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Abstract 

Finite state machines (FSM) have been a topic of great importance in the last five 
decades and have been used to specify and implement control units. Due to the 
increasing complexity of control units and since the FSM model does not 
explicitly support hierarchy and concurrency, new state-based models with 
hierarchical and concurrent constructions were proposed in order to overcome 
the limitations of the conventional FSM model and allowing the specification of 
complex control units in a top-down manner. Still, there are not many hierarchical 
FSM architectures (HFSM) that have been proposed to implement those 
hierarchical specifications and most of them cannot be seen as a whole FSM 
implementing internally in an efficient way the switching between the different 
hierarchical levels of the machine, except for the HFSM with stack memory. 
 
This thesis tackles the synthesis of FSMs from hierarchical specifications and 
proposes two HFSMs and a parallel hierarchical FSM (PHFSM) with stack 
memory that can provide such facilities as flexibility, extensibility and reusability. 
It also presents the synthesis methodology from hierarchical specifications to the 
generation of state transition tables that can be used to carry out the logic 
synthesis of the proposed HFSM models. 
 
Considering that the use of formal state-based models that provide hierarchical 
and concurrent constructions is highly recommended for specifying complex 
control units, hierarchical graph-schemes (HGS) and parallel hierarchical graph-
schemes (PHGS) are used and some considerations about their execution and 
correctness are presented. It is also explained how HGSs can be used to specify a 
control algorithm and how it is possible to verify automatically its correctness and 
to validate the intended functionality through simulation. 
 
Using the first model of a HFSM with stack memory as a starting model, two new 
models that can provide flexibility, extensibility and reusability and a PHFSM 
model that combines hierarchy and pseudo-parallel execution of operations are 
proposed. Their functionality, flexibility, extensibility, synchronisation and internal 
realisation are fully explained. 
 
To implement a control unit specified with a set of HGSs/PHGSs it is necessary 
to perform the first step of the sequential logic synthesis, taking in consideration 
the pretended target model. The manual synthesis methodology required to build 
the state transition table of a HFSM/PHFSM starting from a hierarchical 
specification based on HGSs/PHGSs is explained for a Moore, a Mealy and a 
mixed Moore/Mealy FSM. A tool that automatically performs this first step for 
the two HFSM models proposed is also presented. 
 
In order to validate the proposed HFSM/PHFSM models and their synthesis, the 
models were described in VHDL for a LUT-based implementation and simulated 
using the Synopsys simulation tools. 



Resumo 

As máquinas finitas de estados (FSM) têm sido usadas para especificar e 
implementar unidades de controlo e têm sido um assunto de grande importância 
nas últimas cinco décadas. Devido ao aumento da complexidade das unidades de 
controlo e uma vez que o modelo FSM não permite descrições hierárquicas e 
concorrentes, novos modelos formais que suportam hierarquia e concorrência têm 
sido propostos com o objectivo de ultrapassar as limitações do modelo FSM e que 
permitem a especificação de unidades de controlo complexas usando uma 
metodologia de decomposição hierarquizada. Apesar disso não têm sido propostas 
arquitecturas de máquinas finitas de estados hierárquicas, com excepção das 
máquinas construídas com memória stack, que possam ser vistas como uma 
máquina integral que implementa internamente e de forma eficiente a transição 
entre os diferentes níveis hierárquicos da máquina. 
 
Esta tese aborda a síntese de máquinas de estados especificadas hierarquicamente 
e propõe duas arquitecturas de máquinas hierárquicas (HFSM) e uma máquina 
paralela hierárquica (PHFSM) contruídas com memória stack, que são flexíveis, 
extensíveis e reutilizáveis. Apresenta também, a metodologia de síntese lógica que 
permite construir a tabela de transição de estados a partir da especificação 
hierárquica, tabela essa que é utilizada na implementação dos modelos propostos. 
 
Considerando que é altamente recomendável a utilização de modelos formais que 
permitam descrições hierárquicas e concorrentes na especificação de unidades de 
controlo complexas, os modelos de grafos hierárquicos (HGS) e grafos paralelos 
hierárquicos (PHGS) são apresentados e são feitas algumas considerações acerca 
da sua utilização, execução e correcção. É ainda explicado como se pode validar a 
especificação hierárquica da funcionalidade de unidades de controlo complexas 
através da verificação automática e simulação da especificação baseada em HGSs. 
 
Os modelos propostos de máquinas de estados são apresentados detalhadamente 
tendo em atenção o seu funcionamento, implementação interna baseada em 
memórias e sincronização, bem como as novas facilidades de flexibilidade e 
extensibilidade que estes modelos apresentam. 
 
É apresentada a metodologia manual da síntese lógica que é necessário 
implementar a partir das especificações hierárquicas baseadas em HGSs ou 
PHGSs de forma a construir a tabela de transição de estados que especifica a 
máquina hierárquica ou paralela hierárquica, para as máquinas de estados de 
Moore, Mealy ou mista Moore/Mealy. É também apresentado um programa que 
implementa automaticamente a síntese lógica dos dois modelos de máquinas de 
estados hierárquicas propostos a partir da especificação feita com HGSs. 
 
Os modelos de arquitecturas propostas, bem como a metodologia de síntese, 
foram validadas através de uma simulação em VHDL que foi feita usando as 
ferramentas de simulação da Synopsys. 
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1 

1 INTRODUCTION 

Summary 

The goal of this thesis is the development of a methodology for the synthesis of 
reprogrammable control units from hierarchical specifications. The proposed 
methodology uses complex finite state machine models, i.e. hierarchical and 
parallel hierarchical finite state machines, that can provide such facilities as 
flexibility, extensibility and reusability and that can be easily reprogrammed. 
 
This chapter starts by presenting an historical perspective of the evolution of the 
finite state machine model, starting from the Turing machine until the most recent 
proposals for hierarchical and parallel implementations of complex finite state 
machines. 
 
Then it gives an overview of control units in particular those that can appear in 
embedded systems. Since control units are increasing in complexity their 
functionality should be specified in a top-down manner and therefore the 
advantages of such approach are explained. Control units can follow the finite 
state machine model but in order to simplify the implementation of complex 
control units several alternative architectures are presented. The automatic 
synthesis of digital circuits, with an emphasis on the sequential logic synthesis of 
control units, is also outlined. 
 
Finally the objectives of the work and the structure of this thesis are presented. 
 
 
 



2 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS 

1.1 Outline of the Evolution of the Finite State Machine 

Finite state machine (FSM) or finite automaton is a mathematical model of a 
system, with discrete inputs and outputs and a finite number of states. The state of 
the system summarises the information concerning past inputs that is needed to 
determine the behaviour of the system for future inputs. Associated with a finite 
machine is a direct graph called a state transition diagram, which is its graphical 
counterpart. 
 
Alan Turing proposed the first model of a machine or automaton in 1936, even 
before the appearance of the first computers. Since Turing was a mathematician 
he was interested in defining the fundamental relationships involved in making 
computations [Booth67]. The basic model of a Turing machine (see Figure 1.1) 
is a finite control, an infinite input tape and a read/write head [Booth67, 
Kohavi70, AleHan75, HopUll79]. 
 
The machine head scans one cell of the tape at a time and it is allowed to read 
from or write on the cell directly under it and to move its position one cell at a 
time to the right or to the left. The tape, which represents the external information 
store, is divided into cells and each cell holds a blank symbol or one symbol from 
a finite set of symbols. 
 

Read/Write head

...Tape

Finite Control
 

Figure 1.1 – General form of a Turing machine. 

This machine can execute any process that is finitely described, consisting of 
discrete steps, each of which can be carried out mechanically and work as follows. 
During each cycle of operation the cell under the head is read to determine the 
symbol printed on the tape. After reading the symbol the control machine 
executes one of the four following possible moves: a new symbol can be written 
in the cell tape; the head is moved one position to the right of the current cell; the 
head is moved one position to the left of the current cell; the operation of the 
machine is halted. 
 
Because the control element is a finite state machine, the actual operation 
performed will be influenced by the previous operations performed by the 
machine. The Turing machine can be considered a general-purpose machine and 
has been the base model of the finite automata. 
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However, a more attractive kind of machine is a Turing machine with multiple 
tapes, in particular the read-only machine. This kind of machine has an input tape, 
an output tape and a working tape and works as follows. The input tape can only 
move in a forward direction past its reading head, i.e. the machine can read the 
input tape but cannot write on the tape or recall past inputs. The output tape is 
similar to the input tape but it is initially blank and it can only be written when it 
passes through the printing head of the machine. The main tape of this machine is 
the working tape, which is both a read and a write tape on which all of the 
intermediate calculations are recorded and thus it represents the memory of the 
machine. Modified versions of Turing machines appear in [Booth67, HopUll79]. 
 
During the 1950s, several authors had proposed different types of read-only 
machines, being the two most know models the Moore and the Mealy machines. 
The former is due to the work of Huffman in 1954 and Moore in 1956, and the 
latter is due to the work of Mealy in 1955. In the Moore machine the symbol 
written in the output tape depends on the information stored in the working tape, 
while in the Mealy machine the symbol written in the output tape depends on 
the information stored in the working tape and on the symbol read from the input 
tape. 
 
From the electronic point of view, a Moore (Mealy) machine is characterised by 
having a state register that holds its internal state, a next state logic function that 
generates the next state depending on the present state and on the inputs and an 
output logic function depending on the present state and in the case of Mealy 
depending also on the inputs. The formal definition of the FSM is presented in 
the Paragraph 2.3.2. 
 
Oettinger in 1961 and Schutzenberger in 1963 conceptualised the pushdown 
automaton. The pushdown automaton is a second version of a read-only 
machine with a working tape that is restricted to be what is called a pushdown 
tape [Booth67, HopUll79]. This working tape can be written on, read from or 
moved in both directions, but as it moves from left to right past the reading head 
all the tape cells on the right are left blank [Booth67]. Such an arrangement is 
described as “last in first out” list. The pushdown automaton is also briefly 
presented in [AleHan75]. 
 
During the first half of the 1960s, Hartmanis and Stearns [HarSte66] and Kohavi 
[Kohavi70] have studied the composition and decomposition of finite state 
machines. There are three basic forms of machine composition/decomposition: 
parallel, series or cascade and feedback [Booth67, Kohavi70, Baranov79]. The 
decomposition of a FSM into several smaller interconnected FSMs is an 
alternative to a single monolithic implementation in order to deal with the 
complexity of a large machine. 



4 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS 

The topic become less interesting during the 1970s due to the ROM-based 
implementation of machines, i.e. due to the use of microprogramming (concept 
first outlined by Wilkes in [Wilkes51]), but it had regained importance with the 
appearance of the first PLDs. Since they could not provide enough inputs or 
outputs or number of products to implement the next state and output functions 
of complex FSMs the realisation with a single PLD was not possible. Therefore, 
more recent authors [Bolton90, Baranov94, Katz94] have presented the 
decomposition of FSMs, with the introduction of idle states, in order to overcome 
the resource limitations of PLDs. 
 
In order to deal with the increasing complexity of control units and since the state 
transition diagrams are not adequate to capture the notation of an algorithm, in 
1973 Christopher R. Clare introduced the algorithmic state machine (ASM) in 
[Clare73]. The ASM looks like a program flowchart and it is an approach to move 
toward programming. Moreover, [Clare73] explores the use of ROMs in the 
synthesis of ASM-based designs, i.e. microprogramming. The ASM model, the 
synthesis of ASM-based designs and microprogramming are well documented in 
[WinPro80, Green86]. 
 
Clare also proposed the implementation of a finite state machine with several co-
operating FSMs in [Clare73]. In other words FSMs can be linked in order to 
specify parallel algorithms. The linked FSMs can be completely independent or 
can communicate between them for synchronisation purposes and most 
commonly share the same clock. Linked FSMs are presented in [Clare73, 
Green86, Bolton90]. 
 
In 1974 Baranov proposed the graph-scheme of algorithm, which is very similar 
to the ASM, in [Baranov74]. In 1984 Sklyarov proposed an extension of the GS, 
the hierarchical graph-scheme (HGS) in [Sklyarov84]. The HGS adds support 
for hierarchical descriptions based on macro blocks, such as macrooperations and 
logic functions. This model is another step toward programming, in this case to 
procedural programming. The HGS can be used to describe the functionality of 
complex control units by decomposing them in a top-down manner, resembling 
an algorithmic decomposition using a structured programming language. The 
macrooperation can be seen as the hardware equivalent of the procedure in Pascal 
while the logic function as the hardware analogue of the function in Pascal. 
 
For the hierarchical implementation once again the software model was imported 
and a hierarchical FSM with stack memory (HFSM), which is closely related 
with the pushdown automaton, was proposed in [Sklyarov84]. The stack memory 
controlled through push and pop instructions is used as the state register of the 
machine like it is used in a computer that executes a program specified with 
subprograms. Thus, when the execution of the machine must perform a macro 
block in a new hierarchical level, the stack keeps the present state unchanged and 
another register of the stack is used to hold the state during the execution of the 
macro block. When the macro block finishes executing the interrupted state of the 
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previous hierarchical level is resumed. This HFSM can be seen as a procedural 
hardware implementation of a control unit. 
 
In 1987, Sklyarov proposed an extension of the HGS, the parallel hierarchical 
graph-scheme (PHGS), which in addition to hierarchical descriptions also allows 
the parallel invocation of macrooperations, in [Sklyarov87]. This model can be 
seen as a set of FSMs that have their combinational schemes merged in a unique 
combinational scheme and with a state register composed of several state registers, 
one per machine, that are sequentially scanned by the FSM clock. The 
synchronisation of the parallel execution of the sub-FSMs is achieved through the 
introduction of waiting states. As a result a pseudo-parallel FSM (PFSM) that 
implements parallel tasks sequentially is achieved. 
 
In 1987, Harel proposed the Statechart as an extension of the FSM state 
transition diagrams that allows hierarchical and concurrent descriptions in 
[Harel87]. And in 1989, he and Drusinsky proposed a hierarchical implementation 
based on a tree of interconnected FSMs, where each state at each level of the 
statechart hierarchy is represented by a machine implementing the FSM 
corresponding to its sub-states on the next immediate level, in [DruHar89]. 
 
In 1994, Micheli suggests representing a FSM diagram in a hierarchical way 
(hierarchical FSM) by splitting it into sub-diagrams, in [Micheli94]. Each sub-
diagram, except the root has an entry and an exit state and it is associated with one 
or more calling states from other sub-diagrams. Each transition to a calling state is 
equivalent to a transition into the entry state of the corresponding sub-diagram 
and a transition to an exit state of the sub-diagram corresponds to return to the 
calling state. For the implementation of this hierarchical specification he proposes, 
a control unit built by interconnecting independent control units, each 
implementing a sub-diagram and having its own activation signal which start or 
halt its execution, in [Micheli94]. 
 
Also in 1994, Gajski proposes a hierarchical concurrent finite state machine 
(HCFSM) as an extension of the FSM with support for hierarchy and 
concurrency in [Gajski94]. According to him the statecharts model is well adapted 
to specify a HCFSM but he does not suggest any implementation. 

1.2 Control Units Overview 

1.2.1 Introduction 

Embedded systems can be defined as computing and control systems dedicated to 
a certain application [Micheli94]. They are parts of larger systems [MicGup97] and 
they are widely used in the manufacturing industry, in consumer products, in 
vehicles, in communication systems, in industrial automation, in aerospace, etc. 
They are often used in life critical situations, where reliability, availability and 
safety are more important criteria than performance [Edwards97, MicGup97]. 
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In the general case, an embedded system is composed of microcontrollers, 
application-specific integrated circuits (ASIC), field-programmable gate arrays 
(FPGA), as well as other programmable computing units such as digital signal 
processors (DSP) [Edwards97]. Since embedded systems interact with an analogue 
environment they often integrate components that implement A/D and D/A 
conversions [Edwards97, MicGup97]. 
 
The behaviour of an embedded system is defined by its interaction with the 
environment in which it operates [Gajski94] and in most cases they have to react 
continuously to their environment at the speed of the environment. These systems 
are called reactive systems [Micheli94, Edwards97]. Real-time systems implement 
functions that must execute satisfying timing constrains [Micheli94]. 
 
There are many kinds of devices that can be decomposed into a datapath 
(execution unit) and a control unit (see Figure 1.2) [Gajski94, Micheli94]. A 
particular kind of execution unit that can appear in an embedded system is a 
device depending on input data provided by sensors in the outside environment 
and generating output data that usually regulate mechanical components also in 
the outside environment via actuators. The actuators and sensors can be 
electronic, optical, mechanical, etc. 
 

CONTROL UNIT DATAPATH

Control signals

Status signals

Control inputs

Control outputs

Datapath inputs

Datapath outputs  
Figure 1.2 – Embedded system block diagram. 

The datapath consists of registers, multiplexers and functional units such as ALUs, 
multipliers and shifters. A typical operation in the datapath reads the operands 
from the registers or external memory, computes the result in the functional units 
and writes the result into a destination register. The datapath is connected with 
external memory, being all memory accesses routed through registers with load 
and store operations. 
 
The control unit is usually modelled as a FSM and consists of the state register, 
the next state logic to compute the next state to be stored in the state register and 
the control logic to drive its outputs. The control unit performs a set of 
instructions that depend on results of comparison operations carried by status 
signals from the datapath or external conditions carried by control inputs supplied 
by sensors in the outside environment and generates the control signals and the 
control outputs. The former defines what operations must be applied to which 
operands stored in the datapath while the latter controls actuators in the outside 
environment. 
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1.2.2 Specification of Control Units 

There are two different approaches for implementing a system from simple 
components, namely bottom-up assembly and top-down decomposition. 
 
Systems can be built using a bottom-up assembly procedure where primitive 
building blocks are clustered into more complex blocks until the desired 
functionality of the system is achieved. But, since it is easier to understand the 
operation of a whole system by looking to its components and their interactions, 
the top-down decomposition is a more attractive approach and it is a good 
strategy for constructing any kind of complex system. 
 
Top-down decomposition is the application of the principle of “divide and 
conquer”, which is the basic way of breaking down complexity. A top-down 
decomposition allows the decomposition of a complex problem into smaller 
pieces until manageable pieces are found. The main advantage of a top-down 
approach is the great flexibility allowed in the exploration of possible designs 
[McFKow90]. The design process starts with an initial solution where the most 
important decisions are made and more refinements are added at each step thus 
allowing the exploration of alternatives. The design representation is also 
simplified in a top-down decomposition, because it is never necessary to deal 
simultaneously with multiple levels of the design or with multiple design 
representations [McFKow90]. 
 
However, the specification of a complex system in a top-down manner requires 
the use of hierarchy. Hierarchical specifications are therefore essential to manage 
the complexity of systems in terms of specification size and readability and have 
the following advantages: 
• to master the complexity through the creation of hardware (software) macro 

blocks using encapsulation; 
 

• to allow the reuse of hardware (software) macro blocks; 
 

• to allow for the migration of complex algorithms normally implemented in 
software to hardware. 

 
The appropriate requirements for the specification of control units are presented 
in the next chapter. 
 
The behaviour of control-dominated systems, such as embedded real-time reactive 
control systems, is more naturally represented in the form of states and transitions 
between them provoked by external events. Therefore, a state-oriented model is 
more suitable to describe the functionality of control-dominated systems. There 
are several state-oriented models and they are presented in the next chapter. 
However, since the FSM is the most popular state-oriented model generally the 
design of control units follows the FSM model. The next paragraph presents 
several FSM-based implementations of a control unit. 
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1.2.3 Implementation of Control Units 

A control unit can follow the FSM model and therefore consisting of a state 
register, a next state logic and an output logic (see Figure 1.3a). But if a control 
unit has thousands of states this approach becomes very complex and the three 
alternative architectures depicted in Figure 1.3 and presented in [Gajski97] can be 
used to simplify the implementation of complex control units. 
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Figure 1.3 – (a) Control unit model. (b) Control unit with decoder. 

(c) Control unit with counter. (d) Control unit with stack. 

The first architecture (see Figure 1.3b) uses a decoder, in order to simplify the 
next state and output logic implementation. Since each state is identified by a state 
signal, which is 1 when the state register is in that particular state and 0 otherwise, 
the signals generated in the next state and output logic blocks, i.e. the next state, 
the control signals and the control outputs will fall in two situations. If they only 
depend on the present state they can be implemented with n-input OR gates 
where n represents the number of states in which each signal is asserted. If they 
depend on the present state and on input signals, i.e. the control inputs and the 
status signals, they can be implemented with AND-OR logic, having the AND 
gates normally only two inputs, one being the state signal and the other being the 
input signal. 
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If a control unit has many unconditional state sequences in which each state has 
only one next state, and if the states are encoded in a way that each state encoding 
can be obtained by incrementing the state encoding of its previous state, then the 
state register can be replaced with a counter (see Figure 1.3c). In this architecture, 
two more signals must be added to the next state logic [Gajski97]. A load/count 
signal that controls the counter behaviour, i.e. incrementing the state or loading a 
predefined state (branch state) to branch out of the sequence. A selector control 
signal that will select the proper value of the branch state, that can be supplied 
internally by the next state logic or provided externally through the control inputs. 
 
In order to modularise the implementation of the control unit, frequently used 
tasks can be encoded as subroutines, instead of repeating the same sequence 
several times. For this purpose it is necessary a stack memory, which will save the 
state that follows the subroutine call (see Figure 1.3d). This architecture demands 
two more signals to be added to the next state logic [Gajski97]. A selector control 
signal that will select the proper state to be loaded in the state register, i.e. the next 
state or the state previously stored in the stack, and a push/pop signal to control 
the stack actuation. The state that follows the subroutine call that is saved on the 
stack is obtained by incrementing the state encoding of the previous state in the 
incrementer block. 
 
A final strategy to simplify the control unit implementation is to replace the next 
state and the output logic blocks by read-only memories (ROM). When using this 
approach the state register acts as the ROM address register. In order to reduce 
the size of the next state ROM, it is very important to reduce the number of 
control inputs and status signals used in the next state generation. That can be 
done by selecting the minimal input signals with the introduction of a conditional 
selector in the above architecture [Gajski97]. This architecture of a control unit is 
usually called microprogrammed control and the task of converting state 
transition diagrams or ASM charts into ROM words is called 
microprogramming. 
 
However, all these three architectures suggested in [Gajski97] are flattened 
implementations and cannot provide such facilities as flexibility, extensibility and 
reusability. Moreover, they cannot be implemented from a hierarchical 
specification, unless it is flattened into a non-hierarchical specification first. 

1.2.4 Synthesis of Control Units 

The synthesis process of a control unit always starts with the specification of its 
intended functionality and ends with the implementation of the control unit. 
During the process the control unit acquires different representations, which 
differ in the type of information they highlight. 
 
At the specification step (behavioural representation) the control unit is viewed 
as a black box with inputs and outputs and its functionality is specified 
behaviourally by means of an algorithm or using a state-based formal model, like 
for example finite state machine diagrams or the equivalent state transition tables. 
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After the synthesis process the control unit is viewed as a set of components and 
their connections (structural representation). The components can be simple 
logic gates or alternatively programmable logic devices (PLD) such as PALs, 
PLAs, ROMs and basic memory elements such as flip-flops to serve as the control 
unit memory. Nowadays, designers can take advantage of sophisticated field-
programmable devices such as FPGAs. Not only can they provide a large number 
of logic gates and flip-flops that can be connected in various ways, but some of 
them can also be reprogrammed as many times as the designer needs. 
 
The process of generating a structural view of a logic level model with an 
interconnection of logic primitives is called (sequential) logic synthesis 
[Gajski94, Micheli94]. 
 
The first design methodology was based on a capture-and-simulate approach 
[Gajski94]. In this methodology an initial architectural block diagram specification 
would be produced and each functional block would be converted into a circuit 
schematic that could be captured by a schematic tool and then its functionality 
could be verified through simulation. 
 
In recent years logic synthesis became an integral part of the design process and 
once logic synthesis was accepted by the design community, designers began to 
use Boolean expressions and finite state machine diagrams to describe logic, 
instead of capturing gates with schematic tools. Finally, this new methodology 
encouraged the practice of capturing a design through behavioural descriptions 
based on hardware description languages and the capture-and-simulate 
methodology has given way to a describe-and-synthesise methodology 
[Gajski94]. 
 
In this new methodology the design structure is generated by automatic synthesis 
using CAD tools instead of by manual synthesis that is very tedious for all but 
trivial circuits. Since this methodology can be applied on several levels of 
abstraction it had evolved to higher levels of abstraction with large productivity 
gains [Gajski94]. 
 
The automatic synthesis of digital circuits is normally divided into the four main 
steps depicted in Figure 1.4. 
 
The first step is the system-level synthesis. At this level, the abstract 
functionality of a system is decomposed into different tasks, which are partitioned 
between hardware and software implementation. A lot of research is currently 
being developed and the system-level synthesis of embedded systems is normally 
named as software-hardware codesign or software-hardware cosynthesis 
[GupMic93, ThoAdaSch93, Wolf94, IsmJer95, MicGup97, StaWol97]. 
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  • Placement
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Figure 1.4 – Automatic synthesis of digital circuits. 

The second step is the high-level synthesis (sometimes called behavioural or 
architectural synthesis). The tasks to be implemented in hardware are described 
behaviourally using a hardware description language (HDL) and the result is both 
a structural view of the datapath and a logic-level specification of the control unit. 
There are two basic tasks at this step. The allocation task determines the type and 
quantity of resources used in the datapath. The scheduling task makes the 
partition of the behavioural description into control steps (states) so that the 
allocated resources can compute all the variable assignments in each state. High-
level synthesis is well documented in [McFParCam90, CamWol91, Gajski92, 
MicLauDuz92, GajRam94, Micheli94, WalCha95]. 
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The third step is logic-level synthesis and it is divided in two parts. The 
datapath synthesis consists of a complete binding of the datapath, defining the 
interconnection among the resources, steering logic circuits like multiplexers or 
busses, registers, input/output ports and the control unit [Micheli94]. The control 
unit synthesis consists in the generation of a state register and the logic that 
generates the next state and the outputs of the control unit. The logic synthesis 
tasks are logic minimisation and technology mapping. Logic minimisation is 
used to reduce the size or delay of the logic and technology mapping transforms a 
technology independent logic network generated during the logic minimisation 
step into a network of standard gates from a particular library. 
 
Since the control unit is modelled as a FSM, the first task of the logic-level 
synthesis also known as sequential logic synthesis, is further divided into the 
three following tasks normally used in the optimisation of FSMs: 
1. state minimisation is used to decrease the number of states of the FSM, by 

replacing equivalent states with a single state. It is a very important task, since 
the number of states determines the size of the state register and 
combinational logic; 

 

2. state encoding assigns binary codes to the abstract states of the FSM, with 
the purpose of minimising the next state and output functions; 

 

3. logic minimisation is used to reduce the size or delay of the combinational 
logic that implements the next state and output functions. 

 
Logic-level synthesis is well documented in [AshDevNew92, MicLauDuz92, 
Micheli94]. 
 
Finally, the layout-level synthesis step consists in generating the layout of the 
chip. The major tasks are placement of the components and wiring them also 
known as routing [Micheli94]. 

1.3 Objectives of the Work 

With the increasing complexity of control units, many authors have proposed 
hierarchical specification models. However, the hierarchical implementations 
proposed for the synthesised control units did not support the versatility of the 
specification models. 
 
Therefore, the goal of this thesis is the development of a methodology for the 
synthesis of reprogrammable control units from hierarchical specifications 
described with HGSs, i.e. to propose hierarchical FSM models based on the 
HFSM with stack memory, which can provide such facilities as flexibility, 
extensibility and reusability. And also to propose a FSM model that can combine 
hierarchy and parallelism. 
 
Another goal is to propose a sequential logic synthesis methodology that can 
convert the hierarchical specification of control units in the proposed hierarchical 
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FSM models. Since, the sequential logic synthesis of a FSM is a well known 
subject, the proposed methodology will consist in the transformation of the 
hierarchical specification into a state transition table already minimised in terms of 
states, i.e. to implement automatically the first step of sequential logic synthesis. 
Since, manual synthesis is very tedious and error prone for all but trivial circuits, 
another purpose of this thesis is to create a tool that can automatically implement 
this synthesis methodology. 
 
In order to validate the proposed models and the synthesis methodology, the 
VHDL simulation for an implementation based on lookup tables will be used. 

1.4 Organisation of the Thesis 

This thesis is organised as follows: 
• Chapter 2 is devoted to the specification of control units. The specification 

requirements needed to conceptualise embedded reactive control units are 
described. The chapter presents the most common state-based formal models 
and the main characteristics of the VHDL hardware specification language. 

 

• Chapter 3 describes in detail the graph-schemes of algorithms and how they 
can be used to synthesise Moore and Mealy finite state machines. The 
hierarchical graph-schemes and the parallel hierarchical graph-schemes are 
presented in detail. The facilities provided by the tool SIMULHGS for the 
verification and simulation of algorithms described by hierarchical graph-
schemes are presented. 

 

• Chapter 4 starts by introducing the implementation of a hierarchical algorithm 
in a finite state machine with stack memory. The first models of the 
hierarchical and the parallel finite state machines are briefly explained and the 
new proposed models are fully described. The new facilities provided by them 
and the concept of a virtual hierarchical finite state machine are presented. 
Finally a full description of the proposed synchronisation mechanism for the 
different machines is made. 

 

• Chapter 5 is devoted to the synthesis of the proposed hierarchical and parallel 
machines. The steps that must be performed in order to transform a 
hierarchical algorithm to an ordinary state transition table are enumerated and 
explained in detail. The facilities provided by the tool SIMULHGS to 
perform the automatic synthesis of hierarchical machines are presented. 

 

• Chapter 6 describes the internal decomposition of the machines and the 
optimisation techniques used for a RAM-based implementation. 

 

• Chapter 7 presents the VHDL simulation results of the hierarchical and 
parallel machines and explains how to provide flexibility, extensibility and 
reusability. The comparison between a hierarchical and a non-hierarchical 
implementation of an algorithm is made. 

 

• Finally, chapter 8 presents the final conclusions and proposes future work. 
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2 SPECIFICATION OF CONTROL UNITS 

Summary 

The aim of this chapter is to survey the specification of control units in particular 
those that can appear in embedded real-time reactive control systems. 
 
The design process of an embedded system begins with the specification of its 
intended functionality. Since, in most cases embedded systems are very complex 
and heterogeneous, designers need a precise manner of capturing this functionality 
in order to ensure correct implementations of a system. The best way to achieve 
the level of precision required is to use a formal model. There are different kinds 
of formal models, but a state-oriented model is more suitable for describing 
control-dominated systems. 
 
However, since a model is basically a theoretical concept, designers need to use a 
hardware description language in order to capture these formal models in a 
concrete form. There are different description languages, VHDL being the most 
widely used by the academic community. 
 
There are a variety of formal models and hardware description languages. Hence, 
for choosing the more appropriate model and language it is necessary to first 
understand the specification requirements for conceptualising embedded 
systems. 
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2.1 Introduction 

System design is the implementation of a desired functionality with a set of 
physical components, and the whole process starts by specifying the desired 
functionality. Since a natural language description is often ambiguous and 
incomplete, designers need a more precise way to specify the system functionality. 
The best way to achieve the level of precision required is to consider the system as 
a set of simpler objects. There are different methods for decomposing the 
functionality into simpler objects. They differ in the type of the objects and the 
rules for assembling the system functionality. Each particular method is called a 
(formal) model [Gajski94, Edwards97]. Moreover, in order to master the design 
complexity and heterogeneity, the use of formal models is recommended to 
ensure implementations that are correct by construction [Edwards97]. 
 
However, to establish the formal model more appropriate for capturing the 
functionality of control units, in particular those that can appear in embedded real-
time reactive control systems, it is necessary to establish a relation between the 
specification requirements of the embedded systems and the characteristics of the 
formal models. 

2.2 Specification Requirements 

The requirements appropriated for conceptualising embedded systems are the 
following [Gajski94, GupLia97]. 

2.2.1 State transitions 

Embedded systems are best conceptualised as a set of modes or states, where each 
mode represents a state of being or some arbitrary computation. They are 
constantly responding to external events computing their outputs as a function of 
their inputs and their present state. The transitions between states are determined 
by external events. 

2.2.2 Concurrency 

In many situations the representation of the system behaviour with only sequential 
sub-behaviours would result in complex and unnatural descriptions that can be 
difficult to understand. Therefore, embedded systems are more easily 
conceptualised as a set of concurrent sub-behaviours that collaborate with each 
other in order to achieve the desired functionality. 

2.2.3 Hierarchy 

The “Divide and conquer” principle is the basic way of handling complexity. The 
hierarchical specification of a system allows it to be described as a set of smaller 
subsystems and enables the designer to focus on one subsystem at a time. There 
are two kinds of hierarchy namely, structural and behavioural [Gajski94]. 
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Structural hierarchy is defined as the process of decomposing a system as a set 
of interconnected components, each one of them can in turn have its own internal 
decomposition. It allows the designer to generate a new component from a set of 
already existing components. Structural hierarchy is closely related to concurrency. 
 
Behavioural hierarchy is defined as decomposing the system behaviour into 
distinct sub-behaviours that can be either sequential or concurrent. It allows the 
designer to break down the system complexity into manageable parts. 
 
Both structural hierarchy and behavioural hierarchy are required to allow the 
specification of a complex embedded system and they are essential to manage the 
complexity of systems in terms of specification size and readability. 

2.2.4 Non-determinism 

Non-deterministic behaviour is the quality of a system to be unpredictable and 
yielding different results from the same sequence of events. Although often non-
determinism is simply the result of an imprecise eventually incorrect specification, 
it can be an extremely powerful mechanism to reduce the complexity of a system 
by abstraction [Edwards97], since it eliminates all details that are not essential to a 
high-level description. 
 
However, the behaviour of a system should be predictable and even if behaviour 
may be non-deterministic, when there is not the complete information to predict 
its exact behaviour, it can be decomposed into deterministic parts [GupLia97]. 
 
There are two types of non-deterministic behaviour in conceptual models 
[Gajski94]: selection non-determinism refers to non-deterministic selection of 
exactly one of several choices; ordering non-determinism involves a non-
deterministic ordering of several actions that have to be executed. 

2.2.5 Behavioural Completion 

Behavioural completion is defined as the ability to indicate that the behaviour 
has completed, i.e. that all the computations in the behaviour have been 
performed, and that other behaviours can detect this completion [Gajski94]. 
 
Behavioural completion is achieved in a state-based specification with the explicit 
definition of a set of final states, and with the control flowing to one of these final 
states. When using programming language constructs behavioural completion 
occurs when the last statement in the program has been executed. 
 
The specification of behavioural completion has two advantages [Gajski94]: it 
helps conceptualising each hierarchical level of description as an independent 
module, facilitating its analysis and verification; it allows a natural decomposition 
of behaviour into sequential sub-behaviours. 
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2.2.6 Programming Constructs 

Certain sub-behaviours of embedded systems can be specified more easily by 
means of mathematical expressions or an algorithm. There are several notations to 
describe algorithms, but programming language constructs are more usually used. 
 
These constructs include assignment statements, branching statements (if, case 
statements), iteration statements (while, repeat and for loops), and subroutines 
(functions and procedures). The support of structured data types such as records, 
arrays and linked lists that allow for the modelling of complex data structures is 
also a very useful feature. 

2.2.7 Communication 

If the behaviour of a system is described as a set of concurrent sub-behaviours or 
processes they need to communicate with each order, in order to achieve the 
desired functionality. This kind of communication between them is usually 
conceptualised in term of the shared memory or the message passing 
paradigms [Gajski94]. 
 
In the shared memory model, each sending process writes to a shared medium, 
such as a global variable or port, which can be read by all receiving processes 
[Gajski94]. The shared medium can be persistent or non-persistent. 
 
A persistent shared medium is one that retains the value written by one process, 
until that value is rewritten by another process, while in a non-persistent shared 
medium the data is only available at the instance when it is written, since it is not 
retained by the medium between two successive writes [Gajski94]. 
 
In the message-passing model, the data is transferred between processes over an 
abstract medium called a channel, using send-receive primitives [Gajski94]. 

2.2.8 Synchronisation 

When the behaviour of a system is described as a set of concurrent sub-
behaviours or processes, each process may generate data and events that need to 
be recognised by the other processes. In such cases, data exchanged between 
processes or actions performed by different processes at the same time may need 
to be synchronised [Gajski94]. There are two synchronisation methods namely, 
control-dependent and data-dependent. 
 
In a control-dependent synchronisation mechanism, the control structure of the 
process is responsible for the synchronisation [Gajski94]. In addition to that, the 
synchronisation can be achieved by means of the following inter-process 
communication methods [Gajski94]: shared-memory based synchronisation; 
synchronisation by common event; synchronisation by status detection; 
synchronisation by message passing. 
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2.2.9 Exceptions 

In some cases, the occurrence of a certain external event, like a reset or an 
interrupt, demands that a behaviour will be immediately terminated rather than 
having to wait for the computation to complete, and that a predefined behaviour 
will be executed instead. 

2.2.10 Timing 

Since in real-time systems the performance is measured in terms of how well it 
respects the timing constraints, it is important the notion of timing to reflect real 
implementations, i.e. by specifying time the simulation results obtained are more 
realistic. There are two ways of specifying timing information namely, functional 
timing and timing constrains [Gajski94]. 
 
Functional timing is defined as all timing information that affects the simulation 
output of the system specification, and therefore adding functionality to the 
system. Timing constrains are utilised in the specification of a system in order to 
be used by simulation and synthesis tools. 

2.3 Specification models 

2.3.1 Introduction 

The purpose of a model is to provide an abstract view of a system and in order to 
be useful should possess the following qualities [Gajski94]: it should be formal to 
provide no ambiguity; it should be complete to allow describing the entire system; 
it should be comprehensive and easy to modify to allow future changes in the 
system functionality; it should be natural enough to help the designer to 
understand the system. 
 
A model of a design should consist of the following components [Edwards97]: a 
functional specification; a set of properties that the design must satisfy; a set of 
performance indexes that evaluate the quality of the design in terms of cost, 
reliability, speed, size, etc.; a set of constraints. 
 
In general, the models fall into the following five distinct categories: state-
oriented; activity-oriented; structure-oriented; data-oriented and heterogeneous. 
 
A state-oriented model describes a system in terms of states and transitions 
between them provoked by external events. A state-oriented model is more 
suitable for describing control-dominated systems, such as embedded real-time 
reactive control systems, where the temporal behaviour of the system is the most 
important feature of the design. Basically there are the following state-oriented 
models: finite state machines (FSM); algorithmic state machines (ASM); graph-
schemes of algorithms (GS); Petri nets and Statecharts. 
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2.3.2 Finite State Machine model 

Since the behaviour of control-dominated systems is more naturally represented in 
the form of states and transition between states, the most popular state-oriented 
model is the finite state machine model (FSM). A FSM can be represented 
graphically through a state transition diagram (see Figure 2.1a) or textually through 
a state transition table (see Figure 2.1b), and it can be formally described as a 
quintuple, 
 

< A, X, Y, δ : A × X → A, λ : A × X → Y > 
 

where A={a0,a1,…,aM} is a finite set of states, X={x1,…,xL} is a finite set of 
inputs, Y={y1,…,yN} is a finite set of outputs, δ is the transition function or 
the next state function, which determines the next state from the present state 
and the inputs, and λ is the output function, which determines the outputs from 
the present state and the inputs. 
 
There are two well-known types of FSMs that are, the transition-based Mealy 
FSM and the state-based Moore FSM. They differ in the definition of the output 
function. In Moore the outputs depend only on the present state (λ: A→Y), while 
in Mealy the outputs depend on both the present state and the inputs 
(λ: A × X→Y). 
 
In other words, the outputs are associated with states in Moore, while in Mealy 
they are associated with transitions. In practical terms, the major difference 
between the two models is that Moore may require more states than Mealy to 
describe the behaviour of a control system. This is because Mealy can have 
multiple arcs pointing to a single state with each arc having a different output 
value, while Moore demands a different state for each different output value. 
 
Let’s consider the example of a vending machine that delivers drink cans after it 
has received one hundred and fifty Portuguese escudos (150$). The machine 
accepts coins of 50$ and 100$, one at a time. If the consumer supplies three coins 
of 50$ or one coin of 50$ and one coin of 100$ he receives a can, but if he 
supplies two coins of 100$ he receives a can and 50$ of change. 
 
Let’s assume the following rules in order to keep the example simple: the machine 
only supplies one kind of can so there is no need for pushing any button to 
retrieve the can; there is not a cancel button to retrieve the already inserted coins; 
and the consumer does not insert any extra coins after having inserted enough 
money and while waiting for the can and the change. 
 
The vending machine state transition diagram (Moore FSM type) depicted in 
Figure 2.1a only includes transitions that explicitly cause a state transition. The 
machine remains in a state while a coin is not inserted. On the other hand the 
outputs get can and 50$ change are represented only in the states where they are 
asserted. On all others states they are negated. The equivalent and complete state 
transition table is presented in Figure 2.1b. 
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Figure 2.1 – (a) Vending machine state diagram. (b) Vending machine state transition table. 

In general the FSM is suitable for modelling control dominated systems, but since 
the FSM model does not explicitly support hierarchy and concurrency, it is not 
suitable for modelling complex systems due to an explosion in the number of 
states [Harel90, Gajski94, Edwards97]. 

2.3.3 Algorithmic State Machine model 

State diagrams are not adequate to capture the notation of an algorithm and they 
are weak in capturing the structure behind complex sequencing [Katz94]. The 
algorithmic state machine model (ASM) introduced by Clare in [Clare73] is an 
alternative way to describe a FSM behaviour that looks like a program flowchart. 
 
The ASM chart is used to design a state machine that implements an algorithm. It 
is a graphical description of the output and next state functions of the state 
machine and when completed it becomes part of the design documentation. 
 
The ASM chart consists of one or more interconnected ASM blocks. One ASM 
block (see Figure 2.2) describes the state machine operation during one state time, 
and represents the present state, the state outputs, the conditional outputs and the 
next state for a set of inputs. Therefore, the output and next state functions are 
represented by the ASM chart on a state by state basis, with only one restriction 
imposed to the ASM blocks interconnection. This restriction is that there must be 
only one next state for each state and a stable set of inputs [Clare73]. 
 
The ASM block (see Figure 2.2) has one entry path and any number of exit paths. 
It is composed of one state box, and a network of decision boxes and conditional 
output boxes. This network can have any number (zero is allowed) of decision 
and conditional output boxes. 
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A state is represented by a state box (see Figure 2.2) and it has the following 
information: a name encircled on the left or right side of the state box; a code that 
is probably unknown when first drawing the ASM description; an output list 
selected from a defined set of operations written inside the state box. The output 
list mentions the signals that are asserted whenever the state is entered. It is 
possible to specify if the signal is asserted immediately or if it is delayed until the 
next clock event. Usually the immediate signals are prefixed with the letter I, while 
the delayed signals are not prefixed. 
 
The decision box (see Figure 2.2) involves the inputs to the state machine and 
gives the conditions that control the state transitions and the conditional outputs. 
The box contains a Boolean expression that determines the ASM block to be 
entered next. The decision box has two exit paths. The True Exit Path usually 
indicated by 1 or T, is taken when the enclosed condition is true and the False 
Exit Path usually indicated by 0 or F, is taken when the enclosed condition is false. 
The order in which the condition boxes are cascaded is irrelevant for the 
determination of the next ASM block [Katz94]. 
 
The conditional output box (see Figure 2.2) describes other outputs, which are 
dependent on input signals in addition to the state of the machine. The output 
signals written inside the condition box can also have immediate and delay 
qualifiers. 

*
________________
________________
________________

* * *State Name State Code

STATE BOX
State

Output List

Condition

DECISION

BOX

_____________
_____________

State Entry Path

Conditional
Output List

N Exit Paths

01
Condition

True Exit Path
Condition

False Exit Path

CONDITIONAL

OUTPUT BOX

State Exit Path

ASM
BLOCK

 
Figure 2.2 – The ASM block. 

The ASM chart of the vending machine state transition diagram presented in 
Figure 2.1a is depicted in Figure 2.3. 
 
In order to simplify the ASM chart drawing, the outline box of the ASM block can 
usually be omitted, because the block is clearly defined to include all the 
conditional boxes and conditional output boxes between one state and the next. 
Moreover, some of the conditional boxes from one state can be shared by another 
state [Clare73]. 
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Figure 2.3 – Vending machine ASM chart. 

The ASM model is well documented in [WinPro80, Green86]. Like the FSM 
model the ASM model does not explicitly support concurrency or hierarchy and it 
is not suitable for modelling complex systems. 

2.3.4 Graph-Scheme of Algorithm model 

The graph-scheme of algorithm model (GS) was proposed in [Baranov74]. It is 
also presented in [Baranov94] and it is described in detail in the next chapter. 
 
A GS is a directed connected graph, which is composed of an initial rectangular 
node labelled with Begin, a final rectangular node labelled with End and a finite 
set of rectangular and rhomboidal nodes. Each rectangular node, apart from the 
nodes Begin and End lists the output signals that are asserted whenever the node 
is reached. Each rhomboidal node tests one input signal in order to determine the 
path to follow. The GS of the vending machine state transition diagram presented 
in Figure 2.1a is depicted in Figure 2.4. 
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Figure 2.4 – Vending machine GS description. 

Like the FSM and the ASM models, the GS model does not explicitly support 
concurrency or hierarchy and it is not suitable for modelling complex systems. 
However, the hierarchical graph-schemes (HGS) introduced in [Sklyarov84] 
support hierarchical descriptions based on the use of macrooperations and logic 
functions. The parallel hierarchical graph-schemes (PHGS) introduced in 
[Sklyarov87] in addition to hierarchical descriptions also allow macrooperations 
invoked in parallel. They are both suitable for modelling complex systems and 
they are further described in the next chapter. 

2.3.5 Petri net model 

The Petri net model is a state-oriented model for describing and studying 
information processing systems that are concurrent, asynchronous, distributed, 
parallel, non-deterministic and stochastic [Murata89]. 
 
The Petri net graphical model consists of a set of places, a set of transitions and 
a set of tokens (see Figure 2.5). Tokens inhabit in places and flow through the net 
by being consumed and produced whenever a transition fires, and they are used to 
simulate the dynamic and concurrent activities of the system. A Petri net can be 
formally described as a quintuple [Murata89], 
 

PN = (P, T, F, W, M0) 
 

where P={p1,…,pM} is a finite set of places, T={t1,…,tN} is a finite set of 
transitions with P and T being disjoint sets. F ⊆ (P × T) ∪ (T × P) is a set of arcs 
between places and transitions (flow relation), W: F→{1, 2, 3, …} is a weight 
function and M0: P→{0, 1, 2, 3, …} is the initial marking, i.e. the initial number 
of tokens in each place. 
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In order to simulate the dynamic behaviour of a system, the Petri net marking 
changes according to the following transition (firing) rules [Murata89]: 
1. a transition t is enabled if each input place p of t is marked with at least w(p, t) 

tokens, where w(p, t) is the weight of the arc from p to t; 
 

2. an enabled transition may or may not fire, depending on whether or not the 
event actually takes place; 

 

3. a firing of an enabled transition t removes w(p, t) tokens from each input place 
p of t, and adds w(t, p) tokens to each output place p of t, where w(t, p) is the 
weight of the arc from t to p. 

 
A transition without any input place is called a source transition and a transition 
without any output place is called a sink transition [Murata89]. 
 
The Petri net that represents the functionality of the vending machine is depicted 
in Figure 2.5. There are six places graphically represented as circles (0$, 50$, 100$, 
150$, 50$ change, no change) and eight transitions graphically represented as bars 
(three 50$ coin, three 100$ coin, get can, get can + 50$). The marking function assigns 
one token to the places 0$ and no change and zero tokens to the remaining places. 
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Figure 2.5 – Vending machine Petri net. 

Any finite state machine or its state diagram can be modelled by a subclass of Petri 
nets called state machines. State machines are Petri nets with only one token and 
where each transition has exactly one incoming arc and exactly one outgoing arc. 
 
The state machine that describes the state diagram presented in Figure 2.1a is 
depicted in Figure 2.6 and it is equivalent to the Petri net presented in Figure 2.5. 
The five states of the FSM are represented by the five places (0$, 50$, 100$, 150$, 
200$), where the initial state (place 0$) is indicated by having one token. The 
transitions between states are shown by the six transitions labelled with input 
conditions (three 50$ coin, three 100$ coin) and the outputs of the state machine are 
generated in the two transitions get can and get can + 50$. 
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Figure 2.6 – State machine equivalent to the previous Petri net. 

The structure of the place 0$ having the two output transitions 50$ coin and 100$ 
coin, is referred to as a conflict, decision or choice depending on applications. State 
machines allow the representation of conflicts, but not the synchronisation of 
parallel activities. 
 
Petri net models can be used to check certain system properties, such as safeness 
and liveness. A Petri net is said to be safe if the number of tokens in each place 
does not exceed one token. A Petri net is said to be live if, no matter what 
marking has been reached from M0, there is always one transition that can fire. 
For that reason, a live Petri net guarantees deadlock-free operation, no matter 
what firing sequence is chosen. The Petri nets of Figure 2.5 and Figure 2.6 are 
both safe and live. 
 
Although a Petri net does have many advantages in modelling concurrent systems 
it does not support hierarchy, and like the FSM, the ASM and the GS models it is 
not suitable for modelling complex systems. 

2.3.6 Statecharts model 

The Statecharts model was introduced in [Harel87] as a visual formalism for 
specifying the behaviour of complex reactive systems [DruHar89, Harel90]. To 
demonstrate the formal syntax and semantics of Statecharts the output-free 
Statechart depicted in Figure 2.7 and presented in [DruHar89] will be used. 
 
Like the FSM model, Statecharts are based on states, events and conditions with 
the latter two causing transitions between states. States and transitions can be 
associated in various ways with output events, called actions, which can be 
triggered either by executing a transition, or by entering, exiting or being in a state. 
 
They combine the Moore and Mealy FSMs extended with hierarchical and 
concurrent constructions, in order to overcome the limitations of the 
conventional FSM model to specify complex reactive systems [DruHar89]. 



CHAPTER 2 : SPECIFICATION OF CONTROL UNITS 27 

Statecharts are a graphical language, where states are represented with rounded 
rectangles that can be repeatedly combined into higher level states, or alternatively 
high level states can be detailed into lower level states, using AND and OR 
clustering modes. 
 
Figure 2.7 shows an AND state A composed of two states B and C separated by a 
dash line, meaning that when the system is in A it must be in B and in C. In other 
words B and C are orthogonal states. However B and C are OR states, meaning 
that when the system is in B it must be in D or E or F, and when the system is in 
C it must be in G or H. The states (D, E, F) and the states (G, H) are exclusive 
states. Thus when the system is in the state A there are the following possible state 
configurations: (D, G); (D, H); (E, G); (E, H); (F, G); (F, H). The arrows 
beginning with a dot (default arrow) and pointing to the states E and G means 
that those are the initial states of B and C respectively. Therefore the initial state 
of A is the configuration (E, G). 
 
Transitions in a Statechart are not restricted to a level and can lead from a state on 
any level of clustering to any other state [DruHar89]. Some examples are shown in 
Figure 2.7. The event a causes a transition from the state K to the state L. The 
event b causes a transition from the state J, which means from the state L or M, to 
the state K. The event c causes a transition from A, from one of the state 
configurations listed above, to the state M. In the case of the event d the transition 
is made to the super state J, or in other words to its initial state L that is the state 
with the default arrow. 
 
Transitions are in general from configurations to configurations with the 
possibility of orthogonal components in the source and target states. The event f 
in Figure 2.7 causes a transition from the configuration (F, H) to the state P, or 
from the state P to the configuration (D, H). 
 
Concurrency and independence are both made possible by orthogonality 
[DruHar89]. The event m in Figure 2.7 causes a simultaneous transition from E to 
F and from G to H if the configuration is (E, G), but the event p causes a 
transition from E to D independently of what is happening in C. 
 
Outputs can be associated with transitions as in a Mealy FSM by writing a/o along 
an arrow triggered by event a that will assert the action o. Similarly o can be 
associated with entering (entry o), exiting (exit o) or being (throughout o) in a state like 
in a Moore FSM. In either case o can be an external event (action), or an internal 
one that can be used to synchronise other transitions in some orthogonal states 
[DruHar89]. 
 
Statecharts allow timing specifications in states. However, since those timing 
constraints can appear in states at any level and in any orthogonal component, it 
actually allows global timing constraints [DruHar89]. 
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Statecharts provide various synchronisation methods. An event that reaches a 
state boundary box synchronises the state. For example, event e in Figure 2.7 
reinitialises state A to its initial configuration (E, G). Another way is asserting an 
internal variable that will be used as an event to synchronise other transitions. 
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Figure 2.7 – A Statechart example. 

Statecharts allow for the description of complex reactive systems, because they 
support hierarchical and concurrent descriptions, timing specifications and 
synchronisation methods, but like any other state-oriented model it is tailored for 
control-dominated systems, with the data associated with activities within states or 
along transitions [DruHar89]. As a result they are not suitable for modelling 
complex systems, which may require complex data structures [Gajski94]. 
 
The Statechart of the vending machine presented in Figure 2.1a is depicted in 
Figure 2.8. 
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Figure 2.8 – Vending machine Statechart. 
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2.4 Specification languages 

2.4.1 Introduction 

The formal models presented in the previous paragraph can be used to understand 
and describe the system functionality. But, since a model is a theoretical concept, 
designers need an executable specification language capable of capturing the 
system functionality in a simulatable form [Gajski94]. 
 
Such an approach has the following advantages [Gajski94]: designers can verify 
the correctness of the intended functionality of a system through simulation; the 
specification can be used as an input to synthesis tools; the specification can serve 
as part of the system documentation and to exchange the design information 
between different designers and tools. 
 
To be useful, a design language must help the designer to meet the following goals 
[GupLia97]: to model correctly and unambiguously the hardware behaviour at 
various levels of abstraction; to simulate the hardware model along with the rest 
of the system that can contain software parts; to synthesise an efficient hardware 
solution using existing CAD tools. 
 
The two most widely used hardware specification languages are VHDL [IEEE94] 
and Verilog [ThoMoo91]. The latter is mainly used in industry, while the former is 
widely accepted by the design community, specially the academic community, as a 
description, simulation, verification and synthesis language and a large number of 
tools using graphical environments were developed for it like for example 
EaseVHDL, VSystem, ViewLogic and Synopsys. 

2.4.2 VHDL 

In the search for a standard design and documentation tool for the VHSIC (Very 
High Speed Integrated Circuits) program the United States Department of 
Defense (DoD) sponsored a workshop on hardware description languages in the 
summer of 1981. Based on the recommendations of that workshop, the DoD 
established in 1983 the requirements for a standard VHSIC Hardware Description 
Language (VHDL) and contracted IBM, Texas Instruments and Intermetrics 
corporations for its development [Navabi93]. The VHDL language was 
standardised by the IEEE in 1987. 
 
VHDL borrowed some features from the ADA language and can be used to 
represent and describe hardware components and systems. Since it was created as 
a language for specifying large systems, readability was preferred to writability and 
consequently the language is fairly verbose [Micheli94]. 
 
The description of a component consists of an interface specification and an 
architectural specification. The interface description is identified by the keyword 
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entity and contains the input and output ports of the component, and other 
external characteristics such as time. 
 
An architectural description is identified by the keyword architecture and 
describes the component functionality. This functionality depends on the ports 
and the other parameters specified in the interface specification. It can be 
described behaviourally using programming constructs, structurally using existing 
components, in a dataflow manner specifying the flow of data through the 
registers and buses (register transfer level) or using a combination of the above. 
An entity can have more than one architectural specification. 
 
VHDL supports concurrent instantiation of components, which is the basic 
construct for structural hierarchy. A structural description consists of 
instantiations of already existing components and the interconnections between 
them are specified using signals. 
 
VHDL supplies the process construct in order to describe behaviourally a 
component. A process is a statement that is active at all times, executing 
concurrently with other processes and that can be made sensitive to selected 
signals using a sensitivity list. A process is identified by the keyword process and it 
is composed of a declarative part and a statement part. The statement part of a 
process is sequential, always active, triggered by the signals declared in the 
sensitivity list and it executes in zero time. The statement part of a process can use 
functions and procedures and can select and assign values to signals using if, case 
and loop (for and while) statements. 
 
VHDL supports a two-level behaviour hierarchy [Gajski94], the first level being a 
specification decomposed into a set of concurrent processes, the second level 
being a sequential decomposition of these processes into procedures. 
 
VHDL has two kinds of objects that can be used for carrying values from one 
point in the program to another, namely variables and signals. Signals have 
hardware significance and differ from variables in that they have a time 
component associated with them. The after clause allows signal assignment 
statements to schedule future value updates. Signals can be used in sequential and 
concurrent bodies of VHDL, they can be global, but they can only be declared in 
concurrent bodies of VHDL. Variables on the other hand are mainly used for 
keeping intermediate values, they can only be declared and used in sequential 
bodies of VHDL, and they are local to the body in which they are declared. 
 
In addition to the programming constructs already mentioned that can be used 
inside a process statement, VHDL also offers a wide range of data types suitable 
for high-level behavioural modelling such as integer, real, enumeration, physical, 
array, record and pointer types. It also provides logical, relational and arithmetic 
operators. The latter, however apply only to the integer and real data types. 
VHDL also allows the overloading of operators. 
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VHDL also provides a package mechanism to encapsulate declarations and 
subprograms that can be included in any VHDL program. It allows the 
construction of libraries of commonly used declarations, procedures and functions 
into packages enhancing the modularity and reusability of the models [Micheli94]. 
 
Exceptions are supported by VHDL using guarded concurrent signal assignments, 
but there are no constructs for terminating the execution of a process in response 
to an exception [Gajski94]. 
 
In VHDL, communication between processes can be achieved by a shared 
memory model, based on signals that can be assigned by any process and that are 
visible to other processes. 
 
In VHDL, synchronisation can be achieved in one of the two following ways. The 
first is based on the sensitivity list of a process, which ensures that the process will 
begin to execute when an event occurs on any of the signals mentioned in the 
sensitivity list. The second employs the wait statement, which suspends the 
process until it detects either the occurrence of an event on any of the specified 
signals or the occurrence of the specified condition. 
 
In VHDL it is possible to specify functional timing using for example an after 
clause, while timing constraints can be indirectly specified using attributes 
[Gajski94]. 
 
VHDL does not support state transitions, and true behavioural hierarchy in which 
concurrency can be specified at any level of the hierarchy [Gajski94], and only 
through global variables it is possible to make a VHDL description non-
deterministic. 
 
The VHDL behavioural description of the vending machine state transition 
diagram presented in Figure 2.1a is depicted in Figure 2.9. 

2.5 Conclusions 

Control units such as embedded real-time reactive control systems are intrinsically 
state-based systems and since in most cases, their specification as a whole will lead 
to a solution with a huge number of states, they are too complex to be considered 
in their entirety. To avoid incomprehensive and eventually erroneous descriptions, 
their functionality is more easily described when hierarchically decomposed into a 
set of sequential and concurrent behaviours using a top-down decomposition. 
 
Since hierarchy, concurrency and non-determinism can be used in order to reduce 
the size of the representation of system behaviour when compared to a flat 
deterministic representation [Edwards97], the use of formal state-based models 
that can support hierarchical and concurrent specifications is highly recommended 
by many authors [DruHar89, Gajski94, Micheli94, Edwards97] for modelling the 
functionality of complex control units. 
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Among the formal state-based models, Statecharts and HGSs/PHGSs are the 
only models that can provide hierarchical and concurrent decompositions and 
therefore they can be used to model the behaviour of complex control units that 
do not require complex data structures, which is the case of control-dominated 
systems. 
 
Since VHDL provides features that can support the most important specification 
requirements of embedded systems, it can be used for capturing the functionality 
of control units with two advantages: wide acceptability and availability of 
simulators. 
 

Figure 2.9 – Vending machine VHDL behavioural description. 

entity  VENDING_MACHINE  is 
 port  ( CLOCK, COIN_50, COIN_100 : in bit; GET_CAN, GET_CHANGE : out bit ); 
end  VENDING_MACHINE; 
 
architecture  BEHAVIOURAL  of  VENDING_MACHINE  is 
 
 type  STATE  is  (STATE_0, STATE_50, STATE_100, STATE_150, STATE_200); 
 signal  CURRENT_STATE : STATE; 
 
begin 
 
 process( CLOCK ) 
 begin 
 if ( CLOCK = '1' and CLOCK'event ) then 
 case  CURRENT_STATE  is 
 when STATE_0 => if  COIN_50 = '1' 
 then  CURRENT_STATE <= STATE_50; 
 elsif  COIN_100 = '1' 
 then  CURRENT_STATE <= STATE_100; 
 end if; 
 when STATE_50 => if  COIN_50 = '1' 
 then  CURRENT_STATE <= STATE_100; 
 elsif  COIN_100 = '1' 
 then  CURRENT_STATE <= STATE_150; 
 end if; 
 when STATE_100 => if  COIN_50 = '1' 
 then  CURRENT_STATE <= STATE_150; 
 elsif  COIN_100 = '1' 
 then  CURRENT_STATE <= STATE_200; 
 end if; 
 when STATE_150 | STATE_200 => CURRENT_STATE <= STATE_0; 
 end case; 
 end if; 
 end process; 
 
 GET_CAN <= '1' when  ( CURRENT_STATE = STATE_150  or 
  CURRENT_STATE = STATE_200 )  else '0'; 
 GET_CHANGE <= '1' when  CURRENT_STATE = STATE_200  else '0'; 
 
end  BEHAVIOURAL; 
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3 HIERARCHICAL GRAPH-SCHEMES 

Summary 

The previous chapter has briefly introduced the graph-schemes of algorithms 
(GS) as a state-oriented formal model. The aim of this chapter is to present the 
basic concepts of GSs and how they can be used to synthesise a Moore and a 
Mealy finite state machine (FSM). The presented formal definition and notation 
closely follows [Baranov94]. 
 
This chapter also introduces the basic concepts of hierarchical graph-schemes 
(HGS) and parallel hierarchical graph-schemes (PHGS). Some considerations 
concerning execution, synchronisation and correctness of a HGS/PHGS are 
presented. 
 
Finally, the C++ tool SIMULHGS is introduced and it is explained how it can be 
used to construct, verify and simulate a hierarchical algorithm described by a set of 
HGSs. 
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3.1 Graph-Schemes of Algorithms 

A graph-scheme of algorithm (GS) is a directed connected graph [Baranov94], 
which is composed of an initial node Begin, a final node End, and a finite set of 
operational nodes (rectangular nodes) and conditional nodes (rhomboidal nodes) 
(see Figure 3.1). 
 

EndBegin

1

0

 
Figure 3.1 – Nodes of GS. 

It has the following formal description [Baranov94]: 
• each GS has one entry point which is an operational node marked with a 

Begin label, and one exit point which is an operational node marked with an 
End label; 

 

• other operational nodes contain microinstructions from the set 
ι={Y1,Y2,…,YT}. Any microinstruction Yt, includes a subset of 
microoperations from the set Y={y1,…,yN}. A microoperation is an output 
signal, which causes a simple action in the datapath such as setting a register or 
incrementing a counter. It is possible to write the same microinstruction in 
different operational nodes; 

 

• each conditional node contains just one element from the set X, where 
X={x1,…,xL} is the set of logic conditions. A logic condition is an input 
signal, which communicates the result of a test, such as the state of a sensor. It 
is possible to write the same logic condition in different conditional nodes; 

 

• all nodes, except the node Begin, have only one input. The node Begin has 
no inputs. All operational nodes, apart from the node End, have only one 
output. The node End has no outputs. A conditional node has two outputs 
marked with “1” (true) and “0” (false); 

 

• Inputs and outputs of the nodes are connected by directed lines (arcs), which 
go from the output to the input in such a way that: 
• every output is connected with only one input; 
• every input is connected with at least one output; 
• every node is located on at least one of the paths, which go from the node 

Begin to the node End. A GS with sub-graphs containing infinite cycles 
will not be considered; 

• one of the outputs of a conditional node can be connected with its input. 
Such conditional node is called a waiting node. 
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An example of a graph-scheme with 7 logic conditions (x1,…,x7) and 8 
microoperations (y1,…,y8) is depicted in Figure 3.2. 
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EndYe  
Figure 3.2 – An example of a GS. 

3.2 Execution of a GS 

3.2.1 GS Traverse Procedure 

Denote all possible L-component vectors of the logic conditions x1,...,xL by 
∆1,...,∆2L and suppose that the values of logic conditions can be changed only 
during microinstruction execution. Define the execution of a GS on any given 
sequence of vectors ∆m1,...,∆mq beginning from the operational node Begin, i.e. the 
initial operational node Yb. Let’s demonstrate this procedure for the GS of Figure 
3.2 and the sequence below containing four vectors ∆1,...,∆4. 
 

          x1  x2  x3  x4  x5 x6  x7 
∆1 =  1   0   0   1   0   0   1 
∆2 =  1   0   0   0   0   1   1 
∆3 =  0   1   0   1   1   1   0 
∆4 =  0   1   0   1   0   0   0 
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The traverse procedure starts from the initial operational node Yb and consists of 
the following steps. 
 
Step 1. Write the initial microinstruction Yb. 
 

Yb 
 
Step 2. Exit from the node Begin with the first vector ∆1. If the node following 
the initial node is the operational node Ys, write Ys right to Yb and change the 
vector ∆1 to ∆2. If the node following the initial node is the conditional node with 
the logic condition xp, find the value xp in ∆1. If xp=1, then exit the conditional 
node with xp through the output “1” (true) else if xp=0 then exit the conditional 
node with xp through the output “0” (false). In the example, the conditional node 
with x1 follows the node Begin and since x1=1 in ∆1, this conditional node is 
exited through the output “1”. 
 
Step 3. If the operational node Yt, follows the conditional node with the logic 
condition xp, write Yt right to Yb and change the vector ∆1 to ∆2. But if the 
conditional node with the logic condition xm, follows the conditional node with 
the logic condition xp, find the value xm in the current vector and leave the node 
with xm through the corresponding output, etc. until an operational node is 
reached. In the example, the operational node Y2 is reached, so it is written right 
to Yb. 
 

Yb Y2 
 
The traverse procedure continues with the vector ∆2 and it arrives to the 
operational node Y4, then it enters the operational node Y6 with the vector ∆3, and 
it reaches the final operational node Ye with the vector ∆4, thus obtaining the 
following row of microinstructions. 
 

Yb Y2 Y4 Y6 Ye 
 
The microinstruction row obtained is the value of the GS for the given sequence 
of vectors ∆m1,...,∆mq. There are only two possible results of the traverse 
procedure: 
• it reaches the node End. In this case, the number of microinstructions in the 

microinstruction row (without Yb and Ye) is less than the number of vectors; 
 

• the vectors are exhausted but it has not yet reached the node End. In this case, 
the number of microinstructions in the microinstruction row (without Yb) is 
equal to the number of vectors. 
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3.2.2 Paths in GS 

Let the GS have a path from the operational node Yi (i=b,1,2,…,T) to the 
operational node Yj (j=1,…,T,e), passing only through conditional nodes with the 
logic conditions xi1,...,xiR. 

j
e
iR

e
i1i Y...xxY iRi1  

 
If there are no conditional nodes in the path (R=0), then two operational nodes 
follow each other, for example Y1 and Y2 in Figure 3.2, and the path turns into the 
form. 

jiYY  
 
Suppose that 1e ir =  if the path proceeds from the conditional node with irx  
through the output “1” and 0e ir =  if the path proceeds trough the output “0” 
with r=1,…,R. The notation ix  is used instead of 0

ix  and ix  instead of 1
ix . 

 
To find all the paths from an operational node Yi, the sub-graph with the node Yi 
as the root is traversed. This procedure is demonstrated for the operational node 
Yb of the GS of Figure 3.2. 
 
Step 1. In the first path, all logic conditions are asserted (without negation). Find 
such a path from Yi, that leaves each conditional node through the output “1”. In 
the example, the first path is 4321b YxxxY . 
 
Step 2. To find the second path leave the last conditional node in the first path 
through the output “0” and continue the path leaving the following conditional 
nodes through the output “1”. In the example, the second path is 

e76321b YxxxxxY . Repeat step 2 for the new path. 
 
In the (q-1)-th path 

1qrt1tt1t1 iiiiiii Yx...xxx~...x~Y
−++−

, the variables 
1t1 ii x,...,x

−
 are either 

asserted or negated and all the variables 
rt1t ii x,...,x

++
 are negated, so 

ti
x  is the last 

asserted variable in this path. 
 
Step q. Find the path leaving the conditional node with 

ti
x  through the output 

“0” and continue this path leaving the following conditional nodes through the 
output “1”. The q-th path is 

qsp1pt1t1 iiiiiii Y...xxxx~...x~Y
++−

. 
 
The procedure ends when all the variables in the path are negated, i.e. when 
leaving each conditional node through the output “0”. For this example there are 
the following seven paths: 4321b YxxxY ; e76321b YxxxxxY ; 576321b YxxxxxY ; 

46321b YxxxxY ; 2421b YxxxY ; 3421b YxxxY ; 11b YxY . 
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When finding all the paths from the operational node Y2 in Figure 3.2, a cycle 
containing only conditional nodes is reached. In this case there is an infinite set of 
paths between the operational nodes Y2 and Y4 and between Y2 and Y6. The paths 
that contain the same variable asserted and negated are ignored, since 0xx ii = . 
Furthermore, the paths that contain the same variable asserted ix  (or negated ix ) 
repeated several times, all but one ix  (or ix ) are removed. In this case there are 
just the following three paths: 6652 YxxY ; 2652 YxxY ; 452 YxY . 

3.2.3 Matrix Scheme of Algorithm 

Let’s call iRi1 e
iR

e
i1ij ...xx=α  a transition function from the operational node Yi to the 

operational node Yj. If two operational nodes follow each other then 1ij =α . If 
there exists more than one path (K paths) between two operational nodes Yi and 
Yj through conditional nodes, then the transition function is 
 

k
ij

K

1k
ij αα ∨

=
=  , 

 

where k
ijα  is the k-th path. 

 
The matrix scheme of algorithm (MSA) [Baranov94], which is equivalent to a 
GS is a square matrix with rows Yb,Y1,...,YT and columns Y1,...,YT,Ye. At the 
intersection of the row Yi and the column Yj the transition function ijα  is written. 
 
The MSA for the GS of Figure 3.2 is presented in Table 3.1, where it can be seen 
that the logic sum of all transition functions from an operational node Yt is always 
equal to 1. 

Table 3.1 – Matrix scheme of algorithm. 

 Y1 Y2 Y3 Y4 Y5 Y6 Ye 
Yb 1x  421 xxx  421 xxx

 
321 xxx  

6321 xxxx
76321 xxxxx

 
 76321 xxxxx

 
Y1  1      
Y2  65 xx   5x   65xx  
Y3    1    
Y4      1  
Y5       1 
Y6       1 

 
The MSA is the counterpart of the state transition table of a FSM and it is useful 
to describe large GSs. Moreover, since the logic sum of all transition functions 
from an operational node Yt is always equal to 1, the MSA allows detecting 
missing transitions in a GS. 
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3.3 Graph-Schemes of Algorithms and Finite State Machines 

Graph-schemes of algorithms can be efficiently used in order to describe the 
behaviour of control units. They can be used to synthesise a Moore or a Mealy 
finite state machine (FSM). 
 
The synthesis process is divided in the two following steps [Baranov94]: 
• construct a marked graph-scheme; 
 

• construct the state diagram of the FSM, or the state transition table in the case 
of a GS with a large number of states and transitions. 

3.3.1 Synthesis of a Moore Finite State Machine 

In order to mark a GS as a Moore machine it is necessary to perform the 
following actions [Baranov94]: 
• the label a0 is assigned to the node Begin and to the node End of the GS; 
• the labels a1,a2,…,aM are assigned to the operational nodes in the GS; 
• apart from a0, all the labels in the GS must be unique; 
• if any node has already been labelled, it must not be labelled again. 
 
After applying these rules to the GS of Figure 3.2, the GS depicted in Figure 3.3 
labelled with the states a0,…,a6 is obtained. 
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Figure 3.3 – GS marked for Moore synthesis. 
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In order to build the state diagram of the Moore machine, it is necessary to 
consider the transition paths s

e
mR

e
m1m a ...xx a mRm1  (am, as ∈{a0,…,aM}) in the marked 

GS, between two operational nodes marked with the states am and as (am=as is 
allowed) and containing R conditional nodes. If there are no conditional nodes in 
the path (R=0) then the path turns into the form smaa . 
 

Defining mre
mrsm x  )a,X(a

R

r 1=
∧=  (if R=0, then X(am,as)=1) then the above path can be 

rewritten as amX(am,as)as. 
 
Now let’s construct a state diagram with the states a0,…,aM, where a0 is the initial 
state of the FSM. If am labels the operational node with the microinstruction Yt, 
write the microinstruction Yt inside the circle with the state am (Y(am)=Yt). If there 
is a transition path amX(am,as)as in the marked GS, then draw an arrow line from 
the state am to the state as, labelled with the transition condition X(am,as). 
 
When a cycle containing only conditional nodes is reached, there are some paths 
that loop forever around conditional nodes. Those transition paths amX(am,am)am 
are represented with an arrow line looping around the state am, because the 
microinstruction Yt inside the state am is considered active until a state transition 
really occurs (see 2652 axxa  in Figure 3.4). 
 
The state diagram of the Moore machine realising the GS of Figure 3.3 is depicted 
in Figure 3.4, where 1

ix  is used instead of ix  and 0
ix  instead of ix . As a result the 

Moore machine obtained has as many states as the number of labels needed to 
mark the GS, i.e. the number of operational nodes of the GS plus the initial state. 
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Figure 3.4 – State diagram of the Moore FSM. 
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3.3.2 Synthesis of a Mealy Finite State Machine 

In order to mark a GS as a Mealy machine it is necessary to perform the following 
actions [Baranov94]: 
• the label a0 is assigned to the node Begin and to the node End of the GS; 
• the labels a1,a2,…,aM are assigned to the inputs which directly follow from 

output(s) of operational node(s) in the GS; 
• apart from a0, all the labels in the GS must be unique; 
• if any input has already been labelled, it must not be labelled again. 
 
After applying these rules to the GS of Figure 3.2, the GS of Figure 3.5 labelled 
with the states a0,…,a4 is obtained. 
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Figure 3.5 – GS marked for Mealy synthesis. 

In order to build the state diagram of the Mealy machine, it is necessary to 
consider the transition paths st

e
mR

e
m1m a Y ...xx a mRm1  or s

e
mR

e
m1m a ...xx a mRm1  (am, as 

∈{a0,…,aM}) in the marked GS, between two operational nodes marked with the 
states am and as (am=as is allowed) and containing R conditional nodes. If there are 
no conditional nodes in the first path (R=0) then the path turns into the form 

stm a Ya . The first path contains only one operational node at the end of the path, 
while the second path contains no operational nodes. 
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In some cases it can only be used the second kind of path, for example 
0763210 a xxxxx a , but in all other cases it should be used the first kind. Therefore 

the paths 14210 a xxx a , 33210 a xxx a , 363210 a xxxx a , 352 a x a  and 4652 a xx a  are 
not transition paths, because each one of them can be extended in order to cross 
one operational node. For example, 224210 a Yxxx a  instead of 14210 a xxx a . 
 

Defining mre
mrsm x  )a,X(a

R

r 1=
∧=  (if R=0, then X(am,as)=1) and Y(am,as)=Yt then the 

above paths can be rewritten as amX(am,as)Y(am,as)as and amX(am,as)as. 
 
Now let’s construct the Mealy state diagram with the states a0,…,aM, where a0 is 
the initial state of the FSM. If there is a transition path amX(am,as)Y(am,as)as, then 
draw an arrow line from the state am to the state as, labelled with the transition 
condition X(am,as) and with the output signals Y(am,as). If there is a transition path 
amX(am,as)as, then draw an arrow line from the state am to the state as, labelled with 
the transition condition X(am,as) and without asserting any output signals. 
 
When a cycle containing only conditional nodes is reached, there are some paths 
that loop forever around conditional nodes. Those transition paths amX(am,am)am 
are represented with an arrow line looping around the state am (see 2652 axxa  in 
Figure 3.6). 
 
The state diagram of the Mealy machine realising the GS of Figure 3.5 is depicted 
in Figure 3.6, where 1

ix  is used instead of ix  and 0
ix  instead of ix . As a result the 

Mealy machine obtained has as many states as the number of labels needed to 
mark the GS, i.e. commonly less than the number of operational nodes. 
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Figure 3.6 – State diagram of the Mealy FSM. 

Like it was expected, Figure 3.4 and Figure 3.6 are equivalent state diagrams, if the 
differences between Moore and Mealy machines are taken in consideration. 
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3.4 Hierarchical Graph-Schemes 

Hierarchical graph-schemes (HGS) were introduced in [Sklyarov84] and are 
graph-schemes of algorithms with the following distinctive features: 
• their operational nodes contain either microinstructions from the set 

ι={Y1,Y2,…,YT} or macroinstructions from the set ϕ={Z1,Z2,…}, or both. 
Any macroinstruction Zq, incorporates a subset of macrooperations from the 
set Z={z1,…,zQ}. Each macrooperation is described by another HGS of a 
lower level. For now each macroinstruction is assumed to include just one 
macrooperation, meaning that only sequential processes are considered; 

 

• their conditional nodes contain just one element from the set X∪Θ, where 
X={x1,…,xL} is the set of logic conditions, and Θ={θ1,…,θΙ} is the set of 
logic functions. Each logic function is calculated by performing a predefined 
set of sequential steps that are described by a HGS of a lower level. 

 
Consider the set Ε={ε1,…,εV}, for which Ε=Z∪Θ. Each element εv∈Ε 
corresponds to the HGS Γv, which describes either an algorithm for performing εv 
(if εv∈Z) or an algorithm for calculating εv (if εv∈Θ). In both cases an algorithm is 
being described using a HGS of lower level. Let’s assume that Z(Γv) is the subset 
of macrooperations and Θ(Γv) is the subset of logic functions that belong to the 
HGS Γv. If Z(Γv)∪Θ(Γv)=∅ then the algorithm has only one-level of 
representation and becomes an ordinary GS. 
 
A hierarchical algorithm of a control unit can be specified by a set of HGSs, 
which describes the main part and all the elements of the set Ε. The main part is 
being described by HGS Γ1 from which the execution of the control algorithm 
will be started. All other HGSs will be subsequently called either from Γ1 or from 
other HGSs that are descendants of Γ1. Figure 3.7 demonstrates a description of 
an algorithm with the HGSs Γ1, Γ2, Γ3, Γ4, Γ5 and Γ6, with Z={z1, z2, z3, z4, z5} 
and Θ={θ6}. 
 
Some operations in a HGS can be designated as virtual. A macrooperation (a logic 
function) is called virtual if it is not permanently attached during the design of a 
control unit. Any virtual element (VE), which is either a macrooperation or a logic 
function, can accept in future different implementations. A VE is described by the 
appropriate virtual HGS. The virtual HGS can be seen as a variable part of the 
control algorithm. 
 
A virtual element is called a pure virtual element (PVE) if it just has a name and 
does not have any implementation. A PVE is described by a pure virtual HGS, 
which is composed of just two nodes following each other: Begin and End (see 
the HGS Γ5 in Figure 3.7). The notions considered above were borrowed from 
the object-oriented programming [Booch94]. 
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If a HGS has at least one PVE, it is called an incomplete HGS. An incomplete 
HGS can be executed for the purposes of testing, but ultimately all PVEs have to 
be replaced with non pure VEs. 
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Figure 3.7 – An algorithm described by hierarchical graph-schemes. 
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3.5 Parallel Hierarchical Graph-Schemes 

Parallel hierarchical graph-schemes (PHGS) were introduced in [Sklyarov87] 
and include macroinstructions, which are composed of more than one 
macrooperation. When a macroinstruction has more than one macrooperation all 
of them will be executed in parallel. The transition from any active operational 
node to the next node will be carried out when all its components (a 
microinstruction and/or a macroinstruction) will be terminated. 
 
Figure 3.8 depicts a description of an algorithm with the PHGSs Γ1, Γ2, Γ3, Γ4, Γ5 
and Γ6, with Z={z1,z2,z3,z4,z5} and Θ={θ6}. 
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Figure 3.8 – An algorithm described by parallel hierarchical graph-schemes. 
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3.6 Execution and synchronisation of a HGS/PHGS 

The execution of a HGS is based on the GS traversal procedure explained in the 
paragraph 3.2.1. The execution starts from the node Begin of the main part, 
described by the HGS Γ1, and it is performed like for an ordinary GS until it 
arrives to a complex operation εv. Each complex operation εv such as εv=zq∈Z 
and εv=θi∈Θ (v∈{1,...,V}) described by a separate HGS Γv, initiates the execution 
of a new HGS in a new hierarchical level. When the execution of the new HGS Γv 
reaches its node End, the interrupted HGS will be resumed. The execution 
continues until the node End of the HGS Γ1 is reached. 
 
The execution of a PHGS is similar to a HGS with the following difference. When 
a macroinstruction contains more than one macrooperation, each macrooperation 
invoked in the node initiates the execution of a new PHGS. All PHGSs will run in 
parallel at the same hierarchical level and the interrupted PHGS will be resumed 
only after all parallel macrooperations will have been executed. In order to 
synchronise the parallel execution of macrooperations, the set of PHGSs must be 
extended and transformed accordingly with the rules defined in [Sklyarov87]. 
Constructing extended PHGSs depends on the model, Parallel FSM or Parallel 
Hierarchical FSM, chosen for implementation (see PFSM/PHFSM synthesis). 

3.7 Correctness of a HGS/PHGS and Problems with 
Recursive Calls 

Each HGS/PHGS that belongs to a hierarchical algorithm must be expurgated of 
sub-graphs containing infinite cycles (see Figure 3.9). If the conditional node x3 
will be exited through the “0” output, the HGS execution will enter in the group 
of four nodes on the right, constituted by two operational nodes (y3,y5,y7 and z2) 
and two conditional nodes (x6 and x2), and will never reach the node End. 
 

Begin

x1

1

x3 0

y6 , y8

1
0

1

x6

y3, y5 , y7

1

y1 , z3

y2 , y4

x5

1

x4

0 x2

0

End

1

0
0

z2

1

 
Figure 3.9 – An example of a HGS with an infinite cycle. 
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In order to prevent infinite recursion∗ in the execution of HGSs they must be 
checked for correctness using the technique described in [Sklyarov84]. A special 
graph is constructed, where the nodes represent macrooperations and logic 
functions, and the arcs between them represent invocations. One arc from the 
node zi (θi) to the node zj (θj) will mean that the HGS Γi invokes the HGS Γj in 
one or more operational nodes. If the graph does not have any group of nodes 
connected in a loop, the algorithm is free of infinite recursion. Figure 3.10 
presents this graph for the hierarchical algorithm of Figure 3.7. 
 

Z1

Z2Z3 Z4

Z5

θ6

 
Figure 3.10 – Special graph to detect infinite recursion. 

If there are two or more macrooperations or logic functions in a loop 
(macrooperation looping, logic function looping), it must be ensured that the 
algorithm has at least one escape to stop the infinite recursion. Figure 3.11 shows 
an example of macrooperation looping without infinite recursion. The HGS Γ1 
calls the HGS Γ2 when x1 is negated (“0”), that calls the HGS Γ3 that calls back 
the HGS Γ1. The loop exists but it can be broken when x1 is asserted (“1”) during 
the execution of the HGS Γ1. 
 

BeginΓ1

x1 0

z2y1

1

End

BeginΓ2

z3

End

y2

BeginΓ3

z1

End

y3

 
Figure 3.11 – Macrooperation looping without infinite recursion. 

 
If a recursive algorithm (a macrooperation calling itself) is being described, the 
terminating condition that will stop the recursion and that will let the algorithm to 
return back from the multiple invocation must be provided, otherwise the 
algorithm will fall in infinite recursion. 

                                              
∗ In this case recursion means circular invocation of macrooperations (logic functions). 
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3.8 An Example 

As an example let’s consider the fixed-point binary multiplication algorithm with 
operands represented in sign and module, the left most bit with index 0 being the 
sign. There are three 16 bits registers, the multiplicand A, the multiplier B and the 
result C. The multiplication is decomposed in two operations (see Figure 3.12). 
Macrooperation z1 implements the multiplication and macrooperation z2 
implements the round and sign calculation. 
 

Multiplication

Begin Begin

z1

Round and Sign
Calculation

z2

End End

C
O
D
E
D

 
Figure 3.12 – Binary multiplication algorithm. 

The multiplication algorithm depicted in Figure 3.13, starts by checking if any of 
the operands A and B is equal to zero, and if one of them is zero the product C is 
zero (C:=0) and the multiplication has finished. Otherwise it starts by clearing the 
result (C:=0) and setting the counter to fifteen (count:=11112). If the least 
significant bit of the multiplier is one (B(15)=1) the multiplicand is added to the 
result (C:=C+A(1:15)). Then the multiplier and the result are shifted right one bit 
(B(1:15):=SHR(B(1:15)), C:=SHR(C)), with the shifted out bit of the result written 
into the most significant bit of the multiplier (B(1):=C(15)) and the counter is 
decreased one unit (count:=count-1). The multiplication is repeated until all 
fifteen bits of the multiplier are processed, i. e. until the counter reaches zero 
(count=0). 
 
The round and sign calculation algorithm depicted in Figure 3.14 rounds the result 
(C:=C+1) if the most significant bit of the multiplier, i.e. the last shifted out bit of 
the result, is one (B(1)=1). If the two operands have the same sign (A(0)=B(0)) 
the result is positive, otherwise it is negative (C(0):=1). 
 
After coding the instructions, there are the following six logic conditions: 
x1 : A=0; x2 : B=0; x3 : B(15)=1; x4 : count=0; x5 : B(1)=1; x6 : A(0)=B(0), 
 
and the following nine microoperations: 
y1 : C:=0; y2 : count:=11112; y3 : C:=C+A(1:15); y4 : B(1:15):=SHR(B(1:15)); 
y5 : C:=SHR(C); y6 : B(1):=C(15); y7 : count:=count-1; y8 : C:=C+1; y9 : C(0):=1. 
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End
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Figure 3.13 – Macrooperation z1 implementation and codification. 
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Figure 3.14 – Macrooperation z2 implementation and codification. 
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The hierarchical implementation for a small example like this does not offer any 
advantages. In this case the two macrooperations should be merged in one graph-
scheme of algorithm and should be implemented as an ordinary FSM, i.e. the 
hierarchy should be flattened (see Figure 3.15). 
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Figure 3.15 – Non-hierarchical implementation and codification of the binary multiplication algorithm. 
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However, a hierarchical decomposition of an algorithm allows the designer to 
develop any complex control algorithm part by part concentrating his efforts on 
different levels of abstraction. Moreover, the macrooperations described can be 
separately tested and can be used to implement other algorithms developed in the 
future. For example, the round and sign calculation (macrooperation z2) can also 
be used in the algorithm that implements the binary division. 

3.9 C++ Simulation of Hierarchical Graph-Schemes 

3.9.1 Introduction 

A hierarchical algorithm can be expressed by a set of HGSs, describing all its 
components (macrooperations and logic functions). In order to ensure the 
correctness of the description, each HGS must be formally correct. The HGS 
must not have unreachable nodes nor nodes constituting infinite cycles, i. e. every 
node must be located on at least one of the paths which go from the node Begin 
to the node End. It is always possible to check manually the consistency of a 
small HGS containing a few nodes, but if the HGS is big containing let’s say 100 
nodes, it is probably very easy to miss some errors. So it is useful to consider 
automatic checking of HGSs. 
 
When executing an algorithm infinite recursion must be prevented, and therefore 
the algorithm has to be checked for macrooperations (logic functions) invoked in 
a loop. But, it is possible to have an algorithm with macrooperation looping 
without having infinite recursion, like it was shown in Figure 3.11. So, in order to 
ensure the correctness of the algorithm simulation is used. 
 
The tool SIMULHGS described in this paragraph provides such facilities. The 
tool was developed in C++ using an object-oriented methodology and its code is 
presented in Appendix B. 

3.9.2 Description of the Class System 

Figure 3.16 depicts the class system diagram using the Booch notation [Booch94]. 
In simple terms a hierarchical algorithm can be considered as a set of nodes 
grouped in entities called HGSs. So, the base class of the tool is the class Node. 
An object of class Node has a name nname, a type ntype and a state nstate. 
Certain member methods need to traverse the HGS recursively and to avoid 
infinite looping the traversed nodes are marked. For that purpose the data 
member nmark is used. The data member nauto is used to distinguish between 
the nodes that are marked automatically (by the marking methods) and those that 
are marked manually (at user request). 
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There are seven types of nodes: 
• node BEGIN; 
• node END; 
• node ASSIGN that assigns the return value of a logic function; 
• node MICROOP that contains a subset of microoperations; 
• node MACROOP that contains one macrooperation and that can also contain 

a subset of microoperations; 
• node CONDITION that contains one input condition; 
• node FUNCTION that contains one logic function. 

 
These node types are grouped in two classes: operational nodes (the first five) 
and conditional nodes (the last two). So, two classes were derived from the base 
class Node. Class Onode adds to the base class a pointer to the next node, while 
class Cnode adds two pointers, next node when true and next node when false. 
 
A hierarchical graph-scheme is a directed connected graph composed of a finite 
set of nodes and the class Graphscheme represents it. An object of the class 
Graphscheme has a name gsname, a type gstype and the number of nodes 
gsnnodes. There are two kinds of hierarchical graph-schemes: LFUNCGS (logic 
function) and MACROGS (macrooperation). They must be distinguished because 
they have different properties concerning the type of nodes they can have. 
 
In some methods, all the nodes of a HGS need to be processed in a repetitive for 
statement, so it is worth to have an array of pointers to the nodes (gslist) instead 
of just one pointer to the node Begin. In some synthesis steps, a HGS must know 
if it is the main HGS of the algorithm or not. That information is stored on 
gsmain. The number of states used to mark each HGS, in the case of the HFSM 
model 3, is stored in gsnstates. 
 
The class Hgraphscheme represents a hierarchical algorithm. An object of this 
class has a name hgsname, the number of elements of the set of HGSs hgsngs 
and an array of pointers to the HGSs hgslist. 
 
The remaining data members store information generated by some methods. If an 
algorithm is checked and is correct hgscheck is equal to 1. After simulating an 
algorithm the deepest level of hierarchy reached is stored in hgsdeep. The string 
hgssyn indicates if it is a Moore or a Mealy HFSM that is being synthesised. If the 
HFSM model 2 is chosen, one state transition table for the set of HGSs (merge 
tables), then hgsmark is equal to 1. Otherwise, in the case of the HFSM model 3, 
one state transition table per HGS (split tables), then hgsmark is equal to 0. The 
number of states needed to mark the algorithm, in the case of the HFSM model 2, 
is stored in hgsnstates. 
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Figure 3.16 – Class system diagram of the tool SIMULHGS. 

3.9.3 Acquisition and Construction of a Hierarchical Algorithm 

SIMULHGS constructs a hierarchical algorithm from a set of text files. The text 
files can be prepared manually with a text editor or generated automatically in a 
graphical editor developed for that purpose and described in [ParCra98]. This 
graphical editor allows the creation of separated HGSs as well as algorithms 
composed with already existing HGSs and newly developed HGSs. The editor 
generates text descriptions of correct HGSs and the textual decomposition of 
algorithms. 
 
Each HGS is constructed from a text file with the following format (see Figure 
3.17 and Figure 3.18). The first line is the macrooperation (logic function) name. 
The remaining lines have the description of the nodes, in fields separated by the 
character space, with the following format: 
• the first field of the line is the character O for an operational node or C for a 

conditional node; 
 

• the second field contains the node name and defines its type: 
• BEGIN node type, BEGIN; 
• END node type, END; 
• MICROOP node type, a set of microoperations starting with the character 

y and without any z character (for example y1,y7,y8); 
• MACROOP node type, a macrooperation starting with the character z (for 

example z5) or a set of microoperations followed by a macrooperation (for 
example y3,y5,z2); 
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• CONDITION node type, an input condition starting with the character x 
(for example x2); 

• FUNCTION node type, a logic function starting with the character f (for 
example f6); 

• ASSIGN node type, a string fi=value where value is 0 or 1 (for example 
f6=0); 

 

• the third field contains the number of the line where the next node of an 
operational node is described (this field does not exist for the node END). Or 
in the case of a conditional node the number of the line where the next node 
when the condition is true is described; 

• the fourth field only exists in the case of a conditional node and contains the 
number of the line where the next node when the condition is false is 
described. 

 
Figure 3.17 and Figure 3.18 present respectively text descriptions of the 
macrooperation Z1 and of the logic function θ6. 
 

Z1.txt

Z1
O  BEGIN  2
O  y2  3
C  x1  8  4
C  x2  5  6
O  y3,y5,z2  7
O  z3  7
O  y1,y4  13
C  x2  9  10
O  y1,y7,y8  11
O  z5  12
C  f6  12  7
O  y3  13
O  END

z5

Begin

y2

y3 , y5 , z2

y1 , y4

y1 , y7 , y8

End

z3

x1

x2

0

x2

1

01
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0

y3

1

1

Ζ1

 
Figure 3.17 – Macrooperation Z1 and its text description. 

F6.txt

F6
O  BEGIN  2
C  x3  3  4
O  f6=1  5
O  f6=0  5
O  END

Begin

θ6 = 1 θ6 = 0

End

x3
1 0

Θ6

 
Figure 3.18 – Logic function Θ6 and its text description. 
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The algorithm decomposition is described in a text file where, the first line is the 
algorithm name and the remaining lines list the HGSs names being the first HGS, 
second line of the file, the main HGS. The text description of the algorithm of 
Figure 3.7 will look like the following text. 

 
When SIMULHGS starts, the user must supply the filename where the set of 
HGSs is described and the Hgraphscheme constructor is invoked. If the file 
does not exist the program will terminate, because the set of HGSs cannot be 
constructed. If the file is successfully opened the name of the algorithm is stored 
in hgsname. Then for each name listed in the following non-empty lines a 
filename with the txt extension is created, the Graphscheme constructor is 
invoked and the HGS pointer is stored in the array hgslist. When the end of file 
is detected, the number of HGSs is stored in hgsngs and the file is closed. 
 
The first parameter of the Graphscheme constructor is the filename where the 
HGS is described. The second parameter main is 1 for the main HGS and 0 for 
the remaining HGSs. By default this parameter is 0. If the file is successfully 
opened the name of the HGS is stored in the string gsname, otherwise an empty 
HGS will be constructed. If the name starts with the character Z it describes a 
macrooperation MACROGS. If the name starts with the character F it describes a 
logic function LFUNCGS. 
 
Then for each non-empty line of the file the type of node is detected and the 
respective constructor Onode or Cnode is invoked. After all the nodes have been 
constructed and their pointers stored in the array gslist, the nodes must be linked. 
The information about the next nodes, third and fourth field of the line, is used by 
Setnext() to link the nodes. The number of nodes is stored in gsnnodes, the 
information about the main HGS passed through the second parameter is stored 
in gsmain and the file is closed. 
 
The Onode and Cnode constructors use the Node base class constructors. 
Because the nodes Begin and End have their types automatically defined by their 
names, there are two constructors for operational nodes. The first, used for the 
nodes Begin and End, has only one parameter name, while the second, used for 
the remaining operational nodes, has two parameters name and type. 

THESIS HGS
Z1 
Z2 
Z3 
Z4 
Z5 
F6
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3.9.4 Checking a Hierarchical Algorithm 

The most important feature of SIMULHGS is to check if a set of HGSs is 
correctly described and can be processed. This is performed by the method 
Checkhgs(). If the algorithm is really a hierarchical algorithm, i.e. has more than 
one HGS, and all HGSs are correct the method returns the value 1, otherwise it 
returns the value 0. The check value (1/0) is stored in hgscheck. In order to 
avoid abnormal execution, all Hgraphscheme methods must inquire hgscheck 
before start executing. 
 
Checkgs() checks a HGS in three steps. The first two steps are only needed for 
text descriptions generated manually, because they can contain elementary errors 
that can be easily made in a text editor. On the other hand, the graphical editor 
does not allow the creation of HGSs with any of the error situations checked in 
the first two verification steps. Moreover, it eliminates redundant nodes when 
generating the HGS text description (see [ParCra98] for more details). Let’s 
describe in detail the three verification steps. 
 
In step 1 Primarycheckgs() will check the overall consistency of the HGS. Let’s 
see with more detail what means overall consistency. The following situations 
must be verified. The HGS must have one and only one node Begin. The HGS 
must have one and only one node End. A HGS describing a macrooperation 
cannot have nodes of type ASSIGN, on the other hand a HGS describing a logic 
function can only have operational nodes of type ASSIGN. The main HGS must 
have at least one macrooperation or logic function, otherwise it is not a 
hierarchical description. If a node invokes a macrooperation or a logic function 
Searchgraphhgs() will see if the respective HGS makes part of the algorithm. If 
a macrooperation is only composed with the nodes Begin and End, a warning 
message of pure virtual macrooperation will be printed on the screen. 
 
If the first step is successful, in step 2 Markgs() traverses recursively the HGS 
and marks all the nodes that are reachable from the node Begin. Then 
Checknode() tests all the nodes reporting unreachable and dummy nodes. 
Unreachable node means a node with its input not connected to any node. 
Dummy node means a node that is pointing to the node Begin, or that is pointing 
to itself. Nevertheless, a conditional node can have one of the outputs, but not the 
two, pointing to itself. It is also detected if a node of type ASSIGN holds a value 
different from 0 and 1 and if there are two conditional nodes with the same input 
condition following each other. If a conditional node has both outputs pointing to 
the same node, different from the node Begin, a warning message is printed, 
because it is a useless node. 
 
If the second step does not detect any errors, in step 3 Loopcheckgs() will look 
for nodes in infinite cycles. Since all nodes are reachable from the node Begin, it 
is necessary to ensure that starting from each node it is possible to reach the node 
End. Loopcheckgs() calls, for every node in the HGS, Loopnode() that 
traverses recursively the HGS starting from the specified node. It stops when it 
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reaches a node already traversed, meaning that it entered a loop, or when it 
reaches the node End. In the latter case returns a flag set to 1. This flag is 
enquired for each call of Loopnode() and if it is not equal to 1 the node is 
reported to be in an infinite cycle. If there is at least one node in this situation a 
check failure will be returned. Since it is only necessary to ensure that there is at 
least one path, if the node End is reachable when exiting a conditional node 
through the true output, the false output is not explored in order to speed up the 
Loopnode() method. 
 
If all three steps are successful, the method Checkgs() prints the message that the 
HGS is correct and returns the check value 1, otherwise it prints the message that 
the HGS is incorrect and returns the check value 0. 

3.9.5 Running a Hierarchical Algorithm 

To run a set of HGSs allows to verify if it is free of infinite recursion and to 
evaluate the deepest hierarchy level reached by the algorithm, in order to define 
the stack memory size. After ensuring that the set of HGSs is already checked 
Runhgs() starts the execution of the main HGS. A variable will keep track of the 
hierarchy level reached at any moment in the simulation. 
 
The Rungs() method starts the HGS execution by invoking the recursive 
Runnode() to the node Begin, whose pointer is obtained through Begings(). 
 
Rungs() returns an integer value. This value is meaningless when a HGS 
describes a macrooperation, but when it describes a logic function this value is 
returned to the conditional node where the logic function was invoked in order to 
decide the path to follow. On the other hand, when the execution reaches a 
conditional node containing an input condition the user must supply a bit value to 
decide the path to follow. 
 
Every time that a node holding a complex operation is reached, such as a 
macrooperation or a logic function, the Searchgraphhgs() method is invoked to 
return the pointer to the respective HGS and the execution of the complex 
operation will start. 
 
Every time that the node Begin is detected the hierarchy level is incremented. If it 
is the deepest level reached so far, it will be stored in hgsdeep by the method 
Deeplevelhgs(). When the execution reaches the node End, the hierarchy level is 
decremented, and the execution of the previous hierarchical level HGS is 
resumed. The algorithm execution will stop when the node End of the main HGS 
is reached. 
 
This execution of a hierarchical algorithm is a functional simulation and in order 
to be useful the designer must explore all possible paths of the algorithm to ensure 
that infinite recursion situations are not present and to evaluate correctly the 
deepest hierarchical level of the algorithm. 
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3.10 Conclusions 

HGSs and PHGSs enable the development of any complex control algorithm part 
by part in a top-down manner, which can be viewed at various levels of 
abstraction, one level at a time. They provide for a clear separation of the control 
unit functionality from its implementation. They embody multilevel 
representations of control algorithms through the use of macro blocks such as 
macrooperations and logic functions, and consequently they support hierarchical 
and parallel specifications. They also allow for the use of virtual operations for the 
sake of testing an algorithm and the use of logic function nodes allows a more 
abstract decomposition of the algorithm. Moreover, since HGSs can be seen as 
relatively autonomous components they can be separately tested and can be 
reused to implement other algorithms to be developed in the future. 
 
However, HGSs and PHGSs have the following constraints in the transitions 
between hierarchical levels. When a new component is invoked, the state 
transition is always done to its first state. When the component finishes executing 
it always returns to the interrupted state of the previous hierarchical level. The 
latter cannot really be considered a constraint since in most algorithmic 
specifications the desired functionality is to resume the execution of the algorithm 
in the state after the hierarchical invocation. But the former can be considered an 
annoying constraint in situations where the last part of an already existing 
macrooperation must be performed without the need to perform the first part. 
 
When developing an algorithm with HGSs/PHGSs, they must be checked for 
correctness, eliminating macrooperation and logic function looping, in order to 
prevent infinite recursion and each HGS/PHGS must be expurgated of sub-
graphs containing infinite cycles. 
 
The tool SIMULHGS used in conjunction with a graphical editor of HGSs, 
allows the specification of a hierarchical algorithm with a set of HGSs. It provides 
for the automatic checking of the algorithm and it ensures that it is in fact a 
correct and consistent hierarchical algorithm. SIMULHGS also allows the 
simulation of the algorithm in order to detect macrooperations (logic functions) 
invoked in a loop and to evaluate the deepest level in the hierarchy reached by the 
hierarchical algorithm. 



59 

4 HIERARCHICAL FINITE STATE MACHINES 

Summary 

A hierarchical algorithm described by a set of HGSs can be efficiently 
implemented with a hierarchical finite state machine (HFSM) with stack 
memory. This chapter starts by explaining the first model of a HFSM with stack 
memory proposed in [Sklyarov84]. Then it proposes two new models that can 
provide such new facilities as flexibility, extensibility and reusability. The 
concept of a virtual HFSM is also presented. 
 
In order to allow the execution of macrooperations in parallel described by 
PHGSs, a parallel finite state machine (PFSM) was proposed in [Sklyarov87]. 
This model has however some limitations and to overcome them a new model of 
a parallel hierarchical finite state machine (PHFSM) that combines hierarchy 
and parallelism is proposed. 
 
Finally, the synchronisation mechanisms for all FSM models are fully described. 
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4.1 Introduction 

A finite state machine (FSM) (see Figure 4.1a) like it was presented in the 
second chapter can be formally described as follows: 
 

A = δ[A,X]; 
YMealy = λMealy[A,X]; 
YMoore = λMoore[A]. 

 
Where A={a0,a1,…,aM} is a finite set of states being a0 the FSM initial state, 
X={x1,…,xL} is a finite set of inputs, Y={y1,…,yN} is a finite set of outputs, δ is 
the transition function or the next state function, which determines the next 
state from the present state and the inputs, and λ is the output function. Moore 
outputs are dependent on only the present state, while Mealy outputs are 
dependent on both the present state and the external inputs. 
 
On the other hand, a hierarchical finite state machine (HFSM) (see Figure 
4.1b) can be formally described as follows [SklFer98]: 
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YMealy = λMealy[A,X]; 
YMoore = λMoore[A]. 

 
It is like an ordinary FSM but with two distinctive blocks, each one implementing 
a different transition function. The transition function between states of the same 
hierarchical level δ is provided by the Combinational Scheme, while the 
transition function between states of different hierarchical levels ξ is provided by 
the Hierarchical Scheme. 
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Figure 4.1 – (a) FSM block diagram. (b) HFSM block diagram. 

It must be kept in mind that the HFSMs are used to describe control units. Since 
the control unit is connected with a datapath it must have input and output 
registers that fix respectively the external inputs received from the datapath and 
the external outputs generated at the control unit. Moreover, in some models extra 
storage elements are needed to hold intermediate outputs or to synchronise 
internal operations. Therefore, as against of an ordinary FSM the Combinational 
Scheme of the HFSM is not a pure combinatorial block. 
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4.2 FSM with Stack Memory (managing hierarchy) 

Let’s introduce the graph Gh (see Figure 4.2), which shows the hierarchical levels 
of the algorithm depicted in Figure 3.7 and that can be considered as a tree. The 
root z1 of the tree corresponds to the main HGS Γ1 of level 1. The leaves of the 
tree correspond to HGSs, which do not contain elements from the set Ε (graph-
schemes of algorithms). 
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Figure 4.2 – Graph Gh showing hierarchical levels. 

Consider the following sequence of HGSs: Γ1 (level 1) ⇒ Γ1 (HGSs of level 1) ⇒ 
Γ2 (HGSs of level 2) ⇒... , where Γ1 is the set of HGSs that are used to describe 
elements from the set Z(Γ1)∪Θ(Γ1), Γ2 is the set of HGSs that are used to 
describe elements from the sets )(ZU

1Γ∈γ

γ  and )(U
1Γ∈

Θ
γ

γ . 

The same way can be used to determine other sets (Γ3, Γ4, etc.). The problem is 
the following: how to perform switching to the various levels? This problem can 
be efficiently solved using a hierarchical finite state machine (HFSM) with 
stack memory (see Figure 4.3). This model was proposed in [Sklyarov84] and has 
been explored in [SklRoc96A, SklRoc96B]. 
 
The top of the stack is the register, which is used as the FSM memory for the 
HGS Γ1. Suppose it is necessary to perform an algorithm for a component εv of 
Γ1 and εv∈Z(Γ1)∪Θ(Γ1). In such case the stack pointer is incremented by 
activating the output y+ and set the new register, that is now located on the new 
top of the stack, with the first state of the HGS Γv. As a result the old top of the 
stack keeps the interrupted state of the HGS Γ1, and the new top of the stack 
holds the entry state of the HGS Γv. The same sequence of steps can be applied 
to other levels. 
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Therefore the total size of the stack σ, i.e. the number of registers, must not be 
less than the number of various levels for the graph Gh. When the execution of a 
HGS of a level other than the level one, is being terminated the opposite sequence 
of steps must be performed in order to return back to the interrupted HGS. In 
this case the stack pointer is decremented by activating the output y-. 
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Figure 4.3 – Hierarchical finite state machine structure (model 1). 

The code in the Registerh indicates which HGS must be executed next. Let’s 
assign to elements of the set  Ε={ε1,…,εV} (set of HGSs specifying the algorithm) 
binary codes with the length K≥|log2(V+1)| and the code containing all zeros 
(00...0) will not be used. Designate K(εv)={evK...ev1} as the code of the εv, where 
evk∈{0,1,-}, k=1,...,K, and “-“ is the don’t care value of a bit. K(εv) can be 
considered as the code of the HGS describing the element εv. 
 
The hierarchical FSM operates like an ordinary FSM if there are no transitions 
from one HGS to another HGS. If it is necessary to call a new HGS Γv in order to 
perform either a macrooperation or a logic function the following sequence of 
actions will be carried out (see Figure 4.3): 
1. the code K(εv) is stored into the Registerh through the inputs yzK,...,yz1; 
 

2. the stack pointer is incremented (y+=1). As a result a new register RGnew of the 
Stack Memory will be selected as the current register of the HFSM. The 
previous register RGnew-1 keeps the state of the HFSM when it was interrupted 
(in which the control to the HGS Γv was passed). The new register RGnew will 
be automatically set to zero (00...0); 

 

3. the code K(εv) stored into Registerh when presented at the extra inputs 
pK,...,p1 of the Combinational Scheme and in conjunction with the state 
binary code set to zero (00…0) presented in the inputs τR,...,τ1, causes a 
transition to the initial state of the HGS Γv. As a result Γv will be responsible 
for the control from this point until it terminates; 

 

4. after the termination of the HGS Γv it is necessary to decrement the stack 
pointer (y-=1) in order to return back to the interrupted state. As a result the 
control will be passed to the state in which the HGS Γv has been called. 
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If a HGS is used to calculate a logic function, the value to be calculated will be 
stored in any bit of Registerh. This is allowed because Registerh is not being used 
while a HGS is being terminated. The interrupted HGS will later test the value 
stored in order to perform the respective transition. 
 
Based on this first model, the model depicted in Figure 4.4 has been proposed in 
[RocSkl97A, RocSkl97B], where Registerh has been replaced with a Code 
Converter block. 
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Figure 4.4 – Hierarchical finite state machine structure (model 2). 

This model works as follows: 
• in all states that do not invoke a macrooperation or a logic function, the 

outputs CCDR,…,CCD1 of the Code Converter are set to 0, because its 
inputs yzK,...,yz1 are set to 0, and the next state is provided by the outputs 
CSDR,…,CSD1 of the Combinational Scheme like in an ordinary (non-
hierarchical) FSM; 

 

• if it is necessary to call a new HGS Γv in order to perform either a 
macrooperation or a logic function the following sequence of actions will be 
carried out (see Figure 4.4): 
1. the code K(εv) of a state with εv is presented at the inputs yzK,...,yz1 of the 

Code Converter; 
 

2. the stack pointer is incremented (y+=1). The register which is the new top 
of the stack is clean (set to zero) if it is the first time that this hierarchy 
level is reached or holds the code of the returning state of the previous 
HGS that has run in this hierarchy level; 

 

3. in both cases the outputs CSDR,…,CSD1 of the Combinational Scheme 
are set to 0. The code K(εv) is converted to the code of the first state of the 
HGS Γv, which is generated on the outputs CCDR,…,CCD1 of the Code 
Converter. Now the HGS Γv is responsible for the control from this point 
until it terminates; 

 

4. after the termination of the HGS Γv it is necessary to decrement the stack 
pointer (y-=1) in order to return back to the interrupted state. As a result 
control is passed to the state in which the HGS Γv was called. 
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If a HGS is used to calculate a logic function, the value to be calculated must be 
stored in an extra 1-bit register of the Combinational Scheme. 
 
This model has the following advantages: 
• since there are no extra lines used to identify the proper HGS the total number 

of inputs of the Combinational Scheme is smaller; 
 

• many modifications of macrooperations (logic functions) can be done in the 
Code Converter, and there is no need to modify the kernel of the 
Combinational Scheme; 

 

• if the Combinational Scheme and the Code Converter blocks are 
reprogrammable components such as RAMs, this model can provide such new 
facilities as flexibility, extensibility and reuse of an algorithm described by 
HGSs. 

 
Another model proposed in [SklRocFer98] provides an association between HGSs 
in a given set and mutually exclusive elements in the Combinational Scheme 
called Reprogrammable Element (RE) (see Figure 4.5). In this model each 
HGS Γv from the set of HGSs Γ1,...,ΓV is implemented with one autonomous 
circuit such as REv, and a one to one association between the set Γ1,...,ΓV and the 
set of elements RE1,...,REV is obtained. This model allows optimising control 
units for algorithms with a large number of microoperations and whose model is 
the Mealy FSM, and can be seen as a good candidate for reprogrammable and 
reconfigurable control circuits, such as FPGAs. 
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Figure 4.5 – Hierarchical finite state machine structure (model 3). 
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Let’s describe the functionality of this model with more detail. If this model is 
used to implement a Moore machine the Moore Output Block is necessary to 
provide the microoperations, that depend on the state binary code and on the 
HGS binary code. The State Stack Memory is used to store the current state of 
the HFSM, like in the previous models. The 1-bit register Extra Register is used 
to store the calculated value of a logic function and its input and output is 
connected with some REs, depending on their kind. There are three kinds of REs: 
• a RE that implements a macrooperation and that does not invoke any logic 

function. This RE has one activation input REv, some inputs from the set 
xL,...,x1, the outputs DR,...,D1 to provide the next state to the State Stack 
Memory and some outputs from the set yN,...,y1 if a Mealy machine is being 
implemented; 

 

• a RE that implements a macrooperation and that invokes at least one logic 
function. This RE has the inputs and outputs mentioned above and one extra 
input extra_x connected with the Extra Register output, in order to use the 
calculated value of the logic function; 

 

• a RE that implements a logic function. This RE has the inputs and outputs 
mentioned for the first kind of RE and one extra output extra_y connected 
with the Extra Register input, in order to store the calculated value of the 
logic function, considering that the logic function is implemented as a Mealy 
machine. Moreover, it can also have an extra input extra_x if it invokes at 
least one logic function. But, if the logic function is implemented as a Moore 
machine, its calculated value is generated in the Moore Output Block and the 
RE does not have the extra output extra_y. 
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Figure 4.6 – Selector implementation. 

The Selector (see Figure 4.6) is also based on stack memory (HGS Stack 
Memory block) and it is used for storing the binary code K(εv) of the HGSs in 
accordance with the hierarchical sequence of the HGSs to be called. It enables the 
RE of the active HGS through the outputs RE1,...,REV provided by the Decoder. 
And it is also responsible for generating in the Code Converter the special signals 
that increment (y+) and decrement (y-) both stack pointers. 
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This model works as follows: 
• when the HGS Γv is running its reprogrammable element REv connected to 

the State Stack Memory works as an ordinary FSM; 
 

• if it is necessary to call a new HGS Γk in order to perform either a 
macrooperation or a logic function the following sequence of actions will be 
carried out: 
1. the Code Converter generates the signal y+ and the code of the new HGS 

Γk that will run next; 
 

2. both stack pointers are incremented and a new register in each stack is 
selected. The new top of the State Stack Memory is clean (set to zero) if 
it is the first time that this hierarchy level is reached or holds the code of 
the returning state of the previous HGS that has run in this hierarchy level; 

 

3. The code of the HGS Γk is stored in the HGS Stack Memory and the 
Decoder activates the output REk, enabling the reprogrammable element 
REk and disabling the REv that was running. When the information stored 
in the new register of the State Stack Memory is presented at the inputs 
of the REk through the lines τR,...,τ1, the REk will generate the entry state 
of the HGS Γk. Now the HGS Γk is responsible for the control from this 
point on until it is terminated; 

 

4. after the termination of the HGS Γk the Code Converter generates the 
signal y-. Both stack pointers are decremented and control returns back to 
the interrupted state, stored in the State Stack Memory, of the interrupted 
HGS Γv, which code is stored in the HGS Stack Memory. 

 
The considered scheme has the following advantages. It is: 
• flexible in the sense that the functions of each RE can be easily modified 

because it implements autonomous and simple transitions for the associated 
HGS; 

 

• extensible in the sense that the functions of each RE can be completely 
changed. Besides the scheme can be extended, adding new REs, without 
modifying the structure; 

 

• virtual in the sense that a control algorithm can be  implemented in a scheme 
with restricted resources, even if the complexity of the scheme is insufficient 
for implementing the entire algorithm. It is important that all links of REs are 
known. Each HGS is a relatively independent component, hence any HGS Γv 
can be replaced just by freezing a single link, which is the line REv from the 
Selector associated with the replacing REv (see Figure 4.5 and Figure 4.6). All 
other parts of the algorithm will not be suspended; 

 

• the state coding is now of the form (HGS_code, local_state_code). Since state 
assignment can be done modularly, i.e. local to each HGS, the states in 
different HGSs will have the same local code and the local state code length 
will decrease. However, the state code length will increase. 
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As against the previous model, the binary code K(εv) containing all zeros must be 
assigned to the main HGS. Therefore the HGS binary code length is K≥|log2V|, 
where V is the number of HGSs used to described the algorithm. 

4.3 Parallel HFSM 

Now let’s consider how to perform various macrooperations in parallel. The 
parallel finite state machine (PFSM) depicted in Figure 4.7 was proposed in 
[Skyarov87] and was explored in [RocSklFer97]. 
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Figure 4.7 – Model of a pseudo-parallel finite state machine. 

The memory of the PFSM (PFSM Memory) has R inputs DR,...,D1 and R outputs 
τR,...,τ1 connected to the Combinational Scheme, and it is composed of V 
registers, which are sequentially scanned by activating the respective sub-clocks 
T1,…,TV (see Figure 4.7). V is the number of PHGSs used to describe the 
algorithm and defines the maximum number of macrooperations implemented in 
parallel. Inputs and outputs of the memory are common to all its registers. 
 
In order to synchronise the parallel execution of macrooperations, the PFSM 
Combinational Scheme has a set of SR flip-flops (Zi flip-flops), one for each 
PHGS of the algorithm except for the PHGS Γ1 (for more details see PFSM 
synthesis). In order to store the calculated value of logic functions it also has a set 
of SR flip-flops (Θi flip-flops), one for each logic function of the algorithm. 
 
The PFSM outputs can be persistent, i.e. being active during the entire clock cycle 
or non-persistent meaning that they only will be active during one sub-clock Tj. In 
order to provide persistent outputs, the PFSM must have a set of SR flip-flops to 
store the microoperations. 
 
The clock cycle (see Figure 4.7) of the control circuit is divided into V sub-clocks 
and each such sub-clock is further divided into sub-clocks in order to provide the 
proper internal synchronisation. Each sub-clock affects the respective register and 
changes its state, if and only if the respective SR flip-flop is set. 
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The first pulse of the clock cycle changes the state of the register Rg1 that is 
responsible for the main macrooperation. As a result the proper transition in the 
PHGS Γ1 is performed. The next transition in the PHGS Γ1 will be carried out 
with the first pulse of the next clock cycle. The second pulse causes a similar 
transition in the PHGS Γ2, etc. 
 
Suppose it is necessary to perform the macroinstruction Zi, which is composed of 
more than one macrooperation. In this case the following sequence of actions 
takes place: 
1. for each macrooperation zj belonging to the macroinstruction Zi, the PHGS Γj 

is asserted, i.e. its SR flip-flop is set, in order to activate the register j; 
 

2. each following clock cycle causes the proper transitions in all asserted PHGSs, 
because if a PHGS Γj is passive, i. e. its SR flip-flop is reset, the respective sub-
clock does not change its idle state. At the end of the clock cycle all 
macrooperations of the macroinstruction Zi, will have been sequentially 
executed; 

 

3. the interrupted PHGS is in a waiting state, introduced for the purpose of 
synchronisation, until all macrooperations of the macroinstruction Zi have 
terminated and then resumes its execution. 

 
This model has one constraint [Sklyarov87]. If a macrooperation is being executed 
then it cannot be invoked again, because the respective register is being used. In 
order that this constraint will be eliminated it is necessary to manage both 
hierarchy and parallelism in the same machine and the two schemes shown in 
Figure 4.4 and Figure 4.7 must be combined. 
 
Indeed the parallel hierarchical finite state machine (PHFSM) presented in 
Figure 4.8, is visualised as a set of Q individual stacks with common inputs and 
outputs, where Q is equal to the total number of macrooperations that are 
invoked in parallel, plus one for the main PHGS. Each stack can be managed 
independently of the other stacks, i.e. increment and decrement operations are 
individual for the respective stack. 
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Figure 4.8 – Model of a pseudo-parallel hierarchical finite state machine. 
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This machine uses the PFSM synchronisation mechanism when performing a 
macroinstruction, which is composed of more than one macrooperation, but a 
single macrooperation or a logic function invocation is performed in a new 
hierarchical level like in the HFSM. 
 
The PHFSM allows that a macrooperation can be executed in two different stacks 
and each of them has its own register. However, there are still some restrictions. A 
macrooperation that runs in parallel with others cannot invoke itself. This is 
because the stack number, given by the sub-clock Tj, is used to distinguish if a 
macrooperation is running in parallel or in a hierarchical invocation. If a 
macrooperation is running in parallel and it is recursive, all its invocations will run 
in the same stack and therefore it will not be possible to distinguish the first run 
from the following recursive runs (see the PHFSM synthesis for more details). 
 
Moreover, if in a certain period of time, a set of macrooperations is running in 
parallel, each one of them can just invoke one of the others, eventually in parallel 
with other macrooperations that are inactive at the moment. Furthermore, two 
macrooperations running in parallel cannot invoke the same logic function at the 
same time. Since there is only one flip-flop per logic function, it must be ensured 
that a value already stored is used, before a new value will be stored. 

4.4 Virtual HFSM 

The implementation of a set of HGSs in a HFSM with stack memory allows to 
create a regular structure where all external connections are known and can be 
fixed for generally speaking an infinite number of applications (see Figure 4.4 and 
Figure 4.5). In this case the particular customising of the scheme can be achieved 
just by programming (or reprogramming) its components. The proposed models 
if implemented with RAM or with field-programmable devices such as FPGAs, 
can provide such new facilities as flexibility, extensibility and reuse of an algorithm 
described by HGSs. 
 
Flexibility means to modify a given behaviour in minimal time and with minimal 
effort. Suppose that it is needed to modify a macrooperation call in an operational 
node, for example zj instead of zi. Or that it is required to change completely the 
functionality of an operational node, i.e. to change the active microoperations and 
the macrooperation invoked in the node. 
 
For the HFSM model 2 (Figure 4.4), in the first case it is only necessary to 
reprogram the Code Converter, replacing the initial state addressed with the code 
of zi with the initial state of the macrooperation zj. This way can also be used to 
provide a flexible conditional node. It is possible to develop several versions of a 
logic function and then to change, if necessary, from one version to another by 
just reprogramming the initial state stored in the Code Converter. 
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In the second case it is necessary to reprogram the Combinational Scheme. 
More specifically, to reprogram the component responsible for generating the 
microoperations associated with the node. In order to change the macrooperation 
invoked in the node, and alternatively to reprogram the Code Converter, the 
macrooperation binary code generated in the node must be changed. Since the 
microoperations and the macrooperation binary code are generated in the same 
component, these two changes can be made altogether. 
 
For the HFSM model 3, the first case can be done by reprogramming the Code 
Converter inside the Selector (see Figure 4.6), replacing the HGS binary code 
K(εi) with the HGS binary code K(εj) and the Decoder will activate the output 
line REj instead of the output line REi. For the second case the Code Converter 
and the component responsible for the generation of the microoperations must be 
reprogrammed. In the Moore machine, that means to reprogram the Moore 
Output Block, while for the Mealy machine that means to reprogram the RE 
where it is implemented the operational node that must be modified (see Figure 
4.5). 
 
Extensibility means to define a behaviour and then to extend it in order to 
improve something. Suppose that it is required to introduce a new operational 
node or delete an existing one. For model 2 it means to reprogram the 
Combinational Scheme, and for model 3 it is a question of reprogramming the 
respective RE. 
 
Moreover, extensibility and flexibility can be achieved with virtual control circuits, 
which are able to replace virtual components of a control algorithm, such as 
virtual HGSs, and to modify them if necessary. In order to simplify the 
replacement of different components the HFSM model 3 provides a direct 
association between HGSs and REs. If it is required to modify the HGS 
behaviour or add/delete functionality, it is necessary to reprogram only the 
respective RE or add/delete REs to the scheme. 
 
For the PHFSM, flexibility and extensibility are more difficult to apply, since 
changes in macrooperations invocation demands to reanalyse the PHGS in order 
to ensure the parallelism synchronisation. 
 
Reuse means that reusable components such as separate HGSs can be created 
and they will be used for many different control algorithms which the designer 
expects to create in the future. This can be done by investing a little extra effort in 
the design of a library of reusable components that will facilitate the creation of 
similar products. 
 
Generally speaking any dynamically reconfigurable device is a virtual circuit, which 
denotes that the same physical scheme can be used to implement different logic 
circuits. The idea is to combine a flexible and extensible behavioural description, 
i.e. HGSs, with an implementation based on virtual circuits such as FPGAs. 
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4.5 HFSM/PHFSM Synchronisation 

As against of an ordinary FSM a HFSM/PHFSM has more complicated 
synchronisation. Indeed it is necessary to synchronise the following events: 
• transitions between states; 
 

• fixing the output variables yN,...,y1 (microoperations); 
 

• fixing the input variables xL,...,x1 (logic conditions); 
 

• setting the Code Converter; 
 

• incrementing or decrementing the stack pointer; 
 

• fixing the calculated value of a logic function, i. e. loading the Extra Register 
in the case of the HFSM, or setting/resetting the Zi and Θi SR flip-flops in the 
case of the PHFSM. 

 
There are many different kinds of synchronisation, but it should be considered 
just one where microoperations and macrooperations can be combined at the 
same operational node. 

4.5.1 Synchronisation of a Moore HFSM 

The synchronisation of a Moore HFSM, or a mixed Moore/Mealy machine, 
model 2 is depicted in Figure 4.9 and it is based on the synchronisation presented 
in [Sklyarov84] for the HFSM model 1. 
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Figure 4.9 – Synchronisation of a Moore HFSM model 2. 
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The transition between states is synchronised by the low to high front of the 
clock and the next state is stored in the Stack Memory, wherever the state as is 
from the same or from a different hierarchical level than the state am (see Figure 
4.9). After the delay of the Stack Memory the new state will be presented to the 
Combinational Scheme. The output signals of the new state, microoperations yi, 
Code Converter inputs yzi and the special signals y+ and y- are generated. 
 
The first synchronisation pulse synclk1 sets the output variables yi and the Code 
Converter inputs yzi. The time interval ∆1 must be bigger than the sum of all 
delays involved in the generation of the signals mentioned above, in order to 
ensure that the proper values are being fixed, i.e. the values of the actual state and 
not of the previous state. 
 
The second synchronisation pulse synclk2 is responsible for controlling the Stack 
Memory pointer. If y+ or y- is activated, the stack pointer is incremented or 
decremented, otherwise it will not be changed. When the stack pointer is 
incremented the contents of the new top of the stack is output. If that register was 
already used it holds the state a1 and the signal y- is activated. Because this 
activation occurs after synclk2 it will be ignored. 
 
On the high to low transition of the clock the inputs xi are fixed and with the new 
inputs and the present state the Combinational Scheme will evaluate the next 
state that will be stored on the Stack Memory at the next transition of the clock. 
 
If a HGS is used to calculate a logic function, its returning value must be fixed on 
the high to low transition of the clock, when the transition from the last state of 
the HGS of the logic function to the interrupted state of the previous HGS 
occurs. This value must be stable during the next clock cycle where it will be used 
to decide the next state. 
 
Because the microoperations and macrooperations are fixed at different periods of 
time, this mechanism allows combining them at the same operational node. 
 
The synchronisation of a HFSM model 3 is more sensitive with the control of the 
stacks. That is why the signals y+ and y- are generated and fixed by the Code 
Converter. It is similar to model 2 with the following differences: 
• both stacks, State Stack Memory and HGS Stack Memory, are controlled 

simultaneously by the signal synclk2; 
 

• when the execution of a HGS is finishing (state a1) and returning to the 
previous HGS (y- active), the code of the interrupted HGS is not known. But 
this code is stored in the HGS Stack Memory and can be used if it is not 
overwritten with any other HGS code. In order to prevent an unwanted HGS 
code loading in transitions from the state a1 to any other state, it is necessary 
to disable the clock that attacks the HGS Stack Memory when y- is active. 
This is done by generating a special clock with an AND gate, with the clock 
and the signal y- negated as inputs. 
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4.5.2 Synchronisation of a Mealy HFSM 

The synchronisation of a Mealy HFSM model 2 depicted in Figure 4.10 is 
different from the Moore machine in the sequence of events, because the Mealy 
outputs are input dependent. Therefore, the synchronisation order of the three 
synchronisation events associated with the inputs, the outputs and the stack 
pointer must be shifted right. 
 
The transition between states is synchronised by the low to high front of the 
clock. The first synchronisation pulse synclk1 fixes the input signals xi. Then 
after a certain amount of time the output signals associated with the state 
transition produced by these new inputs, microoperations yi, Code Converter 
inputs yzi and the special signals y+ and y- are generated. 
 
The second synchronisation pulse synclk2 sets the output signals. The time 
interval ∆2-∆1 must be bigger than the sum of delays involved in the generation of 
the output signals, in order to ensure that the proper values are being fixed. 
 
The clock, on its high to low transition, is responsible for controlling the pointer 
of the Stack Memory. As a result the Stack Memory of the Mealy machine has 
only one synchronisation signal, the clock, but used in both transitions. The low 
to high controls the state storage while the high to low controls the stack pointer 
increment/decrement operation. The returning value of a logic function must be 
fixed like for a Moore machine. 
 

transition
to am

transition from
am to  as

state am state as

output variables

fixing output variables yi and
setting the Code Converter

fixing input variables xi

transition
from as

X(am,as)am as
Y(am,as)

Y(am,as) Y(as,at)

asynchronous delays∆1
∆2

y+or y-

fixing the calculated value of the logic
function (loading the Extra Register)

 
Figure 4.10 – Synchronisation of a Mealy HFSM model 2. 

The Mealy HFSM model 3 synchronisation is similar to the Moore HFSM model 
3 with the changes mentioned above. 
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4.5.3 Synchronisation of a PFSM 

The synchronisation of a Moore PFSM is depicted in Figure 4.11. On the low to 
high transition of the clock the machine switches from one register to the next 
one. During each sub-clock, the output variables generated for the active state are 
fixed on the low to high front of the first synchronisation pulse csclk, that it is 
also used as the SR flip-flops clock. After fixing the input variables on the high to 
low transition of the clock, the definitive next state is calculated. This state is 
loaded, on the low to high transition of the second synchronisation pulse stlclk, 
before the termination of the sub-clock. 
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macrooperation zi
state am
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fixing input
variables xi

transition
to zt

asynchronous
delays

∆1

macrooperation zj
state ak

∆2

loading next state of macrooperation zi

 
Figure 4.11 – Synchronisation of a Moore PFSM. 

In the case of the Mealy PFSM the input variables must be fixed before the output 
variables, i.e. the sequence of the two events is reversed. 

4.5.4 Synchronisation of a PHFSM 

The synchronisation of a Moore PHFSM, depicted in Figure 4.12, is based on the 
PFSM synchronisation described in the previous paragraph (see Figure 4.11), 
combined with the mechanism used to synchronise the switching between 
hierarchical levels described for a Moore HFSM (see Figure 4.9). 
 
On the low to high transition of the clock the machine switches from one stack 
to the next one. The first synchronisation pulse cccsclk fixes the output variables, 
the signal y+, sets the Code Converter and sets/resets the Zi and Θi flip-flops. 
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Figure 4.12 – Synchronisation of a Moore PHFSM. 

The second synchronisation pulse spclk controls the stack pointer of the active 
stack. On the high to low transition of the clock the inputs xi are fixed. The next 
state is generated and loaded on the active stack on the low to high transition of 
the third synchronisation pulse stlclk. 
 
The signal y+ must be fixed for allowing that the hierarchical invocations can 
work. When, during the sub-clock Tj, a macrooperation zk (or a logic function θk) 
is invoked and must run in a new hierarchical level, the stack pointer of the stack j 
is incremented and a new register is selected. This new register is clean (state a0) 
and the Combinational Scheme will generate the entry state of the 
macrooperation assigned to the stack j. As a result the signal y+ will be reset. But, 
the Combinational Scheme must provide the state a0 in order to let pass the 
state output by the Code Converter. 
 
To obtain the desired performance, it is necessary to insert a multiplexer before 
the lines DR,…,D1 exit the Combinational Scheme, controlled by the signal y+ 
and with the following behaviour: when y+ is negated the exit state will be the 
calculated next state, while when y+ is asserted the output state will be a0. But, in 
order to ensure this behaviour the signal y+ must be fixed during the sub-clock Tj. 
 
In the case of the Mealy PHFSM, the synchronisation sequence of the first three 
events must change like in a Mealy HFSM. 
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4.6 Application Field 

Sophisticated field-programmable devices such as FPGAs, have gained a wide 
acceptance because they can be applied to a wide range of applications, they can 
be used to emulate an entire large hardware system using many interconnected 
FPGAs and they can also be used as custom computing machines [BroRos96]. 
 
Since FPGAs provide a large number of logic gates and flip-flops that can be 
connected in various ways, they can be tailored to implement any complex digital 
system. Therefore they are the target technology for implementing a complete 
system, i.e. the control unit and the datapath. 
 
Besides, since the specification of embedded systems may change continuously 
and designers must pay attention to such problems as the addition of new 
functionality in the future [Edwards97], FPGAs should be used because some of 
them can be reprogrammed as many times as the designer needs. 
 
Moreover, it should be mentioned that the new dynamically reconfigurable FPGA, 
such as Xilinx XC6200 [Xilinx97] might be customised on the fly to implement a 
specific software function with very high performance. They can be 
reprogrammed partially without suspending operation of other parts that do not 
need to be reconfigured [Xilinx97]. This is achieved by specifying the desired 
interconnections between logic components (gates, flip-flops, etc.) using SRAM. 
Therefore, it is possible to use a FPGA with smaller logic resources than those 
needed to implement the system. 
 
A typical hardware architecture for an embedded system combines custom 
hardware normally using ASICs with embedded software running on general-
purpose microcontrollers. The functionality of an embedded system is a trade-off 
between performance and cost. Performance is achieved through the 
implementation of tasks in custom hardware, while the decrease of the 
manufacturing cost is achieved through the implementation of tasks in software. 
 
Since FPGAs can be tailored to implement any complex system, they can replace 
ASICs with gains in the manufacturing cost. On the other hand due to the use of 
the HFSMs, complex control algorithms normally implemented in software can 
migrate to hardware and therefore FPGAs can replace microcontroller-based 
implementations with gains in performance. 
 
Since the proposed HFSMs can create hardware systems that implement recursive 
algorithms they can be used to create hardware engines that will speed up the 
performance of software algorithms which have recursive solutions that are more 
intuitive and efficient than iterative solutions, in the mathematical and database 
fields for example. 
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4.7 Conclusions 

HFSMs with stack memory can efficiently implement a hierarchical algorithm, 
even a recursive algorithm, provided that the size of the stack is well dimensioned. 
And if the next state and the output functions are implemented with 
reprogrammable components such as RAMs or FPGAs, they can provide such 
new facilities as flexibility, extensibility and reusability. 
 
The introduction of the Code Converter in the HFSM model 2 (Figure 4.4), that 
specifically and efficiently generates the entry state of each hierarchical level, 
allows to separate the transition function of the machine in two, the transition 
function between states at the same hierarchical level generated in the 
Combinational Scheme and the transition function between different 
hierarchical levels generated in the Code Converter. Therefore, the complexity of 
the Combinational Scheme decreases, due to a decrease in the number of its 
inputs and the HFSM becomes more flexible because it is possible to change 
hierarchical transitions by just reprogramming the Code Converter. But, if a HGS 
requires to be redesigned the Combinational Scheme must be reprogrammed. 
 
In order to overcome that, the HFSM model 3 (Figure 4.5 and Figure 4.6) 
provides an association between the set of HGSs and mutually exclusive 
Reprogrammable Elements. Each RE can be autonomously modified in order 
to respond to the respective HGS redesign and the HFSM functionality can be 
easily extended or curtailed with the addition or deletion of REs. The dimension 
of the stack memory is smaller because the local state code length decreases but 
this model needs two stacks against one in the previous models. 
 
Moreover, this model can be seen as the HFSM natural interpretation of the 
hierarchical specification based on HGSs and since the Combinational Scheme 
acquires a regular and modular structure it is more suitable for the implementation 
of Mealy HFSMs in reprogrammable and reconfigurable control circuits, such as 
FPGAs. 
 
The proposed PHFSM model (Figure 4.8) eliminates some restrictions of the 
PFSM (Figure 4.7) and can manage both hierarchy and pseudo-parallelism. 
 
The implementation of HGSs (PHGSs) with HFSMs (PHFSMs) allows that a 
regular structure, where all external connections are known and can be fixed for 
generally speaking an infinite number of applications, can be created. With the 
flexibility, extensibility and reusability provided by the proposed models, the 
HFSMs (PHFSMs) can be seen as virtual circuits. 
 
The synchronisation mechanism proposed for the HFSM can combine 
microoperations and macrooperations at the same operational node, and 
efficiently implement the transition between different levels in the hierarchy. And 
the synchronisation proposed for the PHFSM allows combining the functionality 
of the HFSM with the pseudo-parallel execution of macrooperations. 
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5 SYNTHESIS OF HIERARCHICAL FINITE STATE 

MACHINES 

Summary 

Synthesis is the process of transforming a control unit specification with a set of 
HGSs (PHGSs), into a logic scheme that will implement the HFSM (PHFSM) 
models that were proposed in the previous chapter. 
 
FSM synthesis involves the following steps: constructing a state transition table; 
state encoding; combinational logic optimisation and design of the final scheme. 
In the case of the parallel FSMs the synthesis process has an initial step to provide 
proper synchronisation of parallel macrooperations. Since, all known methods of 
logic synthesis can be applied to a state transition table, the purpose of this 
chapter is to fully explain how to transform a hierarchical algorithm described by a 
set of HGSs (PHGSs) to an ordinary state transition table, accordingly with the 
HFSM (PHFSM) proposed models. 
 
In order to perform this first step of logic synthesis, it is necessary to mark the set 
of HGSs (PHGSs) with states, to record all transitions between the states in an 
extended transition table and then to transform this table to ordinary form. Since 
all these sub-steps have too many rules and are error prone, it is useful to consider 
automatic generation of state transition tables that are correct by 
construction. The methods of the tool SIMULHGS that provide the automatic 
synthesis of a hierarchical algorithm described by a set of HGSs are presented. 
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5.1 Introduction 

Synthesis is a process of design refinement where a more abstract specification, 
such as a set of HGSs (PHGSs), is translated into a less abstract specification, 
such as a logic scheme that will implement a HFSM (PHFSM). 
 
The synthesis of hierarchical and parallel FSMs involves the following steps: 
1. converting a given set of HGSs/PHGSs to a state transition table; 
2. state encoding; 
3. combinational logic optimisation and design of the final scheme. 
 
In the case of parallel FSMs (hierarchical or not) the given set of PHGSs has to be 
extended and transformed to a new set of PHGSs providing proper 
synchronisation of parallel macrooperations, before converting it to a state 
transition table. 
 
The first step is divided into the three following sub-steps: 
1.1. marking the set of HGSs/PHGSs with states; 
1.2. recording all transitions between states in the extended state transition table; 
1.3. transforming the extended table to ordinary form. 
 
The marking rules for the new proposed models of HFSMs are based on the rules 
defined for the HFSM model 1 presented in [Sklyarov84]. 
 
Let’s explain in detail the above sub-steps for all hierarchical and parallel FSMs 
models proposed in the previous chapter. 

5.2 Synthesis of a Moore HFSM 

In a Moore machine, the outputs are associated with the states. Therefore, in 
order to convert a set of HGSs to a Moore machine, the nodes that generate 
outputs (microoperations and internal signals used to control the switching 
between hierarchical levels) must be labelled with states. And since a HGS needs 
an entry state to start its execution, if the first node of a HGS is a conditional 
node that contains a logic condition, the node Begin is also marked with a state. 
 
In order to mark the given set of HGSs (sub-step 1.1) for the Moore HFSM 
model 2, it is necessary to perform the following actions: 
• the label a0 is assigned to the node Begin and to the node End of the main 

HGS (see the HGS Γ1 in Figure 5.1); 
 

• the label a1 is assigned to all nodes End of HGSs Γ2,...,ΓV (see HGSs Γ2,...,Γ6 
in Figure 5.1); 
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• the labels a2,a3,...,aM are assigned to the following nodes and inputs: 
• the operational nodes in HGSs Γ1,...,ΓV (see HGSs Γ1,...,Γ6 of Figure 5.1); 

 

• the inputs of conditional nodes, which contain logic functions, and which 
directly follow either other conditional nodes, or operational nodes with 
macrooperations (see state a12 in HGS Γ2 of Figure 5.1); 

 

• the nodes Begin of HGSs Γ2,...,ΓV which have connections to conditional 
nodes with logic conditions (see state a13 in HGS Γ3 of Figure 5.1); 

 

• the input of a conditional node with a logic condition that follows a direct 
connection from the node Begin of the main HGS (HGS Γ1); 

 

• apart from a1, all the labels in the various HGSs must be unique; 
 

• if any node (input) has already been labelled, it must not be labelled again. 
 
After applying this procedure to the set of HGSs presented in Figure 3.7, the set 
of HGSs depicted in Figure 5.1 labelled with the states a0,…,a20 (M=21) is 
obtained. 
 
In order to build the extended state transition table (sub-step 1.2) for the Moore 
HFSM model 2, it is necessary to perform the actions listed below: 
• record all transitions amX(am,as)as, where am∈{a2,...,aM}, as∈{a0,...,aM} and 

X(am,as) is the product of input variables (logic conditions) and logic 
functions which causes the transition from am to as; 

 

• record all sets YZ(am)=Y(am)∪Z(am), which are subsets of the 
microoperations Y(am) and the macrooperations Z(am) generated in the 
operational node marked with the label am (see state a3 in Table 5.1). It is 
acceptable that YZ(am)∩Z=∅ (see for example state a2 in Table 5.1) or 
YZ(am)∩Y=∅ (see for example state a4 in Table 5.1). The main 
macrooperation must be recorded for the state a0 (see state a0 in Table 5.1); 

 

• record θ(am), which is the logic function generated in the input of the 
conditional node marked with the label am (see state a12 in Table 5.1), or if the 
input of the conditional node containing the logic function θk has not been 
labelled, record θk, in all states af1,af2,... that have been assigned to nodes from 
which follow direct arrow lines to the considered conditional node (see state a6 
in Table 5.1); 

 

• record θ(am)=1, which is the logic function calculated value generated in the 
operational node marked with the label am (see state a19 in Table 5.1); 

 

• each transition is recorded in one row of the structured table and all transitions 
from the same state are grouped. 
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Figure 5.1 – A set of HGSs marked for synthesis as a Moore machine (states ai for model 2, states bi for model 3). 
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After applying this sub-step to the set of HGSs depicted in Figure 5.1, the 
extended state transition Table 5.1 is built. In order to convert the table from the 
extended form to ordinary form (sub-step 1.3), it is necessary to perform the 
following actions: 
• generate y- in the state a1 (see Table 5.2); 
 

• replace each macrooperation with its binary code K(εv), i. e. the extra outputs 
yzi that control the Code Converter. Add the new output variable y+, except 
for the main macrooperation (see for example state a3 in Table 5.2); 

 

• replace each logic function θk, with its binary code K(εv) and add y+. If the 
input of the conditional node containing the logic function θk has been labelled 
with the state au, this change has to be made to the set Y(au) (see state a12 in 
Table 5.2). If the input of the conditional node containing the logic function θk 
has not been labelled, this change has to be made to the sets Y(af1),Y(af2),... 
where the states af1,af2,... have been assigned to nodes from which follow direct 
arrow lines to the considered conditional node (see state a6 in Table 5.2); 

 

• replace all symbols θk in the column X(am,as) with the internal input variable 
extra_x which represents the value of kθ  (see states a6 and a12 in Table 5.2); 

 

• replace all symbols θk=1 in the column Y(am) with the internal output variable 
extra_y (see state a19 in Table 5.2). It should be done in order to return the 
calculated value of θk from the called HGS to the calling HGS via the 1-bit 
Extra Register (see the decomposition of the Combinational Scheme 
depicted in Figure 6.2). 

 
After applying this sub-step to the extended state transition Table 5.1, the ordinary 
state transition Table 5.2 is obtained. Now, all known methods of logic synthesis 
can be applied to this table to carry out steps 2 and 3. 
 
It must be kept in mind, that the states a0 and a1 are used to switch between the 
hierarchical levels of the HFSM. Therefore, these states do not assert any 
microoperations and for both of them the Combinational Scheme must set to 
zero the outputs CSDR,…,CSD1, i.e. it must generate the next state a0 (see Table 
5.2). 
 
In order to synthesise a Moore HFSM it is necessary to create the entry state 
generation table of the Code Converter, that provides the entry state of each 
HGS for the respective HGS binary code K(εv). For the binary code with all bits 
set to zero, code K(εv) which is used to clear the Code Converter outputs, and 
for all the remaining binary codes not in use, the Code Converter will output the 
state a0 (see Table 5.3). 
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Table 5.1 – Moore extended state transition table. 

am { Y(am) } as X(am,as) 
a0  {z1} a0 1 
a1 a0 1 
a2  {y2} a6 

a7 
a3 
a4 

1x 2x  
1x 2x  
1x 2x  
1x 2x  

a3  {y3,y5,z2} a5 1 
a4  {z3} a5 1 
a5  {y1,y4} a0 1 
a6  {y6,y7,y8,θ6} a8 

a5 
6θ  
6θ  

a7  {z5} a8 1 
a8  {y3} a0 1 
a9  {y3,y4} a10 1 
a10  {y7} a10 

a11 
1x  
1x  

a11  {z4} a12 1 
a12  {θ6} a1 

a9 
6θ  
6θ  

a13 a14 
a15 

4x  
4x  

a14  {y3,y5} a15 
a1 

5x  
5x  

a15  {y1} a1 1 
a16  {z3} a17 1 
a17  {y1,y2} a1 

a16 
2x  
2x  

a18 a19 
a20 

3x  
3x  

a19  {θ6=1} a1 1 
a20 a1 1 

Table 5.2 – Moore ordinary state transition table. 

am { Y(am) } as X(am,as) 
a0  {yz1} a0 1 
a1  {y-} a0 1 
a2  {y2} a6 

a7 
a3 
a4 

1x 2x  
1x 2x  
1x 2x  
1x 2x  

a3  {y3,y5,yz2,y+} a5 1 
a4  {yz2,yz1,y+} a5 1 
a5  {y1,y4} a0 1 
a6  
{y6,y7,y8,yz3,yz2,y+} 

a8 
a5 

xextra _  
xextra _  

a7  {yz3,yz1,y+} a8 1 
a8  {y3} a0 1 
a9  {y3,y4} a10 1 
a10  {y7} a10 

a11 
1x  
1x  

a11  {yz3,y+} a12 1 
a12  {yz3,yz2,y+} a1 

a9 
xextra _  
xextra _  

a13 a14 
a15 

4x  
4x  

a14  {y3,y5} a15 
a1 

5x  
5x  

a15  {y1} a1 1 
a16  {yz2,yz1,y+} a17 1 
a17  {y1,y2} a1 

a16 
2x  
2x  

a18 a19 
a20 

3x  
3x  

a19  { yextra _ } a1 1 
a20 a1 1 
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Table 5.3 – Moore model 2 Code Converter table. 

HGS Γv K(εv) [yzi] Initial State
 

3yz  2yz  1yz a0 
z1 

3yz  2yz  1yz a2 
z2 

3yz  2yz  1yz a9 
z3 

3yz  2yz  1yz a13 
z4 

3yz  2yz  1yz a16 
z5 

3yz  2yz  1yz a1 
θ6 

3yz  2yz  1yz a18 
 3yz  2yz  1yz a0 

 
 
For the HFSM model 3 the given set of HGSs (sub-step 1.1) has to be labelled 
modularly, using the rules defined for model 2, i.e. the HGS Γi labelling starts 
always with the state b2. In the case of a pure virtual macrooperation the node 
Begin must be labelled with the state b2. The set of HGSs depicted in Figure 5.1 
labelled with the states bi is obtained after applying this marking procedure. 
 
The extended table is built (sub-step 1.2), one table for each HGS instead of just 
one global table for the set of HGSs, in the same manner as for model 2, with the 
exception that the macrooperations Z(am) and the logic functions θ(am) are not 
recorded in the extended table. Only the microoperations Y(am) and the logic 
functions assignment values are recorded. 
 
The conversion to ordinary form (sub-step 1.3) applies the same rules of model 2 
(see Table 5.4, Table 5.5, Table 5.6, Table 5.7, Table 5.8 and Table 5.9). 
 
Like in the HFSM model 2, the states b0 and b1 are used to switch between the 
hierarchical levels of the HFSM. Since the reprogrammable element is responsible 
for generating the entry state of the respective HGS, the next state for both states 
is the state b2 in all HGSs tables. 
 
The Code Converter table generates the next HGS and the extra signals used to 
control the stacks for each state of each HGS. If a state has to perform the 
macrooperation zv (or the logic function θv) it generates the signal y+ and the 
binary code K(εv), represented in the table by the HGS name. In all b1 states the 
signal y- is generated. In this situation and because it is not possible to know 
which HGS called the HGS that is finishing to run, the HGS binary code 
generated is indifferent. For the remaining states it is output the binary code K(εv) 
of the active HGS (see Table 5.10). 
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Table 5.4 – RE1 Moore ordinary state transition table. 

bm {Y(bm)} bs X(bm,bs)
b0 b2 1 
b1 b2 1 
b2  {y2} b6 

b7 
b3 
b4 

1x 2x  
1x 2x  
1x 2x  
1x 2x  

b3  {y3,y5} b5 1 
b4 b5 1 
b5  {y1,y4} b0 1 
b6  {y6,y7,y8} b8 

b5 
xextra _  
xextra _  

b7 b8 1 
b8  {y3} b0 1 

Table 5.5 – RE2 Moore ordinary state transition table. 

bm {Y(bm)} bs X(bm,bs)
b0 b2 1 
b1 b2 1 
b2  {y3,y4} b3 1 
b3  {y7} b3 

b4 
1x  
1x  

b4 b5 1 
b5 b1 

b2 
xextra _  
xextra _  

Table 5.6 – RE3 Moore ordinary state transition table. 

bm {Y(bm)} bs X(bm,bs)
b0 b2 1 
b1 b2 1 
b2 b3 

b4 
4x  
4x  

b3  {y3,y5} b4 
b1 

5x  
5x  

b4  {y1} b1 1 

Table 5.7 – RE4 Moore ordinary state transition table. 

bm {Y(bm)} bs X(bm,bs)
b0 b2 1 
b1 b2 1 
b2 b3 1 
b3  {y1,y2} b1 

b2 
2x  
2x  

Table 5.8 – RE5 Moore ordinary state transition table. 

bm {Y(bm)} bs X(bm,bs)
b0 b2 1 
b1 b2 1 
b2 b1 1 

Table 5.9 – RE6 Moore ordinary state transition table. 

bm {Y(bm)} bs X(bm,bs)
b0 b2 1 
b1 b2 1 
b2 b3 

b4 
3x  
3x  

b3  { yextra _ } b1 1 
b4 b1 1 

Table 5.10 – Moore model 3 Code Converter table. 

Active 
HGS

State Next 
HGS 

Stack 
Pointer

z1 b3 
b4 
b6 
b7 
all other states

z2 
z3 
θ6 
z5 
z1 

y+ 
y+ 
y+ 
y+ 
 

z2 b1 
b4 
b5 
all other states

-- 
z4 
θ6 
z2 

y-

y+ 
y+ 
 

z3 b1 
all other states

-- 
z3 

y-

 
z4 b1 

b2 
all other states

-- 
z3 
z4 

y-

y+ 
 

z5 b1 
all other states

-- 
z5 

y-

 
θ6 b1 

all other states
-- 
θ6 

y-
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5.3 Synthesis of a Mealy HFSM 

In a Mealy machine, the outputs are associated with the transition between states. 
Therefore, in order to convert a set of HGSs to a Mealy machine, the inputs of 
nodes that follow nodes that generate outputs (microoperations and internal 
signals used to control the switching between hierarchical levels) must be labelled 
with states. Moreover, a node that invokes a macrooperation (logic function) must 
has its input marked with a state in order to generate the appropriate internal 
signals needed to fire up the macrooperation (logic function) execution. 
Furthermore, since a HGS needs an entry state to start its execution, the node 
after the node Begin is also marked with a state. 
 
In order to mark the given set of HGSs (sub-step 1.1) for the Mealy HFSM model 
2, it is necessary to perform the following actions: 
• the label a0 is assigned to the node Begin and to the node End of the main 

HGS (see the HGS Γ1 in Figure 5.2); 
 

• the label a1 is assigned to all nodes End of HGSs Γ2,...,ΓV (see HGSs Γ2,...,Γ6 
in Figure 5.2); 

 

• the labels a2,a3,...,aM are assigned to the following inputs: 
• inputs of nodes which directly follow the node Begin in all HGSs Γ1,...,ΓV 

(see for example state a10 in HGS Γ2 of Figure 5.2); 
 

• inputs of operational nodes with macrooperations (designate the subset 
of respective labels as Amo) (see for example state a4 in HGS Γ1 of Figure 
5.2); 

 

• inputs which directly follow from output(s) of operational node(s) in HGS 
Γ1,...,ΓV (see for example state a3 in HGS Γ1 of Figure 5.2); 

 

• inputs of conditional nodes containing logic functions (designate the 
subset of respective labels as Alf) (see for example state a7 in HGS Γ1 of 
Figure 5.2); 

 

• inputs which directly follow the true and false outputs of conditional nodes 
containing logic functions (see states a6 and a9 in HGS Γ1 of Figure 5.2); 

 

• apart from a1, all the labels in the various HGSs must be unique; 
 

• if any input has already been labelled, it must not be labelled again. 
 
The marking rules require more states for marking a set of HGSs as a Mealy 
machine rather than for a Moore machine. Two states against one are needed for 
operational nodes containing a macrooperation, but on the other hand, one state, 
eventually none, against one is needed for operational nodes containing 
microoperations. And for conditional nodes containing logic function three states 
against one, eventually none are needed. 
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After applying this procedure to the set of HGSs presented in Figure 3.7, the set 
of HGSs depicted in Figure 5.2 labelled with the states a0,…,a20 (M=21) is 
obtained. For this example the number of states is the same for both machines. 
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Figure 5.2 – A set of HGSs marked for synthesis as a Mealy machine (states ai for model 2, states bi for model 3). 
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For the second sub-step, which is recording all transitions between the states in 
the extended state transition table, it is necessary to perform the following actions: 
• record all transitions amX(am,as)YZ(am,as)as and amX(am,as)as, where 

X(am,as) is the product of input variables (logic conditions) and logic 
functions which causes the transition from am to as, 
YZ(am,as)=Y(am,as)∪Z(am) which are subsets of the microoperations 
Y(am,as) that have active values after the transition and the macrooperations 
Z(am) invoked in the operational node whose input is marked with the label 
am. It is acceptable that YZ(am,as)∩Z=∅ (see for example transition a2 to a3 in 
Table 5.12), or YZ(am,as)∩Y=∅ (see for example transition a5 to a6 in Table 
5.12). The main macrooperation must be recorded for the state a0 (see state a0 
in Table 5.12). The transition amX(am,as)YZ(am,as)as passes exactly through 
just one operational node (X(am,as)=1 is admissible), while the transition 
amX(am,as)as passes only through conditional nodes. For some cases only the 
latter transition can be used. In any other cases it is mandatory to perform the 
former transition. If the state as∈Alf∪Amo then it is not allowed to pass any 
transition through the state as. It can only either start any transition from the 
state as or finish any transition in the state as; 

 

• record all transitions amX(am,as)[θk=1]as, which is the logic function θk 
calculated value generated in the operational node traversed by the transition 
from am to as (see state a20 in Table 5.12); 

 

• each transition is being recorded in one row of the structural table and all 
transitions from the same state are grouped. 

 
After applying this sub-step to the HGSs depicted in Figure 5.2, the extended 
state transition Table 5.12 is built. In order to convert the table from extended 
form to ordinary form (see Table 5.13) and to create the code converter table (see 
Table 5.11), all the rules described for a Moore machine apply. 
 

Table 5.11 – Mealy model 2 Code Converter table. 

HGS Γv K(εv) [yzi] Initial State
 

3yz  2yz  1yz a0 
z1 

3yz  2yz  1yz a2 
z2 

3yz  2yz  1yz a10 
z3 

3yz  2yz  1yz a15 
z4 

3yz  2yz  1yz a17 
z5 

3yz  2yz  1yz a1 
θ6 

3yz  2yz  1yz a20 
 3yz  2yz  1yz a0 
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Table 5.12 – Mealy extended state transition table. 

am as X(am,as) Y(am,as) 
a0 a0 1 z1 
a1 a0 1  
a2 a3 1 y2 
a3 a7 

a8 
a4 
a5 

1x 2x  
1x 2x  
1x 2x  
1x 2x  

y6,y7,y8 
 

a4 a6 1 y3,y5,z2 
a5 a6 1 z3 
a6 a0 1 y1,y4 
a7 a9 

a6 
6θ  
6θ  

θ6 
θ6 

a8 a9 1 z5 
a9 a0 1 y3 
a10 a11 1 y3,y4 
a11 a12 1 y7 
a12 a12 

a13 
1x  
1x  

y7 

a13 a14 1 z4 
a14 a1 

a10 
6θ  
6θ  

θ6 
θ6 

a15 a16 
a1 

4x  
4x  

y3,y5 
y1 

a16 a1 
a1 

5x  
5x  

y1 

a17 a18 1 z3 
a18 a19 1 y1,y2 
a19 a1 

a17 
2x  
2x  

 

a20 a1 
a1 

3x  
3x  

θ6=1 

Table 5.13 – Mealy ordinary state transition table. 

am as X(am,as) Y(am,as) 
a0 a0 1 yz1 
a1 a0 1 y- 
a2 a3 1 y2 
a3 a7 

a8 
a4 
a5 

1x 2x  
1x 2x  
1x 2x  
1x 2x  

y6,y7,y8 
 

a4 a6 1 y3,y5,yz2,y+ 
a5 a6 1 yz2,yz1,y+ 
a6 a0 1 y1,y4 
a7 a9 

a6 
xextra _  
xextra _  

yz3,yz2,y+ 
yz3,yz2,y+ 

a8 a9 1 yz3,yz1,y+ 
a9 a0 1 y3 
a10 a11 1 y3,y4 
a11 a12 1 y7 
a12 a12 

a13 
1x  
1x  

y7 

a13 a14 1 yz3,y+ 
a14 a1 

a10 
xextra _  
xextra _  

yz3,yz2,y+ 
yz3,yz2,y+ 

a15 a16 
a1 

4x  
4x  

y3,y5 
y1 

a16 a1 
a1 

5x  
5x  

y1 

a17 a18 1 yz2,yz1,y+ 
a18 a19 1 y1,y2 
a19 a1 

a17 
2x  
2x  

 

a20 a1 
a1 

3x  
3x  

yextra _  
 

 
 
All the rules defined above for the Mealy HFSM model 2 in conjunction with the 
particular aspects presented in the Moore HFSM model 3, apply for the Mealy 
HFSM model 3. After the marking sub-step the set of HGSs depicted in Figure 
5.2 labelled with the states bi is obtained and the set of tables Table 5.14, Table 
5.15, Table 5.16, Table 5.17, Table 5.18 and Table 5.19 are obtained after applying 
the sub-steps 1.2 and 1.3. The Mealy Code Converter table is generated as for the 
Moore machine (see Table 5.20). 
 
 



CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 91 

Table 5.14 – RE1 Mealy ordinary state transition table. 

bm bs X(bm,bs) Y(bm,bs) 
b0 b2 1  
b1 b2 1  
b2 b3 1 y2 
b3 b7 

b8 
b4 
b5 

1x 2x  
1x 2x  
1x 2x  
1x 2x  

y6,y7,y8 
 

b4 b6 1 y3,y5 
b5 b6 1  
b6 b0 1 y1,y4 
b7 b9 

b6 
xextra _  
xextra _  

 
 

b8 b9 1  
b9 b0 1 y3 

Table 5.15 – RE2 Mealy ordinary state transition table. 

bm bs X(bm,bs) Y(bm,bs) 
b0 b2 1  
b1 b2 1  
b2 b3 1 y3,y4 
b3 b4 1 y7 
b4 b4 

b5 
1x  
1x  

y7 

b5 b6 1  
b6 b1 

b2 
xextra _  
xextra _  

 
 

Table 5.16 – RE3 Mealy ordinary state transition table. 

bm bs X(bm,bs) Y(bm,bs) 
b0 b2 1  
b1 b2 1  
b2 b3 

b1 
4x  
4x  

y3,y5 
y1 

b3 b1 
b1 

5x  
5x  

y1 

Table 5.17 – RE5 Mealy ordinary state transition table. 

bm bs X(bm,bs) Y(bm,bs) 
b0 b2 1  
b1 b2 1  
b2 b1 1  

Table 5.18 – RE4 Mealy ordinary state transition table. 

bm bs X(bm,bs) Y(bm,bs) 
b0 b2 1  
b1 b2 1  
b2 b3 1  
b3 b4 1 y1,y2 
b4 b1 

b2 
2x  
2x  

 

Table 5.19 – RE6 Mealy ordinary state transition table. 

bm bs X(bm,bs) Y(bm,bs) 
b0 b2 1  
b1 b2 1  
b2 b1 

b1 
3x  
3x  

yextra _  
 

Table 5.20 – Mealy model 3 Code Converter table. 

Active 
HGS

State Next 
HGS 

Stack 
Pointer

z1 b4 
b5 
b7 
b8 
all other states

z2 
z3 
θ6 
z5 
z1 

y+ 
y+ 
y+ 
y+ 
 

z2 b1 
b5 
b6 
all other states

-- 
z4 
θ6 
z2 

y-

y+ 
y+ 
 

z3 b1 
all other states

-- 
z3 

y-

 
z4 b1 

b2 
all other states

-- 
z3 
z4 

y-

y+ 
 

z5 b1 
all other states

-- 
z5 

y-

 
θ6 b1 

all other states
-- 
θ6 

y-
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5.4 Synthesis of a Mixed Moore/Mealy HFSM 

If a set of HGSs contains many macrooperation and logic function invocations, as 
against an ordinary FSM, the synthesised Mealy HFSM has more states than 
Moore. This is due to the fact that in a Moore HFSM, in opposition to Mealy, it is 
possible to use the same state to generate the microoperations and to fire up the 
execution of a macrooperation. But on the other hand, it is more convenient to 
use a Mealy HFSM to implement a logic function that does not invoke any other 
logic functions, i.e. that is mainly composed with conditional nodes and few 
assignment nodes, in order to spare states and to speed up its evaluation. 
 
Therefore, a mixed Moore/Mealy HFSM is proposed in order to take the better of 
the two machines. In this mixed HFSM, the calculated value of a logic function 
extra_y is a Mealy output generated in the appropriate state transition (see 
transition a18 x3 a1 in Table 5.21). 
 
This mixed Moore/Mealy model marking is depicted in Figure 5.3. The ordinary 
state transition table, for the HFSM model 2, is the combination of Table 5.2 and 
Table 5.13, and it is presented in Table 5.21∗. Its Code Converter table is the 
same as for the Moore HFSM presented in Table 5.3. 

Table 5.21 – Mixed Moore/Mealy ordinary state transition table. 

                                              
∗ Due to space limitation Mealy and Moore outputs are presented altogether in the column 
{Y(am)/Y(am,as)}. 

am {Y(am)/Y(am,as)} as X(am,as) 
a0  {yz1} a0 1 
a1  {y-} a0 1 
a2  {y2} a6 

a7 
a3 
a4 

1x 2x  
1x 2x  
1x 2x  
1x 2x  

a3  {y3,y5,yz2,y+} a5 1 
a4  {yz2,yz1,y+} a5 1 
a5  {y1,y4} a0 1 
a6  
{y6,y7,y8,yz3,yz2,y+} 

a8 
a5 

xextra _  
xextra _  

a7  {yz3,yz1,y+} a8 1 
a8  {y3} a0 1 
a9  {y3,y4} a10 1 

a10  {y7} a10 
a11 

1x  
1x  

a11  {yz3,y+} a12 1 
a12  {yz3,yz2,y+} a1 

a9 
xextra _  
xextra _  

a13 a14 
a15 

4x  
4x  

a14  {y3,y5} a15 
a1 

5x  
5x  

a15  {y1} a1 1 
a16  {yz2,yz1,y+} a17 1 
a17  {y1,y2} a1 

a16 
2x  
2x  

a18  { yextra _ } a1 
a1 

3x  
3x  

 
 
The mixed Moore/Mealy HFSM model 3 for this example is implemented with 
the Zi Moore tables (Table 5.4, Table 5.5, Table 5.6, Table 5.7, Table 5.8), the Θ6 
Mealy table (Table 5.19), and the Moore Code Converter table (Table 5.10). 
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Figure 5.3 – A set of HGSs marked for synthesis as a mixed Moore/Mealy machine 

(states ai for model 2, states bi for model 3). 
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5.5 Synthesis of a PFSM 

Like it was already mentioned, the synthesis of the PFSM must start by providing 
proper synchronisation of parallel macrooperations. In order to extend and 
transform the set of PHGSs for a parallel non-hierarchical FSM implementation it 
is necessary to perform the following steps [Sklyarov87]: 
• to add a new group of nodes after any node of a PHGS, containing 

macrooperations. The first is an empty operational node, i.e. it does not hold 
any operations. The other nodes are conditional nodes, one for each 
macrooperation, and each one holding a logic condition Zi. The logic 
condition Zi is asserted (“1”) if the respective PHGS Γi is running and it is 
negated (“0”) if the PHGS Γi has been terminated. This group provides the 
proper suspension of the PHGS, which is invoking the macrooperations, until 
all macrooperations will end their execution. If at least one macrooperation is 
still active the transition from the considered above empty node is not allowed. 
After all macrooperations are passive the ordinary execution of the PHGS will 
continue (see PHGS Γ1 in Figure 5.5); 

 

• to add a new group of nodes composed of two operational and one 
conditional nodes, before any node of a PHGS containing a logic function (see 
PHGS Γ2 in Figure 5.5). The first rectangular nodes enables the logic function 
PHGS, asserting its logic condition, and it is designated by Θk for the logic 
function θk. The latter two nodes are used in order to suspend the executing 
PHGS until the logic function will be calculated; 

 

• to add after the node Begin, in all PHGSs except for the PHGS Γ1, the 
conditional node which contains for the PHGS Γi the logic condition Zi (see 
Figure 5.5). If Zi = 1 the PHGS Γi must be activated. If Zi = 0 the PHGS Γi 
must be in passive (idle) state. This node is used in order to synchronise the 
execution of different PHGSs; 

 

• to generate a special signal, which is designated Zi* for the PHGS Γi, before 
the node End in all PHGSs apart from the PHGS Γ1 (see Figure 5.5). 
Sometimes, an extra operational node must be added for that purpose (see 
PHGS Γ2 in Figure 5.5). This signal is used in order to reset the associated 
logic condition considered in the previous item. 

 
After applying these rules to the set of PHGSs presented in Figure 5.4, the set of 
extended PHGSs depicted in Figure 5.5 is obtained. 
 
Since the FSM memory is scanned by activating the respective sub-clocks 
T1,…,TV (see Figure 4.7), the parallel machine needs a counter and a decoder to 
generate the proper sequence of pulses. Assuming that, during the clock Tv the 
PHGS Γv is processed and the counter binary code can be used to identify the 
macrooperation (or logic function) that is running. Hence, each extended PHGS 
should be marked separately in order to reduce the complexity of state encoding. 
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Therefore, the rules defined for the HFSM model 3 can be applied to mark the 
extended set of PHGSs, with only one difference. The label a0 is assigned to the 
nodes Begin and End of all PHGSs (see Figure 5.5). 
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Figure 5.4 – A set of PHGSs for implementing in a PFSM. 

 
To create the extended state transition Table 5.22, it is necessary to apply the same 
actions as for the HFSM. And to convert it to the ordinary state transition Table 
5.23 it is necessary to perform the following actions: 
• replace each macrooperation zi (logic function θi) invocation, with the signal 

Zi. Each macrooperation (logic function), except the PHGS Γ1 has a SR flip-
flop that holds its state (running or passive). The signal Zi sets the flip-flop and 
enables the macrooperation (logic function) to run, while the signal Zi* resets 
the flip-flop and disables the macrooperation (logic function); 
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• It is also needed a SR flip-flop per logic function to hold its calculated value. 
Replace all symbols θk=1 in the column Y(am) with the signal kΘ  (setting the 
θk SR flip-flop), and all symbols θk=0 with the signal *

kΘ  (resetting the θk SR 
flip-flop); 

 

• replace all symbols kθ  and kθ  in the column X(am,as) with the signals kΘ  and 
kΘ  respectively, that represent the value stored in the θk SR flip-flop. 
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Figure 5.5 – A set of extended PHGSs marked for synthesis as a Moore PFSM. 
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Table 5.22 – PFSM extended state transition table. 

εv  am { Y(am) } as X(am,as) 
z1  a0 a1 1 
z1  a1  {y1} a6 

a0 
a2 
a3 

1x 2x  
1x 2x  
1x 2x  
1x 2x  

z1  a2  {z2,z3} a4 1 
z1  a3  {y2} a5 1 
z1  a4 a4 

a4 
a5 

2Z  
2Z 3Z  
2Z 3Z  

z1  a5  {y3,y4} a0 1 
z1  a6  {z2} a7 1 
z1  a7 a7 

a0 
2Z  
2Z  

z2  a0 a0 
a1 

2Z  
2Z  

z2  a1  {y3,y4} a2 1 
z2  a2  {y7,y8} a2 

a3 
4x  
4x  

z2  a3  {y1,y6} a4 1 
z2  a4  {θ4} a5 1 
z2  a5 a5 

a6 
4Z  
4Z  

z2  a6 a7 
a1 

4θ  
4θ  

z2  a7  { *
2Z } a0 1 

z3  a0 a0 
a1 

3Z  
3Z  

z3  a1  {y1,y2} a2 1 
z3  a2  {y5,y6, *

3Z } a0 1 
z4  a0 a0 

a1 
a1 
a2 

4Z  
4Z 3x  
4Z 3x 4x  
4Z 3x 4x  

z4  a1  {θ4=0, *
4Z } a0 1 

z4  a2  {θ4=1, *
4Z } a0 1 

Table 5.23 – PFSM ordinary state transition table. 

εv  am { Y(am) } as X(am,as) 
z1  a0 a1 1 
z1  a1  {y1} a6 

a0 
a2 
a3 

1x 2x  
1x 2x  
1x 2x  
1x 2x  

z1  a2  { 2Z , 3Z } a4 1 
z1  a3  {y2} a5 1 
z1  a4 a4 

a4 
a5 

2Z  
2Z 3Z  
2Z 3Z  

z1  a5  {y3,y4} a0 1 
z1  a6  { 2Z } a7 1 
z1  a7 a7 

a0 
2Z  
2Z  

z2  a0 a0 
a1 

2Z  
2Z  

z2  a1  {y3,y4} a2 1 
z2  a2  {y7,y8} a2 

a3 
4x  
4x  

z2  a3  {y1,y6} a4 1 
z2  a4  { 4Z } a5 1 
z2  a5 a5 

a6 
4Z  
4Z  

z2  a6 a7 
a1 

4Θ  
4Θ  

z2  a7  { *
2Z } a0 1 

z3  a0 a0 
a1 

3Z  
3Z  

z3  a1  {y1,y2} a2 1 
z3  a2  {y5,y6, *

3Z } a0 1 
z4  a0 a0 

a1 
a1 
a2 

4Z  
4Z 3x  
4Z 3x 4x  
4Z 3x 4x  

z4  a1  { *
4Θ , *

4Z } a0 1 
z4  a2  { 4Θ , *

4Z } a0 1 
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5.6 Synthesis of a PHFSM 

The synthesis of the PHFSM involves the same steps considered for the PFSM. In 
order, to transform the set of PHGSs to extended form the parallelism and the 
hierarchy must be combined. Logic functions and a solo macrooperation 
invocations should be implemented taking advantage of the hierarchy, while the 
invocation of a set of macrooperations must be implemented in parallel. 
 
Constructing extended PHGSs for the PHFSM involves the following steps: 
• to add a new group of nodes, after any node of the PHGS containing more 

than one macrooperation, in order to perform the same synchronisation of 
parallelism of the PFSM. Like it was explained for the PFSM, the first is an 
empty operational node and the others are conditional nodes holding the logic 
conditions Zi (see PHGS Γ1 in Figure 5.7); 

 

• it is not necessary to add any synchronisation nodes, after a node containing 
just one macrooperation or before a node containing a logic function (see for 
example z5 in PHGS Γ1 in Figure 5.7); 

 

• to add after the node Begin, in all PHGSs implementing macrooperations that 
run in parallel except for the PHGS Γ1, the conditional node, which contains 
for the PHGS Γi the logic condition Zi. This node is used in order to 
synchronise the execution of different macrooperations in parallel (see PHGS 
Γ2, Γ3 and Γ4 in Figure 5.7); 

 

• to add before the node End, in all PHGSs implementing macrooperations that 
run in parallel, an operational node which contains for the PHGS Γi the special 
signal Zi*. This signal is used in order to reset the associated logic condition 
considered in the previous item (see PHGS Γ2 in Figure 5.7). This node is not 
necessary, if an operational node containing only microoperations is situated 
right before the node End (see PHGS Γ4 in Figure 5.7); 

 

• to add before the node End, in all PHGSs implementing logic functions and 
macrooperations that never run in parallel, an operational node which contains 
for the PHGS Γi the special signal Zi-. This signal is used in order to return 
back to the previous hierarchical level. This node is not necessary in the two 
following cases. In the case of a PHGS implementing a macrooperation, the 
signal can be generated in an operational node containing only 
microoperations, situated right before the node End (see PHGS Γ5 in Figure 
5.7). In the case of a PHGS implementing a logic function, and if all the paths 
from the node Begin to the node End pass through an operational 
assignment node, the signal can be generated in all the assignment nodes (see 
PHGS Γ6 in Figure 5.7); 



CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 99 

• to add a group of nodes composed of one conditional node and two 
operational nodes, right before the node End in all PHGSs implementing 
macrooperations that run in parallel and that are invoked alone. The 
conditional node is to detect if the macrooperation Zi is running in parallel in 
the stack i, or alone in any stack but i. The logic condition is given by the 
counter binary code of the sub-clock Ti. The two operational nodes are needed 
to generate the two special signals mentioned in the two previous items (see 
PHGS Γ3 in Figure 5.7). 

 
After applying these rules to the set of PHGSs presented in Figure 5.6, the 
extended set of PHGSs depicted in Figure 5.7 is obtained. 
 
 

y1 , y2 , z3

End

BeginΓ2Begin

y1

z2 , z3

End

z3 , z4

x1

x2

0

x2

1
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0
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Γ1

z5
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y3 , y4

0

End

x3

1
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Γ5Begin

y5 , y6

0

End
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1

y1 , y2

Begin
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Γ6
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0
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Figure 5.6 – A set of PHGSs for implementing in a PHFSM. 
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Figure 5.7 – A set of extended PHGSs marked for synthesis as a Moore PHFSM. 
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When a macrooperation zi is invoked in parallel it will run in the stack i, during the 
sub-clock Ti. However, if it is invoked alone it will run in another stack but the 
stack i. Thus, the counter binary code cannot be used to identify the 
macrooperation (logic function) that is running. 
 
Therefore, the set of extended PHGSs should be marked globally, applying the 
rules defined for the HFSM model 2 with the following differences: 
• the label a0 is assigned to the nodes Begin and End of all PHGSs that 

implement macrooperations that are invoked in parallel and to the node End 
of all remaining PHGSs (see Figure 5.7); 

 

• a macrooperation zi that is invoked in parallel and alone needs an entry state 
after the extra conditional node inserted for synchronisation purposes. If the 
node or input of the node, after the conditional node Zi, is not marked yet it 
needs a label (see state a9 in PHGS Γ3 of Figure 5.7). 

 
The construction of the extended state transition table is straightforward applying 
the rules of the HFSM model 2. But since the transitions from the state a0 depend 
on the macrooperation, the state has to be prefixed with the macrooperation 
name. Table 5.24 represents the Moore extended transition table for the set of 
PHGSs depicted in Figure 5.7. 
 
In order to transform the extended table to ordinary form, in the case of a Moore 
machine, the following actions must be performed: 
• merge all transitions zi a0 in just one transition from the state a0, by prefixing 

the logic condition, iZ  or iZ  in the column X(am,as) by the counter binary 
code of the sub-clock Ti, denoted by iT  (see state a0 in Table 5.25); 

 

• replace each macrooperation that is invoked alone with its binary code K(εv) 
and add the signal y+ (see for example state a6 in Table 5.25); 

 

• replace each logic function θk with its binary code K(εv) and add y+ (see state 
a13 in Table 5.25). Apply the same rules defined for logic functions in the 
HFSM; 

 

• replace each macrooperation zi invoked in parallel, with the signal Zi (see state 
a2 in Table 5.25); 

 

• replace all symbols θk=1 in the column Y(am) with the signal kΘ , and all 
symbols θk=0 with the signal *

kΘ  (see states a19 and a20 respectively in Table 
5.25); 

 

• replace all symbols kθ  and kθ  in the column X(am,as) with the signals kΘ  and 
kΘ  respectively (see state a13 in Table 5.25); 

 

• replace all symbols Zi- with the signal y- (see state a12 in Table 5.25). 
 
After applying these rules to Table 5.24, the ordinary state transition Table 5.25 is 
obtained. 
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Table 5.24 – PHFSM extended state transition table. 

am { Y(am) } as X(am,as) 
z1  a0 a1 1 
z2  a0 a7 

a0 
2Z  
2Z  

z3  a0 a9 
a0 

3Z  
3Z  

z4  a0 a13 
a0 

4Z  
4Z  

a1  {y1} a6 
a0 
a2 
a4 

1x 2x  
1x 2x  
1x 2x  
1x 2x  

a2  {z2,z3} a3 1 
a3 a3 

a3 
a0 

2Z  
2Z 3Z  
2Z 3Z  

a4  {z3,z4} a5 1 
a5 a5 

a5 
a0 

3Z  
3Z 4Z  
3Z 4Z  

a6  {z5} a0 1 
a7  {y1,y2,z3} a8 1 
a8  { *

2Z } a0 1 
a9 a11 

a12 
a10 

3x 3T  
3x 3T  
3x  

a10  {y3,y4} a11 
a12 

3T  
3T  

a11  { *
3Z } a0 1 

a12  { −
3Z } a0 1 

a13  {θ6} a15 
a14 

6θ  
6θ  

a14  {y5,y6} a15 1 
a15  {y1,y2, *

4Z } a0 1 
a16  {z3} a17 1 
a17  {y7,y8, −

5Z } a0 1 
a18 a19 

a19 
a20 

3x  
3x 4x  
3x 4x  

a19  {θ6=0, −Θ 6 } a0 1 
a20  {θ6=1, −Θ 6 } a0 1 

Table 5.25 – PHFSM ordinary state transition table. 

am { Y(am) } as X(am,as) 
a0 a1 

a7 
a0 
a9 
a0 
a13 
a0 

1T  
2T 2Z  
2T 2Z  
3T 3Z  
3T 3Z  
4T 4Z  
4T 4Z  

a1  {y1} a6 
a0 
a2 
a4 

1x 2x  
1x 2x  
1x 2x  
1x 2x  

a2  { 2Z , 3Z } a3 1 
a3 a3 

a3 
a0 

2Z  
2Z 3Z  
2Z 3Z  

a4  { 3Z , 4Z } a5 1 
a5 a5 

a5 
a0 

3Z  
3Z 4Z  
3Z 4Z  

a6  {yz3,yz1,y+} a0 1 
a7  {y1,y2,yz2,yz1,y+} a8 1 
a8  { *

2Z } a0 1 
a9 a11 

a12 
a10 

3x 3T  
3x 3T  
3x  

a10  {y3,y4} a11 
a12 

3T  
3T  

a11  { *
3Z } a0 1 

a12  {y-} a0 1 
a13  {yz3,yz2,y+} a15 

a14 
6Θ  
6Θ  

a14  {y5,y6} a15 1 
a15  {y1,y2, *

4Z } a0 1 
a16  {yz2,yz1,y+} a17 1 
a17  {y7,y8,y-} a0 1 
a18 a19 

a19 
a20 

3x  
3x 4x  
3x 4x  

a19  { *
6Θ ,y-} a0 1 

a20  { 6Θ ,y-} a0 1 
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In order to synthesise a PHFSM, it is necessary to create the entry state generation 
table of the Code Converter (see Table 5.26), that provides the entry state of each 
PHGS for the respective PHGS binary code K(εv), in the same manner as for the 
HFSM model 2. However, it is necessary to keep in mind, that the entry state of 
the macrooperation zi that is also invoked in parallel, is the first state after the 
conditional node Zi (see states a7, a9 and a13 in Table 5.26). 

Table 5.26 – Moore PHFSM Code Converter table. 

PHGS Γv K(εv) [yzi] Initial State
 

3yz  2yz  1yz a0 
z1 

3yz  2yz  1yz a1 
z2 

3yz  2yz  1yz a7 
z3 

3yz  2yz  1yz a9 
z4 

3yz  2yz  1yz a13 
z5 

3yz  2yz  1yz a16 
θ6 

3yz  2yz  1yz a18 
 3yz  2yz  1yz a0 

5.7 Automatic Synthesis of a HFSM 

The first step of logic synthesis has a lot of rules according to the HFSM model 
chosen for implementation, so it will be useful to provide automatic generation 
of state transition tables that are correct by construction. 
 
After the synthesis, extra states can be inserted in order to split transitions, extra 
states that can be removed afterwards. In both situations the synthesis methods 
are invoked automatically to synthesise again the new machine. In this situation 
the marking step must be skipped. To accomplish it, all synthesis methods have 
the parameter statemark. Its default value 1 forces the marking step to be 
performed. 
 
The automatic synthesis of a HFSM is divided in 3 steps: marking the set of 
HGSs; generating the state transition table; generating the Code Converter table. 

5.7.1 Marking a Hierarchical Algorithm 

When marking a set of HGSs for synthesis as a Moore or a Mealy machine, it 
must be kept in mind that the HFSM model 3 demands marking each HGS 
separately. This detail however can be handled inside the marking Graphscheme 
method, without the need of two different methods for each machine. 
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5.7.1.1 Marking for synthesis as a Moore HFSM 

Before marking the HGS Cleanstategs() cleans any previous marking. 
Moorestatehgs() starts to check if the set of HGS has any logic functions. In 
affirmative case the user can choose to synthesise them as Moore or as Mealy 
machines. 
 
If Moorestategs() is invoked for marking a HGS for the HFSM model 2, the 
HGS initial state is the state after the last one used in the previous HGS, except 
for the main HGS that is 2. And the total number of states is stored in 
hgsnstates. For the HFSM model 3 the HGS initial state is always 2 and the 
number of states used to mark the HGS is stored in gsnstates. 
 
The Moore marking rules depend on the type of the nodes. Exceptionally they can 
also depend on the following node or the previous nodes. So the nodes can be 
marked individually without the need to traverse the HGS. Moorestatenode() is 
invoked for all nodes of the HGS and applies the following marking rules: 
• it is not necessary to mark a logic function node if the nodes that are in the 

back of it are nodes that hold only microoperations. But to take that decision 
is necessary to know the type of all the nodes that are pointing to a logic 
function node, so these nodes are left to the end. When marking a node that is 
pointing to a logic function, and according to its type, a flag is placed in the 
logic function node. The flag can have two values: ignore state -2 and need 
state -3 that has precedence over the ignore state. After marking all the other 
nodes, the logic function nodes are inspected and only those who have the flag 
need state are marked; 

 

• if the HGS is the main HGS the nodes Begin and End are marked with the 
state 0, otherwise the node Begin is only marked if it is pointing to a 
conditional node with an input condition and the node End is marked with 
the state 1; 

 

• all remaining operational nodes are marked. Any operational node that is 
pointing to a logic function node calls Needstatenode() to flag that the logic 
function needs a state, except the nodes that hold only microoperations that 
call Ignorestatenode() to flag that the logic function does not need a state; 

 

• conditional nodes are not marked, but they also call Needstatenode() when 
they are pointing to a logic function node. 

 
Setstatenode() marks the node with a state, if it is not marked yet, and 
increments the state number. It has a second parameter to indicate if the node is 
marked automatically or manually. The default value 1 means automatic mode. 
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5.7.1.2 Marking for synthesis as a Mealy HFSM 

The Mealy machine method Mealystatehgs() is simplified when compared with 
the Moore machine, because all HGSs are marked for synthesis as Mealy machines 
using the method Mealystategs(). 
 
In the Mealy machine the marking rules do not have exceptions. However, the 
states are assigned to the inputs of nodes instead of being assigned to the nodes, 
with the exception of the nodes Begin and End. Because some of the states are 
assigned to the inputs of nodes that follow certain types of nodes, those nodes are 
marked when the node in the back is processed. Mealystatenode() is invoked for 
all the nodes of the HGS and applies the following marking rules: 
• if the HGS is the main HGS the nodes Begin and End are marked with the 

state 0, otherwise the node Begin is not marked and the node End is marked 
with the state 1; 

 

• the input of a node that holds a macrooperation is marked; 
 

• the input of a node following an operational node is marked; 
 

• the input of a node that holds a logic function is marked, and the inputs of the 
two nodes that follow it are marked. 

5.7.2 Constructing a State Transition Table 

To generate a state transition table it is necessary to record all transitions between 
states. Because states a0 and a1 have a special meaning they are handled at the 
HGS level according to their kind, model 2 or model 3, and they are not 
processed at the node level. 
 
The algorithm is basically the same for both Moore and Mealy machines. 
However, it is simpler for Moore machines because the output function 
(microoperations, macrooperations and logic functions) is associated with the 
state. While, for Mealy machines it is associated with a state transition and it must 
be taken into account that it is always preferable to record a transition that passes 
through one operational node. Each node marked with a state, other than a0 or a1, 
is a starting state and must be written in the present state column. Then the HGS 
is traversed from that node in order to explore all the paths, and to record the 
respective transition condition, that will lead to another node marked with a state. 
This arriving state must be written in the next state column. Because a starting 
state can also be an arriving state, the algorithm must distinguish both situations. 
 
When exploring a path, the method can reach a cycle containing only conditional 
nodes (see Figure 5.8). In a situation like this, not only the method must prevent 
infinite recursion, but also to stop the search of an arriving state. The arriving 
state for paths in loop is the starting state like for example k1k a x a  in Figure 5.8. 
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Figure 5.8 – A cycle of conditional nodes. 

To detect a loop situation it is sufficient to test every time a conditional node is 
reached, if the node condition is already in the condition transition. For the above 
example the state transitions that must be recorded are m421k a xxx a , 

k421k a xxx a , k321k a xxx a , s321k a xxx a  and k1k a x a . 

5.7.2.1 Constructing a Moore State Transition Table 

Because the HFSM models 2 and 3 have different state transition tables they are 
generated by different methods. 
 
In the HFSM model 2, Mooretablemergehgs() writes the table head and the first 
two lines. In the first line it is written the state a0 and the main macrooperation 
name, and in the second line the state a1 and the special signal y-. Then 
Mooretablemergegs() is invoked to construct each HGS part of the table. 
 
In the HFSM model 3, Mooretablesplithgs() just writes the table head and 
invokes Mooretablesplitgs() for each HGS. Mooretablesplitgs() is responsible 
for writing the first three lines of the HGS table. The first line is the name of the 
HGS and the other two are the state transitions for the states a0 and a1. 
 
The nodes are handled with Mooretablenode() for both models. It is invoked for 
all the nodes marked with a state, and it must accommodate the difference 
between the two models. In model 3 the macrooperations, logic functions and the 
special signals y+ and y- are not written in the state transition table, but in the 
Code Converter table instead. Therefore the method has a parameter to 
distinguish the model in question. The HGS is traversed recursively by the derived 
classes methods but the table lines are written by the base class method. 
 
The Onode method must accommodate the Mealy output when a logic function 
HGS is marked for synthesis as a Mealy machine. For this purpose, when an 
unmarked assignment node is crossed the variable extray is set. If an operational 
node is pointing to an unmarked logic function node, in the case of the HFSM 
model 2, it is necessary to construct the string logicf, with the logic function name 
and the special signal y+, to be written as an extra output function of this node. 
But it only will be written in the first column of the next line (see state a6 in Figure 
5.9). 
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The Cnode method must traverse through the conditional node to search for an 
arriving state. First it makes a copy of the entry transition condition. If the node 
condition is already listed on the entry transition condition, the node is in a cycle 
of conditional nodes and the transition is of the type asX(as,as)as. On the contrary, 
if it is the first time that this node is reached, the node condition in its asserted 
form is added to the transition condition and the method exits the node through 
the true output to search for an arriving state. When the method returns back after 
exploring the true output path, it recovers the entry transition condition and the 
condition in its negated form is added to the transition condition, and the false 
output path is explored. Finally, when the method returns back, it recovers the 
entry transition condition. To mean a negated condition the character ~ is 
prefixed to the condition (see Figure 5.9). If the conditional node contains a logic 
function, the label xextra is used instead of the logic function name. 
 
The Node base class method writes the table lines in parts by successive 
invocations. The starting state and the output function are written in the first 
column of the table. The output function depends on the node type: 
• no output function for the node Begin, or a conditional node with an input 

condition, or an assignment node of a logic function HGS marked for 
synthesis as a Mealy machine; 

 

• yextra for an assignment node with an assign value of 1 if the logic function 
HGS is marked for synthesis as a Moore machine; 

 

• microoperations for operational nodes without macrooperations and logicf; 
 

• microoperations if any and in the case of model 2 the macrooperation name 
and the extra signal y+ for operational nodes with a macrooperation; 

 

• in the case of model 2 the logic function name and the extra signal y+ for a 
marked logic function node. 

 
The arriving state is written in the second column of the table. After the first 
transition it is necessary to write spaces to pass over the first column, except if 
logicf is not a null string. The transition condition transition is written in the 
third column and if extray is set, the Mealy output of a mixed Moore/Mealy 
machine yextra is written in the fourth column (see state a18 in Figure 5.9). 
 
The state transition table for the mixed Moore/Mealy HFSM model 2 generated 
by SIMULHGS is depicted in Figure 5.9. It is equivalent to Table 5.21 with the 
difference that the macrooperation (logic function) name is used instead of the 
extra outputs yzi. 
 
The RE1 state transition table for the mixed Moore/Mealy HFSM model 3 
generated by SIMULHGS is depicted in Figure 5.10 (compare it with Table 5.4). 
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--------------------------------------------------------- 
|           HGS Moore State Transition Table            | 
--------------------------------------------------------- 
|      am , Y(am)      | as |     X(am,as)     |Y(am,as)| 
--------------------------------------------------------- 
|a0  , z1              |a0  | 1                | --     | 
--------------------------------------------------------- 
|a1  , y-              |a0  | 1                | --     | 
--------------------------------------------------------- 
|a2  , y2              |a6  | x1x2             | --     | 
|                      |a7  | x1~x2            | --     | 
|                      |a3  | ~x1x2            | --     | 
|                      |a4  | ~x1~x2           | --     | 
--------------------------------------------------------- 
|a3  , y3,y5,z2 , y+   |a5  | 1                | --     | 
--------------------------------------------------------- 
|a4  , z3 , y+         |a5  | 1                | --     | 
--------------------------------------------------------- 
|a5  , y1,y4           |a0  | 1                | --     | 
--------------------------------------------------------- 
|a6  , y6,y7,y8        |a8  | xextra           | --     | 
|f6 , y+               |a5  | ~xextra          | --     | 
--------------------------------------------------------- 
|a7  , z5 , y+         |a8  | 1                | --     | 
--------------------------------------------------------- 
|a8  , y3              |a0  | 1                | --     | 
--------------------------------------------------------- 
|a9  , y3,y4           |a10 | 1                | --     | 
--------------------------------------------------------- 
|a10 , y7              |a10 | x1               | --     | 
|                      |a11 | ~x1              | --     | 
--------------------------------------------------------- 
|a11 , z4 , y+         |a12 | 1                | --     | 
--------------------------------------------------------- 
|a12 , f6 , y+         |a1  | xextra           | --     | 
|                      |a9  | ~xextra          | --     | 
--------------------------------------------------------- 
|a13 , --              |a14 | x4               | --     | 
|                      |a15 | ~x4              | --     | 
--------------------------------------------------------- 
|a14 , y3,y5           |a15 | x5               | --     | 
|                      |a1  | ~x5              | --     | 
--------------------------------------------------------- 
|a15 , y1              |a1  | 1                | --     | 
--------------------------------------------------------- 
|a16 , z3 , y+         |a17 | 1                | --     | 
--------------------------------------------------------- 
|a17 , y1,y2           |a1  | x2               | --     | 
|                      |a16 | ~x2              | --     | 
--------------------------------------------------------- 
|a18 , --              |a1  | x3               | yextra | 
|                      |a1  | ~x3              | --     | 
--------------------------------------------------------- 

Figure 5.9 – State transition table generated by SIMULHGS for the mixed Moore/Mealy HFSM model 2. 
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--------------------------------------------------------- 
|           HGS Moore State Transition Table            | 
--------------------------------------------------------- 
|      am , Y(am)      | as |     X(am,as)     |Y(am,as)| 
--------------------------------------------------------- 
|                          z1                           | 
--------------------------------------------------------- 
|a0  , --              |a2  | 1                | --     | 
--------------------------------------------------------- 
|a1  , --              |a2  | 1                | --     | 
--------------------------------------------------------- 
|a2  , y2              |a6  | x1x2             | --     | 
|                      |a7  | x1~x2            | --     | 
|                      |a3  | ~x1x2            | --     | 
|                      |a4  | ~x1~x2           | --     | 
--------------------------------------------------------- 
|a3  , y3,y5           |a5  | 1                | --     | 
--------------------------------------------------------- 
|a4  , --              |a5  | 1                | --     | 
--------------------------------------------------------- 
|a5  , y1,y4           |a0  | 1                | --     | 
--------------------------------------------------------- 
|a6  , y6,y7,y8        |a8  | xextra           | --     | 
|                      |a5  | ~xextra          | --     | 
--------------------------------------------------------- 
|a7  , --              |a8  | 1                | --     | 
--------------------------------------------------------- 
|a8  , y3              |a0  | 1                | --     | 
--------------------------------------------------------- 

Figure 5.10 – RE1 state transition table generated by SIMULHGS for the mixed Moore/Mealy HFSM model 3. 

5.7.2.2 Constructing a Mealy State Transition Table 

The details of the Moore HFSM models 2 and 3 are applicable to the Mealy 
machine. At the graph-scheme level the differences are related to the table 
appearance, specifically the column where the output function is displayed. For 
the HFSM model 2 there are the methods Mealytablemergehgs() and 
Mealytablemergegs() and for the HFSM model 3 there are the methods 
Mealytablesplithgs() and Mealytablesplitgs(). 
 
At the node level Mealytablenode() also accommodates the difference between 
models 2 and 3, but it works differently from the Moore method. In Mealy the 
output function is stored in the string output when an operational node is crossed 
and it is written in the last table column. It is always preferable to use one 
transition of the kind asX(as,aa)Y(as,aa)aa instead of the kind asX(as,aa)aa. For that 
purpose a transition does not stop in the state at the input of an operational node 
with only microoperations but in the state at the input of the next node. Unless 
the operational node with the microoperations follows an operational node with a 
macrooperation or a conditional node with a logic function. 
 
In order to obtain this behaviour the nodes of the types mentioned above are 
counted and the transition path stops in a state only after one of those nodes have 
been traversed. 
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Figure 5.11 presents the situations mentioned above. The transition n1m a x a  is 
ignored because the state an is at the input of the operational node y6,y9 and the 
transition did not crossed any operational node yet. So the transition 

o961m a y yx a  is recorded instead. But the transition n2q a z a  stops at the state an 
because it already crossed the operational node z2 and the transition p3o a  a θ  
stops at the state ap because it crossed the conditional node θ3. 
 

x1

am

x2

θ3

0

an

ap

y7 , y8

01

y6 , y9 1

z2

ao

Begin

1

0

y4 , y5

End a1

ak

aq

 
Figure 5.11 – A HGS marked for synthesis as a Mealy machine. 

The Onode method processes all marked operational nodes. When an operational 
node is crossed the output function is constructed according to the node type: 
• no output function for the node Begin; 
 

• yextra for an assignment node that assigns the value 1; 
 

• microoperations for operational nodes without macrooperations; 
 

• microoperations if any and in the case of model 2 the macrooperation name 
and the extra signal y+ for operational nodes with a macrooperation. 

 
The counter micro is incremented if an operational node with microoperations or 
macrooperations is traversed. The former in order to stop only after it, the latter 
in order to stop at the input of the node that follows it. The method is then 
invoked for the next node, to search for an arriving state. 
 
The Cnode method works as for the Moore method, but it also constructs the 
output function of a conditional node that contains a logic function, the function 
name and the extra signal y+, in the case of the HFSM model 2. 
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----------------------------------------------- 
|      HGS Mealy State Transition Table       | 
----------------------------------------------- 
| am | as |     X(am,as)     |    Y(am,as)    | 
----------------------------------------------- 
|a0  |a0  | 1                | z1             | 
----------------------------------------------- 
|a1  |a0  | 1                | y-             | 
----------------------------------------------- 
|a2  |a3  | 1                | y2             | 
----------------------------------------------- 
|a3  |a7  | x1x2             | y6,y7,y8       | 
|    |a8  | x1~x2            | --             | 
|    |a4  | ~x1x2            | --             | 
|    |a6  | ~x1~x2           | --             | 
----------------------------------------------- 
|a4  |a5  | 1                | y3,y5,z2 , y+  | 
----------------------------------------------- 
|a6  |a5  | 1                | z3 , y+        | 
----------------------------------------------- 
|a5  |a0  | 1                | y1,y4          | 
----------------------------------------------- 
|a8  |a9  | 1                | z5 , y+        | 
----------------------------------------------- 
|a7  |a9  | xextra           | f6 , y+        | 
|    |a5  | ~xextra          | f6 , y+        | 
----------------------------------------------- 
|a9  |a0  | 1                | y3             | 
----------------------------------------------- 
|a10 |a11 | 1                | y3,y4          | 
----------------------------------------------- 
|a11 |a12 | 1                | y7             | 
----------------------------------------------- 
|a12 |a12 | x1               | y7             | 
|    |a13 | ~x1              | --             | 
----------------------------------------------- 
|a13 |a14 | 1                | z4 , y+        | 
----------------------------------------------- 
|a14 |a1  | xextra           | f6 , y+        | 
|    |a10 | ~xextra          | f6 , y+        | 
----------------------------------------------- 
|a15 |a16 | x4               | y3,y5          | 
|    |a1  | ~x4              | y1             | 
----------------------------------------------- 
|a16 |a1  | x5               | y1             | 
|    |a1  | ~x5              | --             | 
----------------------------------------------- 
|a17 |a18 | 1                | z3 , y+        | 
----------------------------------------------- 
|a18 |a19 | 1                | y1,y2          | 
----------------------------------------------- 
|a19 |a1  | x2               | --             | 
|    |a17 | ~x2              | --             | 
----------------------------------------------- 
|a20 |a1  | x3               | yextra         | 
|    |a1  | ~x3              | --             | 
----------------------------------------------- 

Figure 5.12 – State transition table generated by SIMULHGS for the Mealy HFSM model 2. 
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The Node base class method writes the table lines in parts by successive 
invocations. The starting state is written in the first column of the table and the 
arriving state in the second column. After the first transition it is necessary to 
write spaces to pass over the first column. The transition condition transition and 
the output function output are written in the third and the fourth column of the 
table respectively. The state transition table for the Mealy HFSM model 2 
generated by SIMULHGS is depicted in Figure 5.12 (compare it with Table 5.13). 

5.7.3 Constructing a Code Converter Programming Table 

CCmergehgs() builds the Code Converter table for the HFSM model 2. It is a 
table with the entry state of each HGS of the algorithm. The entry state of a HGS 
is obtained invoking Nodeinitialstategs() and it is the first node marked with a 
state. It also presents the HGS binary code K(εv) and its representation through 
the extra outputs yzi. Instead of replacing each macrooperation (logic function) 
name in the state transition table with the proper extra outputs yzi, they are 
presented in this table. 
 
It must be kept in mind that for the binary code with all bits set to zero (code 
K(εv) that is used in order to clean the Code Converter outputs), and for all 
remaining binary codes not in use, the Code Converter will output the state a0. 
 
The Code Converter table for the mixed Moore/Mealy HFSM model 2 generated 
by SIMULHGS is depicted in Figure 5.13 (compare it with Table 5.3). 
 
 

--------------------------------------------------------- 
|               Code Converter Programming              | 
--------------------------------------------------------- 
|  | Zi/Fi | Zi/Fi |   Code Converter   |     Zi/Fi     | 
|  | Name  | Code  |     inputs YZi     | Initial state | 
--------------------------------------------------------- 
|0 |       | 000   |                    | a0            | 
--------------------------------------------------------- 
|1 | z1    | 001   | yz1                | a2            | 
--------------------------------------------------------- 
|2 | z2    | 010   | yz2                | a9            | 
--------------------------------------------------------- 
|3 | z3    | 011   | yz2 yz1            | a13           | 
--------------------------------------------------------- 
|4 | z4    | 100   | yz3                | a16           | 
--------------------------------------------------------- 
|5 | z5    | 101   | yz3 yz1            | a1            | 
--------------------------------------------------------- 
|6 | f6    | 110   | yz3 yz2            | a18           | 
--------------------------------------------------------- 
|7 |       | 111   |                    | a0            | 
--------------------------------------------------------- 

Figure 5.13 – Code Converter table generated by SIMULHGS for the mixed Moore/Mealy HFSM model 2. 
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The Code Converter table of the HFSM model 3 is a table with the next HGS 
and the extra signals used to control the stacks, for each state of each HGS. In a 
state where the macrooperation zv, or the logic function θv, is invoked the table 
presents the HGS Γv name and the extra signal y+. In all a1 states it presents the 
extra signal y-. For all other states it presents only the active HGS. CCsplithgs() 
builds the head of the table and CCsplitgs() builds each HGS part of the table. 
 
If the HGS is not the main HGS, its node End is marked with the state a1 and 
that will be the first line of the sub-table. Each node that contains a 
macrooperation or a logic function or a node with microoperations that is 
pointing to an unmarked logic function is processed. The state and the 
macrooperation (logic function) name and the extra signal y+ are written. A final 
line with the word other in the state column and the HGS name is written. 
 
The Code Converter table for the Mealy HFSM model 3 generated by 
SIMULHGS is depicted in Figure 5.14 (compare it with Table 5.20). 
 
 

------------------------------------------ 
|       Code Converter Programming       | 
------------------------------------------ 
| Active | HGS  | State | Next |  Stack  | 
|   HGS  | Code |       | HGS  | Pointer | 
------------------------------------------ 
| z1     | 000  | a4    | z2   | y+      | 
|        |      | a6    | z3   | y+      | 
|        |      | a8    | z5   | y+      | 
|        |      | a7    | f6   | y+      | 
|        |      | other | z1   |         | 
------------------------------------------ 
| z2     | 001  | a1    | --   |      y- | 
|        |      | a5    | z4   | y+      | 
|        |      | a6    | f6   | y+      | 
|        |      | other | z2   |         | 
------------------------------------------ 
| z3     | 010  | a1    | --   |      y- | 
|        |      | other | z3   |         | 
------------------------------------------ 
| z4     | 011  | a1    | --   |      y- | 
|        |      | a2    | z3   | y+      | 
|        |      | other | z4   |         | 
------------------------------------------ 
| z5     | 100  | a1    | --   |      y- | 
|        |      | other | z5   |         | 
------------------------------------------ 
| f6     | 101  | a1    | --   |      y- | 
|        |      | other | f6   |         | 
------------------------------------------ 

Figure 5.14 – Code Converter table generated by SIMULHGS for the Mealy HFSM model 3. 
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5.8 Conclusions 

If a hierarchical algorithm is specified with many macrooperations the Moore 
machine is more efficient in terms of the number of states than the Mealy 
machine. This is due to the fact that an operational node of a HGS that contains 
microoperations and a macrooperation needs only one state in the Moore 
machine, against two states for Mealy. But if a hierarchical algorithm is specified 
with many logic functions, and even considering that the Moore marking rules 
only need a state against three states for Mealy, the latter needs less states to mark 
the logic function HGSs and consequently takes less time to evaluate them. 
 
Therefore, if a hierarchical algorithm is specified with many macrooperations and 
logic functions, as against an ordinary FSM, the Moore HFSM is more efficient 
than the Mealy HFSM. Not only, it normally has fewer states but it also has more 
intuitive marking rules. Moreover, is less erroneous to record the transitions 
between states. But, on the other hand the Mealy HFSM speeds up the evaluation 
of logic functions. As a conclusion it can be said that the best model to implement 
a hierarchical algorithm is the proposed mixed Moore/Mealy HFSM. 
 
Since in a complex parallel hierarchical algorithm it can be very difficult to predict 
the present state of the machine, the logic synthesis of the proposed PHFSM is 
very complex and demands a deep knowledge of the algorithm, particularly when 
it is necessary to construct the extended PHGSs. In an operational node that 
invokes macrooperations in parallel, it can be hard to decide which of them will 
run in its own stack and the ones that are candidates for a hierarchical run. The 
decision depends on the flow of the algorithm and on the present state (running 
or passive) of each macrooperation. A problem can also arise in the invocation of 
the same logic function in more than one macrooperation that can eventually run 
in parallel, since it is necessary to ensure that a logic function is never invoked 
before the calculated value of a previous execution has already been used. As a 
conclusion it can be said that the synthesis of a PHFSM is very complex. 
 
The tool SIMULHGS implements automatically the first step of logic synthesis, 
i.e. state marking and state transition recording. It generates the state transition 
table and the Code Converter table for Moore, Mealy and mixed Moore/Mealy 
HFSMs, for both models 2 and 3. 
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6 IMPLEMENTATION AND OPTIMISATION OF 

HIERARCHICAL FINITE STATE MACHINES 

Summary 

The goal of this chapter is to present an implementation of the HFSM and 
PHFSM models that can provide such facilities as flexibility, extensibility and 
reusability and to discuss some optimisation techniques that will improve the 
performance of the FSMs for the target technology chosen. 
 
The chapter starts by presenting the internal decomposition of the 
Combinational Scheme for a RAM-based implementation and then describes 
some optimisation techniques. The replacement of input variables technique 
proposed in [Baranov79] and a special state encoding algorithm proposed in 
[Sklyarov96] that embodies the transition condition in the state code in order to 
eliminate the input variables from the next state generation are explained. 
Furthermore, it is shown how the state splitting technique can keep the 
replacement of the input variables working with a small set of new variables and 
how it can help to apply the special state encoding algorithm. Finally, the method 
of the tool SIMULHGS that automatically applies the state splitting technique to 
an already synthesised algorithm is presented. 
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6.1 Introduction 

The Combinational Scheme and the Code Converter of the HFSM and 
PHFSM models can be implemented with simple logic gates, a programmable 
logic device of type PAL/PLA, a ROM or the read/write equivalent device RAM, 
or sophisticated field-programmable devices such as FPGAs. Since it is necessary 
to provide such new facilities as flexibility, extensibility and reusability, i.e. to 
provide a dynamically reconfigurable device, the choice can be either to use a 
RAM or a FPGA. 
 
A RAM can be easily simulated in a hardware description language since it is 
basically a lookup table (LUT). A RAM (ROM) with m inputs and n outputs can 
implement n different logic functions of m logic variables, because every minterm 
is provided. It is useful in the following situations [Bolton90]: 
• where the problem is naturally specified with a truth table which is mapped 

directly into the words of the RAM and when the function needs to be 
modified word by word; 

 

• when a universal, rewriteable logic block is required and the minterms demand 
cannot be predicted. 

 
Moreover, since only the number of inputs and outputs determines the complexity 
of a RAM, the kind of RAM that is needed is the same regardless of the state 
assignment [Katz94]. However, a RAM (ROM) is suitable to implement functions 
which are fully specified and involve relatively few variables, such as simple code 
conversions where one binary pattern acting as the address is converted into 
another pattern found at the address location [Green86]. Since not every 
combination of input variables and present state is meaningful and they do not 
occur in a HGS description, the RAM (ROM) based approach may not be an 
attractive implementation. Unless an optimisation technique that will select the 
appropriate input variables for each state will be applied. 
 
Despite all the advantages of a RAM-based implementation, since the appearance 
of the FPGAs it does not make any sense to implement complex digital systems in 
any other platform. Therefore, the FPGA should be the target technology for the 
HFSM and PHFSM models with the extra advantage of allowing the complete 
implementation of the models. 
 
However, in order to validate the proposed models in a FPGA platform, it is 
necessary to have a development system for FPGAs. The alternative is to create a 
complete VHDL model of a particular FPGA architecture and to programme 
each experimental example manually in the model. Since, this procedure was time 
consuming and error prone it was not pursued. But, given that some FPGAs are 
internally implemented with LUTs, a RAM-based approach can be considered as 
the first step to validate the proposed models for a LUT-based technology. 



CHAPTER 6 : IMPLEMENTATION AND OPTIMISATION OF HIERARCHICAL FINITE STATE MACHINES 117 

6.2 Decomposition of the Combinational Scheme 

The Combinational Scheme depicted in Figure 6.1 is the component where the 
next state δ and the output λ functions are implemented using RAMs as LUTs. 
 
With the external inputs supplied by the datapath xL,...,x1 and the present state 
τR,...,τ1 stored in the Stack Memory, it generates the external outputs 
(microoperations) yN,...,y1, the next state CSDR,…,CSD1, the binary codes of the 
macrooperations and logic functions yzk,...,yz1 and the special signals y+ and y- that 
respectively increment and decrement the Stack Memory pointer. 
 

Combinational Scheme
( δ , λ )

xL x1

yN y1yz1yzK CSDR CSD1

τR τ1

y+

y-

 
Figure 6.1 – Combinational Scheme. 

As it was mentioned before in Chapter 4, the Combinational Scheme is not a 
pure combinatorial block and in accordance with the kind of machine, Moore or 
Mealy it has respectively one or two blocks to generate the next state and the 
output functions (see Figure 6.2 and Figure 6.3). 

6.2.1 Hierarchical FSM 

The Combinational Scheme of the Moore HFSM model 2, depicted in Figure 
6.2, is composed of two RAMs and three registers. 
 
The Next State Memory implements the next state function δ. Since a HGS 
describing a logic function can be marked for synthesis as a Mealy machine in the 
case of the mixed Moore/Mealy HFSM, it also generates the value of the extra 
output variable extra_y, used to carry out the calculated value of a logic function. 
This value is tested through the extra input variable extra_x, in order to generate 
the appropriate next state. 
 
Since Moore outputs (YMoore=λMoore[A]) are dependent only on the present state, 
all outputs (microoperations, binary codes of macrooperations and logic functions 
and the special signals that increment and decrement the stack) are generated on 
the Output Memory. 
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The Input Register and the Output Register are used to fix respectively the 
external input variables (logic conditions) and the external output variables 
(microoperations), i. e. the signals that communicate with the datapath. 
 
The 1-bit Extra Register is used to store and fix the calculated value of a logic 
function. Only one register is needed because the calculated value of the logic 
function is used at the next clock cycle after being calculated and before another 
logic function is invoked. 
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Figure 6.2 – Decomposition of the Moore HFSM Combinational Scheme for a RAM-based implementation. 

Since Mealy outputs (YMealy=λMealy[A,X]) are dependent on both the present state 
and the external inputs, they are generated on the same component that generates 
the next state. Therefore, the Mealy Combinational Scheme depicted in Figure 
6.3, as only one RAM component, that is the Next State and Output Memory. 
The three registers have the same purpose as in the Moore machine. 
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Figure 6.3 – Decomposition of the Mealy HFSM Combinational Scheme for a RAM-based implementation. 
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6.2.2 Parallel FSM/HFSM 

The Combinational Scheme of the parallel machines is similar to the hierarchical 
non-parallel machines. It was mentioned before that a set of SR flip-flops is used 
to store the logic conditions, that hold the information about the running state of 
the macrooperations and that are used for synchronisation purposes. There are J-1 
flip-flops, where J is the number of memory registers of the PFSM (parameter V 
in Figure 4.7) or the number of stacks of the PHFSM (parameter Q in Figure 4.8). 
 
Since, it is also possible to have logic functions running in parallel, it is necessary 
one storage element for each logic function. And since, the calculated value is not 
used immediately, it must be stored until it is needed, that is until the next logic 
function call. The easiest way is using a SR flip-flop. The flip-flop is set for 
returning the logic value 1 and reset for returning the logic value 0. 
 
Figure 6.4 depicts the Combinational Scheme of the Moore PHFSM, where the 
SR flip-flops used for storing the calculated value of logic functions are omitted. 
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Figure 6.4 – Decomposition of the Moore PHFSM Combinational Scheme for a RAM-based implementation. 

Like it was explained before in the synchronisation of the PHFSM paragraph, a 
multiplexer is required before the lines DR,...,D1 exit the Combinational Scheme 
in order to let pass the entry state of the PHGS generated by the Code Converter 
when the signal y+ is active. It has the following behaviour: when y+ is negated 
the output state will be the calculated next state, while when y+ is asserted the 
output state will be a0. 
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6.3 Replacement of Input Variables 

In order to decrease the amount of memory needed to implement the FSMs, the 
number of address lines of the RAM that generates the next state must be 
minimised. Let’s consider the replacement of input variables proposed in 
[Baranov79]∗ for the ordinary state transition table of the mixed Moore/Mealy 
HFSM presented in Table 5.21. 
 
In practice, the set of input variables involved in all transitions from a state am 
X(am)={xm1,...,xmK} is much smaller than the total set X={x1,...,xL}. Let’s define 
G=max|#X(am)| where m=1,...,M as the maximum number of input variables 
involved in all transitions from a state am. Since, commonly G<<L in a HGS 
description, a transformation of input variables will decrease the number of 
variables involved in the next state generation. Hence, a new set of variables 
P={p1,...,pG} is built, and for each state am a one to one correspondence between 
the set X={x1,...,xL} and the leftmost variables of the new set P={p1,...,pG} is 
defined (see column P(am,as) in Table 6.1). 
 
In this example G=2 due to state a2 in Table 6.1. For this state a correspondence 
is made between {x1,x2} and {p1,p2}. Now let’s consider a state whose transitions 
depend on only one variable xi, for example, all transitions from the state a13 are 
caused by x4. In this case, the left most variable in the set P, that is p1, is used. The 
variable x4 must be replaced with p1 in such a way that, if the transition is caused 
by 4x  it is caused by 1p  and if the transition is caused by 4x  it is caused by 1p . For 
the states with the transition condition equal to 1, it is not necessary to generate 
any variable of the set P (see for example state a0 in Table 6.1). 

Table 6.1 – Ordinary state transition table with the replacement of input variables. 

                                              
∗ A similar technique is proposed in [Green86] for the ROM-based implementation of ASM designs. 

am {Y(am)/Y(am,as)} as X(am,as) P(am,as)
a0  {yz1} a0 1  
a1  {y-} a0 1  
a2  {y2} a6 

a7 
a3 
a4 

1x 2x  
1x 2x  
1x 2x  
1x 2x  

1p 2p  
1p 2p  
1p 2p  
1p 2p  

a3  {y3,y5,yz2,y+} a5 1  
a4  {yz2,yz1,y+} a5 1  
a5  {y1,y4} a0 1  
a6  
{y6,y7,y8,yz3,yz2,y+} 

a8 
a5 

xextra _
xextra _

1p  
1p  

a7  {yz3,yz1,y+} a8 1  
a8  {y3} a0 1  
a9  {y3,y4} a10 1  

a10 {y7} a10
a11

1x  
1x  

1p  
1p  

a11 {yz3,y+} a12 1  
a12 {yz3,yz2,y+} a11

a9

xextra _  
xextra _  

1p  
1p  

a13 a14
a15

4x  
4x  

1p  
1p  

a14 {y3,y5} a15
a1

5x  
5x  

1p  
1p  

a15 {y1} a1 1  
a16 {yz2,yz1,y+} a17 1  
a17 {y1,y2} a1 

a16

2x  
2x  

1p  
1p  

a18 { yextra _ } a1 
a1

3x  
3x  

1p  
1p  
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The Boolean functions for the new set of variables P={p1,p2}, obtained from 
Table 6.1 are the following: 
 

p1 = a2x1 ∼ a6extra_x ∼ a10x1 ∼ a12extra_x ∼ a13x4 ∼ a14x5 ∼ a17x2 ∼ a18x3; 
p2 = a2x2. 

 
Here for all am, am=1 if the HFSM is in the state am, otherwise am=0. 
 
This technique allows for a reduction of the number of address lines of the 
component that generates the next state from R+L to R+G with G<<L. 
 
The replacement of input variables can be implemented with a Programmable 
Multiplexer block (see Figure 6.7). Since all variables from the set X in the above 
equations are asserted, all inverted lines in the programmable array 
implementation of the pi Boolean functions can be skipped. As a result the 
complexity of the arrays will be reduced by almost a factor of two. 

6.4 State Encoding 

The next state function as = δ(am,X) generates the next state from the present state 
and the inputs. After the replacement of input variables the next state function is 
of the form as = δ’(am,P) with #P<<#X. In order to reduce even further the 
number of variables involved in the next state generation it is possible to use a 
state encoding algorithm with a variable code length. This algorithm will assign to 
a state am, many state codes where the most significant bits will be fixed and the 
least significant bits will embody the transition condition P(am,as). Afterwards, the 
next state function will turn into the form as = µ(am). 
 
In order to accomplish that, it is necessary to yield the logic connection between 
the lines pG,...,p1 and some of the lines τR,...,τ1 providing the or logic function (see 
Figure 6.6). But, such connections are admissible if and only if the state code 
stored in the FSM memory (base code) has the bits τG,...,τ1 equal to zero and if 
there is no ambiguity between transitions, i.e. if the resulting or-ed binary code will 
identify correctly the next state to be generated. For this purpose a special state 
encoding algorithm was presented in [Sklyarov96]. 
 
This algorithm assigns a different state binary code for each different transition of 
every state. As a result, if a state am has transitions to N different next states 
involving H variables from the new set of variables P (with H<=G), N different 
binary codes that only differ in their H least significant bits, must be assigned to 
the state am. One of them has the H least significant bits set to zero in order to act 
as the base code, while the remaining binary codes have their H least significant 
bits in a way that they will match the combinations of the P variables that occur in 
the transition conditions. 
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One possible state encoding for the HFSM presented in the state transition Table 
6.1 is depicted in Figure 6.5. Since the state a2 has four transitions depending on 
the two variables p2 and p1, it requires the four following binary codes: 00100 for 
the transition a2 2p 1p  a4 that will act as the base code; 00101 for the transition 
a2 2p 1p  a7; 00110 for the transition a2 2p 1p  a3; 00111 for the transition a2 2p 1p  a6. 
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Figure 6.5 – Karnaugh map for the special state encoding algorithm. 

The new decomposition of the Moore HFSM that implements the replacement of 
input variables and this state encoding algorithm is depicted in Figure 6.6. 
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Figure 6.6 – Decomposition of the Moore HFSM combinational scheme using the replacement of input variables and 

the special state encoding algorithm. 
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Now the number of address lines of the Next State Memory is equal to Rsc 
instead of Rbc+G. However, since in most cases this state encoding algorithm will 
increase the state code length when compared with the ordinary binary algorithm, 
Rsc is generally bigger than Rbc. 
 
Furthermore, since now a state am has more than one state binary code the output 
function is not exactly the same as before Y(am) = λ’(am). And, since the Output 
Memory is only attacked by the base code of a state, for all the remaining state 
binary codes the RAM is wasted. 
 
The Programmable Multiplexer block (see Figure 6.7) is controlled by the lines 
τR,...,τU. The minimal number of most significant bits of the state binary code 
should be used, in order to decrease the size of the multiplexers. In the example 
U=2, because the states in the pi Boolean functions have at least two different 
codes, so the least significant bit τ1 is not needed to distinguish the states. 
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Figure 6.7 – Programmable multiplexer. 

6.5 State Splitting 

Suppose that the value of G has been fixed in the scheme of Figure 6.6, and there 
is a transition from the state am to the state as and |X(am)|>G, then the 
replacement of input variables cannot be carried out. In order to meet the 
constraint G, the transition can be split by inserting an intermediate state ai in such 
a way that |X(am)|<=G and |X(ai)|<=G, and ai is a state that does not assert any 
outputs. 
 
Figure 6.8 shows an example where there are transitions traversing four 
conditional nodes (|X(am)|=4) from the state am to the states aq and ar. To make 
the replacement of input variables, G must be equal to four (see Table 6.2). But, if 
the state ai is inserted at the input of the conditional node x3, the transitions that 
were depending on four logic conditions are now split in transitions depending on 
only two logic conditions. Now it is possible to apply the replacement of input 
variables for G=2 (see Table 6.3). 
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Figure 6.8 – Applying the state splitting technique. 

The insertion of the extra state ai can also reduce the state binary code length in 
some cases. Table 6.2 presents part of the state transition table of the example 
shown in Figure 6.8. Because the transitions from the state am involve four logic 
conditions the replacement of input variables will use four variables, and since 
there are five transitions, five binary codes are needed to encode the state am. And 
one of them must have the last four bits set to zero, to serve as the state base 
code. Since, the binary code with all bits set to zero is reserved for the state a0, a 
binary code with only four bits cannot be used. For this example a binary code of 
five bits is needed, even if the number of states will not demand it. 

Table 6.2 – State transition table without the extra state. 

am as X(am,as) P(am,as) K(am)
am an 

ao 
ap 
ar 
aq 

1x  
1x 2x  
1x 2x 3x  
1x 2x 3x 4x  
1x 2x 3x 4x  

1p  
1p 2p  
1p 2p 3p  
1p 2p 3p 4p  
1p 2p 3p 4p  

10000 
10011 
10001 
10101 
11101 

 
However, after inserting the extra state ai, the replacement of input variables can 
be made with only two variables and only three binary codes are needed to encode 
each one of the states am and ai (see Table 6.3). It is spent one more binary code 
than before, but now a binary code with only four bits is needed, if the number of 
states will allow it. Moreover, if small groups of binary codes are required, it is 
certainly easier to make the state encoding. 

Table 6.3 – State transition table after inserting the extra state. 

am as X(am,as) P(am,as) K(as)
am an 

ao 
ai 

1x  
1x 2x  
1x 2x  

1p  
1p 2p  
1p 2p  

0100 
0111 
0101 

ai ap 
ar 
aq 

3x  
3x 4x  
3x 4x  

1p  
1p 2p  
1p 2p  

1100 
1101 
1111 

 
Furthermore, the insertion of extra states is a technique used in FSM synthesis 
when the FSM is too complex to be implemented with programmable logic 
components of type PAL/PLA at hand and it has to be partitioned [Bolton90, 
Baranov94, Katz94]. 
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6.6 State Splitting in the Tool SIMULHGS 

In order to apply the state splitting technique, the tool SIMULHGS allows the 
introduction of extra states at the user request. This facility is provided by 
Insertstatehgs(), which starts by checking if the set of HGSs is already marked. 
A HGS name is requested to the user and after checking its existence 
Insertstategs() is called. After the insertion is completed and if any extra states 
were really inserted the method reports the actual number of states in the case of 
the HFSM model 2. And the proper synthesis method, with the marking step 
deactivated, is invoked to construct the new state transition table. 
 
Since, a node can be repeated more than once in a HGS, it is very important to 
identify correctly the node to be marked. Insertstategs() requests a node name 
and if it is an unmarked conditional node, it is marked with a state in manual 
mode after the user confirmation. 
 
With Removestatehgs() it is possible to remove states, but only those which 
were inserted at user request with the previous method. After selecting a HGS, 
Removestategs() removes the state assigned to a node after the user 
confirmation, but only if it was manually marked. 

6.7 Quantification of the Optimisation Techniques 

It is obvious that the replacement of input variables proposed in [Baranov79] 
should always be applied, since it allows the reduction of the number of address 
lines of the next state LUT from R+L to R+G. And if necessary, the introduction 
of extra states (state splitting) can always keep G<<L. 
 
In the case of the special state encoding algorithm proposed in [Sklyarov96], the 
optimisation depends on the side effects generated by its application. More 
specifically the fact that the code length of the proposed special binary code (Rsc) 
in most practical examples will be bigger than the code length of the ordinary 
binary code (Rbc). If the length difference (Rsc-Rbc) will still be less than G, it 
should be taken into consideration. But even so, it can have different 
consequences for the two kinds of FSMs. 
 
In the case of the Mealy FSM, the total amount of memory will automatically 
decrease, because the size of the Next State and Output Memory will decrease 

scbc RGR 22 −+  words of R+N+K+3 bits. 
 
However, in the case of the Moore FSM, it does not guarantee a decrease of the 
total amount of memory. On the contrary, the total amount of memory can 
eventually increase. Because, while the size of the Next State Memory will 
decrease scbc RGR 22 −+  words of R+1 bits, the size of the Output Memory will 
increase bcsc RR 22 −  words of N+K+2 bits, and typically N+K+2>>R+1. 
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6.8 Conclusions 

Since the specification of control units may change often, designers have to 
provide them with such facilities as flexibility, extensibility and reusability. Hence, 
it is necessary to implement them with dynamically reconfigurable HFSMs 
(PHFSMs) that can be reprogrammed in minimal time and with minimal effort. In 
order to achieve that functionality they must be assembled with reprogrammable 
components such as RAMs or FPGAs. 
 
If a HFSM (PHFSM) is implemented with RAMs, it is convenient to make the 
replacement of the input variables in order to decrease the size of the next state 
memory. When this optimisation technique is used in combination with the 
special state encoding algorithm, the size of the next state memory is further 
reduced. Nevertheless, most of the times this algorithm can lead to an increase of 
the state code length and therefore to compromise this goal in particular in the 
case of Moore machines. 
 
However, the application of some optimisation techniques, like complex state 
encoding algorithms, in most cases can demand more time to be spent when it is 
necessary to reprogram the HFSMs (PHFSMs). 
 
Since state splitting is an important technique that allows the replacement of input 
variables to work with a small set of new variables and can help the special state 
encoding algorithm, the tool SIMULHGS has methods for inserting and 
removing extra states, in order to apply this technique to an already synthesised 
algorithm. 
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7 VHDL SIMULATION OF HIERARCHICAL 

FINITE STATE MACHINES 

Summary 

The aim of this chapter is to present the simulation results of the HFSM and the 
PHFSM models proposed in chapter three. The VHDL models were created and 
simulated using the Synopsys tools and waveforms of all simulations are 
presented. 
 
The practical examples are those that were used in chapter four to explain the 
synthesis rules and whose ordinary state transition tables have been presented. All 
examples use the replacement of input variables and there are simulation results 
for the ordinary binary code and for the special state encoding algorithm. It is also 
shown how to provide flexibility and extensibility of a hierarchical algorithm with 
minimal changes in the VHDL models. Finally the advantages of a hierarchical 
implementation over a non-hierarchical one are discussed. 
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7.1 Introduction 

The different FSM models (Hierarchical, Parallel and Parallel Hierarchical) were 
simulated using the Synopsys tools. In order to decrease the development time of 
a new FSM the models are parameterised. Each model has a parameter file that 
defines the clock cycle, the synchronisation pulse delays, the component delays 
and the bit vector sizes. The clock cycle used in all simulations was 40 
nanoseconds. 
 
The most important parameters are: 
• MAXSTACK - stack memory size; 
• L - number of input signals; 
• N - number of output signals (microoperations); 
• G - number of new input signals after the replacement of input variables; 
• R - state binary code length; 
• K - HGS binary code length; 
• U - least significant bit that controls the programmable multiplexer when the 

special state encoding algorithm is used; 
• V - number of registers of the PFSM memory; 
• Q - number of stacks of the PHFSM memory; 
• C - counter binary code length used in the parallel FSMs; 
• NLF - number of logic functions used in the parallel FSMs. 
 
The FSMs are modelled in VHDL using a structural description. Besides the 
components already depicted in Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7 and 
Figure 4.8, the FSM also includes a Clock Generator component that provides 
the clock and the synchronisation signals required for each model. 
 
The components Combinational Scheme, Selector, PFSM Memory and 
Parallel Stack Memory are also described structurally. All their internal 
components and the main components Clock Generator, Stack Memory, Code 
Converter and Reprogrammable Element are described behaviourally. 
 
In order to provide reconfigurable FSMs the Combinational Scheme blocks that 
generate the next state and output functions, the Code Converter and the 
Reprogrammable Elements of the HFSM model 3 are modelled as LUTs. Their 
contents are presented in Appendix A and they are refereed in the text as LUT #. 
 
The Combinational Scheme of all models includes a Programmable 
Multiplexer to apply the replacement of input variables technique in order to 
reduce the size of the next state LUT. The multiplexer matrix part (see Figure 7.1) 
is modelled as bit vectors generated with the concatenation of the input signals 
and the logic value 0 in the appropriate input positions. This implementation 
makes it easy to reprogram the multiplexer behaviour. 
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7.2 Simulation of a Moore HFSM model 2 

Let’s consider the set of HGSs depicted in Figure 5.3. It has five input signals 
(L=5) and eight microoperations (N=8) and because it is specified with five 
macrooperations (z1, z2, z3, z4, z5) and one logic function (θ6), the HGS binary 
code length is three (K=3). That leaves the Code Converter with two free codes, 
one to output the state a0 when the next state is generated by the Combinational 
Scheme and one not in use (see Table 5.3). This algorithm can be implemented as 
a mixed Moore/Mealy HFSM using the ordinary state transition Table 5.21. If the 
binary code is used for state encoding and since there are eighteen states, the state 
code length is five bits (R=5). 
 
The replacement of input variables (see Table 6.1) demands two new variables 
(G=2) and to implement them two 32:1 multiplexers are required (see Figure 7.1). 
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Figure 7.1 – Programmable multiplexer for the mixed Moore/Mealy HFSM model 2 with binary state encoding. 

To simulate the mixed Moore/Mealy HFSM, a RAM of 2K words of R bits to 
implement the Code Converter (see LUT 1), a RAM of 2R+G words of R+1 bits 
to implement the next state function (see LUT 2) and a RAM of 2R words of 
N+K+2 bits to implement the output function (see LUT 3) are required. 
 
The waveform generated during the VHDL simulation of this mixed HFSM is 
depicted in Figure 7.2. The microoperations, the state binary codes and the HGS 
binary codes appear in decimal format in order to fit in the clock cycle slot. 
Moreover, since the binary code is used for state encoding the state number is 
equal to the state code in decimal format and it is very easy to track down the 
FSM internal status stored in the Stack Memory and represented by the signals 
STACK. The new set of input signals after the replacement of input variables, i.e. 
the Programmable Multiplexer output, is represented by the signal NEWX. The 
two synchronisation pulses presented in Figure 4.9 are represented by the signals 
SYNCLK1 and SYNCLK2. 
 
The entry state of a HGS is provided by the Code Converter output lines CCD, 
in accordance with the HGS binary code given by its input lines YZ, while the 
Combinational Scheme output lines CSD are set to zero. Every time a HGS is 
invoked the signal INCSTACK (y+) is activated, except for the main 
macrooperation z1, and the HGS entry state is stored in the new top of the stack 
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(see states a9 stored in STACK(2) at 140 ns, a16 stored in STACK(3) at 260 ns, a13 
stored in STACK(4) at 300 ns, a18 stored in STACK(3) at 540 ns in Figure 7.2). 
The z1 entry state is stored in the first register of the stack (see state a2 stored in 
STACK(1) at 60 ns in Figure 7.2). 
 
The Combinational Scheme output lines CSD generate the next state inside 
each HGS, while the Code Converter output lines CCD are set to zero (see for 
example state a3 stored in STACK(1) at 100 ns in Figure 7.2). The calculated value 
of the logic function θ6 is fixed during the clock cycle after being generated (see 
EXTRAX activated at 580 ns in Figure 7.2). 
 
Every time the HGS execution reaches the state a1, the signal DECSTACK (y-) is 
activated and the HFSM returns to the interrupted HGS (see DECSTACK at 385 
ns in Figure 7.2). The signal INCSTACK and the binary code of the terminated 
HGS are again generated, but they are ignored because it occurs after the second 
synchronisation pulse (see INCSTACK and YZ at 395 ns in Figure 7.2). The same 
happens when the stack is incremented and the selected register holds the state a1 
because it was already used. But, in this case it is the signal DECSTACK that is 
generated and ignored (see DECSTACK at 515 ns in Figure 7.2). 
 

 
Figure 7.2 – Waveform of the mixed Moore/Mealy HFSM model 2 with binary state encoding. 

Now let’s consider the special state encoding algorithm proposed in Chapter 6 and 
the state encoding presented in Figure 6.5. For this example the need of more 
than one code for some of the states does not increase the state code length of 
five bits (R=5). Since, with this algorithm some states have more than one binary 
code, the least significant bit τ1 is not needed to distinguish between them and in 
order to apply the replacement of input variables now it is necessary two 16:1 
multiplexers (see Figure 7.3). 
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Figure 7.3 – Programmable multiplexer for the mixed Moore/Mealy HFSM model 2 with special state encoding. 

To simulate the machine for this state encoding algorithm it is necessary, a RAM 
of 2K words of R bits to implement the Code Converter (see LUT 4) and a RAM 
of 2R words of N+K+2 bits to implement the output function (see LUT 5). But to 
implement the next state function a RAM of 2R words of R+1 bits is needed (see 
LUT 6) instead of a RAM of 2R+G words. For this example, the special state 
encoding algorithm allows a reduction in the size of the Next State Memory by a 
factor of four and in the size of the Programmable Multiplexer by a factor of 
two. 
 
The waveform generated during the VHDL simulation that is depicted in Figure 
7.4 has the same behaviour of the waveform presented in Figure 7.2, i. e. the same 
microoperation values. However it is more complicate to track down the FSM 
internal status when compared with the previous waveform, because the state 
number is most of the times not equal to the state code in decimal format. 
 

 
Figure 7.4 – Waveform of the mixed Moore/Mealy HFSM model 2 for the special state encoding. 
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In order to understand the machine internal status it must be kept in mind that the 
Combinational Scheme and the Code Converter always generate the base code 
of a state that has more than one binary code. The signal PSTATE is the present 
state, obtained with the logic or connection between the Programmable 
Multiplexer output lines NEWX and some of the Stack Memory output lines F. 
For example, the z1 entry state a2 generated by the Code Converter has the 
decimal value four (see F at 60 ns in Figure 7.4). When this binary code is or-ed 
with NEWX that is equal to “10”, the present state binary code gets the decimal 
value six (see PSTATE at 65 ns in Figure 7.4). For this binary code the Next 
State Memory generates the next state a3 that has the decimal value three (see 
CSD at 65 ns in Figure 7.4). 

7.3 Simulation of a Mealy HFSM model 2 

Let’s consider the set of HGSs depicted in Figure 5.2 already marked for synthesis 
as a Mealy HFSM and the respective ordinary state transition Table 5.13. All 
parameters have the same values as for the mixed Moore/Mealy HFSM (L=5, 
N=8, K=3, R=5 and G=2). If the binary code is used, two 32:1 multiplexers are 
needed to implement the replacement of input variables (see Figure 7.5). 
 

Programmable Multiplexer

Multiplexer 2
310

p1p2

x1

x2

extra_x

x3

x4

x5

Multiplexer 1
τ5

τ1

310

 
Figure 7.5 – Programmable multiplexer for the Mealy HFSM model 2 with binary state encoding. 

The simulation requires, a RAM of 2K words of R bits to implement the Code 
Converter presented in the Table 5.11 (see LUT 7), and a RAM of 2R+G words of 
R+N+K+3 bits to implement the Next State and Output Memory (see LUT 8). 
 
The waveform generated during the VHDL simulation of this Mealy HFSM is 
depicted in Figure 7.6 and it is very similar with Figure 7.2 except for the two 
following differences. The simulation takes three more clock cycles to finish (820 
ns against 700 ns). This difference is due to the fact that the set of HGSs is 
marked with more states when implemented as a Mealy machine. For the path 
presented in the waveform, the Mealy HFSM has exactly three more states than 
the mixed Moore/Mealy HFSM. The introduction of these states between 
operational nodes also changes slightly the microoperation values (signal Y). For 
example the transition from the state a3 to the state a4 in z1 generates an output 
with the decimal value zero, which did not occur in the mixed Moore/Mealy 
HFSM (see Y at 110 ns in Figure 7.6). 
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Figure 7.6 – Waveform of the Mealy HFSM model 2 with the binary state encoding. 

If the special state encoding algorithm is used, the Programmable Multiplexer 
and the Next State and Output Memory sizes will decrease respectively by a 
factor of two and by a factor of four. 

7.4 Simulation of a Moore HFSM model 3 

Let’s consider the synthesis of the set of HGSs depicted in Figure 5.3 as a mixed 
Moore/Mealy HFSM model 3 using the state transition Table 5.4, Table 5.5, Table 
5.6, Table 5.7, Table 5.8 and Table 5.19 and the binary state encoding. Because 
macrooperation z1 has nine states the state code length is four bits (R=4). The 
remaining parameters are the same as for the HFSM model 2 (L=5, N=8 and 
K=3). To simulate it is necessary to implement the Reprogrammable Elements 
associated with the elements of the set of HGSs. 
 
The Reprogrammable Element associated with the main macrooperation z1 has 
three inputs x1, x2 and the extra input extra_x that represents the calculated value 
of the logic function θ6 invoked in the state b6, and implements the Table 5.4. It is 
modelled as a RAM of 2R+3 words of R bits (see LUT 9). 
 
The Reprogrammable Element associated with the macrooperation z2 has two 
inputs x1 and the extra input extra_x, that represents the calculated value of the 
logic function θ6 invoked in the state b5, and implements the Table 5.5. It is 
modelled as a RAM of 2R+2 words of R bits (see LUT 10). 
 
The Reprogrammable Element associated with the macrooperation z3 has two 
inputs x4 and x5, and implements the Table 5.6. It is modelled as a RAM of 2R+2 

words of R bits (see LUT 11). 
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The Reprogrammable Element associated with the macrooperation z4 has one 
input x2 and implements the Table 5.7. It is modelled as a RAM of 2R+1 words of 
R bits (see LUT 12). 
 
The Reprogrammable Element associated with the pure virtual macrooperation 
z5 has no inputs, and implements the Table 5.8. It is modelled as a RAM of 2R 

words of R bits (see LUT 13). 
 
The Reprogrammable Element associated with the logic function θ6 has one 
input x3. Considering the mixed Moore/Mealy HFSM, the RE has the extra 
output extra_y, which represents the calculated value of the logic function. This 
output is set to one on the transition from the state b2 to the state b1 when x3 has 
the logic value ‘1’. The RE implements the Table 5.19 and it is modelled as a 
RAM of 2R+1 words of R+1 bits (see LUT 14). 
 
It is also necessary, a RAM of 2K+R words of N bits to implement the Output 
Block Memory that provides the microoperations (see LUT 15) and a RAM of 
2K+R words of K+2 bits to implement the Code Converter presented in the Table 
5.10 (see LUT 16). 
 
The waveform generated during the VHDL simulation of this mixed HFSM is 
depicted in Figure 7.7. The microoperations, the HGS binary codes and the state 
binary codes appear in decimal format in order to fit in the clock cycle slot. Since, 
the HGS binary code with all bits set to zero is reserved for the main HGS, the 
decimal value of the macrooperation (logic function) binary code is equal to its 
index number minus one. In order to track down the FSM internal status, the state 
stored in the State Stack Memory (signals STACKSTATE) and the HGS code 
stored in the HGS Stack Memory (signals STACKHGS) were traced. 
 

 
Figure 7.7 – Waveform of the mixed Moore/Mealy HFSM model 3. 
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Figure 7.7 and Figure 7.2 are practically identical but the HFSM model 3 
simulation took one clock cycle less to finish (660 ns against 700 ns), because the 
HFSM model 3 does not need one clock cycle to start running. When the HFSM 
model 2 starts executing the starting state a0 is loaded in the first low to high front 
of the clock in the Stack Memory. And the initial state a2 of the main 
macrooperation generated by the Code Converter will be loaded in the next low 
to high front of the clock. But when the HFSM model 3 starts executing, the 
Reprogrammable Element associated with the main macrooperation is activated 
and generates the initial state b2 that is loaded in the first low to high front of the 
clock in the State Stack Memory thus economising one clock cycle. 

7.5 Simulation of a Mealy HFSM model 3 

Let’s consider the synthesis of the set of HGSs depicted in Figure 5.2 as a Mealy 
HFSM model 3 using the ordinary state transition Table 5.14, Table 5.15, Table 
5.16, Table 5.17, Table 5.18 and Table 5.19 and the binary state encoding. Since 
the macrooperation z1 has ten states, the state code length is four bits (R=4). The 
remaining parameters are the same as for the previous machine (L=5, N=8 and 
K=3). To simulate it is necessary to implement the Reprogrammable Elements 
associated with the elements of the set of HGSs. 
 
The Reprogrammable Element associated with the main macrooperation z1 has 
three inputs x1, x2 and the extra input extra_x, and eight outputs y1, y2, y3, y4, y5, y6, 
y7 and y8. The RE implements the Table 5.14 and it is modelled as a RAM of 2R+3 

words of R+8 bits (see LUT 17). 
 
The Reprogrammable Element associated with the macrooperation z2 has two 
inputs x1 and the extra input extra_x, and three outputs y3, y4, and y7. The RE 
implements the Table 5.15 and it is modelled as a RAM of 2R+2 words of R+3 bits 
(see LUT 18). 
 
The Reprogrammable Element associated with the macrooperation z3 has two 
inputs x4 and x5, and three outputs y1, y3, and y5. The RE implements the Table 
5.16 and it is modelled as a RAM of 2R+2 words of R+3 bits (see LUT 19). 
 
The Reprogrammable Element associated with the macrooperation z4 has one 
input x2, and two outputs y1 and y2. The RE implements the Table 5.18 and it is 
modelled as a RAM of 2R+1 words of R+2 bits (see LUT 20). 
 
The Reprogrammable Elements associated with the pure virtual 
macrooperation z5 and the logic function θ6 are the same as for the mixed 
Moore/Mealy HFSM (see LUT 13 and LUT 14). To implement the Code 
Converter presented in the Table 5.20 it is necessary a RAM of 2K+R words of 
K+2 bits (see LUT 21). 
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Like it was expected the Mealy HFSM model 3 does not need one clock cycle to 
start running, when comparing with the Mealy HFSM model 2, and the simulation 
takes one clock cycle less (780 ns against 820 ns). Besides that detail the resulting 
waveform depicted in Figure 7.8 is identical to Figure 7.6. 
 

 
Figure 7.8 – Waveform of the Mealy HFSM model 3. 

7.6 Simulation of a Moore PFSM 

Let’s consider the set of PHGSs depicted in Figure 5.5 already transformed and 
extended in order to provide proper synchronisation of parallel macrooperations 
for implementation in a PFSM with non-persistent microoperations. It has four 
input signals (L=4) and eight microoperations (N=8). Since it is specified with 
three macrooperations (z1, z2, z3) and one logic function θ4 (NLF=1), the PFSM 
memory has four registers (V=4) and a counter of module four is needed to 
provide the respective sub-clocks to scan the registers. That means a 2-bit binary 
counter (C=2). 
 
This algorithm can be implemented as a Moore PFSM using the ordinary state 
transition Table 5.23. If the binary code is used for state encoding and since 
macrooperations z1 and z2 have eight states the state code length is three bits 
(R=3). The state marking of a PFSM is similar to the HFSM model 3 and the 
PFSM internal state is identified with the PHGS state and the counter binary code. 
 
The inputs that are responsible for the next state generation, besides the state 
code, are the four input signals (x1,…,x4), the calculated value of the logic function 
θ4 (Θ4) and the three extra signals (Z2,…,Z4) that synchronise the parallel 
execution of macrooperations (see Figure 5.5 and Table 5.23). 
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The replacement of input variables demands three new variables (G=3) (see state 
a0 of macrooperation z4 in Table 5.23) and therefore three 32:1 multiplexers are 
used (see Figure 7.9). 
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Figure 7.9 – Programmable multiplexer for the Moore PFSM. 

To implement the Next State Memory a RAM of 2R+C+G words of R bits is 
required (see LUT 22). The output function generates the microoperations (N), 
one set and one reset signal for each SR flip-flop that holds a Zi signal (V-1 flip-
flops), and one set and one reset signal for each SR flip-flop that holds the 
calculated value of a logic function (NLF flip-flops). Therefore, the Output 
Memory RAM must have 2R+C words of N+(V-1)*2+NLF*2 bits (see LUT 23). 
 
The waveform generated during the VHDL simulation of this PFSM is depicted 
in Figure 7.10. The microoperations and the PFSM state binary code appear in 
decimal format in order to fit in the clock cycle slot and to be easier to track down 
the PFSM internal status stored in the PFSM Memory (signals PFSMREG). The 
two synchronisation pulses presented in Figure 4.11 are represented by the signals 
CSCLK and STLCLK. 
 
Macrooperations z2 and z3 are invoked in parallel in the state a2 of macrooperation 
z1. The Z2 and Z3 flip-flops are set in order to enable the parallel execution of 
both macrooperations (see IZ at 350 ns in Figure 7.10), while z1 stays in the 
waiting state a4. Macrooperation z1 only resumes execution, transition from the 
state a4 to the state a5, after z2 and z3 have terminated (see PFSMREG(1) at 1820 
ns in Figure 7.10). When macrooperation z2 invokes logic function θ4 in the state 
a4, Z4 is set to enable the logic function to run (see IZ at 1020 ns in Figure 7.10), 
and z2 waits in the state a5. The logic function θ4 ends execution and returns the 
value 1 (see ILF at 1270 ns in Figure 7.10) and z2 already in the state a6 after the 
termination of θ4 goes to the state a7 (see PFSMREG(2) at 1540 ns in Figure 7.10) 
and finishes execution by resetting Z2 (see IZ at 1670 ns and PFSMREG(2) at 
1700 ns in Figure 7.10). 
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Figure 7.10 – Waveform of the Moore PFSM. 

7.7 Simulation of a Moore PHFSM 

Let’s consider the set of PHGSs depicted in Figure 5.7, that has already been 
transformed and extended in order to provide proper synchronisation of parallel 
macrooperations, for implementation in a PHFSM with non-persistent 
microoperations. It has four input signals (L=4) and eight microoperations (N=8). 
Since it is specified with five macrooperations (z1, z2, z3, z4, z5) and one logic 
function θ6, the HGS binary code length is three bits (K=3). 
 
The Parallel Stack Memory has only four stacks (Q=4), because the 
macrooperation z5 is never invoked in parallel with any other macrooperation and 
therefore does not need a stack for itself, and logic functions are always invoked 
in a new hierarchical level. Since a counter of module four is needed to provide 
the respective sub-clocks to scan the stacks, the counter binary code length is two 
bits (C=2). 
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This algorithm can be implemented as Moore PHFSM using the ordinary state 
transition Table 5.25. If the binary code is used for state encoding and since there 
are eighteen states the state code length is five bits (R=5). 
 
The replacement of input variables is more complicated to apply because when a 
macrooperation in invoked in parallel or alone in a new hierarchical level the sub-
clock binary code is tested to distinguish both situations (see conditional node T3 
in the z3 HGS of Figure 5.7). 
 
The inputs that generates the next state, besides the state code, are the four input 
signals (x1,…,x4), the calculated value of the logic function θ6 (Θ6), the three extra 
signals (Z2,…,Z4) that synchronise the parallel execution of macrooperations and 
the sub-clock binary code Tj. In state a0 (see Table 5.25) the state transition 
depends on Tj and all Zi signals, but in fact for the sub-clock Tm only the 
respective Zm must be inquired to decide the next state. Therefore, multiplexing 
the Zi values accordingly with the Tj sub-clock, the inputs are reduced to Tm and 
Zm. However, because the sub-clock binary code has two bits, the replacement of 
input variables demands three new variables (G=3) (see for example states a0 and 
a9 in Table 5.25) and therefore three 32:1 multiplexers are used (see Figure 7.11). 
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Figure 7.11 – Programmable multiplexer for the Moore PHFSM. 

The output function generates, the microoperations (N), the HGS binary code 
(K), one set and one reset signal for each SR flip-flop that holds a Zi signal (Q-1 
flip-flops), one set and one reset signal for each SR flip-flop that holds the 
calculated value of a logic function (NLF flip-flops) and the special signals y+ and 
y-. Therefore, this PHFSM demands, a RAM of 2K words of R bits to implement 
the Code Converter presented in the Table 5.26 (see LUT 24), a RAM of 2R+C+G 

words of R bits to implement the Next State Memory (see LUT 26) and a RAM 
of 2R+C words of N+K+Q*2+NLF*2 bits to implement the Output Memory 
(see LUT 25). 
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The VHDL simulation of this PHFSM for two different sequences of input 
signals produced the two waveforms presented in Figure 7.12 and Figure 7.13. To 
track down the PHFSM internal status, the state stored in the active register of 
each stack of the Parallel Stack Memory is traced (signals MUXINF). 
 

 
Figure 7.12 – First waveform of the Moore PHFSM. 
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The three synchronisation pulses presented in Figure 4.12 are represented by the 
signals CCCSCLK, SPCLK and STLCLK. 
 
 
 

 
Figure 7.13 – Second waveform of the Moore PHFSM. 
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In the waveform presented in Figure 7.12 the macrooperations z2 and z3 are 
invoked in parallel at the state a2 of macrooperation z1. The Z2 and Z3 flip-flops 
are set in order to enable the parallel execution of both macrooperations (see IZ at 
350 ns in Figure 7.12), while z1 stays in the waiting state a3. Macrooperation z1 
only resumes execution, transition from the state a3 to the state a0, after z2 and z3 
have been terminated (see MUXINF(1) at 1340 ns in Figure 7.12). Meanwhile, 
macrooperation z2 invokes macrooperation z3 in the state a7, that will run in a new 
register of the z2 stack (see MUXINF(2) at 580 ns in Figure 7.12). At this time z3 
is running in parallel with itself in two different stacks (see states stored in 
MUXINF(2) and MUXINF(3) between 600 ns and 1000 ns in Figure 7.12). When 
this z3 hierarchical invocation ends, z2 resumes execution and goes from the state 
a7 to the state a8 (see MUXINF(2) at 1060 ns in Figure 7.12). 
 
In the waveform shown in Figure 7.13, the macrooperations z3 and z4 are invoked 
in parallel at the state a4 of macrooperation z1 (see IZ at 350 ns in Figure 7.13), 
while z1 stays in the waiting state a5. Macrooperation z4 invokes the logic function 
θ6 at the state a13, that will run in a new register of the z4 stack (see MUXINF(4) at 
660 ns in Figure 7.13). The execution of the logic function θ6 ends and returns the 
value 1 (see ILF at 950 ns in Figure 7.13), and z4 resumes execution at the state a13 
and goes to the state a15 (see MUXINF(4) at 980 ns in Figure 7.13). 

7.8 Providing Flexibility 

Flexibility means the feasibility to modify a given behaviour in minimal time and 
with minimal effort. Let’s consider the mixed Moore/Mealy HFSM presented in 
the previous paragraphs. Suppose it is necessary to change the macrooperation z4 
behaviour. For example, the microoperation y8 must be inserted in the node 
marked with the state a16 and the microoperations y1, y2 must be replaced with the 
microoperations y4, y6 and the macrooperation z5 in the node marked with the 
state a17 (see Figure 7.14a). Moreover, the current version of the logic function θ6 
must be substituted by another version in all conditional nodes where it is invoked 
(see Figure 7.14b). 
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Figure 7.14 – (a) New implementation of the macrooperation z4. (b) New version of the logic function θ6. 
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Let’s see how these changes can be provided for the Moore HFSM model 2 with 
the binary state encoding. To change the functionality of the operational nodes a16 
and a17 it is necessary to reprogram the Output Memory. Replacing the 17-th 
output vector "0000000001110" (associated with the state a16) with the vector 
"1000000001110" (y8, z3), and the 18-th output vector "0000001100000" 
(associated with the state a17) with "0010100010110" (y4, y6, z5). 
 
In order to use the new version of the logic function, its HGS is marked with free 
state labels, the state transitions introduced by those new states are recorded and 
they are programmed in the Next State Memory. 
 
In the example, the input of the first conditional node is marked with the state a19 
and the state transitions presented in Table 7.1 are recorded. The new state 
transition is programmed by replacing the 20-th group of four empty next state 
vectors (associated with the state a19) with "000010" "000010" "000011" "000010" 
(next state a1 and the extra output extra_y for the transition a19 3x 2x  a1). 

Table 7.1 – Ordinary state transition table for the new version of the logic function θ6. 

am { Y(am) } as X(am,as) Y(am,as)
a19 a1 

a1 
a1 

3x  
3x 2x  
3x 2x  

 
yextra _

 
Since the replacement of input variables technique is being used the 
Reprogrammable Multiplexer must also be reprogrammed to accommodate the 
need of the inputs x3 and x2 for the new state a19 (see Figure 7.15). 
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Figure 7.15 – New implementation of the programmable multiplexer for the mixed Moore/Mealy HFSM model 2 with 

binary state encoding in order to provide flexibility. 

Finally to use the new version of the logic function θ6 in all its invocations, it is 
necessary to reprogram the θ6 entry state binary code generated by the Code 
Converter, by replacing the 7-th entry state vector "10010" (state a18) with 
"10011" (state a19). 



144 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS 

However, if it is necessary to invoke the two different versions of the logic 
function in two different conditional nodes, the following actions must be done: 
1. to assign a new HGS binary code to the new version of the logic function, for 

example the code "111" that is not in use; 
 

2. to reprogram the Code Converter for providing the entry state a19 for the new 
HGS binary code by replacing the 8-th entry state vector "00000" (clear state 
a0) with "10011" (state a19) and keeping the entry state a18 for the old HGS 
binary code; 

 

3. in the conditional nodes where the first version of θ6 is invoked the output 
function must generate the HGS binary code "110", while in the nodes where 
the second version is invoked the HGS binary code "111" must be generated. 

 
The waveform generated during the VHDL simulation of this mixed HFSM with 
the changes mentioned above is depicted in Figure 7.16. 
 
Comparably with Figure 7.2, now the state a16 generates the microoperation y8 
(128) (see Y at 265 ns in Figure 7.16). And the state a17 generates the 
microoperations y4, y6 (40), and since the pure virtual macrooperation z5 is 
invoked its HGS binary code (5) is generated (see YZ at 425 ns in Figure 7.16). 
The pure virtual macrooperation is executed during only one clock cycle and the 
HFSM returns back to the state a17. When the logic function θ6 is invoked in the 
state a12 of macrooperation z2 it is in fact the second version that is running (see 
state a19 stored in STACK(3) and NEWX at 580 ns in Figure 7.16). 
 

 
Figure 7.16 – Waveform of the mixed Moore/Mealy HFSM model 2 with the changes that provide flexibility. 
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If the special state encoding algorithm is used, three binary codes are needed for 
the state a19. But to accommodate them in the Karnaugh map of Figure 6.5 the 
state assignments of the states a16 and a17 have to change (see Figure 7.17 and 
compare it with Figure 6.5). 
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Figure 7.17 – Karnaugh map for state encoding. 

Now it is necessary to reprogram the Output Memory and the Next State 
Memory for the new state a19 and for the states a16 and a17 whose codes have 
been changed. The Code Converter must be reprogrammed like it was explained 
for the binary state encoding, but the macrooperation z4 entry state has also to be 
reprogrammed because the a16 code has been changed. 
 
The Programmable Multiplexer must be updated for all the states mentioned 
above that have input signals in their transition functions, i. e. for the states a17 
and a19 (see Figure 7.18 and compare it with Figure 7.3). 
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Figure 7.18 – New implementation of the programmable multiplexer for the mixed Moore/Mealy HFSM model 2 with 

special state encoding in order to provide flexibility. 
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It should be kept in mind when using the special state encoding algorithm, to 
leave as much empty rows in the Karnaugh map as possible, in order to allow 
future state assignments without having to make many changes in the states 
already assigned. But even doing so, to apply some changes to an already 
implemented HFSM using this state encoding algorithm, demands more time 
when compared with the ordinary binary state encoding algorithm. 
 
In the Moore HFSM model 3, to reprogram the Moore Output Block changes 
the operational nodes functionality in terms of the microoperations generation. 
But in order to add or delete a macrooperation invocation the Code Converter 
has to be reprogrammed. 
 
In order to supply another version of the logic function θ6 and to keep both 
versions available it is necessary to insert a new RE that needs a RAM of 2R+2 

words of R+1 bits. But, to substitute the implementation of the logic function θ6 
in all invocations, it is easier to reprogram the RE6. 
 
For the PFSM (PHFSM) it is very easy to change the microoperations generation 
by reprogramming the Output Memory. If it is required to add or delete a 
macrooperation, in a PFSM operational node or in a PHFSM operational node 
that already contains macrooperations, the transformed PHGS must be reanalysed 
in order to ensure that the parallel invocation of macrooperations is still correctly 
synchronised. Then the Next State Memory and the Output Memory must be 
reprogrammed accordingly with all the changes that have been made. However, to 
add a macrooperation in a PHFSM operational node that does not contain yet a 
macrooperation is done like for the HFSM model 2. 
 
However, it is necessary to ensure that the PHGS of the macrooperation is 
synchronised to be used in a hierarchical invocation. To replace a logic function 
with another version or by another logic function in the PFSM is done the same 
way as inserting a macrooperation invocation, while in the PHFSM is done by 
reprogramming the Code Converter like for the HFSM model 2. 
 
Everything that was said for the Moore machine can be applied to Mealy with one 
difference. For the model 2 the next state and output vectors are reprogrammed 
altogether in the same vector of the Next State and Output Memory. In the 
case of the model 3 all the changes in a HGS behaviour are made in the respective 
RE, apart from macrooperation and logic function invocations that are made in 
the Code Converter. 
 
The example of Figure 7.14 has shown how to add the invocation of a 
macrooperation in an operational node. In order to abolish an existing 
macrooperation invocation, it is necessary to reprogram the output function in the 
opposite way, i.e. to delete the macrooperation binary code and the special signal 
y+ for the appropriate state. 
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7.9 Providing Extensibility 

Extensibility means to extend the defined behaviour in order to improve 
something. Let’s consider the mixed Moore/Mealy HFSM presented initially. 
Suppose it is necessary to add a new operational node in the macrooperation z4 
before the node End (see Figure 7.19a) invoking the new macrooperation z7 (see 
Figure 7.19b). 
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Figure 7.19 – (a) New implementation of the macrooperation z4. (b) New macrooperation z7. 

In order to execute the changes mentioned above for the Moore HFSM model 2, 
the following steps must be performed: 
1. reprogram the Next State Memory; 
2. reprogram the Programmable Multiplexer; 
3. assign a HGS binary code to the new macrooperation z7 and reprogram the 

Code Converter; 
4. reprogram the Output Memory. 
 
Let’s explain each step in detail for this example assuming binary state encoding. 
 
Step 1. In order to reprogram the Next State Memory, the new nodes are 
marked with free state labels, the new state transitions are recorded and the old 
transitions that were affected by the insertion of the node are re-evaluated. Then 
all next state vectors of the states that have been affected must be reprogrammed. 
 
In the example, the operational node inserted in macrooperation z4 is marked with 
the state a19 and the operational node of macrooperation z7 with the state a20 and 
the state transitions presented in Table 7.2 are recorded. First the state transition 
a17 2x  a19 that substitutes the transition a17 2x  a1 is reprogrammed by replacing the 
two vectors "000010" (state a1) of the 18-th group of next state vectors with 
"100110" (state a19). 
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Now, it is necessary to program the new state transitions. For the state transition 
a19 a1, the 20-th group of four empty next state vectors is replaced with "000010" 
"000010" "000010" "000010". For the state transitions a20 3x  a20, a20 3x 4x  a20 and 
a20 3x 4x  a1, the 21-st group of four empty next state vectors is replaced with 
"101000" "000010" "101000" "101000". 

Table 7.2 – Ordinary state transition table for the new node of the macrooperation z4 and the new macrooperation z7. 

am { Y(am) } as X(am,as)
a17  {y1,y2} a19 

a16 
2x  
2x  

a19  {z7,y+} a1 1 
a20  {y2,y3} a20 

a20 
a1 

3x  
3x 4x  
3x 4x  

 
Step 2. The Programmable Multiplexer is reprogrammed, if and only if the state 
transitions of the inserted nodes have input signals in their transition functions. 
That is the case of the state a20 that depends on the inputs x4 and x3 (see Figure 
7.20). 
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Figure 7.20 – New implementation of the programmable multiplexer for the mixed Moore/Mealy HFSM model 2 with 

binary state encoding in order to provide extensibility. 

Step 3. The HGS binary code “111” can be assigned to the macrooperation z7, 
since it is free. The Code Converter will generate the entry state a20 for z7, if the 
8-th entry state vector "00000" (clear state a0) is replaced with "10100" (state a20). 
 
Step 4. In order to reprogram the Output Memory, the output functions of the 
new nodes are recorded and their output vectors are loaded. In the example, for 
the state a19, the 20-th output vector is loaded with "0000000011110" (no 
microoperations, z7, y+) and for the state a20, the 21-st output vector is loaded with 
"0000011000000" (y2, y3). 
 
The waveform for this mixed HFSM with the changes mentioned above is 
depicted in Figure 7.21. Comparably with Figure 7.2, the next state of the state a17 
is the state a19 (see STACK(3) at 460 ns in Figure 7.21). At the state a19 the 
macrooperation z7 is invoked and its HGS binary code (7) is generated (see YZ at 
465 ns in Figure 7.21). The macrooperation z7 generates the microoperations y2 
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and y3 (6) in the state a20 (see Y at 510 ns in Figure 7.21) and returns back to the 
previous hierarchical level. 
 

 
Figure 7.21 – Waveform of the mixed Moore/Mealy HFSM model 2 with the changes that provide extensibility. 

If the special state encoding algorithm is used, three binary codes for the state a20 
and one binary code for the state a19 are required, which is not possible to 
accommodate in the Karnaugh map of Figure 6.5. So the state binary code length 
will increase to six bits (R=6). 
 
To implement the changes for this state encoding algorithm, the requirements 
necessary, when compared with the binary state encoding, are the following: two 
32:1 Programmable Multiplexers; a Next State Memory with half of the size; 
an Output Memory with twice the size. Since the Output Memory word length 
is twice of the Next State Memory word length the total amount of memory 
needed is practically the same for both implementations. 
 
In the Moore HFSM, the use of the special state encoding algorithm for an 
example with only two new variables after applying the replacement of input 
variables, does not decrease the total amount of memory size if the state code 
length will increase one bit. In contrast, the total memory size will still decrease 
for the Mealy HFSM. 
 
In order to execute the changes mentioned above for the Moore HFSM model 3, 
it is necessary to perform the following steps: 
1. reprogram the z4 RE; 
2. create the z7 RE; 
3. assign a HGS binary code to the new macrooperation z7 and provide an 

output decoder line to connect the RE7; 
4. reprogram the Code Converter; 
5. reprogram the Output Memory Block. 
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Let’s explain in detail each step for this example. Step 1. In order to reprogram the 
RE4, the operational node inserted in the macrooperation z4 is marked with the 
first free state that is b4, the state transitions generated are recorded and the 
transitions affected by its insertion are re-evaluated. In the example, the state 
transition b3 2x  b4 that substitutes the transition b3 2x  b1 is reprogrammed by 
replacing in the 4-th group of next state vectors the vector "0001" (state b1) with 
"0100" (state b4). And replacing the 5-th group of two empty next state vectors 
with "0001" "0001" (state b1) programs the state transition b4 b1. 
 
Step 2. In order to create the RE7, the z7 HGS is marked with states (see states bi 
in Figure 7.19b) and the transitions are recorded. The RE7 has two inputs x3 and 
x4 and a RAM of 2R+2 words of R bits is required (see LUT 27). 
 
Step 3. Since the HGS binary code "110" is free, it can be assigned to the 
macrooperation z7 and therefore the RE7 must be connected with the 7-th output 
decoder line. 
 
Step 4. To reprogram the Code Converter means to provide the z7 invocation in 
the state b4 of the macrooperation z4, by replacing the 53-rd empty vector "00000" 
with "11010" (z7 HGS code, y+). It is also necessary to program the hierarchical 
invocations for the z7 macrooperation states. The 97-th, 98-th and 99-th empty 
vectors must be replaced with respectively "11000" (z7 HGS code for the state b0), 
"00001" (signal y- for the state b1) and "11000" (z7 HGS code for the state b2). 
 
Step  5. In order to reprogram the Output Memory Block, the microoperations 
of the new nodes of macrooperations z4 and z7 are recorded and loaded in the 
respective output vectors. In the example, the state b4 does not have any 
microoperations, so it is not necessary to perform any action. But for the state b2 
the 99-th empty output vector is loaded with "00000110" (y2, y3). 
 
The insertion of new operational nodes in the PFSM/PHFSM proceeds like it was 
explained before. The transformed PHGS is reanalysed in order to ensure that the 
invocation of macrooperations is correctly synchronised and then the Next State 
Memory and the Output Memory are reprogrammed. 
 
In order to add a new macrooperation to an algorithm described by PHGSs and 
implemented in a PFSM, a new register must be added to the PFSM Memory 
and the clock generation has to be adapted in order to scan the new register. For 
the PHFSM two kinds of situations can happen. If the new macrooperation will 
be used in parallel invocations then it is required to add a new stack to the 
Parallel Stack Memory and proceed like for the PFSM. Otherwise, proceed like 
when it is necessary to add a new logic function. 
 
Once again the extensibility example was only presented for the Moore machine. 
For the Mealy machine the differences described in the previous paragraph have 
to be considered. 
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7.10 Providing Reusability 

It was shown in the two previous paragraphs how easy it is to change the 
behaviour of the FSMs. With the flexibility and extensibility provided by the 
models, it can be said that the HFSMs/PHFSMs when implemented with 
reprogrammable elements such as RAMS are reusable. 
 
Since the VHDL models are parameterised, in order to reuse the 
HFSMs/PHFSMs, it is only necessary to change the parameters declared in the 
parameter file, to reprogram the Programmable Multiplexer matrix part and the 
contents of the components implemented as RAMs. 

7.11 Using Pure Virtual HGSs 

In order to specify an algorithm without a complete description, pure virtual 
macrooperations can be declared in the description just for the sake of testing it 
(z5 in the example). In the end all pure virtual macrooperations must be specified. 
 
A pure virtual macrooperation is executed in only one clock cycle in the HFSM 
model 2 (see Figure 7.16), because its entry state is in fact the HGS exit state a1. 
Since in the case of the HFSM model 3 the entry state of a pure virtual HGS is the 
state b2, its execution takes two clock cycles. 

7.12 Hierarchical FSMs versus Non-Hierarchical FSMs 

A hierarchical decomposition of an algorithm allows the developing of any 
complex control algorithm part by part concentrating the efforts on different 
levels of abstraction. Moreover, the macrooperations described can be separately 
tested and can be used to implement other algorithms developed in future. 
However, a hierarchical specification does not imply a hierarchical 
implementation. So why do it? 
 
Let’s consider the mixed Moore/Mealy HFSM used as an example in this chapter. 
If the hierarchical implementation is flattened then the set of HGSs is reduced to 
the ordinary GS depicted in Figure 7.22 with thirteen operational nodes, that can 
be implemented as a Moore FSM with a state binary code length of four bits 
(R=4). This means that the FSM implementation requires less memory to be 
implemented, because the Code Converter is not required and a single register 
can substitute the Stack Memory as the FSM memory. 
 
But this happens because each macrooperation is invoked only once, with the 
exception of z3. If the macrooperations were invoked more times, the number of 
operational nodes of the GS would increase and then the FSM synthesis would 
also increase in complexity. 
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It is also possible to provide a flexible, extensible and reusable FSM if the next 
state and output functions are implemented with reprogrammable elements such 
as RAMs. But can the non-hierarchical FSM really provide flexibility, extensibility 
and reusability? 
 
Suppose it is necessary to make some changes in the macrooperation z3. In order 
to do that in the GS of Figure 7.22, the changes have to be made in two different 
places, while in the hierarchical specification the changes are made only once in 
the HGS Γ3. And more changes means more memory cells to reprogram. 
 
Suppose it is required to replace all invocations of a macrooperation zi with the 
macrooperation zj. In the GS that forces the replacing of a group of nodes with 
another group of nodes in all appearances of the macrooperation zi and therefore 
to re-synthesise parts of the state transition table and then to reprogram the FSM 
next state and output functions accordingly. In the HFSM only the Code 
Converter needs to be reprogrammed by replacing the entry state of the 
macrooperation zi with the entry state of the macrooperation zj. 
 
Suppose it is essential to have a flexible conditional node. In the HFSM it is 
possible to have different versions of a logic function and by reprogramming the 
Code Converter or the output function of the conditional node, to invoke the 
desired version. In the FSM the condition contained in the conditional node has 
to be changed, some transitions have to be rewritten in the state transition table, 
the next state function must be reprogrammed and if the replacement of input 
variables is being used the Programmable Multiplexer also demands to be 
reprogrammed. 
 
The hierarchical implementation really provides the reuse of an algorithm with 
simple changes in precise parts of the implementation and without the need to 
start the design process again from the beginning. The new algorithm inherits the 
invariable part of the previous algorithm and just deletes parts that are not needed 
and adds new parts that are different in the new context. The HFSMs with stack 
memory can be seen as general-purpose architectures capable of implementing 
hierarchical algorithms directly mapped from hierarchical specifications. 
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Figure 7.22 – Ordinary GS equivalent to the set of HGSs presented in Figure 5.1. 
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7.13 Conclusions 

The VHDL simulation proved that the proposed HFSM and PHFSM models 
implemented with the suggested synchronisation mechanism perform correctly 
the transition between hierarchical levels. Furthermore, the PHFSM can provide 
pseudo-parallel execution of macrooperations. 
 
The replacement of input variables can in fact reduce the total amount of memory 
needed to implement the HFSMs. 
 
The special state encoding algorithm must be carefully applied in order to allow 
assigning binary codes to new states to be inserted in the future without having to 
make many changes in the states already assigned. If applied without increasing 
the state code length it effectively reduces the size of the next state LUT. 
Otherwise, in the case of the Moore HFSMs the size of the output LUT will 
eventually increase more than the falling size of the next state LUT and therefore 
will yield the opposite intention. 
 
One way or another, the special state encoding algorithm forces the designer to 
spend more time when it is necessary to modify the FSMs behaviour, because it is 
not a straightforward procedure like when using ordinary binary encoding. 
 
It was experimentally proved that flexibility and extensibility could be provided in 
minimal time and with minimal effort. 
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8 FINAL CONCLUSIONS AND FUTURE WORK 

Summary 

This chapter presents the final conclusions and summarises the original 
contributions of this work, namely the proposed models of hierarchical and 
parallel hierarchical FSMs, their synthesis from hierarchical specifications and the 
automatic synthesis tool SIMULHGS. The experimental results obtained with the 
VHDL simulation of the proposed FSM models are also analysed. In addition 
some future research opened up by this work is discussed. 
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8.1 Introduction 

Formal state-based models that can support hierarchical and concurrent 
specifications were proposed in [Skyarov84, Sklyarov87, Harel87] and are strongly 
recommended by many authors [Gajski94, Micheli94, Edwards97] for modelling 
the functionality of complex control units. 
 
In this thesis HGSs and PHGSs were the formal model chosen to specify the 
behaviour of control units. They allow a top-down decomposition of control 
algorithms through the use of macro blocks. Since these macro blocks can be seen 
as relatively autonomous blocks they can be separately tested and can be reused to 
implement other algorithms to be developed in the future. 
 
However, since HGSs and PHGSs have the constraints in the transitions between 
hierarchical levels, they do not allow for example performing the last part of an 
already existing macrooperation without the need to perform the first part. The 
designer can solve this problem in two different ways: 
• to specify another macrooperation that will implement the desired part of an 

already existing macrooperation and then invoke this new macrooperation in 
the required states. But this means to have a partially repeated macrooperation; 

 

• to split the macrooperation implementation into two independent 
macrooperations, and invoking each part accordingly to the needs of the 
algorithm. But when it is necessary to execute the complete original 
macrooperation it demands two invocations to be performed sequentially and 
therefore to waste more time in the complete execution due to the extra 
hierarchical transitions. 

 
Both solutions have advantages and disadvantages, but can lead to unnatural 
specifications of a hierarchical algorithm. Hence, the solution must pass by 
allowing hierarchical transitions to any state of any hierarchical level like in the 
Statecharts model. This transition flexibility can and must be accommodated in 
the HFSM models. 
 
Besides the introduction of the concept of the HCFSM in [Gajski94] and the 
suggestion for the implementation of a hierarchical FSM through the 
interconnection of independent FSMs in [Micheli94] or a tree of interconnected 
FSMs in [DruHar89], there are not many proposals for a HFSM model that can be 
seen as a complete FSM implementing internally in an efficient way the switching 
between the different hierarchical levels of the machine. 
 
The first model of a HFSM and its synthesis directly mapped from a hierarchical 
specification was presented in [Sklyarov84]. A HFSM with stack memory can 
efficiently implement a hierarchical control algorithm and can even perform a 
recursive algorithm providing that the size of the stack is well dimensioned. 
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8.2 Contributions 

The contributions of this work to the synthesis of control units from hierarchical 
specifications covers two different directions. First, it proposes new models of 
HFSMs that are more efficient and flexible than the first models presented in 
[Sklyarov84, Sklyarov87] and that can provide such new facilities as flexibility, 
extensibility and reusability when implemented with reprogrammable components. 
Second, it proposes a synthesis methodology from hierarchical specifications 
based on HGSs/PHGSs and it presents an automatic synthesis tool for HFSMs 
specified by HGSs. 

8.2.1 HFSM and PHFSM models 

With the introduction of the Code Converter in the HFSM model 2, the HFSM 
becomes less complex and more versatile when compared with the first model. 
Moreover, this model can implement the hierarchical transition flexibility 
mentioned above, if the Code Converter is used to generate the arriving state of 
each hierarchical transition instead of the entry state of each macrooperation or 
logic function. In order to achieve this functionality, the binary codes that address 
the Code Converter and that are associated with the macrooperations and logic 
functions must be associated with the hierarchical transitions. 
 
The HFSM model 3 provides an association between the set of HGSs and 
mutually exclusive Reprogrammable Elements. This model has acquired a 
regular structure that can be easily modified with the addition or deletion of REs 
and can in fact provide a flexible and extensible hierarchical implementation. With 
its modular structure it becomes suitable for the FPGA implementation of Mealy 
HFSMs. However, this model cannot implement the hierarchical transition 
flexibility mentioned above. 
 
Based on the parallel FSM model proposed in [Sklyarov87] that implements the 
pseudo-parallel execution of FSMs, a parallel hierarchical FSM model and its 
synthesis from a specification based on PHGSs are also proposed. The PHFSM 
can manage both hierarchy and pseudo-parallelism, but it is not a true PHFSM 
and more work should be done in order to achieve it. 

8.2.2 Synthesis of HFSMs 

The synthesis methodology proposed has proven that as against an ordinary FSM 
the Moore HFSM is more efficient than the Mealy HFSM for implementing an 
algorithm with many hierarchical invocations. But, since it is more convenient to 
use a Mealy HFSM to implement logic functions, in order to speed up their 
evaluation, the mixed Moore/Mealy HFSM can take the better of the two 
machines and it should be used in the case of an algorithm with logic functions. 
 
In addition the tool SIMULHGS that automatically synthesises HFSMs specified 
by HGSs was implemented. 
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According to [Harel88], a variety of computer-related systems and situations can 
and should be represented by visual formalisms: visual, because they are to be 
generated, comprehended and communicated by humans; and formal because 
they are to be manipulated, maintained and analysed by computers. 
 
For that very reason, the work of this thesis was complemented with the 
development of the graphical editor of HGSs [ParCra98], which allows the 
creation of separated HGSs as well as algorithms composed with already existing 
and newly developed HGSs. This graphical editor generates text descriptions of 
correct HGSs and the textual decomposition of a hierarchical algorithm that can 
be used as input to the tool SIMULHGS. 

8.2.3 Experimental Results 

The VHDL simulation work done has demonstrated that the proposed models 
could in fact implement a hierarchical algorithm efficiently, and that they allow the 
use of virtual components in the description of the algorithm for the sake of 
testing. Moreover, they provide flexibility, extensibility in minimal time and with 
minimal effort. Therefore, it can be said that the proposed models are suitable for 
implementing complex control algorithms and that they are reusable. 
 
The tool SIMULHGS used in conjunction with a graphical editor of HGSs 
provides an environment for the specification, verification, simulation and 
automatic synthesis of a hierarchical algorithm described by a set of HGSs. But, it 
is not yet a complete graphical environment and for the moment it only generates 
text files containing the state transition table and the Code Converter table. 

8.3 Future Work 

Since the tool SIMULHGS has not a user-friendly interface to the user, it should 
be redesigned in order to accommodate a complete graphical environment. It 
should incorporate a graphical editor and to provide graphically all the facilities 
already implemented namely, verification, simulation, automatic generation of 
state transition and Code Converter tables and the optimisation technique of 
state splitting. It should be extended to include the replacement of input variables 
technique and it should have the possibility of applying different state encoding 
algorithms. 
 
The implementation of the HFSM model 2 in the Xilinx XC6200 dynamically 
reconfigurable FPGAs is already being pursued with promising results that are 
presented in [Sklyarov98]. Since FPGAs can be seen as the ideal target for the 
implementation of the HFSM model 3, the next step of research should be its 
implementation in reconfigurable FPGAs and to study how it is possible to take 
advantage of the dynamically reconfigurable capability in order to provide a 
flexible, extensible and reusable HFSM. 
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9 APPENDIX A  -  LUTS 

This appendix presents the contents of the lookup tables of the FSMs presented 
in Chapter 7. 
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Moore HFSM model 2 with the binary state encoding algorithm 

LUT 1 - Code Converter. 

LUT 2 – Next State Memory. 

LUT 3 - Output Memory. 

Code Converter
 

"00000" "00010" "01001" "01101" "10000" "00001" "10010" "00000"

Next State Memory
 

"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000" 
"001000" "001110" "000110" "001100" "001010" "001010" "001010" "001010" 
"001010" "001010" "001010" "001010" "000000" "000000" "000000" "000000" 
"001010" "010000" "001010" "010000" "010000" "010000" "010000" "010000" 
"000000" "000000" "000000" "000000" "010100" "010100" "010100" "010100" 
"010110" "010100" "010110" "010100" "011000" "011000" "011000" "011000" 
"010010" "000010" "010010" "000010" "011110" "011100" "011110" "011100" 
"000010" "011110" "000010" "011110" "000010" "000010" "000010" "000010" 
"100010" "100010" "100010" "100010" "100000" "000010" "100000" "000010" 
"000010" "000011" "000010" "000011" "000000" "000000" "000000" "000000" 
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000" 
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000" 
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000" 
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000" 
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000" 
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000" 

Output Memory
 

"0000000000100" "0000000000001" "0000001000000" "0001010001010" 
"0000000001110" "0000100100000" "1110000011010" "0000000010110" 
"0000010000000" "0000110000000" "0100000000000" "0000000010010" 
"0000000011010" "0000000000000" "0001010000000" "0000000100000" 
"0000000001110" "0000001100000" "0000000000000" "0000000000000" 
"0000000000000" "0000000000000" "0000000000000" "0000000000000" 
"0000000000000" "0000000000000" "0000000000000" "0000000000000" 
"0000000000000" "0000000000000" "0000000000000" "0000000000000" 
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Moore HFSM model 2 with the special state encoding algorithm 

LUT 4 – Code Converter. 

LUT 5 – Next State Memory. 

LUT 6 – Output Memory. 

Code Converter
 

"00000" "00010" "01001" "01101" "10000" "00001" "10010" "00000"

Next State Memory
 

"000000" "000000" "011110" "011110" "000100" "011100" "000110" "011000" 
"000000" "010100" "100110" "010100" "011110" "010000" "010000" "000000" 
"010010" "000010" "000010" "100000" "100100" "101100" "000010" "100100" 
"000010" "000011" "000000" "000000" "111110" "000010" "000000" "111000" 

Output Memory
 

"0000000000100" "0000000000001" "0000000001110" "0001010001010" 
"0000001000000" "0000001000000" "0000001000000" "0000001000000" 
"0000010000000" "0000110000000" "0100000000000" "0100000000000" 
"1110000011010" "1110000011010" "0000000010110" "0000100100000" 
"0000000011010" "0000000011010" "0000000100000" "0000000010010" 
"0000000000000" "0000000000000" "0001010000000" "0001010000000" 
"0000000000000" "0000000000000" "0000000000000" "0000000000000" 
"0000001100000" "0000001100000" "0000000000000" "0000000001110" 
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Mealy HFSM model 2 with the binary state encoding algorithm 

LUT 7 – Code Converter. 

LUT 8 – Next State Output Memory. 

Next State Output Memory
 

"0000000000000000100" "0000000000000000100" "0000000000000000100" "0000000000000000100" 
"0000000000000000001" "0000000000000000001" "0000000000000000001" "0000000000000000001" 
"0001100000001000000" "0001100000001000000" "0001100000001000000" "0001100000001000000" 
"0010100000000000000" "0100000000000000000" "0010000000000000000" "0011101110000000000" 
"0011000001010001010" "0011000001010001010" "0011000001010001010" "0011000001010001010" 
"0011000000000001110" "0011000000000001110" "0011000000000001110" "0011000000000001110" 
"0000000000100100000" "0000000000100100000" "0000000000100100000" "0000000000100100000" 
"0011000000000011010" "0100100000000011010" "0011000000000011010" "0100100000000011010" 
"0100100000000010110" "0100100000000010110" "0100100000000010110" "0100100000000010110" 
"0000000000010000000" "0000000000010000000" "0000000000010000000" "0000000000010000000" 
"0101100000110000000" "0101100000110000000" "0101100000110000000" "0101100000110000000" 
"0110000100000000000" "0110000100000000000" "0110000100000000000" "0110000100000000000" 
"0110100000000000000" "0110000100000000000" "0110100000000000000" "0110000100000000000" 
"0111000000000010010" "0111000000000010010" "0111000000000010010" "0111000000000010010" 
"0101000000000011010" "0000100000000011010" "0101000000000011010" "0000100000000011010" 
"0000100000000100000" "1000000001010000000" "0000100000000100000" "1000000001010000000" 
"0000100000000000000" "0000100000000100000" "0000100000000000000" "0000100000000100000" 
"1001000000000001110" "1001000000000001110" "1001000000000001110" "1001000000000001110" 
"1001100000001100000" "1001100000001100000" "1001100000001100000" "1001100000001100000" 
"1000100000000000000" "0000100000000000000" "1000100000000000000" "0000100000000000000" 
"0000100000000000000" "0000110000000000000" "0000100000000000000" "0000110000000000000" 
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000" 
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000" 
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000" 
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000" 
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000" 
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000" 
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000" 
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000" 
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000" 
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000" 
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000" 

Code Converter
 

"00000" "00010" "01010" "01111" "10001" "00001" "10100" "00000"
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Moore HFSM model 3 with the binary state encoding algorithm 

LUT 9 – Macrooperation z1 RE Memory. 

LUT 10 – Macrooperation z2 RE Memory. 

LUT 11 – Macrooperation z3 RE Memory. 

LUT 12 – Macrooperation z4 RE Memory. 

Macrooperation z4 RE
 

"0010" "0010" "0010" "0010" "0011" "0011" "0010" "0001" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"

Macrooperation z3 RE
 

"0010" "0010" "0010" "0010" "0010" "0010" "0010" "0010" 
"0100" "0011" "0100" "0011" "0001" "0001" "0100" "0100" 
"0001" "0001" "0001" "0001" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 

Macrooperation z2 RE
 

"0010" "0010" "0010" "0010" "0010" "0010" "0010" "0010" 
"0011" "0011" "0011" "0011" "0100" "0100" "0011" "0011" 
"0101" "0101" "0101" "0101" "0010" "0001" "0010" "0001" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 

Macrooperation z1 RE
 

"0010" "0010" "0010" "0010" "0010" "0010" "0010" "0010" 
"0010" "0010" "0010" "0010" "0010" "0010" "0010" "0010" 
"0100" "0100" "0111" "0111" "0011" "0011" "0110" "0110" 
"0101" "0101" "0101" "0101" "0101" "0101" "0101" "0101" 
"0101" "0101" "0101" "0101" "0101" "0101" "0101" "0101" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0101" "0100" "0101" "0100" "0101" "0100" "0101" "0100" 
"1000" "1000" "1000" "1000" "1000" "1000" "1000" "1000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
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LUT 13 – Pure Virtual Macrooperation z5 RE Memory. 

LUT 14 – Logic Function θ6 RE Memory. 

LUT 15 – Output Block Memory. 

LUT 16 – Code Converter Memory. 

Pure Virtual Macrooperation z5 RE
 

"0010" "0010" "0001" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 

Logic Function θ6 RE 
 

"00100" "00100" "00100" "00100" "00010" "00011" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"

Output Block Memory
 

"00000000" "00000000" "00000010" "00010100" "00000000" "00001001" "11100000" "00000000" 
"00000100" "00000000" "00000000" "00000000" "00000100" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00001100" "01000000" "00000000" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00010100" "00000001" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00000011" "00000000" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" 
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" 

Code Converter
 

"00000" "00000" "00000" "00110" "01010" "00000" "10110" "10010"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00100" "00001" "00100" "00100" "01110" "10110" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"01000" "00001" "01000" "01000" "01000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"01100" "00001" "01010" "01100" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"10000" "00001" "10000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"10100" "00001" "10100" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
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Mealy HFSM model 3 with the binary state encoding algorithm 

LUT 17 – Macrooperation z1 RE Memory. 

LUT 18 – Macrooperation z2 RE Memory. 

Macrooperation z1 RE
 

"001000000000" "001000000000" "001000000000" "001000000000" 
"001000000000" "001000000000" "001000000000" "001000000000" 
"001000000000" "001000000000" "001000000000" "001000000000" 
"001000000000" "001000000000" "001000000000" "001000000000" 
"001100000010" "001100000010" "001100000010" "001100000010" 
"001100000010" "001100000010" "001100000010" "001100000010" 
"010100000000" "010100000000" "100000000000" "100000000000" 
"010000000000" "010000000000" "011111100000" "011111100000" 
"011000010100" "011000010100" "011000010100" "011000010100" 
"011000010100" "011000010100" "011000010100" "011000010100" 
"011000000000" "011000000000" "011000000000" "011000000000" 
"011000000000" "011000000000" "011000000000" "011000000000" 
"000000001001" "000000001001" "000000001001" "000000001001" 
"000000001001" "000000001001" "000000001001" "000000001001" 
"011000000000" "100100000000" "011000000000" "100100000000" 
"011000000000" "100100000000" "011000000000" "100100000000" 
"100100000000" "100100000000" "100100000000" "100100000000" 
"100100000000" "100100000000" "100100000000" "100100000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000" 
"000000000000" "000000000000" "000000000000" "000000000000"

Macrooperation z2 RE
 

"0010000" "0010000" "0010000" "0010000" "0010000" "0010000" "0010000" "0010000" 
"0011011" "0011011" "0011011" "0011011" "0100100" "0100100" "0100100" "0100100" 
"0101000" "0101000" "0100100" "0100100" "0110000" "0110000" "0110000" "0110000" 
"0010000" "0001000" "0010000" "0001000" "0000000" "0000000" "0000000" "0000000" 
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" 
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" 
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" 
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" 
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LUT 19 – Macrooperation z3 RE Memory. 

LUT 20 – Macrooperation z4 RE Memory. 

LUT 21 – Code Converter Memory. 

Macrooperation z3 RE 
 

"0010000" "0010000" "0010000" "0010000" "0010000" "0010000" "0010000" "0010000" 
"0001001" "0011110" "0001001" "0011110" "0001000" "0001000" "0001001" "0001001" 
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" 
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" 
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" 
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" 
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" 
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" 

Macrooperation z4 RE 
 

"001000" "001000" "001000" "001000" "001100" "001100" "010011" "010011" 
"001000" "000100" "000000" "000000" "000000" "000000" "000000" "000000" 
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000" 
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000" 

Code Converter 
 

"00000" "00000" "00000" "00000" "00110" "01010" "00000" "10110" 
"10010" "00000" "00000" "00000" "00000" "00000" "00000" "00000" 
"00100" "00001" "00100" "00100" "00100" "01110" "10110" "00000" 
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000" 
"01000" "00001" "01000" "01000" "00000" "00000" "00000" "00000" 
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000" 
"01100" "00001" "01010" "01100" "01100" "00000" "00000" "00000" 
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000" 
"10000" "00001" "10000" "00000" "00000" "00000" "00000" "00000" 
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000" 
"10100" "00001" "10100" "00000" "00000" "00000" "00000" "00000" 
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000" 
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000" 
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000" 
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000" 
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
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Moore PFSM with the binary state encoding algorithm 

LUT 22 – Next State Memory. 

LUT 23 – Output Memory. 

 

Moore PHFSM with the binary state encoding algorithm 

LUT 24 – Code Converter Memory. 

LUT 25 – Output Memory. 

Next State Memory
 

"001" "001" "001" "001" "001" "001" "001" "001" "011" "000" "010" "110" "011" "000" "010" "110" 
"100" "100" "100" "100" "100" "100" "100" "100" "101" "101" "101" "101" "101" "101" "101" "101" 
"101" "100" "100" "100" "101" "100" "100" "100" "000" "000" "000" "000" "000" "000" "000" "000" 
"111" "111" "111" "111" "111" "111" "111" "111" "000" "111" "000" "111" "000" "111" "000" "111" 
"000" "001" "000" "001" "000" "001" "000" "001" "010" "010" "010" "010" "010" "010" "010" "010" 
"011" "010" "011" "010" "011" "010" "011" "010" "100" "100" "100" "100" "100" "100" "100" "100" 
"101" "101" "101" "101" "101" "101" "101" "101" "110" "101" "110" "101" "110" "101" "110" "101" 
"001" "111" "001" "111" "001" "111" "001" "111" "000" "000" "000" "000" "000" "000" "000" "000" 
"000" "001" "000" "001" "000" "001" "000" "001" "010" "010" "010" "010" "010" "010" "010" "010" 
"000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" 
"000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" 
"000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" 
"000" "000" "000" "000" "001" "001" "001" "010" "000" "000" "000" "000" "000" "000" "000" "000" 
"000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" 
"000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" 
"000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" 

Moore PFSM Output Memory 
 

"0000000000000000" "0000000100000000" "0000000011000000" "0000001000000000" 
"0000000000000000" "0000110000000000" "0000000010000000" "0000000000000000" 
"0000000000000000" "0000110000000000" "1100000000000000" "0010000100000000" 
"0000000000100000" "0000000000000000" "0000000000000000" "0000000000010000" 
"0000000000000000" "0000001100000000" "0011000000001000" "0000000000000000" 
"0000000000000000" "0000000000000000" "0000000000000000" "0000000000000000" 
"0000000000000000" "0000000000000101" "0000000000000110" "0000000000000000" 
"0000000000000000" "0000000000000000" "0000000000000000" "0000000000000000"

Code Converter
 

"00000" "00001" "00111" "01001" "01101" "10000" "10010" "00000"

Output Memory 
 

"000000000000000000000" "000000010000000000000" "000000000000011000000" "000000000000000000000" 
"000000000000001100000" "000000000000000000000" "000000000101100000000" "000000110111000000000" 
"000000000000000010000" "000000000000000000000" "000011000000000000000" "000000000000000001000" 
"000000000000100000000" "000000001101000000000" "001100000000000000000" "000000110000000000100" 
"000000000111000000000" "110000000000100000000" "000000000000000000000" "000000000000100000001" 
"000000000000100000010" "000000000000000000000" "000000000000000000000" "000000000000000000000" 
"000000000000000000000" "000000000000000000000" "000000000000000000000" "000000000000000000000" 
"000000000000000000000" "000000000000000000000" "000000000000000000000" "000000000000000000000" 
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LUT 26 – Next State Memory. 

 

Moore HFSM model 3 - Providing Extensibility 

LUT 27 – Macrooperation z7 RE Memory. 

Next State Memory 
 

"00001" "00001" "00000" "00111" "00000" "01001" "00000" "01101"
"00100" "00000" "00010" "00110" "00000" "00000" "00000" "00000"
"00011" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00011" "00011" "00011" "00000" "00000" "00000" "00000"
"00101" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00101" "00101" "00101" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"01000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"01010" "01100" "01010" "01100" "01010" "01011" "01010" "01100"
"01100" "01100" "01011" "01100" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"01110" "01111" "00000" "00000" "00000" "00000" "00000" "00000"
"01111" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"10001" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"10011" "10011" "10011" "10100" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"

Macrooperation z7 RE
 

"0010" "0010" "0010" "0010" "0010" "0010" "0010" "0010" 
"0010" "0001" "0010" "0010" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000" 
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10 APPENDIX B  -  SIMULHGS 

This appendix lists the C++ code of the tool SIMULHGS. 
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//SIMULHGS - Verification, Simulation and Automatic Synthesis of HGSs 
 
#include <fstream.h> 
#include <iostream.h> 
#include <string.h> 
#include <stdlib.h> 
#include <math.h> 
#include <conio.h> 
 
//*********************** Definition of Constants, Types and String Functions *********************** 
 
#define MAXNODES 100 
#define MAXHGS 10 
 
enum TYPENODE {BEGIN, END, ASSIGN, MICROOP, MACROOP, CONDITION, FUNCTION}; 
enum TYPEGRAPH {LFUNCGS, MACROGS}; 
 
char* binarycode(int n, int G) 
{ 
 static char* bincode=new char[6]; strcpy(bincode,""); 
 for (int i=G, bit=1<<G; i>0; i--) { bit>>=1; if (n&bit) strcat(bincode,"1"); else strcat(bincode,"0"); } 
 return bincode; 
} 
 
char* yzstring(int n, int G) 
{ 
 static char* yz=new char[20];  strcpy(yz,""); 
 for (int i=G, bit=1<<G; i>0; i--) { 
  bit>>=1; if (n&bit) { strcat(yz,"yz"); strcat(yz,ecvt(i,1,0,0)); strcat(yz," "); } 
 } 
 return yz; 
} 
 
char* linechar(int n) 
{ 
 static char* line=new char[3]; strcpy(line,""); 
 if (n<9) { line=ecvt(n,1,0,0); strcat(line," "); } else line=ecvt(n,2,0,0); 
 return line; 
} 
 
class Node; class Graphscheme; class Hgraphscheme; 
 
//***************************** Definition of the Class Graph-Scheme ***************************** 
 
class Graphscheme 
{ 
 char* gsname; 
 TYPEGRAPH gstype; 
 unsigned int gsnnodes; 
 Node* gslist[MAXNODES]; 
 unsigned int gsmain; 
 unsigned int gsnstates; 
 
public: 
 Graphscheme(char* fname, unsigned int main=0); 
 ~Graphscheme(); 
 char* Graphname(void) {return gsname;} 
 TYPEGRAPH Graphtype(void) const { return gstype; } 
 unsigned int Graphnnodes(void) const { return gsnnodes; } 
 unsigned int Graphmain(void) const { return gsmain; } 
 unsigned int Graphnstates(void) const { return gsnstates; } 
 Node* Begings(void) const ; 
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 Node* Endgs(void) const ; 
 void Cleanmarkgs(void); 
 void Markgs(void); 
 int Primarycheckgs(Hgraphscheme*); 
 int Checkgs(Hgraphscheme*); 
 int Loopcheckgs(void); 
 void Listgs(void); 
 void Printgs(char*); 
 int Rungs(Hgraphscheme*,int&); 
 void Cleanstategs(void); 
 void Moorestategs(int&, int); 
 void Mealystategs(int&, int); 
 Node* Nodeinitialstategs(void); 
 void Mooretablemergegs(char*); 
 void Mooretablesplitgs(char*); 
 void Mealytablemergegs(char*); 
 void Mealytablesplitgs(char*); 
 void CCsplitgs(char*,char*); 
 void Insertstategs(int&, int, int&); 
 void Removestategs(int&, int, int&); 
}; 
 
//*********************** Definition of the Class Hierarchical Graph-Scheme *********************** 
 
class Hgraphscheme 
{ 
 char* hgsname; 
 unsigned int hgsngs; 
 Graphscheme* hgslist[MAXHGS]; 
 unsigned int hgscheck; 
 unsigned int hgsdeep; 
 char* hgssyn; 
 int hgsmark; 
 unsigned int hgsnstates; 
 
public: 
 Hgraphscheme(char* fname); 
 ~Hgraphscheme(); 
 char* Hgsname(void) { return hgsname; } 
 unsigned int Hgsngs(void) const { return hgsngs; } 
 char* Ngraphname(int n) { return hgslist[n]->Graphname(); } 
 Graphscheme* Searchgraphhgs(char* name); 
 int Checkhgs(void); 
 void Listhgs(void); 
 void Printhgs(void); 
 void Deeplevelhgs(int level) { if (level>hgsdeep) hgsdeep=level; } 
 void Runhgs(void); 
 void Moorestatehgs(void); 
 void Mealystatehgs(void); 
 void CCmergehgs(char*); 
 void CCsplithgs(char*); 
 void Mooretablemergehgs(char*); 
 void Mooretablesplithgs(char*); 
 void Mealytablemergehgs(char*); 
 void Mealytablesplithgs(char*); 
 void Mooresynmergehgs(int statemark=1); 
 void Mooresynsplithgs(int statemark=1); 
 void Mealysynmergehgs(int statemark=1); 
 void Mealysynsplithgs(int statemark=1); 
 void Insertstatehgs(void); 
 void Removestatehgs(void); 
}; 
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//************************ Definition and Implementation of the Class Node ************************ 
 
class Node 
{ 
protected: 
 char* nname; 
 TYPENODE ntype; 
 int nmark; 
 int nstate; 
 int nauto; 
 
public: 
 Node(char* name); 
 Node(char* name, TYPENODE type); 
 Node(const Node&); 
 virtual ~Node() { delete [] nname; } 
 const Node& operator=(const Node&); 
 int operator==(const Node&) const; 
 char* Nodename(void) { return nname; } 
 TYPENODE Nodetype(void) { return ntype; } 
 int Nodemark(void) { return nmark; } 
 int Nodestate(void) { return nstate; } 
 int Nodeauto(void) { return nauto; } 
 void Cleanmarknode(void) { nmark=0; } 
 void Setmarknode(void) { nmark=1; } 
 void Cleanstatenode(void) { nstate=-1; } 
 void Setstatenode(int&, int autman=1); 
 void Needstatenode(void) { nstate=-3; } 
 void Ignorestatenode(void) { if (nstate==-1) nstate=-2; } 
 char* Macroname(void); 
 char* Microname(void); 
 int Assignvalue(void); 
 char* Statechar(void); 
 virtual Node* Nextnode(int out=1)=0; 
 virtual void Setnext(Node* tpt, Node* fpt=NULL)=0; 
 virtual void Marknode(void)=0; 
 virtual void Checknode(int&)=0; 
 virtual void Loopnode(int&)=0; 
 virtual void Listnode(void); 
 virtual void Printnode(char*); 
 virtual void Runnode(int&, Hgraphscheme*, int&)=0; 
 int Startingstatenode(void) { if (nstate>1) return 1; else return 0; } 
 virtual void Moorestatenode(int&, Graphscheme* gs, int)=0; 
 virtual void Mealystatenode(int&, Graphscheme* gs, int)=0; 
 virtual void Mooretablenode(char*, char*, int&, int&, char*, int, Node*); 
 virtual void Mealytablenode(char*, char*, char*, int&, int&, int, Node*); 
}; 
 
Node::Node(char* name) 
 :nmark(0), nstate(-1), nauto(0) 
{ 
 nname=new char[15]; strcpy(nname,name); 
 if (! strcmp(name,"BEGIN")) ntype=BEGIN; 
 else if (! strcmp(name,"END")) ntype=END; 
} 
 
Node::Node(char* name, TYPENODE type) 
 :nmark(0), nstate(-1), nauto(0) 
{ nname=new char[15]; strcpy(nname,name); ntype=type; } 



CHAPTER 10 : APPENDIX B  -  SIMULHGS 173 

 

Node::Node(const Node& node) 
{ 
 nname=new char[15]; strcpy(nname,node.nname); 
 ntype=node.ntype; nmark=node.nmark; nstate=node.nstate; 
} 
 
const Node& Node::operator=(const Node& node) 
{ 
 if (this != &node ) { 
  delete [] nname; nname=new char[15]; strcpy(nname,node.nname); 
  ntype=node.ntype; nmark=node.nmark; nstate=node.nstate; 
 } 
 return *this; 
} 
 
int Node::operator==(const Node& node) const 
{ 
 return (! strcmp(this->nname,node.nname) && (this->ntype==node.ntype) 
    && (this->nmark==node.nmark) && (this->nstate==node.nstate) ); 
} 
 
void Node::Setstatenode(int& state, int autman) 
{ if (ntype!=END && (nstate==-1 || nstate==-3)) { nstate=state; state++; nauto=autman; } } 
 
char* Node::Macroname(void) 
{ 
 static char* macroname=new char[15]; 
 
 strcpy(macroname,""); 
 if (ntype == FUNCTION) strcpy(macroname,nname); 
 else if (ntype == MACROOP) { strcpy(macroname,nname); macroname=strstr(macroname,"z"); } 
 return macroname; 
} 
 
char* Node::Microname(void) 
{ 
 static char* microname=new char[15]; 
 
 strcpy(microname,""); 
 if (ntype == MICROOP) strcpy(microname,nname); 
 else if (ntype == MACROOP) { int n=strcspn(nname,"z"); if (n) strncat(microname,nname,n-1); } 
 return microname; 
} 
 
int Node::Assignvalue(void) 
{ 
 static char* assignvalue=new char[15]; 
 strcpy(assignvalue,nname); assignvalue=strstr(assignvalue,"="); 
 strnset(assignvalue,'0',1); return atoi(assignvalue); 
} 
 
char* Node::Statechar(void) 
{ 
 static char* stch=new char[4]; 
 if (nstate<10) { stch=ecvt(nstate,1,0,0); strcat(stch,"  "); } 
 else if (nstate<100) { stch=ecvt(nstate,2,0,0); strcat(stch," "); } 
   else if (nstate<1000) stch=ecvt(nstate,3,0,0); 
 return stch; 
} 
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void Node::Listnode(void) 
{ 
 switch (ntype) { 
  case BEGIN    : cout <<"BEGIN Node" ; break; 
  case END    : cout <<"END Node" ; break; 
  case CONDITION : cout <<"Conditional Node " <<nname; break; 
  case FUNCTION  : cout <<"Logic Function Node " <<nname; break; 
  case ASSIGN    : cout <<"Assignment Node " <<nname; break; 
  case MICROOP  : 
  case MACROOP  : cout <<"Operational Node " <<nname; break; 
 } 
 if (nstate!=-1) cout <<" State a" <<nstate; cout <<"\n"; 
} 
 
void Node::Printnode(char* fname) 
{ 
 fstream pf; pf.open(fname,ios::app); 
 switch (ntype) { 
  case BEGIN    : pf.write("BEGIN Node",10); break; 
  case END    : pf.write("END Node",8); break; 
  case CONDITION : pf.write("Conditional Node ",17); 
            pf.write(nname,strlen(nname)); break; 
  case FUNCTION  : pf.write("Logic Function Node ",20); 
          pf.write(nname,strlen(nname)); break; 
  case ASSIGN    : pf.write("Assignment Node ",16); 
          pf.write(nname,strlen(nname)); break; 
  case MICROOP  : 
  case MACROOP  : pf.write("Operational Node ",17); 
          pf.write(nname,strlen(nname)); break; 
 } 
 if (nstate!=-1) { pf.write(" State a",8); pf.write(Statechar(),3);} 
 pf.write("\n",1); pf.close(); 
} 
 
void Node::Mealytablenode(char* fname, char* transition, char* output, int& nt, int& micro, int, Node* 
start) 
{ 
 int i, nsp; 
 fstream pf; pf.open(fname,ios::app); 
 if (nmark) { 
  pf.write("\n-----------------------------------------------",49); 
  pf.write("\n|a",3); pf.write(Statechar(),3); nmark=0; 
 } 
 else 
  if (ntype!=MICROOP || micro) { 
   if (nt>1) pf.write("\n|    ",6); nt++; pf.write("|a",2); 
   if (nstate!=-1) pf.write(Statechar(),3); else pf.write(start->Statechar(),3); pf.write("|",1); 
   if (strcmp(transition,"")) { 
    pf.write(" ",1); nsp=strlen(transition); pf.write(transition,nsp); 
    nsp=17-nsp; for (i=0; i<nsp; i++) pf.write(" ",1); 
   } 
   else pf.write(" 1                ",18); 
   if (strcmp(output,"")) { 
    pf.write("| ",2); nsp=strlen(output); pf.write(output,nsp); nsp=15-nsp; 
    for (i=0; i<nsp; i++) pf.write(" ",1); pf.write("|",1); strcpy(output,""); 
   } 
   else pf.write("| --             |",18); 
   micro=0; if (nstate!=-1) nmark=1; 
  } 
 pf.close(); 
} 
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void Node::Mooretablenode(char* fname, char* transition, int& extray, int& nt, char* logicf, int 
mergesplit, Node* start) 
{ 
 int i, nsp; 
 fstream pf; pf.open(fname,ios::app); 
 if (nmark) { 
  pf.write("\n---------------------------------------------------------",59); 
  pf.write("\n|a",3); pf.write(Statechar(),3); 
  switch (ntype) { 
   case BEGIN    : 
   case CONDITION : pf.write(", --              ",18); 
           break; 
   case ASSIGN    : if (Assignvalue()) pf.write(", yextra          ",18); 
           else for (i=0; i<18; i++) pf.write(" ",1); 
           break; 
   case MICROOP  : if (strcmp(nname,"y0")) { 
          pf.write(", ",2); nsp=strlen(nname); pf.write(nname,nsp); nsp=16-nsp; 
          for (i=0; i<nsp; i++) pf.write(" ",1); 
           } 
           else pf.write(", --              ",18); 
           break; 
   case FUNCTION  : if (!mergesplit) { pf.write(", --              ",18); break; } 
   case MACROOP  : if (!mergesplit) { 
          nsp=strlen(Microname()); 
          if (nsp) { 
           pf.write(", ",2); pf.write(Microname(),nsp); 
           nsp=16-nsp; for (i=0; i<nsp; i++) pf.write(" ",1); 
          } 
          else pf.write(", --              ",18); 
           } 
           else { 
          pf.write(", ",2); nsp=strlen(nname); pf.write(nname,nsp); 
          pf.write(" , y+",5); nsp=11-nsp; for (i=0; i<nsp; i++) pf.write(" ",1); 
           } 
   case END    : break; 
  } 
  nmark=0; 
 } 
 else { 
  if (nt>1) 
   if (strcmp(logicf,"")) { 
    pf.write("\n|",2); nsp=strlen(logicf); pf.write(logicf,nsp); 
    nsp=22-nsp; for (i=0; i<nsp; i++) pf.write(" ",1); strcpy(logicf,""); 
   } 
   else pf.write("\n|                      ",24); 
  nt++; pf.write("|a",2); 
  if (nstate!=-1) pf.write(Statechar(),3); else pf.write(start->Statechar(),3); 
  pf.write("|",1); 
  if (strcmp(transition,"")) { 
   pf.write(" ",1); nsp=strlen(transition); pf.write(transition,nsp); 
   nsp=17-nsp; for (i=0; i<nsp; i++) pf.write(" ",1); 
  } 
  else pf.write(" 1                ",18); 
  if (extray) { pf.write("| yextra |",10); extray=0; } else pf.write("| --     |",10); 
  if (nstate!=-1) nmark=1; 
 } 
 pf.close(); 
} 
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//*********************** Definition and Implementation of the Class Onode *********************** 
 
class Onode : virtual public Node 
{ 
 Node* p; 
 
public: 
 Onode(char* name); 
 Onode(char* name, TYPENODE type); 
 Onode(const Onode&); 
 ~Onode() {}; 
 const Onode& operator=(const Onode&); 
 int operator==(const Onode&) const; 
 Node* Nextnode(int out=1) { return this->p; } 
 void Setnext(Node* tpt, Node* fpt=NULL) { p=tpt; } 
 void Marknode(void); 
 void Checknode(int&); 
 void Loopnode(int&); 
 void Listnode(void); 
 void Printnode(char*); 
 void Runnode(int&, Hgraphscheme*, int&); 
 void Moorestatenode(int&, Graphscheme*, int); 
 void Mealystatenode(int&, Graphscheme*, int); 
 void Mooretablenode(char*, char*, int&, int&, char*, int, Node*); 
 void Mealytablenode(char*, char*, char*, int&, int&, int, Node*); 
}; 
 
Onode::Onode(char* name) 
 :Node(name),p(NULL) {} 
 
Onode::Onode(char* name, TYPENODE type) 
 :Node(name,type),p(NULL) {} 
 
Onode::Onode(const Onode& onode) 
 :Node(onode) {p=onode.p;} 
 
const Onode& Onode::operator=(const Onode& onode) 
{ 
 if (this != &onode ) { 
  delete [] nname; nname=new char[15]; strcpy(nname,onode.nname); 
  ntype=onode.ntype; nmark=onode.nmark; nstate=onode.nstate; p=onode.p; 
 } 
 return *this; 
} 
 
int Onode::operator==(const Onode& onode) const 
{ 
 return (! strcmp(this->nname,onode.nname)&& (this->ntype==onode.ntype) 
    && (this->nmark==onode.nmark) && (this->nstate==onode.nstate) 
    && (this->p==onode.p) ); 
} 
 
void Onode::Marknode(void) 
{ if (!nmark) { nmark=1; if (ntype!=END) p->Marknode(); } } 
 
void Onode::Listnode(void) 
{ 
 Node::Listnode(); 
 if (!nmark) { nmark=1; if (ntype != END) { cout << nname <<" Next Node -> "; p->Listnode(); } } 
} 
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void Onode::Checknode(int& ck) 
{ 
 if (!nmark) { cout <<"\nOperational node " <<nname <<" not reachable"; ck=0; } 
 if (this==p) { cout <<"\nOperational node " <<nname <<" in loop"; ck=0; } 
 else if (p->Nodetype()==BEGIN && ntype!=END) 
    { cout <<"\nOperational node " <<nname <<" pointing to BEGIN node"; ck=0; } 
 if (ntype==ASSIGN) { 
  int value=Assignvalue(); 
  if (value!=0 && value!=1) 
   { cout <<"\nAssignment node " <<nname <<" with a wrong value"; ck=0; } 
 } 
} 
 
void Onode::Loopnode(int& noloop) 
{ if (!nmark) { nmark=1; if (ntype != END) p->Loopnode(noloop); else noloop=1; } } 
 
void Onode::Printnode(char* fname) 
{ 
 fstream pf; 
 Node::Printnode(fname); 
 if (!nmark) { 
  nmark=1; 
  if (ntype != END) { 
   pf.open(fname,ios::app); pf.write(nname,strlen(nname)); 
   pf.write(" Next Node -> ",14); pf.close(); p->Printnode(fname); 
  } 
 } 
} 
 
void Onode::Runnode(int& retval, Hgraphscheme* hgs, int& deep) 
{ 
 switch (ntype) { 
  case BEGIN   : cout <<"BEGIN Graph-Scheme Execution\n"; 
         deep++; hgs->Deeplevelhgs(deep); break; 
  case END   : cout <<"END Graph-Scheme Execution\n" ; deep--; break; 
  case ASSIGN   : cout <<"Assignment Node " <<nname <<"\n"; 
         retval=Assignvalue(); break; 
  case MICROOP  : cout <<"Activate output signal(s) " <<nname <<"\n"; break; 
  case MACROOP  : if (strcmp(Microname(),"")) 
         cout <<"Activate output signal(s) " <<Microname() <<" & "; 
         cout <<"Execute macro operation " <<Macroname() <<"\n"; 
         Graphscheme* ngraph=hgs->Searchgraphhgs(Macroname()); 
         ngraph->Rungs(hgs,deep); break; 
 } 
 if (ntype != END) p->Runnode(retval,hgs,deep); 
} 
 
void Onode::Moorestatenode(int& state, Graphscheme* gs, int mergesplit) 
{ 
 switch (ntype) { 
  case BEGIN  : if (gs->Graphmain()) 
           { nstate=0; if (p->Nodetype()==CONDITION) p->Setstatenode(state); } 
         else if (p->Nodetype()==CONDITION) Setstatenode(state); 
         if (p->Nodetype()==END && !mergesplit) nstate=2; 
         if (p->Nodetype()==FUNCTION) p->Needstatenode(); break; 
  case END   : if (gs->Graphmain()) nstate=0; else nstate=1; break; 
  case MICROOP  : if (p->Nodetype()==FUNCTION) p->Ignorestatenode(); 
         Setstatenode(state); break; 
  case MACROOP  : if (p->Nodetype()==FUNCTION) p->Needstatenode(); 
  case ASSIGN   : Setstatenode(state); break; 
 } 
} 
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void Onode::Mealystatenode(int& state, Graphscheme* gs, int mergesplit) 
{ 
 switch (ntype) { 
  case BEGIN  : if (gs->Graphmain()) nstate=0; 
         else if (p->Nodetype()==END && !mergesplit) nstate=2; 
         p->Setstatenode(state); break; 
  case END   : if (gs->Graphmain()) nstate=0; else nstate=1; break; 
  case MACROOP  : Setstatenode(state); 
  case MICROOP  : 
  case ASSIGN   : p->Setstatenode(state); break; 
 } 
} 
 
void Onode::Mooretablenode(char* fname, char* transition, int& extray, int& nt, char* logicf, int 
mergesplit, Node* start) 
{ 
 if (nstate==-1 && ntype==ASSIGN) extray=Assignvalue(); 
 else { Node::Mooretablenode(fname,transition,extray,nt,logicf,mergesplit,start); 
   if (ntype==MICROOP && !nmark && p->Nodetype()==FUNCTION 
      && p->Nodestate()==-1 && mergesplit) { 
    strcpy(logicf,p->Nodename()); strcat(logicf," , y+"); 
   } 
 } 
 if (!nmark) p->Mooretablenode(fname,transition,extray,nt,logicf,mergesplit,start); else nmark=0; 
} 
 
void Onode::Mealytablenode(char* fname, char* transition, char* output, int& nt, int& micro, int 
mergesplit, Node* start) 
{ 
 if (nstate>-1) Node::Mealytablenode(fname,transition,output,nt,micro,mergesplit,start); 
 if (!nmark) { 
  switch (ntype) { 
   case BEGIN   : 
   case END   : break; 
   case ASSIGN   : if (Assignvalue()) strcpy(output,"yextra"); break; 
   case MICROOP  : if (strcmp(nname,"y0")) strcpy(output,nname); else strcpy(output,""); 
          micro++; break; 
   case MACROOP  : if (!mergesplit) strcpy(output,Microname()); 
          else  { strcpy(output,nname); strcat(output," , y+"); } 
          micro++; break; 
  } 
  p->Mealytablenode(fname,transition,output,nt,micro,mergesplit,start); 
 } 
 else nmark=0; 
} 
 
//*********************** Definition and Implementation of the Class Cnode *********************** 
 
class Cnode : virtual public Node 
{ 
 Node* truep; Node* falsep; 
 
public: 
 Cnode(char* name, TYPENODE type); 
 Cnode(const Cnode&); 
 ~Cnode() {}; 
 const Cnode& operator=(const Cnode&); 
 int operator==(const Cnode&) const; 
 Node* Nextnode(int out=1); 
 void Setnext(Node* tpt, Node* fpt) { truep=tpt; falsep=fpt; } 
 void Marknode(void); 
 void Checknode(int&); 
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 void Loopnode(int&); 
 void Listnode(void); 
 void Printnode(char*); 
 void Runnode(int&, Hgraphscheme*, int&); 
 void Moorestatenode(int&, Graphscheme* gs, int); 
 void Mealystatenode(int&, Graphscheme* gs, int); 
 void Mooretablenode(char*, char*, int&, int&, char*, int, Node*); 
 void Mealytablenode(char*, char*, char*, int&, int&, int, Node*); 
}; 
 
Cnode::Cnode(char* name, TYPENODE type) 
 :Node(name,type),truep(NULL),falsep(NULL) {} 
 
Cnode::Cnode(const Cnode& cnode) 
 :Node(cnode) {truep=cnode.truep; falsep=cnode.falsep;} 
 
const Cnode& Cnode::operator=(const Cnode& cnode) 
{ 
 if (this != &cnode ) { 
  delete [] nname; nname=new char[15]; strcpy(nname,cnode.nname); ntype=cnode.ntype; 
  nmark=cnode.nmark; nstate=cnode.nstate; truep=cnode.truep; falsep=cnode.falsep; 
 } 
 return *this; 
} 
 
int Cnode::operator==(const Cnode& cnode) const 
{ 
 return (! strcmp(this->nname,cnode.nname) && (this->ntype==cnode.ntype) 
    && (this->nmark==cnode.nmark) && ( this->nstate==cnode.nstate) 
    && (this->truep==cnode.truep) && (this->falsep==cnode.falsep) ); 
} 
 
Node* Cnode::Nextnode(int out) 
{ if (out) return this->truep; else return this->falsep; } 
 
void Cnode::Marknode(void) 
{ if (!nmark) { nmark=1; truep->Marknode(); falsep->Marknode(); } } 
 
void Cnode::Checknode(int& ck) 
{ 
 if (!nmark) { cout <<"\nConditional node " <<nname <<" not reachable"; ck=0; } 
 if (this==truep && this==falsep) { cout <<"\nConditional node " <<nname <<" in loop"; ck=0; } 
 else if (truep==falsep && truep->Nodetype()!=BEGIN) 
    cout <<"\nWARNING useless conditional node " <<nname <<"   "; 
   else if (truep->Nodetype()==BEGIN || falsep->Nodetype()==BEGIN) 
    { cout <<"\nConditional node " <<nname <<" pointing to BEGIN node"; ck=0; } 
 if (! strcmp(truep->Nodename(),nname) && truep!=this || 
      ! strcmp(falsep->Nodename(),nname) && falsep!=this) 
  { cout <<"\nTwo conditional nodes " <<nname <<" follow each other"; ck=0; } 
} 
 
void Cnode::Loopnode(int& noloop) 
{ if (!nmark) { nmark=1; truep->Loopnode(noloop); if (!noloop) falsep->Loopnode(noloop); } } 
 
void Cnode::Listnode(void) 
{ 
 Node::Listnode(); 
 if (!nmark) { 
  nmark=1; cout <<nname <<" Next Node when true  -> "; truep->Listnode(); 
  cout <<nname <<" Next Node when false -> "; falsep->Listnode(); 
 } 
} 
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void Cnode::Printnode(char* fname) 
{ 
 fstream pf; 
 Node::Printnode(fname); 
 if (!nmark) { 
  nmark=1; pf.open(fname,ios::app); pf.write(nname,strlen(nname)); 
  pf.write(" Next Node when true  -> ",25); pf.close(); truep->Printnode(fname); 
  pf.open(fname,ios::app); pf.write(nname,strlen(nname)); 
  pf.write(" Next Node when false -> ",25); pf.close(); falsep->Printnode(fname); 
 } 
} 
 
void Cnode::Runnode(int& retval, Hgraphscheme* hgs, int& deep) 
{ 
 int answer; 
 switch (ntype) { 
  case CONDITION : cout <<"Read input condition " <<nname; 
          do { cout <<" [0/1]="; cin >> answer; } 
          while (answer != 0 && answer != 1); break; 
  case FUNCTION  : cout <<"Execute logic function " <<nname <<"\n"; 
          Graphscheme* ngraph=hgs->Searchgraphhgs(nname); 
          answer=ngraph->Rungs(hgs,deep); break; 
 } 
 if (answer) truep->Runnode(retval,hgs,deep); else falsep->Runnode(retval,hgs,deep); 
} 
 
void Cnode::Moorestatenode(int&, Graphscheme*, int) 
{ 
 if (truep->Nodetype()==FUNCTION) truep->Needstatenode(); 
 if (falsep->Nodetype()==FUNCTION) falsep->Needstatenode(); 
} 
 
void Cnode::Mealystatenode(int& state, Graphscheme*, int) 
{ 
 switch (ntype) { 
  case FUNCTION  : Setstatenode(state); truep->Setstatenode(state); falsep->Setstatenode(state); 
  case CONDITION : break; 
 } 
} 
 
void Cnode::Mooretablenode(char* fname, char* transition, int& extray, int& nt, char* logicf, int 
mergesplit, Node* start) 
{ char* localt=new char[15]; 
 if (nstate>-1) Node::Mooretablenode(fname,transition,extray,nt,logicf,mergesplit,start); 
 if (!nmark) { 
  strcpy(localt,transition); 
  if (strstr(localt,nname)) Node::Mooretablenode(fname,transition,extray,nt,logicf,mergesplit,start); 
  else { 
   switch (ntype) { 
    case CONDITION : strcat(transition,nname); break; 
    case FUNCTION  : strcat(transition,"xextra"); break; } 
   truep->Mooretablenode(fname,transition,extray,nt,logicf,mergesplit,start); 
   strcpy(transition,localt); 
   switch (ntype) { 
    case CONDITION : strcat(transition,"~");strcat(transition,nname); break; 
    case FUNCTION  : strcat(transition,"~xextra"); break; } 
   falsep->Mooretablenode(fname,transition,extray,nt,logicf,mergesplit,start); 
   strcpy(transition,localt); 
  } 
 } 
 else nmark=0; delete [] localt; 
} 
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void Cnode::Mealytablenode(char* fname, char* transition, char* output, int& nt, int& micro, int 
mergesplit, Node* start) 
{ 
 char* localt=new char[15]; 
 if (nstate>-1) Node::Mealytablenode(fname,transition,output,nt,micro,mergesplit,start); 
 if (!nmark) { 
  strcpy(localt,transition); 
  if (strstr(localt,nname)) Node::Mealytablenode(fname,transition,output,nt,micro,mergesplit,start); 
  else { 
   switch (ntype) { 
    case CONDITION : strcat(transition,nname); break; 
    case FUNCTION  : strcat(transition,"xextra"); 
            if (mergesplit) { strcpy(output,nname); strcat(output," , y+"); } 
            micro++; break; 
   } 
   truep->Mealytablenode(fname,transition,output,nt,micro,mergesplit,start); 
   strcpy(transition,localt); 
   switch (ntype) { 
    case CONDITION : strcat(transition,"~");strcat(transition,nname); break; 
    case FUNCTION  : strcat(transition,"~xextra"); 
            if (mergesplit) { strcpy(output,nname); strcat(output," , y+"); } 
            micro++; break; 
   } 
   falsep->Mealytablenode(fname,transition,output,nt,micro,mergesplit,start); 
   strcpy(transition,localt); 
  } 
 } 
 else nmark=0; delete [] localt; 
} 
 
//************************** Implementation of the Class Graph-Scheme ************************** 
 
Graphscheme::Graphscheme(char* filename, unsigned int main) 
{ gsname=new char[5]; ifstream gsfile(filename); 
 if (!gsfile) { cout <<"\n*** Cannot open Graph-Scheme " <<filename <<" ***\n"; gsnnodes=0; } 
 else { 
  int i=0,next[MAXNODES][2]; char opercond[MAXNODES],extra; TYPENODE type; 
  char *string=new char[30], *name=new char[15], *number=new char[5]; 
  gsfile.get(string,30); gsfile.get(extra); string=strupr(string); strcpy(gsname,string); 
  if (strstr(string,"F")) gstype=LFUNCGS; else gstype=MACROGS; 
  while (!gsfile.eof()) { 
   gsfile.get(string,30); gsfile.get(extra); string=strupr(string); 
   if ( strcmp(string,"")) { 
    opercond[i]=string[0]; name=strtok(string," "); name=strtok(NULL," "); 
    if (opercond[i]=='O') { 
     number=strtok(NULL," "); next[i][0]=atoi(number); next[i][1]= 0; 
     if (next[i][0]) next[i][0]--; 
     if (! strcmp(name,"BEGIN") || ! strcmp(name,"END")) gslist[i]=new Onode(name); 
     else { 
       if (strstr(name,"Z")) type=MACROOP; 
       else if (name[0]=='Y') type=MICROOP; 
         else if ( (name[0]=='F') && strstr(name,"=")) type=ASSIGN; 
       name=strlwr(name); gslist[i]= new Onode(name,type); 
        } 
    } 
    else { 
      number=strtok(NULL," "); next[i][0]= atoi(number); 
      number=strtok(NULL," "); next[i][1]= atoi(number); 
      if (next[i][0]) next[i][0]--; if (next[i][1]) next[i][1]--; 
      if (name[0]=='X') type=CONDITION; else if (name[0]=='F') type=FUNCTION; 
      name=strlwr(name); gslist[i]= new Cnode(name,type); 
    } 
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    i++; 
   } 
  } 
  gsnnodes= i; gsmain=main; 
  for (i=0; i<gsnnodes; i++) 
   switch (opercond[i]) { 
    case 'O': gslist[i]->Setnext(gslist[next[i][0]]); break; 
    case 'C': gslist[i]->Setnext(gslist[next[i][0]],gslist[next[i][1]]); break; 
   } 
  delete [] string, name, number; 
 } 
 gsfile.close(); 
} 
 
Graphscheme::~Graphscheme(void) 
{ delete [] gsname; for (int i=0; i<gsnnodes; i++) delete gslist[i]; } 
 
void Graphscheme::Cleanmarkgs(void) 
{ for (int i=0; i<gsnnodes; i++) gslist[i]->Cleanmarknode(); } 
 
void Graphscheme::Markgs(void) 
{ if (gsnnodes) { Cleanmarkgs(); Node* begin=Begings(); begin->Marknode(); } } 
 
int Graphscheme::Primarycheckgs(Hgraphscheme* hgs) 
{ 
 int check=1, nbegin=0, nend=0, nassign=0, nmic=0, ncond=0, nmacrologic =0; Graphscheme* pt; 
 for (int i=0; i<gsnnodes; i++) 
  switch (gslist[i]->Nodetype()) { 
   case BEGIN    : nbegin++; break; 
   case END    : nend++; break; 
   case ASSIGN   : nassign++; break; 
   case MICROOP  : nmic++; break; 
   case MACROOP  : nmic++; nmacrologic++; 
           pt=hgs->Searchgraphhgs(gslist[i]->Macroname()); 
           if (pt==NULL) { 
           cout <<"\nGraph-Scheme with Macro Operation " 
           <<gslist[i]->Macroname() <<" unavailable"; check=0; 
           } break; 
   case FUNCTION  : ncond++; nmacrologic++; 
           pt=hgs->Searchgraphhgs(gslist[i]->Nodename()); 
           if (pt==NULL) { 
           cout <<"\nGraph-Scheme with Logic Function " 
           <<gslist[i]->Nodename() <<" unavailable"; check=0; 
           } break; 
   case CONDITION : ncond++; break; 
  } 
 if (!nbegin) { cout <<"\nGraph-Scheme without BEGIN node"; check=0;} 
 else  if (nbegin>1) { cout <<"\nGraph-Scheme with more than one BEGIN node"; check=0; } 
 if (!nend) { cout <<"\nGraph-Scheme without END node"; check=0;} 
 else  if (nend>1) { cout <<"\nGraph-Scheme with more than one END node"; check=0; } 
 if (Graphtype()==MACROGS) 
  if (nassign) { cout <<"\nMacro operation with assignment nodes"; check=0; } 
  else if (!(nmic+ncond)) cout <<"\nWARNING Virtual Macro operation           "; 
    else if (gsmain && !nmacrologic) { 
     cout <<"\nMain Graph-scheme without macrooperations and logic functions"; 
     check=0; 
      } else; 
 else if (Graphtype()==LFUNCGS) 
   if (!nassign) { cout <<"\nLogic Function without assignment nodes"; check=0; } 
   else if (nmic) { cout <<"\nLogic Function with operational nodes"; check=0; } 
 return check; 
} 
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Node* Graphscheme::Begings(void) const 
{ 
 int begin=-1; 
 for (int i=0; i<gsnnodes; i++) if (gslist[i]->Nodetype()==BEGIN) begin=i; 
 if (begin!=-1) return gslist[begin]; else return NULL; 
} 
 
Node* Graphscheme::Endgs(void) const 
{ 
 int end=-1; 
 for (int i=0; i<gsnnodes; i++) if (gslist[i]->Nodetype()==END) end=i; 
 if (end!=-1) return gslist[end]; else return NULL; 
} 
 
int Graphscheme::Loopcheckgs(void) 
{ 
 int noloop, loop=1; 
 for (int i=0; i<gsnnodes; i++) { 
  Cleanmarkgs(); noloop=0; gslist[i]->Loopnode(noloop); 
  if (!noloop) cout <<"\nNode " <<gslist[i]->Nodename() <<" in loop"; 
  loop*=noloop; 
 } 
 return loop; 
} 
 
int Graphscheme::Checkgs(Hgraphscheme* hgs) 
{ 
 int check=1; 
 if (gsnnodes) { 
  cout <<"\n****** Checking Graph-Scheme " <<gsname <<" *******\n\n"; 
  cout <<"Step 1 - Graph-scheme overall consistency "; check=Primarycheckgs(hgs); 
  if (check) { 
   cout <<"-> OK\nStep 2 - Unreacheable and dummy nodes "; 
   Markgs(); for (int i=0; i<gsnnodes; i++) gslist[i]->Checknode(check); 
  } 
  if (check) { cout <<"-----> OK\nStep 3 - Nodes in infinite cycles "; check*=Loopcheckgs(); } 
  if (check) cout <<"---------> OK\n\n**************** " <<gsname <<" OK ****************"; 
  else cout <<"\n\n**************** " <<gsname <<" KO ****************"; 
 } 
 else { cout <<"\n***** Checking NULL Graph-Scheme *****"; check=0; } 
 cout <<" Hit any key to continue "; getch(); 
 return check; 
} 
 
void Graphscheme::Printgs(char* fname) 
{ 
 fstream pf; 
 if (gsnnodes) { 
  Cleanmarkgs(); pf.open(fname,ios::app); pf.write("\n********* Printing Graph-Scheme ",33); 
  pf.write(gsname,strlen(gsname)); pf.write(" *********\n",11); pf.close(); 
  Node* begin=Begings(); begin->Printnode(fname); 
  Node* end=Endgs(); end->Node::Printnode(fname); 
  pf.open(fname,ios::app); pf.write("**************** ",17); 
  pf.write(gsname,strlen(gsname)); pf.write(" Printed ****************\n",26); pf.close(); 
 } 
 else cout <<"\n*** Printing NULL Graph-Scheme ***\n"; 
} 
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void Graphscheme::Listgs(void) 
{ 
 if (gsnnodes) { 
  Cleanmarkgs(); cout <<"\n   ********* Listing Graph-Scheme " <<gsname <<" *********\n"; 
  Node* begin=Begings(); begin->Listnode(); Node* end=Endgs(); end->Node::Listnode(); 
  cout <<"   **************** " <<gsname <<" Listed ****************"; 
 } 
 else cout <<"\n   *** Listing NULL Graph-Scheme ***"; 
 cout <<" Hit any key to continue "; getch(); 
} 
 
int Graphscheme::Rungs(Hgraphscheme* hgs, int & deep) 
{ 
 int run=0; 
 if (gsnnodes) { 
  Node* begin=Begings(); 
  cout <<"\n********* Executing Graph-Scheme " <<gsname <<" *********\n"; 
  begin->Runnode(run,hgs,deep); 
  cout <<"**************** " <<gsname <<" Executed ****************\n\n"; 
 } 
 else cout <<"\n*** Running NULL Graph-Scheme ***\n\n"; 
 return run; 
} 
 
void Graphscheme::Cleanstategs(void) 
{ for (int i=0; i<gsnnodes; i++) gslist[i]->Cleanstatenode(); } 
 
void Graphscheme::Moorestategs(int& state, int mergesplit) 
{ 
 if (gsnnodes) { 
  if (!mergesplit) state=2; 
  Cleanstategs(); for (int i=0; i<gsnnodes; i++) gslist[i]->Moorestatenode(state,this,mergesplit); 
  for (int j=0; j<gsnnodes; j++) 
   if (gslist[j]->Nodetype()==FUNCTION) 
    if (gslist[j]->Nodestate()==-3) gslist[j]->Setstatenode(state); else gslist[j]->Cleanstatenode(); 
  if (!mergesplit) gsnstates=state; 
 } 
 else cout <<"\n*** Moore state marking NULL Graph-Scheme ***\n\n"; 
} 
 
void Graphscheme::Mealystategs(int& state, int mergesplit) 
{ 
 if (gsnnodes) { 
  if (!mergesplit) state=2; 
  Cleanstategs(); for (int i=0; i<gsnnodes; i++) gslist[i]->Mealystatenode(state,this,mergesplit); 
  if (!mergesplit) gsnstates=state; 
 } 
 else cout <<"\n*** Mealy state marking NULL Graph-Scheme ***\n\n"; 
} 
 
Node* Graphscheme::Nodeinitialstategs(void) 
{ 
 Node* initialnode; 
 if (gsnnodes) { 
  initialnode=Begings(); 
  if (!initialnode->Startingstatenode()) initialnode=initialnode->Nextnode(); 
 } 
 return initialnode; 
} 
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void Graphscheme::Mooretablemergegs(char* fname) 
{ 
 char* transition=new char[20]; strcpy(transition,""); 
 char* logicf=new char[21]; strcpy(logicf,""); 
 fstream pf; int extray=0, nt; 
 if (gsnnodes) { 
  Cleanmarkgs(); 
  for (int i=0; i<gsnnodes; i++) 
   if (gslist[i]->Startingstatenode()) { 
    gslist[i]->Setmarknode(); nt=1; 
    gslist[i]->Mooretablenode(fname,transition,extray,nt,logicf,1,gslist[i]); 
   } 
 } 
 else cout <<"\n*** Processing NULL Graph-Scheme ***\n"; 
 delete [] transition, logicf; 
} 
 
void Graphscheme::Mooretablesplitgs(char* fname) 
{ 
 char* transition=new char[20]; strcpy(transition,""); char* logicf=new char[21]; strcpy(logicf,""); 
 char* graphname=new char[5]; fstream pf; int extray=0, i, n, nspace, nt; 
 if (gsnnodes) { 
  Cleanmarkgs(); pf.open(fname,ios::app); 
  pf.write("\n---------------------------------------------------------",59); 
  strcpy(graphname,gsname); graphname=strlwr(graphname); n=strlen(graphname); 
  pf.write("\n|",2); nspace=55-n; nspace/=2; 
  for (i=1; i<=nspace; i++) pf.write(" ",1); pf.write(graphname,n); nspace=55-nspace-n; 
  for (i=1; i<=nspace; i++) pf.write(" ",1); pf.write("|",1); 
  pf.write("\n---------------------------------------------------------",59); 
  pf.write("\n|a0  , --              |a2  | 1                | --     |",59); 
  pf.write("\n---------------------------------------------------------",59); 
  pf.write("\n|a1  , --              |a2  | 1                | --     |",59); pf.close(); 
  for (int i=0; i<gsnnodes; i++) 
   if (gslist[i]->Startingstatenode()) { 
    gslist[i]->Setmarknode(); nt=1; 
    gslist[i]->Mooretablenode(fname,transition,extray,nt,logicf,0,gslist[i]); 
   } 
 } 
 else cout <<"\n*** Processing NULL Graph-Scheme ***\n"; 
 delete [] transition, logicf, graphname; 
} 
 
void Graphscheme::Mealytablemergegs(char* fname) 
{ 
 char *transition=new char[20]; strcpy(transition,""); char *output=new char[15]; strcpy(output,""); 
 fstream pf; int nt, micro; 
 if (gsnnodes) { 
  Cleanmarkgs(); 
  for (int i=0; i<gsnnodes; i++) 
   if (gslist[i]->Startingstatenode()) { 
    gslist[i]->Setmarknode(); nt=1; micro=0; 
    gslist[i]->Mealytablenode(fname,transition,output,nt,micro,1,gslist[i]); 
   } 
 } 
 else cout <<"\n*** Processing NULL Graph-Scheme ***\n"; 
 delete [] transition, output; 
} 
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void Graphscheme::Mealytablesplitgs(char* fname) 
{ 
 char *transition=new char[20]; strcpy(transition,""); char *output=new char[15]; strcpy(output,""); 
 char* graphname=new char[5]; fstream pf; int i, n, nspace, nt, micro; 
 if (gsnnodes) { 
  Cleanmarkgs(); pf.open(fname,ios::app); 
  pf.write("\n-----------------------------------------------",49); 
  strcpy(graphname,gsname); graphname=strlwr(graphname); n=strlen(graphname); 
  pf.write("\n|",2); nspace=45-n; nspace/=2; 
  for (i=1; i<=nspace; i++) pf.write(" ",1); pf.write(graphname,n); nspace=45-nspace-n; 
  for (i=1; i<=nspace; i++) pf.write(" ",1); pf.write("|",1); 
  pf.write("\n-----------------------------------------------",49); 
  pf.write("\n|a0  |a2  | 1                | --             |",49); 
  pf.write("\n-----------------------------------------------",49); 
  pf.write("\n|a1  |a2  | 1                | --             |",49); pf.close(); 
  for (i=0; i<gsnnodes; i++) 
   if (gslist[i]->Startingstatenode()) { 
    gslist[i]->Setmarknode(); nt=1; micro=0; 
    gslist[i]->Mealytablenode(fname,transition,output,nt,micro,0,gslist[i]); 
   } 
 } 
 else cout <<"\n*** Processing NULL Graph-Scheme ***\n"; 
 delete [] transition, output, graphname; 
} 
 
void Graphscheme::CCsplitgs(char* fname, char* bcode) 
{ 
 fstream pf; int nodeline=0,stz,nsp; char *nodename=new char [15]; 
 if (gsnnodes) { 
  pf.open(fname,ios::app); pf.write("\n| ",3); strcpy(nodename,gsname); 
  nodename=strlwr(nodename); stz=strlen(nodename); 
  pf.write(nodename,stz); stz=7-stz; for (nsp=0; nsp<stz; nsp++) pf.write(" ",1); pf.write("| ",2); 
  stz=strlen(bcode); pf.write(bcode,stz); stz=5-stz; 
  for (nsp=0; nsp<stz; nsp++) pf.write(" ",1); pf.write("| ",2); 
  if (!gsmain) { pf.write("a1    | --   |      y- |",24); nodeline++; } 
  for (int i=0; i<gsnnodes; i++) 
   if (gslist[i]->Nodetype()==MACROOP || gslist[i]->Nodetype()==FUNCTION && 
    gslist[i]->Nodestate()!=-1 || gslist[i]->Nodetype()==MICROOP && 
     gslist[i]->Nextnode()->Nodetype()==FUNCTION 
     && gslist[i]->Nextnode()->Nodestate()==-1) { 
    if (nodeline) pf.write("\n|        |      | ",19); 
    pf.write("a",1); pf.write(gslist[i]->Statechar(),3); pf.write("  | ",4); 
    if (gslist[i]->Nodetype()==MICROOP ) 
     strcpy(nodename,gslist[i]->Nextnode()->Nodename()); 
    else strcpy(nodename,gslist[i]->Macroname()); 
    stz=strlen(nodename); pf.write(nodename,stz); stz=5-stz; 
    for (nsp=0; nsp<stz; nsp++) pf.write(" ",1); pf.write("| y+      |",11); nodeline++; 
   } 
  strcpy(nodename,gsname); nodename=strlwr(nodename); 
  pf.write("\n|        |      | other | ",27); stz=strlen(nodename); 
  pf.write(nodename,stz); stz=5-stz; for (nsp=0; nsp<stz; nsp++) pf.write(" ",1); 
  pf.write("|         |",11); pf.write("\n------------------------------------------",43); pf.close(); 
 } 
 else cout <<"\n*** Processing NULL Graph-Scheme ***\n"; 
 delete [] nodename; 
} 
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void Graphscheme::Insertstategs(int& state, int mergesplit, int& insert) 
{ 
 char* nodename=new char[15]; int answer=1; 
 if (!mergesplit) state=gsnstates; 
 while (answer) { 
  strcpy(nodename,""); 
  cout <<"Insert state in the graph-scheme " <<gsname <<" Node Name="; cin >>nodename; 
  for (int i=0; i<gsnnodes; i++) 
   if (!strcmp(gslist[i]->Nodename(),nodename)) 
    if (gslist[i]->Nodetype()==CONDITION || gslist[i]->Nodetype()==FUNCTION) 
     if (gslist[i]->Nodestate()==-1 ) { 
      cout <<"Insert state in the node " <<gslist[i]->Nodename() 
      <<" that is pointing to the node(s) " <<gslist[i]->Nextnode()->Nodename() 
      <<" & " <<gslist[i]->Nextnode(0)->Nodename() <<"\n"; 
      do { 
       cout <<"Yes[1]/No[0] ? "; cin >> answer; 
      } while (answer != 0 && answer != 1); 
      if (answer) { gslist[i]->Setstatenode(state,0); insert++; } 
     } 
     else cout <<"Node " <<gslist[i]->Nodename() <<" pointing to the node(s) " 
         <<gslist[i]->Nextnode()->Nodename() <<" & " 
         <<gslist[i]->Nextnode(0)->Nodename() <<" already marked\n"; 
    else cout <<"This is not a condititional node\n"; 
  do { 
   cout <<"Insert another state in the graph-scheme " <<gsname <<"  Yes[1]/No[0] ? "; 
   cin >>answer; 
  } while (answer != 0 && answer != 1); 
 } 
 if (!mergesplit) gsnstates=state; delete [] nodename; 
} 
 
void Graphscheme::Removestategs(int& state, int mergesplit, int& remove) 
{ 
 char* nodename=new char[15]; int answer=1; 
 if (!mergesplit) state=gsnstates; 
 while (answer) { 
  strcpy(nodename,""); 
  cout <<"Remove state in the graph-scheme " <<gsname <<" Node Name="; cin >>nodename; 
  for (int i=0; i<gsnnodes; i++) 
   if (!strcmp(gslist[i]->Nodename(),nodename)) 
    if (!gslist[i]->Nodeauto() && gslist[i]->Nodestate()!=-1) { 
     cout <<"Remove state in the node " <<gslist[i]->Nodename() 
        <<" that is pointing to the node(s) " <<gslist[i]->Nextnode()->Nodename() 
        <<" & " <<gslist[i]->Nextnode(0)->Nodename() <<"\n"; 
     do { 
      cout <<"Yes[1]/No[0] ? "; cin >> answer; 
     } while (answer != 0 && answer != 1); 
     if (answer) { 
      if (gslist[i]->Nodestate()==state-1) state--; 
      gslist[i]->Cleanstatenode(); remove++; 
     } 
    } 
    else cout <<"This node was not manually marked or it is not marked yet\n"; 
  do { 
   cout <<"Remove another state in the graph-scheme " <<gsname <<"  Yes[1]/No[0] ? "; 
   cin >>answer;  
  } while (answer != 0 && answer != 1); 
 } 
 if (!mergesplit) gsnstates=state; delete [] nodename; 
} 
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//********************* Implementation of the Class Hierarchical Graph-Scheme ********************* 
 
Hgraphscheme::Hgraphscheme(char* fname) 
{ 
 hgsname=new char[20]; hgssyn=new char[6]; ifstream hgsfile(fname); 
 hgscheck=0; hgsdeep=0; hgsmark=-1; hgsnstates=0; hgsngs=0; 
 if (!hgsfile) cout <<"\n*** Cannot open Hierarchical Graph-Scheme " <<fname <<" ***\n"; 
 else { 
  int i=0; char extra, *gsfile=new char[20]; 
  hgsfile.get(gsfile,20); hgsfile.get(extra); strcpy(hgsname,gsfile); 
  while (!hgsfile.eof()) { 
   hgsfile.get(gsfile,20); hgsfile.get(extra); 
   if (strcmp(gsfile,"")) { 
    strcat(gsfile,".txt"); 
    if (!i) hgslist[i]=new Graphscheme(gsfile,1); 
    else hgslist[i]=new Graphscheme(gsfile); 
    i++; 
   } 
  } 
  hgsngs=i; 
  delete [] gsfile; 
 } 
 hgsfile.close(); 
} 
Hgraphscheme::~Hgraphscheme(void) 
{ delete [] hgsname, hgssyn; for (int i=0; i<hgsngs; i++) delete hgslist[i]; } 
 
void Hgraphscheme::Listhgs(void) 
{ 
 if (hgscheck) { 
  cout <<"\n****** Listing Hierarchical Graph-Scheme " <<hgsname <<" ******\n\n"; 
  for (int i=0; i<hgsngs; i++) hgslist[i]->Listgs(); 
  cout <<"\n******************* " <<hgsname <<"  Listed *******************\n\n"; 
 } 
 else cout <<"*** Cannot list an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
 
void Hgraphscheme::Printhgs(void) 
{ 
 fstream printfile; char* filename=new char[20]; 
 if (hgscheck) { 
  cout <<"\n****** Printing Hierarchical Graph-Scheme ******\n"; 
  cout <<"\nFilename -> "; cin >> filename; strcat(filename,".txt"); 
  printfile.open(filename,ios::out|ios::noreplace); 
  if (!printfile) cout <<"\n*** File " <<filename <<" already exists ***\n"; 
  else { 
   cout <<"\n****** Printing Hierarchical Graph-Scheme " <<hgsname <<" ******\n"; 
   printfile.write("****** Printing Hierarchical Graph-Scheme ",42); 
   printfile.write(hgsname,strlen(hgsname)); printfile.write(" ******\n",8); printfile.close(); 
   for (int i=0; i<hgsngs; i++) hgslist[i]->Printgs(filename); 
   printfile.open(filename,ios::app); printfile.write("\n******************* ",21); 
   printfile.write(hgsname,strlen(hgsname)); 
   printfile.write(" Printed ********************\n",30); printfile.close(); 
   cout <<"\n******************* " <<hgsname <<"  Printed *******************\n\n"; 
  } 
 } 
 else cout <<"*** Cannot print an unchecked Hierarchical Graph-Scheme ***\n\n"; 
 delete [] filename; 
} 
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int Hgraphscheme::Checkhgs(void) 
{ 
 int check=1; 
 if (!hgscheck) { 
  cout <<"\n****** Checking Hierarchical Graph-Scheme " <<hgsname <<" ******\n"; 
  if (hgsngs<2) { cout <<"\nThis is not an Hierarchical Graph-Scheme\n"; check=0; } 
  if (check) for (int i=0; i<hgsngs; i++) check*=hgslist[i]->Checkgs(this); 
  if (check) 
    cout <<"\n****************** " <<hgsname <<"  Checked OK *****************\n\n"; 
  else cout <<"\n****************** " <<hgsname <<"  Checked KO *****************\n\n"; 
 } 
 else cout <<"*** Hierarchical Graph-Scheme already checked ***\n\n"; 
 hgscheck=check; return check; 
} 
 
Graphscheme* Hgraphscheme::Searchgraphhgs(char* name) 
{ 
 char* searchname=new char[15]; strcpy(searchname,name); 
 searchname=strupr(searchname); int search=-1; 
 for (int i=0; i<hgsngs; i++) if (!strcmp(hgslist[i]->Graphname(),searchname)) search=i; 
 delete [] searchname; if (search!=-1) return hgslist[search]; else return NULL; 
} 
 
void Hgraphscheme::Runhgs(void) 
{ 
 int deep=0; 
 if (hgscheck) { 
  cout <<"\n****** Executing Hierarchical Graph-Scheme " <<hgsname <<" ******\n"; 
  hgsdeep=0; hgslist[0]->Rungs(this,deep); 
  cout <<"********* " <<hgsname <<" Executed [Deepest Level=" <<hgsdeep 
    <<"] *********\n\n"; 
 } 
 else cout <<"*** Cannot run an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
 
void Hgraphscheme::Moorestatehgs(void) 
{ 
 int state=2, mooremealy=0, logic=0, i; 
 if (hgscheck) { 
  for (i=0; i<hgsngs; i++) if (hgslist[i]->Graphtype()==LFUNCGS) logic++; 
  if (logic) { 
   cout <<"\n Marking " <<logic <<" Logic Function(s) as Moore [1] or Mealy [0]"; 
   do { cout <<"\n Your Choice -> "; cin >> mooremealy; 
   } while (mooremealy != 0 && mooremealy != 1); 
  } 
  for (i=0; i<hgsngs; i++) 
   if (hgslist[i]->Graphtype()==MACROGS) hgslist[i]->Moorestategs(state,hgsmark); 
   else if (mooremealy) hgslist[i]->Moorestategs(state,hgsmark); 
     else hgslist[i]->Mealystategs(state,hgsmark); 
  if (hgsmark) { 
   hgsnstates=state; 
   cout <<"\n *** HGS " <<hgsname <<" is marked with " <<state <<" states ***\n"; 
  } 
  else { 
   state=0; 
   for (i=0; i<hgsngs; i++) if (hgslist[i]->Graphnstates()>state) state=hgslist[i]->Graphnstates(); 
   cout <<"\n *** The bigger GS of " <<hgsname <<" is marked with " <<state 
      <<" states ***\n"; 
  } 
 } 
 else cout <<"*** Cannot mark an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
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void Hgraphscheme::Mealystatehgs(void) 
{ 
 int state=2, i; 
 if (hgscheck) { 
  for (i=0; i<hgsngs; i++) hgslist[i]->Mealystategs(state,hgsmark); 
  if (hgsmark) { 
   hgsnstates=state; 
   cout <<"\n *** HGS " <<hgsname <<" is marked with " <<state <<" states ***\n"; 
  } 
  else { 
   state=0; 
   for (i=0; i<hgsngs; i++) if (hgslist[i]->Graphnstates()>state) state=hgslist[i]->Graphnstates(); 
   cout <<"\n *** The bigger GS of " <<hgsname <<" is marked with " <<state 
      <<" states ***\n"; 
  } 
 } 
 else cout <<"*** Cannot mark an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
 
void Hgraphscheme::CCmergehgs(char* fname) 
{ 
 fstream pf; int i, G, N, stz, nsp; char* graphname=new char[5]; 
 if (hgscheck) { 
  G=ceil(log(hgsngs+1)/M_LN2); N=pow(2,G); pf.open(fname,ios::app); 
  pf.write("\n---------------------------------------------------------",58); 
  pf.write("\n|               Code Converter Programming              |",58); 
  pf.write("\n---------------------------------------------------------",58); 
  pf.write("\n|  | Zi/Fi | Zi/Fi |   Code Converter   |     Zi/Fi     |",58); 
  pf.write("\n|  | Name  | Code  |     inputs YZi     | Initial state |",58); 
  pf.write("\n---------------------------------------------------------",58); 
  pf.write("\n|0 |       | ",14); pf.write(binarycode(0,G),G); 
  for (nsp=0; nsp<6-G; nsp++) pf.write(" ",1); 
  pf.write("|                    | a0            |",38); 
  pf.write("\n---------------------------------------------------------",58); 
  for (i=0; i<hgsngs; i++) { 
   pf.write("\n|",2); pf.write(linechar(i+1),2); pf.write("| ",2); 
   strcpy(graphname,Ngraphname(i)); graphname=strlwr(graphname); 
   stz=strlen(graphname); pf.write(graphname,stz); 
   for (nsp=0; nsp<6-stz; nsp++) pf.write(" ",1); pf.write("| ",2); 
   pf.write(binarycode(i+1,G),G); 
   for (nsp=0; nsp<6-G; nsp++) pf.write(" ",1); pf.write("| ",2); 
   stz=strlen(yzstring(i+1,G)); pf.write(yzstring(i+1,G),stz); 
   for (nsp=0; nsp<19-stz; nsp++) pf.write(" ",1); pf.write("| a",3); 
   Node* initialnode=hgslist[i]->Nodeinitialstategs(); 
   pf.write(initialnode->Statechar(),3); 
   for (nsp=0; nsp<10; nsp++) pf.write(" ",1); pf.write("|",1); 
   pf.write("\n---------------------------------------------------------",58); 
  } 
  for (i=hgsngs; i<N-1; i++) { 
   pf.write("\n|",2); pf.write(linechar(i+1),2); pf.write("|       | ",10); 
   pf.write(binarycode(i+1,G),G); for (nsp=0; nsp<6-G; nsp++) pf.write(" ",1); 
   pf.write("|                    | a0            |",38); 
   pf.write("\n---------------------------------------------------------",58); 
  } 
  pf.write("\n\n",2); pf.close(); 
 } 
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n"; 
 delete [] graphname; 
} 
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void Hgraphscheme::CCsplithgs(char* fname) 
{ 
 fstream pf; int G; 
 if (hgscheck) { 
  G=ceil(log(hgsngs)/M_LN2); pf.open(fname,ios::app); 
  pf.write("\n------------------------------------------",43); 
  pf.write("\n|       Code Converter Programming       |",43); 
  pf.write("\n------------------------------------------",43); 
  pf.write("\n| Active | HGS  | State | Next |  Stack  |",43); 
  pf.write("\n|   HGS  | Code |       | HGS  | Pointer |",43); 
  pf.write("\n------------------------------------------",43); pf.close(); 
  for (int i=0; i<hgsngs; i++) hgslist[i]->CCsplitgs(fname,binarycode(i,G)); 
  pf.open(fname,ios::app); pf.write("\n\n",2); pf.close(); 
 } 
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
 
void Hgraphscheme::Mooretablemergehgs(char* fname) 
{ 
 fstream pf; 
 if (hgscheck) { 
  pf.open(fname,ios::app); 
  pf.write("\n---------------------------------------------------------",59); 
  pf.write("\n|           HGS Moore State Transition Table            |",59); 
  pf.write("\n---------------------------------------------------------",59); 
  pf.write("\n|      am , Y(am)      | as |     X(am,as)     |Y(am,as)|",59); 
  pf.write("\n---------------------------------------------------------",59); 
  pf.write("\n|a0  , ",8); char* maingsname=new char[5]; 
  strcpy(maingsname,hgslist[0]->Graphname()); maingsname=strlwr(maingsname); 
  int n=strlen(maingsname); pf.write(maingsname,n); delete [] maingsname; 
  for (int i=n+1; i<17; i++) pf.write(" ",1); 
  pf.write("|a0  | 1                | --     |",35); 
  pf.write("\n---------------------------------------------------------",59); 
  pf.write("\n|a1  , y-              |a0  | 1                | --     |",59); 
  pf.close(); 
  for (int j=0; j<hgsngs;j++) hgslist[j]->Mooretablemergegs(fname); 
  pf.open(fname,ios::app); 
  pf.write("\n---------------------------------------------------------",59); 
  pf.close(); 
 } 
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
 
void Hgraphscheme::Mooretablesplithgs(char* fname) 
{ 
 fstream pf; 
 if (hgscheck) { 
  pf.open(fname,ios::app); 
  pf.write("\n---------------------------------------------------------",59); 
  pf.write("\n|           HGS Moore State Transition Table            |",59); 
  pf.write("\n---------------------------------------------------------",59); 
  pf.write("\n|      am , Y(am)      | as |     X(am,as)     |Y(am,as)|",59); 
  pf.close(); 
  for (int j=0; j<hgsngs;j++) hgslist[j]->Mooretablesplitgs(fname); 
  pf.open(fname,ios::app); 
  pf.write("\n---------------------------------------------------------",59); 
  pf.close(); 
 } 
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
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void Hgraphscheme::Mealytablemergehgs(char* fname) 
{ 
 fstream pf; 
 if (hgscheck) { 
  pf.open(fname,ios::app); pf.write("\n-----------------------------------------------",49); 
  pf.write("\n|      HGS Mealy State Transition Table       |",49); 
  pf.write("\n-----------------------------------------------",49); 
  pf.write("\n| am | as |     X(am,as)     |    Y(am,as)    |",49); 
  pf.write("\n-----------------------------------------------",49); pf.write("\n|a0  |a0  | 1                | ",32); 
  char* maingsname=new char[5]; strcpy(maingsname,hgslist[0]->Graphname()); 
  maingsname=strlwr(maingsname); int n=strlen(maingsname); pf.write(maingsname,n); 
  delete [] maingsname; for (int i=n+1; i<16; i++) pf.write(" ",1); pf.write("|",1); 
  pf.write("\n-----------------------------------------------",49); 
  pf.write("\n|a1  |a0  | 1                | y-             |",49); pf.close(); 
  for (int j=0; j<hgsngs; j++) hgslist[j]->Mealytablemergegs(fname); 
  pf.open(fname,ios::app); pf.write("\n-----------------------------------------------",49); pf.close(); 
 } 
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
 
void Hgraphscheme::Mealytablesplithgs(char* fname) 
{ 
 fstream pf; 
 if (hgscheck) { 
  pf.open(fname,ios::app); pf.write("\n-----------------------------------------------",49); 
  pf.write("\n|      HGS Mealy State Transition Table       |",49); 
  pf.write("\n-----------------------------------------------",49); 
  pf.write("\n| am | as |     X(am,as)     |    Y(am,as)    |",49); pf.close(); 
  for (int j=0; j<hgsngs; j++) hgslist[j]->Mealytablesplitgs(fname); 
  pf.open(fname,ios::app); pf.write("\n-----------------------------------------------",49); pf.close(); 
 } 
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
 
void Hgraphscheme::Mooresynmergehgs(int statemark) 
{ 
 fstream pf; 
 if (hgscheck) { 
  cout <<"\n**** Moore (model 2) Synthesis of Hierarchical Graph-Scheme " 
     <<hgsname <<" ****\n"; 
  char* filename=new char[20]; cout <<"\n Filename -> "; cin >> filename; strcat(filename,".txt"); 
  pf.open(filename,ios::out|ios::noreplace); 
  if (!pf) cout <<"\n*** File " <<filename <<" already exists ***\n"; 
  else { 
   pf.write("Moore Synthesis of Hierarchical Graph-Scheme ",45); 
   pf.write(hgsname,strlen(hgsname)); pf.write(" [MERGE TABLES]",15); 
   pf.write("\n\n",2); pf.close(); 
   if (statemark) { 
    strcpy(hgssyn,"Moore"); hgsmark=1; 
    cout <<"\n Step 1 - Marking Hierarchical Graph-Scheme\n"; Moorestatehgs(); 
   } 
   else cout <<"\n Step 1 - Skiping Hierarchical Graph-Scheme Marking\n"; 
   cout <<"\n Step 2-  Code Converter Programming\n"; CCmergehgs(filename); 
   cout <<"\n Step 3 - Generating HGS Moore State Transition Table\n"; 
   Mooretablemergehgs(filename); 
   cout <<"\n***************     " <<hgsname 
      <<" Moore Synthesis Finished     ***************\n"; 
  } 
  delete [] filename; 
 } 
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
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void Hgraphscheme::Mooresynsplithgs(int statemark) 
{ 
 fstream pf; 
 if (hgscheck) { 
  cout <<"\n**** Moore (model 3) Synthesis of Hierarchical Graph-Scheme " 
     <<hgsname <<" ****\n"; 
  char* filename=new char[20]; cout <<"\n Filename -> "; 
  cin >> filename; strcat(filename,".txt"); 
  pf.open(filename,ios::out|ios::noreplace); 
  if (!pf) cout <<"\n*** File " <<filename <<" already exists ***\n"; 
  else { 
   pf.write("Moore Synthesis of Hierarchical Graph-Scheme ",45); 
   pf.write(hgsname,strlen(hgsname)); pf.write(" [SPLIT TABLES]",15); 
   pf.write("\n\n",2); pf.close(); 
   if (statemark) { 
    strcpy(hgssyn,"Moore"); hgsmark=0; 
    cout <<"\n Step 1 - Marking Hierarchical Graph-Scheme\n"; Moorestatehgs(); 
   } 
   else cout <<"\n Step 1 - Skiping Hierarchical Graph-Scheme Marking\n"; 
   cout <<"\n Step 2-  Code Converter Programming\n"; CCsplithgs(filename); 
   cout <<"\n Step 3 - Generating HGS Moore State Transition Table\n"; 
   Mooretablesplithgs(filename); 
   cout <<"\n***************     " <<hgsname 
      <<" Moore Synthesis Finished     ***************\n"; 
  } 
  delete [] filename; 
 } 
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
 
void Hgraphscheme::Mealysynmergehgs(int statemark) 
{ 
 fstream pf; 
 if (hgscheck) { 
  cout <<"\n**** Mealy (model 2) Synthesis of Hierarchical Graph-Scheme " 
     <<hgsname <<" ****\n"; 
  char* filename=new char[20]; 
  cout <<"\n Filename -> "; cin >> filename; strcat(filename,".txt"); 
  pf.open(filename,ios::out|ios::noreplace); 
  if (!pf) cout <<"\n*** File " <<filename <<" already exists ***\n"; 
  else { 
   pf.write("Mealy Synthesis of Hierarchical Graph-Scheme ",45); 
   pf.write(hgsname,strlen(hgsname)); pf.write(" [MERGE TABLES]",15); 
   pf.write("\n\n",2); pf.close(); 
   if (statemark) { 
    strcpy(hgssyn,"Mealy"); hgsmark=1; 
    cout <<"\n Step 1 - Marking Hierarchical Graph-Scheme\n"; Mealystatehgs(); 
   } 
   else cout <<"\n Step 1 - Skiping Hierarchical Graph-Scheme Marking\n"; 
   cout <<"\n Step 2 - Code Converter Programming\n"; CCmergehgs(filename); 
   cout <<"\n Step 3 - Generating HGS Mealy State Transition Table\n"; 
   Mealytablemergehgs(filename); 
   cout <<"\n***************     " <<hgsname 
      <<" Mealy Synthesis Finished     ***************\n"; 
  } 
  delete [] filename; 
 } 
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
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void Hgraphscheme::Mealysynsplithgs(int statemark) 
{ 
 fstream pf; 
 if (hgscheck) { 
  cout <<"\n**** Mealy (model 3) Synthesis of Hierarchical Graph-Scheme " 
     <<hgsname <<" ****\n"; 
  char* filename=new char[20]; cout <<"\n Filename -> "; cin >> filename; strcat(filename,".txt"); 
  pf.open(filename,ios::out|ios::noreplace); 
  if (!pf) cout <<"\n*** File " <<filename <<" already exists ***\n"; 
  else { 
   pf.write("Mealy Synthesis of Hierarchical Graph-Scheme ",45); 
   pf.write(hgsname,strlen(hgsname)); pf.write(" [SPLIT TABLES]",15); 
   pf.write("\n\n",2); pf.close(); 
   if (statemark) { 
    strcpy(hgssyn,"Mealy"); hgsmark=0; 
    cout <<"\n Step 1 - Marking Hierarchical Graph-Scheme\n"; Mealystatehgs(); 
   } 
   else cout <<"\n Step 1 - Skiping Hierarchical Graph-Scheme Marking\n"; 
   cout <<"\n Step 2 - Code Converter Programming\n"; CCsplithgs(filename); 
   cout <<"\n Step 3 - Generating HGS Mealy State Transition Table\n"; 
   Mealytablesplithgs(filename); 
   cout <<"\n***************     " <<hgsname 
      <<" Mealy Synthesis Finished     ***************\n"; 
  } 
  delete [] filename; 
 } 
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n"; 
} 
 
void Hgraphscheme::Insertstatehgs(void) 
{ 
 char* graphname=new char[5]; int nstate, answer, insert=0; 
 if (hgscheck) 
  if (hgsmark!=-1) { 
   nstate=hgsnstates; strcpy(graphname,""); 
   cout <<"\n******** Insert extra states in the already marked HGS " 
      <<hgsname <<" *********\n"; 
   do { 
    cout <<"Graph-Scheme Name="; cin >>graphname; 
    Graphscheme* gs=Searchgraphhgs(graphname); 
    if (gs!=NULL) gs->Insertstategs(nstate,hgsmark,insert); 
    else cout <<graphname <<" Graph-Scheme does not belong to HGS " 
         <<hgsname <<"\n"; 
    do { cout <<"Insert states in another graph-scheme Yes[1]/No[0] ? "; cin >>answer; } 
    while (answer != 0 && answer != 1); 
   } while (answer); 
   if (insert) { 
    cout <<"\n *** " <<insert <<" extra states inserted ***\n"; 
    if (hgsmark) { 
     hgsnstates=nstate; 
     cout <<" *** Now HGS " <<hgsname <<" is marked with " 
        <<hgsnstates <<" states ***\n"; 
    } 
    if (!strcmp(hgssyn,"Moore")) if (hgsmark) Mooresynmergehgs(0); else Mooresynsplithgs(0); 
    else if (hgsmark) Mealysynmergehgs(0); else Mealysynsplithgs(0); 
   } 
   else cout <<"WARNING No extra states were inserted\n"; 
  } 
  else cout <<"WARNING " <<hgsname <<" is not marked yet\n"; 
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n"; 
 delete [] graphname; 
} 
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void Hgraphscheme::Removestatehgs(void) 
{ 
 char* graphname=new char[5]; int nstate, answer, remove=0; 
 if (hgscheck) 
  if (hgsmark!=-1) { 
   nstate=hgsnstates; strcpy(graphname,""); 
   cout <<"\n******** Remove extra states in the already marked HGS " 
      <<hgsname <<" *********\n"; 
   do { 
    cout <<"Graph-Scheme Name="; cin >>graphname; 
    Graphscheme* gs=Searchgraphhgs(graphname); 
    if (gs!=NULL) gs->Removestategs(nstate,hgsmark,remove); 
    else cout <<graphname <<" Graph-Scheme does not belong to HGS " 
         <<hgsname <<"\n"; 
    do { 
     cout <<"Remove states in another graph-scheme Yes[1]/No[0] ? "; cin >>answer; 
    } while (answer != 0 && answer != 1); 
   } while (answer); 
   if (remove) { 
    cout <<"\n *** " <<remove <<" extra states removed ***\n"; 
    if (hgsmark) { 
     hgsnstates=nstate; 
     cout <<" *** Now HGS " <<hgsname <<" is marked with " 
        <<hgsnstates <<" states ***\n"; 
    } 
    if (!strcmp(hgssyn,"Moore")) if (hgsmark) Mooresynmergehgs(0); else Mooresynsplithgs(0); 
    else if (hgsmark) Mealysynmergehgs(0); else Mealysynsplithgs(0); 
   } 
   else cout <<"WARNING No extra states were removed\n"; 
  } 
  else cout <<"WARNING " <<hgsname <<" is not marked yet\n"; 
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n"; 
 delete [] graphname; 
} 
 
//************************************** SIMULHGS Menu ************************************** 
 
void main(void) 
{ 
 char* filename=new char[20]; Hgraphscheme *hgs; int choice, exit=1; 
 
 cout <<"\n Graph-Scheme Filename -> "; cin >> filename; 
 strcat(filename,".txt"); hgs=new Hgraphscheme(filename); 
 
 if (hgs->Hgsngs() != 0) 
  do { 
   clrscr(); 
   cout <<"              ----------------------------------\n"; 
   cout <<"              |  1 - Check Graph-Scheme        |\n"; 
   cout <<"              |  2 - List Graph-Scheme         |\n"; 
   cout <<"              |  3 - Print Graph-Scheme        |\n"; 
   cout <<"              |  4 - Run Graph-Scheme          |\n"; 
   cout <<"              |  5 - Moore Synthesis (model 2) |\n"; 
   cout <<"              |  6 - Mealy Synthesis (model 2) |\n"; 
   cout <<"              |  7 - Moore Synthesis (model 3) |\n"; 
   cout <<"              |  8 - Mealy Synthesis (model 3) |\n"; 
   cout <<"              |  9 - Insert Extra States       |\n"; 
   cout <<"              | 10 - Remove Extra States       |\n"; 
   cout <<"              | 11 - Exit Program              |\n"; 
   cout <<"              ----------------------------------\n"; 
   cout <<"\n                     Your Option -> "; cin >>choice; 
   clrscr(); 
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   switch (choice) { 
    case  1 : exit=hgs->Checkhgs(); 
        if (exit) { cout <<"\nHit any key to continue "; getch(); } 
        else { 
        cout <<"\nCannot processe this hierarchical graph-scheme”; 
        cout <<"\nPROGRAM TERMINATED"; 
        } 
        break; 
    case  2 : hgs->Listhgs(); 
        cout <<"\nHit any key to continue "; getch(); break; 
    case  3 : hgs->Printhgs(); 
        cout <<"\nHit any key to continue "; getch(); break; 
    case  4 : hgs->Runhgs(); 
        cout <<"\nHit any key to continue "; getch(); break; 
    case  5 : hgs->Mooresynmergehgs(); 
        cout <<"\nHit any key to continue "; getch(); break; 
    case  6 : hgs->Mealysynmergehgs(); 
        cout <<"\nHit any key to continue "; getch(); break; 
    case  7 : hgs->Mooresynsplithgs(); 
        cout <<"\nHit any key to continue "; getch(); break; 
    case  8 : hgs->Mealysynsplithgs(); 
        cout <<"\nHit any key to continue "; getch(); break; 
    case  9 : hgs->Insertstatehgs(); 
        cout <<"\nHit any key to continue "; getch(); break; 
    case 10 : hgs->Removestatehgs(); 
        cout <<"\nHit any key to continue "; getch(); break; 
    case 11 : exit=0; break; 
    default : cout <<"Wrong choice - Hit any key to continue "; getch(); break; 
   } 
  } while (exit); 
 
 delete hgs; delete [] filename; 
} 
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12 GLOSSARY 

ALU Arithmetic logic unit 
ASIC Application-specific integrated circuit 
ASM Algorithmic state machine 
CAD Computer-aided design 
DSP Digital signal processor 
FPGA Field-programmable gate array 
FSM Finite state machine 
GS Graph-scheme of algorithm 
HCFSM Hierarchical concurrent finite state machine 
HDL Hardware description language 
HFSM Hierarchical finite state machine 
HGS Hierarchical graph-scheme 
LUT Lookup table 
MSA Matrix scheme of algorithm 
PAL Programmable array logic 
PFSM Parallel finite state machine 
PHFSM Parallel hierarchical finite state machine 
PHGS Parallel hierarchical graph-scheme 
PLA Programmable logic array 
PLD Programmable logic device 
RAM Random access memory 
RE Reprogrammable element 
ROM Read only memory 
SRAM Static RAM 
VHDL VHSIC hardware description language 
VHSIC Very high speed integrated circuits
 




