositional calculus (CPC) is the best ex-
ample to illustrate the meaning of an equivalence system since, in this case,
the equivalence system is the CPC-equivalence, that is, the set {x ↔ y}.

There is much work concerning the study of the existence of equivalence sys-
tems in particular deductive systems. We refer to the book [13] and the paper
[12] by Czelakowski, and the paper [35] by Pigozzi for further references. ♦

Free inequational logic (revisited). The free inequational logic is an ex-
ample of an unsorted equivalential 2-logic (see Example 11). The equivalence
system is simply the set {x ¹ y, y ¹ x}. ♦

4.4.2 Hidden equational logic

The classes of equivalential, finitely parameterized equivalential and the fi-
nitely equivalential HEL’s are pairwise distinct. First we show that there are
HEL’s which are not equivalential and then we study more examples of HEL’s;
namely an equivalential and a finitely equivalential logic.

A non equivalential HEL. Every HEL is protoalgebraic and thus parameter-
ized equivalential by Theorem 30, but not every HEL is equivalential. Clearly
a HEL without hidden sorts is equivalential. First we state a lemma which is
useful in proving that an equality model is a behavioral model. It will be used
in the proof of Theorem 41. The proof of this lemma is straightforward and
will be omitted.

Lemma 40 ([29]) Let L be a HEL and A = 〈A, idAVIS
〉 ∈ Mod(L). A

is a behavioral model of L if, for every hidden sort H, AH has only one
element or, there is a (visible) context ϕ(z :H, x̂ :Q̂) ∈ CΣ[z :H] such that
∀ x̂ ϕA(z :H, x̂ :Q̂) is injective, as a mapping, on the argument H (i.e., ∀a1, a2 ∈
AH (∀b̂ ∈ A

Q̂
ϕA(a1, b̂) = ϕA(a2, b̂)) ⇒ a1 = a2).

Theorem 41 Any free hidden equational logic L over a hidden signature Σ
with VIS 6= ∅, HID 6= ∅ and having at least one attribute (i.e., an operation
symbol of visible range) with at least one argument of visible sort and at least
one argument of hidden sort, fails to be equivalential.

PROOF. Let g be an attribute in Σ having one argument of visible sort and
one of hidden sort. We can assume, without loss of generality, that g is of
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type H,V, S0 . . . , Sn−1 → V ′, for some H ∈ HID and some V, V ′ ∈ VIS and
S0 . . . , Sn−1 ∈ SORT.

Consider now two 2-data structures over L, A = 〈A, idAV
〉 and B = 〈B, idBV

〉,
where AV = AV ′ = {1, 2}, AH = A2

V , BV = BV ′ = {1, 2, 3} and BH =
B2

V . For the remaining sorts the carrier sets are each a one-element set, i.e.,
AS = BS = {?}. We interpret the symbol g in B in a way that satisfies
the following condition: gB(a, b, c0, . . . , cn−1) = gB(a, b, c′0, . . . , c

′
n−1), for all

a ∈ BH , b ∈ BV , c0, . . . , cn−1, c
′
0, . . . , c

′
n−1 ∈ B

Q̂
.

In this way we can consider gB as a mapping from BH ×BV into B′
V . By the

same reason, we assume that gA is also a mapping from AH×AV into A′
V . Let

the interpretation of g in A and in B be given by Fig. 5. For the remaining
operation symbols we take the trivial interpretations, i.e, they are interpreted
as constant operations. It can be shown that A ⊆ B. Obviously, A and B are
models of L.

gB 1 2 3

(1,1) 1 1 1

(1,2) 1 2 1

(2,1) 1 2 2

(2,2) 2 2 2

(1, 3) 1 2 3

(2, 3) 1 3 1

(3, 1) 1 3 2

(3, 2) 1 3 3

(3, 3) 3 3 3

Fig. 5. Interpretation of the operation symbol g.

By applying the previous lemma to this case we have B ∈ Mod∗(L) i.e.,
Ω(idBV

) = idB. On the other hand, we have that

gA(〈2, 1〉, 1) = gA(〈2, 1〉, 1) and gA(〈2, 1〉, 2) = gA(〈2, 1〉, 2).

Moreover, by induction on the complexity of the contexts we can show that for
any (visible) context ϕ(z :H, û : Q̂) we have that ϕA(〈2, 1〉, b̂) = ϕA(〈2, 1〉, b̂).
Then, 〈2, 1〉 ≡ 〈2, 1〉 (Ω(idAV

)H). Hence, A /∈ Mod∗(L). Thus, Mod∗(L) is not
closed under data substructures. Therefore, by Theorem 38, L is not equiv-
alential. 2
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4.4.3 Stacks

Let us recall the specification of stacks over the hidden signature Lstacks (see
[29]).

SORT : stack, nat
VIS : nat
Operation symbols:

zero : → nat
empty : → stack
s : nat → nat

top : stack → nat
pop : stack → stack
push : nat, stack → stack

Extralogical axioms:

top(popn(empty)) ≈ zero, for all n ≥ 0;
top(push(x, y)) ≈ x;
top(popn+1(push(x, y))) ≈ top(popn(y)), for all n ≥ 0;

Extralogical inference rule:
s(x) ≈ s(y)

x ≈ y

Fig. 6. Stacks logic.

It is not difficult to show that {top(popn(x)) ≈ top(popn(y)):n ∈ N}, with
visible part being {x :nat ≈ y :nat}, is an equivalence system for Lstacks.

We claim that Lstacks is not finitely equivalential.

Claim. Lstacks is not finitely equivalential.

In fact, suppose that Lstacks is finitely equivalential. Then from Proposi-
tion 31 there is a finite subset of the equivalence system {top(popn(x)) ≈
top(popn(y)) : n ∈ N} which is a finite equivalence system itself, say

{top(popn(x)) ≈ top(popn(y)) : n ∈ I},
with I a finite subset of N. Let n0 be the largest element in I, and take the
following two stacks s = 〈y, x0, . . . , xn0〉 and s′ = 〈y′, x0, . . . , xn0〉, of length
n0 + 1 with y 6= y′, of the standard model S of stacks. Thus, for any n ∈ I,
topS((popn)S(s)) = topS((popn)S(s′)). However s and s′ are not behaviorally
equivalent since

topS((popn0+1)S(s)) 6= topS(((popn0+1)S(s′)). ♦

4.4.4 Flags

Similarly to the previous example we can prove that {up?(x) ≈ up?(y)}, with
visible part being the obvious one, is a finite equivalence system for Lflags. So
the flags logic is a finitely equivalential logic. ♦
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4.4.5 Sets

In the specification of sets given in Fig. 7, denoted by Lsets, the situation is
more complicated, since we have two visible sorts and more operation sym-
bols (for the details see [29]). But, it can be proved that Lsets has a finite
parameterized equivalence system which is

Eset,nat(x, y) = Enat,bool(x, y) = Ebool,nat(x, y) = ∅;

Eset,bool(x, y, n :nat) = {in(n, x) ≈ in(n, y)};

Enat,nat(x, y) = Ebool,bool(x, y) = {x ≈ y}.

SORT : set, elt, bool
VIS : bool, elt.
Operation symbols:

empty : → set;
in : elt, set → bool;
∪ : set, set → set;
add : elt, set → set;
neg : set → set;
∩ : set, set → set;

true : → bool;
false : → bool;
¬ : bool → bool;
∧ : bool, bool → bool;
∨ : bool, bool → bool.

Extralogical axioms:
in(n, empty) ≈ false;
in(n,∪(x, x′)) ≈ in(n, x) ∨ in(n, x′);
in(n, neg(x)) ≈ ¬(in(n, x));
in(n,∩(x, x′)) ≈ in(n, x) ∧ in(n, x′);

Extralogical inference rules:

in(z, x) ≈ in(z, y)

in(z, add(n, x)) ≈ in(z, add(n, y))
;

m ≈ n

in(z, add(m,x)) ≈ in(z, add(n, x))
.

Fig. 7. Sets logic.

♦

These examples, together with some others discussed in [29], allow us to draw
a picture that illustrates the relations between those classes of logics (Fig. 8).
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Fig. 8. Hierarchy of hidden k-logics.

4.5 Further topic: Definability of the set of behavioral theorems

Computer scientists are very often specially interested in determining whether
a given equation is a behavioral theorem (see [9], [19] and [26], where the focus
is on determining whether a given equation is a behavioral theorem). It seems
to us that in the context of AAL this problem has never been considered. Here,
we develop an introductory theory for this problem and we hope to develop
it further in the near future. We will briefly discuss when there is a sorted set
of visible k-formulas that defines the set of behavioral theorems in a natural
way. In that case, the set of formulas is called a defining set for the behavioral
theorems. We show that such a defining set for the behavioral theorems could
be syntactically characterized by making use of admissible rules instead of
valid rules. Finally, we show that the defining set for the behavioral theorems
defines the Leibniz congruence on A over each filter F of any strictly minimal
model 〈A, F 〉.

Definition 42 Let L be a hidden k-logic and E a pre-equivalence system for
L. We say that the set of behavioral theorems of L is defined by E if

Ω(Thm(L))S = { 〈t, t′〉 ∈ Te2
S : for all ϑ̂ ∈ Te

Q̂
, `L ES(t, t′, ϑ̂)}.

We call E a defining set (with parameters) for the behavioral theorems.

Since the set of theorems is substitution invariant we can characterize a defin-
ing set for the behavioral theorems by replacing the condition in the Definition
42 by a condition which only requires that `L ES(t, t′, û), for some tuple of
variables û such that ui /∈ Var{t} ∪ Var{t′}.

As an immediate consequence of Theorem 28 we have that if L is a parameter-
ized equivalential hidden k-logic with E being its parameterized equivalence
system, then E is also a defining set for the behavioral theorems of L. Instead
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of defining the Leibniz congruence on the term algebra over every theory,
defining sets for behavioral theorems define only the Leibniz congruence over
the set of behavioral theorems.

The next theorem shows that the defining sets for the behavioral theorems
can be characterized as the pre-equivalence systems which define the Leibniz
congruence on A over F for any strictly minimal model 〈A, F 〉.

Theorem 43 ([29]) Let L be a hidden k-logic and E = 〈ES(x :S, y :S, û :Q̂) :
S ∈ SORT〉 a pre-equivalence system. Then, the behavioral theorems of L are
definable by E if and only if for each strictly minimal model 〈A, F 〉 of L,

Ω(F )S = { 〈a, b〉 ∈ A2
S : ∀ĉ ∈ A

Q̂
EA

S (a, b, ĉ) ⊆ F}.

As was mentioned above, each parameterized equivalence system is always
a defining set for the behavioral theorems. Moreover, the defining set of the
behavioral theorems without parameters may be syntactically characterized
by using the admissible part Lad of L (the proof can be found in [29]).

Theorem 44 ([29]) Let L be a hidden k-logic and E a pre-equivalence system
for L without parameters. Then, E is a defining set, without parameters, for
the behavioral theorems of L if and only if the following conditions hold:

(i) `Lad ES(x :S, x :S); (admissible S-identity)

(ii) ES(x :S, y :S) `Lad ES(y :S, x :S);

(iii) ES(x :S, y :S), ES(y :S, z :S) `Lad ES(x :S, z :S);

(iv) ES0(x0 :S0, y0 :S0), . . . , ESn−1(xn−1 :Sn−1, yn−1 :Sn−1) `Lad

ESn(O(x0, . . . , xn−1):Sn, O(y0, . . . , yn−1):Sn),

for each operation symbol O of type S0, . . . Sn−1 → Sn;

(admissible S-replacement)

(v) for every V ∈ VIS, EV (x0 :V, y0 :V ) . . . EV (xk−1 :V, yk−1 :V ), x̄ `Lad ȳ.
(admissible V -detachment)

Conclusions and related work

This paper is a step forward in the growth of the generalized theory of the
AAL introduced by the author and Pigozzi in [31]. This generalized framework
allows for the introduction of multisorts and accommodates the dichotomy
“visible vs hidden” within the standard AAL. This theory has been already
applied to the OO paradigm (see [29–31]). In the present work, we discuss
the axiomatization of the class of behavioral models via abstract algebraic
logic. This wide analysis of such axiomatization is achieved using properties
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of the equivalence systems and properties of the Leibniz operator; the latter
constitutes the main tool in our approach.

We characterize some classes of hidden k-logics by properties of their Leibniz
operator, by closure properties of the class of their behavioral models, and by
properties of equivalence systems. This is displayed in the hierarchy diagram
of hidden k-logics we present in Fig. 8.

Next we will discuss some results that are related to the theory developed in
this paper.

Hidden algebras. Hidden algebras were introduced by Goguen in [20] and
further developed in [19,21], in order to generalize many-sorted algebras to
give an algebraic semantics for the object oriented paradigm. When hidden
algebras first appeared, they were considered over restricted signatures. These
were assumed to have the visible part fixed, in the sense that all sorted al-
gebras over it have the same visible part. Usually, this visible part was a
standard algebra such as the natural numbers or the two-element Boolean al-
gebra. This is called fixed-data semantics. Another restriction which is some-
times assumed in order to apply coalgebraic methods and results to the study
of behavioral equivalence is the requirement that the methods and the at-
tributes have exactly one hidden argument. This semantics is called monadic
semantics. The behavioral aspects of modern software make hidden algebras
more suitable than standard algebras for abstract machine implementation in
practice. Consequently, there has been an increasing development in this field.
Goguen and his collaborators, in the last fifteen years, have been improving
their theory and applying it in more general settings. Now almost all of the
results may be established for polyadic loose-data semantics. Polyadic loose-
data semantics allows any kind of operation symbols and, in order to have
more freedom to choose an adequate implementation, the visible part of the
algebras is no longer fixed: it may be any sorted algebra in which the require-
ments (axioms) of the given specification are valid. However, some authors
are interested in applying coalgebraic methods, and then they have to restrict
their signatures to the monadic fixed-data semantics. Malcolm [27] shows that
behavioral equivalence may also be formulated in the context of coalgebra.

Behavioral equivalence and hidden logic. Two terms are said to be be-
haviorally equivalent if and only if they cannot be distinguished by any visible
context. This is the primitive notion of behavioral equivalence due to Reichel
[37]. The idea of looking at the satisfaction relation between hidden terms as
behavioral equivalence was also introduced by Reichel in the 80’s [37] and it
seems to be the correct way of interpreting equality between hidden terms.
Since then, it has been adopted and generalized by many people. The most
significant contributions have been made by Goguen, Bidoit, Bouhoula and
their associates [9,18].
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Generalizations of the notion of behavioral equivalence have been considered.
Goguen et al. consider Γ-behavioral equivalence, where Γ is a subset of the
set of all operation symbols in the signature. Γ-behavioral equivalence is de-
fined analogously to ordinary behavioral equivalence, but making use only of
the contexts built from the operation symbols in Γ. It can be proved that
the Γ-behavioral equivalence is the largest Γ-congruence with the identity as
the visible part. Thus, coinduction methods, based on this fact, may still be
formulated for this more general notion. We should emphasize that our ap-
proach can be extended in order to accommodate such contexts by changing
the definition of hidden equational logic; namely, by replacing condition (iv)
in Definition 9 by: (iv’) s :V ≈ s′ :V → t(x/s):W ≈ t(x/s′):W , for every
t ∈ (TeΓ)W , any s, s′ ∈ TeV and every x ∈ XV . The Leibniz congruence Ω(F )
has to be redefined as the largest Γ-congruence (Γ-congruence here means a
relation compatible with the interpretations of the operation symbols in Γ)
compatible with F . Clearly, we also have to adapt all the notions and results
if we intend to develop a parallel theory to ours based on this generalized
notion of context.

Some authors also require that each context contains only one occurrence of
the distinguished variable z. However, we do not need to impose such a re-
quirement because, by considering the ordinary contexts, one generates exactly
the same behavioral equivalence, the Leibniz congruence (this requirement is
needed to deal with the models as coalgebras in the fixed-data semantics, see
[19,39]).

In this more general case, some interesting questions concerning Γ-behavioral
equivalence may arise, such as the study of the compatibility of some operation
symbols outside of Γ with respect to Γ-behavioral equivalence. This problem
has been studied by Diaconescu et al. [15] and Bidoit et al. [3]. On the other
hand, Bidoit and Hennicker [4] generalize this notion by endowing hidden
algebras with a binary relation, that may be partial. As a particular case we
can apply their algebraic approach to the behavioral setting by considering
their algebras together with Γ-behavioral equivalence.

Various notions of behavioral logics have been considered. The most important
are hidden logic by Goguen et al. [19] and observational logic by Bidoit et al.
[2,22]. There is also another observational logic due to Padawitz [33], called
swinging types logic, but it is similar to the observational logic of Bidoit et
al. (see http://ls5-www.cs.uni-dortmund.de/~peter/Swinging.html for
more details). Hidden logic is a variant of the equational logic in which some
part of the specification is visible and another is hidden. The formulas are just
equations and the satisfaction relation is taken behaviorally. Observational
logic is different from hidden logic but both are based on behavioral equiva-
lence, i.e., indistinguishability under contexts. Observational logic was intro-
duced by Bidoit and Hennicker (see [22,23]) to formalize behavioral validity
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(correctness). Tarski’s satisfaction relation of first-order formulas (with equal-
ity) is considered as a “behavioral satisfaction relation” which is determined,
in a natural way, by the family of congruence relations (possibly partial) with
which each algebra is provided. This relation is called behavioral equality (see
also [25]). The behavioral satisfaction relation is just defined by considering
the equality symbol interpreted as the behavioral equality. First-order theories
are generalized to the so-called behavioral theories where the equality symbol
is interpreted as the behavioral equality. In [2] the authors develop a method
for proving behavioral theorems whenever an axiomatization of the behavioral
equality is provided. This is based on reducing behavioral satisfaction to or-
dinary satisfaction. Consequently, any proof system for first-order logic can
be used to prove the behavioral validity, with respect to a given behavioral
equality, of first-order formulas.

Protoalgebraic logics. Protoalgebraic deductive systems were introduced by
Blok and Pigozzi [5]. They are primitively defined as deductive systems that
have a protoequivalence system. The equivalence between the two concepts
in the general setting of k-deductive systems was noted by Blok and Pigozzi
in [7]. They also did an exhaustive study of the class of behavioral models
(called reduced models in the context of deductive systems) for specifiable
protoalgebraic logics.

Axiomatization of the behavioral equivalence. The class of parameter-
ized finitely equivalential hidden k-logics has not been much investigated, even
in the one-sorted case; we only found a short reference concerning this kind of
logics in [13]. However, the notion is of some interest in behavioral reasoning
in the context of hidden equational logics.

Bidoit and Hennicker considered a special class of models, called black box
semantics which coincides with our class of behavioral models. They did not
develop a theory of closure properties of this class. They have only shown that
there is always an axiomatization, possibly with infinitary first-order formulas.
For this class of algebras such an axiomatization is called axiomatization of
behavioral equality. Moreover, they gave a complex sufficient and necessary
condition for such infinite axiomatization to be replaced by a finitary one.
Hence the class of behavioral models may be finitely axiomatizable by first-
order formulas. This condition is called the observability kernel condition. It
is based on the fact that, in some specific cases, we do not need all contexts
to define the behavioral equivalence. It may happen that there is a finite
set of contexts which defines the behavioral equivalence. These contexts are
called crucial observable contexts (see [1,2]). The observability kernel condition
provides a technique that allows us to reduce infinitary characterizations of
behavioral equality to finitary ones. However, there are interesting examples,
as the one used to specify stacks, for which this condition is not satisfied
(see [1]). That is, Bidoit and Hennicker only consider observational logics
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of the two following kinds: the finitely axiomatizable and those which are
always axiomatized by infinitary first-order formulas. In our approach, the
axiomatizability of behavioral equivalence ramifies into more cases. Namely,
the finitely axiomatized ones are split into two classes: the finitely equivalential
and the parameterized finitely equivalential hidden k-logics. Relating to this
setting, we also consider two other kinds of finitely axiomatizable classes: the
parameterized equivalential and the equivalential hidden k-logics. We give
characterizations of these axiomatizations by means of the closure operations
and by properties of the Leibniz operator. As far as we know, our approach is
new in the context of hidden logics (observational logics and hidden equational
logics) and provides this interesting hierarchy of hidden k-logics. A similar
hierarchy for the homogeneous case was established by Blok and Pigozzi [7].
However, they did not consider the class of parameterized finitely equivalential
logics.

In [38] some results are presented concerning axiomatizations for the class
of behavioral models of hidden equational logics. Namely, the author shows
that a class of equality models (algebras) is defined by a set of equations if
and only if the class of equality models is closed under coproducts, quotients,
morphisms and representative inclusions. However, the results are in the con-
text of monadic semantics and fixed-data-semantics and there is no discussion
concerning the parameters those equations may have.

Wolter, in [43], showed that there is no finitary axiomatization of the observ-
able behavior of stacks. In [41], Schoett investigated another example, the
specification of counters; he showed that it also does not admits a finitary
axiomatization. More recently, this topic was studied by Buss and Roşu; they
investigated the incompleteness of the behavioral logic (see [8]). They also
discussed the complexity of the behavioral satisfaction problem. Related to
this matter, in Subsection 4.4.3, by using Proposition 31, we present a differ-
ent, simpler proof that the specification of stacks is not finitely equivalential.
There are significant differences between our approach and the Schoett’s and
Wolter’s approaches to this matter; since we use here properties of the equiv-
alence systems, we think that our approach can be more easily generalized to
other specifications.

Acknowledgements. The author wishes to thank Don Pigozzi and Isabel
Ferreirim for fruitful discussions concerning this work. He also gratefully thanks
the anonymous referees who made important suggestions to improve this work.

48



References

[1] M. Bidoit and R. Hennicker. Proving behavioural theorems with standard first-
order logic. In Levi, Giorgio et al. (ed.), Algebraic and logic programming. 4th
international conference, ALP ’94, Madrid, Spain, September 14-16, 1994. Lect.
Notes Comput. Sci. 850, pages 41–58, 1994.

[2] M. Bidoit and R. Hennicker. Behavioural theories and the proof of behavioural
properties. Theor. Comput. Sci., 165(1):3–55, 1996.

[3] M. Bidoit and R. Hennicker. Observer complete definitions are behaviourally
coherent. In Proc. OBJ/CafeOBJ/Maude Workshop at Formal Methods’99,
Toulouse, France, Sep., pages 83–94, 1999. Preliminary long version available
as Report LSV 99-4.

[4] M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and abstractor
specifications. Sci. Comput. Program., 25(2-3):149–186, 1995.

[5] W. Blok and D. Pigozzi. Protoalgebraic logics. Stud. Logica, 45:337–369, 1986.

[6] W. Blok and D. Pigozzi. Algebraizable logics. Mem. Am. Math. Soc., 396,
1989.

[7] W. Blok and D. Pigozzi. Algebraic semantics for universal Horn logic without
equality. In Universal algebra and quasigroup theory, Lect. Conf., Jadwisin/Pol.
1989, Res. Expo. Math. 19, pages 1–56, 1992.
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