

Universidade de Aveiro

Departamento de Electrónica e Telecomunicações

Synthesis and Simulation of
Reprogrammable Control Units from

Hierarchical Specifications

António Manuel Adrego da Rocha
1999

Synthesis and Simulation of
Reprogrammable Control Units from

Hierarchical Specifications

António Manuel Adrego da Rocha

Departamento de Electrónica e Telecomunicações
Universidade de Aveiro

Portugal, May, 1999

Thesis submitted in fulfilment of the requirements for the degree of
Doutor em Engenharia Electrotécnica

Acknowledgements

I would like to thank to my thesis supervisors. To Valery Sklyarov for introducing
me in the field of hierarchical finite state machines with stack memory and for
having proposed and supervised this work. To António Ferrari for the many
comments and suggestions in order to improve this thesis, and also for the
corrections regarding the proper use of the English language. They deserve my
sincere gratitude.

I am also indebted to Artur Pereira for his expertise in Petri nets and to António
Rui Borges for the helpful discussions and suggestions concerning the contents of
some chapters of this thesis.

I would also like to thank to every one in the Departamento de Electrónica e
Telecomunicações and INESC, especially to all members in the Computer group,
for their support and encouragement.

This work was supported by the grant PRODEP Formação nº 35/3/94. The
financial support of the Human Capital and Mobility Programme of the European
Community under contract CHRX-CT94-0459, the Network “Behavioural Design
Methodologies for Digital Systems”, that made possible the presentation and
discussion of part of this work is also acknowledge.

Finally, thanks to my family and friends, in particular to my parents Maria and
João and my sister Rosa for their love, patience and support. This work is
dedicated to them.

Abstract

Finite state machines (FSM) have been a topic of great importance in the last five
decades and have been used to specify and implement control units. Due to the
increasing complexity of control units and since the FSM model does not
explicitly support hierarchy and concurrency, new state-based models with
hierarchical and concurrent constructions were proposed in order to overcome
the limitations of the conventional FSM model and allowing the specification of
complex control units in a top-down manner. Still, there are not many hierarchical
FSM architectures (HFSM) that have been proposed to implement those
hierarchical specifications and most of them cannot be seen as a whole FSM
implementing internally in an efficient way the switching between the different
hierarchical levels of the machine, except for the HFSM with stack memory.

This thesis tackles the synthesis of FSMs from hierarchical specifications and
proposes two HFSMs and a parallel hierarchical FSM (PHFSM) with stack
memory that can provide such facilities as flexibility, extensibility and reusability.
It also presents the synthesis methodology from hierarchical specifications to the
generation of state transition tables that can be used to carry out the logic
synthesis of the proposed HFSM models.

Considering that the use of formal state-based models that provide hierarchical
and concurrent constructions is highly recommended for specifying complex
control units, hierarchical graph-schemes (HGS) and parallel hierarchical graph-
schemes (PHGS) are used and some considerations about their execution and
correctness are presented. It is also explained how HGSs can be used to specify a
control algorithm and how it is possible to verify automatically its correctness and
to validate the intended functionality through simulation.

Using the first model of a HFSM with stack memory as a starting model, two new
models that can provide flexibility, extensibility and reusability and a PHFSM
model that combines hierarchy and pseudo-parallel execution of operations are
proposed. Their functionality, flexibility, extensibility, synchronisation and internal
realisation are fully explained.

To implement a control unit specified with a set of HGSs/PHGSs it is necessary
to perform the first step of the sequential logic synthesis, taking in consideration
the pretended target model. The manual synthesis methodology required to build
the state transition table of a HFSM/PHFSM starting from a hierarchical
specification based on HGSs/PHGSs is explained for a Moore, a Mealy and a
mixed Moore/Mealy FSM. A tool that automatically performs this first step for
the two HFSM models proposed is also presented.

In order to validate the proposed HFSM/PHFSM models and their synthesis, the
models were described in VHDL for a LUT-based implementation and simulated
using the Synopsys simulation tools.

Resumo

As máquinas finitas de estados (FSM) têm sido usadas para especificar e
implementar unidades de controlo e têm sido um assunto de grande importância
nas últimas cinco décadas. Devido ao aumento da complexidade das unidades de
controlo e uma vez que o modelo FSM não permite descrições hierárquicas e
concorrentes, novos modelos formais que suportam hierarquia e concorrência têm
sido propostos com o objectivo de ultrapassar as limitações do modelo FSM e que
permitem a especificação de unidades de controlo complexas usando uma
metodologia de decomposição hierarquizada. Apesar disso não têm sido propostas
arquitecturas de máquinas finitas de estados hierárquicas, com excepção das
máquinas construídas com memória stack, que possam ser vistas como uma
máquina integral que implementa internamente e de forma eficiente a transição
entre os diferentes níveis hierárquicos da máquina.

Esta tese aborda a síntese de máquinas de estados especificadas hierarquicamente
e propõe duas arquitecturas de máquinas hierárquicas (HFSM) e uma máquina
paralela hierárquica (PHFSM) contruídas com memória stack, que são flexíveis,
extensíveis e reutilizáveis. Apresenta também, a metodologia de síntese lógica que
permite construir a tabela de transição de estados a partir da especificação
hierárquica, tabela essa que é utilizada na implementação dos modelos propostos.

Considerando que é altamente recomendável a utilização de modelos formais que
permitam descrições hierárquicas e concorrentes na especificação de unidades de
controlo complexas, os modelos de grafos hierárquicos (HGS) e grafos paralelos
hierárquicos (PHGS) são apresentados e são feitas algumas considerações acerca
da sua utilização, execução e correcção. É ainda explicado como se pode validar a
especificação hierárquica da funcionalidade de unidades de controlo complexas
através da verificação automática e simulação da especificação baseada em HGSs.

Os modelos propostos de máquinas de estados são apresentados detalhadamente
tendo em atenção o seu funcionamento, implementação interna baseada em
memórias e sincronização, bem como as novas facilidades de flexibilidade e
extensibilidade que estes modelos apresentam.

É apresentada a metodologia manual da síntese lógica que é necessário
implementar a partir das especificações hierárquicas baseadas em HGSs ou
PHGSs de forma a construir a tabela de transição de estados que especifica a
máquina hierárquica ou paralela hierárquica, para as máquinas de estados de
Moore, Mealy ou mista Moore/Mealy. É também apresentado um programa que
implementa automaticamente a síntese lógica dos dois modelos de máquinas de
estados hierárquicas propostos a partir da especificação feita com HGSs.

Os modelos de arquitecturas propostas, bem como a metodologia de síntese,
foram validadas através de uma simulação em VHDL que foi feita usando as
ferramentas de simulação da Synopsys.

I

CONTENTS

1 INTRODUCTION 1
1.1 Outline of the Evolution of the Finite State Machine 2
1.2 Control Units Overview 5

1.2.1 Introduction 5
1.2.2 Specification of Control Units 7
1.2.3 Implementation of Control Units 8
1.2.4 Synthesis of Control Units 9

1.3 Objectives of the Work 12
1.4 Organisation of the Thesis 13

2 SPECIFICATION OF CONTROL UNITS 15

2.1 Introduction 16
2.2 Specification Requirements 16

2.2.1 State transitions 16
2.2.2 Concurrency 16
2.2.3 Hierarchy 16
2.2.4 Non-determinism 17
2.2.5 Behavioural Completion 17
2.2.6 Programming Constructs 18
2.2.7 Communication 18
2.2.8 Synchronisation 18
2.2.9 Exceptions 19
2.2.10 Timing 19

2.3 Specification models 19
2.3.1 Introduction 19
2.3.2 Finite State Machine model 20
2.3.3 Algorithmic State Machine model 21
2.3.4 Graph-Scheme of Algorithm model 23
2.3.5 Petri net model 24
2.3.6 Statecharts model 26

2.4 Specification languages 29
2.4.1 Introduction 29
2.4.2 VHDL 29

2.5 Conclusions 31

3 HIERARCHICAL GRAPH-SCHEMES 33

3.1 Graph-Schemes of Algorithms 34
3.2 Execution of a GS 35

3.2.1 GS Traverse Procedure 35
3.2.2 Paths in GS 37
3.2.3 Matrix Scheme of Algorithm 38

II SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

3.3 Graph-Schemes of Algorithms and Finite State Machines 39
3.3.1 Synthesis of a Moore Finite State Machine 39
3.3.2 Synthesis of a Mealy Finite State Machine 41

3.4 Hierarchical Graph-Schemes 43
3.5 Parallel Hierarchical Graph-Schemes 45
3.6 Execution and synchronisation of a HGS/PHGS 46
3.7 Correctness of a HGS/PHGS and Problems with Recursive Calls 46
3.8 An Example 48
3.9 C++ Simulation of Hierarchical Graph-Schemes 51

3.9.1 Introduction 51
3.9.2 Description of the Class System 51
3.9.3 Acquisition and Construction of a Hierarchical Algorithm 53
3.9.4 Checking a Hierarchical Algorithm 56
3.9.5 Running a Hierarchical Algorithm 57

3.10 Conclusions 58

4 HIERARCHICAL FINITE STATE MACHINES 59

4.1 Introduction 60
4.2 FSM with Stack Memory (managing hierarchy) 61
4.3 Parallel HFSM 67
4.4 Virtual HFSM 69
4.5 HFSM/PHFSM Synchronisation 71

4.5.1 Synchronisation of a Moore HFSM 71
4.5.2 Synchronisation of a Mealy HFSM 73
4.5.3 Synchronisation of a PFSM 74
4.5.4 Synchronisation of a PHFSM 74

4.6 Application Field 76
4.7 Conclusions 77

5 SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 79

5.1 Introduction 80
5.2 Synthesis of a Moore HFSM 80
5.3 Synthesis of a Mealy HFSM 87
5.4 Synthesis of a Mixed Moore/Mealy HFSM 92
5.5 Synthesis of a PFSM 94
5.6 Synthesis of a PHFSM 98
5.7 Automatic Synthesis of a HFSM 103

5.7.1 Marking a Hierarchical Algorithm 103
5.7.1.1 Marking for synthesis as a Moore HFSM 104
5.7.1.2 Marking for synthesis as a Mealy HFSM 105

5.7.2 Constructing a State Transition Table 105
5.7.2.1 Constructing a Moore State Transition Table 106
5.7.2.2 Constructing a Mealy State Transition Table 109

5.7.3 Constructing a Code Converter Programming Table 112
5.8 Conclusions 114

CONTENTS III

6 IMPLEMENTATION AND OPTIMISATION OF HIERARCHICAL FINITE

STATE MACHINES 115
6.1 Introduction 116
6.2 Decomposition of the Combinational Scheme 117

6.2.1 Hierarchical FSM 117
6.2.2 Parallel FSM/HFSM 119

6.3 Replacement of Input Variables 120
6.4 State Encoding 121
6.5 State Splitting 123
6.6 State Splitting in the Tool SIMULHGS 125
6.7 Quantification of the Optimisation Techniques 125
6.8 Conclusions 126

7 VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 127

7.1 Introduction 128
7.2 Simulation of a Moore HFSM model 2 129
7.3 Simulation of a Mealy HFSM model 2 132
7.4 Simulation of a Moore HFSM model 3 133
7.5 Simulation of a Mealy HFSM model 3 135
7.6 Simulation of a Moore PFSM 136
7.7 Simulation of a Moore PHFSM 138
7.8 Providing Flexibility 142
7.9 Providing Extensibility 147
7.10 Providing Reusability 151
7.11 Using Pure Virtual HGSs 151
7.12 Hierarchical FSMs versus Non-Hierarchical FSMs 151
7.13 Conclusions 154

8 FINAL CONCLUSIONS AND FUTURE WORK 155

8.1 Introduction 156
8.2 Contributions 157

8.2.1 HFSM and PHFSM models 157
8.2.2 Synthesis of HFSMs 157
8.2.3 Experimental Results 158

8.3 Future Work 158

9 APPENDIX A - LUTS 159

10 APPENDIX B - SIMULHGS 169

11 REFERENCES 197

12 GLOSSARY 203

V

LIST OF FIGURES

Chapter 1
Figure 1.1 General form of a Turing machine. 2
Figure 1.2 Embedded system block diagram. 6
Figure 1.3 (a) Control unit model. (b) Control unit with decoder.
 (c) Control unit with counter. (d) Control unit with stack. 8
Figure 1.4 Automatic synthesis of digital circuits. 11

Chapter 2
Figure 2.1 (a) Vending machine state diagram.
 (b) Vending machine state transition table. 21
Figure 2.2 The ASM block. 22
Figure 2.3 Vending machine ASM chart. 23
Figure 2.4 Vending machine GS description. 24
Figure 2.5 Vending machine Petri net. 25
Figure 2.6 State machine equivalent to the previous Petri net. 26
Figure 2.7 A Statechart example. 28
Figure 2.8 Vending machine Statechart. 28
Figure 2.9 Vending machine VHDL behavioural description. 32

Chapter 3
Figure 3.1 Nodes of GS. 34
Figure 3.2 An example of a GS. 35
Figure 3.3 GS marked for Moore synthesis. 39
Figure 3.4 State diagram of the Moore FSM. 40
Figure 3.5 GS marked for Mealy synthesis. 41
Figure 3.6 State diagram of the Mealy FSM. 42
Figure 3.7 An algorithm described by hierarchical graph-schemes. 44
Figure 3.8 An algorithm described by parallel hierarchical graph-schemes. 45
Figure 3.9 An example of a HGS with an infinite cycle. 46
Figure 3.10 Special graph to detect infinite recursion. 47
Figure 3.11 Macrooperation looping without infinite recursion. 47
Figure 3.12 Binary multiplication algorithm. 48
Figure 3.13 Macrooperation z1 implementation and codification. 49
Figure 3.14 Macrooperation z2 implementation and codification. 49
Figure 3.15 Non-hierarchical implementation and codification of the binary

multiplication algorithm. 50
Figure 3.16 Class system diagram of the tool SIMULHGS. 53
Figure 3.17 Macrooperation Z1 and its text description. 54
Figure 3.18 Logic function Θ6 and its text description. 54

VI SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Chapter 4
Figure 4.1 (a) FSM block diagram. (b) HFSM block diagram. 60
Figure 4.2 Graph Gh showing hierarchical levels. 61
Figure 4.3 Hierarchical finite state machine structure (model 1). 62
Figure 4.4 Hierarchical finite state machine structure (model 2). 63
Figure 4.5 Hierarchical finite state machine structure (model 3). 64
Figure 4.6 Selector implementation. 65
Figure 4.7 Model of a pseudo-parallel finite state machine. 67
Figure 4.8 Model of a pseudo-parallel hierarchical finite state machine. 68
Figure 4.9 Synchronisation of a Moore HFSM model 2. 71
Figure 4.10 Synchronisation of a Mealy HFSM model 2. 73
Figure 4.11 Synchronisation of a Moore PFSM. 74
Figure 4.12 Synchronisation of a Moore PHFSM. 75

Chapter 5
Figure 5.1 A set of HGSs marked for synthesis as a Moore machine (states ai

for model 2, states bi for model 3). 82
Figure 5.2 A set of HGSs marked for synthesis as a Mealy machine (states ai

for model 2, states bi for model 3). 88
Figure 5.3 A set of HGSs marked for synthesis as a mixed Moore/Mealy

machine (states ai for model 2, states bi for model 3). 93
Figure 5.4 A set of PHGSs for implementing in a PFSM. 95
Figure 5.5 A set of extended PHGSs marked for synthesis as a Moore PFSM.

 96
Figure 5.6 A set of PHGSs for implementing in a PHFSM. 99
Figure 5.7 A set of extended PHGSs marked for synthesis as a Moore

PHFSM. 100
Figure 5.8 A cycle of conditional nodes. 106
Figure 5.9 State transition table generated by SIMULHGS for the mixed

Moore/Mealy HFSM model 2. 108
Figure 5.10 RE1 state transition table generated by SIMULHGS for the mixed

Moore/Mealy HFSM model 3. 109
Figure 5.11 A HGS marked for synthesis as a Mealy machine. 110
Figure 5.12 State transition table generated by SIMULHGS for the Mealy

HFSM model 2. 111
Figure 5.13 Code Converter table generated by SIMULHGS for the mixed

Moore/Mealy HFSM model 2. 112
Figure 5.14 Code Converter table generated by SIMULHGS for the Mealy

HFSM model 3. 113

Chapter 6
Figure 6.1 Combinational Scheme. 117
Figure 6.2 Decomposition of the Moore HFSM Combinational Scheme for a

RAM-based implementation. 118
Figure 6.3 Decomposition of the Mealy HFSM Combinational Scheme for a

RAM-based implementation. 118
Figure 6.4 Decomposition of the Moore PHFSM Combinational Scheme for a

RAM-based implementation. 119

LIST OF FIGURES VII

Figure 6.5 Karnaugh map for the special state encoding algorithm. 122
Figure 6.6 Decomposition of the Moore HFSM combinational scheme using

the replacement of input variables and the special state encoding
algorithm. 122

Figure 6.7 Programmable multiplexer. 123
Figure 6.8 Applying the state splitting technique. 124

Chapter 7
Figure 7.1 Programmable multiplexer for the mixed Moore/Mealy HFSM

model 2 with binary state encoding. 129
Figure 7.2 Waveform of the mixed Moore/Mealy HFSM model 2 with binary

state encoding. 130
Figure 7.3 Programmable multiplexer for the mixed Moore/Mealy HFSM

model 2 with special state encoding. 131
Figure 7.4 Waveform of the mixed Moore/Mealy HFSM model 2 for the

special state encoding. 131
Figure 7.5 Programmable multiplexer for the Mealy HFSM model 2 with

binary state encoding. 132
Figure 7.6 Waveform of the Mealy HFSM model 2 with the binary state

encoding. 133
Figure 7.7 Waveform of the mixed Moore/Mealy HFSM model 3. 134
Figure 7.8 Waveform of the Mealy HFSM model 3. 136
Figure 7.9 Programmable multiplexer for the Moore PFSM. 137
Figure 7.10 Waveform of the Moore PFSM. 138
Figure 7.11 Programmable multiplexer for the Moore PHFSM. 139
Figure 7.12 First waveform of the Moore PHFSM. 140
Figure 7.13 Second waveform of the Moore PHFSM. 141
Figure 7.14 (a) New implementation of the macrooperation z4.
 (b) New version of the logic function θ6. 142
Figure 7.15 New implementation of the programmable multiplexer for the

mixed Moore/Mealy HFSM model 2 with binary state encoding in
order to provide flexibility. 143

Figure 7.16 Waveform of the mixed Moore/Mealy HFSM model 2 with the
changes that provide flexibility. 144

Figure 7.17 Karnaugh map for state encoding. 145
Figure 7.18 New implementation of the programmable multiplexer for the

mixed Moore/Mealy HFSM model 2 with special state encoding in
order to provide flexibility. 145

Figure 7.19 (a) New implementation of the macrooperation z4.
 (b) New macrooperation z7. 147
Figure 7.20 New implementation of the programmable multiplexer for the

mixed Moore/Mealy HFSM model 2 with binary state encoding in
order to provide extensibility. 148

Figure 7.21 Waveform of the mixed Moore/Mealy HFSM model 2 with the
changes that provide extensibility. 149

Figure 7.22 Ordinary GS equivalent to the set of HGSs presented in Figure 5.1.
 153

IX

LIST OF TABLES

Chapter 3
Table 3.1 Matrix scheme of algorithm. 38

Chapter 5
Table 5.1 Moore extended state transition table. 84
Table 5.2 Moore ordinary state transition table. 84
Table 5.3 Moore model 2 Code Converter table. 85
Table 5.4 RE1 Moore ordinary state transition table. 86
Table 5.5 RE2 Moore ordinary state transition table. 86
Table 5.6 RE3 Moore ordinary state transition table. 86
Table 5.7 RE4 Moore ordinary state transition table. 86
Table 5.8 RE5 Moore ordinary state transition table. 86
Table 5.9 RE6 Moore ordinary state transition table. 86
Table 5.10 Moore model 3 Code Converter table. 86
Table 5.11 Mealy model 2 Code Converter table. 89
Table 5.12 Mealy extended state transition table. 90
Table 5.13 Mealy ordinary state transition table. 90
Table 5.14 RE1 Mealy ordinary state transition table. 91
Table 5.15 RE2 Mealy ordinary state transition table. 91
Table 5.16 RE3 Mealy ordinary state transition table. 91
Table 5.17 RE5 Mealy ordinary state transition table. 91
Table 5.18 RE4 Mealy ordinary state transition table. 91
Table 5.19 RE6 Mealy ordinary state transition table. 91
Table 5.20 Mealy model 3 Code Converter table. 91
Table 5.21 Mixed Moore/Mealy ordinary state transition table. 92
Table 5.22 PFSM extended state transition table. 97
Table 5.23 PFSM ordinary state transition table. 97
Table 5.24 PHFSM extended state transition table. 102
Table 5.25 PHFSM ordinary state transition table. 102
Table 5.26 Moore PHFSM Code Converter table. 103

Chapter 6
Table 6.1 Ordinary state transition table with the replacement of input

variables. 120
Table 6.2 State transition table without the extra state. 124
Table 6.3 State transition table after inserting the extra state. 124

Chapter 7
Table 7.1 Ordinary state transition table for the new version of the logic

function θ6. 143
Table 7.2 Ordinary state transition table for the new node of the

macrooperation z4 and the new macrooperation z7. 148

1

1 INTRODUCTION

Summary

The goal of this thesis is the development of a methodology for the synthesis of
reprogrammable control units from hierarchical specifications. The proposed
methodology uses complex finite state machine models, i.e. hierarchical and
parallel hierarchical finite state machines, that can provide such facilities as
flexibility, extensibility and reusability and that can be easily reprogrammed.

This chapter starts by presenting an historical perspective of the evolution of the
finite state machine model, starting from the Turing machine until the most recent
proposals for hierarchical and parallel implementations of complex finite state
machines.

Then it gives an overview of control units in particular those that can appear in
embedded systems. Since control units are increasing in complexity their
functionality should be specified in a top-down manner and therefore the
advantages of such approach are explained. Control units can follow the finite
state machine model but in order to simplify the implementation of complex
control units several alternative architectures are presented. The automatic
synthesis of digital circuits, with an emphasis on the sequential logic synthesis of
control units, is also outlined.

Finally the objectives of the work and the structure of this thesis are presented.

2 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

1.1 Outline of the Evolution of the Finite State Machine

Finite state machine (FSM) or finite automaton is a mathematical model of a
system, with discrete inputs and outputs and a finite number of states. The state of
the system summarises the information concerning past inputs that is needed to
determine the behaviour of the system for future inputs. Associated with a finite
machine is a direct graph called a state transition diagram, which is its graphical
counterpart.

Alan Turing proposed the first model of a machine or automaton in 1936, even
before the appearance of the first computers. Since Turing was a mathematician
he was interested in defining the fundamental relationships involved in making
computations [Booth67]. The basic model of a Turing machine (see Figure 1.1)
is a finite control, an infinite input tape and a read/write head [Booth67,
Kohavi70, AleHan75, HopUll79].

The machine head scans one cell of the tape at a time and it is allowed to read
from or write on the cell directly under it and to move its position one cell at a
time to the right or to the left. The tape, which represents the external information
store, is divided into cells and each cell holds a blank symbol or one symbol from
a finite set of symbols.

Read/Write head

...Tape

Finite Control

Figure 1.1 – General form of a Turing machine.

This machine can execute any process that is finitely described, consisting of
discrete steps, each of which can be carried out mechanically and work as follows.
During each cycle of operation the cell under the head is read to determine the
symbol printed on the tape. After reading the symbol the control machine
executes one of the four following possible moves: a new symbol can be written
in the cell tape; the head is moved one position to the right of the current cell; the
head is moved one position to the left of the current cell; the operation of the
machine is halted.

Because the control element is a finite state machine, the actual operation
performed will be influenced by the previous operations performed by the
machine. The Turing machine can be considered a general-purpose machine and
has been the base model of the finite automata.

CHAPTER 1 : INTRODUCTION 3

However, a more attractive kind of machine is a Turing machine with multiple
tapes, in particular the read-only machine. This kind of machine has an input tape,
an output tape and a working tape and works as follows. The input tape can only
move in a forward direction past its reading head, i.e. the machine can read the
input tape but cannot write on the tape or recall past inputs. The output tape is
similar to the input tape but it is initially blank and it can only be written when it
passes through the printing head of the machine. The main tape of this machine is
the working tape, which is both a read and a write tape on which all of the
intermediate calculations are recorded and thus it represents the memory of the
machine. Modified versions of Turing machines appear in [Booth67, HopUll79].

During the 1950s, several authors had proposed different types of read-only
machines, being the two most know models the Moore and the Mealy machines.
The former is due to the work of Huffman in 1954 and Moore in 1956, and the
latter is due to the work of Mealy in 1955. In the Moore machine the symbol
written in the output tape depends on the information stored in the working tape,
while in the Mealy machine the symbol written in the output tape depends on
the information stored in the working tape and on the symbol read from the input
tape.

From the electronic point of view, a Moore (Mealy) machine is characterised by
having a state register that holds its internal state, a next state logic function that
generates the next state depending on the present state and on the inputs and an
output logic function depending on the present state and in the case of Mealy
depending also on the inputs. The formal definition of the FSM is presented in
the Paragraph 2.3.2.

Oettinger in 1961 and Schutzenberger in 1963 conceptualised the pushdown
automaton. The pushdown automaton is a second version of a read-only
machine with a working tape that is restricted to be what is called a pushdown
tape [Booth67, HopUll79]. This working tape can be written on, read from or
moved in both directions, but as it moves from left to right past the reading head
all the tape cells on the right are left blank [Booth67]. Such an arrangement is
described as “last in first out” list. The pushdown automaton is also briefly
presented in [AleHan75].

During the first half of the 1960s, Hartmanis and Stearns [HarSte66] and Kohavi
[Kohavi70] have studied the composition and decomposition of finite state
machines. There are three basic forms of machine composition/decomposition:
parallel, series or cascade and feedback [Booth67, Kohavi70, Baranov79]. The
decomposition of a FSM into several smaller interconnected FSMs is an
alternative to a single monolithic implementation in order to deal with the
complexity of a large machine.

4 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

The topic become less interesting during the 1970s due to the ROM-based
implementation of machines, i.e. due to the use of microprogramming (concept
first outlined by Wilkes in [Wilkes51]), but it had regained importance with the
appearance of the first PLDs. Since they could not provide enough inputs or
outputs or number of products to implement the next state and output functions
of complex FSMs the realisation with a single PLD was not possible. Therefore,
more recent authors [Bolton90, Baranov94, Katz94] have presented the
decomposition of FSMs, with the introduction of idle states, in order to overcome
the resource limitations of PLDs.

In order to deal with the increasing complexity of control units and since the state
transition diagrams are not adequate to capture the notation of an algorithm, in
1973 Christopher R. Clare introduced the algorithmic state machine (ASM) in
[Clare73]. The ASM looks like a program flowchart and it is an approach to move
toward programming. Moreover, [Clare73] explores the use of ROMs in the
synthesis of ASM-based designs, i.e. microprogramming. The ASM model, the
synthesis of ASM-based designs and microprogramming are well documented in
[WinPro80, Green86].

Clare also proposed the implementation of a finite state machine with several co-
operating FSMs in [Clare73]. In other words FSMs can be linked in order to
specify parallel algorithms. The linked FSMs can be completely independent or
can communicate between them for synchronisation purposes and most
commonly share the same clock. Linked FSMs are presented in [Clare73,
Green86, Bolton90].

In 1974 Baranov proposed the graph-scheme of algorithm, which is very similar
to the ASM, in [Baranov74]. In 1984 Sklyarov proposed an extension of the GS,
the hierarchical graph-scheme (HGS) in [Sklyarov84]. The HGS adds support
for hierarchical descriptions based on macro blocks, such as macrooperations and
logic functions. This model is another step toward programming, in this case to
procedural programming. The HGS can be used to describe the functionality of
complex control units by decomposing them in a top-down manner, resembling
an algorithmic decomposition using a structured programming language. The
macrooperation can be seen as the hardware equivalent of the procedure in Pascal
while the logic function as the hardware analogue of the function in Pascal.

For the hierarchical implementation once again the software model was imported
and a hierarchical FSM with stack memory (HFSM), which is closely related
with the pushdown automaton, was proposed in [Sklyarov84]. The stack memory
controlled through push and pop instructions is used as the state register of the
machine like it is used in a computer that executes a program specified with
subprograms. Thus, when the execution of the machine must perform a macro
block in a new hierarchical level, the stack keeps the present state unchanged and
another register of the stack is used to hold the state during the execution of the
macro block. When the macro block finishes executing the interrupted state of the

CHAPTER 1 : INTRODUCTION 5

previous hierarchical level is resumed. This HFSM can be seen as a procedural
hardware implementation of a control unit.

In 1987, Sklyarov proposed an extension of the HGS, the parallel hierarchical
graph-scheme (PHGS), which in addition to hierarchical descriptions also allows
the parallel invocation of macrooperations, in [Sklyarov87]. This model can be
seen as a set of FSMs that have their combinational schemes merged in a unique
combinational scheme and with a state register composed of several state registers,
one per machine, that are sequentially scanned by the FSM clock. The
synchronisation of the parallel execution of the sub-FSMs is achieved through the
introduction of waiting states. As a result a pseudo-parallel FSM (PFSM) that
implements parallel tasks sequentially is achieved.

In 1987, Harel proposed the Statechart as an extension of the FSM state
transition diagrams that allows hierarchical and concurrent descriptions in
[Harel87]. And in 1989, he and Drusinsky proposed a hierarchical implementation
based on a tree of interconnected FSMs, where each state at each level of the
statechart hierarchy is represented by a machine implementing the FSM
corresponding to its sub-states on the next immediate level, in [DruHar89].

In 1994, Micheli suggests representing a FSM diagram in a hierarchical way
(hierarchical FSM) by splitting it into sub-diagrams, in [Micheli94]. Each sub-
diagram, except the root has an entry and an exit state and it is associated with one
or more calling states from other sub-diagrams. Each transition to a calling state is
equivalent to a transition into the entry state of the corresponding sub-diagram
and a transition to an exit state of the sub-diagram corresponds to return to the
calling state. For the implementation of this hierarchical specification he proposes,
a control unit built by interconnecting independent control units, each
implementing a sub-diagram and having its own activation signal which start or
halt its execution, in [Micheli94].

Also in 1994, Gajski proposes a hierarchical concurrent finite state machine
(HCFSM) as an extension of the FSM with support for hierarchy and
concurrency in [Gajski94]. According to him the statecharts model is well adapted
to specify a HCFSM but he does not suggest any implementation.

1.2 Control Units Overview

1.2.1 Introduction

Embedded systems can be defined as computing and control systems dedicated to
a certain application [Micheli94]. They are parts of larger systems [MicGup97] and
they are widely used in the manufacturing industry, in consumer products, in
vehicles, in communication systems, in industrial automation, in aerospace, etc.
They are often used in life critical situations, where reliability, availability and
safety are more important criteria than performance [Edwards97, MicGup97].

6 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

In the general case, an embedded system is composed of microcontrollers,
application-specific integrated circuits (ASIC), field-programmable gate arrays
(FPGA), as well as other programmable computing units such as digital signal
processors (DSP) [Edwards97]. Since embedded systems interact with an analogue
environment they often integrate components that implement A/D and D/A
conversions [Edwards97, MicGup97].

The behaviour of an embedded system is defined by its interaction with the
environment in which it operates [Gajski94] and in most cases they have to react
continuously to their environment at the speed of the environment. These systems
are called reactive systems [Micheli94, Edwards97]. Real-time systems implement
functions that must execute satisfying timing constrains [Micheli94].

There are many kinds of devices that can be decomposed into a datapath
(execution unit) and a control unit (see Figure 1.2) [Gajski94, Micheli94]. A
particular kind of execution unit that can appear in an embedded system is a
device depending on input data provided by sensors in the outside environment
and generating output data that usually regulate mechanical components also in
the outside environment via actuators. The actuators and sensors can be
electronic, optical, mechanical, etc.

CONTROL UNIT DATAPATH

Control signals

Status signals

Control inputs

Control outputs

Datapath inputs

Datapath outputs
Figure 1.2 – Embedded system block diagram.

The datapath consists of registers, multiplexers and functional units such as ALUs,
multipliers and shifters. A typical operation in the datapath reads the operands
from the registers or external memory, computes the result in the functional units
and writes the result into a destination register. The datapath is connected with
external memory, being all memory accesses routed through registers with load
and store operations.

The control unit is usually modelled as a FSM and consists of the state register,
the next state logic to compute the next state to be stored in the state register and
the control logic to drive its outputs. The control unit performs a set of
instructions that depend on results of comparison operations carried by status
signals from the datapath or external conditions carried by control inputs supplied
by sensors in the outside environment and generates the control signals and the
control outputs. The former defines what operations must be applied to which
operands stored in the datapath while the latter controls actuators in the outside
environment.

CHAPTER 1 : INTRODUCTION 7

1.2.2 Specification of Control Units

There are two different approaches for implementing a system from simple
components, namely bottom-up assembly and top-down decomposition.

Systems can be built using a bottom-up assembly procedure where primitive
building blocks are clustered into more complex blocks until the desired
functionality of the system is achieved. But, since it is easier to understand the
operation of a whole system by looking to its components and their interactions,
the top-down decomposition is a more attractive approach and it is a good
strategy for constructing any kind of complex system.

Top-down decomposition is the application of the principle of “divide and
conquer”, which is the basic way of breaking down complexity. A top-down
decomposition allows the decomposition of a complex problem into smaller
pieces until manageable pieces are found. The main advantage of a top-down
approach is the great flexibility allowed in the exploration of possible designs
[McFKow90]. The design process starts with an initial solution where the most
important decisions are made and more refinements are added at each step thus
allowing the exploration of alternatives. The design representation is also
simplified in a top-down decomposition, because it is never necessary to deal
simultaneously with multiple levels of the design or with multiple design
representations [McFKow90].

However, the specification of a complex system in a top-down manner requires
the use of hierarchy. Hierarchical specifications are therefore essential to manage
the complexity of systems in terms of specification size and readability and have
the following advantages:
• to master the complexity through the creation of hardware (software) macro

blocks using encapsulation;

• to allow the reuse of hardware (software) macro blocks;

• to allow for the migration of complex algorithms normally implemented in
software to hardware.

The appropriate requirements for the specification of control units are presented
in the next chapter.

The behaviour of control-dominated systems, such as embedded real-time reactive
control systems, is more naturally represented in the form of states and transitions
between them provoked by external events. Therefore, a state-oriented model is
more suitable to describe the functionality of control-dominated systems. There
are several state-oriented models and they are presented in the next chapter.
However, since the FSM is the most popular state-oriented model generally the
design of control units follows the FSM model. The next paragraph presents
several FSM-based implementations of a control unit.

8 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

1.2.3 Implementation of Control Units

A control unit can follow the FSM model and therefore consisting of a state
register, a next state logic and an output logic (see Figure 1.3a). But if a control
unit has thousands of states this approach becomes very complex and the three
alternative architectures depicted in Figure 1.3 and presented in [Gajski97] can be
used to simplify the implementation of complex control units.

Next
State
Logic St

at
e

R
eg

is
te

r

Output
Logic

(a)

Control
inputs

Status
signals

Control
signals

Control
outputs

(b)

(c) (d)

Control
outputs

Next
State
Logic

Status
signals

Control
inputs

St
at

e
R

eg
is

te
r

Output
Logic

D
ec

od
er . .
 .

. .
 .

Control
signals

Control
outputs

Next
State
Logic

Status
signalsControl inputs

C
ou

n
te

r

Output
Logic

Control
signalsSe

le
ct

or C
ou

n
t

L
oa

d

In
te

rn
al

Br
an

ch
E

xt
er

na
l B

ra
nc

h

Control
outputs

Next
State
Logic

Status
signals

Control
inputs

St
at

e
R

eg
is

te
r

Output
Logic

St
ac

k

Control
signalsSe

le
ct

or

Incrementer

Figure 1.3 – (a) Control unit model. (b) Control unit with decoder.

(c) Control unit with counter. (d) Control unit with stack.

The first architecture (see Figure 1.3b) uses a decoder, in order to simplify the
next state and output logic implementation. Since each state is identified by a state
signal, which is 1 when the state register is in that particular state and 0 otherwise,
the signals generated in the next state and output logic blocks, i.e. the next state,
the control signals and the control outputs will fall in two situations. If they only
depend on the present state they can be implemented with n-input OR gates
where n represents the number of states in which each signal is asserted. If they
depend on the present state and on input signals, i.e. the control inputs and the
status signals, they can be implemented with AND-OR logic, having the AND
gates normally only two inputs, one being the state signal and the other being the
input signal.

CHAPTER 1 : INTRODUCTION 9

If a control unit has many unconditional state sequences in which each state has
only one next state, and if the states are encoded in a way that each state encoding
can be obtained by incrementing the state encoding of its previous state, then the
state register can be replaced with a counter (see Figure 1.3c). In this architecture,
two more signals must be added to the next state logic [Gajski97]. A load/count
signal that controls the counter behaviour, i.e. incrementing the state or loading a
predefined state (branch state) to branch out of the sequence. A selector control
signal that will select the proper value of the branch state, that can be supplied
internally by the next state logic or provided externally through the control inputs.

In order to modularise the implementation of the control unit, frequently used
tasks can be encoded as subroutines, instead of repeating the same sequence
several times. For this purpose it is necessary a stack memory, which will save the
state that follows the subroutine call (see Figure 1.3d). This architecture demands
two more signals to be added to the next state logic [Gajski97]. A selector control
signal that will select the proper state to be loaded in the state register, i.e. the next
state or the state previously stored in the stack, and a push/pop signal to control
the stack actuation. The state that follows the subroutine call that is saved on the
stack is obtained by incrementing the state encoding of the previous state in the
incrementer block.

A final strategy to simplify the control unit implementation is to replace the next
state and the output logic blocks by read-only memories (ROM). When using this
approach the state register acts as the ROM address register. In order to reduce
the size of the next state ROM, it is very important to reduce the number of
control inputs and status signals used in the next state generation. That can be
done by selecting the minimal input signals with the introduction of a conditional
selector in the above architecture [Gajski97]. This architecture of a control unit is
usually called microprogrammed control and the task of converting state
transition diagrams or ASM charts into ROM words is called
microprogramming.

However, all these three architectures suggested in [Gajski97] are flattened
implementations and cannot provide such facilities as flexibility, extensibility and
reusability. Moreover, they cannot be implemented from a hierarchical
specification, unless it is flattened into a non-hierarchical specification first.

1.2.4 Synthesis of Control Units

The synthesis process of a control unit always starts with the specification of its
intended functionality and ends with the implementation of the control unit.
During the process the control unit acquires different representations, which
differ in the type of information they highlight.

At the specification step (behavioural representation) the control unit is viewed
as a black box with inputs and outputs and its functionality is specified
behaviourally by means of an algorithm or using a state-based formal model, like
for example finite state machine diagrams or the equivalent state transition tables.

10 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

After the synthesis process the control unit is viewed as a set of components and
their connections (structural representation). The components can be simple
logic gates or alternatively programmable logic devices (PLD) such as PALs,
PLAs, ROMs and basic memory elements such as flip-flops to serve as the control
unit memory. Nowadays, designers can take advantage of sophisticated field-
programmable devices such as FPGAs. Not only can they provide a large number
of logic gates and flip-flops that can be connected in various ways, but some of
them can also be reprogrammed as many times as the designer needs.

The process of generating a structural view of a logic level model with an
interconnection of logic primitives is called (sequential) logic synthesis
[Gajski94, Micheli94].

The first design methodology was based on a capture-and-simulate approach
[Gajski94]. In this methodology an initial architectural block diagram specification
would be produced and each functional block would be converted into a circuit
schematic that could be captured by a schematic tool and then its functionality
could be verified through simulation.

In recent years logic synthesis became an integral part of the design process and
once logic synthesis was accepted by the design community, designers began to
use Boolean expressions and finite state machine diagrams to describe logic,
instead of capturing gates with schematic tools. Finally, this new methodology
encouraged the practice of capturing a design through behavioural descriptions
based on hardware description languages and the capture-and-simulate
methodology has given way to a describe-and-synthesise methodology
[Gajski94].

In this new methodology the design structure is generated by automatic synthesis
using CAD tools instead of by manual synthesis that is very tedious for all but
trivial circuits. Since this methodology can be applied on several levels of
abstraction it had evolved to higher levels of abstraction with large productivity
gains [Gajski94].

The automatic synthesis of digital circuits is normally divided into the four main
steps depicted in Figure 1.4.

The first step is the system-level synthesis. At this level, the abstract
functionality of a system is decomposed into different tasks, which are partitioned
between hardware and software implementation. A lot of research is currently
being developed and the system-level synthesis of embedded systems is normally
named as software-hardware codesign or software-hardware cosynthesis
[GupMic93, ThoAdaSch93, Wolf94, IsmJer95, MicGup97, StaWol97].

CHAPTER 1 : INTRODUCTION 11

SYSTEM-LEVEL SYNTHESIS

 • System Partitioning

HIGH-LEVEL SYNTHESIS

 • Scheduling
 • Datapath Allocation

HardwareSoftware

Abstract Behavioural
Specification

SOFTWARE GENERATORS

HDL Behavioural Specification

Datapath Control Unit

LOGIC-LEVEL SYNTHESIS

 • Logic Minimisation
 • Technology Mapping

Gate Network

CONNECTIVITY SYNTHESIS

 • Binding

Circuit Realisation

LAYOUT-LEVEL SYNTHESIS

 • Placement
 • Routing

Figure 1.4 – Automatic synthesis of digital circuits.

The second step is the high-level synthesis (sometimes called behavioural or
architectural synthesis). The tasks to be implemented in hardware are described
behaviourally using a hardware description language (HDL) and the result is both
a structural view of the datapath and a logic-level specification of the control unit.
There are two basic tasks at this step. The allocation task determines the type and
quantity of resources used in the datapath. The scheduling task makes the
partition of the behavioural description into control steps (states) so that the
allocated resources can compute all the variable assignments in each state. High-
level synthesis is well documented in [McFParCam90, CamWol91, Gajski92,
MicLauDuz92, GajRam94, Micheli94, WalCha95].

12 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

The third step is logic-level synthesis and it is divided in two parts. The
datapath synthesis consists of a complete binding of the datapath, defining the
interconnection among the resources, steering logic circuits like multiplexers or
busses, registers, input/output ports and the control unit [Micheli94]. The control
unit synthesis consists in the generation of a state register and the logic that
generates the next state and the outputs of the control unit. The logic synthesis
tasks are logic minimisation and technology mapping. Logic minimisation is
used to reduce the size or delay of the logic and technology mapping transforms a
technology independent logic network generated during the logic minimisation
step into a network of standard gates from a particular library.

Since the control unit is modelled as a FSM, the first task of the logic-level
synthesis also known as sequential logic synthesis, is further divided into the
three following tasks normally used in the optimisation of FSMs:
1. state minimisation is used to decrease the number of states of the FSM, by

replacing equivalent states with a single state. It is a very important task, since
the number of states determines the size of the state register and
combinational logic;

2. state encoding assigns binary codes to the abstract states of the FSM, with
the purpose of minimising the next state and output functions;

3. logic minimisation is used to reduce the size or delay of the combinational
logic that implements the next state and output functions.

Logic-level synthesis is well documented in [AshDevNew92, MicLauDuz92,
Micheli94].

Finally, the layout-level synthesis step consists in generating the layout of the
chip. The major tasks are placement of the components and wiring them also
known as routing [Micheli94].

1.3 Objectives of the Work

With the increasing complexity of control units, many authors have proposed
hierarchical specification models. However, the hierarchical implementations
proposed for the synthesised control units did not support the versatility of the
specification models.

Therefore, the goal of this thesis is the development of a methodology for the
synthesis of reprogrammable control units from hierarchical specifications
described with HGSs, i.e. to propose hierarchical FSM models based on the
HFSM with stack memory, which can provide such facilities as flexibility,
extensibility and reusability. And also to propose a FSM model that can combine
hierarchy and parallelism.

Another goal is to propose a sequential logic synthesis methodology that can
convert the hierarchical specification of control units in the proposed hierarchical

CHAPTER 1 : INTRODUCTION 13

FSM models. Since, the sequential logic synthesis of a FSM is a well known
subject, the proposed methodology will consist in the transformation of the
hierarchical specification into a state transition table already minimised in terms of
states, i.e. to implement automatically the first step of sequential logic synthesis.
Since, manual synthesis is very tedious and error prone for all but trivial circuits,
another purpose of this thesis is to create a tool that can automatically implement
this synthesis methodology.

In order to validate the proposed models and the synthesis methodology, the
VHDL simulation for an implementation based on lookup tables will be used.

1.4 Organisation of the Thesis

This thesis is organised as follows:
• Chapter 2 is devoted to the specification of control units. The specification

requirements needed to conceptualise embedded reactive control units are
described. The chapter presents the most common state-based formal models
and the main characteristics of the VHDL hardware specification language.

• Chapter 3 describes in detail the graph-schemes of algorithms and how they
can be used to synthesise Moore and Mealy finite state machines. The
hierarchical graph-schemes and the parallel hierarchical graph-schemes are
presented in detail. The facilities provided by the tool SIMULHGS for the
verification and simulation of algorithms described by hierarchical graph-
schemes are presented.

• Chapter 4 starts by introducing the implementation of a hierarchical algorithm
in a finite state machine with stack memory. The first models of the
hierarchical and the parallel finite state machines are briefly explained and the
new proposed models are fully described. The new facilities provided by them
and the concept of a virtual hierarchical finite state machine are presented.
Finally a full description of the proposed synchronisation mechanism for the
different machines is made.

• Chapter 5 is devoted to the synthesis of the proposed hierarchical and parallel
machines. The steps that must be performed in order to transform a
hierarchical algorithm to an ordinary state transition table are enumerated and
explained in detail. The facilities provided by the tool SIMULHGS to
perform the automatic synthesis of hierarchical machines are presented.

• Chapter 6 describes the internal decomposition of the machines and the
optimisation techniques used for a RAM-based implementation.

• Chapter 7 presents the VHDL simulation results of the hierarchical and
parallel machines and explains how to provide flexibility, extensibility and
reusability. The comparison between a hierarchical and a non-hierarchical
implementation of an algorithm is made.

• Finally, chapter 8 presents the final conclusions and proposes future work.

14 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

15

2 SPECIFICATION OF CONTROL UNITS

Summary

The aim of this chapter is to survey the specification of control units in particular
those that can appear in embedded real-time reactive control systems.

The design process of an embedded system begins with the specification of its
intended functionality. Since, in most cases embedded systems are very complex
and heterogeneous, designers need a precise manner of capturing this functionality
in order to ensure correct implementations of a system. The best way to achieve
the level of precision required is to use a formal model. There are different kinds
of formal models, but a state-oriented model is more suitable for describing
control-dominated systems.

However, since a model is basically a theoretical concept, designers need to use a
hardware description language in order to capture these formal models in a
concrete form. There are different description languages, VHDL being the most
widely used by the academic community.

There are a variety of formal models and hardware description languages. Hence,
for choosing the more appropriate model and language it is necessary to first
understand the specification requirements for conceptualising embedded
systems.

16 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

2.1 Introduction

System design is the implementation of a desired functionality with a set of
physical components, and the whole process starts by specifying the desired
functionality. Since a natural language description is often ambiguous and
incomplete, designers need a more precise way to specify the system functionality.
The best way to achieve the level of precision required is to consider the system as
a set of simpler objects. There are different methods for decomposing the
functionality into simpler objects. They differ in the type of the objects and the
rules for assembling the system functionality. Each particular method is called a
(formal) model [Gajski94, Edwards97]. Moreover, in order to master the design
complexity and heterogeneity, the use of formal models is recommended to
ensure implementations that are correct by construction [Edwards97].

However, to establish the formal model more appropriate for capturing the
functionality of control units, in particular those that can appear in embedded real-
time reactive control systems, it is necessary to establish a relation between the
specification requirements of the embedded systems and the characteristics of the
formal models.

2.2 Specification Requirements

The requirements appropriated for conceptualising embedded systems are the
following [Gajski94, GupLia97].

2.2.1 State transitions

Embedded systems are best conceptualised as a set of modes or states, where each
mode represents a state of being or some arbitrary computation. They are
constantly responding to external events computing their outputs as a function of
their inputs and their present state. The transitions between states are determined
by external events.

2.2.2 Concurrency

In many situations the representation of the system behaviour with only sequential
sub-behaviours would result in complex and unnatural descriptions that can be
difficult to understand. Therefore, embedded systems are more easily
conceptualised as a set of concurrent sub-behaviours that collaborate with each
other in order to achieve the desired functionality.

2.2.3 Hierarchy

The “Divide and conquer” principle is the basic way of handling complexity. The
hierarchical specification of a system allows it to be described as a set of smaller
subsystems and enables the designer to focus on one subsystem at a time. There
are two kinds of hierarchy namely, structural and behavioural [Gajski94].

CHAPTER 2 : SPECIFICATION OF CONTROL UNITS 17

Structural hierarchy is defined as the process of decomposing a system as a set
of interconnected components, each one of them can in turn have its own internal
decomposition. It allows the designer to generate a new component from a set of
already existing components. Structural hierarchy is closely related to concurrency.

Behavioural hierarchy is defined as decomposing the system behaviour into
distinct sub-behaviours that can be either sequential or concurrent. It allows the
designer to break down the system complexity into manageable parts.

Both structural hierarchy and behavioural hierarchy are required to allow the
specification of a complex embedded system and they are essential to manage the
complexity of systems in terms of specification size and readability.

2.2.4 Non-determinism

Non-deterministic behaviour is the quality of a system to be unpredictable and
yielding different results from the same sequence of events. Although often non-
determinism is simply the result of an imprecise eventually incorrect specification,
it can be an extremely powerful mechanism to reduce the complexity of a system
by abstraction [Edwards97], since it eliminates all details that are not essential to a
high-level description.

However, the behaviour of a system should be predictable and even if behaviour
may be non-deterministic, when there is not the complete information to predict
its exact behaviour, it can be decomposed into deterministic parts [GupLia97].

There are two types of non-deterministic behaviour in conceptual models
[Gajski94]: selection non-determinism refers to non-deterministic selection of
exactly one of several choices; ordering non-determinism involves a non-
deterministic ordering of several actions that have to be executed.

2.2.5 Behavioural Completion

Behavioural completion is defined as the ability to indicate that the behaviour
has completed, i.e. that all the computations in the behaviour have been
performed, and that other behaviours can detect this completion [Gajski94].

Behavioural completion is achieved in a state-based specification with the explicit
definition of a set of final states, and with the control flowing to one of these final
states. When using programming language constructs behavioural completion
occurs when the last statement in the program has been executed.

The specification of behavioural completion has two advantages [Gajski94]: it
helps conceptualising each hierarchical level of description as an independent
module, facilitating its analysis and verification; it allows a natural decomposition
of behaviour into sequential sub-behaviours.

18 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

2.2.6 Programming Constructs

Certain sub-behaviours of embedded systems can be specified more easily by
means of mathematical expressions or an algorithm. There are several notations to
describe algorithms, but programming language constructs are more usually used.

These constructs include assignment statements, branching statements (if, case
statements), iteration statements (while, repeat and for loops), and subroutines
(functions and procedures). The support of structured data types such as records,
arrays and linked lists that allow for the modelling of complex data structures is
also a very useful feature.

2.2.7 Communication

If the behaviour of a system is described as a set of concurrent sub-behaviours or
processes they need to communicate with each order, in order to achieve the
desired functionality. This kind of communication between them is usually
conceptualised in term of the shared memory or the message passing
paradigms [Gajski94].

In the shared memory model, each sending process writes to a shared medium,
such as a global variable or port, which can be read by all receiving processes
[Gajski94]. The shared medium can be persistent or non-persistent.

A persistent shared medium is one that retains the value written by one process,
until that value is rewritten by another process, while in a non-persistent shared
medium the data is only available at the instance when it is written, since it is not
retained by the medium between two successive writes [Gajski94].

In the message-passing model, the data is transferred between processes over an
abstract medium called a channel, using send-receive primitives [Gajski94].

2.2.8 Synchronisation

When the behaviour of a system is described as a set of concurrent sub-
behaviours or processes, each process may generate data and events that need to
be recognised by the other processes. In such cases, data exchanged between
processes or actions performed by different processes at the same time may need
to be synchronised [Gajski94]. There are two synchronisation methods namely,
control-dependent and data-dependent.

In a control-dependent synchronisation mechanism, the control structure of the
process is responsible for the synchronisation [Gajski94]. In addition to that, the
synchronisation can be achieved by means of the following inter-process
communication methods [Gajski94]: shared-memory based synchronisation;
synchronisation by common event; synchronisation by status detection;
synchronisation by message passing.

CHAPTER 2 : SPECIFICATION OF CONTROL UNITS 19

2.2.9 Exceptions

In some cases, the occurrence of a certain external event, like a reset or an
interrupt, demands that a behaviour will be immediately terminated rather than
having to wait for the computation to complete, and that a predefined behaviour
will be executed instead.

2.2.10 Timing

Since in real-time systems the performance is measured in terms of how well it
respects the timing constraints, it is important the notion of timing to reflect real
implementations, i.e. by specifying time the simulation results obtained are more
realistic. There are two ways of specifying timing information namely, functional
timing and timing constrains [Gajski94].

Functional timing is defined as all timing information that affects the simulation
output of the system specification, and therefore adding functionality to the
system. Timing constrains are utilised in the specification of a system in order to
be used by simulation and synthesis tools.

2.3 Specification models

2.3.1 Introduction

The purpose of a model is to provide an abstract view of a system and in order to
be useful should possess the following qualities [Gajski94]: it should be formal to
provide no ambiguity; it should be complete to allow describing the entire system;
it should be comprehensive and easy to modify to allow future changes in the
system functionality; it should be natural enough to help the designer to
understand the system.

A model of a design should consist of the following components [Edwards97]: a
functional specification; a set of properties that the design must satisfy; a set of
performance indexes that evaluate the quality of the design in terms of cost,
reliability, speed, size, etc.; a set of constraints.

In general, the models fall into the following five distinct categories: state-
oriented; activity-oriented; structure-oriented; data-oriented and heterogeneous.

A state-oriented model describes a system in terms of states and transitions
between them provoked by external events. A state-oriented model is more
suitable for describing control-dominated systems, such as embedded real-time
reactive control systems, where the temporal behaviour of the system is the most
important feature of the design. Basically there are the following state-oriented
models: finite state machines (FSM); algorithmic state machines (ASM); graph-
schemes of algorithms (GS); Petri nets and Statecharts.

20 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

2.3.2 Finite State Machine model

Since the behaviour of control-dominated systems is more naturally represented in
the form of states and transition between states, the most popular state-oriented
model is the finite state machine model (FSM). A FSM can be represented
graphically through a state transition diagram (see Figure 2.1a) or textually through
a state transition table (see Figure 2.1b), and it can be formally described as a
quintuple,

< A, X, Y, δ : A × X → A, λ : A × X → Y >

where A={a0,a1,…,aM} is a finite set of states, X={x1,…,xL} is a finite set of
inputs, Y={y1,…,yN} is a finite set of outputs, δ is the transition function or
the next state function, which determines the next state from the present state
and the inputs, and λ is the output function, which determines the outputs from
the present state and the inputs.

There are two well-known types of FSMs that are, the transition-based Mealy
FSM and the state-based Moore FSM. They differ in the definition of the output
function. In Moore the outputs depend only on the present state (λ: A→Y), while
in Mealy the outputs depend on both the present state and the inputs
(λ: A × X→Y).

In other words, the outputs are associated with states in Moore, while in Mealy
they are associated with transitions. In practical terms, the major difference
between the two models is that Moore may require more states than Mealy to
describe the behaviour of a control system. This is because Mealy can have
multiple arcs pointing to a single state with each arc having a different output
value, while Moore demands a different state for each different output value.

Let’s consider the example of a vending machine that delivers drink cans after it
has received one hundred and fifty Portuguese escudos (150$). The machine
accepts coins of 50$ and 100$, one at a time. If the consumer supplies three coins
of 50$ or one coin of 50$ and one coin of 100$ he receives a can, but if he
supplies two coins of 100$ he receives a can and 50$ of change.

Let’s assume the following rules in order to keep the example simple: the machine
only supplies one kind of can so there is no need for pushing any button to
retrieve the can; there is not a cancel button to retrieve the already inserted coins;
and the consumer does not insert any extra coins after having inserted enough
money and while waiting for the can and the change.

The vending machine state transition diagram (Moore FSM type) depicted in
Figure 2.1a only includes transitions that explicitly cause a state transition. The
machine remains in a state while a coin is not inserted. On the other hand the
outputs get can and 50$ change are represented only in the states where they are
asserted. On all others states they are negated. The equivalent and complete state
transition table is presented in Figure 2.1b.

CHAPTER 2 : SPECIFICATION OF CONTROL UNITS 21

100 $

50$ 50 $

150 $
get can

0 $

200 $
get can
+ 50$

100$

50$

100$

50$

100$

Present State & Outputs
(get can 50$ change)

Inputs
100$ 50$

Next
State

 0 $ (0 0) 0 0
0 1
1 0
1 1

0 $
50 $
100 $

×
 50 $ (0 0) 0 0

0 1
1 0
1 1

50 $
100 $
150 $

×
 100 $ (0 0) 0 0

0 1
1 0
1 1

100 $
150 $
200 $

×
 150 $ (1 0) × × 0 $
 200 $ (1 1) × × 0 $

(a) (b)

Figure 2.1 – (a) Vending machine state diagram. (b) Vending machine state transition table.

In general the FSM is suitable for modelling control dominated systems, but since
the FSM model does not explicitly support hierarchy and concurrency, it is not
suitable for modelling complex systems due to an explosion in the number of
states [Harel90, Gajski94, Edwards97].

2.3.3 Algorithmic State Machine model

State diagrams are not adequate to capture the notation of an algorithm and they
are weak in capturing the structure behind complex sequencing [Katz94]. The
algorithmic state machine model (ASM) introduced by Clare in [Clare73] is an
alternative way to describe a FSM behaviour that looks like a program flowchart.

The ASM chart is used to design a state machine that implements an algorithm. It
is a graphical description of the output and next state functions of the state
machine and when completed it becomes part of the design documentation.

The ASM chart consists of one or more interconnected ASM blocks. One ASM
block (see Figure 2.2) describes the state machine operation during one state time,
and represents the present state, the state outputs, the conditional outputs and the
next state for a set of inputs. Therefore, the output and next state functions are
represented by the ASM chart on a state by state basis, with only one restriction
imposed to the ASM blocks interconnection. This restriction is that there must be
only one next state for each state and a stable set of inputs [Clare73].

The ASM block (see Figure 2.2) has one entry path and any number of exit paths.
It is composed of one state box, and a network of decision boxes and conditional
output boxes. This network can have any number (zero is allowed) of decision
and conditional output boxes.

22 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

A state is represented by a state box (see Figure 2.2) and it has the following
information: a name encircled on the left or right side of the state box; a code that
is probably unknown when first drawing the ASM description; an output list
selected from a defined set of operations written inside the state box. The output
list mentions the signals that are asserted whenever the state is entered. It is
possible to specify if the signal is asserted immediately or if it is delayed until the
next clock event. Usually the immediate signals are prefixed with the letter I, while
the delayed signals are not prefixed.

The decision box (see Figure 2.2) involves the inputs to the state machine and
gives the conditions that control the state transitions and the conditional outputs.
The box contains a Boolean expression that determines the ASM block to be
entered next. The decision box has two exit paths. The True Exit Path usually
indicated by 1 or T, is taken when the enclosed condition is true and the False
Exit Path usually indicated by 0 or F, is taken when the enclosed condition is false.
The order in which the condition boxes are cascaded is irrelevant for the
determination of the next ASM block [Katz94].

The conditional output box (see Figure 2.2) describes other outputs, which are
dependent on input signals in addition to the state of the machine. The output
signals written inside the condition box can also have immediate and delay
qualifiers.

*

* * *State Name State Code

STATE BOX
State

Output List

Condition

DECISION

BOX

State Entry Path

Conditional
Output List

N Exit Paths

01
Condition

True Exit Path
Condition

False Exit Path

CONDITIONAL

OUTPUT BOX

State Exit Path

ASM
BLOCK

Figure 2.2 – The ASM block.

The ASM chart of the vending machine state transition diagram presented in
Figure 2.1a is depicted in Figure 2.3.

In order to simplify the ASM chart drawing, the outline box of the ASM block can
usually be omitted, because the block is clearly defined to include all the
conditional boxes and conditional output boxes between one state and the next.
Moreover, some of the conditional boxes from one state can be shared by another
state [Clare73].

CHAPTER 2 : SPECIFICATION OF CONTROL UNITS 23

100$

50$

0

1

0$

100$

50$

0

1

100$

50$

100$

0

50$

get can

150$

get can + 50$

200$

1

1 1

1

0

0

0

Figure 2.3 – Vending machine ASM chart.

The ASM model is well documented in [WinPro80, Green86]. Like the FSM
model the ASM model does not explicitly support concurrency or hierarchy and it
is not suitable for modelling complex systems.

2.3.4 Graph-Scheme of Algorithm model

The graph-scheme of algorithm model (GS) was proposed in [Baranov74]. It is
also presented in [Baranov94] and it is described in detail in the next chapter.

A GS is a directed connected graph, which is composed of an initial rectangular
node labelled with Begin, a final rectangular node labelled with End and a finite
set of rectangular and rhomboidal nodes. Each rectangular node, apart from the
nodes Begin and End lists the output signals that are asserted whenever the node
is reached. Each rhomboidal node tests one input signal in order to determine the
path to follow. The GS of the vending machine state transition diagram presented
in Figure 2.1a is depicted in Figure 2.4.

24 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Begin

50$100$ 0 1

1

50$
1

0 100$

1

get can

100$

0

0

50$0

0

1

1

get can + 50$
End

Figure 2.4 – Vending machine GS description.

Like the FSM and the ASM models, the GS model does not explicitly support
concurrency or hierarchy and it is not suitable for modelling complex systems.
However, the hierarchical graph-schemes (HGS) introduced in [Sklyarov84]
support hierarchical descriptions based on the use of macrooperations and logic
functions. The parallel hierarchical graph-schemes (PHGS) introduced in
[Sklyarov87] in addition to hierarchical descriptions also allow macrooperations
invoked in parallel. They are both suitable for modelling complex systems and
they are further described in the next chapter.

2.3.5 Petri net model

The Petri net model is a state-oriented model for describing and studying
information processing systems that are concurrent, asynchronous, distributed,
parallel, non-deterministic and stochastic [Murata89].

The Petri net graphical model consists of a set of places, a set of transitions and
a set of tokens (see Figure 2.5). Tokens inhabit in places and flow through the net
by being consumed and produced whenever a transition fires, and they are used to
simulate the dynamic and concurrent activities of the system. A Petri net can be
formally described as a quintuple [Murata89],

PN = (P, T, F, W, M0)

where P={p1,…,pM} is a finite set of places, T={t1,…,tN} is a finite set of
transitions with P and T being disjoint sets. F ⊆ (P × T) ∪ (T × P) is a set of arcs
between places and transitions (flow relation), W: F→{1, 2, 3, …} is a weight
function and M0: P→{0, 1, 2, 3, …} is the initial marking, i.e. the initial number
of tokens in each place.

CHAPTER 2 : SPECIFICATION OF CONTROL UNITS 25

In order to simulate the dynamic behaviour of a system, the Petri net marking
changes according to the following transition (firing) rules [Murata89]:
1. a transition t is enabled if each input place p of t is marked with at least w(p, t)

tokens, where w(p, t) is the weight of the arc from p to t;

2. an enabled transition may or may not fire, depending on whether or not the
event actually takes place;

3. a firing of an enabled transition t removes w(p, t) tokens from each input place
p of t, and adds w(t, p) tokens to each output place p of t, where w(t, p) is the
weight of the arc from t to p.

A transition without any input place is called a source transition and a transition
without any output place is called a sink transition [Murata89].

The Petri net that represents the functionality of the vending machine is depicted
in Figure 2.5. There are six places graphically represented as circles (0$, 50$, 100$,
150$, 50$ change, no change) and eight transitions graphically represented as bars
(three 50$ coin, three 100$ coin, get can, get can + 50$). The marking function assigns
one token to the places 0$ and no change and zero tokens to the remaining places.

0 $

50 $

100 $

100$ coin 150 $

100$ coin

50 $ change

no change

get can

get can
+ 50$

50$ coin

100$ coin

50
$

co
in

50$
 co

in

Figure 2.5 – Vending machine Petri net.

Any finite state machine or its state diagram can be modelled by a subclass of Petri
nets called state machines. State machines are Petri nets with only one token and
where each transition has exactly one incoming arc and exactly one outgoing arc.

The state machine that describes the state diagram presented in Figure 2.1a is
depicted in Figure 2.6 and it is equivalent to the Petri net presented in Figure 2.5.
The five states of the FSM are represented by the five places (0$, 50$, 100$, 150$,
200$), where the initial state (place 0$) is indicated by having one token. The
transitions between states are shown by the six transitions labelled with input
conditions (three 50$ coin, three 100$ coin) and the outputs of the state machine are
generated in the two transitions get can and get can + 50$.

26 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

0 $

50 $

100 $

50$ coin

100$ coin

50
$

co
in

100$ coin 150 $

100$ coin

get can

get can
+ 50$

200 $

50$ co
in

Figure 2.6 – State machine equivalent to the previous Petri net.

The structure of the place 0$ having the two output transitions 50$ coin and 100$
coin, is referred to as a conflict, decision or choice depending on applications. State
machines allow the representation of conflicts, but not the synchronisation of
parallel activities.

Petri net models can be used to check certain system properties, such as safeness
and liveness. A Petri net is said to be safe if the number of tokens in each place
does not exceed one token. A Petri net is said to be live if, no matter what
marking has been reached from M0, there is always one transition that can fire.
For that reason, a live Petri net guarantees deadlock-free operation, no matter
what firing sequence is chosen. The Petri nets of Figure 2.5 and Figure 2.6 are
both safe and live.

Although a Petri net does have many advantages in modelling concurrent systems
it does not support hierarchy, and like the FSM, the ASM and the GS models it is
not suitable for modelling complex systems.

2.3.6 Statecharts model

The Statecharts model was introduced in [Harel87] as a visual formalism for
specifying the behaviour of complex reactive systems [DruHar89, Harel90]. To
demonstrate the formal syntax and semantics of Statecharts the output-free
Statechart depicted in Figure 2.7 and presented in [DruHar89] will be used.

Like the FSM model, Statecharts are based on states, events and conditions with
the latter two causing transitions between states. States and transitions can be
associated in various ways with output events, called actions, which can be
triggered either by executing a transition, or by entering, exiting or being in a state.

They combine the Moore and Mealy FSMs extended with hierarchical and
concurrent constructions, in order to overcome the limitations of the
conventional FSM model to specify complex reactive systems [DruHar89].

CHAPTER 2 : SPECIFICATION OF CONTROL UNITS 27

Statecharts are a graphical language, where states are represented with rounded
rectangles that can be repeatedly combined into higher level states, or alternatively
high level states can be detailed into lower level states, using AND and OR
clustering modes.

Figure 2.7 shows an AND state A composed of two states B and C separated by a
dash line, meaning that when the system is in A it must be in B and in C. In other
words B and C are orthogonal states. However B and C are OR states, meaning
that when the system is in B it must be in D or E or F, and when the system is in
C it must be in G or H. The states (D, E, F) and the states (G, H) are exclusive
states. Thus when the system is in the state A there are the following possible state
configurations: (D, G); (D, H); (E, G); (E, H); (F, G); (F, H). The arrows
beginning with a dot (default arrow) and pointing to the states E and G means
that those are the initial states of B and C respectively. Therefore the initial state
of A is the configuration (E, G).

Transitions in a Statechart are not restricted to a level and can lead from a state on
any level of clustering to any other state [DruHar89]. Some examples are shown in
Figure 2.7. The event a causes a transition from the state K to the state L. The
event b causes a transition from the state J, which means from the state L or M, to
the state K. The event c causes a transition from A, from one of the state
configurations listed above, to the state M. In the case of the event d the transition
is made to the super state J, or in other words to its initial state L that is the state
with the default arrow.

Transitions are in general from configurations to configurations with the
possibility of orthogonal components in the source and target states. The event f
in Figure 2.7 causes a transition from the configuration (F, H) to the state P, or
from the state P to the configuration (D, H).

Concurrency and independence are both made possible by orthogonality
[DruHar89]. The event m in Figure 2.7 causes a simultaneous transition from E to
F and from G to H if the configuration is (E, G), but the event p causes a
transition from E to D independently of what is happening in C.

Outputs can be associated with transitions as in a Mealy FSM by writing a/o along
an arrow triggered by event a that will assert the action o. Similarly o can be
associated with entering (entry o), exiting (exit o) or being (throughout o) in a state like
in a Moore FSM. In either case o can be an external event (action), or an internal
one that can be used to synchronise other transitions in some orthogonal states
[DruHar89].

Statecharts allow timing specifications in states. However, since those timing
constraints can appear in states at any level and in any orthogonal component, it
actually allows global timing constraints [DruHar89].

28 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Statecharts provide various synchronisation methods. An event that reaches a
state boundary box synchronises the state. For example, event e in Figure 2.7
reinitialises state A to its initial configuration (E, G). Another way is asserting an
internal variable that will be used as an event to synchronise other transitions.

 D

E
F

 G

 H

m

B C

 P

fff

m

p

A

 K
 r

e b

d

 L

 M

J

a

N

c

Figure 2.7 – A Statechart example.

Statecharts allow for the description of complex reactive systems, because they
support hierarchical and concurrent descriptions, timing specifications and
synchronisation methods, but like any other state-oriented model it is tailored for
control-dominated systems, with the data associated with activities within states or
along transitions [DruHar89]. As a result they are not suitable for modelling
complex systems, which may require complex data structures [Gajski94].

The Statechart of the vending machine presented in Figure 2.1a is depicted in
Figure 2.8.

 Vending Machine

 200$
get can + 50$

 150$
get can

 0$

 50$ 100$

50$ 100$

50$

100$
50$

100$

Figure 2.8 – Vending machine Statechart.

CHAPTER 2 : SPECIFICATION OF CONTROL UNITS 29

2.4 Specification languages

2.4.1 Introduction

The formal models presented in the previous paragraph can be used to understand
and describe the system functionality. But, since a model is a theoretical concept,
designers need an executable specification language capable of capturing the
system functionality in a simulatable form [Gajski94].

Such an approach has the following advantages [Gajski94]: designers can verify
the correctness of the intended functionality of a system through simulation; the
specification can be used as an input to synthesis tools; the specification can serve
as part of the system documentation and to exchange the design information
between different designers and tools.

To be useful, a design language must help the designer to meet the following goals
[GupLia97]: to model correctly and unambiguously the hardware behaviour at
various levels of abstraction; to simulate the hardware model along with the rest
of the system that can contain software parts; to synthesise an efficient hardware
solution using existing CAD tools.

The two most widely used hardware specification languages are VHDL [IEEE94]
and Verilog [ThoMoo91]. The latter is mainly used in industry, while the former is
widely accepted by the design community, specially the academic community, as a
description, simulation, verification and synthesis language and a large number of
tools using graphical environments were developed for it like for example
EaseVHDL, VSystem, ViewLogic and Synopsys.

2.4.2 VHDL

In the search for a standard design and documentation tool for the VHSIC (Very
High Speed Integrated Circuits) program the United States Department of
Defense (DoD) sponsored a workshop on hardware description languages in the
summer of 1981. Based on the recommendations of that workshop, the DoD
established in 1983 the requirements for a standard VHSIC Hardware Description
Language (VHDL) and contracted IBM, Texas Instruments and Intermetrics
corporations for its development [Navabi93]. The VHDL language was
standardised by the IEEE in 1987.

VHDL borrowed some features from the ADA language and can be used to
represent and describe hardware components and systems. Since it was created as
a language for specifying large systems, readability was preferred to writability and
consequently the language is fairly verbose [Micheli94].

The description of a component consists of an interface specification and an
architectural specification. The interface description is identified by the keyword

30 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

entity and contains the input and output ports of the component, and other
external characteristics such as time.

An architectural description is identified by the keyword architecture and
describes the component functionality. This functionality depends on the ports
and the other parameters specified in the interface specification. It can be
described behaviourally using programming constructs, structurally using existing
components, in a dataflow manner specifying the flow of data through the
registers and buses (register transfer level) or using a combination of the above.
An entity can have more than one architectural specification.

VHDL supports concurrent instantiation of components, which is the basic
construct for structural hierarchy. A structural description consists of
instantiations of already existing components and the interconnections between
them are specified using signals.

VHDL supplies the process construct in order to describe behaviourally a
component. A process is a statement that is active at all times, executing
concurrently with other processes and that can be made sensitive to selected
signals using a sensitivity list. A process is identified by the keyword process and it
is composed of a declarative part and a statement part. The statement part of a
process is sequential, always active, triggered by the signals declared in the
sensitivity list and it executes in zero time. The statement part of a process can use
functions and procedures and can select and assign values to signals using if, case
and loop (for and while) statements.

VHDL supports a two-level behaviour hierarchy [Gajski94], the first level being a
specification decomposed into a set of concurrent processes, the second level
being a sequential decomposition of these processes into procedures.

VHDL has two kinds of objects that can be used for carrying values from one
point in the program to another, namely variables and signals. Signals have
hardware significance and differ from variables in that they have a time
component associated with them. The after clause allows signal assignment
statements to schedule future value updates. Signals can be used in sequential and
concurrent bodies of VHDL, they can be global, but they can only be declared in
concurrent bodies of VHDL. Variables on the other hand are mainly used for
keeping intermediate values, they can only be declared and used in sequential
bodies of VHDL, and they are local to the body in which they are declared.

In addition to the programming constructs already mentioned that can be used
inside a process statement, VHDL also offers a wide range of data types suitable
for high-level behavioural modelling such as integer, real, enumeration, physical,
array, record and pointer types. It also provides logical, relational and arithmetic
operators. The latter, however apply only to the integer and real data types.
VHDL also allows the overloading of operators.

CHAPTER 2 : SPECIFICATION OF CONTROL UNITS 31

VHDL also provides a package mechanism to encapsulate declarations and
subprograms that can be included in any VHDL program. It allows the
construction of libraries of commonly used declarations, procedures and functions
into packages enhancing the modularity and reusability of the models [Micheli94].

Exceptions are supported by VHDL using guarded concurrent signal assignments,
but there are no constructs for terminating the execution of a process in response
to an exception [Gajski94].

In VHDL, communication between processes can be achieved by a shared
memory model, based on signals that can be assigned by any process and that are
visible to other processes.

In VHDL, synchronisation can be achieved in one of the two following ways. The
first is based on the sensitivity list of a process, which ensures that the process will
begin to execute when an event occurs on any of the signals mentioned in the
sensitivity list. The second employs the wait statement, which suspends the
process until it detects either the occurrence of an event on any of the specified
signals or the occurrence of the specified condition.

In VHDL it is possible to specify functional timing using for example an after
clause, while timing constraints can be indirectly specified using attributes
[Gajski94].

VHDL does not support state transitions, and true behavioural hierarchy in which
concurrency can be specified at any level of the hierarchy [Gajski94], and only
through global variables it is possible to make a VHDL description non-
deterministic.

The VHDL behavioural description of the vending machine state transition
diagram presented in Figure 2.1a is depicted in Figure 2.9.

2.5 Conclusions

Control units such as embedded real-time reactive control systems are intrinsically
state-based systems and since in most cases, their specification as a whole will lead
to a solution with a huge number of states, they are too complex to be considered
in their entirety. To avoid incomprehensive and eventually erroneous descriptions,
their functionality is more easily described when hierarchically decomposed into a
set of sequential and concurrent behaviours using a top-down decomposition.

Since hierarchy, concurrency and non-determinism can be used in order to reduce
the size of the representation of system behaviour when compared to a flat
deterministic representation [Edwards97], the use of formal state-based models
that can support hierarchical and concurrent specifications is highly recommended
by many authors [DruHar89, Gajski94, Micheli94, Edwards97] for modelling the
functionality of complex control units.

32 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Among the formal state-based models, Statecharts and HGSs/PHGSs are the
only models that can provide hierarchical and concurrent decompositions and
therefore they can be used to model the behaviour of complex control units that
do not require complex data structures, which is the case of control-dominated
systems.

Since VHDL provides features that can support the most important specification
requirements of embedded systems, it can be used for capturing the functionality
of control units with two advantages: wide acceptability and availability of
simulators.

Figure 2.9 – Vending machine VHDL behavioural description.

entity VENDING_MACHINE is
 port (CLOCK, COIN_50, COIN_100 : in bit; GET_CAN, GET_CHANGE : out bit);
end VENDING_MACHINE;

architecture BEHAVIOURAL of VENDING_MACHINE is

 type STATE is (STATE_0, STATE_50, STATE_100, STATE_150, STATE_200);
 signal CURRENT_STATE : STATE;

begin

 process(CLOCK)
 begin
 if (CLOCK = '1' and CLOCK'event) then
 case CURRENT_STATE is
 when STATE_0 => if COIN_50 = '1'
 then CURRENT_STATE <= STATE_50;
 elsif COIN_100 = '1'
 then CURRENT_STATE <= STATE_100;
 end if;
 when STATE_50 => if COIN_50 = '1'
 then CURRENT_STATE <= STATE_100;
 elsif COIN_100 = '1'
 then CURRENT_STATE <= STATE_150;
 end if;
 when STATE_100 => if COIN_50 = '1'
 then CURRENT_STATE <= STATE_150;
 elsif COIN_100 = '1'
 then CURRENT_STATE <= STATE_200;
 end if;
 when STATE_150 | STATE_200 => CURRENT_STATE <= STATE_0;
 end case;
 end if;
 end process;

 GET_CAN <= '1' when (CURRENT_STATE = STATE_150 or
 CURRENT_STATE = STATE_200) else '0';
 GET_CHANGE <= '1' when CURRENT_STATE = STATE_200 else '0';

end BEHAVIOURAL;

33

3 HIERARCHICAL GRAPH-SCHEMES

Summary

The previous chapter has briefly introduced the graph-schemes of algorithms
(GS) as a state-oriented formal model. The aim of this chapter is to present the
basic concepts of GSs and how they can be used to synthesise a Moore and a
Mealy finite state machine (FSM). The presented formal definition and notation
closely follows [Baranov94].

This chapter also introduces the basic concepts of hierarchical graph-schemes
(HGS) and parallel hierarchical graph-schemes (PHGS). Some considerations
concerning execution, synchronisation and correctness of a HGS/PHGS are
presented.

Finally, the C++ tool SIMULHGS is introduced and it is explained how it can be
used to construct, verify and simulate a hierarchical algorithm described by a set of
HGSs.

34 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

3.1 Graph-Schemes of Algorithms

A graph-scheme of algorithm (GS) is a directed connected graph [Baranov94],
which is composed of an initial node Begin, a final node End, and a finite set of
operational nodes (rectangular nodes) and conditional nodes (rhomboidal nodes)
(see Figure 3.1).

EndBegin

1

0

Figure 3.1 – Nodes of GS.

It has the following formal description [Baranov94]:
• each GS has one entry point which is an operational node marked with a

Begin label, and one exit point which is an operational node marked with an
End label;

• other operational nodes contain microinstructions from the set
ι={Y1,Y2,…,YT}. Any microinstruction Yt, includes a subset of
microoperations from the set Y={y1,…,yN}. A microoperation is an output
signal, which causes a simple action in the datapath such as setting a register or
incrementing a counter. It is possible to write the same microinstruction in
different operational nodes;

• each conditional node contains just one element from the set X, where
X={x1,…,xL} is the set of logic conditions. A logic condition is an input
signal, which communicates the result of a test, such as the state of a sensor. It
is possible to write the same logic condition in different conditional nodes;

• all nodes, except the node Begin, have only one input. The node Begin has
no inputs. All operational nodes, apart from the node End, have only one
output. The node End has no outputs. A conditional node has two outputs
marked with “1” (true) and “0” (false);

• Inputs and outputs of the nodes are connected by directed lines (arcs), which
go from the output to the input in such a way that:
• every output is connected with only one input;
• every input is connected with at least one output;
• every node is located on at least one of the paths, which go from the node

Begin to the node End. A GS with sub-graphs containing infinite cycles
will not be considered;

• one of the outputs of a conditional node can be connected with its input.
Such conditional node is called a waiting node.

CHAPTER 3 : HIERARCHICAL GRAPH-SCHEMES 35

An example of a graph-scheme with 7 logic conditions (x1,…,x7) and 8
microoperations (y1,…,y8) is depicted in Figure 3.2.

Begin

x1

1

x2

1

0

x3 0

y6 , y8

1
0

1

Yb

Y4

x6

0

y5 , y7Y5

1

y1 , y3

y2 , y4

x5

1

x6

0

Y1

Y2

x4

y2

0

1

Y3

x7

0

1

y3 , y5Y6

0

EndYe
Figure 3.2 – An example of a GS.

3.2 Execution of a GS

3.2.1 GS Traverse Procedure

Denote all possible L-component vectors of the logic conditions x1,...,xL by
∆1,...,∆2L and suppose that the values of logic conditions can be changed only
during microinstruction execution. Define the execution of a GS on any given
sequence of vectors ∆m1,...,∆mq beginning from the operational node Begin, i.e. the
initial operational node Yb. Let’s demonstrate this procedure for the GS of Figure
3.2 and the sequence below containing four vectors ∆1,...,∆4.

 x1 x2 x3 x4 x5 x6 x7
∆1 = 1 0 0 1 0 0 1
∆2 = 1 0 0 0 0 1 1
∆3 = 0 1 0 1 1 1 0
∆4 = 0 1 0 1 0 0 0

36 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

The traverse procedure starts from the initial operational node Yb and consists of
the following steps.

Step 1. Write the initial microinstruction Yb.

Yb

Step 2. Exit from the node Begin with the first vector ∆1. If the node following
the initial node is the operational node Ys, write Ys right to Yb and change the
vector ∆1 to ∆2. If the node following the initial node is the conditional node with
the logic condition xp, find the value xp in ∆1. If xp=1, then exit the conditional
node with xp through the output “1” (true) else if xp=0 then exit the conditional
node with xp through the output “0” (false). In the example, the conditional node
with x1 follows the node Begin and since x1=1 in ∆1, this conditional node is
exited through the output “1”.

Step 3. If the operational node Yt, follows the conditional node with the logic
condition xp, write Yt right to Yb and change the vector ∆1 to ∆2. But if the
conditional node with the logic condition xm, follows the conditional node with
the logic condition xp, find the value xm in the current vector and leave the node
with xm through the corresponding output, etc. until an operational node is
reached. In the example, the operational node Y2 is reached, so it is written right
to Yb.

Yb Y2

The traverse procedure continues with the vector ∆2 and it arrives to the
operational node Y4, then it enters the operational node Y6 with the vector ∆3, and
it reaches the final operational node Ye with the vector ∆4, thus obtaining the
following row of microinstructions.

Yb Y2 Y4 Y6 Ye

The microinstruction row obtained is the value of the GS for the given sequence
of vectors ∆m1,...,∆mq. There are only two possible results of the traverse
procedure:
• it reaches the node End. In this case, the number of microinstructions in the

microinstruction row (without Yb and Ye) is less than the number of vectors;

• the vectors are exhausted but it has not yet reached the node End. In this case,
the number of microinstructions in the microinstruction row (without Yb) is
equal to the number of vectors.

CHAPTER 3 : HIERARCHICAL GRAPH-SCHEMES 37

3.2.2 Paths in GS

Let the GS have a path from the operational node Yi (i=b,1,2,…,T) to the
operational node Yj (j=1,…,T,e), passing only through conditional nodes with the
logic conditions xi1,...,xiR.

j
e
iR

e
i1i Y...xxY iRi1

If there are no conditional nodes in the path (R=0), then two operational nodes
follow each other, for example Y1 and Y2 in Figure 3.2, and the path turns into the
form.

jiYY

Suppose that 1e ir = if the path proceeds from the conditional node with irx
through the output “1” and 0e ir = if the path proceeds trough the output “0”
with r=1,…,R. The notation ix is used instead of 0

ix and ix instead of 1
ix .

To find all the paths from an operational node Yi, the sub-graph with the node Yi
as the root is traversed. This procedure is demonstrated for the operational node
Yb of the GS of Figure 3.2.

Step 1. In the first path, all logic conditions are asserted (without negation). Find
such a path from Yi, that leaves each conditional node through the output “1”. In
the example, the first path is 4321b YxxxY .

Step 2. To find the second path leave the last conditional node in the first path
through the output “0” and continue the path leaving the following conditional
nodes through the output “1”. In the example, the second path is

e76321b YxxxxxY . Repeat step 2 for the new path.

In the (q-1)-th path

1qrt1tt1t1 iiiiiii Yx...xxx~...x~Y
−++−

, the variables
1t1 ii x,...,x

−
 are either

asserted or negated and all the variables
rt1t ii x,...,x

++
 are negated, so

ti
x is the last

asserted variable in this path.

Step q. Find the path leaving the conditional node with

ti
x through the output

“0” and continue this path leaving the following conditional nodes through the
output “1”. The q-th path is

qsp1pt1t1 iiiiiii Y...xxxx~...x~Y
++−

.

The procedure ends when all the variables in the path are negated, i.e. when
leaving each conditional node through the output “0”. For this example there are
the following seven paths: 4321b YxxxY ; e76321b YxxxxxY ; 576321b YxxxxxY ;

46321b YxxxxY ; 2421b YxxxY ; 3421b YxxxY ; 11b YxY .

38 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

When finding all the paths from the operational node Y2 in Figure 3.2, a cycle
containing only conditional nodes is reached. In this case there is an infinite set of
paths between the operational nodes Y2 and Y4 and between Y2 and Y6. The paths
that contain the same variable asserted and negated are ignored, since 0xx ii = .
Furthermore, the paths that contain the same variable asserted ix (or negated ix)
repeated several times, all but one ix (or ix) are removed. In this case there are
just the following three paths: 6652 YxxY ; 2652 YxxY ; 452 YxY .

3.2.3 Matrix Scheme of Algorithm

Let’s call iRi1 e
iR

e
i1ij ...xx=α a transition function from the operational node Yi to the

operational node Yj. If two operational nodes follow each other then 1ij =α . If
there exists more than one path (K paths) between two operational nodes Yi and
Yj through conditional nodes, then the transition function is

k
ij

K

1k
ij αα ∨

=
= ,

where k
ijα is the k-th path.

The matrix scheme of algorithm (MSA) [Baranov94], which is equivalent to a
GS is a square matrix with rows Yb,Y1,...,YT and columns Y1,...,YT,Ye. At the
intersection of the row Yi and the column Yj the transition function ijα is written.

The MSA for the GS of Figure 3.2 is presented in Table 3.1, where it can be seen
that the logic sum of all transition functions from an operational node Yt is always
equal to 1.

Table 3.1 – Matrix scheme of algorithm.

 Y1 Y2 Y3 Y4 Y5 Y6 Ye
Yb 1x 421 xxx 421 xxx

321 xxx

6321 xxxx
76321 xxxxx

 76321 xxxxx

Y1 1
Y2 65 xx 5x 65xx
Y3 1
Y4 1
Y5 1
Y6 1

The MSA is the counterpart of the state transition table of a FSM and it is useful
to describe large GSs. Moreover, since the logic sum of all transition functions
from an operational node Yt is always equal to 1, the MSA allows detecting
missing transitions in a GS.

CHAPTER 3 : HIERARCHICAL GRAPH-SCHEMES 39

3.3 Graph-Schemes of Algorithms and Finite State Machines

Graph-schemes of algorithms can be efficiently used in order to describe the
behaviour of control units. They can be used to synthesise a Moore or a Mealy
finite state machine (FSM).

The synthesis process is divided in the two following steps [Baranov94]:
• construct a marked graph-scheme;

• construct the state diagram of the FSM, or the state transition table in the case
of a GS with a large number of states and transitions.

3.3.1 Synthesis of a Moore Finite State Machine

In order to mark a GS as a Moore machine it is necessary to perform the
following actions [Baranov94]:
• the label a0 is assigned to the node Begin and to the node End of the GS;
• the labels a1,a2,…,aM are assigned to the operational nodes in the GS;
• apart from a0, all the labels in the GS must be unique;
• if any node has already been labelled, it must not be labelled again.

After applying these rules to the GS of Figure 3.2, the GS depicted in Figure 3.3
labelled with the states a0,…,a6 is obtained.

Begin

x1

1

x2

1

0

x3 0

y6 , y8

1
0

1

Yb

Y4

x6

0

y5 , y7Y5

1

y1 , y3

y2 , y4

x5

1

x6

0

Y1

Y2

x4

y2

0

1

Y3

x7

0

1

y3 , y5Y6

0

a0

a0EndYe

a1

a2

a3

a4
a5

a6

Figure 3.3 – GS marked for Moore synthesis.

40 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

In order to build the state diagram of the Moore machine, it is necessary to
consider the transition paths s

e
mR

e
m1m a ...xx a mRm1 (am, as ∈{a0,…,aM}) in the marked

GS, between two operational nodes marked with the states am and as (am=as is
allowed) and containing R conditional nodes. If there are no conditional nodes in
the path (R=0) then the path turns into the form smaa .

Defining mre
mrsm x)a,X(a

R

r 1=
∧= (if R=0, then X(am,as)=1) then the above path can be

rewritten as amX(am,as)as.

Now let’s construct a state diagram with the states a0,…,aM, where a0 is the initial
state of the FSM. If am labels the operational node with the microinstruction Yt,
write the microinstruction Yt inside the circle with the state am (Y(am)=Yt). If there
is a transition path amX(am,as)as in the marked GS, then draw an arrow line from
the state am to the state as, labelled with the transition condition X(am,as).

When a cycle containing only conditional nodes is reached, there are some paths
that loop forever around conditional nodes. Those transition paths amX(am,am)am
are represented with an arrow line looping around the state am, because the
microinstruction Yt inside the state am is considered active until a state transition
really occurs (see 2652 axxa in Figure 3.4).

The state diagram of the Moore machine realising the GS of Figure 3.3 is depicted
in Figure 3.4, where 1

ix is used instead of ix and 0
ix instead of ix . As a result the

Moore machine obtained has as many states as the number of labels needed to
mark the GS, i.e. the number of operational nodes of the GS plus the initial state.

a4
y6 , y8

x0
1

x1
1x

0
2x

1
4

1

x1
1x

0
2x

0
4

x1
1x

1
2x

1
3

 x
1
1x

1
2x

0
3x

0
6

1

x1
1x

1
2x

0
3x

1
6x

0
7 1

x1
1x

1
2x

0
3x

1
6x

1
7

x1
5x

0
6

x0
5

1
1 a6

y3 , y5

a5
y5 , y7

a3
y2

a2
y2 , y4

a1
y1 , y3

a0

x1
5x

1
6

Figure 3.4 – State diagram of the Moore FSM.

CHAPTER 3 : HIERARCHICAL GRAPH-SCHEMES 41

3.3.2 Synthesis of a Mealy Finite State Machine

In order to mark a GS as a Mealy machine it is necessary to perform the following
actions [Baranov94]:
• the label a0 is assigned to the node Begin and to the node End of the GS;
• the labels a1,a2,…,aM are assigned to the inputs which directly follow from

output(s) of operational node(s) in the GS;
• apart from a0, all the labels in the GS must be unique;
• if any input has already been labelled, it must not be labelled again.

After applying these rules to the GS of Figure 3.2, the GS of Figure 3.5 labelled
with the states a0,…,a4 is obtained.

Begin

x1

1

x2

1

0

x3 0

y6 , y8

1
0

1

Yb

Y4

x6

0

y5 , y7Y5

1

y1 , y3

y2 , y4

x5

1

x6

0

Y1

Y2

x4

y2

0

1

Y3

x7

0

1

y3 , y5Y6

0

a0

a0EndYe

a1

a2

a3

a4

Figure 3.5 – GS marked for Mealy synthesis.

In order to build the state diagram of the Mealy machine, it is necessary to
consider the transition paths st

e
mR

e
m1m a Y ...xx a mRm1 or s

e
mR

e
m1m a ...xx a mRm1 (am, as

∈{a0,…,aM}) in the marked GS, between two operational nodes marked with the
states am and as (am=as is allowed) and containing R conditional nodes. If there are
no conditional nodes in the first path (R=0) then the path turns into the form

stm a Ya . The first path contains only one operational node at the end of the path,
while the second path contains no operational nodes.

42 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

In some cases it can only be used the second kind of path, for example
0763210 a xxxxx a , but in all other cases it should be used the first kind. Therefore

the paths 14210 a xxx a , 33210 a xxx a , 363210 a xxxx a , 352 a x a and 4652 a xx a are
not transition paths, because each one of them can be extended in order to cross
one operational node. For example, 224210 a Yxxx a instead of 14210 a xxx a .

Defining mre
mrsm x)a,X(a

R

r 1=
∧= (if R=0, then X(am,as)=1) and Y(am,as)=Yt then the

above paths can be rewritten as amX(am,as)Y(am,as)as and amX(am,as)as.

Now let’s construct the Mealy state diagram with the states a0,…,aM, where a0 is
the initial state of the FSM. If there is a transition path amX(am,as)Y(am,as)as, then
draw an arrow line from the state am to the state as, labelled with the transition
condition X(am,as) and with the output signals Y(am,as). If there is a transition path
amX(am,as)as, then draw an arrow line from the state am to the state as, labelled with
the transition condition X(am,as) and without asserting any output signals.

When a cycle containing only conditional nodes is reached, there are some paths
that loop forever around conditional nodes. Those transition paths amX(am,am)am
are represented with an arrow line looping around the state am (see 2652 axxa in
Figure 3.6).

The state diagram of the Mealy machine realising the GS of Figure 3.5 is depicted
in Figure 3.6, where 1

ix is used instead of ix and 0
ix instead of ix . As a result the

Mealy machine obtained has as many states as the number of labels needed to
mark the GS, i.e. commonly less than the number of operational nodes.

a0

a1

a2

a3

a4

x0
1

y1 , y3

x1
1x

0
2x

1
4

1 y2 , y4

x1
1x

0
2x

0
4

y2

x1
1x

1
2x

1
3

 x
1
1x

1
2x

0
3x

0
6

1
y6 , y8

y3 , y5

y5 , y7

x1
1x

1
2x

0
3x

1
6x

0
7

1

y6 , y8

x1
1x

1
2x

0
3x

1
6x

1
7

x1
5x

1
6

y2 , y4

y3 , y5

x1
5x

0
6

x0
5

y6 , y8

Figure 3.6 – State diagram of the Mealy FSM.

Like it was expected, Figure 3.4 and Figure 3.6 are equivalent state diagrams, if the
differences between Moore and Mealy machines are taken in consideration.

CHAPTER 3 : HIERARCHICAL GRAPH-SCHEMES 43

3.4 Hierarchical Graph-Schemes

Hierarchical graph-schemes (HGS) were introduced in [Sklyarov84] and are
graph-schemes of algorithms with the following distinctive features:
• their operational nodes contain either microinstructions from the set

ι={Y1,Y2,…,YT} or macroinstructions from the set ϕ={Z1,Z2,…}, or both.
Any macroinstruction Zq, incorporates a subset of macrooperations from the
set Z={z1,…,zQ}. Each macrooperation is described by another HGS of a
lower level. For now each macroinstruction is assumed to include just one
macrooperation, meaning that only sequential processes are considered;

• their conditional nodes contain just one element from the set X∪Θ, where
X={x1,…,xL} is the set of logic conditions, and Θ={θ1,…,θΙ} is the set of
logic functions. Each logic function is calculated by performing a predefined
set of sequential steps that are described by a HGS of a lower level.

Consider the set Ε={ε1,…,εV}, for which Ε=Z∪Θ. Each element εv∈Ε
corresponds to the HGS Γv, which describes either an algorithm for performing εv
(if εv∈Z) or an algorithm for calculating εv (if εv∈Θ). In both cases an algorithm is
being described using a HGS of lower level. Let’s assume that Z(Γv) is the subset
of macrooperations and Θ(Γv) is the subset of logic functions that belong to the
HGS Γv. If Z(Γv)∪Θ(Γv)=∅ then the algorithm has only one-level of
representation and becomes an ordinary GS.

A hierarchical algorithm of a control unit can be specified by a set of HGSs,
which describes the main part and all the elements of the set Ε. The main part is
being described by HGS Γ1 from which the execution of the control algorithm
will be started. All other HGSs will be subsequently called either from Γ1 or from
other HGSs that are descendants of Γ1. Figure 3.7 demonstrates a description of
an algorithm with the HGSs Γ1, Γ2, Γ3, Γ4, Γ5 and Γ6, with Z={z1, z2, z3, z4, z5}
and Θ={θ6}.

Some operations in a HGS can be designated as virtual. A macrooperation (a logic
function) is called virtual if it is not permanently attached during the design of a
control unit. Any virtual element (VE), which is either a macrooperation or a logic
function, can accept in future different implementations. A VE is described by the
appropriate virtual HGS. The virtual HGS can be seen as a variable part of the
control algorithm.

A virtual element is called a pure virtual element (PVE) if it just has a name and
does not have any implementation. A PVE is described by a pure virtual HGS,
which is composed of just two nodes following each other: Begin and End (see
the HGS Γ5 in Figure 3.7). The notions considered above were borrowed from
the object-oriented programming [Booch94].

44 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

If a HGS has at least one PVE, it is called an incomplete HGS. An incomplete
HGS can be executed for the purposes of testing, but ultimately all PVEs have to
be replaced with non pure VEs.

θ6

z4
z5

Begin

y2

y3 , y5 , z2

y1 , y4

y6 , y7 , y8

End

z3

x1

x2

0

x2

1

01

θ6

0

0

y3

1

Begin

y3 , y5

1

1

y1

End

x5

0

Begin

End

z3

y1 , y2

1

x2

y3 , y4

y7

0

End

1

x1

Begin

1

0
1

Γ1 Γ2

Γ3 Γ4

Begin

θ6 = 1 θ6 = 0

End

x3
1 0

Γ6

Begin

End

Γ5

0

x4

0

Figure 3.7 – An algorithm described by hierarchical graph-schemes.

CHAPTER 3 : HIERARCHICAL GRAPH-SCHEMES 45

3.5 Parallel Hierarchical Graph-Schemes

Parallel hierarchical graph-schemes (PHGS) were introduced in [Sklyarov87]
and include macroinstructions, which are composed of more than one
macrooperation. When a macroinstruction has more than one macrooperation all
of them will be executed in parallel. The transition from any active operational
node to the next node will be carried out when all its components (a
microinstruction and/or a macroinstruction) will be terminated.

Figure 3.8 depicts a description of an algorithm with the PHGSs Γ1, Γ2, Γ3, Γ4, Γ5
and Γ6, with Z={z1,z2,z3,z4,z5} and Θ={θ6}.

y1 , y2 , z3

End

BeginΓ2Begin

y1

z2 , z3

End

z3 , z4

x1

x2

0

x2

1

01

0
1

Γ1

z5

Γ3 Begin

y3 , y4

0

End

x3

1

Begin

z3

y7 , y8

End

Γ5Begin

y5 , y6

0

End

Γ4

θ6

1

y1 , y2

Begin

θ6 = 0 θ6 = 1

End

x3

Γ6

1

x4 1

0

0

Figure 3.8 – An algorithm described by parallel hierarchical graph-schemes.

46 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

3.6 Execution and synchronisation of a HGS/PHGS

The execution of a HGS is based on the GS traversal procedure explained in the
paragraph 3.2.1. The execution starts from the node Begin of the main part,
described by the HGS Γ1, and it is performed like for an ordinary GS until it
arrives to a complex operation εv. Each complex operation εv such as εv=zq∈Z
and εv=θi∈Θ (v∈{1,...,V}) described by a separate HGS Γv, initiates the execution
of a new HGS in a new hierarchical level. When the execution of the new HGS Γv
reaches its node End, the interrupted HGS will be resumed. The execution
continues until the node End of the HGS Γ1 is reached.

The execution of a PHGS is similar to a HGS with the following difference. When
a macroinstruction contains more than one macrooperation, each macrooperation
invoked in the node initiates the execution of a new PHGS. All PHGSs will run in
parallel at the same hierarchical level and the interrupted PHGS will be resumed
only after all parallel macrooperations will have been executed. In order to
synchronise the parallel execution of macrooperations, the set of PHGSs must be
extended and transformed accordingly with the rules defined in [Sklyarov87].
Constructing extended PHGSs depends on the model, Parallel FSM or Parallel
Hierarchical FSM, chosen for implementation (see PFSM/PHFSM synthesis).

3.7 Correctness of a HGS/PHGS and Problems with
Recursive Calls

Each HGS/PHGS that belongs to a hierarchical algorithm must be expurgated of
sub-graphs containing infinite cycles (see Figure 3.9). If the conditional node x3
will be exited through the “0” output, the HGS execution will enter in the group
of four nodes on the right, constituted by two operational nodes (y3,y5,y7 and z2)
and two conditional nodes (x6 and x2), and will never reach the node End.

Begin

x1

1

x3 0

y6 , y8

1
0

1

x6

y3, y5 , y7

1

y1 , z3

y2 , y4

x5

1

x4

0 x2

0

End

1

0
0

z2

1

Figure 3.9 – An example of a HGS with an infinite cycle.

CHAPTER 3 : HIERARCHICAL GRAPH-SCHEMES 47

In order to prevent infinite recursion∗ in the execution of HGSs they must be
checked for correctness using the technique described in [Sklyarov84]. A special
graph is constructed, where the nodes represent macrooperations and logic
functions, and the arcs between them represent invocations. One arc from the
node zi (θi) to the node zj (θj) will mean that the HGS Γi invokes the HGS Γj in
one or more operational nodes. If the graph does not have any group of nodes
connected in a loop, the algorithm is free of infinite recursion. Figure 3.10
presents this graph for the hierarchical algorithm of Figure 3.7.

Z1

Z2Z3 Z4

Z5

θ6

Figure 3.10 – Special graph to detect infinite recursion.

If there are two or more macrooperations or logic functions in a loop
(macrooperation looping, logic function looping), it must be ensured that the
algorithm has at least one escape to stop the infinite recursion. Figure 3.11 shows
an example of macrooperation looping without infinite recursion. The HGS Γ1
calls the HGS Γ2 when x1 is negated (“0”), that calls the HGS Γ3 that calls back
the HGS Γ1. The loop exists but it can be broken when x1 is asserted (“1”) during
the execution of the HGS Γ1.

BeginΓ1

x1 0

z2y1

1

End

BeginΓ2

z3

End

y2

BeginΓ3

z1

End

y3

Figure 3.11 – Macrooperation looping without infinite recursion.

If a recursive algorithm (a macrooperation calling itself) is being described, the
terminating condition that will stop the recursion and that will let the algorithm to
return back from the multiple invocation must be provided, otherwise the
algorithm will fall in infinite recursion.

∗ In this case recursion means circular invocation of macrooperations (logic functions).

48 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

3.8 An Example

As an example let’s consider the fixed-point binary multiplication algorithm with
operands represented in sign and module, the left most bit with index 0 being the
sign. There are three 16 bits registers, the multiplicand A, the multiplier B and the
result C. The multiplication is decomposed in two operations (see Figure 3.12).
Macrooperation z1 implements the multiplication and macrooperation z2
implements the round and sign calculation.

Multiplication

Begin Begin

z1

Round and Sign
Calculation

z2

End End

C
O
D
E
D

Figure 3.12 – Binary multiplication algorithm.

The multiplication algorithm depicted in Figure 3.13, starts by checking if any of
the operands A and B is equal to zero, and if one of them is zero the product C is
zero (C:=0) and the multiplication has finished. Otherwise it starts by clearing the
result (C:=0) and setting the counter to fifteen (count:=11112). If the least
significant bit of the multiplier is one (B(15)=1) the multiplicand is added to the
result (C:=C+A(1:15)). Then the multiplier and the result are shifted right one bit
(B(1:15):=SHR(B(1:15)), C:=SHR(C)), with the shifted out bit of the result written
into the most significant bit of the multiplier (B(1):=C(15)) and the counter is
decreased one unit (count:=count-1). The multiplication is repeated until all
fifteen bits of the multiplier are processed, i. e. until the counter reaches zero
(count=0).

The round and sign calculation algorithm depicted in Figure 3.14 rounds the result
(C:=C+1) if the most significant bit of the multiplier, i.e. the last shifted out bit of
the result, is one (B(1)=1). If the two operands have the same sign (A(0)=B(0))
the result is positive, otherwise it is negative (C(0):=1).

After coding the instructions, there are the following six logic conditions:
x1 : A=0; x2 : B=0; x3 : B(15)=1; x4 : count=0; x5 : B(1)=1; x6 : A(0)=B(0),

and the following nine microoperations:
y1 : C:=0; y2 : count:=11112; y3 : C:=C+A(1:15); y4 : B(1:15):=SHR(B(1:15));
y5 : C:=SHR(C); y6 : B(1):=C(15); y7 : count:=count-1; y8 : C:=C+1; y9 : C(0):=1.

CHAPTER 3 : HIERARCHICAL GRAPH-SCHEMES 49

End

Begin

A=0

B=0

0

0

C:=0
count:=11112

B(15)=1

C:=0

1

1

C:=C+A(1:15)

1

B(1:15):=SHR(B(1:15))
C:=SHR(C)
B(1):=C(15)

count:=count-1

0

count=0

1

0

Begin

x1

0

x2

1

1

y1
0

y1 , y2

x3

1

y3

y4 , y5 , y6 , y7

0

x4

1

End

0

C
O
D
E
D

Macrooperation z1

Figure 3.13 – Macrooperation z1 implementation and codification.

End

Begin

B(1)=1

1

C:=C+1

A(0)=B(0)

0

0

C(0):=1 1

Begin

x5

x6

1

0
y8

y9

0

End

1

C
O
D
E
D

Macrooperation z2

Figure 3.14 – Macrooperation z2 implementation and codification.

50 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

The hierarchical implementation for a small example like this does not offer any
advantages. In this case the two macrooperations should be merged in one graph-
scheme of algorithm and should be implemented as an ordinary FSM, i.e. the
hierarchy should be flattened (see Figure 3.15).

Begin

A=0

B=0

0

0

C:=0
count:=11112

B(15)=1

C:=0

1

1

C:=C+A(1:15)

1

B(1:15):=SHR(B(1:15))
C:=SHR(C)
B(1):=C(15)

count:=count-1

0

count=0

1

0

Begin

x1

0

x2

1

1

y1
0

y1 , y2

x3

1

y3

y4 , y5 , y6 , y7

0

x4

1

0

C
O
D
E
D

End

B(1)=1

1

C:=C+1

A(0)=B(0)

0

0

C(0):=1

1

x5

x6

1

0y8

y9

0

End

1

Figure 3.15 – Non-hierarchical implementation and codification of the binary multiplication algorithm.

CHAPTER 3 : HIERARCHICAL GRAPH-SCHEMES 51

However, a hierarchical decomposition of an algorithm allows the designer to
develop any complex control algorithm part by part concentrating his efforts on
different levels of abstraction. Moreover, the macrooperations described can be
separately tested and can be used to implement other algorithms developed in the
future. For example, the round and sign calculation (macrooperation z2) can also
be used in the algorithm that implements the binary division.

3.9 C++ Simulation of Hierarchical Graph-Schemes

3.9.1 Introduction

A hierarchical algorithm can be expressed by a set of HGSs, describing all its
components (macrooperations and logic functions). In order to ensure the
correctness of the description, each HGS must be formally correct. The HGS
must not have unreachable nodes nor nodes constituting infinite cycles, i. e. every
node must be located on at least one of the paths which go from the node Begin
to the node End. It is always possible to check manually the consistency of a
small HGS containing a few nodes, but if the HGS is big containing let’s say 100
nodes, it is probably very easy to miss some errors. So it is useful to consider
automatic checking of HGSs.

When executing an algorithm infinite recursion must be prevented, and therefore
the algorithm has to be checked for macrooperations (logic functions) invoked in
a loop. But, it is possible to have an algorithm with macrooperation looping
without having infinite recursion, like it was shown in Figure 3.11. So, in order to
ensure the correctness of the algorithm simulation is used.

The tool SIMULHGS described in this paragraph provides such facilities. The
tool was developed in C++ using an object-oriented methodology and its code is
presented in Appendix B.

3.9.2 Description of the Class System

Figure 3.16 depicts the class system diagram using the Booch notation [Booch94].
In simple terms a hierarchical algorithm can be considered as a set of nodes
grouped in entities called HGSs. So, the base class of the tool is the class Node.
An object of class Node has a name nname, a type ntype and a state nstate.
Certain member methods need to traverse the HGS recursively and to avoid
infinite looping the traversed nodes are marked. For that purpose the data
member nmark is used. The data member nauto is used to distinguish between
the nodes that are marked automatically (by the marking methods) and those that
are marked manually (at user request).

52 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

There are seven types of nodes:
• node BEGIN;
• node END;
• node ASSIGN that assigns the return value of a logic function;
• node MICROOP that contains a subset of microoperations;
• node MACROOP that contains one macrooperation and that can also contain

a subset of microoperations;
• node CONDITION that contains one input condition;
• node FUNCTION that contains one logic function.

These node types are grouped in two classes: operational nodes (the first five)
and conditional nodes (the last two). So, two classes were derived from the base
class Node. Class Onode adds to the base class a pointer to the next node, while
class Cnode adds two pointers, next node when true and next node when false.

A hierarchical graph-scheme is a directed connected graph composed of a finite
set of nodes and the class Graphscheme represents it. An object of the class
Graphscheme has a name gsname, a type gstype and the number of nodes
gsnnodes. There are two kinds of hierarchical graph-schemes: LFUNCGS (logic
function) and MACROGS (macrooperation). They must be distinguished because
they have different properties concerning the type of nodes they can have.

In some methods, all the nodes of a HGS need to be processed in a repetitive for
statement, so it is worth to have an array of pointers to the nodes (gslist) instead
of just one pointer to the node Begin. In some synthesis steps, a HGS must know
if it is the main HGS of the algorithm or not. That information is stored on
gsmain. The number of states used to mark each HGS, in the case of the HFSM
model 3, is stored in gsnstates.

The class Hgraphscheme represents a hierarchical algorithm. An object of this
class has a name hgsname, the number of elements of the set of HGSs hgsngs
and an array of pointers to the HGSs hgslist.

The remaining data members store information generated by some methods. If an
algorithm is checked and is correct hgscheck is equal to 1. After simulating an
algorithm the deepest level of hierarchy reached is stored in hgsdeep. The string
hgssyn indicates if it is a Moore or a Mealy HFSM that is being synthesised. If the
HFSM model 2 is chosen, one state transition table for the set of HGSs (merge
tables), then hgsmark is equal to 1. Otherwise, in the case of the HFSM model 3,
one state transition table per HGS (split tables), then hgsmark is equal to 0. The
number of states needed to mark the algorithm, in the case of the HFSM model 2,
is stored in hgsnstates.

CHAPTER 3 : HIERARCHICAL GRAPH-SCHEMES 53

Node

Onode Cnode

Graphscheme

Hgraphscheme

Figure 3.16 – Class system diagram of the tool SIMULHGS.

3.9.3 Acquisition and Construction of a Hierarchical Algorithm

SIMULHGS constructs a hierarchical algorithm from a set of text files. The text
files can be prepared manually with a text editor or generated automatically in a
graphical editor developed for that purpose and described in [ParCra98]. This
graphical editor allows the creation of separated HGSs as well as algorithms
composed with already existing HGSs and newly developed HGSs. The editor
generates text descriptions of correct HGSs and the textual decomposition of
algorithms.

Each HGS is constructed from a text file with the following format (see Figure
3.17 and Figure 3.18). The first line is the macrooperation (logic function) name.
The remaining lines have the description of the nodes, in fields separated by the
character space, with the following format:
• the first field of the line is the character O for an operational node or C for a

conditional node;

• the second field contains the node name and defines its type:
• BEGIN node type, BEGIN;
• END node type, END;
• MICROOP node type, a set of microoperations starting with the character

y and without any z character (for example y1,y7,y8);
• MACROOP node type, a macrooperation starting with the character z (for

example z5) or a set of microoperations followed by a macrooperation (for
example y3,y5,z2);

54 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

• CONDITION node type, an input condition starting with the character x
(for example x2);

• FUNCTION node type, a logic function starting with the character f (for
example f6);

• ASSIGN node type, a string fi=value where value is 0 or 1 (for example
f6=0);

• the third field contains the number of the line where the next node of an
operational node is described (this field does not exist for the node END). Or
in the case of a conditional node the number of the line where the next node
when the condition is true is described;

• the fourth field only exists in the case of a conditional node and contains the
number of the line where the next node when the condition is false is
described.

Figure 3.17 and Figure 3.18 present respectively text descriptions of the
macrooperation Z1 and of the logic function θ6.

Z1.txt

Z1
O BEGIN 2
O y2 3
C x1 8 4
C x2 5 6
O y3,y5,z2 7
O z3 7
O y1,y4 13
C x2 9 10
O y1,y7,y8 11
O z5 12
C f6 12 7
O y3 13
O END

z5

Begin

y2

y3 , y5 , z2

y1 , y4

y1 , y7 , y8

End

z3

x1

x2

0

x2

1

01

θ6

0

0

y3

1

1

Ζ1

Figure 3.17 – Macrooperation Z1 and its text description.

F6.txt

F6
O BEGIN 2
C x3 3 4
O f6=1 5
O f6=0 5
O END

Begin

θ6 = 1 θ6 = 0

End

x3
1 0

Θ6

Figure 3.18 – Logic function Θ6 and its text description.

CHAPTER 3 : HIERARCHICAL GRAPH-SCHEMES 55

The algorithm decomposition is described in a text file where, the first line is the
algorithm name and the remaining lines list the HGSs names being the first HGS,
second line of the file, the main HGS. The text description of the algorithm of
Figure 3.7 will look like the following text.

When SIMULHGS starts, the user must supply the filename where the set of
HGSs is described and the Hgraphscheme constructor is invoked. If the file
does not exist the program will terminate, because the set of HGSs cannot be
constructed. If the file is successfully opened the name of the algorithm is stored
in hgsname. Then for each name listed in the following non-empty lines a
filename with the txt extension is created, the Graphscheme constructor is
invoked and the HGS pointer is stored in the array hgslist. When the end of file
is detected, the number of HGSs is stored in hgsngs and the file is closed.

The first parameter of the Graphscheme constructor is the filename where the
HGS is described. The second parameter main is 1 for the main HGS and 0 for
the remaining HGSs. By default this parameter is 0. If the file is successfully
opened the name of the HGS is stored in the string gsname, otherwise an empty
HGS will be constructed. If the name starts with the character Z it describes a
macrooperation MACROGS. If the name starts with the character F it describes a
logic function LFUNCGS.

Then for each non-empty line of the file the type of node is detected and the
respective constructor Onode or Cnode is invoked. After all the nodes have been
constructed and their pointers stored in the array gslist, the nodes must be linked.
The information about the next nodes, third and fourth field of the line, is used by
Setnext() to link the nodes. The number of nodes is stored in gsnnodes, the
information about the main HGS passed through the second parameter is stored
in gsmain and the file is closed.

The Onode and Cnode constructors use the Node base class constructors.
Because the nodes Begin and End have their types automatically defined by their
names, there are two constructors for operational nodes. The first, used for the
nodes Begin and End, has only one parameter name, while the second, used for
the remaining operational nodes, has two parameters name and type.

THESIS HGS
Z1
Z2
Z3
Z4
Z5
F6

56 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

3.9.4 Checking a Hierarchical Algorithm

The most important feature of SIMULHGS is to check if a set of HGSs is
correctly described and can be processed. This is performed by the method
Checkhgs(). If the algorithm is really a hierarchical algorithm, i.e. has more than
one HGS, and all HGSs are correct the method returns the value 1, otherwise it
returns the value 0. The check value (1/0) is stored in hgscheck. In order to
avoid abnormal execution, all Hgraphscheme methods must inquire hgscheck
before start executing.

Checkgs() checks a HGS in three steps. The first two steps are only needed for
text descriptions generated manually, because they can contain elementary errors
that can be easily made in a text editor. On the other hand, the graphical editor
does not allow the creation of HGSs with any of the error situations checked in
the first two verification steps. Moreover, it eliminates redundant nodes when
generating the HGS text description (see [ParCra98] for more details). Let’s
describe in detail the three verification steps.

In step 1 Primarycheckgs() will check the overall consistency of the HGS. Let’s
see with more detail what means overall consistency. The following situations
must be verified. The HGS must have one and only one node Begin. The HGS
must have one and only one node End. A HGS describing a macrooperation
cannot have nodes of type ASSIGN, on the other hand a HGS describing a logic
function can only have operational nodes of type ASSIGN. The main HGS must
have at least one macrooperation or logic function, otherwise it is not a
hierarchical description. If a node invokes a macrooperation or a logic function
Searchgraphhgs() will see if the respective HGS makes part of the algorithm. If
a macrooperation is only composed with the nodes Begin and End, a warning
message of pure virtual macrooperation will be printed on the screen.

If the first step is successful, in step 2 Markgs() traverses recursively the HGS
and marks all the nodes that are reachable from the node Begin. Then
Checknode() tests all the nodes reporting unreachable and dummy nodes.
Unreachable node means a node with its input not connected to any node.
Dummy node means a node that is pointing to the node Begin, or that is pointing
to itself. Nevertheless, a conditional node can have one of the outputs, but not the
two, pointing to itself. It is also detected if a node of type ASSIGN holds a value
different from 0 and 1 and if there are two conditional nodes with the same input
condition following each other. If a conditional node has both outputs pointing to
the same node, different from the node Begin, a warning message is printed,
because it is a useless node.

If the second step does not detect any errors, in step 3 Loopcheckgs() will look
for nodes in infinite cycles. Since all nodes are reachable from the node Begin, it
is necessary to ensure that starting from each node it is possible to reach the node
End. Loopcheckgs() calls, for every node in the HGS, Loopnode() that
traverses recursively the HGS starting from the specified node. It stops when it

CHAPTER 3 : HIERARCHICAL GRAPH-SCHEMES 57

reaches a node already traversed, meaning that it entered a loop, or when it
reaches the node End. In the latter case returns a flag set to 1. This flag is
enquired for each call of Loopnode() and if it is not equal to 1 the node is
reported to be in an infinite cycle. If there is at least one node in this situation a
check failure will be returned. Since it is only necessary to ensure that there is at
least one path, if the node End is reachable when exiting a conditional node
through the true output, the false output is not explored in order to speed up the
Loopnode() method.

If all three steps are successful, the method Checkgs() prints the message that the
HGS is correct and returns the check value 1, otherwise it prints the message that
the HGS is incorrect and returns the check value 0.

3.9.5 Running a Hierarchical Algorithm

To run a set of HGSs allows to verify if it is free of infinite recursion and to
evaluate the deepest hierarchy level reached by the algorithm, in order to define
the stack memory size. After ensuring that the set of HGSs is already checked
Runhgs() starts the execution of the main HGS. A variable will keep track of the
hierarchy level reached at any moment in the simulation.

The Rungs() method starts the HGS execution by invoking the recursive
Runnode() to the node Begin, whose pointer is obtained through Begings().

Rungs() returns an integer value. This value is meaningless when a HGS
describes a macrooperation, but when it describes a logic function this value is
returned to the conditional node where the logic function was invoked in order to
decide the path to follow. On the other hand, when the execution reaches a
conditional node containing an input condition the user must supply a bit value to
decide the path to follow.

Every time that a node holding a complex operation is reached, such as a
macrooperation or a logic function, the Searchgraphhgs() method is invoked to
return the pointer to the respective HGS and the execution of the complex
operation will start.

Every time that the node Begin is detected the hierarchy level is incremented. If it
is the deepest level reached so far, it will be stored in hgsdeep by the method
Deeplevelhgs(). When the execution reaches the node End, the hierarchy level is
decremented, and the execution of the previous hierarchical level HGS is
resumed. The algorithm execution will stop when the node End of the main HGS
is reached.

This execution of a hierarchical algorithm is a functional simulation and in order
to be useful the designer must explore all possible paths of the algorithm to ensure
that infinite recursion situations are not present and to evaluate correctly the
deepest hierarchical level of the algorithm.

58 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

3.10 Conclusions

HGSs and PHGSs enable the development of any complex control algorithm part
by part in a top-down manner, which can be viewed at various levels of
abstraction, one level at a time. They provide for a clear separation of the control
unit functionality from its implementation. They embody multilevel
representations of control algorithms through the use of macro blocks such as
macrooperations and logic functions, and consequently they support hierarchical
and parallel specifications. They also allow for the use of virtual operations for the
sake of testing an algorithm and the use of logic function nodes allows a more
abstract decomposition of the algorithm. Moreover, since HGSs can be seen as
relatively autonomous components they can be separately tested and can be
reused to implement other algorithms to be developed in the future.

However, HGSs and PHGSs have the following constraints in the transitions
between hierarchical levels. When a new component is invoked, the state
transition is always done to its first state. When the component finishes executing
it always returns to the interrupted state of the previous hierarchical level. The
latter cannot really be considered a constraint since in most algorithmic
specifications the desired functionality is to resume the execution of the algorithm
in the state after the hierarchical invocation. But the former can be considered an
annoying constraint in situations where the last part of an already existing
macrooperation must be performed without the need to perform the first part.

When developing an algorithm with HGSs/PHGSs, they must be checked for
correctness, eliminating macrooperation and logic function looping, in order to
prevent infinite recursion and each HGS/PHGS must be expurgated of sub-
graphs containing infinite cycles.

The tool SIMULHGS used in conjunction with a graphical editor of HGSs,
allows the specification of a hierarchical algorithm with a set of HGSs. It provides
for the automatic checking of the algorithm and it ensures that it is in fact a
correct and consistent hierarchical algorithm. SIMULHGS also allows the
simulation of the algorithm in order to detect macrooperations (logic functions)
invoked in a loop and to evaluate the deepest level in the hierarchy reached by the
hierarchical algorithm.

59

4 HIERARCHICAL FINITE STATE MACHINES

Summary

A hierarchical algorithm described by a set of HGSs can be efficiently
implemented with a hierarchical finite state machine (HFSM) with stack
memory. This chapter starts by explaining the first model of a HFSM with stack
memory proposed in [Sklyarov84]. Then it proposes two new models that can
provide such new facilities as flexibility, extensibility and reusability. The
concept of a virtual HFSM is also presented.

In order to allow the execution of macrooperations in parallel described by
PHGSs, a parallel finite state machine (PFSM) was proposed in [Sklyarov87].
This model has however some limitations and to overcome them a new model of
a parallel hierarchical finite state machine (PHFSM) that combines hierarchy
and parallelism is proposed.

Finally, the synchronisation mechanisms for all FSM models are fully described.

60 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

4.1 Introduction

A finite state machine (FSM) (see Figure 4.1a) like it was presented in the
second chapter can be formally described as follows:

A = δ[A,X];
YMealy = λMealy[A,X];
YMoore = λMoore[A].

Where A={a0,a1,…,aM} is a finite set of states being a0 the FSM initial state,
X={x1,…,xL} is a finite set of inputs, Y={y1,…,yN} is a finite set of outputs, δ is
the transition function or the next state function, which determines the next
state from the present state and the inputs, and λ is the output function. Moore
outputs are dependent on only the present state, while Mealy outputs are
dependent on both the present state and the external inputs.

On the other hand, a hierarchical finite state machine (HFSM) (see Figure
4.1b) can be formally described as follows [SklFer98]:

[]
[]




≠
=

=
∅

∅

;(t) if, XA,
;(t) if, XA,

A
εξ
εδ

YMealy = λMealy[A,X];
YMoore = λMoore[A].

It is like an ordinary FSM but with two distinctive blocks, each one implementing
a different transition function. The transition function between states of the same
hierarchical level δ is provided by the Combinational Scheme, while the
transition function between states of different hierarchical levels ξ is provided by
the Hierarchical Scheme.

Combinational
Scheme (δ , λ)

HFSM
Memory

X(t) Y(t)

a(t) a(t+1)

Hierarchical
Scheme (ξ)

Combinational
Scheme (δ , λ)

FSM
Memory

X(t) Y(t)

a(t) a(t+1)

(a) (b)

Figure 4.1 – (a) FSM block diagram. (b) HFSM block diagram.

It must be kept in mind that the HFSMs are used to describe control units. Since
the control unit is connected with a datapath it must have input and output
registers that fix respectively the external inputs received from the datapath and
the external outputs generated at the control unit. Moreover, in some models extra
storage elements are needed to hold intermediate outputs or to synchronise
internal operations. Therefore, as against of an ordinary FSM the Combinational
Scheme of the HFSM is not a pure combinatorial block.

CHAPTER 4 : HIERARCHICAL FINITE STATE MACHINES 61

4.2 FSM with Stack Memory (managing hierarchy)

Let’s introduce the graph Gh (see Figure 4.2), which shows the hierarchical levels
of the algorithm depicted in Figure 3.7 and that can be considered as a tree. The
root z1 of the tree corresponds to the main HGS Γ1 of level 1. The leaves of the
tree correspond to HGSs, which do not contain elements from the set Ε (graph-
schemes of algorithms).

z1

level 1

level 2

level 4

level 3

Γ1

z2Γ2

z4Γ4

zileaf

Register 1

Register 2

Register 3

Register 4

Register σ

.

Γ1

Γ2

Γ3

R=|log2M|
M is the number of states

stack
pointer

y+ y-

Growing
the stack

Stack

Γ3
z3 Γ5

z5

z3Γ3

Γ6

σ is the number of levels

R is the register length

Γ6
θ6

θ6

Figure 4.2 – Graph Gh showing hierarchical levels.

Consider the following sequence of HGSs: Γ1 (level 1) ⇒ Γ1 (HGSs of level 1) ⇒
Γ2 (HGSs of level 2) ⇒... , where Γ1 is the set of HGSs that are used to describe
elements from the set Z(Γ1)∪Θ(Γ1), Γ2 is the set of HGSs that are used to
describe elements from the sets)(ZU

1Γ∈γ

γ and)(U
1Γ∈

Θ
γ

γ .

The same way can be used to determine other sets (Γ3, Γ4, etc.). The problem is
the following: how to perform switching to the various levels? This problem can
be efficiently solved using a hierarchical finite state machine (HFSM) with
stack memory (see Figure 4.3). This model was proposed in [Sklyarov84] and has
been explored in [SklRoc96A, SklRoc96B].

The top of the stack is the register, which is used as the FSM memory for the
HGS Γ1. Suppose it is necessary to perform an algorithm for a component εv of
Γ1 and εv∈Z(Γ1)∪Θ(Γ1). In such case the stack pointer is incremented by
activating the output y+ and set the new register, that is now located on the new
top of the stack, with the first state of the HGS Γv. As a result the old top of the
stack keeps the interrupted state of the HGS Γ1, and the new top of the stack
holds the entry state of the HGS Γv. The same sequence of steps can be applied
to other levels.

62 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Therefore the total size of the stack σ, i.e. the number of registers, must not be
less than the number of various levels for the graph Gh. When the execution of a
HGS of a level other than the level one, is being terminated the opposite sequence
of steps must be performed in order to return back to the interrupted HGS. In
this case the stack pointer is decremented by activating the output y-.

Combinational Scheme
Stack

Memory

Registerh

xL x1

yN y1

yz1yzK

DR D1

τR τ1

y+

y-

p1pK

Figure 4.3 – Hierarchical finite state machine structure (model 1).

The code in the Registerh indicates which HGS must be executed next. Let’s
assign to elements of the set Ε={ε1,…,εV} (set of HGSs specifying the algorithm)
binary codes with the length K≥|log2(V+1)| and the code containing all zeros
(00...0) will not be used. Designate K(εv)={evK...ev1} as the code of the εv, where
evk∈{0,1,-}, k=1,...,K, and “-“ is the don’t care value of a bit. K(εv) can be
considered as the code of the HGS describing the element εv.

The hierarchical FSM operates like an ordinary FSM if there are no transitions
from one HGS to another HGS. If it is necessary to call a new HGS Γv in order to
perform either a macrooperation or a logic function the following sequence of
actions will be carried out (see Figure 4.3):
1. the code K(εv) is stored into the Registerh through the inputs yzK,...,yz1;

2. the stack pointer is incremented (y+=1). As a result a new register RGnew of the
Stack Memory will be selected as the current register of the HFSM. The
previous register RGnew-1 keeps the state of the HFSM when it was interrupted
(in which the control to the HGS Γv was passed). The new register RGnew will
be automatically set to zero (00...0);

3. the code K(εv) stored into Registerh when presented at the extra inputs
pK,...,p1 of the Combinational Scheme and in conjunction with the state
binary code set to zero (00…0) presented in the inputs τR,...,τ1, causes a
transition to the initial state of the HGS Γv. As a result Γv will be responsible
for the control from this point until it terminates;

4. after the termination of the HGS Γv it is necessary to decrement the stack
pointer (y-=1) in order to return back to the interrupted state. As a result the
control will be passed to the state in which the HGS Γv has been called.

CHAPTER 4 : HIERARCHICAL FINITE STATE MACHINES 63

If a HGS is used to calculate a logic function, the value to be calculated will be
stored in any bit of Registerh. This is allowed because Registerh is not being used
while a HGS is being terminated. The interrupted HGS will later test the value
stored in order to perform the respective transition.

Based on this first model, the model depicted in Figure 4.4 has been proposed in
[RocSkl97A, RocSkl97B], where Registerh has been replaced with a Code
Converter block.

Combinational Scheme
Stack

Memory

Code
Converter

xL x1

yN y1
yz1yzK

CSDR CSD1

CCDR

CCD1

DR D1

τR τ1

y+

y-

OR

OR

Figure 4.4 – Hierarchical finite state machine structure (model 2).

This model works as follows:
• in all states that do not invoke a macrooperation or a logic function, the

outputs CCDR,…,CCD1 of the Code Converter are set to 0, because its
inputs yzK,...,yz1 are set to 0, and the next state is provided by the outputs
CSDR,…,CSD1 of the Combinational Scheme like in an ordinary (non-
hierarchical) FSM;

• if it is necessary to call a new HGS Γv in order to perform either a
macrooperation or a logic function the following sequence of actions will be
carried out (see Figure 4.4):
1. the code K(εv) of a state with εv is presented at the inputs yzK,...,yz1 of the

Code Converter;

2. the stack pointer is incremented (y+=1). The register which is the new top
of the stack is clean (set to zero) if it is the first time that this hierarchy
level is reached or holds the code of the returning state of the previous
HGS that has run in this hierarchy level;

3. in both cases the outputs CSDR,…,CSD1 of the Combinational Scheme
are set to 0. The code K(εv) is converted to the code of the first state of the
HGS Γv, which is generated on the outputs CCDR,…,CCD1 of the Code
Converter. Now the HGS Γv is responsible for the control from this point
until it terminates;

4. after the termination of the HGS Γv it is necessary to decrement the stack
pointer (y-=1) in order to return back to the interrupted state. As a result
control is passed to the state in which the HGS Γv was called.

64 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

If a HGS is used to calculate a logic function, the value to be calculated must be
stored in an extra 1-bit register of the Combinational Scheme.

This model has the following advantages:
• since there are no extra lines used to identify the proper HGS the total number

of inputs of the Combinational Scheme is smaller;

• many modifications of macrooperations (logic functions) can be done in the
Code Converter, and there is no need to modify the kernel of the
Combinational Scheme;

• if the Combinational Scheme and the Code Converter blocks are
reprogrammable components such as RAMs, this model can provide such new
facilities as flexibility, extensibility and reuse of an algorithm described by
HGSs.

Another model proposed in [SklRocFer98] provides an association between HGSs
in a given set and mutually exclusive elements in the Combinational Scheme
called Reprogrammable Element (RE) (see Figure 4.5). In this model each
HGS Γv from the set of HGSs Γ1,...,ΓV is implemented with one autonomous
circuit such as REv, and a one to one association between the set Γ1,...,ΓV and the
set of elements RE1,...,REV is obtained. This model allows optimising control
units for algorithms with a large number of microoperations and whose model is
the Mealy FSM, and can be seen as a good candidate for reprogrammable and
reconfigurable control circuits, such as FPGAs.

Selector

Inputs from the set {xL,...,x1}

y-

y+

Moore Output Block

OR

OR

RE1 (Γ1)
State Stack

Memory

DR D1

τR τ1

REV (ΓV)

yN y1

HGSK

. . .
REVRE1

Extra
Register

extra_x

HGS1

. . .

extra_y

Figure 4.5 – Hierarchical finite state machine structure (model 3).

CHAPTER 4 : HIERARCHICAL FINITE STATE MACHINES 65

Let’s describe the functionality of this model with more detail. If this model is
used to implement a Moore machine the Moore Output Block is necessary to
provide the microoperations, that depend on the state binary code and on the
HGS binary code. The State Stack Memory is used to store the current state of
the HFSM, like in the previous models. The 1-bit register Extra Register is used
to store the calculated value of a logic function and its input and output is
connected with some REs, depending on their kind. There are three kinds of REs:
• a RE that implements a macrooperation and that does not invoke any logic

function. This RE has one activation input REv, some inputs from the set
xL,...,x1, the outputs DR,...,D1 to provide the next state to the State Stack
Memory and some outputs from the set yN,...,y1 if a Mealy machine is being
implemented;

• a RE that implements a macrooperation and that invokes at least one logic
function. This RE has the inputs and outputs mentioned above and one extra
input extra_x connected with the Extra Register output, in order to use the
calculated value of the logic function;

• a RE that implements a logic function. This RE has the inputs and outputs
mentioned for the first kind of RE and one extra output extra_y connected
with the Extra Register input, in order to store the calculated value of the
logic function, considering that the logic function is implemented as a Mealy
machine. Moreover, it can also have an extra input extra_x if it invokes at
least one logic function. But, if the logic function is implemented as a Moore
machine, its calculated value is generated in the Moore Output Block and the
RE does not have the extra output extra_y.

Code
Converter

HGS Stack
Memory

Decoder

τR τ1

y-y+

y-

y+

RE1 REV

HGSK

New HGS

Active HGS
HGS1

Figure 4.6 – Selector implementation.

The Selector (see Figure 4.6) is also based on stack memory (HGS Stack
Memory block) and it is used for storing the binary code K(εv) of the HGSs in
accordance with the hierarchical sequence of the HGSs to be called. It enables the
RE of the active HGS through the outputs RE1,...,REV provided by the Decoder.
And it is also responsible for generating in the Code Converter the special signals
that increment (y+) and decrement (y-) both stack pointers.

66 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

This model works as follows:
• when the HGS Γv is running its reprogrammable element REv connected to

the State Stack Memory works as an ordinary FSM;

• if it is necessary to call a new HGS Γk in order to perform either a
macrooperation or a logic function the following sequence of actions will be
carried out:
1. the Code Converter generates the signal y+ and the code of the new HGS

Γk that will run next;

2. both stack pointers are incremented and a new register in each stack is
selected. The new top of the State Stack Memory is clean (set to zero) if
it is the first time that this hierarchy level is reached or holds the code of
the returning state of the previous HGS that has run in this hierarchy level;

3. The code of the HGS Γk is stored in the HGS Stack Memory and the
Decoder activates the output REk, enabling the reprogrammable element
REk and disabling the REv that was running. When the information stored
in the new register of the State Stack Memory is presented at the inputs
of the REk through the lines τR,...,τ1, the REk will generate the entry state
of the HGS Γk. Now the HGS Γk is responsible for the control from this
point on until it is terminated;

4. after the termination of the HGS Γk the Code Converter generates the
signal y-. Both stack pointers are decremented and control returns back to
the interrupted state, stored in the State Stack Memory, of the interrupted
HGS Γv, which code is stored in the HGS Stack Memory.

The considered scheme has the following advantages. It is:
• flexible in the sense that the functions of each RE can be easily modified

because it implements autonomous and simple transitions for the associated
HGS;

• extensible in the sense that the functions of each RE can be completely
changed. Besides the scheme can be extended, adding new REs, without
modifying the structure;

• virtual in the sense that a control algorithm can be implemented in a scheme
with restricted resources, even if the complexity of the scheme is insufficient
for implementing the entire algorithm. It is important that all links of REs are
known. Each HGS is a relatively independent component, hence any HGS Γv
can be replaced just by freezing a single link, which is the line REv from the
Selector associated with the replacing REv (see Figure 4.5 and Figure 4.6). All
other parts of the algorithm will not be suspended;

• the state coding is now of the form (HGS_code, local_state_code). Since state
assignment can be done modularly, i.e. local to each HGS, the states in
different HGSs will have the same local code and the local state code length
will decrease. However, the state code length will increase.

CHAPTER 4 : HIERARCHICAL FINITE STATE MACHINES 67

As against the previous model, the binary code K(εv) containing all zeros must be
assigned to the main HGS. Therefore the HGS binary code length is K≥|log2V|,
where V is the number of HGSs used to described the algorithm.

4.3 Parallel HFSM

Now let’s consider how to perform various macrooperations in parallel. The
parallel finite state machine (PFSM) depicted in Figure 4.7 was proposed in
[Skyarov87] and was explored in [RocSklFer97].

Combinational Scheme

xL x1

yN y1

DR D1

τR τ1

PFSM
Memory

Register Rg1

Register RgV

Clock cycle

TV

T1

Figure 4.7 – Model of a pseudo-parallel finite state machine.

The memory of the PFSM (PFSM Memory) has R inputs DR,...,D1 and R outputs
τR,...,τ1 connected to the Combinational Scheme, and it is composed of V
registers, which are sequentially scanned by activating the respective sub-clocks
T1,…,TV (see Figure 4.7). V is the number of PHGSs used to describe the
algorithm and defines the maximum number of macrooperations implemented in
parallel. Inputs and outputs of the memory are common to all its registers.

In order to synchronise the parallel execution of macrooperations, the PFSM
Combinational Scheme has a set of SR flip-flops (Zi flip-flops), one for each
PHGS of the algorithm except for the PHGS Γ1 (for more details see PFSM
synthesis). In order to store the calculated value of logic functions it also has a set
of SR flip-flops (Θi flip-flops), one for each logic function of the algorithm.

The PFSM outputs can be persistent, i.e. being active during the entire clock cycle
or non-persistent meaning that they only will be active during one sub-clock Tj. In
order to provide persistent outputs, the PFSM must have a set of SR flip-flops to
store the microoperations.

The clock cycle (see Figure 4.7) of the control circuit is divided into V sub-clocks
and each such sub-clock is further divided into sub-clocks in order to provide the
proper internal synchronisation. Each sub-clock affects the respective register and
changes its state, if and only if the respective SR flip-flop is set.

68 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

The first pulse of the clock cycle changes the state of the register Rg1 that is
responsible for the main macrooperation. As a result the proper transition in the
PHGS Γ1 is performed. The next transition in the PHGS Γ1 will be carried out
with the first pulse of the next clock cycle. The second pulse causes a similar
transition in the PHGS Γ2, etc.

Suppose it is necessary to perform the macroinstruction Zi, which is composed of
more than one macrooperation. In this case the following sequence of actions
takes place:
1. for each macrooperation zj belonging to the macroinstruction Zi, the PHGS Γj

is asserted, i.e. its SR flip-flop is set, in order to activate the register j;

2. each following clock cycle causes the proper transitions in all asserted PHGSs,
because if a PHGS Γj is passive, i. e. its SR flip-flop is reset, the respective sub-
clock does not change its idle state. At the end of the clock cycle all
macrooperations of the macroinstruction Zi, will have been sequentially
executed;

3. the interrupted PHGS is in a waiting state, introduced for the purpose of
synchronisation, until all macrooperations of the macroinstruction Zi have
terminated and then resumes its execution.

This model has one constraint [Sklyarov87]. If a macrooperation is being executed
then it cannot be invoked again, because the respective register is being used. In
order that this constraint will be eliminated it is necessary to manage both
hierarchy and parallelism in the same machine and the two schemes shown in
Figure 4.4 and Figure 4.7 must be combined.

Indeed the parallel hierarchical finite state machine (PHFSM) presented in
Figure 4.8, is visualised as a set of Q individual stacks with common inputs and
outputs, where Q is equal to the total number of macrooperations that are
invoked in parallel, plus one for the main PHGS. Each stack can be managed
independently of the other stacks, i.e. increment and decrement operations are
individual for the respective stack.

Combinational Scheme

Code
Converter

xL x1

yN y1
yz1yzK

CSDR CSD1

CCDR

CCD1

DR D1

y+

y-

OR

OR

τR τ1

Parallel
Stack

Memory

Stack Memory1

Stack MemoryQ

Clock cycle

T1

TQ

Figure 4.8 – Model of a pseudo-parallel hierarchical finite state machine.

CHAPTER 4 : HIERARCHICAL FINITE STATE MACHINES 69

This machine uses the PFSM synchronisation mechanism when performing a
macroinstruction, which is composed of more than one macrooperation, but a
single macrooperation or a logic function invocation is performed in a new
hierarchical level like in the HFSM.

The PHFSM allows that a macrooperation can be executed in two different stacks
and each of them has its own register. However, there are still some restrictions. A
macrooperation that runs in parallel with others cannot invoke itself. This is
because the stack number, given by the sub-clock Tj, is used to distinguish if a
macrooperation is running in parallel or in a hierarchical invocation. If a
macrooperation is running in parallel and it is recursive, all its invocations will run
in the same stack and therefore it will not be possible to distinguish the first run
from the following recursive runs (see the PHFSM synthesis for more details).

Moreover, if in a certain period of time, a set of macrooperations is running in
parallel, each one of them can just invoke one of the others, eventually in parallel
with other macrooperations that are inactive at the moment. Furthermore, two
macrooperations running in parallel cannot invoke the same logic function at the
same time. Since there is only one flip-flop per logic function, it must be ensured
that a value already stored is used, before a new value will be stored.

4.4 Virtual HFSM

The implementation of a set of HGSs in a HFSM with stack memory allows to
create a regular structure where all external connections are known and can be
fixed for generally speaking an infinite number of applications (see Figure 4.4 and
Figure 4.5). In this case the particular customising of the scheme can be achieved
just by programming (or reprogramming) its components. The proposed models
if implemented with RAM or with field-programmable devices such as FPGAs,
can provide such new facilities as flexibility, extensibility and reuse of an algorithm
described by HGSs.

Flexibility means to modify a given behaviour in minimal time and with minimal
effort. Suppose that it is needed to modify a macrooperation call in an operational
node, for example zj instead of zi. Or that it is required to change completely the
functionality of an operational node, i.e. to change the active microoperations and
the macrooperation invoked in the node.

For the HFSM model 2 (Figure 4.4), in the first case it is only necessary to
reprogram the Code Converter, replacing the initial state addressed with the code
of zi with the initial state of the macrooperation zj. This way can also be used to
provide a flexible conditional node. It is possible to develop several versions of a
logic function and then to change, if necessary, from one version to another by
just reprogramming the initial state stored in the Code Converter.

70 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

In the second case it is necessary to reprogram the Combinational Scheme.
More specifically, to reprogram the component responsible for generating the
microoperations associated with the node. In order to change the macrooperation
invoked in the node, and alternatively to reprogram the Code Converter, the
macrooperation binary code generated in the node must be changed. Since the
microoperations and the macrooperation binary code are generated in the same
component, these two changes can be made altogether.

For the HFSM model 3, the first case can be done by reprogramming the Code
Converter inside the Selector (see Figure 4.6), replacing the HGS binary code
K(εi) with the HGS binary code K(εj) and the Decoder will activate the output
line REj instead of the output line REi. For the second case the Code Converter
and the component responsible for the generation of the microoperations must be
reprogrammed. In the Moore machine, that means to reprogram the Moore
Output Block, while for the Mealy machine that means to reprogram the RE
where it is implemented the operational node that must be modified (see Figure
4.5).

Extensibility means to define a behaviour and then to extend it in order to
improve something. Suppose that it is required to introduce a new operational
node or delete an existing one. For model 2 it means to reprogram the
Combinational Scheme, and for model 3 it is a question of reprogramming the
respective RE.

Moreover, extensibility and flexibility can be achieved with virtual control circuits,
which are able to replace virtual components of a control algorithm, such as
virtual HGSs, and to modify them if necessary. In order to simplify the
replacement of different components the HFSM model 3 provides a direct
association between HGSs and REs. If it is required to modify the HGS
behaviour or add/delete functionality, it is necessary to reprogram only the
respective RE or add/delete REs to the scheme.

For the PHFSM, flexibility and extensibility are more difficult to apply, since
changes in macrooperations invocation demands to reanalyse the PHGS in order
to ensure the parallelism synchronisation.

Reuse means that reusable components such as separate HGSs can be created
and they will be used for many different control algorithms which the designer
expects to create in the future. This can be done by investing a little extra effort in
the design of a library of reusable components that will facilitate the creation of
similar products.

Generally speaking any dynamically reconfigurable device is a virtual circuit, which
denotes that the same physical scheme can be used to implement different logic
circuits. The idea is to combine a flexible and extensible behavioural description,
i.e. HGSs, with an implementation based on virtual circuits such as FPGAs.

CHAPTER 4 : HIERARCHICAL FINITE STATE MACHINES 71

4.5 HFSM/PHFSM Synchronisation

As against of an ordinary FSM a HFSM/PHFSM has more complicated
synchronisation. Indeed it is necessary to synchronise the following events:
• transitions between states;

• fixing the output variables yN,...,y1 (microoperations);

• fixing the input variables xL,...,x1 (logic conditions);

• setting the Code Converter;

• incrementing or decrementing the stack pointer;

• fixing the calculated value of a logic function, i. e. loading the Extra Register
in the case of the HFSM, or setting/resetting the Zi and Θi SR flip-flops in the
case of the PHFSM.

There are many different kinds of synchronisation, but it should be considered
just one where microoperations and macrooperations can be combined at the
same operational node.

4.5.1 Synchronisation of a Moore HFSM

The synchronisation of a Moore HFSM, or a mixed Moore/Mealy machine,
model 2 is depicted in Figure 4.9 and it is based on the synchronisation presented
in [Sklyarov84] for the HFSM model 1.

transition
to am

transition from
am to as

Y(am) Y(as)

state am state as

X(am,as)am
Y(am)

as
Y(as)

output variables

fixing output variables yi and
setting the Code Converter

fixing input
variables xi

transition
from as

fixing the calculated value of the logic
function (loading the Extra Register)

y+or y-

asynchronous delays∆1
∆2

Figure 4.9 – Synchronisation of a Moore HFSM model 2.

72 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

The transition between states is synchronised by the low to high front of the
clock and the next state is stored in the Stack Memory, wherever the state as is
from the same or from a different hierarchical level than the state am (see Figure
4.9). After the delay of the Stack Memory the new state will be presented to the
Combinational Scheme. The output signals of the new state, microoperations yi,
Code Converter inputs yzi and the special signals y+ and y- are generated.

The first synchronisation pulse synclk1 sets the output variables yi and the Code
Converter inputs yzi. The time interval ∆1 must be bigger than the sum of all
delays involved in the generation of the signals mentioned above, in order to
ensure that the proper values are being fixed, i.e. the values of the actual state and
not of the previous state.

The second synchronisation pulse synclk2 is responsible for controlling the Stack
Memory pointer. If y+ or y- is activated, the stack pointer is incremented or
decremented, otherwise it will not be changed. When the stack pointer is
incremented the contents of the new top of the stack is output. If that register was
already used it holds the state a1 and the signal y- is activated. Because this
activation occurs after synclk2 it will be ignored.

On the high to low transition of the clock the inputs xi are fixed and with the new
inputs and the present state the Combinational Scheme will evaluate the next
state that will be stored on the Stack Memory at the next transition of the clock.

If a HGS is used to calculate a logic function, its returning value must be fixed on
the high to low transition of the clock, when the transition from the last state of
the HGS of the logic function to the interrupted state of the previous HGS
occurs. This value must be stable during the next clock cycle where it will be used
to decide the next state.

Because the microoperations and macrooperations are fixed at different periods of
time, this mechanism allows combining them at the same operational node.

The synchronisation of a HFSM model 3 is more sensitive with the control of the
stacks. That is why the signals y+ and y- are generated and fixed by the Code
Converter. It is similar to model 2 with the following differences:
• both stacks, State Stack Memory and HGS Stack Memory, are controlled

simultaneously by the signal synclk2;

• when the execution of a HGS is finishing (state a1) and returning to the
previous HGS (y- active), the code of the interrupted HGS is not known. But
this code is stored in the HGS Stack Memory and can be used if it is not
overwritten with any other HGS code. In order to prevent an unwanted HGS
code loading in transitions from the state a1 to any other state, it is necessary
to disable the clock that attacks the HGS Stack Memory when y- is active.
This is done by generating a special clock with an AND gate, with the clock
and the signal y- negated as inputs.

CHAPTER 4 : HIERARCHICAL FINITE STATE MACHINES 73

4.5.2 Synchronisation of a Mealy HFSM

The synchronisation of a Mealy HFSM model 2 depicted in Figure 4.10 is
different from the Moore machine in the sequence of events, because the Mealy
outputs are input dependent. Therefore, the synchronisation order of the three
synchronisation events associated with the inputs, the outputs and the stack
pointer must be shifted right.

The transition between states is synchronised by the low to high front of the
clock. The first synchronisation pulse synclk1 fixes the input signals xi. Then
after a certain amount of time the output signals associated with the state
transition produced by these new inputs, microoperations yi, Code Converter
inputs yzi and the special signals y+ and y- are generated.

The second synchronisation pulse synclk2 sets the output signals. The time
interval ∆2-∆1 must be bigger than the sum of delays involved in the generation of
the output signals, in order to ensure that the proper values are being fixed.

The clock, on its high to low transition, is responsible for controlling the pointer
of the Stack Memory. As a result the Stack Memory of the Mealy machine has
only one synchronisation signal, the clock, but used in both transitions. The low
to high controls the state storage while the high to low controls the stack pointer
increment/decrement operation. The returning value of a logic function must be
fixed like for a Moore machine.

transition
to am

transition from
am to as

state am state as

output variables

fixing output variables yi and
setting the Code Converter

fixing input variables xi

transition
from as

X(am,as)am as
Y(am,as)

Y(am,as) Y(as,at)

asynchronous delays∆1
∆2

y+or y-

fixing the calculated value of the logic
function (loading the Extra Register)

Figure 4.10 – Synchronisation of a Mealy HFSM model 2.

The Mealy HFSM model 3 synchronisation is similar to the Moore HFSM model
3 with the changes mentioned above.

74 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

4.5.3 Synchronisation of a PFSM

The synchronisation of a Moore PFSM is depicted in Figure 4.11. On the low to
high transition of the clock the machine switches from one register to the next
one. During each sub-clock, the output variables generated for the active state are
fixed on the low to high front of the first synchronisation pulse csclk, that it is
also used as the SR flip-flops clock. After fixing the input variables on the high to
low transition of the clock, the definitive next state is calculated. This state is
loaded, on the low to high transition of the second synchronisation pulse stlclk,
before the termination of the sub-clock.

transition
to zi

loading
state as

Y(am) Y(ak)

macrooperation zi
state am

X(am,as)am
Y(am)

as
Y(as)

output variables

fixing output variables yi and setting/resetting Zi and Θi SR flip-flops

fixing input
variables xi

transition
to zt

asynchronous
delays

∆1

macrooperation zj
state ak

∆2

loading next state of macrooperation zi

Figure 4.11 – Synchronisation of a Moore PFSM.

In the case of the Mealy PFSM the input variables must be fixed before the output
variables, i.e. the sequence of the two events is reversed.

4.5.4 Synchronisation of a PHFSM

The synchronisation of a Moore PHFSM, depicted in Figure 4.12, is based on the
PFSM synchronisation described in the previous paragraph (see Figure 4.11),
combined with the mechanism used to synchronise the switching between
hierarchical levels described for a Moore HFSM (see Figure 4.9).

On the low to high transition of the clock the machine switches from one stack
to the next one. The first synchronisation pulse cccsclk fixes the output variables,
the signal y+, sets the Code Converter and sets/resets the Zi and Θi flip-flops.

CHAPTER 4 : HIERARCHICAL FINITE STATE MACHINES 75

transition
to zi

loading
state as

Y(am) Y(ak)

macrooperation zi
state am

X(am,as)am
Y(am)

as
Y(as)

output variables

fixing output variables yi , y+, setting the Code Converter
and setting/resetting Zi and Θi SR flip-flops

fixing input
variables xi

transition
to zt

y+or y-

asynchronous
delays

∆1
∆2

macrooperation zj
state ak

∆3

loading next state of macrooperation zi

Figure 4.12 – Synchronisation of a Moore PHFSM.

The second synchronisation pulse spclk controls the stack pointer of the active
stack. On the high to low transition of the clock the inputs xi are fixed. The next
state is generated and loaded on the active stack on the low to high transition of
the third synchronisation pulse stlclk.

The signal y+ must be fixed for allowing that the hierarchical invocations can
work. When, during the sub-clock Tj, a macrooperation zk (or a logic function θk)
is invoked and must run in a new hierarchical level, the stack pointer of the stack j
is incremented and a new register is selected. This new register is clean (state a0)
and the Combinational Scheme will generate the entry state of the
macrooperation assigned to the stack j. As a result the signal y+ will be reset. But,
the Combinational Scheme must provide the state a0 in order to let pass the
state output by the Code Converter.

To obtain the desired performance, it is necessary to insert a multiplexer before
the lines DR,…,D1 exit the Combinational Scheme, controlled by the signal y+
and with the following behaviour: when y+ is negated the exit state will be the
calculated next state, while when y+ is asserted the output state will be a0. But, in
order to ensure this behaviour the signal y+ must be fixed during the sub-clock Tj.

In the case of the Mealy PHFSM, the synchronisation sequence of the first three
events must change like in a Mealy HFSM.

76 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

4.6 Application Field

Sophisticated field-programmable devices such as FPGAs, have gained a wide
acceptance because they can be applied to a wide range of applications, they can
be used to emulate an entire large hardware system using many interconnected
FPGAs and they can also be used as custom computing machines [BroRos96].

Since FPGAs provide a large number of logic gates and flip-flops that can be
connected in various ways, they can be tailored to implement any complex digital
system. Therefore they are the target technology for implementing a complete
system, i.e. the control unit and the datapath.

Besides, since the specification of embedded systems may change continuously
and designers must pay attention to such problems as the addition of new
functionality in the future [Edwards97], FPGAs should be used because some of
them can be reprogrammed as many times as the designer needs.

Moreover, it should be mentioned that the new dynamically reconfigurable FPGA,
such as Xilinx XC6200 [Xilinx97] might be customised on the fly to implement a
specific software function with very high performance. They can be
reprogrammed partially without suspending operation of other parts that do not
need to be reconfigured [Xilinx97]. This is achieved by specifying the desired
interconnections between logic components (gates, flip-flops, etc.) using SRAM.
Therefore, it is possible to use a FPGA with smaller logic resources than those
needed to implement the system.

A typical hardware architecture for an embedded system combines custom
hardware normally using ASICs with embedded software running on general-
purpose microcontrollers. The functionality of an embedded system is a trade-off
between performance and cost. Performance is achieved through the
implementation of tasks in custom hardware, while the decrease of the
manufacturing cost is achieved through the implementation of tasks in software.

Since FPGAs can be tailored to implement any complex system, they can replace
ASICs with gains in the manufacturing cost. On the other hand due to the use of
the HFSMs, complex control algorithms normally implemented in software can
migrate to hardware and therefore FPGAs can replace microcontroller-based
implementations with gains in performance.

Since the proposed HFSMs can create hardware systems that implement recursive
algorithms they can be used to create hardware engines that will speed up the
performance of software algorithms which have recursive solutions that are more
intuitive and efficient than iterative solutions, in the mathematical and database
fields for example.

CHAPTER 4 : HIERARCHICAL FINITE STATE MACHINES 77

4.7 Conclusions

HFSMs with stack memory can efficiently implement a hierarchical algorithm,
even a recursive algorithm, provided that the size of the stack is well dimensioned.
And if the next state and the output functions are implemented with
reprogrammable components such as RAMs or FPGAs, they can provide such
new facilities as flexibility, extensibility and reusability.

The introduction of the Code Converter in the HFSM model 2 (Figure 4.4), that
specifically and efficiently generates the entry state of each hierarchical level,
allows to separate the transition function of the machine in two, the transition
function between states at the same hierarchical level generated in the
Combinational Scheme and the transition function between different
hierarchical levels generated in the Code Converter. Therefore, the complexity of
the Combinational Scheme decreases, due to a decrease in the number of its
inputs and the HFSM becomes more flexible because it is possible to change
hierarchical transitions by just reprogramming the Code Converter. But, if a HGS
requires to be redesigned the Combinational Scheme must be reprogrammed.

In order to overcome that, the HFSM model 3 (Figure 4.5 and Figure 4.6)
provides an association between the set of HGSs and mutually exclusive
Reprogrammable Elements. Each RE can be autonomously modified in order
to respond to the respective HGS redesign and the HFSM functionality can be
easily extended or curtailed with the addition or deletion of REs. The dimension
of the stack memory is smaller because the local state code length decreases but
this model needs two stacks against one in the previous models.

Moreover, this model can be seen as the HFSM natural interpretation of the
hierarchical specification based on HGSs and since the Combinational Scheme
acquires a regular and modular structure it is more suitable for the implementation
of Mealy HFSMs in reprogrammable and reconfigurable control circuits, such as
FPGAs.

The proposed PHFSM model (Figure 4.8) eliminates some restrictions of the
PFSM (Figure 4.7) and can manage both hierarchy and pseudo-parallelism.

The implementation of HGSs (PHGSs) with HFSMs (PHFSMs) allows that a
regular structure, where all external connections are known and can be fixed for
generally speaking an infinite number of applications, can be created. With the
flexibility, extensibility and reusability provided by the proposed models, the
HFSMs (PHFSMs) can be seen as virtual circuits.

The synchronisation mechanism proposed for the HFSM can combine
microoperations and macrooperations at the same operational node, and
efficiently implement the transition between different levels in the hierarchy. And
the synchronisation proposed for the PHFSM allows combining the functionality
of the HFSM with the pseudo-parallel execution of macrooperations.

78 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

79

5 SYNTHESIS OF HIERARCHICAL FINITE STATE

MACHINES

Summary

Synthesis is the process of transforming a control unit specification with a set of
HGSs (PHGSs), into a logic scheme that will implement the HFSM (PHFSM)
models that were proposed in the previous chapter.

FSM synthesis involves the following steps: constructing a state transition table;
state encoding; combinational logic optimisation and design of the final scheme.
In the case of the parallel FSMs the synthesis process has an initial step to provide
proper synchronisation of parallel macrooperations. Since, all known methods of
logic synthesis can be applied to a state transition table, the purpose of this
chapter is to fully explain how to transform a hierarchical algorithm described by a
set of HGSs (PHGSs) to an ordinary state transition table, accordingly with the
HFSM (PHFSM) proposed models.

In order to perform this first step of logic synthesis, it is necessary to mark the set
of HGSs (PHGSs) with states, to record all transitions between the states in an
extended transition table and then to transform this table to ordinary form. Since
all these sub-steps have too many rules and are error prone, it is useful to consider
automatic generation of state transition tables that are correct by
construction. The methods of the tool SIMULHGS that provide the automatic
synthesis of a hierarchical algorithm described by a set of HGSs are presented.

80 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

5.1 Introduction

Synthesis is a process of design refinement where a more abstract specification,
such as a set of HGSs (PHGSs), is translated into a less abstract specification,
such as a logic scheme that will implement a HFSM (PHFSM).

The synthesis of hierarchical and parallel FSMs involves the following steps:
1. converting a given set of HGSs/PHGSs to a state transition table;
2. state encoding;
3. combinational logic optimisation and design of the final scheme.

In the case of parallel FSMs (hierarchical or not) the given set of PHGSs has to be
extended and transformed to a new set of PHGSs providing proper
synchronisation of parallel macrooperations, before converting it to a state
transition table.

The first step is divided into the three following sub-steps:
1.1. marking the set of HGSs/PHGSs with states;
1.2. recording all transitions between states in the extended state transition table;
1.3. transforming the extended table to ordinary form.

The marking rules for the new proposed models of HFSMs are based on the rules
defined for the HFSM model 1 presented in [Sklyarov84].

Let’s explain in detail the above sub-steps for all hierarchical and parallel FSMs
models proposed in the previous chapter.

5.2 Synthesis of a Moore HFSM

In a Moore machine, the outputs are associated with the states. Therefore, in
order to convert a set of HGSs to a Moore machine, the nodes that generate
outputs (microoperations and internal signals used to control the switching
between hierarchical levels) must be labelled with states. And since a HGS needs
an entry state to start its execution, if the first node of a HGS is a conditional
node that contains a logic condition, the node Begin is also marked with a state.

In order to mark the given set of HGSs (sub-step 1.1) for the Moore HFSM
model 2, it is necessary to perform the following actions:
• the label a0 is assigned to the node Begin and to the node End of the main

HGS (see the HGS Γ1 in Figure 5.1);

• the label a1 is assigned to all nodes End of HGSs Γ2,...,ΓV (see HGSs Γ2,...,Γ6
in Figure 5.1);

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 81

• the labels a2,a3,...,aM are assigned to the following nodes and inputs:
• the operational nodes in HGSs Γ1,...,ΓV (see HGSs Γ1,...,Γ6 of Figure 5.1);

• the inputs of conditional nodes, which contain logic functions, and which
directly follow either other conditional nodes, or operational nodes with
macrooperations (see state a12 in HGS Γ2 of Figure 5.1);

• the nodes Begin of HGSs Γ2,...,ΓV which have connections to conditional
nodes with logic conditions (see state a13 in HGS Γ3 of Figure 5.1);

• the input of a conditional node with a logic condition that follows a direct
connection from the node Begin of the main HGS (HGS Γ1);

• apart from a1, all the labels in the various HGSs must be unique;

• if any node (input) has already been labelled, it must not be labelled again.

After applying this procedure to the set of HGSs presented in Figure 3.7, the set
of HGSs depicted in Figure 5.1 labelled with the states a0,…,a20 (M=21) is
obtained.

In order to build the extended state transition table (sub-step 1.2) for the Moore
HFSM model 2, it is necessary to perform the actions listed below:
• record all transitions amX(am,as)as, where am∈{a2,...,aM}, as∈{a0,...,aM} and

X(am,as) is the product of input variables (logic conditions) and logic
functions which causes the transition from am to as;

• record all sets YZ(am)=Y(am)∪Z(am), which are subsets of the
microoperations Y(am) and the macrooperations Z(am) generated in the
operational node marked with the label am (see state a3 in Table 5.1). It is
acceptable that YZ(am)∩Z=∅ (see for example state a2 in Table 5.1) or
YZ(am)∩Y=∅ (see for example state a4 in Table 5.1). The main
macrooperation must be recorded for the state a0 (see state a0 in Table 5.1);

• record θ(am), which is the logic function generated in the input of the
conditional node marked with the label am (see state a12 in Table 5.1), or if the
input of the conditional node containing the logic function θk has not been
labelled, record θk, in all states af1,af2,... that have been assigned to nodes from
which follow direct arrow lines to the considered conditional node (see state a6
in Table 5.1);

• record θ(am)=1, which is the logic function calculated value generated in the
operational node marked with the label am (see state a19 in Table 5.1);

• each transition is recorded in one row of the structured table and all transitions
from the same state are grouped.

82 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

a3
b3

θ6

z4
z5

Begin

y2

y3 , y5 , z2

y1 , y4

y6 , y7 , y8

End

z3

x1

x2

0

x2

1

01

θ6

0

0

y3

1

Begin

y3 , y5

1

1

y1

End

x5

0

Begin

End

z3

y1 , y2

1

x2

y3 , y4

y7

0

End

1

x1

Begin

1

0
1

Γ1
Γ2

Γ3 Γ4

Begin

θ6 = 1 θ6 = 0

End

x3
1 0

Γ6

Begin

End

Γ5

0

x4

0

a0
b0

a2
b2

a4
b4

a6
b6

a5
b5

a7
b7

a8
b8

a0
b0

a9
b2

a10
b3

a11
b4

a12 b5

a1
b1

a1
b1

a1
b1

a1
b1

b2

a13
b2

a14
b3

a15
b4

a1
b1

a16
b2

a17
b3

a18
b2

a19
b3

a20
b4

Figure 5.1 – A set of HGSs marked for synthesis as a Moore machine (states ai for model 2, states bi for model 3).

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 83

After applying this sub-step to the set of HGSs depicted in Figure 5.1, the
extended state transition Table 5.1 is built. In order to convert the table from the
extended form to ordinary form (sub-step 1.3), it is necessary to perform the
following actions:
• generate y- in the state a1 (see Table 5.2);

• replace each macrooperation with its binary code K(εv), i. e. the extra outputs
yzi that control the Code Converter. Add the new output variable y+, except
for the main macrooperation (see for example state a3 in Table 5.2);

• replace each logic function θk, with its binary code K(εv) and add y+. If the
input of the conditional node containing the logic function θk has been labelled
with the state au, this change has to be made to the set Y(au) (see state a12 in
Table 5.2). If the input of the conditional node containing the logic function θk
has not been labelled, this change has to be made to the sets Y(af1),Y(af2),...
where the states af1,af2,... have been assigned to nodes from which follow direct
arrow lines to the considered conditional node (see state a6 in Table 5.2);

• replace all symbols θk in the column X(am,as) with the internal input variable
extra_x which represents the value of kθ (see states a6 and a12 in Table 5.2);

• replace all symbols θk=1 in the column Y(am) with the internal output variable
extra_y (see state a19 in Table 5.2). It should be done in order to return the
calculated value of θk from the called HGS to the calling HGS via the 1-bit
Extra Register (see the decomposition of the Combinational Scheme
depicted in Figure 6.2).

After applying this sub-step to the extended state transition Table 5.1, the ordinary
state transition Table 5.2 is obtained. Now, all known methods of logic synthesis
can be applied to this table to carry out steps 2 and 3.

It must be kept in mind, that the states a0 and a1 are used to switch between the
hierarchical levels of the HFSM. Therefore, these states do not assert any
microoperations and for both of them the Combinational Scheme must set to
zero the outputs CSDR,…,CSD1, i.e. it must generate the next state a0 (see Table
5.2).

In order to synthesise a Moore HFSM it is necessary to create the entry state
generation table of the Code Converter, that provides the entry state of each
HGS for the respective HGS binary code K(εv). For the binary code with all bits
set to zero, code K(εv) which is used to clear the Code Converter outputs, and
for all the remaining binary codes not in use, the Code Converter will output the
state a0 (see Table 5.3).

84 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Table 5.1 – Moore extended state transition table.

am { Y(am) } as X(am,as)
a0 {z1} a0 1
a1 a0 1
a2 {y2} a6

a7
a3
a4

1x 2x
1x 2x
1x 2x
1x 2x

a3 {y3,y5,z2} a5 1
a4 {z3} a5 1
a5 {y1,y4} a0 1
a6 {y6,y7,y8,θ6} a8

a5
6θ
6θ

a7 {z5} a8 1
a8 {y3} a0 1
a9 {y3,y4} a10 1
a10 {y7} a10

a11
1x
1x

a11 {z4} a12 1
a12 {θ6} a1

a9
6θ
6θ

a13 a14
a15

4x
4x

a14 {y3,y5} a15
a1

5x
5x

a15 {y1} a1 1
a16 {z3} a17 1
a17 {y1,y2} a1

a16
2x
2x

a18 a19
a20

3x
3x

a19 {θ6=1} a1 1
a20 a1 1

Table 5.2 – Moore ordinary state transition table.

am { Y(am) } as X(am,as)
a0 {yz1} a0 1
a1 {y-} a0 1
a2 {y2} a6

a7
a3
a4

1x 2x
1x 2x
1x 2x
1x 2x

a3 {y3,y5,yz2,y+} a5 1
a4 {yz2,yz1,y+} a5 1
a5 {y1,y4} a0 1
a6
{y6,y7,y8,yz3,yz2,y+}

a8
a5

xextra _
xextra _

a7 {yz3,yz1,y+} a8 1
a8 {y3} a0 1
a9 {y3,y4} a10 1
a10 {y7} a10

a11
1x
1x

a11 {yz3,y+} a12 1
a12 {yz3,yz2,y+} a1

a9
xextra _
xextra _

a13 a14
a15

4x
4x

a14 {y3,y5} a15
a1

5x
5x

a15 {y1} a1 1
a16 {yz2,yz1,y+} a17 1
a17 {y1,y2} a1

a16
2x
2x

a18 a19
a20

3x
3x

a19 { yextra _ } a1 1
a20 a1 1

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 85

Table 5.3 – Moore model 2 Code Converter table.

HGS Γv K(εv) [yzi] Initial State

3yz 2yz 1yz a0
z1

3yz 2yz 1yz a2
z2

3yz 2yz 1yz a9
z3

3yz 2yz 1yz a13
z4

3yz 2yz 1yz a16
z5

3yz 2yz 1yz a1
θ6

3yz 2yz 1yz a18
 3yz 2yz 1yz a0

For the HFSM model 3 the given set of HGSs (sub-step 1.1) has to be labelled
modularly, using the rules defined for model 2, i.e. the HGS Γi labelling starts
always with the state b2. In the case of a pure virtual macrooperation the node
Begin must be labelled with the state b2. The set of HGSs depicted in Figure 5.1
labelled with the states bi is obtained after applying this marking procedure.

The extended table is built (sub-step 1.2), one table for each HGS instead of just
one global table for the set of HGSs, in the same manner as for model 2, with the
exception that the macrooperations Z(am) and the logic functions θ(am) are not
recorded in the extended table. Only the microoperations Y(am) and the logic
functions assignment values are recorded.

The conversion to ordinary form (sub-step 1.3) applies the same rules of model 2
(see Table 5.4, Table 5.5, Table 5.6, Table 5.7, Table 5.8 and Table 5.9).

Like in the HFSM model 2, the states b0 and b1 are used to switch between the
hierarchical levels of the HFSM. Since the reprogrammable element is responsible
for generating the entry state of the respective HGS, the next state for both states
is the state b2 in all HGSs tables.

The Code Converter table generates the next HGS and the extra signals used to
control the stacks for each state of each HGS. If a state has to perform the
macrooperation zv (or the logic function θv) it generates the signal y+ and the
binary code K(εv), represented in the table by the HGS name. In all b1 states the
signal y- is generated. In this situation and because it is not possible to know
which HGS called the HGS that is finishing to run, the HGS binary code
generated is indifferent. For the remaining states it is output the binary code K(εv)
of the active HGS (see Table 5.10).

86 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Table 5.4 – RE1 Moore ordinary state transition table.

bm {Y(bm)} bs X(bm,bs)
b0 b2 1
b1 b2 1
b2 {y2} b6

b7
b3
b4

1x 2x
1x 2x
1x 2x
1x 2x

b3 {y3,y5} b5 1
b4 b5 1
b5 {y1,y4} b0 1
b6 {y6,y7,y8} b8

b5
xextra _
xextra _

b7 b8 1
b8 {y3} b0 1

Table 5.5 – RE2 Moore ordinary state transition table.

bm {Y(bm)} bs X(bm,bs)
b0 b2 1
b1 b2 1
b2 {y3,y4} b3 1
b3 {y7} b3

b4
1x
1x

b4 b5 1
b5 b1

b2
xextra _
xextra _

Table 5.6 – RE3 Moore ordinary state transition table.

bm {Y(bm)} bs X(bm,bs)
b0 b2 1
b1 b2 1
b2 b3

b4
4x
4x

b3 {y3,y5} b4
b1

5x
5x

b4 {y1} b1 1

Table 5.7 – RE4 Moore ordinary state transition table.

bm {Y(bm)} bs X(bm,bs)
b0 b2 1
b1 b2 1
b2 b3 1
b3 {y1,y2} b1

b2
2x
2x

Table 5.8 – RE5 Moore ordinary state transition table.

bm {Y(bm)} bs X(bm,bs)
b0 b2 1
b1 b2 1
b2 b1 1

Table 5.9 – RE6 Moore ordinary state transition table.

bm {Y(bm)} bs X(bm,bs)
b0 b2 1
b1 b2 1
b2 b3

b4
3x
3x

b3 { yextra _ } b1 1
b4 b1 1

Table 5.10 – Moore model 3 Code Converter table.

Active
HGS

State Next
HGS

Stack
Pointer

z1 b3
b4
b6
b7
all other states

z2
z3
θ6
z5
z1

y+
y+
y+
y+

z2 b1
b4
b5
all other states

--
z4
θ6
z2

y-

y+
y+

z3 b1
all other states

--
z3

y-

z4 b1

b2
all other states

--
z3
z4

y-

y+

z5 b1
all other states

--
z5

y-

θ6 b1

all other states
--
θ6

y-

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 87

5.3 Synthesis of a Mealy HFSM

In a Mealy machine, the outputs are associated with the transition between states.
Therefore, in order to convert a set of HGSs to a Mealy machine, the inputs of
nodes that follow nodes that generate outputs (microoperations and internal
signals used to control the switching between hierarchical levels) must be labelled
with states. Moreover, a node that invokes a macrooperation (logic function) must
has its input marked with a state in order to generate the appropriate internal
signals needed to fire up the macrooperation (logic function) execution.
Furthermore, since a HGS needs an entry state to start its execution, the node
after the node Begin is also marked with a state.

In order to mark the given set of HGSs (sub-step 1.1) for the Mealy HFSM model
2, it is necessary to perform the following actions:
• the label a0 is assigned to the node Begin and to the node End of the main

HGS (see the HGS Γ1 in Figure 5.2);

• the label a1 is assigned to all nodes End of HGSs Γ2,...,ΓV (see HGSs Γ2,...,Γ6
in Figure 5.2);

• the labels a2,a3,...,aM are assigned to the following inputs:
• inputs of nodes which directly follow the node Begin in all HGSs Γ1,...,ΓV

(see for example state a10 in HGS Γ2 of Figure 5.2);

• inputs of operational nodes with macrooperations (designate the subset
of respective labels as Amo) (see for example state a4 in HGS Γ1 of Figure
5.2);

• inputs which directly follow from output(s) of operational node(s) in HGS
Γ1,...,ΓV (see for example state a3 in HGS Γ1 of Figure 5.2);

• inputs of conditional nodes containing logic functions (designate the
subset of respective labels as Alf) (see for example state a7 in HGS Γ1 of
Figure 5.2);

• inputs which directly follow the true and false outputs of conditional nodes
containing logic functions (see states a6 and a9 in HGS Γ1 of Figure 5.2);

• apart from a1, all the labels in the various HGSs must be unique;

• if any input has already been labelled, it must not be labelled again.

The marking rules require more states for marking a set of HGSs as a Mealy
machine rather than for a Moore machine. Two states against one are needed for
operational nodes containing a macrooperation, but on the other hand, one state,
eventually none, against one is needed for operational nodes containing
microoperations. And for conditional nodes containing logic function three states
against one, eventually none are needed.

88 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

After applying this procedure to the set of HGSs presented in Figure 3.7, the set
of HGSs depicted in Figure 5.2 labelled with the states a0,…,a20 (M=21) is
obtained. For this example the number of states is the same for both machines.

θ6

z4
z5

Begin

y2

y3 , y5 , z2

y1 , y4

y6 , y7 , y8

End

z3

x1

x2

0

x2

1

01

θ6

0

0

y3

1

Begin

y3 , y5

1

1

y1

End

x5

0

Begin

End

z3

y1 , y2

1

x2

y3 , y4

y7

0

End

1

x1

Begin

1

0
1

Γ1
Γ2

Γ3 Γ4

Begin

θ6 = 1 θ6 = 0

End

x3
1 0

Γ6

Begin

End

Γ5

0

x4

0

a0
b0

a2 b2

a0
b0

a1
b1

a1
b1

a1
b1

a1
b1

b2

a1
b1

a3 b3

a4 b4 a5 b5

a6 b6 a7 b7

a8 b8

a9 b9

a10 b2

a11 b3

a12 b4

a13 b5

a14 b6

a15 b2

a16 b3

a17 b2

a18 b3

a19 b4

a20 b2

Figure 5.2 – A set of HGSs marked for synthesis as a Mealy machine (states ai for model 2, states bi for model 3).

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 89

For the second sub-step, which is recording all transitions between the states in
the extended state transition table, it is necessary to perform the following actions:
• record all transitions amX(am,as)YZ(am,as)as and amX(am,as)as, where

X(am,as) is the product of input variables (logic conditions) and logic
functions which causes the transition from am to as,
YZ(am,as)=Y(am,as)∪Z(am) which are subsets of the microoperations
Y(am,as) that have active values after the transition and the macrooperations
Z(am) invoked in the operational node whose input is marked with the label
am. It is acceptable that YZ(am,as)∩Z=∅ (see for example transition a2 to a3 in
Table 5.12), or YZ(am,as)∩Y=∅ (see for example transition a5 to a6 in Table
5.12). The main macrooperation must be recorded for the state a0 (see state a0
in Table 5.12). The transition amX(am,as)YZ(am,as)as passes exactly through
just one operational node (X(am,as)=1 is admissible), while the transition
amX(am,as)as passes only through conditional nodes. For some cases only the
latter transition can be used. In any other cases it is mandatory to perform the
former transition. If the state as∈Alf∪Amo then it is not allowed to pass any
transition through the state as. It can only either start any transition from the
state as or finish any transition in the state as;

• record all transitions amX(am,as)[θk=1]as, which is the logic function θk
calculated value generated in the operational node traversed by the transition
from am to as (see state a20 in Table 5.12);

• each transition is being recorded in one row of the structural table and all
transitions from the same state are grouped.

After applying this sub-step to the HGSs depicted in Figure 5.2, the extended
state transition Table 5.12 is built. In order to convert the table from extended
form to ordinary form (see Table 5.13) and to create the code converter table (see
Table 5.11), all the rules described for a Moore machine apply.

Table 5.11 – Mealy model 2 Code Converter table.

HGS Γv K(εv) [yzi] Initial State

3yz 2yz 1yz a0
z1

3yz 2yz 1yz a2
z2

3yz 2yz 1yz a10
z3

3yz 2yz 1yz a15
z4

3yz 2yz 1yz a17
z5

3yz 2yz 1yz a1
θ6

3yz 2yz 1yz a20
 3yz 2yz 1yz a0

90 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Table 5.12 – Mealy extended state transition table.

am as X(am,as) Y(am,as)
a0 a0 1 z1
a1 a0 1
a2 a3 1 y2
a3 a7

a8
a4
a5

1x 2x
1x 2x
1x 2x
1x 2x

y6,y7,y8

a4 a6 1 y3,y5,z2
a5 a6 1 z3
a6 a0 1 y1,y4
a7 a9

a6
6θ
6θ

θ6
θ6

a8 a9 1 z5
a9 a0 1 y3
a10 a11 1 y3,y4
a11 a12 1 y7
a12 a12

a13
1x
1x

y7

a13 a14 1 z4
a14 a1

a10
6θ
6θ

θ6
θ6

a15 a16
a1

4x
4x

y3,y5
y1

a16 a1
a1

5x
5x

y1

a17 a18 1 z3
a18 a19 1 y1,y2
a19 a1

a17
2x
2x

a20 a1
a1

3x
3x

θ6=1

Table 5.13 – Mealy ordinary state transition table.

am as X(am,as) Y(am,as)
a0 a0 1 yz1
a1 a0 1 y-
a2 a3 1 y2
a3 a7

a8
a4
a5

1x 2x
1x 2x
1x 2x
1x 2x

y6,y7,y8

a4 a6 1 y3,y5,yz2,y+
a5 a6 1 yz2,yz1,y+
a6 a0 1 y1,y4
a7 a9

a6
xextra _
xextra _

yz3,yz2,y+
yz3,yz2,y+

a8 a9 1 yz3,yz1,y+
a9 a0 1 y3
a10 a11 1 y3,y4
a11 a12 1 y7
a12 a12

a13
1x
1x

y7

a13 a14 1 yz3,y+
a14 a1

a10
xextra _
xextra _

yz3,yz2,y+
yz3,yz2,y+

a15 a16
a1

4x
4x

y3,y5
y1

a16 a1
a1

5x
5x

y1

a17 a18 1 yz2,yz1,y+
a18 a19 1 y1,y2
a19 a1

a17
2x
2x

a20 a1
a1

3x
3x

yextra _

All the rules defined above for the Mealy HFSM model 2 in conjunction with the
particular aspects presented in the Moore HFSM model 3, apply for the Mealy
HFSM model 3. After the marking sub-step the set of HGSs depicted in Figure
5.2 labelled with the states bi is obtained and the set of tables Table 5.14, Table
5.15, Table 5.16, Table 5.17, Table 5.18 and Table 5.19 are obtained after applying
the sub-steps 1.2 and 1.3. The Mealy Code Converter table is generated as for the
Moore machine (see Table 5.20).

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 91

Table 5.14 – RE1 Mealy ordinary state transition table.

bm bs X(bm,bs) Y(bm,bs)
b0 b2 1
b1 b2 1
b2 b3 1 y2
b3 b7

b8
b4
b5

1x 2x
1x 2x
1x 2x
1x 2x

y6,y7,y8

b4 b6 1 y3,y5
b5 b6 1
b6 b0 1 y1,y4
b7 b9

b6
xextra _
xextra _

b8 b9 1
b9 b0 1 y3

Table 5.15 – RE2 Mealy ordinary state transition table.

bm bs X(bm,bs) Y(bm,bs)
b0 b2 1
b1 b2 1
b2 b3 1 y3,y4
b3 b4 1 y7
b4 b4

b5
1x
1x

y7

b5 b6 1
b6 b1

b2
xextra _
xextra _

Table 5.16 – RE3 Mealy ordinary state transition table.

bm bs X(bm,bs) Y(bm,bs)
b0 b2 1
b1 b2 1
b2 b3

b1
4x
4x

y3,y5
y1

b3 b1
b1

5x
5x

y1

Table 5.17 – RE5 Mealy ordinary state transition table.

bm bs X(bm,bs) Y(bm,bs)
b0 b2 1
b1 b2 1
b2 b1 1

Table 5.18 – RE4 Mealy ordinary state transition table.

bm bs X(bm,bs) Y(bm,bs)
b0 b2 1
b1 b2 1
b2 b3 1
b3 b4 1 y1,y2
b4 b1

b2
2x
2x

Table 5.19 – RE6 Mealy ordinary state transition table.

bm bs X(bm,bs) Y(bm,bs)
b0 b2 1
b1 b2 1
b2 b1

b1
3x
3x

yextra _

Table 5.20 – Mealy model 3 Code Converter table.

Active
HGS

State Next
HGS

Stack
Pointer

z1 b4
b5
b7
b8
all other states

z2
z3
θ6
z5
z1

y+
y+
y+
y+

z2 b1
b5
b6
all other states

--
z4
θ6
z2

y-

y+
y+

z3 b1
all other states

--
z3

y-

z4 b1

b2
all other states

--
z3
z4

y-

y+

z5 b1
all other states

--
z5

y-

θ6 b1

all other states
--
θ6

y-

92 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

5.4 Synthesis of a Mixed Moore/Mealy HFSM

If a set of HGSs contains many macrooperation and logic function invocations, as
against an ordinary FSM, the synthesised Mealy HFSM has more states than
Moore. This is due to the fact that in a Moore HFSM, in opposition to Mealy, it is
possible to use the same state to generate the microoperations and to fire up the
execution of a macrooperation. But on the other hand, it is more convenient to
use a Mealy HFSM to implement a logic function that does not invoke any other
logic functions, i.e. that is mainly composed with conditional nodes and few
assignment nodes, in order to spare states and to speed up its evaluation.

Therefore, a mixed Moore/Mealy HFSM is proposed in order to take the better of
the two machines. In this mixed HFSM, the calculated value of a logic function
extra_y is a Mealy output generated in the appropriate state transition (see
transition a18 x3 a1 in Table 5.21).

This mixed Moore/Mealy model marking is depicted in Figure 5.3. The ordinary
state transition table, for the HFSM model 2, is the combination of Table 5.2 and
Table 5.13, and it is presented in Table 5.21∗. Its Code Converter table is the
same as for the Moore HFSM presented in Table 5.3.

Table 5.21 – Mixed Moore/Mealy ordinary state transition table.

∗ Due to space limitation Mealy and Moore outputs are presented altogether in the column
{Y(am)/Y(am,as)}.

am {Y(am)/Y(am,as)} as X(am,as)
a0 {yz1} a0 1
a1 {y-} a0 1
a2 {y2} a6

a7
a3
a4

1x 2x
1x 2x
1x 2x
1x 2x

a3 {y3,y5,yz2,y+} a5 1
a4 {yz2,yz1,y+} a5 1
a5 {y1,y4} a0 1
a6
{y6,y7,y8,yz3,yz2,y+}

a8
a5

xextra _
xextra _

a7 {yz3,yz1,y+} a8 1
a8 {y3} a0 1
a9 {y3,y4} a10 1

a10 {y7} a10
a11

1x
1x

a11 {yz3,y+} a12 1
a12 {yz3,yz2,y+} a1

a9
xextra _
xextra _

a13 a14
a15

4x
4x

a14 {y3,y5} a15
a1

5x
5x

a15 {y1} a1 1
a16 {yz2,yz1,y+} a17 1
a17 {y1,y2} a1

a16
2x
2x

a18 { yextra _ } a1
a1

3x
3x

The mixed Moore/Mealy HFSM model 3 for this example is implemented with
the Zi Moore tables (Table 5.4, Table 5.5, Table 5.6, Table 5.7, Table 5.8), the Θ6
Mealy table (Table 5.19), and the Moore Code Converter table (Table 5.10).

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 93

a3
b3

θ6

z4
z5

Begin

y2

y3 , y5 , z2

y1 , y4

y6 , y7 , y8

End

z3

x1

x2

0

x2

1

01

θ6

0

0

y3

1

Begin

y3 , y5

1

1

y1

End

x5

0

Begin

End

z3

y1 , y2

1

x2

y3 , y4

y7

0

End

1

x1

Begin

1

0
1

Γ1
Γ2

Γ3 Γ4

Begin

θ6 = 1 θ6 = 0

End

x3
1 0

Γ6

Begin

End

Γ5

0

x4

0

a0
b0

a2
b2

a4
b4

a6
b6

a5
b5

a7
b7

a8
b8

a0
b0

a9
b2

a10
b3

a11
b4

a12 b5

a1
b1

a1
b1

a1
b1

a1
b1

b2

a13
b2

a14
b3

a15
b4

a1
b1

a16
b2

a17
b3

a18 b2

Figure 5.3 – A set of HGSs marked for synthesis as a mixed Moore/Mealy machine

(states ai for model 2, states bi for model 3).

94 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

5.5 Synthesis of a PFSM

Like it was already mentioned, the synthesis of the PFSM must start by providing
proper synchronisation of parallel macrooperations. In order to extend and
transform the set of PHGSs for a parallel non-hierarchical FSM implementation it
is necessary to perform the following steps [Sklyarov87]:
• to add a new group of nodes after any node of a PHGS, containing

macrooperations. The first is an empty operational node, i.e. it does not hold
any operations. The other nodes are conditional nodes, one for each
macrooperation, and each one holding a logic condition Zi. The logic
condition Zi is asserted (“1”) if the respective PHGS Γi is running and it is
negated (“0”) if the PHGS Γi has been terminated. This group provides the
proper suspension of the PHGS, which is invoking the macrooperations, until
all macrooperations will end their execution. If at least one macrooperation is
still active the transition from the considered above empty node is not allowed.
After all macrooperations are passive the ordinary execution of the PHGS will
continue (see PHGS Γ1 in Figure 5.5);

• to add a new group of nodes composed of two operational and one
conditional nodes, before any node of a PHGS containing a logic function (see
PHGS Γ2 in Figure 5.5). The first rectangular nodes enables the logic function
PHGS, asserting its logic condition, and it is designated by Θk for the logic
function θk. The latter two nodes are used in order to suspend the executing
PHGS until the logic function will be calculated;

• to add after the node Begin, in all PHGSs except for the PHGS Γ1, the
conditional node which contains for the PHGS Γi the logic condition Zi (see
Figure 5.5). If Zi = 1 the PHGS Γi must be activated. If Zi = 0 the PHGS Γi
must be in passive (idle) state. This node is used in order to synchronise the
execution of different PHGSs;

• to generate a special signal, which is designated Zi* for the PHGS Γi, before
the node End in all PHGSs apart from the PHGS Γ1 (see Figure 5.5).
Sometimes, an extra operational node must be added for that purpose (see
PHGS Γ2 in Figure 5.5). This signal is used in order to reset the associated
logic condition considered in the previous item.

After applying these rules to the set of PHGSs presented in Figure 5.4, the set of
extended PHGSs depicted in Figure 5.5 is obtained.

Since the FSM memory is scanned by activating the respective sub-clocks
T1,…,TV (see Figure 4.7), the parallel machine needs a counter and a decoder to
generate the proper sequence of pulses. Assuming that, during the clock Tv the
PHGS Γv is processed and the counter binary code can be used to identify the
macrooperation (or logic function) that is running. Hence, each extended PHGS
should be marked separately in order to reduce the complexity of state encoding.

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 95

Therefore, the rules defined for the HFSM model 3 can be applied to mark the
extended set of PHGSs, with only one difference. The label a0 is assigned to the
nodes Begin and End of all PHGSs (see Figure 5.5).

θ4

y1 , y6

y3 , y4

y7 , y8

0

End

1

x4

Begin

1

0

Γ2

Begin

θ4 = 0 θ4 = 1

End

x3

Γ4

Begin

y1 , y2

y5 , y6

End

Γ3
1

x4 1

0

0

Begin

y1

z2 , z3

y3 , y4

End

y2

x1

x2

0

x2

1

01

0

1

Γ1

z2

Figure 5.4 – A set of PHGSs for implementing in a PFSM.

To create the extended state transition Table 5.22, it is necessary to apply the same
actions as for the HFSM. And to convert it to the ordinary state transition Table
5.23 it is necessary to perform the following actions:
• replace each macrooperation zi (logic function θi) invocation, with the signal

Zi. Each macrooperation (logic function), except the PHGS Γ1 has a SR flip-
flop that holds its state (running or passive). The signal Zi sets the flip-flop and
enables the macrooperation (logic function) to run, while the signal Zi* resets
the flip-flop and disables the macrooperation (logic function);

96 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

• It is also needed a SR flip-flop per logic function to hold its calculated value.
Replace all symbols θk=1 in the column Y(am) with the signal kΘ (setting the
θk SR flip-flop), and all symbols θk=0 with the signal *

kΘ (resetting the θk SR
flip-flop);

• replace all symbols kθ and kθ in the column X(am,as) with the signals kΘ and
kΘ respectively, that represent the value stored in the θk SR flip-flop.

Begin

y1 , y2

y5 , y6 , Z3
*

End

Γ3

Z3

0

1

Begin

θ4 = 0 , Z4
* θ4 = 1 , Z4

*

End

x3

Γ4

1

x4
1

0

0

Z4

0

1

Begin

y1

z2 , z3

y3 , y4

End

y2

x1

x2

0

x2

1

0

1

Γ1

z2

Z2

Z3

0

1
1

0

1 0

Z2

1

a0

a1

a2 a3
a6

a4

a5

a7

a0

a0

a0a0

a1

a2
a1 a2

a0

BeginΓ2

θ4

y1 , y6

y3 , y4

y7 , y8

0

End

1

x4

1

Z2

0

1

Θ4 Γ4

Z4

1

0

Z2
*

0

a0

a1

a2

a0

a3

a4

a5

a6

a7

0

Figure 5.5 – A set of extended PHGSs marked for synthesis as a Moore PFSM.

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 97

Table 5.22 – PFSM extended state transition table.

εv am { Y(am) } as X(am,as)
z1 a0 a1 1
z1 a1 {y1} a6

a0
a2
a3

1x 2x
1x 2x
1x 2x
1x 2x

z1 a2 {z2,z3} a4 1
z1 a3 {y2} a5 1
z1 a4 a4

a4
a5

2Z
2Z 3Z
2Z 3Z

z1 a5 {y3,y4} a0 1
z1 a6 {z2} a7 1
z1 a7 a7

a0
2Z
2Z

z2 a0 a0
a1

2Z
2Z

z2 a1 {y3,y4} a2 1
z2 a2 {y7,y8} a2

a3
4x
4x

z2 a3 {y1,y6} a4 1
z2 a4 {θ4} a5 1
z2 a5 a5

a6
4Z
4Z

z2 a6 a7
a1

4θ
4θ

z2 a7 { *
2Z } a0 1

z3 a0 a0
a1

3Z
3Z

z3 a1 {y1,y2} a2 1
z3 a2 {y5,y6, *

3Z } a0 1
z4 a0 a0

a1
a1
a2

4Z
4Z 3x
4Z 3x 4x
4Z 3x 4x

z4 a1 {θ4=0, *
4Z } a0 1

z4 a2 {θ4=1, *
4Z } a0 1

Table 5.23 – PFSM ordinary state transition table.

εv am { Y(am) } as X(am,as)
z1 a0 a1 1
z1 a1 {y1} a6

a0
a2
a3

1x 2x
1x 2x
1x 2x
1x 2x

z1 a2 { 2Z , 3Z } a4 1
z1 a3 {y2} a5 1
z1 a4 a4

a4
a5

2Z
2Z 3Z
2Z 3Z

z1 a5 {y3,y4} a0 1
z1 a6 { 2Z } a7 1
z1 a7 a7

a0
2Z
2Z

z2 a0 a0
a1

2Z
2Z

z2 a1 {y3,y4} a2 1
z2 a2 {y7,y8} a2

a3
4x
4x

z2 a3 {y1,y6} a4 1
z2 a4 { 4Z } a5 1
z2 a5 a5

a6
4Z
4Z

z2 a6 a7
a1

4Θ
4Θ

z2 a7 { *
2Z } a0 1

z3 a0 a0
a1

3Z
3Z

z3 a1 {y1,y2} a2 1
z3 a2 {y5,y6, *

3Z } a0 1
z4 a0 a0

a1
a1
a2

4Z
4Z 3x
4Z 3x 4x
4Z 3x 4x

z4 a1 { *
4Θ , *

4Z } a0 1
z4 a2 { 4Θ , *

4Z } a0 1

98 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

5.6 Synthesis of a PHFSM

The synthesis of the PHFSM involves the same steps considered for the PFSM. In
order, to transform the set of PHGSs to extended form the parallelism and the
hierarchy must be combined. Logic functions and a solo macrooperation
invocations should be implemented taking advantage of the hierarchy, while the
invocation of a set of macrooperations must be implemented in parallel.

Constructing extended PHGSs for the PHFSM involves the following steps:
• to add a new group of nodes, after any node of the PHGS containing more

than one macrooperation, in order to perform the same synchronisation of
parallelism of the PFSM. Like it was explained for the PFSM, the first is an
empty operational node and the others are conditional nodes holding the logic
conditions Zi (see PHGS Γ1 in Figure 5.7);

• it is not necessary to add any synchronisation nodes, after a node containing
just one macrooperation or before a node containing a logic function (see for
example z5 in PHGS Γ1 in Figure 5.7);

• to add after the node Begin, in all PHGSs implementing macrooperations that
run in parallel except for the PHGS Γ1, the conditional node, which contains
for the PHGS Γi the logic condition Zi. This node is used in order to
synchronise the execution of different macrooperations in parallel (see PHGS
Γ2, Γ3 and Γ4 in Figure 5.7);

• to add before the node End, in all PHGSs implementing macrooperations that
run in parallel, an operational node which contains for the PHGS Γi the special
signal Zi*. This signal is used in order to reset the associated logic condition
considered in the previous item (see PHGS Γ2 in Figure 5.7). This node is not
necessary, if an operational node containing only microoperations is situated
right before the node End (see PHGS Γ4 in Figure 5.7);

• to add before the node End, in all PHGSs implementing logic functions and
macrooperations that never run in parallel, an operational node which contains
for the PHGS Γi the special signal Zi-. This signal is used in order to return
back to the previous hierarchical level. This node is not necessary in the two
following cases. In the case of a PHGS implementing a macrooperation, the
signal can be generated in an operational node containing only
microoperations, situated right before the node End (see PHGS Γ5 in Figure
5.7). In the case of a PHGS implementing a logic function, and if all the paths
from the node Begin to the node End pass through an operational
assignment node, the signal can be generated in all the assignment nodes (see
PHGS Γ6 in Figure 5.7);

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 99

• to add a group of nodes composed of one conditional node and two
operational nodes, right before the node End in all PHGSs implementing
macrooperations that run in parallel and that are invoked alone. The
conditional node is to detect if the macrooperation Zi is running in parallel in
the stack i, or alone in any stack but i. The logic condition is given by the
counter binary code of the sub-clock Ti. The two operational nodes are needed
to generate the two special signals mentioned in the two previous items (see
PHGS Γ3 in Figure 5.7).

After applying these rules to the set of PHGSs presented in Figure 5.6, the
extended set of PHGSs depicted in Figure 5.7 is obtained.

y1 , y2 , z3

End

BeginΓ2Begin

y1

z2 , z3

End

z3 , z4

x1

x2

0

x2

1

01

0
1

Γ1

z5

Γ3 Begin

y3 , y4

0

End

x3

1

Begin

z3

y7 , y8

End

Γ5Begin

y5 , y6

0

End

Γ4

θ6

1

y1 , y2

Begin

θ6 = 0 θ6 = 1

End

x3

Γ6

1

x4 1

0

0

Figure 5.6 – A set of PHGSs for implementing in a PHFSM.

100 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Begin

y1

z2 , z3

End

z3 , z4

x1

x2

0

x2

1

01

0

1

Γ1

z5

Z2

Z3

0

1
1 Z3

Z4

0

1
1

0

0

a0

a1

a5

a2

a3

a4
a6

a0

y1 , y2 , z3

End

BeginΓ2

Z2

0

1

Z2
*

Begin

z3

y7 , y8 , Z5
-

End

Γ5

a0

a0

a7

a8

a16

a17

a0

Begin

y3 , y4

0

End

Γ3

x3

1

Z3

0

1

Z3
*

a0

a0

a9

a10

a11

T3

Z3
-

0

1

a12

Γ4 Begin

y5 , y6

0

End

θ6

1

Z4

0

1

y1 , y2 , Z4
*

a0

a0

a13

a14

a15

a19 θ6 = 0 , Θ6
-

Begin

θ6 = 1 , Θ6
-

End

x3

Γ6

1

x4 1

0

0

a0

a18

a20

Figure 5.7 – A set of extended PHGSs marked for synthesis as a Moore PHFSM.

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 101

When a macrooperation zi is invoked in parallel it will run in the stack i, during the
sub-clock Ti. However, if it is invoked alone it will run in another stack but the
stack i. Thus, the counter binary code cannot be used to identify the
macrooperation (logic function) that is running.

Therefore, the set of extended PHGSs should be marked globally, applying the
rules defined for the HFSM model 2 with the following differences:
• the label a0 is assigned to the nodes Begin and End of all PHGSs that

implement macrooperations that are invoked in parallel and to the node End
of all remaining PHGSs (see Figure 5.7);

• a macrooperation zi that is invoked in parallel and alone needs an entry state
after the extra conditional node inserted for synchronisation purposes. If the
node or input of the node, after the conditional node Zi, is not marked yet it
needs a label (see state a9 in PHGS Γ3 of Figure 5.7).

The construction of the extended state transition table is straightforward applying
the rules of the HFSM model 2. But since the transitions from the state a0 depend
on the macrooperation, the state has to be prefixed with the macrooperation
name. Table 5.24 represents the Moore extended transition table for the set of
PHGSs depicted in Figure 5.7.

In order to transform the extended table to ordinary form, in the case of a Moore
machine, the following actions must be performed:
• merge all transitions zi a0 in just one transition from the state a0, by prefixing

the logic condition, iZ or iZ in the column X(am,as) by the counter binary
code of the sub-clock Ti, denoted by iT (see state a0 in Table 5.25);

• replace each macrooperation that is invoked alone with its binary code K(εv)
and add the signal y+ (see for example state a6 in Table 5.25);

• replace each logic function θk with its binary code K(εv) and add y+ (see state
a13 in Table 5.25). Apply the same rules defined for logic functions in the
HFSM;

• replace each macrooperation zi invoked in parallel, with the signal Zi (see state
a2 in Table 5.25);

• replace all symbols θk=1 in the column Y(am) with the signal kΘ , and all
symbols θk=0 with the signal *

kΘ (see states a19 and a20 respectively in Table
5.25);

• replace all symbols kθ and kθ in the column X(am,as) with the signals kΘ and
kΘ respectively (see state a13 in Table 5.25);

• replace all symbols Zi- with the signal y- (see state a12 in Table 5.25).

After applying these rules to Table 5.24, the ordinary state transition Table 5.25 is
obtained.

102 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Table 5.24 – PHFSM extended state transition table.

am { Y(am) } as X(am,as)
z1 a0 a1 1
z2 a0 a7

a0
2Z
2Z

z3 a0 a9
a0

3Z
3Z

z4 a0 a13
a0

4Z
4Z

a1 {y1} a6
a0
a2
a4

1x 2x
1x 2x
1x 2x
1x 2x

a2 {z2,z3} a3 1
a3 a3

a3
a0

2Z
2Z 3Z
2Z 3Z

a4 {z3,z4} a5 1
a5 a5

a5
a0

3Z
3Z 4Z
3Z 4Z

a6 {z5} a0 1
a7 {y1,y2,z3} a8 1
a8 { *

2Z } a0 1
a9 a11

a12
a10

3x 3T
3x 3T
3x

a10 {y3,y4} a11
a12

3T
3T

a11 { *
3Z } a0 1

a12 { −
3Z } a0 1

a13 {θ6} a15
a14

6θ
6θ

a14 {y5,y6} a15 1
a15 {y1,y2, *

4Z } a0 1
a16 {z3} a17 1
a17 {y7,y8, −

5Z } a0 1
a18 a19

a19
a20

3x
3x 4x
3x 4x

a19 {θ6=0, −Θ 6 } a0 1
a20 {θ6=1, −Θ 6 } a0 1

Table 5.25 – PHFSM ordinary state transition table.

am { Y(am) } as X(am,as)
a0 a1

a7
a0
a9
a0
a13
a0

1T
2T 2Z
2T 2Z
3T 3Z
3T 3Z
4T 4Z
4T 4Z

a1 {y1} a6
a0
a2
a4

1x 2x
1x 2x
1x 2x
1x 2x

a2 { 2Z , 3Z } a3 1
a3 a3

a3
a0

2Z
2Z 3Z
2Z 3Z

a4 { 3Z , 4Z } a5 1
a5 a5

a5
a0

3Z
3Z 4Z
3Z 4Z

a6 {yz3,yz1,y+} a0 1
a7 {y1,y2,yz2,yz1,y+} a8 1
a8 { *

2Z } a0 1
a9 a11

a12
a10

3x 3T
3x 3T
3x

a10 {y3,y4} a11
a12

3T
3T

a11 { *
3Z } a0 1

a12 {y-} a0 1
a13 {yz3,yz2,y+} a15

a14
6Θ
6Θ

a14 {y5,y6} a15 1
a15 {y1,y2, *

4Z } a0 1
a16 {yz2,yz1,y+} a17 1
a17 {y7,y8,y-} a0 1
a18 a19

a19
a20

3x
3x 4x
3x 4x

a19 { *
6Θ ,y-} a0 1

a20 { 6Θ ,y-} a0 1

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 103

In order to synthesise a PHFSM, it is necessary to create the entry state generation
table of the Code Converter (see Table 5.26), that provides the entry state of each
PHGS for the respective PHGS binary code K(εv), in the same manner as for the
HFSM model 2. However, it is necessary to keep in mind, that the entry state of
the macrooperation zi that is also invoked in parallel, is the first state after the
conditional node Zi (see states a7, a9 and a13 in Table 5.26).

Table 5.26 – Moore PHFSM Code Converter table.

PHGS Γv K(εv) [yzi] Initial State

3yz 2yz 1yz a0
z1

3yz 2yz 1yz a1
z2

3yz 2yz 1yz a7
z3

3yz 2yz 1yz a9
z4

3yz 2yz 1yz a13
z5

3yz 2yz 1yz a16
θ6

3yz 2yz 1yz a18
 3yz 2yz 1yz a0

5.7 Automatic Synthesis of a HFSM

The first step of logic synthesis has a lot of rules according to the HFSM model
chosen for implementation, so it will be useful to provide automatic generation
of state transition tables that are correct by construction.

After the synthesis, extra states can be inserted in order to split transitions, extra
states that can be removed afterwards. In both situations the synthesis methods
are invoked automatically to synthesise again the new machine. In this situation
the marking step must be skipped. To accomplish it, all synthesis methods have
the parameter statemark. Its default value 1 forces the marking step to be
performed.

The automatic synthesis of a HFSM is divided in 3 steps: marking the set of
HGSs; generating the state transition table; generating the Code Converter table.

5.7.1 Marking a Hierarchical Algorithm

When marking a set of HGSs for synthesis as a Moore or a Mealy machine, it
must be kept in mind that the HFSM model 3 demands marking each HGS
separately. This detail however can be handled inside the marking Graphscheme
method, without the need of two different methods for each machine.

104 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

5.7.1.1 Marking for synthesis as a Moore HFSM

Before marking the HGS Cleanstategs() cleans any previous marking.
Moorestatehgs() starts to check if the set of HGS has any logic functions. In
affirmative case the user can choose to synthesise them as Moore or as Mealy
machines.

If Moorestategs() is invoked for marking a HGS for the HFSM model 2, the
HGS initial state is the state after the last one used in the previous HGS, except
for the main HGS that is 2. And the total number of states is stored in
hgsnstates. For the HFSM model 3 the HGS initial state is always 2 and the
number of states used to mark the HGS is stored in gsnstates.

The Moore marking rules depend on the type of the nodes. Exceptionally they can
also depend on the following node or the previous nodes. So the nodes can be
marked individually without the need to traverse the HGS. Moorestatenode() is
invoked for all nodes of the HGS and applies the following marking rules:
• it is not necessary to mark a logic function node if the nodes that are in the

back of it are nodes that hold only microoperations. But to take that decision
is necessary to know the type of all the nodes that are pointing to a logic
function node, so these nodes are left to the end. When marking a node that is
pointing to a logic function, and according to its type, a flag is placed in the
logic function node. The flag can have two values: ignore state -2 and need
state -3 that has precedence over the ignore state. After marking all the other
nodes, the logic function nodes are inspected and only those who have the flag
need state are marked;

• if the HGS is the main HGS the nodes Begin and End are marked with the
state 0, otherwise the node Begin is only marked if it is pointing to a
conditional node with an input condition and the node End is marked with
the state 1;

• all remaining operational nodes are marked. Any operational node that is
pointing to a logic function node calls Needstatenode() to flag that the logic
function needs a state, except the nodes that hold only microoperations that
call Ignorestatenode() to flag that the logic function does not need a state;

• conditional nodes are not marked, but they also call Needstatenode() when
they are pointing to a logic function node.

Setstatenode() marks the node with a state, if it is not marked yet, and
increments the state number. It has a second parameter to indicate if the node is
marked automatically or manually. The default value 1 means automatic mode.

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 105

5.7.1.2 Marking for synthesis as a Mealy HFSM

The Mealy machine method Mealystatehgs() is simplified when compared with
the Moore machine, because all HGSs are marked for synthesis as Mealy machines
using the method Mealystategs().

In the Mealy machine the marking rules do not have exceptions. However, the
states are assigned to the inputs of nodes instead of being assigned to the nodes,
with the exception of the nodes Begin and End. Because some of the states are
assigned to the inputs of nodes that follow certain types of nodes, those nodes are
marked when the node in the back is processed. Mealystatenode() is invoked for
all the nodes of the HGS and applies the following marking rules:
• if the HGS is the main HGS the nodes Begin and End are marked with the

state 0, otherwise the node Begin is not marked and the node End is marked
with the state 1;

• the input of a node that holds a macrooperation is marked;

• the input of a node following an operational node is marked;

• the input of a node that holds a logic function is marked, and the inputs of the
two nodes that follow it are marked.

5.7.2 Constructing a State Transition Table

To generate a state transition table it is necessary to record all transitions between
states. Because states a0 and a1 have a special meaning they are handled at the
HGS level according to their kind, model 2 or model 3, and they are not
processed at the node level.

The algorithm is basically the same for both Moore and Mealy machines.
However, it is simpler for Moore machines because the output function
(microoperations, macrooperations and logic functions) is associated with the
state. While, for Mealy machines it is associated with a state transition and it must
be taken into account that it is always preferable to record a transition that passes
through one operational node. Each node marked with a state, other than a0 or a1,
is a starting state and must be written in the present state column. Then the HGS
is traversed from that node in order to explore all the paths, and to record the
respective transition condition, that will lead to another node marked with a state.
This arriving state must be written in the next state column. Because a starting
state can also be an arriving state, the algorithm must distinguish both situations.

When exploring a path, the method can reach a cycle containing only conditional
nodes (see Figure 5.8). In a situation like this, not only the method must prevent
infinite recursion, but also to stop the search of an arriving state. The arriving
state for paths in loop is the starting state like for example k1k a x a in Figure 5.8.

106 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

x1ak x2

0

1

x3
0

x4

0

1 1 am

as

1

0
Figure 5.8 – A cycle of conditional nodes.

To detect a loop situation it is sufficient to test every time a conditional node is
reached, if the node condition is already in the condition transition. For the above
example the state transitions that must be recorded are m421k a xxx a ,

k421k a xxx a , k321k a xxx a , s321k a xxx a and k1k a x a .

5.7.2.1 Constructing a Moore State Transition Table

Because the HFSM models 2 and 3 have different state transition tables they are
generated by different methods.

In the HFSM model 2, Mooretablemergehgs() writes the table head and the first
two lines. In the first line it is written the state a0 and the main macrooperation
name, and in the second line the state a1 and the special signal y-. Then
Mooretablemergegs() is invoked to construct each HGS part of the table.

In the HFSM model 3, Mooretablesplithgs() just writes the table head and
invokes Mooretablesplitgs() for each HGS. Mooretablesplitgs() is responsible
for writing the first three lines of the HGS table. The first line is the name of the
HGS and the other two are the state transitions for the states a0 and a1.

The nodes are handled with Mooretablenode() for both models. It is invoked for
all the nodes marked with a state, and it must accommodate the difference
between the two models. In model 3 the macrooperations, logic functions and the
special signals y+ and y- are not written in the state transition table, but in the
Code Converter table instead. Therefore the method has a parameter to
distinguish the model in question. The HGS is traversed recursively by the derived
classes methods but the table lines are written by the base class method.

The Onode method must accommodate the Mealy output when a logic function
HGS is marked for synthesis as a Mealy machine. For this purpose, when an
unmarked assignment node is crossed the variable extray is set. If an operational
node is pointing to an unmarked logic function node, in the case of the HFSM
model 2, it is necessary to construct the string logicf, with the logic function name
and the special signal y+, to be written as an extra output function of this node.
But it only will be written in the first column of the next line (see state a6 in Figure
5.9).

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 107

The Cnode method must traverse through the conditional node to search for an
arriving state. First it makes a copy of the entry transition condition. If the node
condition is already listed on the entry transition condition, the node is in a cycle
of conditional nodes and the transition is of the type asX(as,as)as. On the contrary,
if it is the first time that this node is reached, the node condition in its asserted
form is added to the transition condition and the method exits the node through
the true output to search for an arriving state. When the method returns back after
exploring the true output path, it recovers the entry transition condition and the
condition in its negated form is added to the transition condition, and the false
output path is explored. Finally, when the method returns back, it recovers the
entry transition condition. To mean a negated condition the character ~ is
prefixed to the condition (see Figure 5.9). If the conditional node contains a logic
function, the label xextra is used instead of the logic function name.

The Node base class method writes the table lines in parts by successive
invocations. The starting state and the output function are written in the first
column of the table. The output function depends on the node type:
• no output function for the node Begin, or a conditional node with an input

condition, or an assignment node of a logic function HGS marked for
synthesis as a Mealy machine;

• yextra for an assignment node with an assign value of 1 if the logic function
HGS is marked for synthesis as a Moore machine;

• microoperations for operational nodes without macrooperations and logicf;

• microoperations if any and in the case of model 2 the macrooperation name
and the extra signal y+ for operational nodes with a macrooperation;

• in the case of model 2 the logic function name and the extra signal y+ for a
marked logic function node.

The arriving state is written in the second column of the table. After the first
transition it is necessary to write spaces to pass over the first column, except if
logicf is not a null string. The transition condition transition is written in the
third column and if extray is set, the Mealy output of a mixed Moore/Mealy
machine yextra is written in the fourth column (see state a18 in Figure 5.9).

The state transition table for the mixed Moore/Mealy HFSM model 2 generated
by SIMULHGS is depicted in Figure 5.9. It is equivalent to Table 5.21 with the
difference that the macrooperation (logic function) name is used instead of the
extra outputs yzi.

The RE1 state transition table for the mixed Moore/Mealy HFSM model 3
generated by SIMULHGS is depicted in Figure 5.10 (compare it with Table 5.4).

108 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

HGS Moore State Transition Table
am , Y(am)

|a0 , z1 |a0 | 1 | -- |

|a1 , y- |a0 | 1 | -- |

a2 , y2	a6	x1x2	--
	a7	x1~x2	--
	a3	~x1x2	--
	a4	~x1~x2	--

|a3 , y3,y5,z2 , y+ |a5 | 1 | -- |

|a4 , z3 , y+ |a5 | 1 | -- |

|a5 , y1,y4 |a0 | 1 | -- |

|a6 , y6,y7,y8 |a8 | xextra | -- |
|f6 , y+ |a5 | ~xextra | -- |

|a7 , z5 , y+ |a8 | 1 | -- |

|a8 , y3 |a0 | 1 | -- |

|a9 , y3,y4 |a10 | 1 | -- |

|a10 , y7 |a10 | x1 | -- |
| |a11 | ~x1 | -- |

|a11 , z4 , y+ |a12 | 1 | -- |

|a12 , f6 , y+ |a1 | xextra | -- |
| |a9 | ~xextra | -- |

|a13 , -- |a14 | x4 | -- |
| |a15 | ~x4 | -- |

|a14 , y3,y5 |a15 | x5 | -- |
| |a1 | ~x5 | -- |

|a15 , y1 |a1 | 1 | -- |

|a16 , z3 , y+ |a17 | 1 | -- |

|a17 , y1,y2 |a1 | x2 | -- |
| |a16 | ~x2 | -- |

|a18 , -- |a1 | x3 | yextra |
| |a1 | ~x3 | -- |

Figure 5.9 – State transition table generated by SIMULHGS for the mixed Moore/Mealy HFSM model 2.

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 109

HGS Moore State Transition Table
am , Y(am)

z1
a0 , --

|a1 , -- |a2 | 1 | -- |

a2 , y2	a6	x1x2	--
	a7	x1~x2	--
	a3	~x1x2	--
	a4	~x1~x2	--

|a3 , y3,y5 |a5 | 1 | -- |

|a4 , -- |a5 | 1 | -- |

|a5 , y1,y4 |a0 | 1 | -- |

|a6 , y6,y7,y8 |a8 | xextra | -- |
| |a5 | ~xextra | -- |

|a7 , -- |a8 | 1 | -- |

|a8 , y3 |a0 | 1 | -- |

Figure 5.10 – RE1 state transition table generated by SIMULHGS for the mixed Moore/Mealy HFSM model 3.

5.7.2.2 Constructing a Mealy State Transition Table

The details of the Moore HFSM models 2 and 3 are applicable to the Mealy
machine. At the graph-scheme level the differences are related to the table
appearance, specifically the column where the output function is displayed. For
the HFSM model 2 there are the methods Mealytablemergehgs() and
Mealytablemergegs() and for the HFSM model 3 there are the methods
Mealytablesplithgs() and Mealytablesplitgs().

At the node level Mealytablenode() also accommodates the difference between
models 2 and 3, but it works differently from the Moore method. In Mealy the
output function is stored in the string output when an operational node is crossed
and it is written in the last table column. It is always preferable to use one
transition of the kind asX(as,aa)Y(as,aa)aa instead of the kind asX(as,aa)aa. For that
purpose a transition does not stop in the state at the input of an operational node
with only microoperations but in the state at the input of the next node. Unless
the operational node with the microoperations follows an operational node with a
macrooperation or a conditional node with a logic function.

In order to obtain this behaviour the nodes of the types mentioned above are
counted and the transition path stops in a state only after one of those nodes have
been traversed.

110 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Figure 5.11 presents the situations mentioned above. The transition n1m a x a is
ignored because the state an is at the input of the operational node y6,y9 and the
transition did not crossed any operational node yet. So the transition

o961m a y yx a is recorded instead. But the transition n2q a z a stops at the state an
because it already crossed the operational node z2 and the transition p3o a a θ
stops at the state ap because it crossed the conditional node θ3.

x1

am

x2

θ3

0

an

ap

y7 , y8

01

y6 , y9 1

z2

ao

Begin

1

0

y4 , y5

End a1

ak

aq

Figure 5.11 – A HGS marked for synthesis as a Mealy machine.

The Onode method processes all marked operational nodes. When an operational
node is crossed the output function is constructed according to the node type:
• no output function for the node Begin;

• yextra for an assignment node that assigns the value 1;

• microoperations for operational nodes without macrooperations;

• microoperations if any and in the case of model 2 the macrooperation name
and the extra signal y+ for operational nodes with a macrooperation.

The counter micro is incremented if an operational node with microoperations or
macrooperations is traversed. The former in order to stop only after it, the latter
in order to stop at the input of the node that follows it. The method is then
invoked for the next node, to search for an arriving state.

The Cnode method works as for the Moore method, but it also constructs the
output function of a conditional node that contains a logic function, the function
name and the extra signal y+, in the case of the HFSM model 2.

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 111

HGS Mealy State Transition Table
am

|a0 |a0 | 1 | z1 |

|a1 |a0 | 1 | y- |

|a2 |a3 | 1 | y2 |

a3	a7	x1x2	y6,y7,y8
	a8	x1~x2	--
	a4	~x1x2	--
	a6	~x1~x2	--

|a4 |a5 | 1 | y3,y5,z2 , y+ |

|a6 |a5 | 1 | z3 , y+ |

|a5 |a0 | 1 | y1,y4 |

|a8 |a9 | 1 | z5 , y+ |

|a7 |a9 | xextra | f6 , y+ |
| |a5 | ~xextra | f6 , y+ |

|a9 |a0 | 1 | y3 |

|a10 |a11 | 1 | y3,y4 |

|a11 |a12 | 1 | y7 |

|a12 |a12 | x1 | y7 |
| |a13 | ~x1 | -- |

|a13 |a14 | 1 | z4 , y+ |

|a14 |a1 | xextra | f6 , y+ |
| |a10 | ~xextra | f6 , y+ |

|a15 |a16 | x4 | y3,y5 |
| |a1 | ~x4 | y1 |

|a16 |a1 | x5 | y1 |
| |a1 | ~x5 | -- |

|a17 |a18 | 1 | z3 , y+ |

|a18 |a19 | 1 | y1,y2 |

|a19 |a1 | x2 | -- |
| |a17 | ~x2 | -- |

|a20 |a1 | x3 | yextra |
| |a1 | ~x3 | -- |

Figure 5.12 – State transition table generated by SIMULHGS for the Mealy HFSM model 2.

112 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

The Node base class method writes the table lines in parts by successive
invocations. The starting state is written in the first column of the table and the
arriving state in the second column. After the first transition it is necessary to
write spaces to pass over the first column. The transition condition transition and
the output function output are written in the third and the fourth column of the
table respectively. The state transition table for the Mealy HFSM model 2
generated by SIMULHGS is depicted in Figure 5.12 (compare it with Table 5.13).

5.7.3 Constructing a Code Converter Programming Table

CCmergehgs() builds the Code Converter table for the HFSM model 2. It is a
table with the entry state of each HGS of the algorithm. The entry state of a HGS
is obtained invoking Nodeinitialstategs() and it is the first node marked with a
state. It also presents the HGS binary code K(εv) and its representation through
the extra outputs yzi. Instead of replacing each macrooperation (logic function)
name in the state transition table with the proper extra outputs yzi, they are
presented in this table.

It must be kept in mind that for the binary code with all bits set to zero (code
K(εv) that is used in order to clean the Code Converter outputs), and for all
remaining binary codes not in use, the Code Converter will output the state a0.

The Code Converter table for the mixed Moore/Mealy HFSM model 2 generated
by SIMULHGS is depicted in Figure 5.13 (compare it with Table 5.3).

Code Converter Programming

|0 | | 000 | | a0 |

|1 | z1 | 001 | yz1 | a2 |

|2 | z2 | 010 | yz2 | a9 |

|3 | z3 | 011 | yz2 yz1 | a13 |

|4 | z4 | 100 | yz3 | a16 |

|5 | z5 | 101 | yz3 yz1 | a1 |

|6 | f6 | 110 | yz3 yz2 | a18 |

|7 | | 111 | | a0 |

Figure 5.13 – Code Converter table generated by SIMULHGS for the mixed Moore/Mealy HFSM model 2.

CHAPTER 5 : SYNTHESIS OF HIERARCHICAL FINITE STATE MACHINES 113

The Code Converter table of the HFSM model 3 is a table with the next HGS
and the extra signals used to control the stacks, for each state of each HGS. In a
state where the macrooperation zv, or the logic function θv, is invoked the table
presents the HGS Γv name and the extra signal y+. In all a1 states it presents the
extra signal y-. For all other states it presents only the active HGS. CCsplithgs()
builds the head of the table and CCsplitgs() builds each HGS part of the table.

If the HGS is not the main HGS, its node End is marked with the state a1 and
that will be the first line of the sub-table. Each node that contains a
macrooperation or a logic function or a node with microoperations that is
pointing to an unmarked logic function is processed. The state and the
macrooperation (logic function) name and the extra signal y+ are written. A final
line with the word other in the state column and the HGS name is written.

The Code Converter table for the Mealy HFSM model 3 generated by
SIMULHGS is depicted in Figure 5.14 (compare it with Table 5.20).

--
Code Converter Programming
Active
HGS
--
z1	000	a4	z2	y+
		a6	z3	y+
		a8	z5	y+
		a7	f6	y+
		other	z1	
--
z2	001	a1	--	y-
		a5	z4	y+
		a6	f6	y+
		other	z2	
--
| z3 | 010 | a1 | -- | y- |
| | | other | z3 | |
--
z4	011	a1	--	y-
		a2	z3	y+
		other	z4	
--
| z5 | 100 | a1 | -- | y- |
| | | other | z5 | |
--
| f6 | 101 | a1 | -- | y- |
| | | other | f6 | |
--

Figure 5.14 – Code Converter table generated by SIMULHGS for the Mealy HFSM model 3.

114 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

5.8 Conclusions

If a hierarchical algorithm is specified with many macrooperations the Moore
machine is more efficient in terms of the number of states than the Mealy
machine. This is due to the fact that an operational node of a HGS that contains
microoperations and a macrooperation needs only one state in the Moore
machine, against two states for Mealy. But if a hierarchical algorithm is specified
with many logic functions, and even considering that the Moore marking rules
only need a state against three states for Mealy, the latter needs less states to mark
the logic function HGSs and consequently takes less time to evaluate them.

Therefore, if a hierarchical algorithm is specified with many macrooperations and
logic functions, as against an ordinary FSM, the Moore HFSM is more efficient
than the Mealy HFSM. Not only, it normally has fewer states but it also has more
intuitive marking rules. Moreover, is less erroneous to record the transitions
between states. But, on the other hand the Mealy HFSM speeds up the evaluation
of logic functions. As a conclusion it can be said that the best model to implement
a hierarchical algorithm is the proposed mixed Moore/Mealy HFSM.

Since in a complex parallel hierarchical algorithm it can be very difficult to predict
the present state of the machine, the logic synthesis of the proposed PHFSM is
very complex and demands a deep knowledge of the algorithm, particularly when
it is necessary to construct the extended PHGSs. In an operational node that
invokes macrooperations in parallel, it can be hard to decide which of them will
run in its own stack and the ones that are candidates for a hierarchical run. The
decision depends on the flow of the algorithm and on the present state (running
or passive) of each macrooperation. A problem can also arise in the invocation of
the same logic function in more than one macrooperation that can eventually run
in parallel, since it is necessary to ensure that a logic function is never invoked
before the calculated value of a previous execution has already been used. As a
conclusion it can be said that the synthesis of a PHFSM is very complex.

The tool SIMULHGS implements automatically the first step of logic synthesis,
i.e. state marking and state transition recording. It generates the state transition
table and the Code Converter table for Moore, Mealy and mixed Moore/Mealy
HFSMs, for both models 2 and 3.

115

6 IMPLEMENTATION AND OPTIMISATION OF

HIERARCHICAL FINITE STATE MACHINES

Summary

The goal of this chapter is to present an implementation of the HFSM and
PHFSM models that can provide such facilities as flexibility, extensibility and
reusability and to discuss some optimisation techniques that will improve the
performance of the FSMs for the target technology chosen.

The chapter starts by presenting the internal decomposition of the
Combinational Scheme for a RAM-based implementation and then describes
some optimisation techniques. The replacement of input variables technique
proposed in [Baranov79] and a special state encoding algorithm proposed in
[Sklyarov96] that embodies the transition condition in the state code in order to
eliminate the input variables from the next state generation are explained.
Furthermore, it is shown how the state splitting technique can keep the
replacement of the input variables working with a small set of new variables and
how it can help to apply the special state encoding algorithm. Finally, the method
of the tool SIMULHGS that automatically applies the state splitting technique to
an already synthesised algorithm is presented.

116 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

6.1 Introduction

The Combinational Scheme and the Code Converter of the HFSM and
PHFSM models can be implemented with simple logic gates, a programmable
logic device of type PAL/PLA, a ROM or the read/write equivalent device RAM,
or sophisticated field-programmable devices such as FPGAs. Since it is necessary
to provide such new facilities as flexibility, extensibility and reusability, i.e. to
provide a dynamically reconfigurable device, the choice can be either to use a
RAM or a FPGA.

A RAM can be easily simulated in a hardware description language since it is
basically a lookup table (LUT). A RAM (ROM) with m inputs and n outputs can
implement n different logic functions of m logic variables, because every minterm
is provided. It is useful in the following situations [Bolton90]:
• where the problem is naturally specified with a truth table which is mapped

directly into the words of the RAM and when the function needs to be
modified word by word;

• when a universal, rewriteable logic block is required and the minterms demand
cannot be predicted.

Moreover, since only the number of inputs and outputs determines the complexity
of a RAM, the kind of RAM that is needed is the same regardless of the state
assignment [Katz94]. However, a RAM (ROM) is suitable to implement functions
which are fully specified and involve relatively few variables, such as simple code
conversions where one binary pattern acting as the address is converted into
another pattern found at the address location [Green86]. Since not every
combination of input variables and present state is meaningful and they do not
occur in a HGS description, the RAM (ROM) based approach may not be an
attractive implementation. Unless an optimisation technique that will select the
appropriate input variables for each state will be applied.

Despite all the advantages of a RAM-based implementation, since the appearance
of the FPGAs it does not make any sense to implement complex digital systems in
any other platform. Therefore, the FPGA should be the target technology for the
HFSM and PHFSM models with the extra advantage of allowing the complete
implementation of the models.

However, in order to validate the proposed models in a FPGA platform, it is
necessary to have a development system for FPGAs. The alternative is to create a
complete VHDL model of a particular FPGA architecture and to programme
each experimental example manually in the model. Since, this procedure was time
consuming and error prone it was not pursued. But, given that some FPGAs are
internally implemented with LUTs, a RAM-based approach can be considered as
the first step to validate the proposed models for a LUT-based technology.

CHAPTER 6 : IMPLEMENTATION AND OPTIMISATION OF HIERARCHICAL FINITE STATE MACHINES 117

6.2 Decomposition of the Combinational Scheme

The Combinational Scheme depicted in Figure 6.1 is the component where the
next state δ and the output λ functions are implemented using RAMs as LUTs.

With the external inputs supplied by the datapath xL,...,x1 and the present state
τR,...,τ1 stored in the Stack Memory, it generates the external outputs
(microoperations) yN,...,y1, the next state CSDR,…,CSD1, the binary codes of the
macrooperations and logic functions yzk,...,yz1 and the special signals y+ and y- that
respectively increment and decrement the Stack Memory pointer.

Combinational Scheme
(δ , λ)

xL x1

yN y1yz1yzK CSDR CSD1

τR τ1

y+

y-

Figure 6.1 – Combinational Scheme.

As it was mentioned before in Chapter 4, the Combinational Scheme is not a
pure combinatorial block and in accordance with the kind of machine, Moore or
Mealy it has respectively one or two blocks to generate the next state and the
output functions (see Figure 6.2 and Figure 6.3).

6.2.1 Hierarchical FSM

The Combinational Scheme of the Moore HFSM model 2, depicted in Figure
6.2, is composed of two RAMs and three registers.

The Next State Memory implements the next state function δ. Since a HGS
describing a logic function can be marked for synthesis as a Mealy machine in the
case of the mixed Moore/Mealy HFSM, it also generates the value of the extra
output variable extra_y, used to carry out the calculated value of a logic function.
This value is tested through the extra input variable extra_x, in order to generate
the appropriate next state.

Since Moore outputs (YMoore=λMoore[A]) are dependent only on the present state,
all outputs (microoperations, binary codes of macrooperations and logic functions
and the special signals that increment and decrement the stack) are generated on
the Output Memory.

118 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

The Input Register and the Output Register are used to fix respectively the
external input variables (logic conditions) and the external output variables
(microoperations), i. e. the signals that communicate with the datapath.

The 1-bit Extra Register is used to store and fix the calculated value of a logic
function. Only one register is needed because the calculated value of the logic
function is used at the next clock cycle after being calculated and before another
logic function is invoked.

Output Memory
(λ)

yz1yzK

τR τ1

yN y1

Output
Register y+y-

extra_y

extra_x

E
xt

ra
R

eg
is

te
r

CSDR CSD1

Next State Memory
(δ)

Input
Register

xL x1

Figure 6.2 – Decomposition of the Moore HFSM Combinational Scheme for a RAM-based implementation.

Since Mealy outputs (YMealy=λMealy[A,X]) are dependent on both the present state
and the external inputs, they are generated on the same component that generates
the next state. Therefore, the Mealy Combinational Scheme depicted in Figure
6.3, as only one RAM component, that is the Next State and Output Memory.
The three registers have the same purpose as in the Moore machine.

yz1yzK

τR τ1

y+y-extra_y

extra_x

E
xt

ra
R

eg
is

te
r

CSDR CSD1

Next State and Output Memory
(δ , λ)

Input
Register

xL x1

yN y1

Output
Register

Figure 6.3 – Decomposition of the Mealy HFSM Combinational Scheme for a RAM-based implementation.

CHAPTER 6 : IMPLEMENTATION AND OPTIMISATION OF HIERARCHICAL FINITE STATE MACHINES 119

6.2.2 Parallel FSM/HFSM

The Combinational Scheme of the parallel machines is similar to the hierarchical
non-parallel machines. It was mentioned before that a set of SR flip-flops is used
to store the logic conditions, that hold the information about the running state of
the macrooperations and that are used for synchronisation purposes. There are J-1
flip-flops, where J is the number of memory registers of the PFSM (parameter V
in Figure 4.7) or the number of stacks of the PHFSM (parameter Q in Figure 4.8).

Since, it is also possible to have logic functions running in parallel, it is necessary
one storage element for each logic function. And since, the calculated value is not
used immediately, it must be stored until it is needed, that is until the next logic
function call. The easiest way is using a SR flip-flop. The flip-flop is set for
returning the logic value 1 and reset for returning the logic value 0.

Figure 6.4 depicts the Combinational Scheme of the Moore PHFSM, where the
SR flip-flops used for storing the calculated value of logic functions are omitted.

Output Memory
(λ)

yz1yzK

τR τ1

yN y1

Output
Register

y+ y-CSDR CSD1

Next State Memory
(δ)

Input
Register

xL x1

Zi SR
flip-flops

SQS2

Z2 ZQ

RQR2

R * 2:1 Multiplexers

"0"

Figure 6.4 – Decomposition of the Moore PHFSM Combinational Scheme for a RAM-based implementation.

Like it was explained before in the synchronisation of the PHFSM paragraph, a
multiplexer is required before the lines DR,...,D1 exit the Combinational Scheme
in order to let pass the entry state of the PHGS generated by the Code Converter
when the signal y+ is active. It has the following behaviour: when y+ is negated
the output state will be the calculated next state, while when y+ is asserted the
output state will be a0.

120 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

6.3 Replacement of Input Variables

In order to decrease the amount of memory needed to implement the FSMs, the
number of address lines of the RAM that generates the next state must be
minimised. Let’s consider the replacement of input variables proposed in
[Baranov79]∗ for the ordinary state transition table of the mixed Moore/Mealy
HFSM presented in Table 5.21.

In practice, the set of input variables involved in all transitions from a state am
X(am)={xm1,...,xmK} is much smaller than the total set X={x1,...,xL}. Let’s define
G=max|#X(am)| where m=1,...,M as the maximum number of input variables
involved in all transitions from a state am. Since, commonly G<<L in a HGS
description, a transformation of input variables will decrease the number of
variables involved in the next state generation. Hence, a new set of variables
P={p1,...,pG} is built, and for each state am a one to one correspondence between
the set X={x1,...,xL} and the leftmost variables of the new set P={p1,...,pG} is
defined (see column P(am,as) in Table 6.1).

In this example G=2 due to state a2 in Table 6.1. For this state a correspondence
is made between {x1,x2} and {p1,p2}. Now let’s consider a state whose transitions
depend on only one variable xi, for example, all transitions from the state a13 are
caused by x4. In this case, the left most variable in the set P, that is p1, is used. The
variable x4 must be replaced with p1 in such a way that, if the transition is caused
by 4x it is caused by 1p and if the transition is caused by 4x it is caused by 1p . For
the states with the transition condition equal to 1, it is not necessary to generate
any variable of the set P (see for example state a0 in Table 6.1).

Table 6.1 – Ordinary state transition table with the replacement of input variables.

∗ A similar technique is proposed in [Green86] for the ROM-based implementation of ASM designs.

am {Y(am)/Y(am,as)} as X(am,as) P(am,as)
a0 {yz1} a0 1
a1 {y-} a0 1
a2 {y2} a6

a7
a3
a4

1x 2x
1x 2x
1x 2x
1x 2x

1p 2p
1p 2p
1p 2p
1p 2p

a3 {y3,y5,yz2,y+} a5 1
a4 {yz2,yz1,y+} a5 1
a5 {y1,y4} a0 1
a6
{y6,y7,y8,yz3,yz2,y+}

a8
a5

xextra _
xextra _

1p
1p

a7 {yz3,yz1,y+} a8 1
a8 {y3} a0 1
a9 {y3,y4} a10 1

a10 {y7} a10
a11

1x
1x

1p
1p

a11 {yz3,y+} a12 1
a12 {yz3,yz2,y+} a11

a9

xextra _
xextra _

1p
1p

a13 a14
a15

4x
4x

1p
1p

a14 {y3,y5} a15
a1

5x
5x

1p
1p

a15 {y1} a1 1
a16 {yz2,yz1,y+} a17 1
a17 {y1,y2} a1

a16

2x
2x

1p
1p

a18 { yextra _ } a1
a1

3x
3x

1p
1p

CHAPTER 6 : IMPLEMENTATION AND OPTIMISATION OF HIERARCHICAL FINITE STATE MACHINES 121

The Boolean functions for the new set of variables P={p1,p2}, obtained from
Table 6.1 are the following:

p1 = a2x1 ∼ a6extra_x ∼ a10x1 ∼ a12extra_x ∼ a13x4 ∼ a14x5 ∼ a17x2 ∼ a18x3;
p2 = a2x2.

Here for all am, am=1 if the HFSM is in the state am, otherwise am=0.

This technique allows for a reduction of the number of address lines of the
component that generates the next state from R+L to R+G with G<<L.

The replacement of input variables can be implemented with a Programmable
Multiplexer block (see Figure 6.7). Since all variables from the set X in the above
equations are asserted, all inverted lines in the programmable array
implementation of the pi Boolean functions can be skipped. As a result the
complexity of the arrays will be reduced by almost a factor of two.

6.4 State Encoding

The next state function as = δ(am,X) generates the next state from the present state
and the inputs. After the replacement of input variables the next state function is
of the form as = δ’(am,P) with #P<<#X. In order to reduce even further the
number of variables involved in the next state generation it is possible to use a
state encoding algorithm with a variable code length. This algorithm will assign to
a state am, many state codes where the most significant bits will be fixed and the
least significant bits will embody the transition condition P(am,as). Afterwards, the
next state function will turn into the form as = µ(am).

In order to accomplish that, it is necessary to yield the logic connection between
the lines pG,...,p1 and some of the lines τR,...,τ1 providing the or logic function (see
Figure 6.6). But, such connections are admissible if and only if the state code
stored in the FSM memory (base code) has the bits τG,...,τ1 equal to zero and if
there is no ambiguity between transitions, i.e. if the resulting or-ed binary code will
identify correctly the next state to be generated. For this purpose a special state
encoding algorithm was presented in [Sklyarov96].

This algorithm assigns a different state binary code for each different transition of
every state. As a result, if a state am has transitions to N different next states
involving H variables from the new set of variables P (with H<=G), N different
binary codes that only differ in their H least significant bits, must be assigned to
the state am. One of them has the H least significant bits set to zero in order to act
as the base code, while the remaining binary codes have their H least significant
bits in a way that they will match the combinations of the P variables that occur in
the transition conditions.

122 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

One possible state encoding for the HFSM presented in the state transition Table
6.1 is depicted in Figure 6.5. Since the state a2 has four transitions depending on
the two variables p2 and p1, it requires the four following binary codes: 00100 for
the transition a2 2p 1p a4 that will act as the base code; 00101 for the transition
a2 2p 1p a7; 00110 for the transition a2 2p 1p a3; 00111 for the transition a2 2p 1p a6.

00 01 11 10

00

01

11

10

τ4τ3

τ2τ1

τ5 = 0

a0 a1

a2 a2 a2 a2

a3 a4

a6 a6 a5 a7

a8 a9 a10 a10

00 01 11 10

00

01

11

10

τ4τ3

τ2τ1

τ5 = 1

a12 a12

a13 a13 a14 a14

a11 a15

a17 a17 a16

a18 a18

Figure 6.5 – Karnaugh map for the special state encoding algorithm.

The new decomposition of the Moore HFSM that implements the replacement of
input variables and this state encoding algorithm is depicted in Figure 6.6.

Output Memory
(λ')

yz1yzK

τR τ1

yN y1

Output
Register y+y-

extra_y

E
xt

ra
R

eg
is

te
r

CSDR CSD1

Next State Memory
(µ)

extra_x

Input
Register

xL x1

G * Programmable
Multiplexers

O
R

p1pG

O
R

changeable
parameters

τU τG

Figure 6.6 – Decomposition of the Moore HFSM combinational scheme using the replacement of input variables and

the special state encoding algorithm.

CHAPTER 6 : IMPLEMENTATION AND OPTIMISATION OF HIERARCHICAL FINITE STATE MACHINES 123

Now the number of address lines of the Next State Memory is equal to Rsc
instead of Rbc+G. However, since in most cases this state encoding algorithm will
increase the state code length when compared with the ordinary binary algorithm,
Rsc is generally bigger than Rbc.

Furthermore, since now a state am has more than one state binary code the output
function is not exactly the same as before Y(am) = λ’(am). And, since the Output
Memory is only attacked by the base code of a state, for all the remaining state
binary codes the RAM is wasted.

The Programmable Multiplexer block (see Figure 6.7) is controlled by the lines
τR,...,τU. The minimal number of most significant bits of the state binary code
should be used, in order to decrease the size of the multiplexers. In the example
U=2, because the states in the pi Boolean functions have at least two different
codes, so the least significant bit τ1 is not needed to distinguish the states.

Programmable Multiplexer

Multiplexer 1
τ5

τ2

0 15

Multiplexer 2
0 15

p1p2

x1

x2

extra_x

x3

x4

x5

Figure 6.7 – Programmable multiplexer.

6.5 State Splitting

Suppose that the value of G has been fixed in the scheme of Figure 6.6, and there
is a transition from the state am to the state as and |X(am)|>G, then the
replacement of input variables cannot be carried out. In order to meet the
constraint G, the transition can be split by inserting an intermediate state ai in such
a way that |X(am)|<=G and |X(ai)|<=G, and ai is a state that does not assert any
outputs.

Figure 6.8 shows an example where there are transitions traversing four
conditional nodes (|X(am)|=4) from the state am to the states aq and ar. To make
the replacement of input variables, G must be equal to four (see Table 6.2). But, if
the state ai is inserted at the input of the conditional node x3, the transitions that
were depending on four logic conditions are now split in transitions depending on
only two logic conditions. Now it is possible to apply the replacement of input
variables for G=2 (see Table 6.3).

124 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

x1am x2

0

1 x3 x40 1 ar

aq

0

1

0

1

an

ao

apai

Figure 6.8 – Applying the state splitting technique.

The insertion of the extra state ai can also reduce the state binary code length in
some cases. Table 6.2 presents part of the state transition table of the example
shown in Figure 6.8. Because the transitions from the state am involve four logic
conditions the replacement of input variables will use four variables, and since
there are five transitions, five binary codes are needed to encode the state am. And
one of them must have the last four bits set to zero, to serve as the state base
code. Since, the binary code with all bits set to zero is reserved for the state a0, a
binary code with only four bits cannot be used. For this example a binary code of
five bits is needed, even if the number of states will not demand it.

Table 6.2 – State transition table without the extra state.

am as X(am,as) P(am,as) K(am)
am an

ao
ap
ar
aq

1x
1x 2x
1x 2x 3x
1x 2x 3x 4x
1x 2x 3x 4x

1p
1p 2p
1p 2p 3p
1p 2p 3p 4p
1p 2p 3p 4p

10000
10011
10001
10101
11101

However, after inserting the extra state ai, the replacement of input variables can
be made with only two variables and only three binary codes are needed to encode
each one of the states am and ai (see Table 6.3). It is spent one more binary code
than before, but now a binary code with only four bits is needed, if the number of
states will allow it. Moreover, if small groups of binary codes are required, it is
certainly easier to make the state encoding.

Table 6.3 – State transition table after inserting the extra state.

am as X(am,as) P(am,as) K(as)
am an

ao
ai

1x
1x 2x
1x 2x

1p
1p 2p
1p 2p

0100
0111
0101

ai ap
ar
aq

3x
3x 4x
3x 4x

1p
1p 2p
1p 2p

1100
1101
1111

Furthermore, the insertion of extra states is a technique used in FSM synthesis
when the FSM is too complex to be implemented with programmable logic
components of type PAL/PLA at hand and it has to be partitioned [Bolton90,
Baranov94, Katz94].

CHAPTER 6 : IMPLEMENTATION AND OPTIMISATION OF HIERARCHICAL FINITE STATE MACHINES 125

6.6 State Splitting in the Tool SIMULHGS

In order to apply the state splitting technique, the tool SIMULHGS allows the
introduction of extra states at the user request. This facility is provided by
Insertstatehgs(), which starts by checking if the set of HGSs is already marked.
A HGS name is requested to the user and after checking its existence
Insertstategs() is called. After the insertion is completed and if any extra states
were really inserted the method reports the actual number of states in the case of
the HFSM model 2. And the proper synthesis method, with the marking step
deactivated, is invoked to construct the new state transition table.

Since, a node can be repeated more than once in a HGS, it is very important to
identify correctly the node to be marked. Insertstategs() requests a node name
and if it is an unmarked conditional node, it is marked with a state in manual
mode after the user confirmation.

With Removestatehgs() it is possible to remove states, but only those which
were inserted at user request with the previous method. After selecting a HGS,
Removestategs() removes the state assigned to a node after the user
confirmation, but only if it was manually marked.

6.7 Quantification of the Optimisation Techniques

It is obvious that the replacement of input variables proposed in [Baranov79]
should always be applied, since it allows the reduction of the number of address
lines of the next state LUT from R+L to R+G. And if necessary, the introduction
of extra states (state splitting) can always keep G<<L.

In the case of the special state encoding algorithm proposed in [Sklyarov96], the
optimisation depends on the side effects generated by its application. More
specifically the fact that the code length of the proposed special binary code (Rsc)
in most practical examples will be bigger than the code length of the ordinary
binary code (Rbc). If the length difference (Rsc-Rbc) will still be less than G, it
should be taken into consideration. But even so, it can have different
consequences for the two kinds of FSMs.

In the case of the Mealy FSM, the total amount of memory will automatically
decrease, because the size of the Next State and Output Memory will decrease

scbc RGR 22 −+ words of R+N+K+3 bits.

However, in the case of the Moore FSM, it does not guarantee a decrease of the
total amount of memory. On the contrary, the total amount of memory can
eventually increase. Because, while the size of the Next State Memory will
decrease scbc RGR 22 −+ words of R+1 bits, the size of the Output Memory will
increase bcsc RR 22 − words of N+K+2 bits, and typically N+K+2>>R+1.

126 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

6.8 Conclusions

Since the specification of control units may change often, designers have to
provide them with such facilities as flexibility, extensibility and reusability. Hence,
it is necessary to implement them with dynamically reconfigurable HFSMs
(PHFSMs) that can be reprogrammed in minimal time and with minimal effort. In
order to achieve that functionality they must be assembled with reprogrammable
components such as RAMs or FPGAs.

If a HFSM (PHFSM) is implemented with RAMs, it is convenient to make the
replacement of the input variables in order to decrease the size of the next state
memory. When this optimisation technique is used in combination with the
special state encoding algorithm, the size of the next state memory is further
reduced. Nevertheless, most of the times this algorithm can lead to an increase of
the state code length and therefore to compromise this goal in particular in the
case of Moore machines.

However, the application of some optimisation techniques, like complex state
encoding algorithms, in most cases can demand more time to be spent when it is
necessary to reprogram the HFSMs (PHFSMs).

Since state splitting is an important technique that allows the replacement of input
variables to work with a small set of new variables and can help the special state
encoding algorithm, the tool SIMULHGS has methods for inserting and
removing extra states, in order to apply this technique to an already synthesised
algorithm.

127

7 VHDL SIMULATION OF HIERARCHICAL

FINITE STATE MACHINES

Summary

The aim of this chapter is to present the simulation results of the HFSM and the
PHFSM models proposed in chapter three. The VHDL models were created and
simulated using the Synopsys tools and waveforms of all simulations are
presented.

The practical examples are those that were used in chapter four to explain the
synthesis rules and whose ordinary state transition tables have been presented. All
examples use the replacement of input variables and there are simulation results
for the ordinary binary code and for the special state encoding algorithm. It is also
shown how to provide flexibility and extensibility of a hierarchical algorithm with
minimal changes in the VHDL models. Finally the advantages of a hierarchical
implementation over a non-hierarchical one are discussed.

128 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

7.1 Introduction

The different FSM models (Hierarchical, Parallel and Parallel Hierarchical) were
simulated using the Synopsys tools. In order to decrease the development time of
a new FSM the models are parameterised. Each model has a parameter file that
defines the clock cycle, the synchronisation pulse delays, the component delays
and the bit vector sizes. The clock cycle used in all simulations was 40
nanoseconds.

The most important parameters are:
• MAXSTACK - stack memory size;
• L - number of input signals;
• N - number of output signals (microoperations);
• G - number of new input signals after the replacement of input variables;
• R - state binary code length;
• K - HGS binary code length;
• U - least significant bit that controls the programmable multiplexer when the

special state encoding algorithm is used;
• V - number of registers of the PFSM memory;
• Q - number of stacks of the PHFSM memory;
• C - counter binary code length used in the parallel FSMs;
• NLF - number of logic functions used in the parallel FSMs.

The FSMs are modelled in VHDL using a structural description. Besides the
components already depicted in Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7 and
Figure 4.8, the FSM also includes a Clock Generator component that provides
the clock and the synchronisation signals required for each model.

The components Combinational Scheme, Selector, PFSM Memory and
Parallel Stack Memory are also described structurally. All their internal
components and the main components Clock Generator, Stack Memory, Code
Converter and Reprogrammable Element are described behaviourally.

In order to provide reconfigurable FSMs the Combinational Scheme blocks that
generate the next state and output functions, the Code Converter and the
Reprogrammable Elements of the HFSM model 3 are modelled as LUTs. Their
contents are presented in Appendix A and they are refereed in the text as LUT #.

The Combinational Scheme of all models includes a Programmable
Multiplexer to apply the replacement of input variables technique in order to
reduce the size of the next state LUT. The multiplexer matrix part (see Figure 7.1)
is modelled as bit vectors generated with the concatenation of the input signals
and the logic value 0 in the appropriate input positions. This implementation
makes it easy to reprogram the multiplexer behaviour.

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 129

7.2 Simulation of a Moore HFSM model 2

Let’s consider the set of HGSs depicted in Figure 5.3. It has five input signals
(L=5) and eight microoperations (N=8) and because it is specified with five
macrooperations (z1, z2, z3, z4, z5) and one logic function (θ6), the HGS binary
code length is three (K=3). That leaves the Code Converter with two free codes,
one to output the state a0 when the next state is generated by the Combinational
Scheme and one not in use (see Table 5.3). This algorithm can be implemented as
a mixed Moore/Mealy HFSM using the ordinary state transition Table 5.21. If the
binary code is used for state encoding and since there are eighteen states, the state
code length is five bits (R=5).

The replacement of input variables (see Table 6.1) demands two new variables
(G=2) and to implement them two 32:1 multiplexers are required (see Figure 7.1).

Programmable Multiplexer

Multiplexer 2
310

p1p2

x1

x2

extra_x

x3

x4

x5

Multiplexer 1
τ5

τ1

310

Figure 7.1 – Programmable multiplexer for the mixed Moore/Mealy HFSM model 2 with binary state encoding.

To simulate the mixed Moore/Mealy HFSM, a RAM of 2K words of R bits to
implement the Code Converter (see LUT 1), a RAM of 2R+G words of R+1 bits
to implement the next state function (see LUT 2) and a RAM of 2R words of
N+K+2 bits to implement the output function (see LUT 3) are required.

The waveform generated during the VHDL simulation of this mixed HFSM is
depicted in Figure 7.2. The microoperations, the state binary codes and the HGS
binary codes appear in decimal format in order to fit in the clock cycle slot.
Moreover, since the binary code is used for state encoding the state number is
equal to the state code in decimal format and it is very easy to track down the
FSM internal status stored in the Stack Memory and represented by the signals
STACK. The new set of input signals after the replacement of input variables, i.e.
the Programmable Multiplexer output, is represented by the signal NEWX. The
two synchronisation pulses presented in Figure 4.9 are represented by the signals
SYNCLK1 and SYNCLK2.

The entry state of a HGS is provided by the Code Converter output lines CCD,
in accordance with the HGS binary code given by its input lines YZ, while the
Combinational Scheme output lines CSD are set to zero. Every time a HGS is
invoked the signal INCSTACK (y+) is activated, except for the main
macrooperation z1, and the HGS entry state is stored in the new top of the stack

130 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

(see states a9 stored in STACK(2) at 140 ns, a16 stored in STACK(3) at 260 ns, a13
stored in STACK(4) at 300 ns, a18 stored in STACK(3) at 540 ns in Figure 7.2).
The z1 entry state is stored in the first register of the stack (see state a2 stored in
STACK(1) at 60 ns in Figure 7.2).

The Combinational Scheme output lines CSD generate the next state inside
each HGS, while the Code Converter output lines CCD are set to zero (see for
example state a3 stored in STACK(1) at 100 ns in Figure 7.2). The calculated value
of the logic function θ6 is fixed during the clock cycle after being generated (see
EXTRAX activated at 580 ns in Figure 7.2).

Every time the HGS execution reaches the state a1, the signal DECSTACK (y-) is
activated and the HFSM returns to the interrupted HGS (see DECSTACK at 385
ns in Figure 7.2). The signal INCSTACK and the binary code of the terminated
HGS are again generated, but they are ignored because it occurs after the second
synchronisation pulse (see INCSTACK and YZ at 395 ns in Figure 7.2). The same
happens when the stack is incremented and the selected register holds the state a1
because it was already used. But, in this case it is the signal DECSTACK that is
generated and ignored (see DECSTACK at 515 ns in Figure 7.2).

Figure 7.2 – Waveform of the mixed Moore/Mealy HFSM model 2 with binary state encoding.

Now let’s consider the special state encoding algorithm proposed in Chapter 6 and
the state encoding presented in Figure 6.5. For this example the need of more
than one code for some of the states does not increase the state code length of
five bits (R=5). Since, with this algorithm some states have more than one binary
code, the least significant bit τ1 is not needed to distinguish between them and in
order to apply the replacement of input variables now it is necessary two 16:1
multiplexers (see Figure 7.3).

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 131

Programmable Multiplexer

Multiplexer 1
τ5

τ2

0 15

Multiplexer 2
0 15

p1p2

x1

x2

extra_x

x3

x4

x5

Figure 7.3 – Programmable multiplexer for the mixed Moore/Mealy HFSM model 2 with special state encoding.

To simulate the machine for this state encoding algorithm it is necessary, a RAM
of 2K words of R bits to implement the Code Converter (see LUT 4) and a RAM
of 2R words of N+K+2 bits to implement the output function (see LUT 5). But to
implement the next state function a RAM of 2R words of R+1 bits is needed (see
LUT 6) instead of a RAM of 2R+G words. For this example, the special state
encoding algorithm allows a reduction in the size of the Next State Memory by a
factor of four and in the size of the Programmable Multiplexer by a factor of
two.

The waveform generated during the VHDL simulation that is depicted in Figure
7.4 has the same behaviour of the waveform presented in Figure 7.2, i. e. the same
microoperation values. However it is more complicate to track down the FSM
internal status when compared with the previous waveform, because the state
number is most of the times not equal to the state code in decimal format.

Figure 7.4 – Waveform of the mixed Moore/Mealy HFSM model 2 for the special state encoding.

132 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

In order to understand the machine internal status it must be kept in mind that the
Combinational Scheme and the Code Converter always generate the base code
of a state that has more than one binary code. The signal PSTATE is the present
state, obtained with the logic or connection between the Programmable
Multiplexer output lines NEWX and some of the Stack Memory output lines F.
For example, the z1 entry state a2 generated by the Code Converter has the
decimal value four (see F at 60 ns in Figure 7.4). When this binary code is or-ed
with NEWX that is equal to “10”, the present state binary code gets the decimal
value six (see PSTATE at 65 ns in Figure 7.4). For this binary code the Next
State Memory generates the next state a3 that has the decimal value three (see
CSD at 65 ns in Figure 7.4).

7.3 Simulation of a Mealy HFSM model 2

Let’s consider the set of HGSs depicted in Figure 5.2 already marked for synthesis
as a Mealy HFSM and the respective ordinary state transition Table 5.13. All
parameters have the same values as for the mixed Moore/Mealy HFSM (L=5,
N=8, K=3, R=5 and G=2). If the binary code is used, two 32:1 multiplexers are
needed to implement the replacement of input variables (see Figure 7.5).

Programmable Multiplexer

Multiplexer 2
310

p1p2

x1

x2

extra_x

x3

x4

x5

Multiplexer 1
τ5

τ1

310

Figure 7.5 – Programmable multiplexer for the Mealy HFSM model 2 with binary state encoding.

The simulation requires, a RAM of 2K words of R bits to implement the Code
Converter presented in the Table 5.11 (see LUT 7), and a RAM of 2R+G words of
R+N+K+3 bits to implement the Next State and Output Memory (see LUT 8).

The waveform generated during the VHDL simulation of this Mealy HFSM is
depicted in Figure 7.6 and it is very similar with Figure 7.2 except for the two
following differences. The simulation takes three more clock cycles to finish (820
ns against 700 ns). This difference is due to the fact that the set of HGSs is
marked with more states when implemented as a Mealy machine. For the path
presented in the waveform, the Mealy HFSM has exactly three more states than
the mixed Moore/Mealy HFSM. The introduction of these states between
operational nodes also changes slightly the microoperation values (signal Y). For
example the transition from the state a3 to the state a4 in z1 generates an output
with the decimal value zero, which did not occur in the mixed Moore/Mealy
HFSM (see Y at 110 ns in Figure 7.6).

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 133

Figure 7.6 – Waveform of the Mealy HFSM model 2 with the binary state encoding.

If the special state encoding algorithm is used, the Programmable Multiplexer
and the Next State and Output Memory sizes will decrease respectively by a
factor of two and by a factor of four.

7.4 Simulation of a Moore HFSM model 3

Let’s consider the synthesis of the set of HGSs depicted in Figure 5.3 as a mixed
Moore/Mealy HFSM model 3 using the state transition Table 5.4, Table 5.5, Table
5.6, Table 5.7, Table 5.8 and Table 5.19 and the binary state encoding. Because
macrooperation z1 has nine states the state code length is four bits (R=4). The
remaining parameters are the same as for the HFSM model 2 (L=5, N=8 and
K=3). To simulate it is necessary to implement the Reprogrammable Elements
associated with the elements of the set of HGSs.

The Reprogrammable Element associated with the main macrooperation z1 has
three inputs x1, x2 and the extra input extra_x that represents the calculated value
of the logic function θ6 invoked in the state b6, and implements the Table 5.4. It is
modelled as a RAM of 2R+3 words of R bits (see LUT 9).

The Reprogrammable Element associated with the macrooperation z2 has two
inputs x1 and the extra input extra_x, that represents the calculated value of the
logic function θ6 invoked in the state b5, and implements the Table 5.5. It is
modelled as a RAM of 2R+2 words of R bits (see LUT 10).

The Reprogrammable Element associated with the macrooperation z3 has two
inputs x4 and x5, and implements the Table 5.6. It is modelled as a RAM of 2R+2

words of R bits (see LUT 11).

134 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

The Reprogrammable Element associated with the macrooperation z4 has one
input x2 and implements the Table 5.7. It is modelled as a RAM of 2R+1 words of
R bits (see LUT 12).

The Reprogrammable Element associated with the pure virtual macrooperation
z5 has no inputs, and implements the Table 5.8. It is modelled as a RAM of 2R

words of R bits (see LUT 13).

The Reprogrammable Element associated with the logic function θ6 has one
input x3. Considering the mixed Moore/Mealy HFSM, the RE has the extra
output extra_y, which represents the calculated value of the logic function. This
output is set to one on the transition from the state b2 to the state b1 when x3 has
the logic value ‘1’. The RE implements the Table 5.19 and it is modelled as a
RAM of 2R+1 words of R+1 bits (see LUT 14).

It is also necessary, a RAM of 2K+R words of N bits to implement the Output
Block Memory that provides the microoperations (see LUT 15) and a RAM of
2K+R words of K+2 bits to implement the Code Converter presented in the Table
5.10 (see LUT 16).

The waveform generated during the VHDL simulation of this mixed HFSM is
depicted in Figure 7.7. The microoperations, the HGS binary codes and the state
binary codes appear in decimal format in order to fit in the clock cycle slot. Since,
the HGS binary code with all bits set to zero is reserved for the main HGS, the
decimal value of the macrooperation (logic function) binary code is equal to its
index number minus one. In order to track down the FSM internal status, the state
stored in the State Stack Memory (signals STACKSTATE) and the HGS code
stored in the HGS Stack Memory (signals STACKHGS) were traced.

Figure 7.7 – Waveform of the mixed Moore/Mealy HFSM model 3.

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 135

Figure 7.7 and Figure 7.2 are practically identical but the HFSM model 3
simulation took one clock cycle less to finish (660 ns against 700 ns), because the
HFSM model 3 does not need one clock cycle to start running. When the HFSM
model 2 starts executing the starting state a0 is loaded in the first low to high front
of the clock in the Stack Memory. And the initial state a2 of the main
macrooperation generated by the Code Converter will be loaded in the next low
to high front of the clock. But when the HFSM model 3 starts executing, the
Reprogrammable Element associated with the main macrooperation is activated
and generates the initial state b2 that is loaded in the first low to high front of the
clock in the State Stack Memory thus economising one clock cycle.

7.5 Simulation of a Mealy HFSM model 3

Let’s consider the synthesis of the set of HGSs depicted in Figure 5.2 as a Mealy
HFSM model 3 using the ordinary state transition Table 5.14, Table 5.15, Table
5.16, Table 5.17, Table 5.18 and Table 5.19 and the binary state encoding. Since
the macrooperation z1 has ten states, the state code length is four bits (R=4). The
remaining parameters are the same as for the previous machine (L=5, N=8 and
K=3). To simulate it is necessary to implement the Reprogrammable Elements
associated with the elements of the set of HGSs.

The Reprogrammable Element associated with the main macrooperation z1 has
three inputs x1, x2 and the extra input extra_x, and eight outputs y1, y2, y3, y4, y5, y6,
y7 and y8. The RE implements the Table 5.14 and it is modelled as a RAM of 2R+3

words of R+8 bits (see LUT 17).

The Reprogrammable Element associated with the macrooperation z2 has two
inputs x1 and the extra input extra_x, and three outputs y3, y4, and y7. The RE
implements the Table 5.15 and it is modelled as a RAM of 2R+2 words of R+3 bits
(see LUT 18).

The Reprogrammable Element associated with the macrooperation z3 has two
inputs x4 and x5, and three outputs y1, y3, and y5. The RE implements the Table
5.16 and it is modelled as a RAM of 2R+2 words of R+3 bits (see LUT 19).

The Reprogrammable Element associated with the macrooperation z4 has one
input x2, and two outputs y1 and y2. The RE implements the Table 5.18 and it is
modelled as a RAM of 2R+1 words of R+2 bits (see LUT 20).

The Reprogrammable Elements associated with the pure virtual
macrooperation z5 and the logic function θ6 are the same as for the mixed
Moore/Mealy HFSM (see LUT 13 and LUT 14). To implement the Code
Converter presented in the Table 5.20 it is necessary a RAM of 2K+R words of
K+2 bits (see LUT 21).

136 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Like it was expected the Mealy HFSM model 3 does not need one clock cycle to
start running, when comparing with the Mealy HFSM model 2, and the simulation
takes one clock cycle less (780 ns against 820 ns). Besides that detail the resulting
waveform depicted in Figure 7.8 is identical to Figure 7.6.

Figure 7.8 – Waveform of the Mealy HFSM model 3.

7.6 Simulation of a Moore PFSM

Let’s consider the set of PHGSs depicted in Figure 5.5 already transformed and
extended in order to provide proper synchronisation of parallel macrooperations
for implementation in a PFSM with non-persistent microoperations. It has four
input signals (L=4) and eight microoperations (N=8). Since it is specified with
three macrooperations (z1, z2, z3) and one logic function θ4 (NLF=1), the PFSM
memory has four registers (V=4) and a counter of module four is needed to
provide the respective sub-clocks to scan the registers. That means a 2-bit binary
counter (C=2).

This algorithm can be implemented as a Moore PFSM using the ordinary state
transition Table 5.23. If the binary code is used for state encoding and since
macrooperations z1 and z2 have eight states the state code length is three bits
(R=3). The state marking of a PFSM is similar to the HFSM model 3 and the
PFSM internal state is identified with the PHGS state and the counter binary code.

The inputs that are responsible for the next state generation, besides the state
code, are the four input signals (x1,…,x4), the calculated value of the logic function
θ4 (Θ4) and the three extra signals (Z2,…,Z4) that synchronise the parallel
execution of macrooperations (see Figure 5.5 and Table 5.23).

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 137

The replacement of input variables demands three new variables (G=3) (see state
a0 of macrooperation z4 in Table 5.23) and therefore three 32:1 multiplexers are
used (see Figure 7.9).

Programmable Multiplexer

Multiplexer 2

x1

x2

x3

x4

Θ4

Z2

Z4

Z3

Multiplexer 3
310

p3

310

p2

Multiplexer 1
310

p1

τ5

τ1

Figure 7.9 – Programmable multiplexer for the Moore PFSM.

To implement the Next State Memory a RAM of 2R+C+G words of R bits is
required (see LUT 22). The output function generates the microoperations (N),
one set and one reset signal for each SR flip-flop that holds a Zi signal (V-1 flip-
flops), and one set and one reset signal for each SR flip-flop that holds the
calculated value of a logic function (NLF flip-flops). Therefore, the Output
Memory RAM must have 2R+C words of N+(V-1)*2+NLF*2 bits (see LUT 23).

The waveform generated during the VHDL simulation of this PFSM is depicted
in Figure 7.10. The microoperations and the PFSM state binary code appear in
decimal format in order to fit in the clock cycle slot and to be easier to track down
the PFSM internal status stored in the PFSM Memory (signals PFSMREG). The
two synchronisation pulses presented in Figure 4.11 are represented by the signals
CSCLK and STLCLK.

Macrooperations z2 and z3 are invoked in parallel in the state a2 of macrooperation
z1. The Z2 and Z3 flip-flops are set in order to enable the parallel execution of
both macrooperations (see IZ at 350 ns in Figure 7.10), while z1 stays in the
waiting state a4. Macrooperation z1 only resumes execution, transition from the
state a4 to the state a5, after z2 and z3 have terminated (see PFSMREG(1) at 1820
ns in Figure 7.10). When macrooperation z2 invokes logic function θ4 in the state
a4, Z4 is set to enable the logic function to run (see IZ at 1020 ns in Figure 7.10),
and z2 waits in the state a5. The logic function θ4 ends execution and returns the
value 1 (see ILF at 1270 ns in Figure 7.10) and z2 already in the state a6 after the
termination of θ4 goes to the state a7 (see PFSMREG(2) at 1540 ns in Figure 7.10)
and finishes execution by resetting Z2 (see IZ at 1670 ns and PFSMREG(2) at
1700 ns in Figure 7.10).

138 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Figure 7.10 – Waveform of the Moore PFSM.

7.7 Simulation of a Moore PHFSM

Let’s consider the set of PHGSs depicted in Figure 5.7, that has already been
transformed and extended in order to provide proper synchronisation of parallel
macrooperations, for implementation in a PHFSM with non-persistent
microoperations. It has four input signals (L=4) and eight microoperations (N=8).
Since it is specified with five macrooperations (z1, z2, z3, z4, z5) and one logic
function θ6, the HGS binary code length is three bits (K=3).

The Parallel Stack Memory has only four stacks (Q=4), because the
macrooperation z5 is never invoked in parallel with any other macrooperation and
therefore does not need a stack for itself, and logic functions are always invoked
in a new hierarchical level. Since a counter of module four is needed to provide
the respective sub-clocks to scan the stacks, the counter binary code length is two
bits (C=2).

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 139

This algorithm can be implemented as Moore PHFSM using the ordinary state
transition Table 5.25. If the binary code is used for state encoding and since there
are eighteen states the state code length is five bits (R=5).

The replacement of input variables is more complicated to apply because when a
macrooperation in invoked in parallel or alone in a new hierarchical level the sub-
clock binary code is tested to distinguish both situations (see conditional node T3
in the z3 HGS of Figure 5.7).

The inputs that generates the next state, besides the state code, are the four input
signals (x1,…,x4), the calculated value of the logic function θ6 (Θ6), the three extra
signals (Z2,…,Z4) that synchronise the parallel execution of macrooperations and
the sub-clock binary code Tj. In state a0 (see Table 5.25) the state transition
depends on Tj and all Zi signals, but in fact for the sub-clock Tm only the
respective Zm must be inquired to decide the next state. Therefore, multiplexing
the Zi values accordingly with the Tj sub-clock, the inputs are reduced to Tm and
Zm. However, because the sub-clock binary code has two bits, the replacement of
input variables demands three new variables (G=3) (see for example states a0 and
a9 in Table 5.25) and therefore three 32:1 multiplexers are used (see Figure 7.11).

Programmable Multiplexer

Multiplexer 2

x1

x2

x3

x4

Θ6

Z2

Z4

Z3

Multiplexer 3
310

p3

310

p2

Multiplexer 1
310

p1

τ5

τ1

T2

T1

Zm

Figure 7.11 – Programmable multiplexer for the Moore PHFSM.

The output function generates, the microoperations (N), the HGS binary code
(K), one set and one reset signal for each SR flip-flop that holds a Zi signal (Q-1
flip-flops), one set and one reset signal for each SR flip-flop that holds the
calculated value of a logic function (NLF flip-flops) and the special signals y+ and
y-. Therefore, this PHFSM demands, a RAM of 2K words of R bits to implement
the Code Converter presented in the Table 5.26 (see LUT 24), a RAM of 2R+C+G

words of R bits to implement the Next State Memory (see LUT 26) and a RAM
of 2R+C words of N+K+Q*2+NLF*2 bits to implement the Output Memory
(see LUT 25).

140 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

The VHDL simulation of this PHFSM for two different sequences of input
signals produced the two waveforms presented in Figure 7.12 and Figure 7.13. To
track down the PHFSM internal status, the state stored in the active register of
each stack of the Parallel Stack Memory is traced (signals MUXINF).

Figure 7.12 – First waveform of the Moore PHFSM.

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 141

The three synchronisation pulses presented in Figure 4.12 are represented by the
signals CCCSCLK, SPCLK and STLCLK.

Figure 7.13 – Second waveform of the Moore PHFSM.

142 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

In the waveform presented in Figure 7.12 the macrooperations z2 and z3 are
invoked in parallel at the state a2 of macrooperation z1. The Z2 and Z3 flip-flops
are set in order to enable the parallel execution of both macrooperations (see IZ at
350 ns in Figure 7.12), while z1 stays in the waiting state a3. Macrooperation z1
only resumes execution, transition from the state a3 to the state a0, after z2 and z3
have been terminated (see MUXINF(1) at 1340 ns in Figure 7.12). Meanwhile,
macrooperation z2 invokes macrooperation z3 in the state a7, that will run in a new
register of the z2 stack (see MUXINF(2) at 580 ns in Figure 7.12). At this time z3
is running in parallel with itself in two different stacks (see states stored in
MUXINF(2) and MUXINF(3) between 600 ns and 1000 ns in Figure 7.12). When
this z3 hierarchical invocation ends, z2 resumes execution and goes from the state
a7 to the state a8 (see MUXINF(2) at 1060 ns in Figure 7.12).

In the waveform shown in Figure 7.13, the macrooperations z3 and z4 are invoked
in parallel at the state a4 of macrooperation z1 (see IZ at 350 ns in Figure 7.13),
while z1 stays in the waiting state a5. Macrooperation z4 invokes the logic function
θ6 at the state a13, that will run in a new register of the z4 stack (see MUXINF(4) at
660 ns in Figure 7.13). The execution of the logic function θ6 ends and returns the
value 1 (see ILF at 950 ns in Figure 7.13), and z4 resumes execution at the state a13
and goes to the state a15 (see MUXINF(4) at 980 ns in Figure 7.13).

7.8 Providing Flexibility

Flexibility means the feasibility to modify a given behaviour in minimal time and
with minimal effort. Let’s consider the mixed Moore/Mealy HFSM presented in
the previous paragraphs. Suppose it is necessary to change the macrooperation z4
behaviour. For example, the microoperation y8 must be inserted in the node
marked with the state a16 and the microoperations y1, y2 must be replaced with the
microoperations y4, y6 and the macrooperation z5 in the node marked with the
state a17 (see Figure 7.14a). Moreover, the current version of the logic function θ6
must be substituted by another version in all conditional nodes where it is invoked
(see Figure 7.14b).

Begin

θ6 = 0 θ6 = 1

End

x3

Γ6

1

x2
0

0

1

a1
b1

a19 b2

(b)(a)

y4 , y6 , z5

Begin

End

z3

y1 , y2

1

x2

Γ4

0

Begin

End

y8 , z3

1

x2

Γ4

0

a16
b2

a16
b2

a17
b3

a17
b3

a1
b1

a1
b1

Figure 7.14 – (a) New implementation of the macrooperation z4. (b) New version of the logic function θ6.

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 143

Let’s see how these changes can be provided for the Moore HFSM model 2 with
the binary state encoding. To change the functionality of the operational nodes a16
and a17 it is necessary to reprogram the Output Memory. Replacing the 17-th
output vector "0000000001110" (associated with the state a16) with the vector
"1000000001110" (y8, z3), and the 18-th output vector "0000001100000"
(associated with the state a17) with "0010100010110" (y4, y6, z5).

In order to use the new version of the logic function, its HGS is marked with free
state labels, the state transitions introduced by those new states are recorded and
they are programmed in the Next State Memory.

In the example, the input of the first conditional node is marked with the state a19
and the state transitions presented in Table 7.1 are recorded. The new state
transition is programmed by replacing the 20-th group of four empty next state
vectors (associated with the state a19) with "000010" "000010" "000011" "000010"
(next state a1 and the extra output extra_y for the transition a19 3x 2x a1).

Table 7.1 – Ordinary state transition table for the new version of the logic function θ6.

am { Y(am) } as X(am,as) Y(am,as)
a19 a1

a1
a1

3x
3x 2x
3x 2x

yextra _

Since the replacement of input variables technique is being used the
Reprogrammable Multiplexer must also be reprogrammed to accommodate the
need of the inputs x3 and x2 for the new state a19 (see Figure 7.15).

Programmable Multiplexer

Multiplexer 2
310

p1p2

x1

x2

extra_x

x3

x4

x5

Multiplexer 1
τ5

τ1

310

Figure 7.15 – New implementation of the programmable multiplexer for the mixed Moore/Mealy HFSM model 2 with

binary state encoding in order to provide flexibility.

Finally to use the new version of the logic function θ6 in all its invocations, it is
necessary to reprogram the θ6 entry state binary code generated by the Code
Converter, by replacing the 7-th entry state vector "10010" (state a18) with
"10011" (state a19).

144 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

However, if it is necessary to invoke the two different versions of the logic
function in two different conditional nodes, the following actions must be done:
1. to assign a new HGS binary code to the new version of the logic function, for

example the code "111" that is not in use;

2. to reprogram the Code Converter for providing the entry state a19 for the new
HGS binary code by replacing the 8-th entry state vector "00000" (clear state
a0) with "10011" (state a19) and keeping the entry state a18 for the old HGS
binary code;

3. in the conditional nodes where the first version of θ6 is invoked the output
function must generate the HGS binary code "110", while in the nodes where
the second version is invoked the HGS binary code "111" must be generated.

The waveform generated during the VHDL simulation of this mixed HFSM with
the changes mentioned above is depicted in Figure 7.16.

Comparably with Figure 7.2, now the state a16 generates the microoperation y8
(128) (see Y at 265 ns in Figure 7.16). And the state a17 generates the
microoperations y4, y6 (40), and since the pure virtual macrooperation z5 is
invoked its HGS binary code (5) is generated (see YZ at 425 ns in Figure 7.16).
The pure virtual macrooperation is executed during only one clock cycle and the
HFSM returns back to the state a17. When the logic function θ6 is invoked in the
state a12 of macrooperation z2 it is in fact the second version that is running (see
state a19 stored in STACK(3) and NEWX at 580 ns in Figure 7.16).

Figure 7.16 – Waveform of the mixed Moore/Mealy HFSM model 2 with the changes that provide flexibility.

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 145

If the special state encoding algorithm is used, three binary codes are needed for
the state a19. But to accommodate them in the Karnaugh map of Figure 6.5 the
state assignments of the states a16 and a17 have to change (see Figure 7.17 and
compare it with Figure 6.5).

00 01 11 10

00

01

11

10

τ4τ3

τ2τ1

τ5 = 0

a0 a1

a2 a2 a2 a2

a3 a4

a6 a6 a5 a7

a8 a9 a10 a10

00 01 11 10

00

01

11

10

τ4τ3

τ2τ1

τ5 = 1

a12 a12

a13 a13 a14 a14

a11 a15

a19 a19a19

a18 a18

a16

a17 a17

Figure 7.17 – Karnaugh map for state encoding.

Now it is necessary to reprogram the Output Memory and the Next State
Memory for the new state a19 and for the states a16 and a17 whose codes have
been changed. The Code Converter must be reprogrammed like it was explained
for the binary state encoding, but the macrooperation z4 entry state has also to be
reprogrammed because the a16 code has been changed.

The Programmable Multiplexer must be updated for all the states mentioned
above that have input signals in their transition functions, i. e. for the states a17
and a19 (see Figure 7.18 and compare it with Figure 7.3).

Programmable Multiplexer

Multiplexer 1
τ5

τ2

0 15

Multiplexer 2
0 15

p1p2

x1

x2

extra_x

x3

x4

x5

Figure 7.18 – New implementation of the programmable multiplexer for the mixed Moore/Mealy HFSM model 2 with

special state encoding in order to provide flexibility.

146 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

It should be kept in mind when using the special state encoding algorithm, to
leave as much empty rows in the Karnaugh map as possible, in order to allow
future state assignments without having to make many changes in the states
already assigned. But even doing so, to apply some changes to an already
implemented HFSM using this state encoding algorithm, demands more time
when compared with the ordinary binary state encoding algorithm.

In the Moore HFSM model 3, to reprogram the Moore Output Block changes
the operational nodes functionality in terms of the microoperations generation.
But in order to add or delete a macrooperation invocation the Code Converter
has to be reprogrammed.

In order to supply another version of the logic function θ6 and to keep both
versions available it is necessary to insert a new RE that needs a RAM of 2R+2

words of R+1 bits. But, to substitute the implementation of the logic function θ6
in all invocations, it is easier to reprogram the RE6.

For the PFSM (PHFSM) it is very easy to change the microoperations generation
by reprogramming the Output Memory. If it is required to add or delete a
macrooperation, in a PFSM operational node or in a PHFSM operational node
that already contains macrooperations, the transformed PHGS must be reanalysed
in order to ensure that the parallel invocation of macrooperations is still correctly
synchronised. Then the Next State Memory and the Output Memory must be
reprogrammed accordingly with all the changes that have been made. However, to
add a macrooperation in a PHFSM operational node that does not contain yet a
macrooperation is done like for the HFSM model 2.

However, it is necessary to ensure that the PHGS of the macrooperation is
synchronised to be used in a hierarchical invocation. To replace a logic function
with another version or by another logic function in the PFSM is done the same
way as inserting a macrooperation invocation, while in the PHFSM is done by
reprogramming the Code Converter like for the HFSM model 2.

Everything that was said for the Moore machine can be applied to Mealy with one
difference. For the model 2 the next state and output vectors are reprogrammed
altogether in the same vector of the Next State and Output Memory. In the
case of the model 3 all the changes in a HGS behaviour are made in the respective
RE, apart from macrooperation and logic function invocations that are made in
the Code Converter.

The example of Figure 7.14 has shown how to add the invocation of a
macrooperation in an operational node. In order to abolish an existing
macrooperation invocation, it is necessary to reprogram the output function in the
opposite way, i.e. to delete the macrooperation binary code and the special signal
y+ for the appropriate state.

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 147

7.9 Providing Extensibility

Extensibility means to extend the defined behaviour in order to improve
something. Let’s consider the mixed Moore/Mealy HFSM presented initially.
Suppose it is necessary to add a new operational node in the macrooperation z4
before the node End (see Figure 7.19a) invoking the new macrooperation z7 (see
Figure 7.19b).

Begin

End

z3

y1 , y2

1

x2

Γ4

0

a1
b1

a16
b2

a17
b3

Begin

End

z3

y1 , y2

1

x2

Γ4

0

a1
b1

a16
b2

a17
b3

z7

a19
b4

Begin

y2 , y3

Γ7

a20
b2

x3

x4

1

0

0

1

End
a1
b1

(b)(a)

Figure 7.19 – (a) New implementation of the macrooperation z4. (b) New macrooperation z7.

In order to execute the changes mentioned above for the Moore HFSM model 2,
the following steps must be performed:
1. reprogram the Next State Memory;
2. reprogram the Programmable Multiplexer;
3. assign a HGS binary code to the new macrooperation z7 and reprogram the

Code Converter;
4. reprogram the Output Memory.

Let’s explain each step in detail for this example assuming binary state encoding.

Step 1. In order to reprogram the Next State Memory, the new nodes are
marked with free state labels, the new state transitions are recorded and the old
transitions that were affected by the insertion of the node are re-evaluated. Then
all next state vectors of the states that have been affected must be reprogrammed.

In the example, the operational node inserted in macrooperation z4 is marked with
the state a19 and the operational node of macrooperation z7 with the state a20 and
the state transitions presented in Table 7.2 are recorded. First the state transition
a17 2x a19 that substitutes the transition a17 2x a1 is reprogrammed by replacing the
two vectors "000010" (state a1) of the 18-th group of next state vectors with
"100110" (state a19).

148 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Now, it is necessary to program the new state transitions. For the state transition
a19 a1, the 20-th group of four empty next state vectors is replaced with "000010"
"000010" "000010" "000010". For the state transitions a20 3x a20, a20 3x 4x a20 and
a20 3x 4x a1, the 21-st group of four empty next state vectors is replaced with
"101000" "000010" "101000" "101000".

Table 7.2 – Ordinary state transition table for the new node of the macrooperation z4 and the new macrooperation z7.

am { Y(am) } as X(am,as)
a17 {y1,y2} a19

a16
2x
2x

a19 {z7,y+} a1 1
a20 {y2,y3} a20

a20
a1

3x
3x 4x
3x 4x

Step 2. The Programmable Multiplexer is reprogrammed, if and only if the state
transitions of the inserted nodes have input signals in their transition functions.
That is the case of the state a20 that depends on the inputs x4 and x3 (see Figure
7.20).

Programmable Multiplexer

Multiplexer 2
310

p1p2

x1

x2

extra_x

x3

x4

x5

Multiplexer 1
τ5

τ1

310

Figure 7.20 – New implementation of the programmable multiplexer for the mixed Moore/Mealy HFSM model 2 with

binary state encoding in order to provide extensibility.

Step 3. The HGS binary code “111” can be assigned to the macrooperation z7,
since it is free. The Code Converter will generate the entry state a20 for z7, if the
8-th entry state vector "00000" (clear state a0) is replaced with "10100" (state a20).

Step 4. In order to reprogram the Output Memory, the output functions of the
new nodes are recorded and their output vectors are loaded. In the example, for
the state a19, the 20-th output vector is loaded with "0000000011110" (no
microoperations, z7, y+) and for the state a20, the 21-st output vector is loaded with
"0000011000000" (y2, y3).

The waveform for this mixed HFSM with the changes mentioned above is
depicted in Figure 7.21. Comparably with Figure 7.2, the next state of the state a17
is the state a19 (see STACK(3) at 460 ns in Figure 7.21). At the state a19 the
macrooperation z7 is invoked and its HGS binary code (7) is generated (see YZ at
465 ns in Figure 7.21). The macrooperation z7 generates the microoperations y2

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 149

and y3 (6) in the state a20 (see Y at 510 ns in Figure 7.21) and returns back to the
previous hierarchical level.

Figure 7.21 – Waveform of the mixed Moore/Mealy HFSM model 2 with the changes that provide extensibility.

If the special state encoding algorithm is used, three binary codes for the state a20
and one binary code for the state a19 are required, which is not possible to
accommodate in the Karnaugh map of Figure 6.5. So the state binary code length
will increase to six bits (R=6).

To implement the changes for this state encoding algorithm, the requirements
necessary, when compared with the binary state encoding, are the following: two
32:1 Programmable Multiplexers; a Next State Memory with half of the size;
an Output Memory with twice the size. Since the Output Memory word length
is twice of the Next State Memory word length the total amount of memory
needed is practically the same for both implementations.

In the Moore HFSM, the use of the special state encoding algorithm for an
example with only two new variables after applying the replacement of input
variables, does not decrease the total amount of memory size if the state code
length will increase one bit. In contrast, the total memory size will still decrease
for the Mealy HFSM.

In order to execute the changes mentioned above for the Moore HFSM model 3,
it is necessary to perform the following steps:
1. reprogram the z4 RE;
2. create the z7 RE;
3. assign a HGS binary code to the new macrooperation z7 and provide an

output decoder line to connect the RE7;
4. reprogram the Code Converter;
5. reprogram the Output Memory Block.

150 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Let’s explain in detail each step for this example. Step 1. In order to reprogram the
RE4, the operational node inserted in the macrooperation z4 is marked with the
first free state that is b4, the state transitions generated are recorded and the
transitions affected by its insertion are re-evaluated. In the example, the state
transition b3 2x b4 that substitutes the transition b3 2x b1 is reprogrammed by
replacing in the 4-th group of next state vectors the vector "0001" (state b1) with
"0100" (state b4). And replacing the 5-th group of two empty next state vectors
with "0001" "0001" (state b1) programs the state transition b4 b1.

Step 2. In order to create the RE7, the z7 HGS is marked with states (see states bi
in Figure 7.19b) and the transitions are recorded. The RE7 has two inputs x3 and
x4 and a RAM of 2R+2 words of R bits is required (see LUT 27).

Step 3. Since the HGS binary code "110" is free, it can be assigned to the
macrooperation z7 and therefore the RE7 must be connected with the 7-th output
decoder line.

Step 4. To reprogram the Code Converter means to provide the z7 invocation in
the state b4 of the macrooperation z4, by replacing the 53-rd empty vector "00000"
with "11010" (z7 HGS code, y+). It is also necessary to program the hierarchical
invocations for the z7 macrooperation states. The 97-th, 98-th and 99-th empty
vectors must be replaced with respectively "11000" (z7 HGS code for the state b0),
"00001" (signal y- for the state b1) and "11000" (z7 HGS code for the state b2).

Step 5. In order to reprogram the Output Memory Block, the microoperations
of the new nodes of macrooperations z4 and z7 are recorded and loaded in the
respective output vectors. In the example, the state b4 does not have any
microoperations, so it is not necessary to perform any action. But for the state b2
the 99-th empty output vector is loaded with "00000110" (y2, y3).

The insertion of new operational nodes in the PFSM/PHFSM proceeds like it was
explained before. The transformed PHGS is reanalysed in order to ensure that the
invocation of macrooperations is correctly synchronised and then the Next State
Memory and the Output Memory are reprogrammed.

In order to add a new macrooperation to an algorithm described by PHGSs and
implemented in a PFSM, a new register must be added to the PFSM Memory
and the clock generation has to be adapted in order to scan the new register. For
the PHFSM two kinds of situations can happen. If the new macrooperation will
be used in parallel invocations then it is required to add a new stack to the
Parallel Stack Memory and proceed like for the PFSM. Otherwise, proceed like
when it is necessary to add a new logic function.

Once again the extensibility example was only presented for the Moore machine.
For the Mealy machine the differences described in the previous paragraph have
to be considered.

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 151

7.10 Providing Reusability

It was shown in the two previous paragraphs how easy it is to change the
behaviour of the FSMs. With the flexibility and extensibility provided by the
models, it can be said that the HFSMs/PHFSMs when implemented with
reprogrammable elements such as RAMS are reusable.

Since the VHDL models are parameterised, in order to reuse the
HFSMs/PHFSMs, it is only necessary to change the parameters declared in the
parameter file, to reprogram the Programmable Multiplexer matrix part and the
contents of the components implemented as RAMs.

7.11 Using Pure Virtual HGSs

In order to specify an algorithm without a complete description, pure virtual
macrooperations can be declared in the description just for the sake of testing it
(z5 in the example). In the end all pure virtual macrooperations must be specified.

A pure virtual macrooperation is executed in only one clock cycle in the HFSM
model 2 (see Figure 7.16), because its entry state is in fact the HGS exit state a1.
Since in the case of the HFSM model 3 the entry state of a pure virtual HGS is the
state b2, its execution takes two clock cycles.

7.12 Hierarchical FSMs versus Non-Hierarchical FSMs

A hierarchical decomposition of an algorithm allows the developing of any
complex control algorithm part by part concentrating the efforts on different
levels of abstraction. Moreover, the macrooperations described can be separately
tested and can be used to implement other algorithms developed in future.
However, a hierarchical specification does not imply a hierarchical
implementation. So why do it?

Let’s consider the mixed Moore/Mealy HFSM used as an example in this chapter.
If the hierarchical implementation is flattened then the set of HGSs is reduced to
the ordinary GS depicted in Figure 7.22 with thirteen operational nodes, that can
be implemented as a Moore FSM with a state binary code length of four bits
(R=4). This means that the FSM implementation requires less memory to be
implemented, because the Code Converter is not required and a single register
can substitute the Stack Memory as the FSM memory.

But this happens because each macrooperation is invoked only once, with the
exception of z3. If the macrooperations were invoked more times, the number of
operational nodes of the GS would increase and then the FSM synthesis would
also increase in complexity.

152 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

It is also possible to provide a flexible, extensible and reusable FSM if the next
state and output functions are implemented with reprogrammable elements such
as RAMs. But can the non-hierarchical FSM really provide flexibility, extensibility
and reusability?

Suppose it is necessary to make some changes in the macrooperation z3. In order
to do that in the GS of Figure 7.22, the changes have to be made in two different
places, while in the hierarchical specification the changes are made only once in
the HGS Γ3. And more changes means more memory cells to reprogram.

Suppose it is required to replace all invocations of a macrooperation zi with the
macrooperation zj. In the GS that forces the replacing of a group of nodes with
another group of nodes in all appearances of the macrooperation zi and therefore
to re-synthesise parts of the state transition table and then to reprogram the FSM
next state and output functions accordingly. In the HFSM only the Code
Converter needs to be reprogrammed by replacing the entry state of the
macrooperation zi with the entry state of the macrooperation zj.

Suppose it is essential to have a flexible conditional node. In the HFSM it is
possible to have different versions of a logic function and by reprogramming the
Code Converter or the output function of the conditional node, to invoke the
desired version. In the FSM the condition contained in the conditional node has
to be changed, some transitions have to be rewritten in the state transition table,
the next state function must be reprogrammed and if the replacement of input
variables is being used the Programmable Multiplexer also demands to be
reprogrammed.

The hierarchical implementation really provides the reuse of an algorithm with
simple changes in precise parts of the implementation and without the need to
start the design process again from the beginning. The new algorithm inherits the
invariable part of the previous algorithm and just deletes parts that are not needed
and adds new parts that are different in the new context. The HFSMs with stack
memory can be seen as general-purpose architectures capable of implementing
hierarchical algorithms directly mapped from hierarchical specifications.

CHAPTER 7 : VHDL SIMULATION OF HIERARCHICAL FINITE STATE MACHINES 153

Begin

y2

y3 , y5

x1

x2

0 1

01

x3

y3 , y4

y7

0

x1

1

0

y1 , y2

1

x2

0

y3 , y5

1

1

y1

x5

0

x4

0

1

z3

z4

θ6

z2

0

y1 , y4

End

y3 , y5

1

1

y1

x5

0

x4

0

z3

y6 , y7 , y8

x2

x3

0

y3

1

1

θ6

z5

Figure 7.22 – Ordinary GS equivalent to the set of HGSs presented in Figure 5.1.

154 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

7.13 Conclusions

The VHDL simulation proved that the proposed HFSM and PHFSM models
implemented with the suggested synchronisation mechanism perform correctly
the transition between hierarchical levels. Furthermore, the PHFSM can provide
pseudo-parallel execution of macrooperations.

The replacement of input variables can in fact reduce the total amount of memory
needed to implement the HFSMs.

The special state encoding algorithm must be carefully applied in order to allow
assigning binary codes to new states to be inserted in the future without having to
make many changes in the states already assigned. If applied without increasing
the state code length it effectively reduces the size of the next state LUT.
Otherwise, in the case of the Moore HFSMs the size of the output LUT will
eventually increase more than the falling size of the next state LUT and therefore
will yield the opposite intention.

One way or another, the special state encoding algorithm forces the designer to
spend more time when it is necessary to modify the FSMs behaviour, because it is
not a straightforward procedure like when using ordinary binary encoding.

It was experimentally proved that flexibility and extensibility could be provided in
minimal time and with minimal effort.

155

8 FINAL CONCLUSIONS AND FUTURE WORK

Summary

This chapter presents the final conclusions and summarises the original
contributions of this work, namely the proposed models of hierarchical and
parallel hierarchical FSMs, their synthesis from hierarchical specifications and the
automatic synthesis tool SIMULHGS. The experimental results obtained with the
VHDL simulation of the proposed FSM models are also analysed. In addition
some future research opened up by this work is discussed.

156 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

8.1 Introduction

Formal state-based models that can support hierarchical and concurrent
specifications were proposed in [Skyarov84, Sklyarov87, Harel87] and are strongly
recommended by many authors [Gajski94, Micheli94, Edwards97] for modelling
the functionality of complex control units.

In this thesis HGSs and PHGSs were the formal model chosen to specify the
behaviour of control units. They allow a top-down decomposition of control
algorithms through the use of macro blocks. Since these macro blocks can be seen
as relatively autonomous blocks they can be separately tested and can be reused to
implement other algorithms to be developed in the future.

However, since HGSs and PHGSs have the constraints in the transitions between
hierarchical levels, they do not allow for example performing the last part of an
already existing macrooperation without the need to perform the first part. The
designer can solve this problem in two different ways:
• to specify another macrooperation that will implement the desired part of an

already existing macrooperation and then invoke this new macrooperation in
the required states. But this means to have a partially repeated macrooperation;

• to split the macrooperation implementation into two independent
macrooperations, and invoking each part accordingly to the needs of the
algorithm. But when it is necessary to execute the complete original
macrooperation it demands two invocations to be performed sequentially and
therefore to waste more time in the complete execution due to the extra
hierarchical transitions.

Both solutions have advantages and disadvantages, but can lead to unnatural
specifications of a hierarchical algorithm. Hence, the solution must pass by
allowing hierarchical transitions to any state of any hierarchical level like in the
Statecharts model. This transition flexibility can and must be accommodated in
the HFSM models.

Besides the introduction of the concept of the HCFSM in [Gajski94] and the
suggestion for the implementation of a hierarchical FSM through the
interconnection of independent FSMs in [Micheli94] or a tree of interconnected
FSMs in [DruHar89], there are not many proposals for a HFSM model that can be
seen as a complete FSM implementing internally in an efficient way the switching
between the different hierarchical levels of the machine.

The first model of a HFSM and its synthesis directly mapped from a hierarchical
specification was presented in [Sklyarov84]. A HFSM with stack memory can
efficiently implement a hierarchical control algorithm and can even perform a
recursive algorithm providing that the size of the stack is well dimensioned.

CHAPTER 8 : FINAL CONCLUSIONS AND FUTURE WORK 157

8.2 Contributions

The contributions of this work to the synthesis of control units from hierarchical
specifications covers two different directions. First, it proposes new models of
HFSMs that are more efficient and flexible than the first models presented in
[Sklyarov84, Sklyarov87] and that can provide such new facilities as flexibility,
extensibility and reusability when implemented with reprogrammable components.
Second, it proposes a synthesis methodology from hierarchical specifications
based on HGSs/PHGSs and it presents an automatic synthesis tool for HFSMs
specified by HGSs.

8.2.1 HFSM and PHFSM models

With the introduction of the Code Converter in the HFSM model 2, the HFSM
becomes less complex and more versatile when compared with the first model.
Moreover, this model can implement the hierarchical transition flexibility
mentioned above, if the Code Converter is used to generate the arriving state of
each hierarchical transition instead of the entry state of each macrooperation or
logic function. In order to achieve this functionality, the binary codes that address
the Code Converter and that are associated with the macrooperations and logic
functions must be associated with the hierarchical transitions.

The HFSM model 3 provides an association between the set of HGSs and
mutually exclusive Reprogrammable Elements. This model has acquired a
regular structure that can be easily modified with the addition or deletion of REs
and can in fact provide a flexible and extensible hierarchical implementation. With
its modular structure it becomes suitable for the FPGA implementation of Mealy
HFSMs. However, this model cannot implement the hierarchical transition
flexibility mentioned above.

Based on the parallel FSM model proposed in [Sklyarov87] that implements the
pseudo-parallel execution of FSMs, a parallel hierarchical FSM model and its
synthesis from a specification based on PHGSs are also proposed. The PHFSM
can manage both hierarchy and pseudo-parallelism, but it is not a true PHFSM
and more work should be done in order to achieve it.

8.2.2 Synthesis of HFSMs

The synthesis methodology proposed has proven that as against an ordinary FSM
the Moore HFSM is more efficient than the Mealy HFSM for implementing an
algorithm with many hierarchical invocations. But, since it is more convenient to
use a Mealy HFSM to implement logic functions, in order to speed up their
evaluation, the mixed Moore/Mealy HFSM can take the better of the two
machines and it should be used in the case of an algorithm with logic functions.

In addition the tool SIMULHGS that automatically synthesises HFSMs specified
by HGSs was implemented.

158 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

According to [Harel88], a variety of computer-related systems and situations can
and should be represented by visual formalisms: visual, because they are to be
generated, comprehended and communicated by humans; and formal because
they are to be manipulated, maintained and analysed by computers.

For that very reason, the work of this thesis was complemented with the
development of the graphical editor of HGSs [ParCra98], which allows the
creation of separated HGSs as well as algorithms composed with already existing
and newly developed HGSs. This graphical editor generates text descriptions of
correct HGSs and the textual decomposition of a hierarchical algorithm that can
be used as input to the tool SIMULHGS.

8.2.3 Experimental Results

The VHDL simulation work done has demonstrated that the proposed models
could in fact implement a hierarchical algorithm efficiently, and that they allow the
use of virtual components in the description of the algorithm for the sake of
testing. Moreover, they provide flexibility, extensibility in minimal time and with
minimal effort. Therefore, it can be said that the proposed models are suitable for
implementing complex control algorithms and that they are reusable.

The tool SIMULHGS used in conjunction with a graphical editor of HGSs
provides an environment for the specification, verification, simulation and
automatic synthesis of a hierarchical algorithm described by a set of HGSs. But, it
is not yet a complete graphical environment and for the moment it only generates
text files containing the state transition table and the Code Converter table.

8.3 Future Work

Since the tool SIMULHGS has not a user-friendly interface to the user, it should
be redesigned in order to accommodate a complete graphical environment. It
should incorporate a graphical editor and to provide graphically all the facilities
already implemented namely, verification, simulation, automatic generation of
state transition and Code Converter tables and the optimisation technique of
state splitting. It should be extended to include the replacement of input variables
technique and it should have the possibility of applying different state encoding
algorithms.

The implementation of the HFSM model 2 in the Xilinx XC6200 dynamically
reconfigurable FPGAs is already being pursued with promising results that are
presented in [Sklyarov98]. Since FPGAs can be seen as the ideal target for the
implementation of the HFSM model 3, the next step of research should be its
implementation in reconfigurable FPGAs and to study how it is possible to take
advantage of the dynamically reconfigurable capability in order to provide a
flexible, extensible and reusable HFSM.

159

9 APPENDIX A - LUTS

This appendix presents the contents of the lookup tables of the FSMs presented
in Chapter 7.

160 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Moore HFSM model 2 with the binary state encoding algorithm

LUT 1 - Code Converter.

LUT 2 – Next State Memory.

LUT 3 - Output Memory.

Code Converter

"00000" "00010" "01001" "01101" "10000" "00001" "10010" "00000"

Next State Memory

"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000"
"001000" "001110" "000110" "001100" "001010" "001010" "001010" "001010"
"001010" "001010" "001010" "001010" "000000" "000000" "000000" "000000"
"001010" "010000" "001010" "010000" "010000" "010000" "010000" "010000"
"000000" "000000" "000000" "000000" "010100" "010100" "010100" "010100"
"010110" "010100" "010110" "010100" "011000" "011000" "011000" "011000"
"010010" "000010" "010010" "000010" "011110" "011100" "011110" "011100"
"000010" "011110" "000010" "011110" "000010" "000010" "000010" "000010"
"100010" "100010" "100010" "100010" "100000" "000010" "100000" "000010"
"000010" "000011" "000010" "000011" "000000" "000000" "000000" "000000"
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000"
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000"
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000"
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000"
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000"
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000"

Output Memory

"0000000000100" "0000000000001" "0000001000000" "0001010001010"
"0000000001110" "0000100100000" "1110000011010" "0000000010110"
"0000010000000" "0000110000000" "0100000000000" "0000000010010"
"0000000011010" "0000000000000" "0001010000000" "0000000100000"
"0000000001110" "0000001100000" "0000000000000" "0000000000000"
"0000000000000" "0000000000000" "0000000000000" "0000000000000"
"0000000000000" "0000000000000" "0000000000000" "0000000000000"
"0000000000000" "0000000000000" "0000000000000" "0000000000000"

CHAPTER 9 : APPENDIX A - LUTS 161

Moore HFSM model 2 with the special state encoding algorithm

LUT 4 – Code Converter.

LUT 5 – Next State Memory.

LUT 6 – Output Memory.

Code Converter

"00000" "00010" "01001" "01101" "10000" "00001" "10010" "00000"

Next State Memory

"000000" "000000" "011110" "011110" "000100" "011100" "000110" "011000"
"000000" "010100" "100110" "010100" "011110" "010000" "010000" "000000"
"010010" "000010" "000010" "100000" "100100" "101100" "000010" "100100"
"000010" "000011" "000000" "000000" "111110" "000010" "000000" "111000"

Output Memory

"0000000000100" "0000000000001" "0000000001110" "0001010001010"
"0000001000000" "0000001000000" "0000001000000" "0000001000000"
"0000010000000" "0000110000000" "0100000000000" "0100000000000"
"1110000011010" "1110000011010" "0000000010110" "0000100100000"
"0000000011010" "0000000011010" "0000000100000" "0000000010010"
"0000000000000" "0000000000000" "0001010000000" "0001010000000"
"0000000000000" "0000000000000" "0000000000000" "0000000000000"
"0000001100000" "0000001100000" "0000000000000" "0000000001110"

162 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

Mealy HFSM model 2 with the binary state encoding algorithm

LUT 7 – Code Converter.

LUT 8 – Next State Output Memory.

Next State Output Memory

"0000000000000000100" "0000000000000000100" "0000000000000000100" "0000000000000000100"
"0000000000000000001" "0000000000000000001" "0000000000000000001" "0000000000000000001"
"0001100000001000000" "0001100000001000000" "0001100000001000000" "0001100000001000000"
"0010100000000000000" "0100000000000000000" "0010000000000000000" "0011101110000000000"
"0011000001010001010" "0011000001010001010" "0011000001010001010" "0011000001010001010"
"0011000000000001110" "0011000000000001110" "0011000000000001110" "0011000000000001110"
"0000000000100100000" "0000000000100100000" "0000000000100100000" "0000000000100100000"
"0011000000000011010" "0100100000000011010" "0011000000000011010" "0100100000000011010"
"0100100000000010110" "0100100000000010110" "0100100000000010110" "0100100000000010110"
"0000000000010000000" "0000000000010000000" "0000000000010000000" "0000000000010000000"
"0101100000110000000" "0101100000110000000" "0101100000110000000" "0101100000110000000"
"0110000100000000000" "0110000100000000000" "0110000100000000000" "0110000100000000000"
"0110100000000000000" "0110000100000000000" "0110100000000000000" "0110000100000000000"
"0111000000000010010" "0111000000000010010" "0111000000000010010" "0111000000000010010"
"0101000000000011010" "0000100000000011010" "0101000000000011010" "0000100000000011010"
"0000100000000100000" "1000000001010000000" "0000100000000100000" "1000000001010000000"
"0000100000000000000" "0000100000000100000" "0000100000000000000" "0000100000000100000"
"1001000000000001110" "1001000000000001110" "1001000000000001110" "1001000000000001110"
"1001100000001100000" "1001100000001100000" "1001100000001100000" "1001100000001100000"
"1000100000000000000" "0000100000000000000" "1000100000000000000" "0000100000000000000"
"0000100000000000000" "0000110000000000000" "0000100000000000000" "0000110000000000000"
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000"
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000"
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000"
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000"
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000"
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000"
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000"
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000"
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000"
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000"
"0000000000000000000" "0000000000000000000" "0000000000000000000" "0000000000000000000"

Code Converter

"00000" "00010" "01010" "01111" "10001" "00001" "10100" "00000"

CHAPTER 9 : APPENDIX A - LUTS 163

Moore HFSM model 3 with the binary state encoding algorithm

LUT 9 – Macrooperation z1 RE Memory.

LUT 10 – Macrooperation z2 RE Memory.

LUT 11 – Macrooperation z3 RE Memory.

LUT 12 – Macrooperation z4 RE Memory.

Macrooperation z4 RE

"0010" "0010" "0010" "0010" "0011" "0011" "0010" "0001"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"

Macrooperation z3 RE

"0010" "0010" "0010" "0010" "0010" "0010" "0010" "0010"
"0100" "0011" "0100" "0011" "0001" "0001" "0100" "0100"
"0001" "0001" "0001" "0001" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"

Macrooperation z2 RE

"0010" "0010" "0010" "0010" "0010" "0010" "0010" "0010"
"0011" "0011" "0011" "0011" "0100" "0100" "0011" "0011"
"0101" "0101" "0101" "0101" "0010" "0001" "0010" "0001"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"

Macrooperation z1 RE

"0010" "0010" "0010" "0010" "0010" "0010" "0010" "0010"
"0010" "0010" "0010" "0010" "0010" "0010" "0010" "0010"
"0100" "0100" "0111" "0111" "0011" "0011" "0110" "0110"
"0101" "0101" "0101" "0101" "0101" "0101" "0101" "0101"
"0101" "0101" "0101" "0101" "0101" "0101" "0101" "0101"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0101" "0100" "0101" "0100" "0101" "0100" "0101" "0100"
"1000" "1000" "1000" "1000" "1000" "1000" "1000" "1000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"

164 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

LUT 13 – Pure Virtual Macrooperation z5 RE Memory.

LUT 14 – Logic Function θ6 RE Memory.

LUT 15 – Output Block Memory.

LUT 16 – Code Converter Memory.

Pure Virtual Macrooperation z5 RE

"0010" "0010" "0001" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"

Logic Function θ6 RE

"00100" "00100" "00100" "00100" "00010" "00011" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"

Output Block Memory

"00000000" "00000000" "00000010" "00010100" "00000000" "00001001" "11100000" "00000000"
"00000100" "00000000" "00000000" "00000000" "00000100" "00000000" "00000000" "00000000"
"00000000" "00000000" "00001100" "01000000" "00000000" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00010100" "00000001" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00000011" "00000000" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000"
"00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000" "00000000"

Code Converter

"00000" "00000" "00000" "00110" "01010" "00000" "10110" "10010"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00100" "00001" "00100" "00100" "01110" "10110" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"01000" "00001" "01000" "01000" "01000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"01100" "00001" "01010" "01100" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"10000" "00001" "10000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"10100" "00001" "10100" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"

CHAPTER 9 : APPENDIX A - LUTS 165

Mealy HFSM model 3 with the binary state encoding algorithm

LUT 17 – Macrooperation z1 RE Memory.

LUT 18 – Macrooperation z2 RE Memory.

Macrooperation z1 RE

"001000000000" "001000000000" "001000000000" "001000000000"
"001000000000" "001000000000" "001000000000" "001000000000"
"001000000000" "001000000000" "001000000000" "001000000000"
"001000000000" "001000000000" "001000000000" "001000000000"
"001100000010" "001100000010" "001100000010" "001100000010"
"001100000010" "001100000010" "001100000010" "001100000010"
"010100000000" "010100000000" "100000000000" "100000000000"
"010000000000" "010000000000" "011111100000" "011111100000"
"011000010100" "011000010100" "011000010100" "011000010100"
"011000010100" "011000010100" "011000010100" "011000010100"
"011000000000" "011000000000" "011000000000" "011000000000"
"011000000000" "011000000000" "011000000000" "011000000000"
"000000001001" "000000001001" "000000001001" "000000001001"
"000000001001" "000000001001" "000000001001" "000000001001"
"011000000000" "100100000000" "011000000000" "100100000000"
"011000000000" "100100000000" "011000000000" "100100000000"
"100100000000" "100100000000" "100100000000" "100100000000"
"100100000000" "100100000000" "100100000000" "100100000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"
"000000000000" "000000000000" "000000000000" "000000000000"

Macrooperation z2 RE

"0010000" "0010000" "0010000" "0010000" "0010000" "0010000" "0010000" "0010000"
"0011011" "0011011" "0011011" "0011011" "0100100" "0100100" "0100100" "0100100"
"0101000" "0101000" "0100100" "0100100" "0110000" "0110000" "0110000" "0110000"
"0010000" "0001000" "0010000" "0001000" "0000000" "0000000" "0000000" "0000000"
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000"
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000"
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000"
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000"

166 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

LUT 19 – Macrooperation z3 RE Memory.

LUT 20 – Macrooperation z4 RE Memory.

LUT 21 – Code Converter Memory.

Macrooperation z3 RE

"0010000" "0010000" "0010000" "0010000" "0010000" "0010000" "0010000" "0010000"
"0001001" "0011110" "0001001" "0011110" "0001000" "0001000" "0001001" "0001001"
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000"
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000"
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000"
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000"
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000"
"0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000" "0000000"

Macrooperation z4 RE

"001000" "001000" "001000" "001000" "001100" "001100" "010011" "010011"
"001000" "000100" "000000" "000000" "000000" "000000" "000000" "000000"
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000"
"000000" "000000" "000000" "000000" "000000" "000000" "000000" "000000"

Code Converter

"00000" "00000" "00000" "00000" "00110" "01010" "00000" "10110"
"10010" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00100" "00001" "00100" "00100" "00100" "01110" "10110" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"01000" "00001" "01000" "01000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"01100" "00001" "01010" "01100" "01100" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"10000" "00001" "10000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"10100" "00001" "10100" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"

CHAPTER 9 : APPENDIX A - LUTS 167

Moore PFSM with the binary state encoding algorithm

LUT 22 – Next State Memory.

LUT 23 – Output Memory.

Moore PHFSM with the binary state encoding algorithm

LUT 24 – Code Converter Memory.

LUT 25 – Output Memory.

Next State Memory

"001" "001" "001" "001" "001" "001" "001" "001" "011" "000" "010" "110" "011" "000" "010" "110"
"100" "100" "100" "100" "100" "100" "100" "100" "101" "101" "101" "101" "101" "101" "101" "101"
"101" "100" "100" "100" "101" "100" "100" "100" "000" "000" "000" "000" "000" "000" "000" "000"
"111" "111" "111" "111" "111" "111" "111" "111" "000" "111" "000" "111" "000" "111" "000" "111"
"000" "001" "000" "001" "000" "001" "000" "001" "010" "010" "010" "010" "010" "010" "010" "010"
"011" "010" "011" "010" "011" "010" "011" "010" "100" "100" "100" "100" "100" "100" "100" "100"
"101" "101" "101" "101" "101" "101" "101" "101" "110" "101" "110" "101" "110" "101" "110" "101"
"001" "111" "001" "111" "001" "111" "001" "111" "000" "000" "000" "000" "000" "000" "000" "000"
"000" "001" "000" "001" "000" "001" "000" "001" "010" "010" "010" "010" "010" "010" "010" "010"
"000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000"
"000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000"
"000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000"
"000" "000" "000" "000" "001" "001" "001" "010" "000" "000" "000" "000" "000" "000" "000" "000"
"000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000"
"000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000"
"000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000" "000"

Moore PFSM Output Memory

"0000000000000000" "0000000100000000" "0000000011000000" "0000001000000000"
"0000000000000000" "0000110000000000" "0000000010000000" "0000000000000000"
"0000000000000000" "0000110000000000" "1100000000000000" "0010000100000000"
"0000000000100000" "0000000000000000" "0000000000000000" "0000000000010000"
"0000000000000000" "0000001100000000" "0011000000001000" "0000000000000000"
"0000000000000000" "0000000000000000" "0000000000000000" "0000000000000000"
"0000000000000000" "0000000000000101" "0000000000000110" "0000000000000000"
"0000000000000000" "0000000000000000" "0000000000000000" "0000000000000000"

Code Converter

"00000" "00001" "00111" "01001" "01101" "10000" "10010" "00000"

Output Memory

"000000000000000000000" "000000010000000000000" "000000000000011000000" "000000000000000000000"
"000000000000001100000" "000000000000000000000" "000000000101100000000" "000000110111000000000"
"000000000000000010000" "000000000000000000000" "000011000000000000000" "000000000000000001000"
"000000000000100000000" "000000001101000000000" "001100000000000000000" "000000110000000000100"
"000000000111000000000" "110000000000100000000" "000000000000000000000" "000000000000100000001"
"000000000000100000010" "000000000000000000000" "000000000000000000000" "000000000000000000000"
"000000000000000000000" "000000000000000000000" "000000000000000000000" "000000000000000000000"
"000000000000000000000" "000000000000000000000" "000000000000000000000" "000000000000000000000"

168 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

LUT 26 – Next State Memory.

Moore HFSM model 3 - Providing Extensibility

LUT 27 – Macrooperation z7 RE Memory.

Next State Memory

"00001" "00001" "00000" "00111" "00000" "01001" "00000" "01101"
"00100" "00000" "00010" "00110" "00000" "00000" "00000" "00000"
"00011" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00011" "00011" "00011" "00000" "00000" "00000" "00000"
"00101" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00101" "00101" "00101" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"01000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"01010" "01100" "01010" "01100" "01010" "01011" "01010" "01100"
"01100" "01100" "01011" "01100" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"01110" "01111" "00000" "00000" "00000" "00000" "00000" "00000"
"01111" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"10001" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"10011" "10011" "10011" "10100" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"
"00000" "00000" "00000" "00000" "00000" "00000" "00000" "00000"

Macrooperation z7 RE

"0010" "0010" "0010" "0010" "0010" "0010" "0010" "0010"
"0010" "0001" "0010" "0010" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"
"0000" "0000" "0000" "0000" "0000" "0000" "0000" "0000"

169

10 APPENDIX B - SIMULHGS

This appendix lists the C++ code of the tool SIMULHGS.

170 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

//SIMULHGS - Verification, Simulation and Automatic Synthesis of HGSs

#include <fstream.h>
#include <iostream.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <conio.h>

//*********************** Definition of Constants, Types and String Functions ***********************

#define MAXNODES 100
#define MAXHGS 10

enum TYPENODE {BEGIN, END, ASSIGN, MICROOP, MACROOP, CONDITION, FUNCTION};
enum TYPEGRAPH {LFUNCGS, MACROGS};

char* binarycode(int n, int G)
{
 static char* bincode=new char[6]; strcpy(bincode,"");
 for (int i=G, bit=1<<G; i>0; i--) { bit>>=1; if (n&bit) strcat(bincode,"1"); else strcat(bincode,"0"); }
 return bincode;
}

char* yzstring(int n, int G)
{
 static char* yz=new char[20]; strcpy(yz,"");
 for (int i=G, bit=1<<G; i>0; i--) {
 bit>>=1; if (n&bit) { strcat(yz,"yz"); strcat(yz,ecvt(i,1,0,0)); strcat(yz," "); }
 }
 return yz;
}

char* linechar(int n)
{
 static char* line=new char[3]; strcpy(line,"");
 if (n<9) { line=ecvt(n,1,0,0); strcat(line," "); } else line=ecvt(n,2,0,0);
 return line;
}

class Node; class Graphscheme; class Hgraphscheme;

//***************************** Definition of the Class Graph-Scheme *****************************

class Graphscheme
{
 char* gsname;
 TYPEGRAPH gstype;
 unsigned int gsnnodes;
 Node* gslist[MAXNODES];
 unsigned int gsmain;
 unsigned int gsnstates;

public:
 Graphscheme(char* fname, unsigned int main=0);
 ~Graphscheme();
 char* Graphname(void) {return gsname;}
 TYPEGRAPH Graphtype(void) const { return gstype; }
 unsigned int Graphnnodes(void) const { return gsnnodes; }
 unsigned int Graphmain(void) const { return gsmain; }
 unsigned int Graphnstates(void) const { return gsnstates; }
 Node* Begings(void) const ;

CHAPTER 10 : APPENDIX B - SIMULHGS 171

 Node* Endgs(void) const ;
 void Cleanmarkgs(void);
 void Markgs(void);
 int Primarycheckgs(Hgraphscheme*);
 int Checkgs(Hgraphscheme*);
 int Loopcheckgs(void);
 void Listgs(void);
 void Printgs(char*);
 int Rungs(Hgraphscheme*,int&);
 void Cleanstategs(void);
 void Moorestategs(int&, int);
 void Mealystategs(int&, int);
 Node* Nodeinitialstategs(void);
 void Mooretablemergegs(char*);
 void Mooretablesplitgs(char*);
 void Mealytablemergegs(char*);
 void Mealytablesplitgs(char*);
 void CCsplitgs(char*,char*);
 void Insertstategs(int&, int, int&);
 void Removestategs(int&, int, int&);
};

//*********************** Definition of the Class Hierarchical Graph-Scheme ***********************

class Hgraphscheme
{
 char* hgsname;
 unsigned int hgsngs;
 Graphscheme* hgslist[MAXHGS];
 unsigned int hgscheck;
 unsigned int hgsdeep;
 char* hgssyn;
 int hgsmark;
 unsigned int hgsnstates;

public:
 Hgraphscheme(char* fname);
 ~Hgraphscheme();
 char* Hgsname(void) { return hgsname; }
 unsigned int Hgsngs(void) const { return hgsngs; }
 char* Ngraphname(int n) { return hgslist[n]->Graphname(); }
 Graphscheme* Searchgraphhgs(char* name);
 int Checkhgs(void);
 void Listhgs(void);
 void Printhgs(void);
 void Deeplevelhgs(int level) { if (level>hgsdeep) hgsdeep=level; }
 void Runhgs(void);
 void Moorestatehgs(void);
 void Mealystatehgs(void);
 void CCmergehgs(char*);
 void CCsplithgs(char*);
 void Mooretablemergehgs(char*);
 void Mooretablesplithgs(char*);
 void Mealytablemergehgs(char*);
 void Mealytablesplithgs(char*);
 void Mooresynmergehgs(int statemark=1);
 void Mooresynsplithgs(int statemark=1);
 void Mealysynmergehgs(int statemark=1);
 void Mealysynsplithgs(int statemark=1);
 void Insertstatehgs(void);
 void Removestatehgs(void);
};

172 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

//************************ Definition and Implementation of the Class Node ************************

class Node
{
protected:
 char* nname;
 TYPENODE ntype;
 int nmark;
 int nstate;
 int nauto;

public:
 Node(char* name);
 Node(char* name, TYPENODE type);
 Node(const Node&);
 virtual ~Node() { delete [] nname; }
 const Node& operator=(const Node&);
 int operator==(const Node&) const;
 char* Nodename(void) { return nname; }
 TYPENODE Nodetype(void) { return ntype; }
 int Nodemark(void) { return nmark; }
 int Nodestate(void) { return nstate; }
 int Nodeauto(void) { return nauto; }
 void Cleanmarknode(void) { nmark=0; }
 void Setmarknode(void) { nmark=1; }
 void Cleanstatenode(void) { nstate=-1; }
 void Setstatenode(int&, int autman=1);
 void Needstatenode(void) { nstate=-3; }
 void Ignorestatenode(void) { if (nstate==-1) nstate=-2; }
 char* Macroname(void);
 char* Microname(void);
 int Assignvalue(void);
 char* Statechar(void);
 virtual Node* Nextnode(int out=1)=0;
 virtual void Setnext(Node* tpt, Node* fpt=NULL)=0;
 virtual void Marknode(void)=0;
 virtual void Checknode(int&)=0;
 virtual void Loopnode(int&)=0;
 virtual void Listnode(void);
 virtual void Printnode(char*);
 virtual void Runnode(int&, Hgraphscheme*, int&)=0;
 int Startingstatenode(void) { if (nstate>1) return 1; else return 0; }
 virtual void Moorestatenode(int&, Graphscheme* gs, int)=0;
 virtual void Mealystatenode(int&, Graphscheme* gs, int)=0;
 virtual void Mooretablenode(char*, char*, int&, int&, char*, int, Node*);
 virtual void Mealytablenode(char*, char*, char*, int&, int&, int, Node*);
};

Node::Node(char* name)
 :nmark(0), nstate(-1), nauto(0)
{
 nname=new char[15]; strcpy(nname,name);
 if (! strcmp(name,"BEGIN")) ntype=BEGIN;
 else if (! strcmp(name,"END")) ntype=END;
}

Node::Node(char* name, TYPENODE type)
 :nmark(0), nstate(-1), nauto(0)
{ nname=new char[15]; strcpy(nname,name); ntype=type; }

CHAPTER 10 : APPENDIX B - SIMULHGS 173

Node::Node(const Node& node)
{
 nname=new char[15]; strcpy(nname,node.nname);
 ntype=node.ntype; nmark=node.nmark; nstate=node.nstate;
}

const Node& Node::operator=(const Node& node)
{
 if (this != &node) {
 delete [] nname; nname=new char[15]; strcpy(nname,node.nname);
 ntype=node.ntype; nmark=node.nmark; nstate=node.nstate;
 }
 return *this;
}

int Node::operator==(const Node& node) const
{
 return (! strcmp(this->nname,node.nname) && (this->ntype==node.ntype)
 && (this->nmark==node.nmark) && (this->nstate==node.nstate));
}

void Node::Setstatenode(int& state, int autman)
{ if (ntype!=END && (nstate==-1 || nstate==-3)) { nstate=state; state++; nauto=autman; } }

char* Node::Macroname(void)
{
 static char* macroname=new char[15];

 strcpy(macroname,"");
 if (ntype == FUNCTION) strcpy(macroname,nname);
 else if (ntype == MACROOP) { strcpy(macroname,nname); macroname=strstr(macroname,"z"); }
 return macroname;
}

char* Node::Microname(void)
{
 static char* microname=new char[15];

 strcpy(microname,"");
 if (ntype == MICROOP) strcpy(microname,nname);
 else if (ntype == MACROOP) { int n=strcspn(nname,"z"); if (n) strncat(microname,nname,n-1); }
 return microname;
}

int Node::Assignvalue(void)
{
 static char* assignvalue=new char[15];
 strcpy(assignvalue,nname); assignvalue=strstr(assignvalue,"=");
 strnset(assignvalue,'0',1); return atoi(assignvalue);
}

char* Node::Statechar(void)
{
 static char* stch=new char[4];
 if (nstate<10) { stch=ecvt(nstate,1,0,0); strcat(stch," "); }
 else if (nstate<100) { stch=ecvt(nstate,2,0,0); strcat(stch," "); }
 else if (nstate<1000) stch=ecvt(nstate,3,0,0);
 return stch;
}

174 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

void Node::Listnode(void)
{
 switch (ntype) {
 case BEGIN : cout <<"BEGIN Node" ; break;
 case END : cout <<"END Node" ; break;
 case CONDITION : cout <<"Conditional Node " <<nname; break;
 case FUNCTION : cout <<"Logic Function Node " <<nname; break;
 case ASSIGN : cout <<"Assignment Node " <<nname; break;
 case MICROOP :
 case MACROOP : cout <<"Operational Node " <<nname; break;
 }
 if (nstate!=-1) cout <<" State a" <<nstate; cout <<"\n";
}

void Node::Printnode(char* fname)
{
 fstream pf; pf.open(fname,ios::app);
 switch (ntype) {
 case BEGIN : pf.write("BEGIN Node",10); break;
 case END : pf.write("END Node",8); break;
 case CONDITION : pf.write("Conditional Node ",17);
 pf.write(nname,strlen(nname)); break;
 case FUNCTION : pf.write("Logic Function Node ",20);
 pf.write(nname,strlen(nname)); break;
 case ASSIGN : pf.write("Assignment Node ",16);
 pf.write(nname,strlen(nname)); break;
 case MICROOP :
 case MACROOP : pf.write("Operational Node ",17);
 pf.write(nname,strlen(nname)); break;
 }
 if (nstate!=-1) { pf.write(" State a",8); pf.write(Statechar(),3);}
 pf.write("\n",1); pf.close();
}

void Node::Mealytablenode(char* fname, char* transition, char* output, int& nt, int& micro, int, Node*
start)
{
 int i, nsp;
 fstream pf; pf.open(fname,ios::app);
 if (nmark) {
 pf.write("\n---",49);
 pf.write("\n|a",3); pf.write(Statechar(),3); nmark=0;
 }
 else
 if (ntype!=MICROOP || micro) {
 if (nt>1) pf.write("\n| ",6); nt++; pf.write("|a",2);
 if (nstate!=-1) pf.write(Statechar(),3); else pf.write(start->Statechar(),3); pf.write("|",1);
 if (strcmp(transition,"")) {
 pf.write(" ",1); nsp=strlen(transition); pf.write(transition,nsp);
 nsp=17-nsp; for (i=0; i<nsp; i++) pf.write(" ",1);
 }
 else pf.write(" 1 ",18);
 if (strcmp(output,"")) {
 pf.write("| ",2); nsp=strlen(output); pf.write(output,nsp); nsp=15-nsp;
 for (i=0; i<nsp; i++) pf.write(" ",1); pf.write("|",1); strcpy(output,"");
 }
 else pf.write("| -- |",18);
 micro=0; if (nstate!=-1) nmark=1;
 }
 pf.close();
}

CHAPTER 10 : APPENDIX B - SIMULHGS 175

void Node::Mooretablenode(char* fname, char* transition, int& extray, int& nt, char* logicf, int
mergesplit, Node* start)
{
 int i, nsp;
 fstream pf; pf.open(fname,ios::app);
 if (nmark) {
 pf.write("\n---",59);
 pf.write("\n|a",3); pf.write(Statechar(),3);
 switch (ntype) {
 case BEGIN :
 case CONDITION : pf.write(", -- ",18);
 break;
 case ASSIGN : if (Assignvalue()) pf.write(", yextra ",18);
 else for (i=0; i<18; i++) pf.write(" ",1);
 break;
 case MICROOP : if (strcmp(nname,"y0")) {
 pf.write(", ",2); nsp=strlen(nname); pf.write(nname,nsp); nsp=16-nsp;
 for (i=0; i<nsp; i++) pf.write(" ",1);
 }
 else pf.write(", -- ",18);
 break;
 case FUNCTION : if (!mergesplit) { pf.write(", -- ",18); break; }
 case MACROOP : if (!mergesplit) {
 nsp=strlen(Microname());
 if (nsp) {
 pf.write(", ",2); pf.write(Microname(),nsp);
 nsp=16-nsp; for (i=0; i<nsp; i++) pf.write(" ",1);
 }
 else pf.write(", -- ",18);
 }
 else {
 pf.write(", ",2); nsp=strlen(nname); pf.write(nname,nsp);
 pf.write(" , y+",5); nsp=11-nsp; for (i=0; i<nsp; i++) pf.write(" ",1);
 }
 case END : break;
 }
 nmark=0;
 }
 else {
 if (nt>1)
 if (strcmp(logicf,"")) {
 pf.write("\n|",2); nsp=strlen(logicf); pf.write(logicf,nsp);
 nsp=22-nsp; for (i=0; i<nsp; i++) pf.write(" ",1); strcpy(logicf,"");
 }
 else pf.write("\n| ",24);
 nt++; pf.write("|a",2);
 if (nstate!=-1) pf.write(Statechar(),3); else pf.write(start->Statechar(),3);
 pf.write("|",1);
 if (strcmp(transition,"")) {
 pf.write(" ",1); nsp=strlen(transition); pf.write(transition,nsp);
 nsp=17-nsp; for (i=0; i<nsp; i++) pf.write(" ",1);
 }
 else pf.write(" 1 ",18);
 if (extray) { pf.write("| yextra |",10); extray=0; } else pf.write("| -- |",10);
 if (nstate!=-1) nmark=1;
 }
 pf.close();
}

176 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

//*********************** Definition and Implementation of the Class Onode ***********************

class Onode : virtual public Node
{
 Node* p;

public:
 Onode(char* name);
 Onode(char* name, TYPENODE type);
 Onode(const Onode&);
 ~Onode() {};
 const Onode& operator=(const Onode&);
 int operator==(const Onode&) const;
 Node* Nextnode(int out=1) { return this->p; }
 void Setnext(Node* tpt, Node* fpt=NULL) { p=tpt; }
 void Marknode(void);
 void Checknode(int&);
 void Loopnode(int&);
 void Listnode(void);
 void Printnode(char*);
 void Runnode(int&, Hgraphscheme*, int&);
 void Moorestatenode(int&, Graphscheme*, int);
 void Mealystatenode(int&, Graphscheme*, int);
 void Mooretablenode(char*, char*, int&, int&, char*, int, Node*);
 void Mealytablenode(char*, char*, char*, int&, int&, int, Node*);
};

Onode::Onode(char* name)
 :Node(name),p(NULL) {}

Onode::Onode(char* name, TYPENODE type)
 :Node(name,type),p(NULL) {}

Onode::Onode(const Onode& onode)
 :Node(onode) {p=onode.p;}

const Onode& Onode::operator=(const Onode& onode)
{
 if (this != &onode) {
 delete [] nname; nname=new char[15]; strcpy(nname,onode.nname);
 ntype=onode.ntype; nmark=onode.nmark; nstate=onode.nstate; p=onode.p;
 }
 return *this;
}

int Onode::operator==(const Onode& onode) const
{
 return (! strcmp(this->nname,onode.nname)&& (this->ntype==onode.ntype)
 && (this->nmark==onode.nmark) && (this->nstate==onode.nstate)
 && (this->p==onode.p));
}

void Onode::Marknode(void)
{ if (!nmark) { nmark=1; if (ntype!=END) p->Marknode(); } }

void Onode::Listnode(void)
{
 Node::Listnode();
 if (!nmark) { nmark=1; if (ntype != END) { cout << nname <<" Next Node -> "; p->Listnode(); } }
}

CHAPTER 10 : APPENDIX B - SIMULHGS 177

void Onode::Checknode(int& ck)
{
 if (!nmark) { cout <<"\nOperational node " <<nname <<" not reachable"; ck=0; }
 if (this==p) { cout <<"\nOperational node " <<nname <<" in loop"; ck=0; }
 else if (p->Nodetype()==BEGIN && ntype!=END)
 { cout <<"\nOperational node " <<nname <<" pointing to BEGIN node"; ck=0; }
 if (ntype==ASSIGN) {
 int value=Assignvalue();
 if (value!=0 && value!=1)
 { cout <<"\nAssignment node " <<nname <<" with a wrong value"; ck=0; }
 }
}

void Onode::Loopnode(int& noloop)
{ if (!nmark) { nmark=1; if (ntype != END) p->Loopnode(noloop); else noloop=1; } }

void Onode::Printnode(char* fname)
{
 fstream pf;
 Node::Printnode(fname);
 if (!nmark) {
 nmark=1;
 if (ntype != END) {
 pf.open(fname,ios::app); pf.write(nname,strlen(nname));
 pf.write(" Next Node -> ",14); pf.close(); p->Printnode(fname);
 }
 }
}

void Onode::Runnode(int& retval, Hgraphscheme* hgs, int& deep)
{
 switch (ntype) {
 case BEGIN : cout <<"BEGIN Graph-Scheme Execution\n";
 deep++; hgs->Deeplevelhgs(deep); break;
 case END : cout <<"END Graph-Scheme Execution\n" ; deep--; break;
 case ASSIGN : cout <<"Assignment Node " <<nname <<"\n";
 retval=Assignvalue(); break;
 case MICROOP : cout <<"Activate output signal(s) " <<nname <<"\n"; break;
 case MACROOP : if (strcmp(Microname(),""))
 cout <<"Activate output signal(s) " <<Microname() <<" & ";
 cout <<"Execute macro operation " <<Macroname() <<"\n";
 Graphscheme* ngraph=hgs->Searchgraphhgs(Macroname());
 ngraph->Rungs(hgs,deep); break;
 }
 if (ntype != END) p->Runnode(retval,hgs,deep);
}

void Onode::Moorestatenode(int& state, Graphscheme* gs, int mergesplit)
{
 switch (ntype) {
 case BEGIN : if (gs->Graphmain())
 { nstate=0; if (p->Nodetype()==CONDITION) p->Setstatenode(state); }
 else if (p->Nodetype()==CONDITION) Setstatenode(state);
 if (p->Nodetype()==END && !mergesplit) nstate=2;
 if (p->Nodetype()==FUNCTION) p->Needstatenode(); break;
 case END : if (gs->Graphmain()) nstate=0; else nstate=1; break;
 case MICROOP : if (p->Nodetype()==FUNCTION) p->Ignorestatenode();
 Setstatenode(state); break;
 case MACROOP : if (p->Nodetype()==FUNCTION) p->Needstatenode();
 case ASSIGN : Setstatenode(state); break;
 }
}

178 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

void Onode::Mealystatenode(int& state, Graphscheme* gs, int mergesplit)
{
 switch (ntype) {
 case BEGIN : if (gs->Graphmain()) nstate=0;
 else if (p->Nodetype()==END && !mergesplit) nstate=2;
 p->Setstatenode(state); break;
 case END : if (gs->Graphmain()) nstate=0; else nstate=1; break;
 case MACROOP : Setstatenode(state);
 case MICROOP :
 case ASSIGN : p->Setstatenode(state); break;
 }
}

void Onode::Mooretablenode(char* fname, char* transition, int& extray, int& nt, char* logicf, int
mergesplit, Node* start)
{
 if (nstate==-1 && ntype==ASSIGN) extray=Assignvalue();
 else { Node::Mooretablenode(fname,transition,extray,nt,logicf,mergesplit,start);
 if (ntype==MICROOP && !nmark && p->Nodetype()==FUNCTION
 && p->Nodestate()==-1 && mergesplit) {
 strcpy(logicf,p->Nodename()); strcat(logicf," , y+");
 }
 }
 if (!nmark) p->Mooretablenode(fname,transition,extray,nt,logicf,mergesplit,start); else nmark=0;
}

void Onode::Mealytablenode(char* fname, char* transition, char* output, int& nt, int& micro, int
mergesplit, Node* start)
{
 if (nstate>-1) Node::Mealytablenode(fname,transition,output,nt,micro,mergesplit,start);
 if (!nmark) {
 switch (ntype) {
 case BEGIN :
 case END : break;
 case ASSIGN : if (Assignvalue()) strcpy(output,"yextra"); break;
 case MICROOP : if (strcmp(nname,"y0")) strcpy(output,nname); else strcpy(output,"");
 micro++; break;
 case MACROOP : if (!mergesplit) strcpy(output,Microname());
 else { strcpy(output,nname); strcat(output," , y+"); }
 micro++; break;
 }
 p->Mealytablenode(fname,transition,output,nt,micro,mergesplit,start);
 }
 else nmark=0;
}

//*********************** Definition and Implementation of the Class Cnode ***********************

class Cnode : virtual public Node
{
 Node* truep; Node* falsep;

public:
 Cnode(char* name, TYPENODE type);
 Cnode(const Cnode&);
 ~Cnode() {};
 const Cnode& operator=(const Cnode&);
 int operator==(const Cnode&) const;
 Node* Nextnode(int out=1);
 void Setnext(Node* tpt, Node* fpt) { truep=tpt; falsep=fpt; }
 void Marknode(void);
 void Checknode(int&);

CHAPTER 10 : APPENDIX B - SIMULHGS 179

 void Loopnode(int&);
 void Listnode(void);
 void Printnode(char*);
 void Runnode(int&, Hgraphscheme*, int&);
 void Moorestatenode(int&, Graphscheme* gs, int);
 void Mealystatenode(int&, Graphscheme* gs, int);
 void Mooretablenode(char*, char*, int&, int&, char*, int, Node*);
 void Mealytablenode(char*, char*, char*, int&, int&, int, Node*);
};

Cnode::Cnode(char* name, TYPENODE type)
 :Node(name,type),truep(NULL),falsep(NULL) {}

Cnode::Cnode(const Cnode& cnode)
 :Node(cnode) {truep=cnode.truep; falsep=cnode.falsep;}

const Cnode& Cnode::operator=(const Cnode& cnode)
{
 if (this != &cnode) {
 delete [] nname; nname=new char[15]; strcpy(nname,cnode.nname); ntype=cnode.ntype;
 nmark=cnode.nmark; nstate=cnode.nstate; truep=cnode.truep; falsep=cnode.falsep;
 }
 return *this;
}

int Cnode::operator==(const Cnode& cnode) const
{
 return (! strcmp(this->nname,cnode.nname) && (this->ntype==cnode.ntype)
 && (this->nmark==cnode.nmark) && (this->nstate==cnode.nstate)
 && (this->truep==cnode.truep) && (this->falsep==cnode.falsep));
}

Node* Cnode::Nextnode(int out)
{ if (out) return this->truep; else return this->falsep; }

void Cnode::Marknode(void)
{ if (!nmark) { nmark=1; truep->Marknode(); falsep->Marknode(); } }

void Cnode::Checknode(int& ck)
{
 if (!nmark) { cout <<"\nConditional node " <<nname <<" not reachable"; ck=0; }
 if (this==truep && this==falsep) { cout <<"\nConditional node " <<nname <<" in loop"; ck=0; }
 else if (truep==falsep && truep->Nodetype()!=BEGIN)
 cout <<"\nWARNING useless conditional node " <<nname <<" ";
 else if (truep->Nodetype()==BEGIN || falsep->Nodetype()==BEGIN)
 { cout <<"\nConditional node " <<nname <<" pointing to BEGIN node"; ck=0; }
 if (! strcmp(truep->Nodename(),nname) && truep!=this ||
 ! strcmp(falsep->Nodename(),nname) && falsep!=this)
 { cout <<"\nTwo conditional nodes " <<nname <<" follow each other"; ck=0; }
}

void Cnode::Loopnode(int& noloop)
{ if (!nmark) { nmark=1; truep->Loopnode(noloop); if (!noloop) falsep->Loopnode(noloop); } }

void Cnode::Listnode(void)
{
 Node::Listnode();
 if (!nmark) {
 nmark=1; cout <<nname <<" Next Node when true -> "; truep->Listnode();
 cout <<nname <<" Next Node when false -> "; falsep->Listnode();
 }
}

180 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

void Cnode::Printnode(char* fname)
{
 fstream pf;
 Node::Printnode(fname);
 if (!nmark) {
 nmark=1; pf.open(fname,ios::app); pf.write(nname,strlen(nname));
 pf.write(" Next Node when true -> ",25); pf.close(); truep->Printnode(fname);
 pf.open(fname,ios::app); pf.write(nname,strlen(nname));
 pf.write(" Next Node when false -> ",25); pf.close(); falsep->Printnode(fname);
 }
}

void Cnode::Runnode(int& retval, Hgraphscheme* hgs, int& deep)
{
 int answer;
 switch (ntype) {
 case CONDITION : cout <<"Read input condition " <<nname;
 do { cout <<" [0/1]="; cin >> answer; }
 while (answer != 0 && answer != 1); break;
 case FUNCTION : cout <<"Execute logic function " <<nname <<"\n";
 Graphscheme* ngraph=hgs->Searchgraphhgs(nname);
 answer=ngraph->Rungs(hgs,deep); break;
 }
 if (answer) truep->Runnode(retval,hgs,deep); else falsep->Runnode(retval,hgs,deep);
}

void Cnode::Moorestatenode(int&, Graphscheme*, int)
{
 if (truep->Nodetype()==FUNCTION) truep->Needstatenode();
 if (falsep->Nodetype()==FUNCTION) falsep->Needstatenode();
}

void Cnode::Mealystatenode(int& state, Graphscheme*, int)
{
 switch (ntype) {
 case FUNCTION : Setstatenode(state); truep->Setstatenode(state); falsep->Setstatenode(state);
 case CONDITION : break;
 }
}

void Cnode::Mooretablenode(char* fname, char* transition, int& extray, int& nt, char* logicf, int
mergesplit, Node* start)
{ char* localt=new char[15];
 if (nstate>-1) Node::Mooretablenode(fname,transition,extray,nt,logicf,mergesplit,start);
 if (!nmark) {
 strcpy(localt,transition);
 if (strstr(localt,nname)) Node::Mooretablenode(fname,transition,extray,nt,logicf,mergesplit,start);
 else {
 switch (ntype) {
 case CONDITION : strcat(transition,nname); break;
 case FUNCTION : strcat(transition,"xextra"); break; }
 truep->Mooretablenode(fname,transition,extray,nt,logicf,mergesplit,start);
 strcpy(transition,localt);
 switch (ntype) {
 case CONDITION : strcat(transition,"~");strcat(transition,nname); break;
 case FUNCTION : strcat(transition,"~xextra"); break; }
 falsep->Mooretablenode(fname,transition,extray,nt,logicf,mergesplit,start);
 strcpy(transition,localt);
 }
 }
 else nmark=0; delete [] localt;
}

CHAPTER 10 : APPENDIX B - SIMULHGS 181

void Cnode::Mealytablenode(char* fname, char* transition, char* output, int& nt, int& micro, int
mergesplit, Node* start)
{
 char* localt=new char[15];
 if (nstate>-1) Node::Mealytablenode(fname,transition,output,nt,micro,mergesplit,start);
 if (!nmark) {
 strcpy(localt,transition);
 if (strstr(localt,nname)) Node::Mealytablenode(fname,transition,output,nt,micro,mergesplit,start);
 else {
 switch (ntype) {
 case CONDITION : strcat(transition,nname); break;
 case FUNCTION : strcat(transition,"xextra");
 if (mergesplit) { strcpy(output,nname); strcat(output," , y+"); }
 micro++; break;
 }
 truep->Mealytablenode(fname,transition,output,nt,micro,mergesplit,start);
 strcpy(transition,localt);
 switch (ntype) {
 case CONDITION : strcat(transition,"~");strcat(transition,nname); break;
 case FUNCTION : strcat(transition,"~xextra");
 if (mergesplit) { strcpy(output,nname); strcat(output," , y+"); }
 micro++; break;
 }
 falsep->Mealytablenode(fname,transition,output,nt,micro,mergesplit,start);
 strcpy(transition,localt);
 }
 }
 else nmark=0; delete [] localt;
}

//************************** Implementation of the Class Graph-Scheme **************************

Graphscheme::Graphscheme(char* filename, unsigned int main)
{ gsname=new char[5]; ifstream gsfile(filename);
 if (!gsfile) { cout <<"\n*** Cannot open Graph-Scheme " <<filename <<" ***\n"; gsnnodes=0; }
 else {
 int i=0,next[MAXNODES][2]; char opercond[MAXNODES],extra; TYPENODE type;
 char *string=new char[30], *name=new char[15], *number=new char[5];
 gsfile.get(string,30); gsfile.get(extra); string=strupr(string); strcpy(gsname,string);
 if (strstr(string,"F")) gstype=LFUNCGS; else gstype=MACROGS;
 while (!gsfile.eof()) {
 gsfile.get(string,30); gsfile.get(extra); string=strupr(string);
 if (strcmp(string,"")) {
 opercond[i]=string[0]; name=strtok(string," "); name=strtok(NULL," ");
 if (opercond[i]=='O') {
 number=strtok(NULL," "); next[i][0]=atoi(number); next[i][1]= 0;
 if (next[i][0]) next[i][0]--;
 if (! strcmp(name,"BEGIN") || ! strcmp(name,"END")) gslist[i]=new Onode(name);
 else {
 if (strstr(name,"Z")) type=MACROOP;
 else if (name[0]=='Y') type=MICROOP;
 else if ((name[0]=='F') && strstr(name,"=")) type=ASSIGN;
 name=strlwr(name); gslist[i]= new Onode(name,type);
 }
 }
 else {
 number=strtok(NULL," "); next[i][0]= atoi(number);
 number=strtok(NULL," "); next[i][1]= atoi(number);
 if (next[i][0]) next[i][0]--; if (next[i][1]) next[i][1]--;
 if (name[0]=='X') type=CONDITION; else if (name[0]=='F') type=FUNCTION;
 name=strlwr(name); gslist[i]= new Cnode(name,type);
 }

182 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

 i++;
 }
 }
 gsnnodes= i; gsmain=main;
 for (i=0; i<gsnnodes; i++)
 switch (opercond[i]) {
 case 'O': gslist[i]->Setnext(gslist[next[i][0]]); break;
 case 'C': gslist[i]->Setnext(gslist[next[i][0]],gslist[next[i][1]]); break;
 }
 delete [] string, name, number;
 }
 gsfile.close();
}

Graphscheme::~Graphscheme(void)
{ delete [] gsname; for (int i=0; i<gsnnodes; i++) delete gslist[i]; }

void Graphscheme::Cleanmarkgs(void)
{ for (int i=0; i<gsnnodes; i++) gslist[i]->Cleanmarknode(); }

void Graphscheme::Markgs(void)
{ if (gsnnodes) { Cleanmarkgs(); Node* begin=Begings(); begin->Marknode(); } }

int Graphscheme::Primarycheckgs(Hgraphscheme* hgs)
{
 int check=1, nbegin=0, nend=0, nassign=0, nmic=0, ncond=0, nmacrologic =0; Graphscheme* pt;
 for (int i=0; i<gsnnodes; i++)
 switch (gslist[i]->Nodetype()) {
 case BEGIN : nbegin++; break;
 case END : nend++; break;
 case ASSIGN : nassign++; break;
 case MICROOP : nmic++; break;
 case MACROOP : nmic++; nmacrologic++;
 pt=hgs->Searchgraphhgs(gslist[i]->Macroname());
 if (pt==NULL) {
 cout <<"\nGraph-Scheme with Macro Operation "
 <<gslist[i]->Macroname() <<" unavailable"; check=0;
 } break;
 case FUNCTION : ncond++; nmacrologic++;
 pt=hgs->Searchgraphhgs(gslist[i]->Nodename());
 if (pt==NULL) {
 cout <<"\nGraph-Scheme with Logic Function "
 <<gslist[i]->Nodename() <<" unavailable"; check=0;
 } break;
 case CONDITION : ncond++; break;
 }
 if (!nbegin) { cout <<"\nGraph-Scheme without BEGIN node"; check=0;}
 else if (nbegin>1) { cout <<"\nGraph-Scheme with more than one BEGIN node"; check=0; }
 if (!nend) { cout <<"\nGraph-Scheme without END node"; check=0;}
 else if (nend>1) { cout <<"\nGraph-Scheme with more than one END node"; check=0; }
 if (Graphtype()==MACROGS)
 if (nassign) { cout <<"\nMacro operation with assignment nodes"; check=0; }
 else if (!(nmic+ncond)) cout <<"\nWARNING Virtual Macro operation ";
 else if (gsmain && !nmacrologic) {
 cout <<"\nMain Graph-scheme without macrooperations and logic functions";
 check=0;
 } else;
 else if (Graphtype()==LFUNCGS)
 if (!nassign) { cout <<"\nLogic Function without assignment nodes"; check=0; }
 else if (nmic) { cout <<"\nLogic Function with operational nodes"; check=0; }
 return check;
}

CHAPTER 10 : APPENDIX B - SIMULHGS 183

Node* Graphscheme::Begings(void) const
{
 int begin=-1;
 for (int i=0; i<gsnnodes; i++) if (gslist[i]->Nodetype()==BEGIN) begin=i;
 if (begin!=-1) return gslist[begin]; else return NULL;
}

Node* Graphscheme::Endgs(void) const
{
 int end=-1;
 for (int i=0; i<gsnnodes; i++) if (gslist[i]->Nodetype()==END) end=i;
 if (end!=-1) return gslist[end]; else return NULL;
}

int Graphscheme::Loopcheckgs(void)
{
 int noloop, loop=1;
 for (int i=0; i<gsnnodes; i++) {
 Cleanmarkgs(); noloop=0; gslist[i]->Loopnode(noloop);
 if (!noloop) cout <<"\nNode " <<gslist[i]->Nodename() <<" in loop";
 loop*=noloop;
 }
 return loop;
}

int Graphscheme::Checkgs(Hgraphscheme* hgs)
{
 int check=1;
 if (gsnnodes) {
 cout <<"\n****** Checking Graph-Scheme " <<gsname <<" *******\n\n";
 cout <<"Step 1 - Graph-scheme overall consistency "; check=Primarycheckgs(hgs);
 if (check) {
 cout <<"-> OK\nStep 2 - Unreacheable and dummy nodes ";
 Markgs(); for (int i=0; i<gsnnodes; i++) gslist[i]->Checknode(check);
 }
 if (check) { cout <<"-----> OK\nStep 3 - Nodes in infinite cycles "; check*=Loopcheckgs(); }
 if (check) cout <<"---------> OK\n\n**************** " <<gsname <<" OK ****************";
 else cout <<"\n\n**************** " <<gsname <<" KO ****************";
 }
 else { cout <<"\n***** Checking NULL Graph-Scheme *****"; check=0; }
 cout <<" Hit any key to continue "; getch();
 return check;
}

void Graphscheme::Printgs(char* fname)
{
 fstream pf;
 if (gsnnodes) {
 Cleanmarkgs(); pf.open(fname,ios::app); pf.write("\n********* Printing Graph-Scheme ",33);
 pf.write(gsname,strlen(gsname)); pf.write(" *********\n",11); pf.close();
 Node* begin=Begings(); begin->Printnode(fname);
 Node* end=Endgs(); end->Node::Printnode(fname);
 pf.open(fname,ios::app); pf.write("**************** ",17);
 pf.write(gsname,strlen(gsname)); pf.write(" Printed ****************\n",26); pf.close();
 }
 else cout <<"\n*** Printing NULL Graph-Scheme ***\n";
}

184 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

void Graphscheme::Listgs(void)
{
 if (gsnnodes) {
 Cleanmarkgs(); cout <<"\n ********* Listing Graph-Scheme " <<gsname <<" *********\n";
 Node* begin=Begings(); begin->Listnode(); Node* end=Endgs(); end->Node::Listnode();
 cout <<" **************** " <<gsname <<" Listed ****************";
 }
 else cout <<"\n *** Listing NULL Graph-Scheme ***";
 cout <<" Hit any key to continue "; getch();
}

int Graphscheme::Rungs(Hgraphscheme* hgs, int & deep)
{
 int run=0;
 if (gsnnodes) {
 Node* begin=Begings();
 cout <<"\n********* Executing Graph-Scheme " <<gsname <<" *********\n";
 begin->Runnode(run,hgs,deep);
 cout <<"**************** " <<gsname <<" Executed ****************\n\n";
 }
 else cout <<"\n*** Running NULL Graph-Scheme ***\n\n";
 return run;
}

void Graphscheme::Cleanstategs(void)
{ for (int i=0; i<gsnnodes; i++) gslist[i]->Cleanstatenode(); }

void Graphscheme::Moorestategs(int& state, int mergesplit)
{
 if (gsnnodes) {
 if (!mergesplit) state=2;
 Cleanstategs(); for (int i=0; i<gsnnodes; i++) gslist[i]->Moorestatenode(state,this,mergesplit);
 for (int j=0; j<gsnnodes; j++)
 if (gslist[j]->Nodetype()==FUNCTION)
 if (gslist[j]->Nodestate()==-3) gslist[j]->Setstatenode(state); else gslist[j]->Cleanstatenode();
 if (!mergesplit) gsnstates=state;
 }
 else cout <<"\n*** Moore state marking NULL Graph-Scheme ***\n\n";
}

void Graphscheme::Mealystategs(int& state, int mergesplit)
{
 if (gsnnodes) {
 if (!mergesplit) state=2;
 Cleanstategs(); for (int i=0; i<gsnnodes; i++) gslist[i]->Mealystatenode(state,this,mergesplit);
 if (!mergesplit) gsnstates=state;
 }
 else cout <<"\n*** Mealy state marking NULL Graph-Scheme ***\n\n";
}

Node* Graphscheme::Nodeinitialstategs(void)
{
 Node* initialnode;
 if (gsnnodes) {
 initialnode=Begings();
 if (!initialnode->Startingstatenode()) initialnode=initialnode->Nextnode();
 }
 return initialnode;
}

CHAPTER 10 : APPENDIX B - SIMULHGS 185

void Graphscheme::Mooretablemergegs(char* fname)
{
 char* transition=new char[20]; strcpy(transition,"");
 char* logicf=new char[21]; strcpy(logicf,"");
 fstream pf; int extray=0, nt;
 if (gsnnodes) {
 Cleanmarkgs();
 for (int i=0; i<gsnnodes; i++)
 if (gslist[i]->Startingstatenode()) {
 gslist[i]->Setmarknode(); nt=1;
 gslist[i]->Mooretablenode(fname,transition,extray,nt,logicf,1,gslist[i]);
 }
 }
 else cout <<"\n*** Processing NULL Graph-Scheme ***\n";
 delete [] transition, logicf;
}

void Graphscheme::Mooretablesplitgs(char* fname)
{
 char* transition=new char[20]; strcpy(transition,""); char* logicf=new char[21]; strcpy(logicf,"");
 char* graphname=new char[5]; fstream pf; int extray=0, i, n, nspace, nt;
 if (gsnnodes) {
 Cleanmarkgs(); pf.open(fname,ios::app);
 pf.write("\n---",59);
 strcpy(graphname,gsname); graphname=strlwr(graphname); n=strlen(graphname);
 pf.write("\n|",2); nspace=55-n; nspace/=2;
 for (i=1; i<=nspace; i++) pf.write(" ",1); pf.write(graphname,n); nspace=55-nspace-n;
 for (i=1; i<=nspace; i++) pf.write(" ",1); pf.write("|",1);
 pf.write("\n---",59);
 pf.write("\n|a0 , -- |a2 | 1 | -- |",59);
 pf.write("\n---",59);
 pf.write("\n|a1 , -- |a2 | 1 | -- |",59); pf.close();
 for (int i=0; i<gsnnodes; i++)
 if (gslist[i]->Startingstatenode()) {
 gslist[i]->Setmarknode(); nt=1;
 gslist[i]->Mooretablenode(fname,transition,extray,nt,logicf,0,gslist[i]);
 }
 }
 else cout <<"\n*** Processing NULL Graph-Scheme ***\n";
 delete [] transition, logicf, graphname;
}

void Graphscheme::Mealytablemergegs(char* fname)
{
 char *transition=new char[20]; strcpy(transition,""); char *output=new char[15]; strcpy(output,"");
 fstream pf; int nt, micro;
 if (gsnnodes) {
 Cleanmarkgs();
 for (int i=0; i<gsnnodes; i++)
 if (gslist[i]->Startingstatenode()) {
 gslist[i]->Setmarknode(); nt=1; micro=0;
 gslist[i]->Mealytablenode(fname,transition,output,nt,micro,1,gslist[i]);
 }
 }
 else cout <<"\n*** Processing NULL Graph-Scheme ***\n";
 delete [] transition, output;
}

186 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

void Graphscheme::Mealytablesplitgs(char* fname)
{
 char *transition=new char[20]; strcpy(transition,""); char *output=new char[15]; strcpy(output,"");
 char* graphname=new char[5]; fstream pf; int i, n, nspace, nt, micro;
 if (gsnnodes) {
 Cleanmarkgs(); pf.open(fname,ios::app);
 pf.write("\n---",49);
 strcpy(graphname,gsname); graphname=strlwr(graphname); n=strlen(graphname);
 pf.write("\n|",2); nspace=45-n; nspace/=2;
 for (i=1; i<=nspace; i++) pf.write(" ",1); pf.write(graphname,n); nspace=45-nspace-n;
 for (i=1; i<=nspace; i++) pf.write(" ",1); pf.write("|",1);
 pf.write("\n---",49);
 pf.write("\n|a0 |a2 | 1 | -- |",49);
 pf.write("\n---",49);
 pf.write("\n|a1 |a2 | 1 | -- |",49); pf.close();
 for (i=0; i<gsnnodes; i++)
 if (gslist[i]->Startingstatenode()) {
 gslist[i]->Setmarknode(); nt=1; micro=0;
 gslist[i]->Mealytablenode(fname,transition,output,nt,micro,0,gslist[i]);
 }
 }
 else cout <<"\n*** Processing NULL Graph-Scheme ***\n";
 delete [] transition, output, graphname;
}

void Graphscheme::CCsplitgs(char* fname, char* bcode)
{
 fstream pf; int nodeline=0,stz,nsp; char *nodename=new char [15];
 if (gsnnodes) {
 pf.open(fname,ios::app); pf.write("\n| ",3); strcpy(nodename,gsname);
 nodename=strlwr(nodename); stz=strlen(nodename);
 pf.write(nodename,stz); stz=7-stz; for (nsp=0; nsp<stz; nsp++) pf.write(" ",1); pf.write("| ",2);
 stz=strlen(bcode); pf.write(bcode,stz); stz=5-stz;
 for (nsp=0; nsp<stz; nsp++) pf.write(" ",1); pf.write("| ",2);
 if (!gsmain) { pf.write("a1 | -- | y- |",24); nodeline++; }
 for (int i=0; i<gsnnodes; i++)
 if (gslist[i]->Nodetype()==MACROOP || gslist[i]->Nodetype()==FUNCTION &&
 gslist[i]->Nodestate()!=-1 || gslist[i]->Nodetype()==MICROOP &&
 gslist[i]->Nextnode()->Nodetype()==FUNCTION
 && gslist[i]->Nextnode()->Nodestate()==-1) {
 if (nodeline) pf.write("\n| | | ",19);
 pf.write("a",1); pf.write(gslist[i]->Statechar(),3); pf.write(" | ",4);
 if (gslist[i]->Nodetype()==MICROOP)
 strcpy(nodename,gslist[i]->Nextnode()->Nodename());
 else strcpy(nodename,gslist[i]->Macroname());
 stz=strlen(nodename); pf.write(nodename,stz); stz=5-stz;
 for (nsp=0; nsp<stz; nsp++) pf.write(" ",1); pf.write("| y+ |",11); nodeline++;
 }
 strcpy(nodename,gsname); nodename=strlwr(nodename);
 pf.write("\n| | | other | ",27); stz=strlen(nodename);
 pf.write(nodename,stz); stz=5-stz; for (nsp=0; nsp<stz; nsp++) pf.write(" ",1);
 pf.write("| |",11); pf.write("\n--",43); pf.close();
 }
 else cout <<"\n*** Processing NULL Graph-Scheme ***\n";
 delete [] nodename;
}

CHAPTER 10 : APPENDIX B - SIMULHGS 187

void Graphscheme::Insertstategs(int& state, int mergesplit, int& insert)
{
 char* nodename=new char[15]; int answer=1;
 if (!mergesplit) state=gsnstates;
 while (answer) {
 strcpy(nodename,"");
 cout <<"Insert state in the graph-scheme " <<gsname <<" Node Name="; cin >>nodename;
 for (int i=0; i<gsnnodes; i++)
 if (!strcmp(gslist[i]->Nodename(),nodename))
 if (gslist[i]->Nodetype()==CONDITION || gslist[i]->Nodetype()==FUNCTION)
 if (gslist[i]->Nodestate()==-1) {
 cout <<"Insert state in the node " <<gslist[i]->Nodename()
 <<" that is pointing to the node(s) " <<gslist[i]->Nextnode()->Nodename()
 <<" & " <<gslist[i]->Nextnode(0)->Nodename() <<"\n";
 do {
 cout <<"Yes[1]/No[0] ? "; cin >> answer;
 } while (answer != 0 && answer != 1);
 if (answer) { gslist[i]->Setstatenode(state,0); insert++; }
 }
 else cout <<"Node " <<gslist[i]->Nodename() <<" pointing to the node(s) "
 <<gslist[i]->Nextnode()->Nodename() <<" & "
 <<gslist[i]->Nextnode(0)->Nodename() <<" already marked\n";
 else cout <<"This is not a condititional node\n";
 do {
 cout <<"Insert another state in the graph-scheme " <<gsname <<" Yes[1]/No[0] ? ";
 cin >>answer;
 } while (answer != 0 && answer != 1);
 }
 if (!mergesplit) gsnstates=state; delete [] nodename;
}

void Graphscheme::Removestategs(int& state, int mergesplit, int& remove)
{
 char* nodename=new char[15]; int answer=1;
 if (!mergesplit) state=gsnstates;
 while (answer) {
 strcpy(nodename,"");
 cout <<"Remove state in the graph-scheme " <<gsname <<" Node Name="; cin >>nodename;
 for (int i=0; i<gsnnodes; i++)
 if (!strcmp(gslist[i]->Nodename(),nodename))
 if (!gslist[i]->Nodeauto() && gslist[i]->Nodestate()!=-1) {
 cout <<"Remove state in the node " <<gslist[i]->Nodename()
 <<" that is pointing to the node(s) " <<gslist[i]->Nextnode()->Nodename()
 <<" & " <<gslist[i]->Nextnode(0)->Nodename() <<"\n";
 do {
 cout <<"Yes[1]/No[0] ? "; cin >> answer;
 } while (answer != 0 && answer != 1);
 if (answer) {
 if (gslist[i]->Nodestate()==state-1) state--;
 gslist[i]->Cleanstatenode(); remove++;
 }
 }
 else cout <<"This node was not manually marked or it is not marked yet\n";
 do {
 cout <<"Remove another state in the graph-scheme " <<gsname <<" Yes[1]/No[0] ? ";
 cin >>answer;
 } while (answer != 0 && answer != 1);
 }
 if (!mergesplit) gsnstates=state; delete [] nodename;
}

188 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

//********************* Implementation of the Class Hierarchical Graph-Scheme *********************

Hgraphscheme::Hgraphscheme(char* fname)
{
 hgsname=new char[20]; hgssyn=new char[6]; ifstream hgsfile(fname);
 hgscheck=0; hgsdeep=0; hgsmark=-1; hgsnstates=0; hgsngs=0;
 if (!hgsfile) cout <<"\n*** Cannot open Hierarchical Graph-Scheme " <<fname <<" ***\n";
 else {
 int i=0; char extra, *gsfile=new char[20];
 hgsfile.get(gsfile,20); hgsfile.get(extra); strcpy(hgsname,gsfile);
 while (!hgsfile.eof()) {
 hgsfile.get(gsfile,20); hgsfile.get(extra);
 if (strcmp(gsfile,"")) {
 strcat(gsfile,".txt");
 if (!i) hgslist[i]=new Graphscheme(gsfile,1);
 else hgslist[i]=new Graphscheme(gsfile);
 i++;
 }
 }
 hgsngs=i;
 delete [] gsfile;
 }
 hgsfile.close();
}
Hgraphscheme::~Hgraphscheme(void)
{ delete [] hgsname, hgssyn; for (int i=0; i<hgsngs; i++) delete hgslist[i]; }

void Hgraphscheme::Listhgs(void)
{
 if (hgscheck) {
 cout <<"\n****** Listing Hierarchical Graph-Scheme " <<hgsname <<" ******\n\n";
 for (int i=0; i<hgsngs; i++) hgslist[i]->Listgs();
 cout <<"\n******************* " <<hgsname <<" Listed *******************\n\n";
 }
 else cout <<"*** Cannot list an unchecked Hierarchical Graph-Scheme ***\n\n";
}

void Hgraphscheme::Printhgs(void)
{
 fstream printfile; char* filename=new char[20];
 if (hgscheck) {
 cout <<"\n****** Printing Hierarchical Graph-Scheme ******\n";
 cout <<"\nFilename -> "; cin >> filename; strcat(filename,".txt");
 printfile.open(filename,ios::out|ios::noreplace);
 if (!printfile) cout <<"\n*** File " <<filename <<" already exists ***\n";
 else {
 cout <<"\n****** Printing Hierarchical Graph-Scheme " <<hgsname <<" ******\n";
 printfile.write("****** Printing Hierarchical Graph-Scheme ",42);
 printfile.write(hgsname,strlen(hgsname)); printfile.write(" ******\n",8); printfile.close();
 for (int i=0; i<hgsngs; i++) hgslist[i]->Printgs(filename);
 printfile.open(filename,ios::app); printfile.write("\n******************* ",21);
 printfile.write(hgsname,strlen(hgsname));
 printfile.write(" Printed ********************\n",30); printfile.close();
 cout <<"\n******************* " <<hgsname <<" Printed *******************\n\n";
 }
 }
 else cout <<"*** Cannot print an unchecked Hierarchical Graph-Scheme ***\n\n";
 delete [] filename;
}

CHAPTER 10 : APPENDIX B - SIMULHGS 189

int Hgraphscheme::Checkhgs(void)
{
 int check=1;
 if (!hgscheck) {
 cout <<"\n****** Checking Hierarchical Graph-Scheme " <<hgsname <<" ******\n";
 if (hgsngs<2) { cout <<"\nThis is not an Hierarchical Graph-Scheme\n"; check=0; }
 if (check) for (int i=0; i<hgsngs; i++) check*=hgslist[i]->Checkgs(this);
 if (check)
 cout <<"\n****************** " <<hgsname <<" Checked OK *****************\n\n";
 else cout <<"\n****************** " <<hgsname <<" Checked KO *****************\n\n";
 }
 else cout <<"*** Hierarchical Graph-Scheme already checked ***\n\n";
 hgscheck=check; return check;
}

Graphscheme* Hgraphscheme::Searchgraphhgs(char* name)
{
 char* searchname=new char[15]; strcpy(searchname,name);
 searchname=strupr(searchname); int search=-1;
 for (int i=0; i<hgsngs; i++) if (!strcmp(hgslist[i]->Graphname(),searchname)) search=i;
 delete [] searchname; if (search!=-1) return hgslist[search]; else return NULL;
}

void Hgraphscheme::Runhgs(void)
{
 int deep=0;
 if (hgscheck) {
 cout <<"\n****** Executing Hierarchical Graph-Scheme " <<hgsname <<" ******\n";
 hgsdeep=0; hgslist[0]->Rungs(this,deep);
 cout <<"********* " <<hgsname <<" Executed [Deepest Level=" <<hgsdeep
 <<"] *********\n\n";
 }
 else cout <<"*** Cannot run an unchecked Hierarchical Graph-Scheme ***\n\n";
}

void Hgraphscheme::Moorestatehgs(void)
{
 int state=2, mooremealy=0, logic=0, i;
 if (hgscheck) {
 for (i=0; i<hgsngs; i++) if (hgslist[i]->Graphtype()==LFUNCGS) logic++;
 if (logic) {
 cout <<"\n Marking " <<logic <<" Logic Function(s) as Moore [1] or Mealy [0]";
 do { cout <<"\n Your Choice -> "; cin >> mooremealy;
 } while (mooremealy != 0 && mooremealy != 1);
 }
 for (i=0; i<hgsngs; i++)
 if (hgslist[i]->Graphtype()==MACROGS) hgslist[i]->Moorestategs(state,hgsmark);
 else if (mooremealy) hgslist[i]->Moorestategs(state,hgsmark);
 else hgslist[i]->Mealystategs(state,hgsmark);
 if (hgsmark) {
 hgsnstates=state;
 cout <<"\n *** HGS " <<hgsname <<" is marked with " <<state <<" states ***\n";
 }
 else {
 state=0;
 for (i=0; i<hgsngs; i++) if (hgslist[i]->Graphnstates()>state) state=hgslist[i]->Graphnstates();
 cout <<"\n *** The bigger GS of " <<hgsname <<" is marked with " <<state
 <<" states ***\n";
 }
 }
 else cout <<"*** Cannot mark an unchecked Hierarchical Graph-Scheme ***\n\n";
}

190 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

void Hgraphscheme::Mealystatehgs(void)
{
 int state=2, i;
 if (hgscheck) {
 for (i=0; i<hgsngs; i++) hgslist[i]->Mealystategs(state,hgsmark);
 if (hgsmark) {
 hgsnstates=state;
 cout <<"\n *** HGS " <<hgsname <<" is marked with " <<state <<" states ***\n";
 }
 else {
 state=0;
 for (i=0; i<hgsngs; i++) if (hgslist[i]->Graphnstates()>state) state=hgslist[i]->Graphnstates();
 cout <<"\n *** The bigger GS of " <<hgsname <<" is marked with " <<state
 <<" states ***\n";
 }
 }
 else cout <<"*** Cannot mark an unchecked Hierarchical Graph-Scheme ***\n\n";
}

void Hgraphscheme::CCmergehgs(char* fname)
{
 fstream pf; int i, G, N, stz, nsp; char* graphname=new char[5];
 if (hgscheck) {
 G=ceil(log(hgsngs+1)/M_LN2); N=pow(2,G); pf.open(fname,ios::app);
 pf.write("\n---",58);
 pf.write("\n| Code Converter Programming |",58);
 pf.write("\n---",58);
 pf.write("\n| | Zi/Fi | Zi/Fi | Code Converter | Zi/Fi |",58);
 pf.write("\n| | Name | Code | inputs YZi | Initial state |",58);
 pf.write("\n---",58);
 pf.write("\n|0 | | ",14); pf.write(binarycode(0,G),G);
 for (nsp=0; nsp<6-G; nsp++) pf.write(" ",1);
 pf.write("| | a0 |",38);
 pf.write("\n---",58);
 for (i=0; i<hgsngs; i++) {
 pf.write("\n|",2); pf.write(linechar(i+1),2); pf.write("| ",2);
 strcpy(graphname,Ngraphname(i)); graphname=strlwr(graphname);
 stz=strlen(graphname); pf.write(graphname,stz);
 for (nsp=0; nsp<6-stz; nsp++) pf.write(" ",1); pf.write("| ",2);
 pf.write(binarycode(i+1,G),G);
 for (nsp=0; nsp<6-G; nsp++) pf.write(" ",1); pf.write("| ",2);
 stz=strlen(yzstring(i+1,G)); pf.write(yzstring(i+1,G),stz);
 for (nsp=0; nsp<19-stz; nsp++) pf.write(" ",1); pf.write("| a",3);
 Node* initialnode=hgslist[i]->Nodeinitialstategs();
 pf.write(initialnode->Statechar(),3);
 for (nsp=0; nsp<10; nsp++) pf.write(" ",1); pf.write("|",1);
 pf.write("\n---",58);
 }
 for (i=hgsngs; i<N-1; i++) {
 pf.write("\n|",2); pf.write(linechar(i+1),2); pf.write("| | ",10);
 pf.write(binarycode(i+1,G),G); for (nsp=0; nsp<6-G; nsp++) pf.write(" ",1);
 pf.write("| | a0 |",38);
 pf.write("\n---",58);
 }
 pf.write("\n\n",2); pf.close();
 }
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n";
 delete [] graphname;
}

CHAPTER 10 : APPENDIX B - SIMULHGS 191

void Hgraphscheme::CCsplithgs(char* fname)
{
 fstream pf; int G;
 if (hgscheck) {
 G=ceil(log(hgsngs)/M_LN2); pf.open(fname,ios::app);
 pf.write("\n--",43);
 pf.write("\n| Code Converter Programming |",43);
 pf.write("\n--",43);
 pf.write("\n| Active | HGS | State | Next | Stack |",43);
 pf.write("\n| HGS | Code | | HGS | Pointer |",43);
 pf.write("\n--",43); pf.close();
 for (int i=0; i<hgsngs; i++) hgslist[i]->CCsplitgs(fname,binarycode(i,G));
 pf.open(fname,ios::app); pf.write("\n\n",2); pf.close();
 }
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n";
}

void Hgraphscheme::Mooretablemergehgs(char* fname)
{
 fstream pf;
 if (hgscheck) {
 pf.open(fname,ios::app);
 pf.write("\n---",59);
 pf.write("\n| HGS Moore State Transition Table |",59);
 pf.write("\n---",59);
 pf.write("\n| am , Y(am) | as | X(am,as) |Y(am,as)|",59);
 pf.write("\n---",59);
 pf.write("\n|a0 , ",8); char* maingsname=new char[5];
 strcpy(maingsname,hgslist[0]->Graphname()); maingsname=strlwr(maingsname);
 int n=strlen(maingsname); pf.write(maingsname,n); delete [] maingsname;
 for (int i=n+1; i<17; i++) pf.write(" ",1);
 pf.write("|a0 | 1 | -- |",35);
 pf.write("\n---",59);
 pf.write("\n|a1 , y- |a0 | 1 | -- |",59);
 pf.close();
 for (int j=0; j<hgsngs;j++) hgslist[j]->Mooretablemergegs(fname);
 pf.open(fname,ios::app);
 pf.write("\n---",59);
 pf.close();
 }
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n";
}

void Hgraphscheme::Mooretablesplithgs(char* fname)
{
 fstream pf;
 if (hgscheck) {
 pf.open(fname,ios::app);
 pf.write("\n---",59);
 pf.write("\n| HGS Moore State Transition Table |",59);
 pf.write("\n---",59);
 pf.write("\n| am , Y(am) | as | X(am,as) |Y(am,as)|",59);
 pf.close();
 for (int j=0; j<hgsngs;j++) hgslist[j]->Mooretablesplitgs(fname);
 pf.open(fname,ios::app);
 pf.write("\n---",59);
 pf.close();
 }
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n";
}

192 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

void Hgraphscheme::Mealytablemergehgs(char* fname)
{
 fstream pf;
 if (hgscheck) {
 pf.open(fname,ios::app); pf.write("\n---",49);
 pf.write("\n| HGS Mealy State Transition Table |",49);
 pf.write("\n---",49);
 pf.write("\n| am | as | X(am,as) | Y(am,as) |",49);
 pf.write("\n---",49); pf.write("\n|a0 |a0 | 1 | ",32);
 char* maingsname=new char[5]; strcpy(maingsname,hgslist[0]->Graphname());
 maingsname=strlwr(maingsname); int n=strlen(maingsname); pf.write(maingsname,n);
 delete [] maingsname; for (int i=n+1; i<16; i++) pf.write(" ",1); pf.write("|",1);
 pf.write("\n---",49);
 pf.write("\n|a1 |a0 | 1 | y- |",49); pf.close();
 for (int j=0; j<hgsngs; j++) hgslist[j]->Mealytablemergegs(fname);
 pf.open(fname,ios::app); pf.write("\n---",49); pf.close();
 }
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n";
}

void Hgraphscheme::Mealytablesplithgs(char* fname)
{
 fstream pf;
 if (hgscheck) {
 pf.open(fname,ios::app); pf.write("\n---",49);
 pf.write("\n| HGS Mealy State Transition Table |",49);
 pf.write("\n---",49);
 pf.write("\n| am | as | X(am,as) | Y(am,as) |",49); pf.close();
 for (int j=0; j<hgsngs; j++) hgslist[j]->Mealytablesplitgs(fname);
 pf.open(fname,ios::app); pf.write("\n---",49); pf.close();
 }
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n";
}

void Hgraphscheme::Mooresynmergehgs(int statemark)
{
 fstream pf;
 if (hgscheck) {
 cout <<"\n**** Moore (model 2) Synthesis of Hierarchical Graph-Scheme "
 <<hgsname <<" ****\n";
 char* filename=new char[20]; cout <<"\n Filename -> "; cin >> filename; strcat(filename,".txt");
 pf.open(filename,ios::out|ios::noreplace);
 if (!pf) cout <<"\n*** File " <<filename <<" already exists ***\n";
 else {
 pf.write("Moore Synthesis of Hierarchical Graph-Scheme ",45);
 pf.write(hgsname,strlen(hgsname)); pf.write(" [MERGE TABLES]",15);
 pf.write("\n\n",2); pf.close();
 if (statemark) {
 strcpy(hgssyn,"Moore"); hgsmark=1;
 cout <<"\n Step 1 - Marking Hierarchical Graph-Scheme\n"; Moorestatehgs();
 }
 else cout <<"\n Step 1 - Skiping Hierarchical Graph-Scheme Marking\n";
 cout <<"\n Step 2- Code Converter Programming\n"; CCmergehgs(filename);
 cout <<"\n Step 3 - Generating HGS Moore State Transition Table\n";
 Mooretablemergehgs(filename);
 cout <<"\n*************** " <<hgsname
 <<" Moore Synthesis Finished ***************\n";
 }
 delete [] filename;
 }
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n";
}

CHAPTER 10 : APPENDIX B - SIMULHGS 193

void Hgraphscheme::Mooresynsplithgs(int statemark)
{
 fstream pf;
 if (hgscheck) {
 cout <<"\n**** Moore (model 3) Synthesis of Hierarchical Graph-Scheme "
 <<hgsname <<" ****\n";
 char* filename=new char[20]; cout <<"\n Filename -> ";
 cin >> filename; strcat(filename,".txt");
 pf.open(filename,ios::out|ios::noreplace);
 if (!pf) cout <<"\n*** File " <<filename <<" already exists ***\n";
 else {
 pf.write("Moore Synthesis of Hierarchical Graph-Scheme ",45);
 pf.write(hgsname,strlen(hgsname)); pf.write(" [SPLIT TABLES]",15);
 pf.write("\n\n",2); pf.close();
 if (statemark) {
 strcpy(hgssyn,"Moore"); hgsmark=0;
 cout <<"\n Step 1 - Marking Hierarchical Graph-Scheme\n"; Moorestatehgs();
 }
 else cout <<"\n Step 1 - Skiping Hierarchical Graph-Scheme Marking\n";
 cout <<"\n Step 2- Code Converter Programming\n"; CCsplithgs(filename);
 cout <<"\n Step 3 - Generating HGS Moore State Transition Table\n";
 Mooretablesplithgs(filename);
 cout <<"\n*************** " <<hgsname
 <<" Moore Synthesis Finished ***************\n";
 }
 delete [] filename;
 }
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n";
}

void Hgraphscheme::Mealysynmergehgs(int statemark)
{
 fstream pf;
 if (hgscheck) {
 cout <<"\n**** Mealy (model 2) Synthesis of Hierarchical Graph-Scheme "
 <<hgsname <<" ****\n";
 char* filename=new char[20];
 cout <<"\n Filename -> "; cin >> filename; strcat(filename,".txt");
 pf.open(filename,ios::out|ios::noreplace);
 if (!pf) cout <<"\n*** File " <<filename <<" already exists ***\n";
 else {
 pf.write("Mealy Synthesis of Hierarchical Graph-Scheme ",45);
 pf.write(hgsname,strlen(hgsname)); pf.write(" [MERGE TABLES]",15);
 pf.write("\n\n",2); pf.close();
 if (statemark) {
 strcpy(hgssyn,"Mealy"); hgsmark=1;
 cout <<"\n Step 1 - Marking Hierarchical Graph-Scheme\n"; Mealystatehgs();
 }
 else cout <<"\n Step 1 - Skiping Hierarchical Graph-Scheme Marking\n";
 cout <<"\n Step 2 - Code Converter Programming\n"; CCmergehgs(filename);
 cout <<"\n Step 3 - Generating HGS Mealy State Transition Table\n";
 Mealytablemergehgs(filename);
 cout <<"\n*************** " <<hgsname
 <<" Mealy Synthesis Finished ***************\n";
 }
 delete [] filename;
 }
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n";
}

194 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

void Hgraphscheme::Mealysynsplithgs(int statemark)
{
 fstream pf;
 if (hgscheck) {
 cout <<"\n**** Mealy (model 3) Synthesis of Hierarchical Graph-Scheme "
 <<hgsname <<" ****\n";
 char* filename=new char[20]; cout <<"\n Filename -> "; cin >> filename; strcat(filename,".txt");
 pf.open(filename,ios::out|ios::noreplace);
 if (!pf) cout <<"\n*** File " <<filename <<" already exists ***\n";
 else {
 pf.write("Mealy Synthesis of Hierarchical Graph-Scheme ",45);
 pf.write(hgsname,strlen(hgsname)); pf.write(" [SPLIT TABLES]",15);
 pf.write("\n\n",2); pf.close();
 if (statemark) {
 strcpy(hgssyn,"Mealy"); hgsmark=0;
 cout <<"\n Step 1 - Marking Hierarchical Graph-Scheme\n"; Mealystatehgs();
 }
 else cout <<"\n Step 1 - Skiping Hierarchical Graph-Scheme Marking\n";
 cout <<"\n Step 2 - Code Converter Programming\n"; CCsplithgs(filename);
 cout <<"\n Step 3 - Generating HGS Mealy State Transition Table\n";
 Mealytablesplithgs(filename);
 cout <<"\n*************** " <<hgsname
 <<" Mealy Synthesis Finished ***************\n";
 }
 delete [] filename;
 }
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n";
}

void Hgraphscheme::Insertstatehgs(void)
{
 char* graphname=new char[5]; int nstate, answer, insert=0;
 if (hgscheck)
 if (hgsmark!=-1) {
 nstate=hgsnstates; strcpy(graphname,"");
 cout <<"\n******** Insert extra states in the already marked HGS "
 <<hgsname <<" *********\n";
 do {
 cout <<"Graph-Scheme Name="; cin >>graphname;
 Graphscheme* gs=Searchgraphhgs(graphname);
 if (gs!=NULL) gs->Insertstategs(nstate,hgsmark,insert);
 else cout <<graphname <<" Graph-Scheme does not belong to HGS "
 <<hgsname <<"\n";
 do { cout <<"Insert states in another graph-scheme Yes[1]/No[0] ? "; cin >>answer; }
 while (answer != 0 && answer != 1);
 } while (answer);
 if (insert) {
 cout <<"\n *** " <<insert <<" extra states inserted ***\n";
 if (hgsmark) {
 hgsnstates=nstate;
 cout <<" *** Now HGS " <<hgsname <<" is marked with "
 <<hgsnstates <<" states ***\n";
 }
 if (!strcmp(hgssyn,"Moore")) if (hgsmark) Mooresynmergehgs(0); else Mooresynsplithgs(0);
 else if (hgsmark) Mealysynmergehgs(0); else Mealysynsplithgs(0);
 }
 else cout <<"WARNING No extra states were inserted\n";
 }
 else cout <<"WARNING " <<hgsname <<" is not marked yet\n";
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n";
 delete [] graphname;
}

CHAPTER 10 : APPENDIX B - SIMULHGS 195

void Hgraphscheme::Removestatehgs(void)
{
 char* graphname=new char[5]; int nstate, answer, remove=0;
 if (hgscheck)
 if (hgsmark!=-1) {
 nstate=hgsnstates; strcpy(graphname,"");
 cout <<"\n******** Remove extra states in the already marked HGS "
 <<hgsname <<" *********\n";
 do {
 cout <<"Graph-Scheme Name="; cin >>graphname;
 Graphscheme* gs=Searchgraphhgs(graphname);
 if (gs!=NULL) gs->Removestategs(nstate,hgsmark,remove);
 else cout <<graphname <<" Graph-Scheme does not belong to HGS "
 <<hgsname <<"\n";
 do {
 cout <<"Remove states in another graph-scheme Yes[1]/No[0] ? "; cin >>answer;
 } while (answer != 0 && answer != 1);
 } while (answer);
 if (remove) {
 cout <<"\n *** " <<remove <<" extra states removed ***\n";
 if (hgsmark) {
 hgsnstates=nstate;
 cout <<" *** Now HGS " <<hgsname <<" is marked with "
 <<hgsnstates <<" states ***\n";
 }
 if (!strcmp(hgssyn,"Moore")) if (hgsmark) Mooresynmergehgs(0); else Mooresynsplithgs(0);
 else if (hgsmark) Mealysynmergehgs(0); else Mealysynsplithgs(0);
 }
 else cout <<"WARNING No extra states were removed\n";
 }
 else cout <<"WARNING " <<hgsname <<" is not marked yet\n";
 else cout <<"*** Cannot process an unchecked Hierarchical Graph-Scheme ***\n\n";
 delete [] graphname;
}

//************************************** SIMULHGS Menu **************************************

void main(void)
{
 char* filename=new char[20]; Hgraphscheme *hgs; int choice, exit=1;

 cout <<"\n Graph-Scheme Filename -> "; cin >> filename;
 strcat(filename,".txt"); hgs=new Hgraphscheme(filename);

 if (hgs->Hgsngs() != 0)
 do {
 clrscr();
 cout <<" ----------------------------------\n";
 cout <<" | 1 - Check Graph-Scheme |\n";
 cout <<" | 2 - List Graph-Scheme |\n";
 cout <<" | 3 - Print Graph-Scheme |\n";
 cout <<" | 4 - Run Graph-Scheme |\n";
 cout <<" | 5 - Moore Synthesis (model 2) |\n";
 cout <<" | 6 - Mealy Synthesis (model 2) |\n";
 cout <<" | 7 - Moore Synthesis (model 3) |\n";
 cout <<" | 8 - Mealy Synthesis (model 3) |\n";
 cout <<" | 9 - Insert Extra States |\n";
 cout <<" | 10 - Remove Extra States |\n";
 cout <<" | 11 - Exit Program |\n";
 cout <<" ----------------------------------\n";
 cout <<"\n Your Option -> "; cin >>choice;
 clrscr();

196 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

 switch (choice) {
 case 1 : exit=hgs->Checkhgs();
 if (exit) { cout <<"\nHit any key to continue "; getch(); }
 else {
 cout <<"\nCannot processe this hierarchical graph-scheme”;
 cout <<"\nPROGRAM TERMINATED";
 }
 break;
 case 2 : hgs->Listhgs();
 cout <<"\nHit any key to continue "; getch(); break;
 case 3 : hgs->Printhgs();
 cout <<"\nHit any key to continue "; getch(); break;
 case 4 : hgs->Runhgs();
 cout <<"\nHit any key to continue "; getch(); break;
 case 5 : hgs->Mooresynmergehgs();
 cout <<"\nHit any key to continue "; getch(); break;
 case 6 : hgs->Mealysynmergehgs();
 cout <<"\nHit any key to continue "; getch(); break;
 case 7 : hgs->Mooresynsplithgs();
 cout <<"\nHit any key to continue "; getch(); break;
 case 8 : hgs->Mealysynsplithgs();
 cout <<"\nHit any key to continue "; getch(); break;
 case 9 : hgs->Insertstatehgs();
 cout <<"\nHit any key to continue "; getch(); break;
 case 10 : hgs->Removestatehgs();
 cout <<"\nHit any key to continue "; getch(); break;
 case 11 : exit=0; break;
 default : cout <<"Wrong choice - Hit any key to continue "; getch(); break;
 }
 } while (exit);

 delete hgs; delete [] filename;
}

197

11 REFERENCES

[AleHan75] Igor Aleksander, F. Keith Hanna, “Automata Theory: An
Engineering Approach”, Crane, Russak & Company, Inc.,
1975.

[AshDevNew92] Pranav Ashar, Srinivas Devadas, A. Richard Newton,

“Sequential Logic Synthesis”, Kluwer Academic Publishers,
1992.

[Baranov74] Samary Baranov, ”Synthesis of Microprogrammed Automata”,

Energy Publishing Company, 1974 (in Russian).

[Baranov79] Samary Baranov, ”Synthesis of Microprogrammed Automata”,

2nd Edition, Energy Publishing Company, 1979 (in Russian).
French Version “Synthèse des Automates Microprogrammés”,
Editions Mir, 1983.

[Baranov94] Samary Baranov, ”Logic Synthesis for Control Automata”,

Kluwer Academic Publishers, 1994.

[Bolton90] Martin Bolton, “Digital Systems Design with Programmable

Logic”, Addison-Wesley Publishing Company, 1990.

[Booch94] Grady Booch, “Object-Oriented Analysis and Design with

Applications”, Second Edition, Addison-Wesley Publishing
Company, 1994.

[Booth67] Taylor L. Booth, “Sequential Machines and Automata

Theory”, John Wiley & Sons, Inc., 1967.

198 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

[BroRos96] Stephen Brown, Jonathan Rose, “FPGA and CPLD
Architectures: A Tutorial”, IEEE Design & Test of
Computers, Vol. 13, Nº 2, pp. 42-57, Summer 1996.

[CamWol91] Raul Camposano and Wayne Wolf, Editors, “High-Level

VLSI Synthesis”, Kluwer Academic Publishers, 1991.

[Clare73] Christopher R. Clare, “Designing Logic Systems Using State

Machines”, McGraw-Hill, Inc., 1973.

[DruHar89] Doron Drusinsky, David Harel, “Using Statecharts for

Hardware Description and Synthesis”, IEEE Transactions on
Computer-Aided Design, Vol. 8, Nº 7, pp. 798-807, July 1989.

[Edwards97] Stephen Edwards, Luciano Lavagno, Edward A.Lee, Alberto

Sangiovanni-Vincentelli, “Design of Embedded Systems:
Formal Models, Validation, and Synthesis”, Proceedings of the
IEEE, Vol. 85, Nº 3, pp. 366-390, March 1997.

[GajRam94] Daniel D. Gajski, Loganath Ramachandran, “Introduction to

High-Level Synthesis”, IEEE Design & Test of Computers,
Vol. 11, Nº 4, pp. 44-54, Winter 1994.

[Gajski92] Daniel D. Gajski, Nikil D. Dutt, Allen Wu, Steve Lin, “High-

Level Synthesis Introduction to Chip and System Design”,
Kluwer Academic Publishers, 1992.

[Gajski94] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, Jie Gong,

“Specification and Design of Embedded Systems”, Prentice
Hall, Inc., 1994.

[Gajski97] Daniel D. Gajski, “Principles of Digital Design”, Prentice

Hall, Inc., 1997.

[Green86] David Green, “Modern Logic Design”, Addison-Wesley

Publishing Company, 1986.

[GupLia97] Rajesh K. Gupta, Stan Y. Liao, “Using a Programming

Language for Digital System Design”, IEEE Design & Test of
Computers, Vol. 14, Nº 2, pp. 72-80, April-June 1997.

[GupMic93] Rajesh K. Gupta, Giovanni De Micheli, “Hardware-Software

Cosynthesis for Digital Systems”, IEEE Design & Test of
Computers, Vol. 10, Nº 3, pp. 29-41, September 1993.

CHAPTER 11 : REFERENCES 199

[Harel87] David Harel, “Statecharts: A Visual Formalism for Complex
Systems”, Science of Computer Programming, Nº 8, pp. 231-
274, 1987.

[Harel88] David Harel, “On Visual Formalisms”, Communications of

the ACM, Vol. 31, Nº 5, pp. 514-530, May 1988.

[Harel90] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli,

Michal Politi, Rivi Sherman, Aharon Shtull-Trauring, Mark
Trakhtenbrot, “Statemate: A Working Environment for the
Development of Complex Reactive Systems”, IEEE
Transactions on Software Engineering, Vol. 16, Nº 4, pp. 403-
414, April 1990.

[HarSte66] J. Hartmanis, R. E. Stearns, “Algebraic Structure Theory of

Sequential Machines”, Prentice Hall, Inc., 1966.

[HopUll79] John E. Hopcroft, Jeffrey D. Ullman, “Introduction to

Automata Theory, Languages and Computation”, Addison-
Wesley Publishing Company, 1979.

[IEEE94] “IEEE Standard VHDL Language Reference Manual”, IEEE

Std 1076-1993, Institute of Electrical and Electronics
Engineers, Inc., 1994.

[IsmJer95] Tarek Ben Ismail, Ahmed Amine Jerraya, “Synthesis Steps and

Design Models for Codesign”, IEEE Computer, Vol. 28, Nº
2, pp. 44-52, February 1995.

[Katz94] Randy H. Katz, “Contemporary Logic Design”, The

Benjamin/Cummings Publishing Company, Inc., 1994.

[Kohavi70] Zvi Kohavi, “Switching and Finite Automata Theory”,

McGraw-Hill, Inc., 1970.

[McFKow90] Michael McFarland, Thaddeus J. Kowalski, “Incorporating

Bottom-Up Design into Hardware Synthesis”, IEEE
Transactions on Computer-Aided Design, Vol. 9, Nº 9, pp.
938-950, September 1990.

[McFParCam90] Michael C. McFarland, Alice C. Parker, Raul Camposano,

“The High-Level Synthesis of Digital Systems”, Proceedings
of the IEEE, Vol. 78, Nº 2, pp. 301-318, February 1990.

[MicGup97] Giovanni de Micheli, Rajesh K. Gupta, “Hardware/Software

Co-Design”, Proceedings of the IEEE, Vol. 85, Nº 3, pp. 349-
365, March 1997.

200 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

[Micheli94] Giovanni De Micheli, “Synthesis and Optimization of Digital
Circuits”, McGraw-Hill, Inc., 1994.

[MicLauDuz92] Petra Michel, Ulrich Lauther and Peter Duzy, Editors, “The

Synthesis Approach to Digital System Design”, Kluwer
Academic Publishers, 1992.

[Murata89] Tadao Murata, “Petri Nets: Properties, Analysis and

Applications”, Proceedings of the IEEE, Vol. 77, Nº 4, pp.
541-590, April 1989.

[Navabi93] Zainalabedin Navabi, “VHDL Analysis and Modelling of

Digital Systems”, McGraw-Hill, Inc., 1993.

[ParCra98] José A. L. Parente, Carlos M. M. S. Cravo, “Editor Gráfico de

Grafos Hierárquicos”, Final Year Project Report,
Departamento de Electrónica e Telecomunicações,
Universidade de Aveiro, 1998 (in Portuguese).

[RocSkl97A] António Adrego da Rocha, Valery Sklyarov, “VHDL

Modeling of Hierarchical Finite State Machines”, Proceedings
of the Fifth BELSIGN Workshop, Dresden, April 1997.

[RocSkl97B] António Adrego da Rocha, Valery Sklyarov, “Simulação em

VHDL de Máquinas de Estados Finitas Hierárquicas”,
Electrónica e Telecomunicações, Vol. 2, Nº 1, pp. 83-94,
September 1997 (in Portuguese).

[RocSklFer97] António Adrego da Rocha, Valery Sklyarov, António Ferrari,

“Hierarchical Description and Design of Control Circuits
Based on Reconfigurable and Reprogrammable Elements”,
Proceedings of the International Workshop on Logic and
Architectural Synthesis - IWLAS'97, pp. 73-82, Grenoble,
December 1997.

[SklFer98] Valery Sklyarov, António Ferrari, “Synthesis of Control

Devices Described by Hierarchical Graph-Schemes”,
Proceedings of the 3rd Australasian Computer Architecture
Conference - ACAC’98, pp. 181-191, Perth, February 1998.

[SklRoc96A] Valery Sklyarov, António Adrego da Rocha, “Sintese de

Unidades de Controlo Descritas por Grafos dum Esquema
Hierárquicos”, Electrónica e Telecomunicações, Vol. 1, Nº 6,
pp. 577-588, September 1996 (in Portuguese).

CHAPTER 11 : REFERENCES 201

[SklRoc96B] Valery Sklyarov, António Adrego da Rocha, “Synthesis of
Control Units Described by Hierarchical Graph-Schemes”,
Proceedings of the Fourth BELSIGN Workshop, Santander,
November 1996.

[SklRocFer98] Valery Sklyarov, António Adrego da Rocha, António de Brito

Ferrari, “Synthesis of Reconfigurable Control Devices Based
on Object-Oriented Specifications”, in the book “Advanced
Techniques for Embedded Systems Design and Test”, Kluwer
Academic Publishers, pp. 151-177, 1998.

[Sklyarov84] Valery Sklyarov, “Hierarchical Graph-Schemes”, Latvian

Academy of Science, Automatics and Computers, Nº 2, pp.
82-87, Riga, 1984 (in Russian).

[Sklyarov87] Valery Sklyarov, “Parallel Graph-Schemes and Finite State

Machines Synthesis”, Latvian Academy of Science, Automatics
and Computers, Nº 5, pp. 68-76, Riga, 1987 (in Russian).

[Sklyarov96] Valery Sklyarov, “Applying Finite State Machine Theory and

Object-Oriented Programming to the Logic Synthesis of
Control Devices”, Electrónica e Telecomunicações, Vol. 1, Nº
6, pp. 515-529, September 1996.

[Sklyarov98] V. Sklyarov, N. Lau, A. Oliveira, A. Melo, K. Kondratjuk, A.

Ferrari, R. Monteiro, I. Sklyarova, “Synthesis Tools and
Design Environment for Dynamically Reconfigurable
FPGAs”, Proceedings of the XI Brazilian Symposium on
Integrated Circuit Design – SBCCI98, pp. 46-49, Rio de
Janeiro, September 1998.

[StaWol97] Jørgen Staunstrup and Wayne Wolf, Editors,

“Hardware/Software Co-Design: Principles and Practice”,
Kluwer Academic Publishers, 1997.

[ThoAdaSch93] Donald E. Thomas, Jay K. Adams, Herman Schmit, “A Model

and Methodology for Hardware-Software Codesign”, IEEE
Design & Test of Computers, Vol. 10 Nº 3, pp. 6-15,
September 1993.

[ThoMoo91] Donald E. Thomas, Philip Moorby, “The Verilog Hardware

Description Language”, Kluwer Academic Publishers, 1991.

[WalCha95] Robert A. Walker, Samit Chaudhuri, “Introduction to the

Scheduling Problem”, IEEE Design & Test of Computers,
Vol. 12, Nº 2, pp. 60-69, Summer 1995.

202 SYNTHESIS AND SIMULATION OF REPROGRAMMABLE CONTROL UNITS FROM HIERARCHICAL SPECIFICATIONS

[Wilkes51] M. V. Wilkes, “The Best Way to Design An Automatic
Calculating Machine”, Manchester University Computer
Inaugural Conference, July 1951.

[WinPro80] David Winkel, Franklin Prosser, “The Art of Digital Design

An Introduction To Top-Down Design”, Prentice Hall, Inc.,
1980.

[Wolf94] Wayne H. Wolf, “Hardware-Software Co-Design of

Embedded Systems”, Proceedings of the IEEE, Vol. 82, Nº 7,
pp. 967-989, July 1994.

[Xilinx97] Xilinx, “XC6200 Field Programmable Gate Arrays”, Xilinx

Product Description (Version 1.10), 1997.

203

12 GLOSSARY

ALU Arithmetic logic unit
ASIC Application-specific integrated circuit
ASM Algorithmic state machine
CAD Computer-aided design
DSP Digital signal processor
FPGA Field-programmable gate array
FSM Finite state machine
GS Graph-scheme of algorithm
HCFSM Hierarchical concurrent finite state machine
HDL Hardware description language
HFSM Hierarchical finite state machine
HGS Hierarchical graph-scheme
LUT Lookup table
MSA Matrix scheme of algorithm
PAL Programmable array logic
PFSM Parallel finite state machine
PHFSM Parallel hierarchical finite state machine
PHGS Parallel hierarchical graph-scheme
PLA Programmable logic array
PLD Programmable logic device
RAM Random access memory
RE Reprogrammable element
ROM Read only memory
SRAM Static RAM
VHDL VHSIC hardware description language
VHSIC Very high speed integrated circuits

