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Solving the Einstein-Klein-Gordon-Maxwell system, we construct and analyze the properties of
an electrically charged wormhole, formed from a complex, massive scalar field, with self-interaction,
and endowed with an electric charge. The scalar field is minimally coupled to the gravitational
and the Maxwell field. Covering regions of the value of the different parameters of such wormhole,
we present the dependence of the form of the solution with respect to the value of the different
parameters, emphasising the role played by the charge in the configurations; we focus on the region
for large values of the self-interaction parameter and found a generic behavior of the scalar field,
which in turn allows us to determine explicit analytic expressions for the fields, the metric function
and the global quantities such as the Komar mass and the particle number. The motion of charges
in these spacetimes is also reported.

I. INTRODUCTION

To see Einstein’s paradigm, the geometry and the matter are interrelated, in the case when the matter violates
the energy conditions, not only offers a better understanding of such paradigm but also could describe some physical
scenario.

Indeed, the cosmological fact that the expansion of the Universe is accelerating [1, 2] actually demands the existence
of matter that violates at least the strong energy condition. The models that support the inflationary period of the
Universe, also demand the presence of such type of matter. Moreover, in a recent work [3], some of the authors have
shown that it is possible to find situations where that kind of matter, actually one of the most extreme examples is
phantom matter with negative kinetic terms, can be confined, which might prove to be a step closer to describing a
possible way of formation of one of the most intriguing examples of spacetimes with exotic configuration and topology:
the wormholes.

The wormhole solutions are bona fide as they are actually solving the Einstein equations together with a stress
energy tensor describing the matter which violates the null energy condition [4–7]. It seems likely that the complex
scalar field is a type of matter within hard core General Relativity, which might better describe the exotic matter and
has been analyzed in several works, as in Refs. [8–12], for instance.

It is precisely in the context of the scalar field, where 50 years ago one of the first exact asymptotically flat and
everywhere regular wormhole solutions was found [13, 14]. Subsequently, some other solutions have been found, such
as configurations with self-interacting scalar fields [15, 16], a self-interacting triplet [17] and solutions with multiple
scalar fields [18–20].

Several properties of the wormhole have been established, even since Morris and Thorne’s pioneer work [4], in
the usual pseudo-Riemannian manifold and within the General Theory of Relativity. In Ref. [19] was shown that
when the matter building up the wormhole is a massive (complex in general) scalar field, it has to have a nonzero
self-coupling constant λ, to obtain mirror symmetry relative to the throat solutions. Also, as is the case for the boson
stars [21], the asymptotic flatness requirement demands that the pulsation frequency ω is bounded by the value of
the mass parameter µ of the scalar field in consideration: |ω| ≤ µ. On the other hand, it has been shown that both,
the simplest realizations of wormholes formed by a massless scalar field (by means of linear perturbations and full
non-linear numerical evolution analysis [22–24]) and the complex massive scalar field wormhole with self-interaction
(using perturbation theory [15]) lead to the same conclusion regarding the instability of the configuration. No stable
wormhole solution has been presented; there is also not a clear idea of the formation process of a wormhole. The
authors in [16] demonstrate several facts: that regular wormhole solutions supported by a complex ghost scalar field
with a quartic potential, the coefficient being the self-interaction term, λ, exist for all values 0 ≤ ω ≤ µ; that the
wormhole masses lie within a region enclosed by the curves ω/µ = 0 and ω/µ = 1 being positive for ω/µ ∼ 0 and
negative for ω/µ→ 1, and that when λ→ ∞ the mass increases without limit and the value of the scalar field at the
throat, ϕc tends to zero.
In order to continue with the understanding of such spacetimes, a step forward is to continue exploring the features

of wormholes when other fields are present, recently for example, particular wormholes that do not require matter out
of the ordinary have been presented and discussed in the framework of the Einstein-Dirac-Maxwell theory [6, 25–27],
and possible ideas on the direction of formation are presented in[28], within f(R) theories. In this manuscript, a
regular, spherically symmetric electric wormhole solution is constructed following the procedure to endow with an
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electric field a boson star [29] by coupling the (complex) scalar field to the electromagnetic one by means of a gauge
covariant derivative. Some of the authors of the present work used such formulation to construct a magnetized boson
star [30]. This procedure preserves gauge invariance contrary to the models where the scalar field interacts with the
electromagnetic one through a product eαϕ F 2 directly at the Lagrangian (see e.g., [31, 32]). Analogous wormhole
solutions in the Einstein-Klein-Gordon-Maxwell system have been obtained, to the best of our knowledge only in Ref.
[33] for the case of a massless, real scalar field without coupling (other than that of the gravitational interaction) with
the electromagnetic field.

In the present manuscript, we explore the electric wormhole properties as a function of the value of the parameters,
with emphasis on the role of the electric charge; we show that the charge does affect the properties of the wormhole,
being the most notable that on the asymptotic mass of the spacetime. Our analysis suggested a peculiar behavior
of the functions when the self-interaction parameter λ is large; following the seminal work of Colpi and collaborators
[34] regarding boson stars, we were able to determine analytic expressions for the scalar field and for the total mass
for large values of λ, a fact that we corroborate with the actual numerical solutions of the system for such cases.
Such expressions allow for a better understanding of the parameters of the system, namely the scalar field mass and
frequency, µ, ω and the electric charge q, in determining the total mass and the particle number of the solutions.
The work is organized as follows: In Section II, we introduce the model, fix our spacetime time to be static with

spherical symmetry, introduce the ansätze for the charged complex scalar field, and write down the field equations for
the metric coefficients, the scalar and the Maxwell field with the scalar current being the source of the Maxwell field,
finally, we present expressions for some global quantities, namely the Komar mass and the total number of particles.

In Section III, we give boundary conditions to obtain regular, asymptotically flat spacetimes together with an
important constraint among the values of the fields at the wormhole’s throat, and describe our code for solving the
field equations with the needed conditions. Next, we sweep several intervals of value for the parameters, stressing the
role of the electric charge in the configurations obtained. We present the profile of the total mass of the spacetime
and the value of the throat radius, G, as a function of the value of the scalar field at the throat. We also present
the total mass as a function of λ for several values of the field frequency ω and the charge q, also present the profile
of the electric field and that of the energy density, τ , as a function of the radius. We present also the plots of the
total mass as a function of the frequency. These results suggest a behavior of the scalar field for large values of the
interaction parameter, λ. In section III C, we develop such analysis and obtain analytical expressions for the fields and
the global quantities, proving its validity with the actual solutions. In section IIID we analyze the particle motion
for spacetimes with positive, negative or zero total mass, for neutral and charged masses. Finally, in Section IV we
give our conclusions. Throughout this work, we use units with c = G = 1 and the (−,+,+,+) metric signature. We
also consider the value of the vacuum magnetic permeability µ0 to be equal to one.

II. THEORETICAL SETUP

A. Field equations

We consider the model of a complex scalar field Φ, minimally coupled to Einstein’s gravity and coupled to Maxwell
electrodynamics employing a generalization of the derivative operator. In this way, the action is given by

S =

∫
d4x

√−g
[

1

16π
R− ϵ

2

(
gµν(DµΦ)(DνΦ)

∗ + µ2|Φ|2 − λ

2
|Φ|4

)
− 1

4
FµνF

µν

]
, (1)

where R is the Ricci scalar, µ is the scalar field particle mass, λ is the coupling constant, Fµν = ∂µAµ − ∂νAµ is
the Faraday tensor and, as mentioned above, the covariant derivative operator, Dµ = ∇µ + iqAµ couples the scalar
field with the gauge field Aµ through the electromagnetic constant q. Here ϵ is equal to one when the scalar field is
canonical and minus one when the scalar field describes phantom matter, and in this work, we will consider this last
type of matter, so that ϵ = −1. The scalar field defines the source current for the electromagnetic one, and in turn,
the electromagnetic field also affects the geometry by means of Einstein’s equations. The Einstein-Klein-Gordon-
Maxwell equations are obtained by taking a variation of Eq. (1), with respect to the different fields leading to the
Euler-Lagrange equations of the model (see e.g. [35]). The variation with respect to gµν leads to Einstein’s equations:

Rµν − 1

2
Rgµν = 8πTµν , (2a)

Tµν = TΦ
µν + TEM

µν , (2b)

where the stress energy tensors is given by

TΦ
µν := −1

2

[
(DµΦ)(DνΦ)

∗ + (DνΦ)(DµΦ)
∗ − gµν

(
gαβ(DαΦ)(DβΦ)

∗ + µ2|Φ|2 + λ

2
|Φ|4

)]
, (3)

TEM
µν :=

(
FµσFνλg

σλ − 1

4
gµνFαβF

αβ

)
. (4)
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The variation of the action with respect to the scalar field Φ gives the Klein-Gordon equation,

gµνDνDµΦ = µ2Φ− λ|Φ|2Φ . (5)

Finally, the variation with respect to the electromagnetic potential Aµ leads to the Maxwell equations with the
charged scalar field that defines the current four-vector and acts as a source of the electromagnetic field,

∇νF
µν = Jµ := qjµ , (6)

where the current is given by

jµ = − ig
µν

2
[Φ∗(DνΦ)− Φ(DνΦ)

∗] , (7)

here jµ is the Noether current of the complex field Φ.

1. Static spherically symetric spacetime and Ansätze for the fields

We consider a line element with spherical symmetry in isotropic coordinates

ds2 = −N2dt2 +Ψ4
[
dη2 + (η2 + η0

2) dΩ2
]
, (8)

where the metric elements N and Ψ depend only on the radial coordinate η, dΩ2 is the solid angle element and we
have included a constant radius η0 to have the wormhole feature of a non zero minimal radius.
In order to have no time dependence in Einstein equations, we assume for the complex scalar field the harmonic

ansatz

Φ(η, t) = ϕ(η)eiωt , (9)

where ω is a real constant.
Finally, consistent with the spherical symmetry, we consider that the gauge potential Aµ only has a temporal

component, which is given by

Aµdx
µ = V (η) dt , (10)

where V (η) defines the electric potential.

2. 3+1 decomposition of the stress energy tensor and system of field equations

The Einstein equations can be written as a set of elliptic equations such that the sources are expressed in terms
of quantities like the energy density τ , the momentum density Pµ and the stress tensor Sµν explicitly. Let’s start
with the 3+1 decomposition of the energy-momentum tensor, which consists of the following projections of the stress
energy tensor Tµν :

τ = Tµν n
µ nν , Pµ = −nσ Tσα γαµ , Sµν = Tαβ γ

α
µ γ

β
ν , (11)

where γµν = δµν + nµ nν is the projection operator and n = (1/N, 0, 0, 0) is the normal vector to the hypersurfaces.
Using the expressions for the tensors Tµν Eq. (3) and Eq. (4), into Eq. (11) we write down the above projected
quantities explicitly:

τ =
1

2Ψ4

(
1

N2
V ′2 − ϕ′2

)
− ϕ2

2

(
µ2 − λϕ2

2
+

(V q + ω)2

N2

)
, (12)

Sη
η =

1

2Ψ4

(
− 1

N2
V ′2 − ϕ′2

)
+
ϕ2

2

(
µ2 − λϕ2

2
− (V q + ω)2

N2

)
, (13)

Sθ
θ = Sϕ

ϕ =
1

2Ψ4

(
− 1

N2
V ′2 + ϕ′2

)
+
ϕ2

2

(
µ2 − λϕ2

2
− (V q + ω)2

N2

)
, (14)

and Pα is identically equal to zero in this case. Here and from now on we use the shorthand notation f ′ := df
dη .

The Einstein-Klein-Gordon-Maxwell system of equations Eq. (2) are thus given by a system of four elliptic equations,
two for the metric coefficients, one for the scalar field ϕ and one for the gauge potential V . A differential equation
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for the lapse function N only, can be obtained from the combinations of Einstein equations −t
t +

η
η +

θ
θ +

φ
φ and the

equation for the conformal factor Ψ only is given by the t
t component of the Einstein’s equations.

The system has the explicit form:

∆3Ψ+
1

4

η20
(η2 + η20)

2
Ψ = −2πΨ5 τ , (15)

∆3N + 2
Ψ′N ′

Ψ
= 4πN Ψ4 (τ + S) , (16)

∆3ϕ+ 2
Ψ′ϕ′

Ψ
+
N ′ϕ′

N
= Ψ4

(
µ2 − λϕ2 −

(
qV + ω

N

)2
)
ϕ , (17)

∆3V + 2
Ψ′V ′

Ψ
− N ′V ′

N
= − qΨ4(qV + ω)ϕ2 , (18)

where we have used the operator definition ∆3 := d2

dη2 + 2η
η2+η2

0

d
dη .

Furthermore, we write down explicitly the η
η component of the Einstein equations as an additional equation that

will be necessary as a constraint to solve numerically the set of equations

Ψ′2

Ψ2
+
N ′Ψ′

NΨ
+

η

η2 + η20

(
Ψ′

Ψ
+
N ′

2N

)
− η20

4 (η2 + η20)
2 = 2πSη

η . (19)

And we have defined S as the trace of the stress tensor, given by S := γijSij = Sη
η +S

θ
θ +S

φ
φ, with the following

explicit expression for S and for the term appearing as sources in the equation for the lapse:

S =
1

2Ψ4

(
1

N2
V ′2 + ϕ′2

)
+

3ϕ2

2

(
µ2 − λϕ2

2
− (V q + ω)2

N2

)
, (20)

τ + S =
1

Ψ4N2
V ′2 + ϕ2

(
µ2 − λϕ2

2
− 2(V q + ω)2

N2

)
. (21)

B. Global quantities

For a stationary and asymptotically flat spacetime, Komar expressions allow us to calculate global quantities [36].
In particular, the total mass of a given spacetime can be computed using the following Komar expression:

MK =
1

4π

∫
Σt

Rµνn
µξνdV , (22)

where Σt denotes a spacelike hypersurface, n
µ is the timelike vector normal to Σt with nµn

µ = −1, so that n =
(

1
N , 0⃗

)
,

ξ = ∂t =
(
1, 0⃗
)
is the timelike Killing vector, dV =

√
γ dη dθ dφ is the volume element where γ is the determinant of

the spatial metric. In our case, ξµ = Nnµ and using the Einstein equations, this expression can be rewritten as:

MK =

∫
(2Tµν − Tα

αgµν)n
µξν

√
γ dη dθ dφ , (23)

further, we have that (2Tµν − Tα
α gµν)n

µξν = N
(
Tµ

µ − 2T t
t

)
.

On the other hand, the total number of particles N can be obtained from the four-current jµ defined in Eq. (7).
The current jµ arises from the invariance of the action Eq. (1) under the global U(1) transformations Φ → Φeiα, this
implies that the current (7) is Noether density current and satisfies the conservation law ∇µj

µ = 0. Integration of
the conserved law over a spacelike hypersurface Σt defines the conserved Noether charge

N =

∫
Σt

jµnµdV , (24)

which can be associated with the total number of particles [37]. The charge of the configuration can thus be defined
as Q = qN . On the other hand, using the Komar mass and the particle number expressed in terms of the volume
integral, Eqs. (22) and Eq. (24), it is possible to compute the Mk from the gradient of the lapse function N on a
2-sphere at spatial infinity (see e.g. [38]), while the charge Q can be computed from the gradient of the gauge potential
V . Therefore, the global quantities Mk and Q can be extracted from the asymptotic behavior of the metric (8) and
of the gauge potential V (η), as MK = limη→∞ η2N ′ and Q = 4π limη→∞ η2V ′.
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III. SOLUTIONS

A. Boundary conditions

In order to construct the electrostatic solution that describes a wormhole it is necessary to fix the parameters
{ω, λ, q}, and solve the system of differential equations for the functions {N,Ψ, ϕ, V } by imposing appropriate bound-
ary conditions on the scalar field, the gauge potential and the metric functions. We impose reflection symmetry on
the throat, at η = 0, so that the functions must satisfy the following:

N ′|η=0 = 0, Ψ′|η=0 = 0, ϕ′|η=0 = 0, V ′|η=0 = 0 , (25)

and demanding asymptotic flatness implies

N |η→∞ = 1, Ψ|η→∞ = 1, ϕ|η→∞ = 0, V |η→∞ = 0 , (26)

the asymptotic vanishing of the scalar field implies the condition ω2 < µ2.
Additionally, these boundary conditions imply a constraint among the functions evaluated at the throat and the

system parameters. To see this, we use the circumferential radius R which is given by

R = Ψ2
√
η2 + η02 , (27)

where the minimal circumference, i.e., the throat of the wormhole is at η = 0, so that the radius of the throat is given
by G = Ψ2

cη0. On the other hand, another expression for such throat radius can be obtained from the η
η component

of the Einstein equations, Eq. (19). Indeed, evaluating such expression at the throat, η = 0, and using the boundary
conditions, we obtain another expression for the throat radius and equating it with the previous one, we derive a
constraint equation that allows us to determine the parameter η0 in terms of the other parameters and the values of
the functions at the throat:

G2 = Ψ4
cη

2
0 =

1

4πϕ2c

(
−µ2 +

λϕ2
c

2 + (Vc q+ω)2

N2
c

) , (28)

where Nc := N(0) > 0, Ψc := Ψ(0), ϕc := ϕ(0) > 0, and Vc := V (0) are the central values for the metric coefficients
N , Ψ, the scalar field ϕ and the electric potential V respectively. It is a constraint equation among the parameters
using the boundary conditions of the system.

B. Numerical setup and particular solutions

The non-linear system of PDEs (15-18) is solved numerically together with boundary conditions (25) and (26) using
a spectral collocation method with Chebyshev polynomials as a spectral basis for the unknown functions {N,Ψ, ϕ, V }
in a compactified domain. For details on the method, see for instance Ref. [39]. The solutions presented in this work
have been found by means of a Newton-Raphson iteration.

We have constructed numerically several wormhole solutions, varying the parameter λ in the interval 1
2 ≤ λ/4π ≤

100, the boson frequency ω is explored in the interval 0 ≤ ω/µ ≤ 1, and we analyze cases for a fixed value of q,

increasing it gradually between 0 ≤ q/
√
8π ≤ 0.5. Such procedure continues the one given at [15], and these intervals

are chosen in order to obtain regular physically acceptable solutions.
Now, let us start discussing the general behaviour of the electric wormhole. As mentioned above, we obtain

numerical solutions for different values of the parameters ω, λ and q. Using the invariance of the equations (15-18)
under the scaling:

r → µr, ω → ω/µ, λ→ λ/µ2, q → q/µ , (29)

we thus obtained solutions for arbitrary values of µ. All the further reported quantities will be given in terms of the
mass of the scalar field µ. Additionally, we use the following scaling for the charge and scalar field to facilitate a
comparison with the charge and scalar field scale reported in the literature, e.g. [16]

q̃ =
q√
8π
, ϕ̃ =

ϕ√
4π
, λ̃ =

λ

4π
. (30)

In Fig. 1, we present solutions for the total mass M and the throat radius, G of the electric wormhole as a function
of the central value of the scalar field ϕc. Furthermore, we have used the values of the boson frequency ω/µ = 0 (black
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FIG. 1. In the left panels, we plot the wormhole total mass M and in the right one the wormhole radius as a function of the
central value of the scalar field ϕ̃c. Notice that λ̃ and ϕ̃c are monotonically related, for each value of ϕc corresponds to one of
λ̃. The solid lines are solutions for ω/µ = 0 (black) and ω/µ = 1 (violet). We have also included cases for different fixed values

of the parameter λ̃ (orange) where the frequency takes values between 0 and 1, with λ̃ ∈ [1, 30].

lines) and ω/µ = 1 (violet lines) varying λ̃ ∈ [1, 30]. We have also included orange dashed lines for representative

values of the λ̃-parameter varying ω/µ ∈ [0, 1].

The ω/µ = 0 curve delimits the maximum mass of wormholes regardless of the value of q, while the ω/µ = 1 curve
does vary with q. When ω/µ ∼ 1, as q increases, the total mass and radius of the throat also increase in magnitude
when q increases.

The solutions with q̃ = 0 are consistent with the results in [15] as can be seen by comparing their Figs. 2 and 3
with our first row in Fig. 1. Solutions with q̃ > 0 follow the same qualitative relations between the global quantities
that the non-charged wormholes. We also present how the wormhole mass and throat radius depend on the central
value of the scalar field. The difference with the neutral case is that the charged wormholes with close to one boson
frequencies ω/µ reach bigger (negative) masses and larger throat radii than the corresponding non-charged wormholes.

The common behavior for the values of the charged analyzed is that for small central values of the scalar field, ϕ̃c,
the throat radius increases almost exponentially whereas, for large central values, the throat radius tends to zero. For
the neutral cases, the total mass for ω/µ = 0 is always positive, whereas for ω/µ = 1 is always negative, and this
behavior changes with the charge, see below. Also notice that the throat radius for a given value of the scalar field
at the throat is always larger for ω/µ = 1 than the corresponding value for ω/µ = 0, a feature that remains in the

charged cases. We have also included cases for different values of the parameter λ̃, where the frequencies vary from
ω/µ = 0 to ω/µ = 1.
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FIG. 2. The mass of wormhole solutions versus λ̃. We show the mass M as a function of λ̃ > 0 in the full interval of the boson
frequency ω/µ ∈ [0, 1] for different values of the electric charge of the scalar field q̃ ∈ [0, 0.5]. The inverted triangles represent
the maximum of the mass Mmax of the electric wormhole for different frequencies. The values of the parameters are given in
Table I.
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FIG. 3. Number of particles of the charged wormhole as a function of the parameter λ̃ for some representative values of q̃.
The solid line represents the non-charged case and the dotted lines represent the charged solutions.

In order to highlight the behaviour of the charge q on the configurations, in the code, we fixed a value of the
charge q, analysed cases for particular values of the parameter λ and the frequency ω, and repeated the procedure
for another value of the charge. In [16], the authors analyzed the properties of the non-charged wormhole solutions
where their solutions were focused on the behavior of λ. Following this procedure, in Fig. 2, we plot the total mass
M as a function of λ̃ for several values of ω/µ, and in Fig. 3, we show the number of particles N as a function of λ̃ for
several values of the charge, with a fixed value of ω/µ, to emphasize the differences between the charged wormholes
with the non-charged ones, which were discussed in [16].

In Fig. 2, we see that the behavior of the total mass as a function of λ̃ in the charged case, is similar to one of the
neutral case: for small values of λ̃, is negative and essentially independent of the frequency ω/µ, and in this case, see

Fig. 1, the throat radius tends to zero and the wormhole is closing. As λ̃ increases, the ω/µ = 0 wormhole acquires a

positive total mass that increases lineally with λ̃.

There is a frequency, near ω/µ = 0.5 for which the total mass is equal to zero for any value of λ̃ greater than ∼ 2;
as the frequency increases, the total mass reaches a maximum value and then becomes more negative, with a linear
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q̃ ω/µ µMmax λ̃

0 0.5∗ 0 ∞
0 0.7 −0.578 1.289

0 1 −1.132 0.919

0.3 0.4375∗ 0 ∞
0.3 0.5 −0.3678 1.636

0.3 0.7 −0.6978 1.091

0.3 1 −1.3305 0.814

0.4 0.3875∗ 0 ∞
0.4 0.5 −0.467 1.388

0.4 0.7 −0.809 0.992

0.4 1 −1.554 0.694

0.5 0.3125∗ 0 ∞
0.5 0.5 −0.604 1.091

0.5 0.7 −0.995 0.861

0.5 1 −1.877 0.636

TABLE I. The local maximum of
the mass Mmax for a given value
of the charge q and frequency
ω ≤ ωzm. Configurations with
Mmax = 0 define the zero mass
frequency ωzm when the frequency
ω > ωzm the mass doesn’t have a
local maximum and increases lin-
early with λ.

dependence on λ̃.
The presence of the charge maintains the general behavior of the mass as a function of λ̃ but with noticeable

differences. The ω/µ = 0 configuration is independent of the charge, which is an expected result, as long as this
case corresponds to a real scalar field that has no possibility of being charged. For ω/µ ̸= 0, the role of the charge
is very noticeable, changing the value of the frequency at which the total mass acquires the zero value and becomes
essentially independent of λ̃, and making the slope of the dependence of the total mass as a function of λ̃ much more
pronounced.

We have focused on the specific values of λ̃ at which the total mass reaches a maximum, for the several values of the
charge and the different frequencies. In Fig. 2, we present plots of the total mass M for different values of the boson
frequency ω/µ given a value of the charge, and panels for the different charge values, for which we choose, q̃ = 0, 0.3,
and 0.5. We have marked the points of maximum mass on the different plots and written them in Table. I. Also, we
have identified the frequency which yields the case mentioned above of a total mass equal to zero, for each value of
the charge it is a particular frequency, and we label it the zero mass frequency, ωzm.
For solutions with ω > ωzm, there aren’t local maximum for the mass, the mass increase linearly with λ̃, whereas

for ω < ωzm, the total mass grows with λ, reaches a maximum value, and then linearly decreases. In the case of q̃ = 0,
the zero mass frequency is ωzm/µ = 0.5, and the mass increases (decreases) linearly for ω/µ > 0.5 (ω/µ < 0.5) as was
reported in [16].

The values of the frequency ωzm decrease for the charged wormhole; those corresponding to configurations with
q̃ = 0, 0.3, 0.4, and 0.5 are given in Table. I, where ωzm corresponds to the value of the frequency such that the mass
becomes zero.

Regarding the total number of particles, Eq. (24), and the effect of the charge of the scalar field, q, on that global
quantity, in Fig. 3 we describe, given a frequency, the dependence of the number of particles of the configuration
on the parameter λ, for several values of the scalar field charge q. As in the case of the total mass, for values of λ̃
not small (greater than ∼ 1.5), the number of particles N increases almost linearly with λ̃, for a fixed value of q.

The effect of the charge q is that the slope of the particle number N as a function of λ̃ increases with q̃, reaching a
maximum slope for q̃ = 0.5, and solving the system of equations for values of the charge larger than this, becomes
computationally very demanding, possibly indicating the fact that there is a maximal value for the charge q̃ beyond
which there are no static spherical configurations. We present the case for two values of the frequency. Both cases
have similar behavior on the number of particles as a function of λ̃, with increasing slope for larger values of the
charge q̃, but the number of particles, given λ̃ and q is much larger than the corresponding value in the neutral case,
for the larger value of the boson frequency ω/µ.

We notice that with the expression that we are using, Eq. (24), we can not obtain the number of particles related
to the negative mass and the corresponding one related to the positive one; it would be interesting to derive an
expression that differentiates such numbers. For this expression, it would seem that the particles associated with the
positive mass and those associated with the negative mass, are counted in the same way.

In Fig. 4, we present the throat radius G as a function of λ̃ and for several values of the scalar charge q̃ for two values
of the boson frequency ω/µ. It is remarkable that the throat radius profile is very similar to the one of the number
of particles, possibly indicating a relation between this feature of the wormhole and that global quantity. Another
interesting feature of the charged wormhole was that it presented the possibility of challenging the theorem valid for
non-charged wormholes [19], stating that the presence of the self-interaction parameter, λ̃ is a necessary condition for
having a wormhole. We explore the possibility that the charge, q̃, could play the role of the self-interaction parameter
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and obtain charged wormholes without it. Our numerical experiments showed that this is not the case and that the
presence of the self-interaction parameter remains a necessary condition for the existence of a wormhole, even in the
charged case.
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20.0
G
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q̃ = 0.5
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FIG. 4. We present some numerical solutions for the throat G as a function of λ̃ for different values of the charge q and two
values of ω/µ. The size throat grows linearly with λ̃, when the parameter is not too small, and the slope increases with q. The
actual size of the throat increases with ω.

Finally, in Fig. 5, we present again the behavior of the total mass, now as a function of the boson frequency ω for
several values of λ̃ and certain given values of the scalar charge, q.

With the factors given in Eq. (30), we are able to compare with the results of previous works in the literature, as
in [15] for the neutral case. As mentioned above, generically, one of the effects of the charge is to change the value of
the boson frequency that gives a zero Komar mass; we have called such frequency zero mass frequency.
In the four panels of Fig. 5, we have drawn a vertical line indicating the value ωzm/µ = 0.5, the value corresponding

to the neutral case, and it is clearly seen how the effect of the charge is to reduce the value of the boson frequency
which gives a zero Komar mass; furthermore, notice that it is a value independent of λ̃ for a given charge. Noticing
that the system of field equations, Eqs. (15), is invariant under the simultaneous change in signs of the charge q̃ and
the electric potential, V , we see that there is no change in the total mass behavior due to a change of the sign of the
scalar charge q̃.

0.0 0.2 0.4 0.6 0.8 1.0

ω/µ

−40

−30

−20

−10

0

10

µ
M

q̃ = 0

λ̃ = 1

λ̃ = 3

λ̃ = 10

λ̃ = 30

ωzm/µ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

ω/µ

−60

−50

−40

−30

−20

−10

0

10

µ
M

q̃ = 0.3

λ̃ = 1

λ̃ = 3

λ̃ = 10

λ̃ = 30

ωzm/µ = 0.4375

0.0 0.2 0.4 0.6 0.8 1.0

ω/µ

−100

−80

−60

−40

−20

0

µ
M

q̃ = 0.4

λ̃ = 1

λ̃ = 3

λ̃ = 10

λ̃ = 30

ωzm/µ = 0.3875

0.0 0.2 0.4 0.6 0.8 1.0

ω/µ

−200

−150

−100

−50

0

µ
M

q̃ = 0.5

λ̃ = 1

λ̃ = 3

λ̃ = 10

λ̃ = 30

ωzm/µ = 0.3125

FIG. 5. The mass of a spherical electrical wormhole is shown for some values of the parameter λ̃ with different values of q̃.
Although the profiles are qualitatively similar, in the limit λ̃ → ∞ the mass becomes zero for a particular frequency defined as
flat space frequency ωzm/µ. The square symbol corresponds to such frequency for different charges q̃ and they are also reported
in Table I.
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The sources of the gravitational field are also helpful to clarify the structure of the wormhole as well as its global
properties. In Fig. 6, we plot the energy density τ for several solutions with λ̃ ∈ [0.5, 30], frequency ω/µ ∈ [0, 1] and

charge q̃ ∈ [0, 0.5]. The rows of panels increase the value of the λ-parameter in the interval λ̃ ∈ [0.5, 30] from left to

right and, from top to bottom the panel columns increase the q-parameter. When λ̃→ 0, the energy distribution has
qualitatively the same profile for all ω/µ values, which already indicates that the boson frequency becomes irrelevant

for wormholes with λ̃ → 0, (recall that for λ̃ = 0, there are no wormhole solutions). Moreover, for small values of

λ̃ the role of the charge is also negligible, whereas for larger values of λ̃ the role of the charge in the energy density
becomes important, flattening the value of the energy density at the center.
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FIG. 6. The energy density τ as a function of η for several wormhole solutions with λ̃ ∈ [0.5, 30] and q̃ ∈ [0, 0.5]. The density

energy decreases its amplitude slightly with λ̃ and the charge q̃ for λ̃ ≥ 0.5 decreases the density energy profile, turning it
negative in all the regions.

In Fig. 7 some solutions for the scalar field ϕ are presented, where ϕ is scaled by the factor
√
λ. We can see that

for large values of λ the solutions present a similar behaviour, indicating a similarity in the behavior of such solutions
under the scaling ϕ→

√
λ ϕ for λ→ ∞.

In this way, we have seen that for large λ, the particle number N and the throat radius G, increase with λ, the
mass M depends linearly on λ and finally we see that the

√
λ ϕ solutions tend to have a very similar profile for large

λ. These results suggest us to define the scaled quantities ϕ∗ :=
√
λ ϕ, η0∗ := η0/λ, N∗ := N/λ and M∗ := M/λ in

order to study the common behavior of the solutions with a fixed frequency ω and charge q when λ → ∞. This will
be done in the following section.

We conclude this section presenting, in Fig. 8, the electric field profiles E = −∇V for some values of the parameters
λ, ω and q. For our numerical implementation, the repulsive effect of the parameter q allows us to obtain solutions
up to a value q̃ ∼ 0.5, beyond which solutions become increasingly larger in size, this fact might also point to the
existence of a critical value of the charge of the wormhole, already mentioned above. The ω parameter, in addition,
also affects the difficulty of obtaining solutions even with modest values of q. In some of our results, we will be able
to plot solutions with a fixed value of q and several values of the frequency up to a certain limit ω/µ < 1, as can be
seen in this figure. In the next section, we will put together our findings and derive a possible explanation for such
behavior.
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FIG. 7. In the figure, we present some numerical solutions for the scalar field scaled by the factor
√
λ and different values of

q. The solutions are similar for large
√
λ whereas for small values of

√
λ the solutions have very different profiles.
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FIG. 8. Electric field E (−∇V ) as a function of η for ω/µ = 0.5 (left) and ω/µ = 1 (right), with charges q̃ = 0.3 (upp) and
q̃ = 0.5 (down). The Electric field increases with q̃. In the case of large λ it is difficult to obtain solutions near q̃ = 0.5, therefore

solutions for very large λ̃ are possible only for small values of q̃.

C. Behavior for large λ

Based on the results obtained with the code presented in the above section, and following the scaling analysis for
boson stars given by Colpi et al. for large values of λ [34], we now consider the electric wormhole solutions when
λ ≫ 1. An analysis of the behavior of the spacetime geometry and the radial profile of the scalar field when the
self-interaction is very large makes evident the scaling of the different functions and parameters of the solution. For
example, it has already been shown in Fig. 7 that the solutions converge to a λ-independent profile ϕ∗ =

√
λϕ as λ

increases. On the other hand, there is a clear linear scaling for the throat parameter, η0∗ = η0/λ, while the metric
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coefficients Ψ, N and the electric potential converge to constant functions, Ψc, Nc and Vc respectively, in a central
region whose size (in η) increases also linearly with λ. In this way, our results show that not only the scalar field
becomes independent of λ for large values of the self-interaction but the entire solution. With this result in mind, it
is possible to find analytical solutions for an electric wormhole in the case of λ≫ 1, the neutral wormhole included.

Let us start by scaling the constraint equation (28) for the wormhole throat obtaining:

4πΨ4
cη

2
0∗ϕ

2
c∗ =

1

λ
(
−µ2 +

ϕ2
c∗
2 + (Vc q+ω)2

N2
c

) , (31)

where, since the quantities ϕc∗, Nc and the product Ψ4
cη

2
0∗ϕ

2
c∗ are finite for λ→ ∞, then the right hand side of Eq. (31)

must have the following dependence in order to maintain consistency in the constraint equation:

µ2 − ϕ2c∗
2

− (Vc q + ω)
2

N2
c

∼ 1

λ
+O(λ−2) . (32)

Next, we take the pointwise limit λ→ ∞, keeping η fixed in Eq. (32), so that defining the following limit quantities
with subscript ∞,

Nλ∞ = N |λ→∞, Ψλ∞ = Ψ|λ→∞, ϕ∗λ∞ = ϕ∗|λ→∞, Vλ∞ = V |λ→∞ , (33)

allows to express the value of the scalar field at the wormhole throat in the limit λ→ ∞ as,

ϕ0 := ϕ∗λ∞(η = 0) =

√√√√2

(
µ2 − (ω + q V0)

2

N2
0

)
, (34)

where V0 := Vλ∞(η = 0) and N0 := Nλ∞(η = 0). This equation implies that whenever ω + q Vλ∞ ≫ 1, the value of
the lapse must take considerably larger values at the origin to maintain Eq. (34) real, which explains why it is more
difficult to obtain the numerical solution for cases with large q and ω. This can be corroborated by looking at the
first two columns of Tables II and III, which will be properly presented below.

Now, inserting the scaled scalar field profile ϕ∗ and the scaled η0∗ in the Einstein-Klein-Gordon-Maxwell system
and taking the limit λ → ∞ (with η held fixed and assuming |η/η0| ≪ 1), the following set of differential equations
is obtained:

d2

dη2
Ψλ∞ = 0 , (35)

d2

dη2
Nλ∞ = 0 , (36)

d2

dη2
Vλ∞ = 0 , (37)

d2

dη2
ϕ∗λ∞ −Ψλ∞

4

(
µ2 − ϕ∗λ∞

2 −
(
qVλ∞ + ω

Nλ∞

)2
)
ϕ∗λ∞ = 0 . (38)

Whose solution is valid in the interval −λη0∗ ≪ η ≪ λη0∗.
Imposing symmetric solutions at the throat (Eq. (25)) and using the definitions given in Eq. (33), the system (35)

has the solution,

Nλ∞(η) = N0, Ψλ∞(η) = Ψ0, Vλ∞(η) = V0 ; (39)

ϕ∗λ∞(η) = ϕ0 sech

(
Ψ0

2ϕ0√
2

η

)
, (40)

with ϕ0 constrained by Eq. (34). Given q and ω, the numbers N0, Ψ0, V0 and ϕ0 are estimated by interpolation from
solutions with high values of λ. In Table II we present some of these numerical values for the ω/µ = 0.5 case. In
Table III we report the same quantities but now restricting to the q = 0 case.

In order to compare our analytic results for λ→ ∞ with numerical solutions, in Fig. 9 we present the convergence
of the numerical profiles ϕ∗λ∞ to the analytic one, given in Eq. (40), therefore concluding that the analytic expression
gives a good approximation for these cases. We have also verified on the explored solutions, that the range of validity
of the constant radial profiles (39) for the metric functions and the electric potential grows in size linearly with λ.
Previously in the manuscript it has been described that the mass (and the number of particles) also have a linear

scaling in the λ ≫ 1 case, and even more remarkable, the total mass goes to zero for the configuration with exactly
ω = 0.5µ as λ → ∞. The solutions obtained in Eq. (39) and (40) provide an explanation of these properties. Using
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TABLE II. Limit quantities Nλ∞ , Ψλ∞ , ϕλ∞ and Vλ∞ for ω/µ = 0.5 and different values of the charge q. These quantities
are related to the boundary conditions at the throat for λ → ∞ according to the relation Eq. (33) and Eq. (34).

q̃ N0 Ψ0 ϕ0 V0 (ω + qV0)/N0

0 1 0.7099 1.225 0 0.5

0.2 1.0860 0.6897 1.193 0.0882 0.5418

0.3 1.2153 0.6617 1.1365 0.1515 0.5990

0.5 1.9767 0.5504 0.8926 0.4146 0.7787

TABLE III. Limit quantities N0, Ψ0 and ϕ0 for q = 0 (V0 = 0) and different values of ω/µ.

ω/µ N0 Ψ0 ϕ0 ω/N0

0 0.5820 0.9001 1.4189 0

0.2 0.6895 0.8427 1.3551 0.2901

0.5 1 0.7099 1.2250 0.5

0.7 1.2401 0.6347 1.1707 0.5645

1 1.6153 0.5448 1.1131 0.6191

the scaled ϕ∗λ∞ and η0∗ it is possible to show that the Komar mass in Eq. (23) scales as M∗ = M/λ for λ ≫ 1.
Furthermore, an analytic expression for M∗ can be obtained by noting that when λ ≫ 1 the square root of the
determinant can be approximated as

√
γ ≈ λ2Ψ6

λ∞
η20∗ sin θ, and the integrand N

(
Tµ

µ − 2T t
t

)
can be simplified to

leading order in 1/λ as

N
(
Tµ

µ − 2T t
t

)
≈ 2Nλ∞ϕ

2
∗λ∞

λ

(
µ2

2
− ϕ2∗λ∞

4
− (qVλ∞ + ω)

2

N2
λ∞

)
. (41)

Thus, by inserting into the Komar mass expression (23), we obtain

M∗ = 8πN0 Ψ
6
0 η

2
0∗

[
−1

4

∫ ∞

0

ϕ4∗λ∞
dη +

(
µ2

2
− (ω + qV0)

2

N2
0

)∫ ∞

0

ϕ2∗λ∞
dη

]
,

=
8

3
πN0 Ψ

4
0 η

2
0∗

(
µ2 − (ω + qV0)

2

N2
0

)1/2 [
µ2 − 4 (ω + qV0)

2

N2
0

]
. (42)

Here we have used the expression of the scalar field solution, Eq. (40), which also imply that
∫∞
0
ϕ2∗λ∞

dη =
2ϕ0√
2Ψ2

0

,
∫∞
0
ϕ4∗λ∞

dη =
4ϕ3

0

3
√
2Ψ2

0

.

As we were looking for, the above equation allows us to see that the mass of the system will be zero if and only if
the condition ω = ωzm is satisfied, with

ωzm =
µN0

2
− q V0 . (43)

Substituting the values in Table II for the solution q = 0 and ω = 0.5µ we see that it satisfies this condition and the
same can be checked for configurations with q > 0, λ≫ 1 and whose M is equal to zero. Moreover, it can be shown1

that in the neutral case, the value of N0 is exactly equal to 1, thus explaining why it is precisely at ω = 0.5µ that the
mass of the spacetime tends to zero as already noted in [15, 16]. In general, such value is modified by the presence
of the electromagnetic coupling q, a behavior that was hinted at in the previous plots of the mass. We noticed from
Tables II and III that the quantities N0 and V0 are monotonically increasing with the frequency and the charge,
while ϕ0 and Ψ0 decrease monotonically with the frequency and charge, therefore for each value of the frequency and
charge, there corresponds a single value of N0 such that the mass M∗ is equal to zero.

1 Considering the full expansion of the lapse function, after the constant term Nλ∞ , consistent with the system (15-18) (and considering
the possible contributions of the expansions of the other fields) one must have N = Nλ∞ + λ−1N1(η) + O(λ−2), with N1 satisfying
the differential equation N ′′

1 = 4πNλ∞Ψ4
λ∞

ϕ2
∗(µ

2 − ϕ2
∗/2 − 2ω2/N2

λ∞
) subject to the boundary condition N ′

1(η = 0) = 0. Under this
consideration, the solution is,

N1(η) = 4πNλ∞ϕ2
∗λ∞

[(
1

3
− κ

)
ln (cosh (bη)) +

1

6
sech2 (bη)

]
+ k1, (44)

with κ = 2ϕ−2
∗λ∞

ω2/Nλ∞ and b = Ψ2
λ∞

ϕ∗λ∞/
√
2. Recalling these solutions are valid in the domain |η| < λη0∗, the full lapse function

N = Nλ∞ +λ−1N1(η)+O(λ−2) should match the exterior solution Nη→∞ = 1+κ1/η at a certain point 1 ≪ ηm < λ, but it is precisely
in the case of zero mass that κ = 1/3, as obtained from Eq. (40), so the term λ−1N1 contributes negligibly (not so whenever κ ̸= 1/3).
Furthermore, it can be argued that the O(λ−2) contributions are equally negligible at the matching point so that Nλ∞ should meet the
boundary condition at infinity, Nλ∞ = 1, for the q = 0 family of solutions if and only if M∗ = 0.
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FIG. 9. Difference between the numerical ϕ̃∗ and the analytic scaled scalar field ϕ̃∗λ∞ , given in Eq. (40) and the parameters

given in the Table. II, as a function of the radial coordinate η for large values of λ̃, for the cases with ω/µ = 0, 0.5 and 1 for
the frequency, and q̃ = 0, q̃ = 0.3 for the charge parameter.

Finally, using the same procedure it is possible to see that the number of particles N given by Eq. (24) scale as
N∗ = N/λ for large λ. An analytic expression for N∗ can also be derived and is given by

N∗ = 4π η20∗ (ω + qV0)
Ψ6

0

N0

∫ ∞

0

ϕ2∗λ∞
dη ,

= 8π η20∗ (ω + qV0)
Ψ4

0

N0

(
µ2 − (ω + qV0)

2

N2
0

)1/2

, (45)

where we have used the current Eq. (7) and the ansatz Eq. (9) to obtain j0 = − ϕ2
λ∞

N2
λ∞

(Vλ∞ q + ω).

D. Particle motion

The analysis of the motion of particles in the several types of spacetimes generated by the charged wormhole throws
interesting facts that are useful in the understanding of the properties of such geometries.

The full action of a charged particle with mass m and charge e interacting with an electromagnetic field in General
Relativity reads [40],

A = −
∫
mdτ +

∫
eAµu

µdτ +

∫
d4x

√−g
[

1

16π
R− 1

4
FµνF

µν

]
. (46)

Where uµ is the four-velocity of the particle. Varying A with respect to the trajectory of the particle leads to the
equations of motion of such particle (Lorentz force law),

m uµ∇µu
ν = e F ν

αu
α . (47)

Now, let K be a Killing vector field of the spacetime, then it can be shown that the Killing equation ∇(µKν) = 0
does not imply uµ∇µ(Kνu

ν) = 0 as in the case of geodesics, but rather uµ∇µ [Kν(mu
ν + eAν)] = 0 when Eq. (47) is

used and it is assumed that the electromagnetic field is consistent with the symmetry associated with K [36] (as is
the case for the electric wormhole solution) . This means that, the quantities

Kν(mu
ν + eAν) , (48)

are constant along the world line of the charged particle. Returning to the wormhole spacetime, the timelike Killing
field ξ and the axial Killing field ψ = ∂φ imply the existence of a conserved energy E := −ξν(muν + eAν) and a
conserved (azimuthal) angular momentum L := ψν(mu

ν + eAν), which in the coordinates described in Eq. (8) we
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obtain E = mN2ut − eV and L = mΨ4(η2 + η20) sin2 θ uφ. Since both the gravitational and electromagnetic fields
are spherical we may restrict to the equatorial motion θ = π/2 without loss of generality, so the normalization of the
four-velocity allows us to obtain a simple equation for the radial motion:

m2N2Ψ4

(
∂η

∂τ

)2

+m2N2 − (E + eV )
2
+
N2

Ψ4

L2

η2 + η02
= 0 , (49)

whose solutions allow to acquire a better understanding of the properties of the wormholes determined by the param-
eters. Now, we can define an effective potential Ueff as the minimum allowed value of E at a given η, i.e.,

Ueff(η) = −eV (η) +

√
m2N(η)2 +

N(η)2

Ψ(η)4
L2

η2 + η02
. (50)

Given E and L, then, the allowed regions for the movement of the particle are given by those values of η such that
Ueff(η) ≤ E .

In order to illustrate the motion of particles around the spacetime of an electrically charged wormhole, some effective
potentials are shown in Fig. 10. In the left panel, we use three different spacetimes with M > 0, M < 0 and M = 0
such that a neutral particle with angular momentum of L/m = 0.1 will fall to the wormhole when the mass is positive,
be repelled when the mass is negative and continuing in an almost straight line when M = 0 and is far away from the
wormhole throat. In the right panel of Fig. 10, we fix the spacetime to be one with M = 0 and give certain values for
the charge of the particle, then we can see that the repulsive and attractive interaction towards the wormhole can be
obtained through the electromagnetic field.
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FIG. 10. Effective potential Ueff for a particle with angular momentum L/m = 0.1. Left panel: Neutral particle moving in an

electric wormhole with λ̃ = 30 and q̃ = 0.1 and different values of ω/µ such that the total mass of the spacetime is positive
zero and negative (ω/µ = 0.475, 0.4875 and 0.5 respectively). Right panel: Charged particles with e/m = 1, 0, −1 moving in
the same M = 0 wormhole as in the left panel.

IV. CONCLUSIONS

We have derived and solved the Einstein-Maxwell-Klein Gordon system for the case of an exotic and massive scalar
field with a self-interaction term, minimally coupled to the electromagnetic field. Imposing appropriate conditions in
the boundaries, we obtain an asymptotically flat charged wormhole and analyze the solutions. We obtained solutions
with the already known regions of positive energy density near the throat, followed by regions of negative density,
obtaining configurations where the total mass of the system can be positive, negative or even zero, depending on the
values of the parameters of the system. We obtain that the electric charge affects the morphology of the wormhole
and plays an important role in the determination of such total mass and also in the total particle number of the
system. The motion of particles in the regions far from such wormholes is different depending on the total mass of
the system and the charge.

Our analysis suggested that, for large values of the self-interaction parameter, λ, the solution for the scalar field
tended to have similar behavior. We explored this fact and were able to obtain an analytic expression for the scalar
field that reproduced its behavior in this case of the large self-interaction term, a fact that we proved by comparing
the actual numerical solutions in this case with the analytic expressions, obtaining excellent agreement. This allowed
also a better understanding of the role of the parameters in the determination of the wormhole properties, namely
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the total mass of the configuration and the particle number, as a function of the system parameters, µ, ω, q, η0∗, and
the electric potential and metric coefficients evaluated in the case of large λ. It is interesting to notice that the charge
and electric field play an important role not only in determining the value of the total mass but also in the fact that
it is modified the case when such total mass is zero.

Another fact that we want to underline is that our numerical experiments allow us to present the conjecture that
the charge can not play the role of the self-interaction constant regarding the existence of (equilibrium) solutions for
the massive scalar field; that is, λ has to be non zero in order to have a wormhole, even for the case of an electric
wormhole.

Also, even though there is no equation which hints at the existence of a critical charge, a maximum value for the
charge, the numerical experiments show that it is increasingly difficult to find solutions for q̃ larger than 0.5, which
might indicate that there is a critical value for the charge beyond which there are no equilibrium solutions.

Finally, we presented the motion of particles, charged or neutral, obtaining an expected but interesting behavior
in terms of the total mass. Indeed, in the region where the total enclosed mass is already constant, the particle is
attracted towards the wormhole when such mass is positive, repelled away from it, when the total mass is negative,
and moves as if there were no wormhole at all when the total mass is zero. The Q ̸= 0 and M = 0 situation is of
importance because although the electromagnetic field contributes to the sources of the Einstein equations, the full
system solution (electromagnetic field + scalar field) is such that a charged particle, far from the throat, would be
able to sense the presence of the wormhole, whereas a neutral particle would not. It has been possible to construct
solutions in which unlike the Kerr-Newman family hole one has Q > M without implying the existence of a naked
singularity.

The ideas and procedure described in this work can be adapted to the case when the electromagnetic field has
an azimuthal component, instead of a temporal one, obtaining a magnetic wormhole. Such work is currently under
development.
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Appendix A: Geometric scalars

The following expressions for the geometric scalars will be useful to characterize the solutions. The Ricci scalar:

R = − 2

Ψ4

(
∆3N

N
+ 4

∆3 Ψ

Ψ
+ 2

N ′ Ψ′

N Ψ
+

η0
2

(η2 + η02)
2

)
. (A1)

The Weyl scalar

W =
4

3Ψ8

(
N ′′

N
− η

η2 + η02
N ′

N
− 2

(
Ψ′′

Ψ
− η

η2 + η02
Ψ′

Ψ
− 3

(
Ψ′

Ψ

)2
)

− 4
N ′ Ψ′

N Ψ
− 2 η0

2

(η2 + η02)
2

)2

, (A2)

and the Kretschmann scalar:

K =
4

Ψ8

(
N ′′

N

(
N ′′

N
− 4

N ′ Ψ′

N Ψ

)
+

8Ψ′′

Ψ

(
Ψ′′

Ψ
−
(
2

(
Ψ′

Ψ

)2

− 2 η

η2 + η02
Ψ′

Ψ
− η0

2

(η2 + η02)
2

))

+4

(
Ψ′

Ψ

)2
(
6

(
Ψ′

Ψ

)2

+ 4
η

η2 + η02
Ψ′

Ψ
+

2
(
3 η2 − 2 η0

2
)

(η2 + η02)
2 + 3

(
N ′

N

)2
)

+
2

η2 + η02

(
N ′

N

)2
(
4 η

Ψ′

Ψ
+

η2

(η2 + η02)
2

)
+

3 η0
2

(η2 + η02)
2

)
. (A3)

In Fig. 11, we present some plots of these geometric scalars which might also help to better understand the role of
the parameters in the wormhole configuration. Recall that the scalar of curvature R is proportional to the trace of



17

the stress energy tensor, R = −8π (τ + S), and in the figure we present both to stress the importance of the trace S
in determining the proportional changes for the different cases of the total mass.
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FIG. 11. Ricci R, Weyl W , Kretschmann K scalars and density energy τ for wormholes with λ̃ = 10, q̃ = {0, 0.3} and
ω/µ = {0, ωzm/µ, 1}, such that the total mass of the spacetime is positive, zero and negative, respectively. We also plot the
energy density τ for the same cases.

It is remarkable the change on the geometry depending on the total mass of the system. Such influence is mainly
showed in the Weyl scalar in which maximum for the zero mass case is almost half the one of the negative mass case
and for the positive mass case, the profile of the Weyl scalar is more than four orders in magnitude smaller than in the
other cases. These solutions invite for a deeper understanding on the properties of the geometric scalars depending
on the matter-energy presented in the space-time. Such work will be done elsewhere.
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