Continuous Selections of Solution Sets of Lipschitzean Differential Inclusions

By

R. M. COLOMBO, A. FRYSZKOWSKI*, T. RZEŻUCHOWSKI* and V. STAICU
(SISSA, Italy)

1. Introduction

Recently, Cellina and Ornelas studied in [C], [O], [P-S] and [C-O] the existence of a continuous map \(\xi \rightarrow x_\xi \) such that \(x_\xi \) is a Caratheodory solution of the differential inclusion

\[
\dot{x} \in F(t, x), \quad x(0) = \xi.
\]

They assumed that the right-hand side is Lipschitz continuous with respect to \(x \), with values in \(\mathbb{R}^n \) and \(\xi \) belongs to a compact set.

The purpose of the present paper is to give a generalization of those results. Namely, we consider the Cauchy problems

\[(P_s) \quad \dot{x} \in F(t, x, s), \quad x(0) = \xi(s)\]

where the right-hand side is Lipschitz continuous in \(x \) and lower semicontinuous in \(s \) with values in a separable Banach space. Assuming that the initial data depends continuously on \(s \), we show the existence of a continuous map \(s \rightarrow x_s \), where the \(x_s \) are solutions of \((P_s)\). The proof is based on an argument different from the one used by Cellina and Ornelas; it relies on a selection theorem of Bressan and Colombo [B-C].

Our result contains as a special case the selection theorems due to Antosiewicz and Cellina [An-C], Bressan and Colombo [B-C] and Fręszkowski [F₁].

2. Preliminaries

Denote by \(I \) the interval \([0, 1]\) and by \(\mathcal{L} \) the \(\sigma \)-field of Lebesgue measurable subsets of \(I \). Let \(S \) be a separable metric space and \(X \) a separable Banach space with the norm \(| \cdot | \). \(\mathcal{P}(X) \) will stand for the family of all nonempty closed subsets of \(X \) with the Hausdorff distance \(d_H \) and \(\mathcal{B}(S) \) for the family of Borel

* On leave from Institute of Mathematics, Technical University, Plac Jednosci Robotniczej 1, 00-661 Warsaw, Poland, under support from GNAFA.
subsets of S.

Denote by $L^1(I, X)$ the Banach space of Bochner integrable functions $u: I \to X$, with the norm $\|u\| = \int_I |u(t)|dt$ and by $AC(I, X)$ the Banach space of absolutely continuous functions $u: I \to X$ with the norm $\|u\|_{AC} = |u(0)| + \|\dot{u}\|$.

A subset $K \subseteq L^1(I, X)$ is called decomposable if for every $u, v \in K$ and any $A \in \mathcal{P}$,

$$u\chi_A + v\chi_{I\setminus A} \in K,$$

where χ_A stands for the characteristic function of A. The family of all nonempty closed and decomposable subsets of $L^1(I, X)$ is denoted by \mathcal{D}.

It is known that $K \in \mathcal{D}$ iff there exists a measurable map $F: I \to \mathcal{P}(X)$ such that

$$K = \{u \in L^1(I, X): u(t) \in F(t) \text{ a.e. in } I\},$$

and that K is nonempty iff the function $t \to d(0, F(t))$ is integrable, where d denotes the usual point-to-set distance. For more details on decomposable sets and set-valued maps we refer to [H-U].

A multivalued map $G: S \to \mathcal{P}(X)$ is called lower semicontinuous (l.s.c.) if the set $\{s \in S: G(s) \subseteq C\}$ is closed in S for any closed $C \subseteq X$.

According to [B-C] (Theorem 3) a l.s.c. map $G: S \to \mathcal{D}$ admits a continuous selection, i.e. there exists a continuous map $g: S \to L^1(I, X)$ such that $g(s) \in G(s)$ for all $s \in S$ (see also [F$_1$]).

Consider a map $F: I \times S \to \mathcal{P}(X)$ and set

$$G_F(s) = \{v \in L^1(I, X): v(t) \in F(t, s) \text{ a.e. in } I\}.$$

The following proposition is a combined version of Proposition 2 and Theorem 3 from [B-C] and Proposition 2 from [F$_2$].

Proposition 2.1. Assume $F: I \times S \to \mathcal{P}(X)$ is $\mathcal{L} \otimes \mathcal{B}(S)$ measurable and l.s.c. in s. Then the map $s \to G_F(s)$ given by (2.2) is l.s.c. from S into \mathcal{D} iff there exists a continuous $\beta: S \to L^1(I, R)$ such that for every $s \in S$

$$\beta(s)(t) \geq d(0, F(t, s)) \text{ a.e. in } I.$$

Proof. The necessity is obvious since if $g(\cdot)$ is a continuous selection of $G_F(\cdot)$ then $\beta(s)(t) = |g(s)(t)|$ satisfies (2.3).

In order to prove that (2.3) is also sufficient, let $C \subseteq L^1(I, X)$ be an arbitrary closed set and let $s_n \rightarrow s_0$ be such that $G_F(s_n) \subseteq C$. Take any $v_0 \in G_F(s_0)$ and consider measurable selections $v_n(t)$ of $t \rightarrow F(t, s_n)$ such that

$$|v_n(t) - v_0(t)| < d(v_0(t), F(t, s_n)) + \frac{1}{n} \text{ a.e. in } I.$$
The existence of such \(v_n \) follows from Proposition 2 in [B-C]. Let us notice that since for every \(t \) the map \(s \rightarrow F(t, s) \) is l.s.c. then for every \(x \in X \)

\[
(2.5) \quad s \rightarrow d(x, F(t, s)) \text{ is u.s.c.}
\]

Therefore from (2.4) we obtain that

\[
(2.6) \quad u_n(t) \rightarrow v_0(t) \text{ a.e. in } I.
\]

We show that \(v_n \rightarrow v_0 \) in \(L^1(I, X) \). From (2.4) we have

\[
(2.7) \quad |v_n(t) - v_0(t)| < |v_0(t)| + \beta(s_n)(t) + \frac{1}{n} \text{ a.e. in } I.
\]

Denote by \(a_n(t) \) the right-hand side of (2.7) and observe that the sequence \(a_n(\cdot) \) is strongly convergent in \(L^1(I, R) \). Thus it is bounded in \(L^1(I, R) \) and uniformly integrable, so the same holds for the sequence of functions \(t \rightarrow |v_n(t) - v_0(t)| \). Therefore, \(v_n \rightarrow v_0 \) in \(L^1(I, X) \), because of (2.6).

Since \(C \) is closed and \(v_n \in C, v_0 \in C \) as well. But \(v_0 \) is an arbitrary point of \(G_F(s_0) \), hence \(G_F(s_0) \subseteq C \), that was to be proved.

Theorem 3 and Proposition 4 in [B-C] or Proposition 2.2 and Theorem 1 in [F.] imply:

Proposition 2.2. Consider a l.s.c. multivalued map \(G : S \rightarrow \mathcal{D} \) and assume that \(\phi : S \rightarrow L^1(I, X) \) and \(\psi : S \rightarrow L^1(I, R) \) are continuous maps and for every \(s \in S \) the set

\[
H(s) = \text{cl}\{u \in G(s) : |u(t) - \phi(s)(t)| < \psi(s)(t) \text{ a.e. in } I\}
\]

is nonempty. Then the map \(H : S \rightarrow \mathcal{D} \) is l.s.c., so it admits a continuous selection. (\(\text{cl} \) stands for the closure).

Consider a map \(F : I \times X \times S \rightarrow \mathcal{P}(X) \). We shall assume the following hypotheses on \(F \):

(H1): \(F \) is \(\mathcal{L} \otimes \mathcal{B}(X \times S) \) measurable.

(H2): There exists a map \(s \rightarrow k(\cdot, s) \) continuous from \(S \) into \(L^1(I, R) \) such that \(k(t, s) > 0 \) and for any \(s \in S \) and \(x, y \in X \),

\[
d_H(F(t, x, s), F(t, y, s)) \leq k(t, s)|x - y| \text{ a.e. in } I.
\]

(H3): For any \((t, x) \) the map \(s \rightarrow F(t, x, s) \) is l.s.c.

(H4): For any continuous map \(s \rightarrow \gamma(\cdot, s) \) from \(S \) into \(AC(I, X) \), there exists a continuous map \(\beta : S \rightarrow L^1(I, R) \) such that for every \(s \in S \)

\[
(2.8) \quad \beta(s)(t) \geq d(\gamma(t, s), F(t, y(t, s), s)) \text{ a.e. in } I.
\]

Notice that due to (H2) and Proposition 2.1 the assumption (H4) may be
replaced by the equivalent condition:

\[(H4_0): \text{ There exists a continuous map } \beta_0: S \to L^1(I, \mathbb{R}) \text{ such that for any } s \in S \]

\[\beta_0(s)(t) \geq d(0, F(t, 0, s)) \text{ a.e. in } I.\]

Indeed, it easily follows from the inequality

\[(2.9) \ d(\dot{y}(t, s), F(t, y(t, s), s)) \leq |\dot{y}(t, s)| + d(0, F(t, 0, s)) + k(t, s)|y(t, s)| \text{ a.e. in } I.\]

Let us remark that from Proposition 2.1 and (H3) it follows that (H4) is also equivalent to the condition:

\[(H4') : \text{ For any continuous map } s \to y(\cdot, s) \text{ from } S \text{ into } AC(I, X), \text{ the map }\]

\[G_y(\cdot) \text{ defined by }\]

\[G_y(s) = \{v \in L^1(I, X) : v(t) \in F(t, y(t, s), s) \text{ a.e. in } I\}\]

is l.s.c. from \(S\) into \(\mathcal{D}\).

Similarly (H4_0) holds iff

\[(H4'_0): \text{ The map } G_0(\cdot) \text{ defined by }\]

\[(2.10) \ G_0(s) = \{v \in L^1(I, X) : v(t) \in F(t, 0, s) \text{ a.e. in } I\}\]

is l.s.c. from \(S\) into \(\mathcal{D}\).

Indeed, if \(s \to y(\cdot, s)\) is continuous from \(S\) into \(AC(I, X)\), then the map \(s \to F(t, y(t, s), s) - \dot{y}(t, s)\) is l.s.c. and \(\mathcal{L} \otimes \mathcal{B}(S)\) measurable, so we can apply Proposition 2.1.

3. Main result

Let \(F: I \times X \times S \to \mathcal{P}(X)\) and consider the following Cauchy problems

\[(P_s) \quad \dot{x} \in F(t, x, s), \quad x(0) = \xi(s),\]

where \(\xi: S \to X\) is a continuous function.

For given \(s\), by a solution of \((P_s)\) we mean a function \(x \in AC(I, X)\) with \(x(0) = \xi(s)\) such that

\[\dot{x}(t) \in F(t, x(t), s) \text{ a.e..}\]

The main result of this paper is the following

Theorem 3.1. Suppose \(F\) satisfies \((H1), \ldots, (H4)\). Then for any continuous map \(s \to y(\cdot, s)\) from \(S\) into \(AC(I, X)\) and \(s \to \beta(s) = \beta_y(s)\) from \(S\) into \(L^1(I, \mathbb{R})\) satisfying (2.8) and for every \(\epsilon > 0\), there exists a function \(x: I \times X\) such that

(a) For every \(s\) the function \(t \to x(t, s)\) is a solution of \((P_s)\).

(b) The map \(s \to x(\cdot, s)\) is continuous from \(S\) into \(AC(I, X)\).

(c) For every \(s \in S\)
Lipschitzian Differential Inclusions

\[|\dot{y}(t, s) - \dot{x}(t, s)| \leq \epsilon + \epsilon k(t, s)e^{m(t, s)} + k(t, s)|y(0, s) - \xi(s)|e^{m(t, s)} + k(t, s) \int_0^t \beta(s) e^{m(t, s) - m(\tau, s)} d\tau + \beta(s) \] a.e. in I.

(d) For all \((t, s) \in I \times S\)

\[|[y(t, s) - x(t, s)] - [y(0, s) - \xi(s)]| \leq \epsilon e^{m(t, s)} + |y(0, s) - \xi(s)|(e^{m(t, s)} - 1) + \int_0^t \beta(s) e^{m(t, s) - m(\tau, s)} d\tau, \]

where \(m(t, s) = \int_0^s k(t, s) d\tau\).

Remark. denote by \(\mathcal{R}(s)\) the closed subset of \(AC(I, X)\) consisting of all solutions of \((P_s)\). Theorem 3.1 provides the existence of a continuous selection of the map \(\mathcal{R}\). This implies the selection theorems due to Antosiewicz and Cellina [An-C], Bressan and Colombo [B-C] and Fryszkowski [F_1].

Proof of Theorem 3.1. We may assume that for any \((t, s) \in I \times S\)

\[y(t, s) = 0 \quad \text{and} \quad \xi(s) = 0. \]

In fact, denote by

\[\tilde{F}(t, z, s) = F(t, z + y(t, s) - y(0, s) + \xi(s), s) - \dot{y}(t, s) \]

and consider the problem

\[(\tilde{P}_s) \quad \dot{z} \in \tilde{F}(t, z, s), \quad z(0) = 0.\]

Now the function

\[x(t, s) = z(t, s) + y(t, s) - y(0, s) + \xi(s) \]

is a desired solution of \((\tilde{P}_s)\), whenever \(z\) satisfies (a), ..., (d) for \((\tilde{P}_s)\) with

\[\tilde{\beta}(s) = \beta(s) + |\dot{y}(t, s)| + k(t, s)|\xi(s) - y(0, s)| \geq d(0, \tilde{F}(t, 0, s)) \] a.e. in I.

Fix \(\epsilon > 0\), set \(\epsilon_n = ((n + 1)/(n + 2))\epsilon\) and put

\[\beta_n(s) = \int_0^s \beta(u) \frac{(m(t, s) - m(u, s))^{n-1}}{(n-1)!} du + \frac{m(t, s)^{n-1}}{(n-1)!} \epsilon_n. \]

We shall construct a Cauchy sequence of successive approximations \(x_n(t, s),\)

\[x_n(\cdot, s) \in AC(I, X), \] such that for all \(n \geq 0\), \(x_n(0, s) = 0\) and

(i) \(s \rightarrow x_n(\cdot, s)\) are continuous,

(ii) \(\dot{x}_{n+1}(t, s) \in F(t, x_n(t, s), s)\) a.e. in I,

(iii) \(|\dot{x}_{n+1}(t, s) - \dot{x}_n(t, s)| \leq k(t, s)\beta_n(s)\) a.e. in I,

where, for simplicity, \(k(t, s)\beta_0(s)\) is understood as \(\beta(s) + \epsilon_0\).
Remark that repeating for any \(s \) the calculations provided in [Au-C], (formula (14), page 122) we can conclude that

\[
(3.1) \quad \int_0^t k(u, s) \beta_n(s)(u) du = \int_0^t \beta(s)(u) \frac{(m(t, s) - m(u, s))^n}{n!} du + \frac{m(t, s)^n}{n!} \epsilon_n < \beta_{n+1}(s)(t) \text{ a.e. in } I.
\]

Therefore, from (iii), we also have

\[
(3.2) \quad |x_{n+1}(t, s) - x_n(t, s)| < \beta_{n+1}(s)(t) \text{ a.e. in } I.
\]

Set \(x_0(t, s) = 0 \) and denote by

\[
G_0(s) = \{ v \in L^1(I, X): v(t) \in F(t, x_0(t, s), s) \text{ a.e. in } I \}.
\]

Consider the map \(H_0 \) defined by

\[
H_0(s) = \text{cl}\{ v \in G_0(s): |v(t)| < \beta(s)(t) + \epsilon_0 \}.
\]

Proposisin 2.2 applied to \(H_0 \) implies the existence of a continuous map \(h_0: S \to L^1(I, X) \) such that

\[
h_0(s)(t) \in F(t, x_0(t, s), s) \text{ a.e. in } I
\]

and

\[
|h_0(s)(t)| \leq \beta(s)(t) + \epsilon_0.
\]

Define

\[
x_1(t, s) = \int_0^t h_0(s)(\tau) d\tau
\]

and notice that

\[
|x_1(t, s) - x_0(t, s)| \leq \int_0^t |h_0(s)(\tau) d\tau| < \int_0^t \beta(s)(\tau) d\tau + \epsilon_0 < \beta_1(s)(t) \text{ a.e. in } I.
\]

Suppose we have defined the functions \(x_0, \ldots, x_n \) satisfying (i), (ii) and (iii). Observe that

\[
d(\dot{x}_n(t, s), F(t, x_n(t, s), s)) \leq d_h(F(t, x_{n-1}(t, s), s), F(t, x_n(t, s), s)) \\
\leq k(t, s)|x_n(t, s) - x_{n-1}(t, s)|.
\]

The latter and (3.2) yield

\[
(3.3) \quad d(\dot{x}_n(t, s), F(t, x_n(t, s), s)) < k(t, s)\beta_n(s)(t) \text{ a.e. in } I.
\]
Denote

\[G_n(s) = \{ v \in L^1(I, X) : v(t) \in F(t, x_n(t, s), s) \text{ a.e. in } I \} \]

and consider the map

(3.4) \[H_n(s) = \text{cl}\{ v \in G_n(s) : |v(t) - \dot{x}_n(t, s)| < k(t, s)\beta_n(s)(t) \text{ a.e. in } I \}. \]

\(H_n(s) \) is nonempty because of (3.3). By Proposition 2.2 there exists a continuous map \(h_n : S \rightarrow L^1(I, X) \) such that

\[h_n(s)(t) \in F(t, x_n(t, s), s) \text{ a.e. in } I \]

and

\[|h_n(s)(t) - \dot{x}_n(t, s)| \leq k(t, s)\beta_n(s)(t) \text{ a.e. in } I. \]

Define

\[x_{n+1}(t, s) = \int_0^t h_n(s)(\tau)d\tau. \]

Clearly, \(x_{n+1} \) satisfies (i), (ii) and (iii).

From (iii) and (3.1) we obtain that

(3.5) \[\|x_{n+1}(\cdot, s) - x_n(\cdot, s)\|_{\text{AC}} \leq \beta_{n+1}(s)(1). \]

The right-hand side of (3.4) can be estimated by

\[\beta_{n+1}(s)(1) \leq \int_0^1 \beta(s)(t) \frac{\|k(\cdot, s)\|^n}{n!} dt + \frac{m(1, s)^n}{n!} \varepsilon_{n+1}. \]

Therefore

\[\beta_{n+1}(s)(1) \leq \frac{\|k(\cdot, s)\|^n}{n!} (\|\beta(s)\| + \varepsilon), \]

since

\[m(t, s) - m(u, s) = \int_u^t k(\tau, s) d\tau \leq \|k(\cdot, s)\|, \]

and

\[m(1, s) = \|k(\cdot, s)\|. \]

Hence we have

(3.6) \[\|x_{n+1}(\cdot, s) - x_n(\cdot, s)\|_{\text{AC}} \leq \frac{\|k(\cdot, s)\|^n}{n!} (\|\beta(s)\| + \varepsilon). \]
The functions \(s \to \| \beta(s) \|_{AC} \) and \(s \to \| k(\cdot, s) \|_{AC} \) are continuous. Therefore, (3.6) implies that for every \(s \), the sequence \(\{ x_n(\cdot, s') \} \) satisfies the Cauchy condition uniformly in \(s' \) on some neighbourhood of \(s \). Hence \(s \to x(\cdot, s) \) where \(x(t, s) = \lim x_n(t, s) \) is continuous from \(S \) into \(AC(I, X) \). To see that the function \(t \to x(t, s) \) is a solution of (P) it is enough to notice that

\[
d(\hat{x}_{n+1}(t, s), F(t, x(t, s), s)) \leq k(t, s)|x_n(t, s) - x(t, s)|.
\]

We shall now prove (c) and (d).

By adding the inequalities (iii) for all \(n \), we obtain that

\[
|\hat{x}_{n+1}(t, s)| \leq \beta(s)(t) + \sum_{i=1}^{n} |\hat{x}_{i+1}(t, s) - \hat{x}_{i}(t, s)| + \varepsilon_0
\]

\[
\leq \beta(s)(t) + k(t, s) \int_0^t \beta(s)(u) \left[\sum_{i=1}^{n} \frac{(m(t, s) - m(u, s))^i}{(i-1)!} \right] du
\]

\[
+ \varepsilon k(t, s) \left[\sum_{i=1}^{n} \frac{m(t, s)^{i-1}}{(i-1)!} \right] + \varepsilon.
\]

Similarly, by adding (3.2) we get

\[
|x_{n+1}(t, s)| \leq \sum_{i=0}^{n} |x_{i+1}(t, s) - x_{i}(t, s)|
\]

\[
\leq \int_0^t \beta(s)(u) \left[\sum_{i=0}^{n} \frac{(m(t, s) - m(u, s))^i}{i!} \right] du + \varepsilon \left[\sum_{i=0}^{n} \frac{m(t, s)^i}{i!} \right].
\]

So, by passing to the limit and using the identity \(e^{-m(t,s)} + \int_0^t k(u, s)e^{-m(u,s)} du = 1 \) we obtain (c) and (d). This ends the proof.

4. Properties of the solution sets

In what follows we assume that \(F: I \times X \times S \to \mathcal{P}(X) \) satisfies (H1), \ldots, (H4). Denote by \(\mathcal{R}(s) \) the closed subset of \(AC(I, X) \) consisting of all solutions of (P). From Theorem 3.1 we already know that \(s \to \mathcal{R}(s) \) admits a continuous selection. Now we shall provide some other properties of this map.

Theorem 4.1. Fix \(s_0 \in S \) and \(x_0 \in \mathcal{R}(s_0) \). Then there exists a continuous selection \(r: S \to AC(I, X) \) of \(\mathcal{R} \) such that \(r(s_0) = x_0 \).

Proof. Using the same argument as at the beginning of the proof of Theorem 3.1 we may assume that \(x_0 = 0 \) so we have

\[
0 \in F(t, 0, s_0).
\]

Consider the map \(F_0: I \times X \times S \to \mathcal{P}(X) \) defined by
\[F_\ast(t, x, s) = \begin{cases} F(t, x, s) & \text{if } s \neq s_0 \\ \{0\} & \text{if } s = s_0. \end{cases} \]

Clearly, \(F_\ast \) satisfies (H1), (H2) and (H3). We claim that also (H4) holds and moreover one can choose a continuous \(\beta_\ast: S \to L^1(I, R) \) with
\[\beta_\ast(s_0) = 0. \]

From the definition of \(F_\ast \), we see that
\[d(0, F_\ast(t, 0, s)) = d(0, F(t, 0, s)). \]

Consider
\[P(s) = \text{cl}\{v \in L^1(I, R): v(t) > d(0, F_\ast(t, 0, s)) \text{ a.e. in } I\} \]
and notice that
\[0 \in P(s_0). \]

By Proposition 2.1, \(P(\cdot) \) is l.s.c. from \(S \) into \(\mathcal{D} \). Therefore it admits a continuous selection \(\beta_\ast(\cdot) \) such that \(\beta_\ast(s_0) = 0 \). This proves the claim.

Repeating the same construction as in the proof of Theorem 3.1, we see that \(0 \in H_n(s_0) \) for any \(n, H_n(s) \) as in (3.4). So, we can always choose a continuous selection \(h_n \) of \(H_n \) such that \(h_n(s_0) = 0 \). Hence, the sequence of approximate solutions \(x_n(t, s) \) is such that for all \(n, x_n(\cdot, s_0) = 0 \) and the same holds for the limit. This completes the proof.

Denote by \(r_{s_0, x_0} \) a selection of \(\mathcal{R} \) such that
\[r_{s_0, x_0}(s_0) = x_0. \]

Clearly, for every \(s \in S \)
\[\mathcal{R}(s) = \{r_{s_0, x_0}(s): s_0 \in S, x_0 \in \mathcal{R}(s_0)\}. \]

Theorem 4.2. The map \(\mathcal{R}: S \to \mathcal{P}(AC(I, X)) \) is l.s.c. and admits a continuous selection. Moreover, if \(S \) is compact, then there exists a countable family \(\{r_n\} \) of selections of \(\mathcal{R} \) such that
\[\mathcal{R}(s) = \text{cl}\{r_n(s): n \in N\}. \]

Acknowledgement. The authors wish to thank Prof. A. Cellina for having kindly suggested the problem.
References

nuna adreso:
SISSA
Strada Costiera 11
34014 Trieste
Italy

(Ricevita la 4-an de julio, 1989)
(Revizita la 12-an de martto, 1990)