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This paper presents a mathematical model to understand how rabies spreads among humans, 
free-range, and domestic dogs. By analyzing the model, we discovered that there are equilibrium 
points representing both disease-free and endemic states. We calculated the basic reproduction 
number, 0 using the next generation matrix method. When 0 < 1, the disease-free equilibrium 
is globally stable, whereas when 0 ≥ 1, the endemic equilibrium is globally stable. To identify 
the most influential parameters in disease transmission, we used the normalized forward 
sensitivity index. The simulations revealed that the contact rates between the infectious agent 
and humans, free-range dogs, and domestic dogs, have the most significant impact on rabies 
transmission. The study also examines how periodic changes in transmission rates affect the 
disease dynamics, emphasizing the importance of transmission frequency and amplitude on the 
patterns observed in rabies spread. To reduce disease sensitivity, one should prioritize effective 
disease control measures that focus on keeping both free-range and domestic dogs indoors. This 
is a crucial factor in preventing the spread of disease and should be implemented as a primary 
disease control measure.

1. Introduction

Rabies is a viral disease that affects mammals, including humans, caused by the rabies virus (Rabies lyssavirus) that travels from 
the site of infection to the brain, causing inflammation and damage to the nervous system [1,2]. Despite that dogs are the primary 
host of the virus, causing more than 99% of human rabies infections worldwide, other animals such as bats, raccoons, skunks, and 
foxes can also carry and transmit the virus through bites or scratches [1–3]. The transmission dynamics of rabies are influenced 
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by environmental factors such as changes in habitat, land use patterns and wildlife populations which create varied and frequent 
interactions between infected and susceptible individuals [4].

Symptoms of rabies include fever, headaches, fatigue, restlessness, anxiety, hallucinations, hydrophobia, difficulty swallowing 
and paralysis that manifest between 20 days and 3 months after exposure. This may vary from 1 week to 1 year after exposure, 
depending on the location of entry of the virus and the viral load. In rare cases, the incubation period can last up to 7 years, and 
if left untreated and without appropriate medical care such as vaccination, the disease progresses into a coma state and ultimately 
leads to death [5–7].

Rabies is responsible for 60,000 human deaths every year globally [8], and the effective management of rabies in low- and middle 
income countries (LMICs) in Asia and Africa is often hindered by the lack of timely and accurate information on rabies cases in both 
humans and animals [9,10]. The actual number of fatalities caused by rabies virus (RABV) infections in LMICs is believed to be 
underestimated and the dynamics of rabid dog populations are poorly understood [10]. A study conducted by [11] revealed that the 
mortality rate attributed to human rabies in the United Republic of Tanzania was significantly higher than what has been officially 
reported. By analyzing the active surveillance data on bite incidence, it estimated an annual mortality rate of 1499 deaths, with a 
confidence interval spanning from 891 to 2238 deaths. This indicates an annual incidence of 4.9 deaths per 100,000 population, 
ranging from 2.9 to 7.2 deaths per 100,000.

The application of mathematical models has significantly enhanced the understanding and control of contagious diseases, includ-

ing rabies. This analytical tool has proven instrumental in predicting and analyzing various phenomena, enabling medical experts to 
structure their approach toward disease management. Numerous mathematical models have been developed and analyzed to inves-

tigate the transmission dynamics of rabies in both human and dog populations [12–22]. These studies have identified several factors 
that influence the dynamics of rabies and have addressed various strategies to control the disease.

None of the studies referred to have comprehensively analyzed the combined impact of environmental factors, human populations, 
and free range and domestic dog populations on the transmission dynamics of rabies. These factors can result in increased interactions 
between humans, domestic animals, and wildlife, which together make up a population of approximately 900 million worldwide. 
This, in turn, increases the risk of rabies transmission [7,23]. The movement of infected animals, whether domestic or wild, also 
contributes to the spread of the virus. Infected animals can travel long distances, introducing the virus to new areas or re-establishing 
it in regions where it was previously under control. Studies by [24,25] have documented how these factors can result in increased 
contact between humans and domestic animals, further facilitating the spread of the virus. As such, this study presents a deterministic 
mathematical model designed to assess the effect of contact rates and environmental factors on the transmission dynamics of rabies 
in both human and canine populations.

This paper is structured as follows. Section 2 outlines a deterministic mathematical model describing the dynamics of rabies. 
Section 3 focuses on analyzing the proposed model. Real-world data is then used in Section 4 for model fitting and parameter 
estimation, while Section 5 covers the implementation of numerical simulations. Sections 6 and 7 are dedicated to the discussion and 
conclusion of the study, respectively.

2. Model formulation and model analysis

In this study, we formulated a mathematical model using ordinary differential equations by incorporating the interactions between 
susceptible individuals, infectious dogs, and the environment [13,17,26,27]. The study used mathematical simulations to examine 
how rabies spread and persist under different contact rates and environmental impacts.

2.1. Model formulation

We divided the model into three groups; the human population, the dog population and rabies viruses in the environment. The 
dog population was divided into two subgroups: free-range and domestic dogs.

The free-range dog population defined by 𝑁𝐹 was divided into three compartments namely: susceptible free-range dogs 
(
𝑆𝐹

)
that were group of free-range dogs free of infection but could get infected after adequate contact with either infected free-range dogs (
𝐼𝐹

)
, infected domestic dogs 

(
𝐼𝐷

)
or the environment containing rabies virus (𝑀), exposed free-range dogs 

(
𝐸𝐹

)
which included 

all the free-range dogs who had contracted the disease but could not transmit the disease and had no symptoms of rabies infections, 
infected free-range dogs 

(
𝐼𝐹

)
made up of dogs who had contracted the disease with fully developed rabies symptoms and were 

infectious.

The domestic dog population defined by 𝑁𝐷 was divided into four compartments. First compartment is susceptible domestic 
dogs denoted by 𝑆𝐷 , who were not infected but could get infected after adequate contact with either infected free-range dogs, 
infected domestic dogs or environment that contains rabies virus. The second compartment were exposed domestic dogs 

(
𝐸𝐷

)
, 

who had contracted the disease but could not transmit the disease and did not have disease symptoms. The third compartment 
is infectious domestic dogs 

(
𝐼𝐷

)
, who had contracted the disease and were infectious. The fourth compartment is recovered do-

mestic dogs, denoted by 𝑅𝐷 , who get post-exposure prophylaxis after contract with rabies infectious agent and develop temporary 
immunity.

The human population, denoted by 𝑁𝐻 , was divided into four compartments; first compartment were humans who had not ac-

quired the rabies infection but could get if they adequately contacted with infectious free-range dogs, domestic dogs or contaminated ( )

2

environment. The second compartment were exposed human 𝐸𝐻 , who had contracted the disease but could not transmit it and 
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do not have symptoms of the infections. The third compartment is the infected human 
(
𝐼𝐻

)
, who had contracted the rabies virus 

and were showing all the symptoms of rabies and were, therefore, infectious. The fourth compartment is recovered human beings, 
denoted by 𝑅𝐻 , who get post-exposure prophylaxis after they contact and developed temporary immunity.

The environment represented the virus causing rabies, that are in the physical object or any other materials in the environment. 
These virus containing materials are considered as virus transmitting media or the infectious agent denoted as 𝑀(𝑡).

2.1.1. Description of model interaction

Susceptible humans are constantly recruited at a rate of 𝜃1. When they come into adequate contact with 𝐼𝐹 , 𝐼𝐷 , or the virus in 
the environment, individuals in the 𝑆𝐻 category become infected at rates 𝜏1, 𝜏2, and 𝜏3, respectively. Thus, the force of infection for 
human is given by equation (1):

𝜒1 =
(
𝜏1𝐼𝐹 + 𝜏2𝐼𝐷 + 𝜏3𝜆 (𝑀)

)
𝑆𝐻, (1)

where

𝜆 (𝑀) = 𝑀

𝑀 +𝐶
.

After contracting rabies infections, susceptible humans become exposed individuals, denoted by 𝐸𝐻 , typically for 1 to 3 months. 
Those in the 𝐸𝐻 category who receive post-exposure prophylaxis recover at the rate 𝛽2. Since post-exposure prophylaxis does not 
confer permanent immunity, individuals in the 𝑅𝐻 category can lose immunity and become susceptible again at the rate 𝛽3. The 
remaining proportion of the exposed class progresses to the infectious state 𝐼𝐻 at a rate 𝛽1. Infected humans can die due to the 
disease at a rate 𝜎1. All human compartments experience natural death at a rate of 𝜇1.

Free-range dogs that are susceptible to rabies are continually added to the population at a rate of 𝜃2. These dogs can contract the 
disease when they come into contact with infected free-range dogs (𝐼𝐹 ), infected domestic dogs (𝐼𝐷), or the virus in the environment, 
at rates 𝜅1, 𝜅2, and 𝜅3, respectively. The force of infection for free-range dogs is calculated using equation (2):

𝜒2 =
(
𝜅1𝐼𝑤 + 𝜅2𝐼𝐷 + 𝜅3𝜆 (𝑀)

)
𝑆𝐹 . (2)

After contracting the rabies infection, free-range dogs that are susceptible progress to the exposed state, 𝐸𝐹 , which lasts for 1 to 3 
months. The exposed free-range dogs then progress to the infectious state, 𝐼𝐹 , at a rate of 𝛾 . Infected free-range dogs may die due to 
the disease at a rate of 𝜎2. Additionally, all free-range dog compartments experience natural death at a rate of 𝜇2 .

Susceptible domestic dogs are constantly recruited at a rate of 𝜃3. These dogs become infected when they come into adequate 
contact with 𝐼𝐹 , 𝐼𝐷 , or the rabies virus in the environment, at the rates 𝜓1, 𝜓2, and 𝜓3, respectively. Since domestic dogs are under 
human control, they have a lower risk of contracting the disease. Hence, the force of infection for free-range dogs is given by equation 
(3):

𝜒3 =
(

𝜓1𝐼𝐹

1 + 𝜌1
+

𝜓2𝐼𝐷

1 + 𝜌2
+

𝜓3
1 + 𝜌3

𝜆 (𝑀)
)

𝑆𝐷. (3)

After contracting a rabies infection, domestic dogs enter a state 𝐸𝐷 , where they stay for several months at a rate of 𝛽1. If dogs 
in the 𝐸𝐷 category receive post-exposure prophylaxis, they move to the 𝑅𝐷 category at a rate of 𝛾2. However, post-exposure 
prophylaxis does not provide permanent immunity, and dogs in the 𝑅𝐷 category can lose their immunity and become susceptible 
again at a rate of 𝛾3. Meanwhile, the remaining proportion of the exposed class progresses to the infectious state 𝐼𝐷 at a rate of 𝛾1. 
Infected domestic dogs can die from the disease at a rate of 𝜎3. All compartments of domestic dogs experience natural death at a 
rate of 𝜇3.

Rabies virus is spread in the environment through shedding by infected free-range and domestic dogs, as well as humans, at rates 
denoted by 𝜈2, 𝜈3, and 𝜈1, respectively. Equation (4) can be used to estimate the virus recruitment in the environment:

𝜃4 =
(
𝜈1𝐼𝐻 + 𝜈2𝐼𝐹 + 𝜈3𝐼𝐷

)
𝑀. (4)

The viruses are removed from the environment at a rate 𝜇4.

Fig. 1 illustrates the dynamics of rabies disease among free-range dogs, domestic dogs, humans, and the environment.

Based on the description of the model parameters and their connections to the state variables, we formulate a model in the form 
3

of a system of ordinary differential equations, as presented in the model equation (5):
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Fig. 1. Flow diagram for rabies transmission among human, free range and domestic dogs with parameters.

̇𝑆𝐻 = 𝜃1 + 𝛽3𝑅𝐻 − 𝜇1𝑆𝐻 − 𝜒1,
̇𝐸𝐻 = 𝜒1 −

(
𝜇1 + 𝛽1 + 𝛽2

)
𝐸𝐻,

̇𝐼𝐻 = 𝛽1𝐸𝐻 −
(
𝜎1 + 𝜇1

)
𝐼𝐻 ,

̇𝑅𝐻 = 𝛽2𝐸𝐻 −
(
𝛽3 + 𝜇1

)
𝑅𝐻,

̇𝑆𝐹 = 𝜃2 − 𝜒2 − 𝜇2𝑆𝐹 ,
̇𝐸𝐹 = 𝜒2 −

(
𝜇2 + 𝛾

)
𝐸𝐹 ,

̇𝐼𝐹 = 𝛾𝐸𝐹 −
(
𝜇2 + 𝜎2

)
𝐼𝐹 ,

̇𝑆𝐷 = 𝜃3 − 𝜇3𝑆𝐷 − 𝜒3 + 𝛾3𝑅𝐷,
̇𝐸𝐷 = 𝜒3 −

(
𝜇3 + 𝛾1 + 𝛾2

)
𝐸𝐷,

̇𝐼𝐷 = 𝛾1𝐸𝐷 −
(
𝜇3 + 𝜎3

)
𝐼𝐷,

̇𝑅𝐷 = 𝛾2𝐸𝐷 −
(
𝜇3 + 𝛾3

)
𝑅𝐷,

�̇� =
(
𝜈1𝐼𝐻 + 𝜈2𝐼𝐹 + 𝜈3𝐼𝐷

)
− 𝜇4𝑀,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

subject to the non-negative conditions

𝑆𝐻 (0) > 0, 𝐸𝐻 (0) ≥ 0, 𝐼𝐻 (0) ≥ 0, 𝑅𝐻 (0) ≥ 0, 𝑆𝐹 (0) > 0, 𝐸𝐹 (0) ≥ 0, 𝐼𝐹 (0) ≥ 0,

𝑆𝐷(0) ≥ 0, 𝐸𝐷(0) ≥ 0, 𝐼𝐷(0) ≥ 0, 𝑅𝐷(0) ≥ 0.
(6)

2.2. Model analysis

2.2.1. Model’s invariant region

Since the model (5) monitors the human and dog populations, we assume that the model’s state variable and parameters are 
4

non-negative for ∀𝑡 ≥ 0. Using Theorem 1, we obtain the invariant region of the rabies model.
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Theorem 1. Solution of the rabies model system (5) is uniformly bounded if Ω ∈ℝ12
+ and Ω =Ω𝐻 ∪Ω𝐷 ∪Ω𝐹 ∪Ω𝑀 ∈ℝ4

+ ×ℝ3
+ ×ℝ4

+ ×ℝ1
+, 

where

Ω𝐻 =
{(

𝑆𝐻,𝐸𝐻, 𝐼𝐻 ,𝑅𝐻

)
∈ℝ4

+ ∶ 0 ≤ 𝑁𝐻 ≤ 𝜃1
𝜇1

}
,

Ω𝐹 =
{(

𝑆𝐹 ,𝐸𝐹 , 𝐼𝐹

)
∈ℝ3

+ ∶ 0 ≤ 𝑁𝐹 ≤ 𝜃2
𝜇2

}
,

Ω𝐷 =
{(

𝑆𝐷,𝐸𝐷, 𝐼𝐷,𝑅𝐷

)
∈ℝ4

+ ∶ 0 ≤ 𝑁𝐷 ≤ 𝜃3
𝜇3

}
,

and Ω is the positive invariant region.

Proof. Consider the population of the human. From equation (5) one has

𝑑𝑁𝐻

𝑑𝑡
=

𝑑𝑆𝐻

𝑑𝑡
+

𝑑𝐸𝐻

𝑑𝑡
+

𝑑𝐼𝐻

𝑑𝑡
+

𝑑𝑅𝐻

𝑑𝑡
. (7)

Then, the equation (7) leads to
𝑑𝑁𝐻

𝑑𝑡
= 𝜃1 −

(
𝑆𝐻 +𝐸𝐻 + 𝐼𝐻 +𝑅𝐻

)
𝜇1 − 𝜎1𝐼𝐻 . (8)

Thus, equation (8) becomes

𝑑𝑁𝐻

𝑑𝑡
= 𝜃1 −

(
𝑆𝐻 +𝐸𝐻 + 𝐼𝐻 +𝑅𝐻

)
𝜇1. (9)

Given that 𝑁𝐻 = 𝑆𝐻 +𝐸𝐻 + 𝐼𝐻 +𝑅𝐻 , the equation (9) results in (10):

𝑑𝑁𝐻

𝑑𝑡
= 𝜃1 −𝑁𝐻𝜇1. (10)

From the integrating factor we have

𝑁𝐻 (𝑡) = 𝑒∫ 𝑡
0 𝜇1𝑑𝑡 = 𝑒𝜇1𝑡. (11)

Then, for 𝑡 → 0 equation (11) gives

𝑁𝐻 (0) ≤ 𝜃1
𝜇1

+𝐶𝑒0 ⟹ 𝑁𝐻 (0) −
𝜃1
𝜇1

≤ 𝐶. (12)

By simplifying equation (12) and performing simple manipulations, we have

Ω𝐻 =
{(

𝑆𝐻,𝐸𝐻, 𝐼𝐻 ,𝑅𝐻

)
∈ℝ4

+ ∶ 0 ≤ 𝑁𝐻 ≤ 𝜃1
𝜇1

}
.

Using the same procedures for free-range and domestic dogs, we have

Ω𝐹 =
{(

𝑆𝐹 ,𝐸𝐹 , 𝐼𝐹

)
∈ℝ3

+ ∶ 0 ≤ 𝑁𝐹 ≤ 𝜃2
𝜇2

}
, Ω𝐷 =

{(
𝑆𝐷,𝐸𝐷, 𝐼𝐷,𝑅𝐷

)
∈ℝ4

+ ∶ 0 ≤ 𝑁𝐷 ≤ 𝜃3
𝜇3

}
.

Regarding the environment that contains the rabies virus, we consider eq. (12) in the model system (5) as

�̇� =
(
𝜈1𝐼𝐻 + 𝜈2𝐼𝐹 + 𝜈3𝐼𝐷

)
− 𝜇4𝑀. (13)

Since 𝑁𝐻 ≤ 𝜃1
𝜇1

, 𝑁𝐹 ≤ 𝜃2
𝜇3

and 𝑁𝐷 ≤ 𝜃3
𝜇3

, it follows that 𝐼𝐻 ≤ 𝜃1
𝜇1

, 𝐼𝐹 ≤ 𝜃2
𝜇2

and 𝐼𝐷 ≤ 𝜃3
𝜇3

.

Thus, equation (13) becomes

�̇� ≤
(

𝜈1𝜃1
𝜇1

+
𝜈2𝜃2
𝜇2

+
𝜈3𝜃3
𝜇3

)
− 𝜇4𝑀. (14)

Now, let 𝑌 be the unique solution to the initial value problem, such that

�̇� ≤
(

𝜈1𝜃1
𝜇1

+
𝜈2𝜃2
𝜇2

+
𝜈3𝜃3
𝜇3

)
− 𝜇4𝑀, for 𝑡 > 0,

𝑌 (0) = 𝑀(0).

⎫⎪⎬⎪⎭ (15)

By using the integration factor, equation (15) becomes(
𝜈1𝜃1 𝜈2𝜃2 𝜈3𝜃3

)
1

( (
𝜈1𝜃1 𝜈2𝜃2 𝜈3𝜃3

)
1
)

5

𝑀 (𝑡) ≤
𝜇1

+
𝜇2

+
𝜇3 𝜇4

+ 𝑀(0) −
𝜇1

+
𝜇2

+
𝜇3 𝜇4

. (16)
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As 𝑡 →∞, the expression 
(
𝑀(0) −

(
𝜈1𝜃1
𝜇1

+ 𝜈2𝜃2
𝜇2

+ 𝜈3𝜃3
𝜇3

)
1
𝜇4

𝑒𝜇4𝑡
)

in equation (16) goes to zero, and we have

𝑀 ≤
(

𝜈1𝜃1
𝜇1

+
𝜈2𝜃2
𝜇2

+
𝜈3𝜃3
𝜇3

)
1
𝜇4

. (17)

Equation (17) gives

𝑀 (𝑡) ≤Ω𝑀 = Max

{
𝜃1𝜈1
𝜇1𝜇4

+
𝜃2𝜈2
𝜇2𝜇4

+
𝜃3𝜈3
𝜇3𝜇4

,𝑀 (0)
}

. (18)

Thus, the model system (5) is biologically and mathematically meaningful with its solution relying on the region Ω. □

2.2.2. Positivity of the solution

For the model system (5) to be epidemiologically meaningful and well-posed, we need to prove that the state variables are 
non-negative for all 𝑡 ≥ 0.

Theorem 2. Let 
{

S𝐻 (0),E𝐻 (0), I𝐻 (0),R𝐻 (0),S𝐹 (0),E𝐹 (0), I𝐹 (0),S𝐷(0),E𝐷(0), I𝐷(0),R𝐷(0),𝑀(0)
}
∈ℝ12

+ . Then the set{
S𝐻 (𝑡),E𝐻 (𝑡), I𝐻 (𝑡),R𝐻 (𝑡),S𝐹 (𝑡),E𝐹 (𝑡), I𝐹 (𝑡),S𝐷(𝑡),E𝐷(𝑡), I𝐷(𝑡),R𝐷(𝑡),𝑀(𝑡)

}
of solutions of the model system (5) is positive ∀𝑡 > 0.

Proof. Consider the human subpopulation of the model system (5). We have

𝑑𝑆𝐻

𝑑𝑡
= 𝜃1 + 𝛽3𝑅𝐻 − 𝜇1𝑆𝐻 −

(
𝜏1𝐼𝐹 + 𝜏2𝐼𝐷 + 𝜏3𝜆 (𝑀)

)
𝑆𝐻. (19)

Then, equation (19) yields

𝑑𝑆𝐻

𝑑𝑡
≥ −

(
𝜏1𝐼𝐹 + 𝜏2𝐼𝐷 + 𝜏3𝜆 (𝑀) + 𝜇1

)
𝑆𝐻. (20)

Using integrating techniques on both sides, equation (20) leads to

∫
𝑑𝑆𝐻

𝑆𝐻

≥
𝑡

∫
0

−
(
𝜏1𝐼𝐹 + 𝜏2𝐼𝐷 + 𝜏3𝜆 (𝑀) + 𝜇1

)
𝑑𝑠. (21)

Hence, using equation (21), we can derive the following result:

𝑆𝐻 ≥ 𝑆𝐻 (0) 𝑒∫ 𝑡
0 −

(
𝜏1𝐼𝐹 +𝜏2𝐼𝐷+𝜏3𝜆(𝑀)+𝜇1

)
𝑑𝑠 > 0. (22)

Thus, 𝑆𝐻 is positive for all 𝑡 > 0. Using the same procedure, from equations (19) to (46) we have

𝐸𝐻 ≥ 𝐸𝐻 (0)𝑒−(𝜇1+𝛽1+𝛽2)𝑡 > 0, 𝐼𝐻 ≥ 𝐼𝐻 (0)𝑒−(𝜎1+𝜇1)𝑡 > 0, 𝑅𝐻 ≥ 𝑅𝐻 (0)𝑒−(𝜇1+𝛽3)𝑡 > 0,

𝑆𝐹 ≥ 𝑆𝐹 (0)𝑒∫
𝑡
0 −((𝜅1𝐼𝐹 +𝜅2𝐼𝐷+𝜅3𝜆(𝑀))+𝜇2)𝑑𝑠 > 0, 𝐸𝐹 ≥ 𝐸𝐹 (0)𝑒−(𝜇2+𝛾)𝑡 > 0, 𝐼𝐹 ≥ 𝐼𝐹 (0)𝑒−(𝜇2+𝜎2)𝑡 > 0,

𝑆𝐷 ≥ 𝑆𝐷(0)𝑒
∫ 𝑡
0 −(( 𝜓1𝐼𝐹

1+𝜌1
+ 𝜓2𝐼𝐷

1+𝜌2
+ 𝜓3

1+𝜌3
𝜆(𝑀)+𝜇3))𝑑𝑠

> 0, 𝐸𝐷 ≥ 𝐸𝐷(0)𝑒−(𝜇3+𝛾1+𝛾2)𝑡 > 0,

𝑅𝐷 ≥ 𝑅𝐷(0)𝑒−(𝜇3+𝛾3)𝑡 > 0, 𝐼𝐷 ≥ 𝐼𝐷(0)𝑒−(𝜇3+𝜎3)𝑡 > 0, 𝑀 ≥ 𝑀(0)𝑒−𝜇4𝑡 > 0.

Thus, the set of solutions 
{
𝑆𝐻 (𝑡),𝐸𝐻 (𝑡), 𝐼𝐻 (𝑡),𝑅𝐻 (𝑡), 𝑆𝐹 (𝑡),𝐸𝐹 (𝑡), 𝐼𝐹 (𝑡), 𝑆𝐷(𝑡),𝐸𝐷(𝑡), 𝐼𝐷(𝑡),𝑅𝐷(𝑡),𝑀(𝑡)

}
of the model system (5) is 

positive ∀𝑡 > 0. □

2.2.3. Disease free equilibrium point 0
The disease-free equilibrium point, denoted as 0, refers to the point at which there is no disease in a given population. In order 

to obtain 0 in the model system (5), we consider all infectious compartments to be equal to zero. Therefore, 0 can be defined as 
follows:

0 =
(

𝜃1
𝜇1

,0,0,0,
𝜃2
𝜇2

,0,0,
𝜃3
𝜇3

,0,0,0,0
)

.

2.2.4. The basic reproduction number, 0
The 0 predicts whether rabies will spread across the community or die out. If 0 < 1, it means that every infectious individual 

will cause less than one secondary infection, hence the disease will die out in the community. If 0 > 1, it means that every infectious 
individual will cause more than one secondary infection, leading to the persistence of rabies in the entire population. In order to 
6

determine 0 ≥ 1, the next generation matrix, as applied by [28–30], and the Jacobian Matrix are used, such that
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𝑑𝑥𝑖

𝑑𝑡
= 𝑖 (𝑥) −

(+
𝑖
(𝑥) − −

𝑖
(𝑥)

)
, (23)

where 𝑖 is the new infections in the compartment 𝑖 while +
𝑖

and −
𝑖

are the transfer terms in and out of the compartment 𝑖, 
respectively. From equation (5), we define 𝑖 and 𝑖 by

𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
𝜏1𝐼𝐹 + 𝜏2𝐼𝐷 + 𝜏3𝜆 (𝑀)

)
𝑆𝐻

0(
𝜅1𝐼𝐹 + 𝜅2𝐼𝐷 + 𝜅3𝜆 (𝑀)

)
𝑆𝐹

0(
𝜓1𝐼𝐹

1 + 𝜌1
+

𝜓2𝐼𝐷

1 + 𝜌2
+

𝜓3
1 + 𝜌3

𝜆 (𝑀)
)

𝑆𝐷

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
𝜇1 + 𝛽1 + 𝛽2

)
𝐸𝐻(

𝜎1 + 𝜇1
)
𝐼𝐻 − 𝛽1𝐸𝐻(

𝜇2 + 𝛾
)
𝐸𝐹(

𝜇2 + 𝜎2
)
𝐼𝐹 − 𝛾𝐸𝐹(

𝜇3 + 𝛾1 + 𝛾2
)
𝐸𝐷(

𝜇3 + 𝛿3
)
𝐼𝐷 − 𝛾1𝐸𝐷

𝜇4𝑀 −
(
𝜈1𝐼𝐻 + 𝜈2𝐼𝐹 + 𝜈3𝐼𝐷

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (24)

The Jacobian Matrices F and V at the disease free equilibrium point 0 are given by equation (25):

𝐹 =
𝜕𝑖

(0)
𝜕𝑥𝑗

, 𝑉 =
𝜕𝑖

(0)
𝜕𝑥𝑗

. (25)

From equation (24), 𝐹 and 𝑉 at 0 is given by equation (26):

𝜕𝑖

𝜕𝑥𝑗

||||0 = 𝐹 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
𝜏1𝜃1
𝜇1

0
𝜏2𝜃1
𝜇1

0

0 0 0 0 0 0 0

0 0 0
𝜅1𝜃2
𝜇2

0
𝜅2𝜃2
𝜇2

0

0 0 0 0 0 0 0

0 0 0
𝜓1𝜃3(

1 + 𝜌1
)
𝜇3

0
𝜓2𝜃3(

1 + 𝜌2
)
𝜇3

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

In the linearized system (26), the entry 𝐹𝑖𝑗 represents the rate at which individuals in the infected state 𝑗 give rise to or develop 
new infections in individuals in the infected state 𝑖, with reference to the infected states indexed by 𝑖 and 𝑗 for 𝑖, 𝑗 ∈ {1,2,3,4,5,6,7}. 
As a result, when a person in an infected condition 𝑗 does not instantly produce any new instances in an infected state 𝑖, we have 
𝐹𝑖𝑗 = 0. Similarly, 𝑉 at point 0 is given by

𝜕𝑖

𝜕𝑥𝑗

||||0 = 𝑉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜

𝜇1 + 𝛽1 + 𝛽2 0 0 0 0 0 0

−𝛽1 𝜎1 + 𝜇1 0 0 0 0 0

0 0 𝜇2 + 𝛾 0 0 0 0

0 0 −𝛾 𝜇2 + 𝜎2 0 0 0

0 0 0 0 𝜇3 + 𝛾1 + 𝛾2 0 0

0 0 0 0 −𝛾1 𝜇3 + 𝜎3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
. (27)
7

⎜⎝ 0 −𝜈1 0 −𝜈2 0 −𝜈3 𝜇4
⎟⎠
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The inverse of matrix 𝑉 is obtained using Maple software, and its result is given as

𝑉 −1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝜇1+𝛽1+𝛽2

0 0 0 0 0 0

𝛽1(
𝜎1+𝜇1

)(
𝜇1+𝛽1+𝛽2

) 1
𝜎1+𝜇1

0 0 0 0 0

0 0 1
𝜇2+𝛾

0 0 0 0

0 0 𝛾(
𝜇2+𝛾

)(
𝜇2+𝜎2

) 1
𝜇2 + 𝜎2

0 0 0

0 0 0 0 1
𝜇3+𝛾1+𝛾2

0 0

0 0 0 0
𝛾1(

𝜇3 + 𝜎3
)(

𝜇3 + 𝛾1 + 𝛾2
) 1

𝜇3 + 𝜎3
0

𝜈1𝛽1(
𝜎1+𝜇1

)(
𝜇1+𝛽1+𝛽2

)
𝜇4

𝜈1(
𝜎1+𝜇1

)
𝜇4

𝜈2𝛾(
𝜇2+𝛾

)(
𝜇2+𝜎2

)
𝜇4

𝜈2(
𝜇2+𝜎2

)
𝜇4

𝜈3𝛾1(
𝜇3+𝜎3

)(
𝜇3+𝛾1+𝛾2

)
𝜇4

𝜈3(
𝜇3+𝜎3

)
𝜇4

1
𝜇4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

In the context of computing the basic reproduction number 0 in epidemiology, the (𝑉 −1)𝑖𝑗 obtained in equation (28) represents 
the generation matrix. The generation matrix describes the expected number of newly infected individuals that a single infectious 
individual in each of the different susceptible classes generates. Meanwhile, the diagonal elements represent the rate of leaving the 
corresponding susceptible class due to other causes such as recoveries caused by administration of post-exposure prophylaxis (PEP). 
In particular, 1

𝜇1 + 𝛽1 + 𝛽2
, 1

𝜇2 + 𝛾
, and 1

𝜇3 + 𝛾1 + 𝛾2
represent the average incubation period for rabies in humans, free-range dogs, 

and domestic dogs, respectively. Meanwhile, 1
𝜇1 + 𝜎1

, 1
𝜇2 + 𝜎2

, and 1
𝜇3 + 𝜎3

represent the average time spent by an infective human, 

free-range dog, and domestic dog in the infectious state, respectively, and 1
𝜇4

is the average time the rabies virus spends in the 

environment. The next generation Matrix is then calculated by

𝐹𝑉 −1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 𝜏1𝜃1𝛾

𝜇1
(
𝜇2+𝛾

)(
𝜇2+𝜎2

) 𝜏1𝜃1
𝜇1

(
𝜇2+𝜎2

) 𝜏2𝜃1𝛾

𝜇1
(
𝜇3 + 𝛾1 + 𝛾2

)(
𝜇3 + 𝜎3

) 𝜏2𝜃1
𝜇1

(
𝜇3+𝜎3

) 0

0 0 0 0 0 0 0

0 0 𝜅1𝜃2𝛾

𝜇2
(
𝜇2+𝛾

)(
𝜇2+𝜎2

) 𝜅1𝜃2
𝜇2

(
𝜇2+𝜎2

) 𝜅1𝜃2𝛾

𝜇2
(
𝜇3+𝛾1+𝛾2

)(
𝜇3+𝜎3

) 𝜅1𝜃2
𝜇2

(
𝜇3+𝜎3

) 0

0 0 0 0 0 0 0

0 0
𝜓1𝜃3𝛾(

1 + 𝜌1
)
𝜇3

(
𝜇2 + 𝛾

)(
𝜇2 + 𝜎2

) 𝜓1𝜃3(
1+𝜌1

)
𝜇3

(
𝜇2+𝜎2

) 𝜓2𝜃3𝛾(
1 + 𝜌2

)
𝜇3

(
𝜇3 + 𝛾1 + 𝛾2

)(
𝜇3 + 𝜎3

) 𝜓2𝜃3(
1+𝜌2

)
𝜇3

(
𝜇3+𝜎3

) 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(29)

The expression of matrix 𝐹𝑉 −1 can be presented as

𝐹𝑉 −1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 𝑅13 𝑅14 𝑅15 𝑅16 0
0 0 0 0 0 0 0
0 0 𝑅33 𝑅34 𝑅35 𝑅36 0
0 0 0 0 0 0 0
0 0 𝑅53 𝑅54 𝑅55 𝑅56 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (30)
8

where
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Table 1

Sensitivity indices for 0 .

Parameter Sensitivity Index Parameter Sensitivity Index

𝛾1 -0.105552 𝜓1 +0.051422

𝛾2 -0.056998 𝜓2 +0.005436

𝜅1 +0.897120 𝜅2 +0.051422

𝜇2 -1.616021 𝜌1 -0.046747

𝜇3 -0.105358 𝜌2 -0.004832

𝜎2 -0.540654 𝜎3 -0.05144

𝜃2 +0.941420 𝜃3 +0.056858

𝑅13 =
𝜏1𝜃1𝛾

𝜇1
(
𝜇2 + 𝛾

)(
𝜇2 + 𝜎2

) , 𝑅14 =
𝜏1𝜃1

𝜇1
(
𝜇2+𝜎2

) , 𝑅15 =
𝜏2𝜃1𝛾

𝜇1
(
𝜇3 + 𝛾1 + 𝛾2

)(
𝜇3 + 𝜎3

) , 𝑅16 =
𝜏2𝜃1

𝜇1
(
𝜇3 + 𝜎3

) ,

𝑅33 =
𝜅1𝜃2𝛾

𝜇2
(
𝜇2 + 𝛾

)(
𝜇2 + 𝜎2

) , 𝑅34 =
𝜅1𝜃2

𝜇2
(
𝜇2 + 𝜎2

) , 𝑅35 =
𝜅1𝜃2𝛾

𝜇2
(
𝜇3 + 𝛾1 + 𝛾2

)(
𝜇3 + 𝜎3

) , 𝑅36 =
𝜅1𝜃2

𝜇2
(
𝜇3 + 𝜎3

) ,

𝑅53 =
𝜓1𝜃3𝛾(

1 + 𝜌1
)(

𝜇2 + 𝛾
)(

𝜇2 + 𝜎2
)
𝜇3

, 𝑅54 =
𝜓1𝜃3(

1 + 𝜌1
)
𝜇3

(
𝜇2 + 𝜎2

) , 𝑅55 =
𝜓2𝜃3𝛾(

1 + 𝜌2
)(

𝜇3 + 𝛾1 + 𝛾2
)(

𝜇3 + 𝜎3
)
𝜇3

,

𝑅56 =
𝜓2𝜃3(

1 + 𝜌2
)
𝜇3

(
𝜇3 + 𝜎3

) .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(31)

From equation (30), we obtained the eigenvalues as(
0,0,0,0,0, 1

2
𝑅55 +

1
2

𝑅33 +
1
2

√
𝑅2
33 − 2𝑅33𝑅55 + 4𝑅35𝑅53 +𝑅2

55,

1
2

𝑅55 +
1
2

𝑅33 −
1
2

√
𝑅2
33 − 2𝑅33𝑅55 + 4𝑅35𝑅53 +𝑅2

55

)
.

(32)

The (𝑖, 𝑘) element of the 𝐹𝑉 −1 of the next generation matrix represents the expected number of secondary infections in the com-

partment 𝑖 caused by individuals in compartment 𝑘, assuming that the individual’s environments remain consistent throughout the 
infection. It is worth noting that 𝐹𝑉 −1 Matrix is non-negative, meaning has a non-negative eigenvalue. This non-negative eigenvalue 
corresponds to a non-negative eigenvector that represents the distribution of infected individuals who generate the highest num-

ber of secondary infections per generation, also known as 0. According to [31], the basic reproduction number 0 is the largest 
eigenvalue of the next generation matrix, being given by

0 = 𝜌
(
𝐹𝑉 −1) . (33)

Therefore, the spectral radius of the next generation Matrix is

𝜌
(
𝐹𝑉 −1) = (

𝑅55 +𝑅33
)
+
√

𝑅33
(
𝑅33 − 2𝑅55

)
+ 4𝑅35𝑅53 +𝑅2

55

2
. (34)

2.2.5. Local sensitivity analysis

Local sensitivity analysis seeks to determine how each parameter 𝑖 affects the 0 and is determined by normalizing the sensi-

tivity indices as approached by [32,33]:

𝛾
0𝑖

=
𝜕0
𝜕𝑖

×
𝑖

0
, (35)

where 0 is the rabies basic reproduction number. Therefore, utilizing equation (35) and the parameter values from Table 2, we 
calculate the sensitivity indices for each parameter, as indicated in Table 1.

The findings from the research presented in Table 1 are significant and provide crucial insights. This study highlights that an 
increase in the values of the rabies model parameters, including 𝜓1, 𝜓2, 𝜅1, and 𝜅2, results in a proportional rise in the magnitude of 
0. This indicates that careful consideration of these parameters is essential in predicting the transmission dynamics of the disease. 
Furthermore, the study also reveals that an increase in the values of parameters such as 𝛾1, 𝛾2, 𝜇2, 𝜇3, 𝜌1, 𝜌2, 𝜎2, and 𝜎3 leads 
to a decrease in the magnitude of 0. This implies that controlling the spread of the disease can be achieved by adjusting these 
parameters. It is noteworthy that a 20% increase in any of the parameters 𝜓1, 𝜓2, 𝜅1, or 𝜅2 corresponds exactly to a 20% increase in 
the value of 0.

2.3. Existence of the steady state solution

The endemic equilibrium point is the steady state where rabies is present in humans, free-range dogs, and domestic dogs. To find 
this point, we set the equations of the model system (5) to zero and solve the resulting system simultaneously. The state variables for 
9

each compartment are represented by
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𝔼
(
𝑆∗

𝐻
, 𝐸∗

𝐻
, 𝐼∗

𝐻
, 𝑅∗

𝐻
, 𝑆∗

𝐹
, 𝐸∗

𝐹
, 𝐼∗

𝐹
, 𝑆∗

𝐷
, 𝐸∗

𝐷
, 𝐼∗

𝐷
, 𝑅∗

𝐷
, 𝑀∗)

with

𝑅∗
𝐻
=

𝛽2
(
𝜎1 + 𝜇1

)
𝐼∗

𝐻

𝛽1
(
𝛽3 + 𝜇1

) ,

𝐼∗
𝐻
=

𝛽1(𝛽3 + 𝜇3)(𝜎1 + 𝜇1)2(𝛽1 + 𝛽2 + 𝛽3)𝜇1 + 𝛽1𝛽3(𝜎1 + 𝜇1)2

(𝜎1 + 𝜇1)2((𝛽1 + 𝛽2 + 𝛽3)𝜇1 + 𝛽1𝛽3)

−
𝛽1(𝛽3 + 𝜇3)(𝜎1 + 𝜇1)2𝛽3 − 𝜃1(𝛽3 + 𝜇3)(𝜎1 + 𝜇1)2

(𝜎1 + 𝜇1)2((𝛽1 + 𝛽2 + 𝛽3)𝜇1 + 𝛽1𝛽3)
,

𝐸∗
𝐻
=

(
𝜎1 + 𝜇1

)
𝐼∗

𝐻

𝛽1
,

𝑆∗
𝐻
=

𝛽3𝛽2
(
𝜎1 + 𝜇1

)
𝐼∗

𝐻

𝛽1
(
𝛽3 + 𝜇1

)
𝜇1

−

(
𝜇1 + 𝛽1 + 𝛽2

)(
𝜎1 + 𝜇1

)
𝐼∗

𝐻

𝛽1𝜇1
+

𝜃1
𝜇1

,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
𝐼∗

𝐷
=

𝛾1𝜓1𝐼
∗
𝐹
(1 + 𝜌2)(1 + 𝜌3)𝑀∗ + 𝛾1𝜓3𝑀

∗(1 + 𝜌1)(1 + 𝜌2)
(𝜇3 + 𝛾1 + 𝛾2)2 − 𝛾1𝜓2(1 + 𝜌1)(1 + 𝜌3)𝑀∗(𝜇3 + 𝛾1 + 𝛾2)

,

𝐸∗
𝐷
=

(
𝜇3 + 𝜎3

)
𝐼∗

𝐷

𝛾1
, 𝑅∗

𝐷
=

𝛾2
(
𝜇3 + 𝜎3

)
𝐼∗

𝐷

𝛾1
(
𝜇3 + 𝛾3

) ,

⎫⎪⎪⎬⎪⎪⎭
𝑆∗

𝐷
=

𝛾3(𝜇3 + 𝜎3)𝐼∗
𝐷

𝜇3𝛾1
−

(𝜇3 + 𝛾1 + 𝛾2)𝛾2(𝜇3 + 𝜎3)𝐼∗
𝐷

𝛾1(𝜇3 + 𝛾3)𝜇3
+

𝜃3
𝜇3

, 𝐸∗
𝐹
=

(
𝜇2 + 𝜎2

)
𝐼∗

𝐹

𝛾
,

𝐼∗
𝐹
=

𝛾 𝐸∗
𝐹

𝜇2 + 𝜎2
, 𝑆∗

𝐹
=

𝜃2
𝜇2

−

(
𝜇2 + 𝛾

)(
𝜇2 + 𝜎2

)
𝐼∗

𝐹

𝛾 𝜇
, 𝑀∗ =

𝜈3𝐼
∗
𝐷
+ 𝜈2𝐼

∗
𝐹
+ 𝜈1𝐼

∗
𝐻

𝜇4
,

⎫⎪⎪⎬⎪⎪⎭
where

𝜃2 =
(𝜇2 + 𝛾)𝜇2(1 + (𝑅0 − 1))(1 + 𝜌1)𝜇3(𝜇2 + 𝜎2)

(
(1 + 𝜌2)(𝜇3 + 𝜎3)(𝜇3 + 𝛾1 + 𝛾2)(1 + (𝑅0 − 1)) − 𝜃3𝜓2𝛾1

)(
𝜇3(1 + 𝜌2)(1 + 𝜌1)(𝜇3 + 𝜎3)(𝜇3 + 𝛾1 + 𝛾2)(1 + (𝑅0 − 1)) − 𝜃3𝛾1(𝜓2(1 + 𝜌1)𝜇3 +𝜓1(1 + 𝜌2))

)
𝛾𝜅1

,

𝜃3 =
(
−𝜇2(𝜇2 + 𝜎2)(𝜇2 + 𝛾)(1 + (𝑅0 − 1)) + 𝛾𝜅1𝜃2

)
(1 + (𝑅0 − 1))(1 + 𝜌1)𝜇3(1 + 𝜌2)(𝜇3 + 𝜎3)(𝜇3 + 𝛾1 + 𝛾2)((

−𝜇2(𝜇2 + 𝜎2)(𝜇2 + 𝛾)(1 + (𝑅0 − 1)) + 𝛾𝜅1𝜃2
)
(1 + 𝜌1)𝜓2𝜇3 + 𝛾𝜅1𝜃2𝜓1(1 + 𝜌2)

)
𝛾1

.

⎫⎪⎪⎬⎪⎪⎭
The endemic equilibrium point of the rabies disease persists when 𝐼𝐻 , 𝐼𝐹 , 𝐼𝐷, 𝑀 > 0 and 0 ≥ 1, as summarized in Theorem 3.

Theorem 3. The system model (5) has a unique endemic equilibrium if 0 ≥ 1 and 𝐼𝐻 , 𝐼𝐹 , 𝐼𝐷, 𝑀 > 0.

3. Stability analysis

We begin by studying the local stability of the disease free equilibrium (DFE) point (Section 3.1). Then, we investigate its global 
stability (Section 3.2). The stability of the endemic equilibrium is given in Appendix A.

3.1. Local stability of the disease free equilibrium point

We prove local stability of the disease free equilibrium point with the help of the Routh–Hurwitz criterion.

Theorem 4. The DFE point 0 is locally asymptotically stable if 0 < 1 and all eigenvalues of the Jacobian matrix 
(
𝐽
(0)) evaluated 

at 0 have negative real parts.

Proof. We need to show that all the eigenvalues of the matrix 𝐽
(0) in equation (36) of the model system (5) at the DFE point have 

negative real parts. Subsequently, since the endemic equilibrium exists if, and only if, 0 < 1, we utilize the Jacobian matrix at the ( )

10

disease-free state 𝐽 0 , which is expressed as



Heliyon 10 (2024) e32012M. Charles, V.G. Masanja, D.F.M. Torres et al.

𝐽
(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝜇1 0 0 0 0 0 −
𝜏1𝜃1
𝜇1

0 0 − 𝜏2𝜃1
𝜇1

0 0

0 −𝑎1 0 0 0 0
𝜏1𝜃1
𝜇1

0 0
𝜏2𝜃1
𝜇1

0 0

0 𝛽1 −𝑎2 0 0 0 0 0 0 0 0 0

0 𝛽2 0 −𝑎3 0 0 0 0 0 0 0 0

0 0 0 0 −𝜇2 0 −
𝜅1𝜃2
𝜇2

0 0 − 𝜅2𝜃2
𝜇2

0 0

0 0 0 0 0 −𝑎4
𝜅1𝜃2
𝜇2

0 0
𝜅2𝜃2
𝜇2

0 0

0 0 0 0 0 𝛾 −𝑎5 0 0 0 0 0

0 0 0 0 0 0 −
𝜓1𝜃3

𝜇3
(
1 + 𝜌1

) −𝜇3 0 −
𝜓2𝜃3

𝜇3
(
1 + 𝜌2

) 𝛾3 0

0 0 0 0 0 0
𝜓1𝜃3

𝜇3
(
1 + 𝜌1

) 0 −𝑎6
𝜓2𝜃3

𝜇3
(
1 + 𝜌1

) 0 0

0 0 0 0 0 0 0 0 𝛾 −𝑎7 0 0

0 0 0 0 0 0 0 0 𝛾2 0 −𝑎8 0

0 0 𝜈1 0 0 0 𝜈2 0 0 𝜈3 0 −𝜇4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)

where

𝑎1 = 𝜇1 + 𝛽1 + 𝛽2, 𝑎2 = 𝜇1 + 𝜎1, 𝑎3 = 𝜇3 + 𝛽3, 𝑎4 = 𝜇2 + 𝛾,

𝑎5 = 𝜇2 + 𝜎2, 𝑎6 = 𝜇3 + 𝛾1 + 𝛾2, 𝑎7 = 𝜇3 + 𝜎3, 𝑎8 = 𝜇3 + 𝛾3.

The first, fourth, fifth, eighth, and twelfth columns of the matrix (𝐽 (0)) in equation (36) contain the diagonal terms. It is obvious 
from the eigenvalues 𝜆1 = −𝜇1, 𝜆2 = −𝑎3, 𝜆3 = −𝜇2, 𝜆4 = −𝜇3, and 𝜆5 = −𝜇4, respectively. Thus, the matrix 

(
𝐽 (0)) reduces to

𝐽
(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑎1 0 0 𝜏1𝜃1
𝜇1

0 𝜏2𝜃1
𝜇1

0

𝛽1 −𝑎2 0 0 0 0 0

0 0 −𝑎4
𝜅1𝜃2
𝜇2

0 𝜅2𝜃2
𝜇2

0

0 0 𝛾 −𝑎5 0 0 0

0 0 0 𝜓1𝜃3
𝜇3

(
1+𝜌1

) −𝑎6
𝜓2𝜃3

𝜇3
(
1+𝜌1

) 0

0 0 0 0 𝛾 −𝑎7 0

0 0 0 0 𝛾2 0 −𝑎8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

Again, the second and seventh columns of the matrix (𝐽 (0)) in (37) contain the diagonal terms. It is obvious from the eigenvalues 
𝜆6 = −𝑎2 and 𝜆7 = −𝑎8. Thus, the matrix 

(
𝐽 (0)) reduces to

𝐽
(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑎1 0 𝜏1𝜃1
𝜇1

0 𝜏2𝜃1
𝜇1

0 −𝑎4
𝜅1𝜃2
𝜇2

0 𝜅2𝜃2
𝜇2

0 𝛾 −𝑎5 0 0

0 0 𝜓1𝜃3
𝜇3

(
1+𝜌1

) −𝑎6
𝜓2𝜃3

𝜇3
(
1+𝜌1

)
0 0 0 𝛾 −𝑎7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (38)

Again, the first column of the matrix 
(
𝐽 (0)) in equation (38) contains the diagonal term, and it is obvious from eigenvalues ( )
11

𝜆8 = −𝑎1. Thus, the matrix 𝐽 (0) reduces to
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𝐽
(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−𝑎4
𝜅1𝜃2
𝜇2

0 𝜅2𝜃2
𝜇2

𝛾 −𝑎5 0 0

0 𝜓1𝜃3
𝜇3

(
1+𝜌1

) −𝑎6
𝜓2𝜃3

𝜇3
(
1+𝜌1

)
0 0 𝛾 −𝑎7

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (39)

Computing the eigenvalues of the given matrix 𝐽 (0) in equation (39) involves solving the characteristic polynomial equation

𝑃 (𝜆) = det(𝐽 (0) − 𝜆𝐼) = 0,

where 𝐼 is the identity matrix and 𝜆 represents the eigenvalues. Thus,

𝜆4 +𝐶1𝜆
3 +𝐶2𝜆

2 +𝐶3𝜆+𝐶 = 0. (40)

Equations (36), (37), and (38) evidence that 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7, and 𝜆8 exhibit negative real parts. By applying the Routh–

Hurwitz criterion, the other four eigenvalues of the matrix equation (39) will also have negative real parts if all coefficients in 
equation (40) are greater than zero. Then,

⎧⎪⎪⎨⎪⎪⎩

𝐶1 = 𝑎7 + 𝑎6 + 𝑎5 + 𝑎4 > 0,

𝐶2 = −𝛾 𝑏1 − 𝛾 𝑏4 + 𝑎5𝑎4 + 𝑎6𝑎4 + 𝑎7𝑎4 + 𝑎6𝑎5 + 𝑎7𝑎5 + 𝑎7𝑎6 > 0,

𝐶3 =
(
(𝑎6 + 𝑎7)𝑎5 − 𝛾 𝑏4 + 𝑎7𝑎6

)
𝑎4 +

(
−𝛾 𝑏4 + 𝑎7𝑎6

)
𝑎5 − 𝛾 𝑏1(𝑎6 + 𝑎7) > 0,

𝐶 = 𝛾2𝑏1𝑏4 − 𝛾2𝑏2𝑏3 − 𝛾𝑎4𝑎5𝑏4 − 𝛾𝑎6𝑎7𝑏1 + 𝑎4𝑎5𝑎6𝑎7 > 0,

where

⎧⎪⎪⎨⎪⎪⎩
𝑏1 =

𝜅1𝜃2
𝜇2

, 𝑏2 =
𝜓1𝜃3

𝜇3(1 + 𝜌1)
,

𝑏3 =
𝜅2𝜃2
𝜇2

, 𝑏4 =
𝜓2𝜃3

𝜇3(1 + 𝜌1)
.

Since all eigenvalues of the Jacobian matrix
(
𝐽
(0)) evaluated at 0 have negative real parts, the model system (5) at the 0 is 

locally asymptotically stable if 0 < 1. □

3.2. Global stability of the DFE point

We prove the global stability of the DFE point 0 of the rabies model (5) using the theorem described by [38]. To apply the 
theorem, we write the model system (5) as

𝑑𝑌𝑠

𝑑𝑡
= 𝐺0

(
𝑌𝑠 − 𝑌

(0))+𝐺1𝑌𝑖,

𝑑𝑌𝑖

𝑑𝑡
= 𝐺2𝑌𝑖,

⎫⎪⎪⎬⎪⎪⎭
where 𝑌𝑠 is the vector representing the compartments that do not transmit the rabies disease, and 𝑌𝑖 symbolizes the rabies-

transmitting vector compartments. In the case of 𝐺2, if 𝐺2 is a Metzler matrix (i.e., the off-diagonal entries of 𝐺2 are non-negative), 
and 𝐺0 has real negative eigenvalues, the rabies-free equilibrium is globally asymptotically stable. Based on the model system (5), 
we have 𝑌𝑠 =

(
𝑆𝐻 ,𝑅𝐻 ,𝑆𝐹 ,𝑆𝐷 ,𝑅𝐷

)𝑇
, 𝑌𝑖 =

(
𝐸𝐻 ,𝐼𝐻 ,𝐸𝐹 , 𝐼𝐹 ,𝐸𝐷 , 𝐼𝐷 ,𝑀

)𝑇
and

𝑌𝑠 − 𝑌
(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜

𝑆𝐻 −
𝜃1
𝜇1

𝑅𝐻

𝑆𝐹 −
𝜃2
𝜇2

𝑆𝐷 −
𝜃3
𝜇3

⎞⎟⎟⎟⎟⎟⎟⎟⎟
,

12

⎜⎝ 𝑅𝐷
⎟⎠
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𝐺0 =

⎛⎜⎜⎜⎜⎜⎝

−𝜇 𝛽3 0 0 0
0 −

(
𝛽3 + 𝜇1

)
0 0 0

0 0 −𝜇2 0 0
0 0 0 −𝜇3 𝛾3
0 0 0 0 −

(
𝜇3 + 𝛾3

)
⎞⎟⎟⎟⎟⎟⎠
.

The eigenvalues of the matrix 𝐺0 are 𝜆1 = 𝜇3, 𝜆2 = 𝜇2, 𝜆3 = 𝜇1, 𝜆4 = − 
(
𝜇3 + 𝛾3

)
, 𝜆5 = − 

(
𝛽3 + 𝜇1

)
, while

𝐺1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
𝜏1𝜃1
𝜇1

0
𝜏2𝜃1
𝜇1

0

𝛽2 0 0 0 0 0 0

0 0 0 𝜅1𝜃2
𝜇2

0
𝜅2𝜃2
𝜇2

0

0 0 0
𝜓1𝜃3

𝜇3
(
1 + 𝜌1

) 0
𝜓2𝜃3

𝜇3
(
1 + 𝜌2

) 0

0 0 0 0 𝛾2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

𝐺2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝜇1 − 𝛽1 − 𝛽2 0 0 𝜏1𝜃1
𝜇1

0 𝜏2𝜃1
𝜇1

0

𝛽1 −𝜎1 − 𝜇1 0 0 0 0 0

0 0 −𝜇2 − 𝛾
𝜅1𝜃2
𝜇2

0 𝜅1𝜃2
𝜇2

0

0 0 𝛾 −𝜇2 − 𝜎2 0 0 0

0 0 0 𝜓1𝜃3
𝜇3

(
1+𝜌1

) −𝜇3 − 𝛾1 − 𝛾2
𝜓2𝜃3

𝜇3
(
1+𝜌1

) 0

0 0 0 0 𝛾 −𝜇3 − 𝜎3 0

0 𝜈1 0 𝜈2 0 𝜈3 −𝜇4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the eigenvalues of the 𝐺0 are negative and the off-diagonal entries of the Metzler matrix 𝐺2 are non-negative, then the rabies 
DFE point is globally asymptotically stable.

4. Model fitting and parameter estimation

After conducting model analysis of the dynamics and qualitative outcomes of the rabies model, it is essential to accurately 
determine the model’s parameters for making quantitative predictions within a limited time frame using real-world data [39]. In this 
study, we employed the non-linear least squares method (NLSM) to estimate the parameters of model equation (5). To achieve this, 
we generated synthetic data that represented the expected disease spread patterns at various time points, denoted as 𝑡𝑖 [40]. These 
patterns were computed by numerically solving equation (5) with a fifth-order Runge–Kutta method in the MATLAB environment, 
initializing the parameters with values from literature denoted as Θ𝑖 and initial condition for the number of 𝑆𝐻 (0) = 142000, 
𝐸𝐻 (0) = 40, 𝐼𝐻 (0) = 0, 𝑅𝐻 (0) = 0, 𝑆𝐷 (0) = 15000, 𝐸𝐷 (0) = 25, 𝐼𝐷 (0) = 0, 𝑅𝐷 (0) = 0, 𝑆𝐹 (0) = 12500, 𝐸𝐹 (0) = 20, 𝐼𝐹 (0) = 0, and 
𝑀 (0) = 90. In order to generate the rabies dataset 𝑅𝐷

(
𝑡𝑖 Θ𝑖

)
we added random Gaussian noise 𝜂𝑖

(
𝑡𝑖 Θ𝑖

)
measurements to the data, 

simulating real-world dynamics where measurement errors are common. Thus the observed/actual dependent data were given as

𝑌𝑖 = 𝑅𝐷
(
𝑡𝑖 Θ𝑖

)
+ 𝜂𝑖

(
𝑡𝑖 Θ𝑖

)
for each time 𝑡𝑖 ∈ [1, 𝑛].

The parameter values 𝑌 𝑌 of Table 2 were determined by minimizing the sum of squared residuals expressed as

𝑌 𝑌 (Θ) = min
𝑛∑

𝑘=1
(𝑌𝑖 − 𝑌 )2

between the model solutions (𝑌 ) obtained through solving the rabies (5) model using the real parameters from the generated data 
and the synthetic data (𝑌𝑖) generated by introducing random Gaussian noise to the model output 𝑅𝐷

(
𝑡𝑖 Θ𝑖

)
[39]. The estimated 

parameter values were then used to fit the data (𝑌𝑖), and the resulting best fits are depicted in Fig. 2(a)–(d) and the resulting estimated 
parameters given in Table 2.

5. Numerical simulations

In this section, we employed the ode45 method available in MATLAB software to numerically solve a model system (5) using 
13

parameters presented in Table 2 along with the initial conditions 𝑆𝐻 (0) = 142000, 𝐸𝐻 (0) = 40, 𝐼𝐻 (0) = 0, 𝑅𝐻 (0) = 0, 𝑆𝐷 (0) =
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Table 2

Model parameters, their description and values.

Parameters Description Value (Year−1) Source

𝜃1 Recruitment rate 𝑆𝐻 2000 (Estimated)

𝜏1 The rate that 𝑆𝐻 gets infection from 𝐼𝐹 0.0004 [10]

𝜏2 The rate that 𝑆𝐻 gets infection from 𝐼𝐷 0.0004 [10]

𝜏3 The rate that 𝑆𝐻 gets infection from 𝑀 [0.0003 0.0100] (Estimated)

𝛽1 Progression rate out of 𝐸𝐻 to 𝐼𝐻
1
6

[10,32]

𝛽2 Recovery rate of 𝐸𝐻 [0.54 1] [12,32]

𝛽3 Rate of immunity loss of humans 1 (Estimated)

𝜇1 Natural death rate of humans 0.0142 [34,35]

𝜎1 Disease induced death rate for 𝐼𝐻 1 [12,32]

𝜃2 Recruitment rate of free-range dogs 1000 (Estimated)

𝜅1 The rate that 𝑆𝐹 gets infection from 𝐼𝐹 0.00006 (Estimated)

𝜅2 The rate that 𝑆𝐹 gets infection from 𝐼𝐷 0.00005 (Estimated)

𝜅3 The rate that 𝑆𝐹 gets infection from 𝑀 [0.00001 0.00003] (Estimated)

𝛾 The rate that 𝑆𝐹 gets infection from 𝐼𝐹
1
6

[10,12,32]

𝜎2 Disease induced death rate of 𝐼𝐹 0.09 [32,36]

𝜇2 Natural mortality rate of free-range dogs 0.067 (Estimated)

𝜃3 Recruitment rate of domestic dog population 1200 (Estimated)

𝜓1 The rate that 𝑆𝐷 gets infection from 𝐼𝐷 0.0004 [24,36]

𝜓2 The rate that 𝑆𝐷 gets infection from 𝐼𝐹 0.0004 [7]

𝜓3 The rate that 𝑆𝐷 gets infection from 𝑀 0.0003 (Estimated)

𝜇3 Natural death rate for domestic dog population 0.067 (Estimated)

𝜎3 Disease induced death rate for 𝐼𝐷 0.08 [32]

𝛾1 The rate at which 𝐸𝐷 becomes 𝐼𝐷
1
6

[10,32]

𝛾2 Recovery rate of 𝐸𝐷 0.09 [32]

𝛾3 Rate of loss of temporary immunity for 𝑅𝐷 0.05 (Estimated)

𝜈1 Environmental virus shedding rate from 𝐼𝐻 0.001 (Estimated)

𝜈2 Environmental virus shedding rate from 𝐼𝐹 0.006 (Estimated)

𝜈3 Environmental virus shedding rate from 𝐼𝐷 0.001 (Estimated)

𝜇4 Natural removal rate of rabies from the environment 0.08 (Estimated)

𝜌1 The deterrent coefficient of domestic dog from 𝐼𝐹 10 [37]

𝜌2 The deterrent coefficient of domestic dog from 𝐼𝐷 8 (Estimated)

𝜌3 The deterrent coefficient of domestic dog from 𝑀 15 (Estimated)

𝐶 Concentration of rabies in the environment 0.003 (PFU)/mL (Estimated)

15000, 𝐸𝐷 (0) = 25, 𝐼𝐷 (0) = 0, 𝑅𝐷 (0) = 0, 𝑆𝐹 (0) = 12500, 𝐸𝐹 (0) = 20, 𝐼𝐹 (0) = 0, and 𝑀 (0) = 90. The objective is to illustrate the 
analytical findings discussed in earlier sections.

5.1. Impact of the periodic infection rate on the occurrence of rabies outbreaks

The periodic effect of rabies on bite incidence describes the cyclic variation in the number of dog bites within a population due 
to recurrent outbreaks of rabies in dogs [41]. These outbreaks stem from the viral infection’s influence on dog behavior, causing 
increased aggression and a propensity to bite. This cyclic pattern arises as rabies outbreaks occur intermittently, influenced by 
factors like seasonal fluctuations, vaccination efforts, and animal movement. To investigate on the effect of periodic infection for bite 
incidence, we employed the formula described as

Bite Incidence(t) = 𝛽mean (1 +𝐴sin(2𝜋f +𝜙))SI, (41)

where 𝛽mean is the infection rate, 𝐴 is the amplitude,

f = 𝑡

period of control of outbreak
= 𝑡

𝑇
is the frequency of sinusoidal variation, and 𝜙 is the phase shift of 𝑆, 𝐼 .

Therefore, to incorporate and unify the changing dynamics of rabies, transmission rates 𝜏1, 𝜏2, 𝜏3, 𝜓1, 𝜓2, 𝜓3, 𝜅1, 𝜅2, 𝜅3, 𝜈1, 𝜈2 and 
𝜈3, as applied by [42], are considered as

𝜏𝑖 = 𝜏(mean)

(
1 + A𝑖sin

(2𝜋t

T
+ 𝜙

))
, 𝜓𝑖 = 𝜓(mean)

(
1 + A𝑖sin

(2𝜋t

T
+ 𝜙

))
,

𝜅𝑖 = 𝜅(mean)

(
1 + A𝑖sin

(2𝜋t

T
+𝜙

))
, 𝜈𝑖 = 𝜈(mean)

(
1 + A𝑖sin

(2𝜋t

T
+ 𝜙

))
,

for 𝑖 = 1, 2 and 3.

The results of bite incidence are presented in Fig. 3(a)–(b), Fig. 4(a)–(b), Fig. 5(a)–(b), and Fig. 6(a)–(b).

Fig. 3(a)–(b), Fig. 4(a)–(b), and Fig. 5(a)–(b) illustrate that an increase in bite incidents leads to a rise in the number of exposed 
and infected individuals while reducing the number of susceptible individuals in both human and dog populations. Furthermore, all 
14

these figures demonstrate that the rabies outbreak, driven by a higher infection rate, remains active within the first 20 years and, 
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Fig. 2. Scatter estimated with standard deviation of 0.05 and numerical simulation (sold) with confidence interval of 95%.
15

Fig. 3. The impact of human population bite incidence on the occurrence of periodic rabies outbreaks.



Heliyon 10 (2024) e32012M. Charles, V.G. Masanja, D.F.M. Torres et al.

Fig. 4. The impact of free range dogs bite incidence on the occurrence of periodic rabies outbreaks.

Fig. 5. The impact of domestic dogs bite incidence on the occurrence of periodic rabies outbreaks.

subsequently, exhibits periodic declines. This decline in the number of infections is attributed to the decrease in the infection rate 
in both populations. On the other hand, Fig. 6(a)–(b) shows that an increase in the rate of shedding into the environment results 
in periodic rises in rabies contamination within the environment. These scenarios highlight the significance of effective vaccination 
campaigns, responsible pet ownership, and timely post-exposure prophylaxis for individuals who have been bitten. These measures 
are essential for managing the public health impact of this periodic phenomenon, underscoring the importance of rabies control 
strategies.

The results presented in Fig. 7(a)–(b) demonstrate that the parameters 𝜓1, 𝜓2, 𝜅1, and 𝜅2 have a positive impact on the basic 
reproductive number, 0. The study reveals that changes in these parameters generate varying effects on 0, ranging from 1.8 to 
2.0 and 1.2 to 2.4, respectively. These findings support the estimates provided by [18] and suggest that intervention strategies can 
have a significant impact on the incidence of rabies in a given population. Furthermore, the parameter values outlined in Table 2

indicate that increasing 𝜅1, 𝜅2, 𝜓1, and 𝜓2 corresponds to an increase in 0.

5.2. Effect of varying the most sensitive parameters

Now we investigate the impact of the contact rate between infectious agent and: (i) susceptible human; (ii) susceptible domestic 
16

dogs; and (iii) free range dogs.
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Fig. 6. The impact of environment shedding incidence on the occurrence of periodic rabies outbreaks.

Fig. 7. Effect of 0 with respect to 𝜅1 , 𝜅2 , 𝜓1 , and 𝜓2 .

5.2.1. Impact of contact rate between infectious agent and susceptible human

The findings presented in Fig. 8(a)–(c) demonstrate that the contact rates 𝜏1, 𝜏2, and 𝜏3 exert a significant influence on the 
transmission dynamics among susceptible humans, infected free-range and domestic dogs, and the environment. Nevertheless, it is 
noted that these dynamics ultimately reach a stable state after 80 years. This underscores the crucial role of education and awareness 
in mitigating the transmission of rabies among the human population by reducing contact between susceptible humans and sources 
carrying the rabies virus.

5.2.2. Impact of contact rate between infectious agent and susceptible domestic dogs

The findings presented in Fig. 9(a)–(c) reveal that an increase in contact rates, denoted as 𝜓1, 𝜓2, and 𝜓3, results in a higher 
prevalence of rabies in domestic dogs. After approximately 50 years, the number of infected dogs reaches a steady state, implying 
that mitigating the contact between susceptible, infected, and free-range dogs and the environment carrying the rabies virus is critical 
to reduce the transmission of the disease.

5.2.3. Impact of contact rate between infectious agent and free range dogs

Fig. 10(a) presents the finding that an increase in the contact rate 𝜅1 results in a higher number of susceptible free-range dogs 
becoming infected, which suggests an inadequacy of control measures. Conversely, Fig. 10(b) portrays that a rise in the contact rate 
𝜅2 with free-range dogs leads to an increase in carriers and symptomatic infections. In addition, Fig. 10(c) indicates that an increase 
in the contact rate 𝜅3 between free-range dogs and the environment yields a slight upsurge in the number of infectious individuals 
17

or carriers.
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Fig. 8. Simulation results of model (5) for 𝐼𝐻 with respect to 𝜏1 , 𝜏2 , and 𝜏3 .

6. Discussion

Rabies is a fatal viral disease that can easily spread from an infected animal to a human, making it a significant public health 
concern worldwide. Dogs are the primary reservoir and transmitter of rabies to humans, causing most human cases. To understand 
the transmission dynamics of rabies and develop effective prevention and control strategies, a study was conducted. The study aimed 
to create a deterministic model to investigate how changes in contact rates and environmental conditions impact the spread of 
rabies. Mathematical tools such as Jacobian and Metzler matrices were used to conduct stability analyses and uncover the underlying 
dynamics of rabies transmission. The study also aimed to determine the relationship between contact rates, environmental factors, 
and the basic reproduction number 0, which is a crucial indicator of disease spread. By gaining insights into the complex dynamics 
of rabies transmission, the study hopes to contribute to the development of targeted and sustainable strategies for its prevention and 
control.

7. Conclusion

The transmission of rabies among humans and dogs is influenced by their contact rate and environmental factors. A deterministic 
model was created to investigate how these factors affect the spread of rabies that results from dog bites. Stability analysis was 
conducted using Jacobian and Metzler matrices. The study’s numerical simulations showed that the transmission of rabies from dog 
bites has serious consequences for both human and dog populations. Furthermore, the study found that an increase in the contact 
18

rate (such as 𝜓1, 𝜓2, 𝜓3, 𝜅1, 𝜅1, and 𝜅3) leads to a rise in the basic reproduction number 0. By examining the relationship between 
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Fig. 9. Simulation results of model (5) for 𝐼𝐷 with respect to 𝜓1 , 𝜓2 , and 𝜓3 .

contact rate, environmental impact, and the transmission dynamics of rabies, this study provides insights into the complexity of 
rabies transmission. Ultimately, it contributes to the development of targeted, sustainable strategies for preventing and controlling 
the spread of rabies.
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Fig. 10. Simulation results of model (5) for 𝐼𝐹 with respect to 𝜏1 , 𝜏2 , and 𝜏3 .

Data availability

The data used in this study is available from the corresponding author upon request.

Acknowledgements

The authors thank the handling editor and reviewer for helpful suggestions that improved this paper’s quality. We acknowledge 
The Nelson Mandela African Institution of Science and Technology (NM-AIST) and the College of Business Education (CBE) for 
providing a conducive environment.

Appendix A. Global stability of the endemic equilibrium 𝔼∗

Here we prove the global stability of the endemic equilibrium characterized in Section 2.3.

Theorem 5. The endemic equilibrium point 𝔼∗ of the rabies model (5) is globally asymptotically stable whenever 0 ≥ 1.

Proof. To prove Theorem 5, we adopt the approach of [19,43,44] by constructing a Lyapunov function of the form

𝑛∑ (
∗ ∗

(
𝑦∗

𝑖

))

20

 =
𝑖=1

𝐺𝑖 𝑦𝑖 − 𝑦
𝑖
+ 𝑦

𝑖
ln

𝑦𝑖

,𝐺𝑖 > 0 for 𝑖 = 1,2,3,… , 𝑛,
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where 𝐺𝑖 represents a positive constant that needs to be determined, 𝑦𝑖 stands for the population variable at compartment 𝑖, and 𝑦∗
𝑖

denotes the equilibrium point of the rabies model at compartment 𝑖 for 𝑖 ∈ {1, 2, 3, … , 12}. Therefore, we define the Lyapunov  for 
model system (5) as follows:

 = 𝐺1

(
𝑆𝐻 −𝑆∗

𝐻
+ 𝑆𝐻 ln

(
𝑆∗

𝐻

𝑆𝐻

))
+𝐺2

(
𝐸𝐻 −𝐸∗

𝐻
+𝐸𝐻 ln

(
𝐸∗

𝐻

𝐸𝐻

))
+𝐺3

(
𝐼𝐻 − 𝐼∗

𝐻
+ 𝐼𝐻 ln

(
𝐼∗
𝐻

𝐼𝐻

))
+𝐺4

(
𝑅𝐻 −𝑅∗

𝐻
+𝑅𝐻 ln

(
𝑅∗

𝐻

𝑅𝐻

))
+𝐺5

(
𝑆𝐹 − 𝑆∗

𝐹
+ 𝑆𝐹 ln

(
𝑆∗

𝐹

𝑆𝐹

))
+𝐺6

(
𝐸𝐹 −𝐸∗

𝐹
+𝐸𝐹 ln

(
𝐸∗

𝐹

𝐸𝐹

))
+𝐺7

(
𝐼𝐹 − 𝐼∗

𝐹
+ 𝐼𝐹 ln

(
𝐼∗
𝐹

𝐼𝐹

))
+𝐺8

(
𝑆𝐷 − 𝑆∗

𝐷
+𝑆𝐷 ln

(
𝑆∗

𝐷

𝑆𝐷

))
+𝐺9

(
𝐸𝐷 −𝐸∗

𝐷
+𝐸𝐷 ln

(
𝐸∗

𝐷

𝐸𝐷

))
+𝐺10

(
𝐼𝐷 − 𝐼∗

𝐷
+ 𝐼𝐷 ln

(
𝐼∗
𝐷

𝐼𝐷

))
+𝐺11

(
𝑅𝐷 −𝑅∗

𝐷
+𝑅𝐷 ln

(
𝑅∗

𝐷

𝑅𝐷

))
+𝐺12

(
𝑀 −𝑀∗ +𝑀 ln

(
𝑀∗

𝑀

))
.

(42)

Evaluating equation (42) at the endemic equilibrium point 𝔼∗ gives

 = 𝔼∗ (𝑆∗
𝐻

,𝐸∗
𝐻

,𝐼∗
𝐻

,𝑅∗
𝐻

,𝑆∗
𝐹

,𝐸∗
𝐹

, 𝐼∗
𝐹

,𝑆∗
𝐷

,𝐸∗
𝐷

, 𝐼∗
𝐷

,𝑅∗
𝐷

,𝑀∗) = 0.

Then, using the time derivative of the Lyapunov function  in equation (42) gives

𝑑
𝑑𝑡

= 𝐺1

(
1 −

𝑆∗
𝐻

𝑆𝐻

)
𝑑𝑆𝐻

𝑑𝑡
+𝐺2

(
1 −

𝐸∗
𝐻

𝐸𝐻

)
𝑑𝐸𝐻

𝑑𝑡
+𝐺3

(
1 −

𝐼∗
𝐻

𝐼𝐻

)
𝑑𝐼𝐻

𝑑𝑡
+𝐺4

(
1 −

𝑅∗
𝐻

𝑅𝐻

)
𝑑𝑅𝐻

𝑑𝑡

+𝐺5

(
1 −

𝑆∗
𝐹

𝑆𝐹

)
𝑑𝑆𝐹

𝑑𝑡
+𝐺6

(
1 −

𝐸∗
𝐹

𝐸𝐹

)
𝑑𝐸𝐹

𝑑𝑡
+𝐺7

(
1 −

𝐼∗
𝐹

𝐼𝐹

)
𝑑𝐼𝐹

𝑑𝑡
+𝐺8

(
1 −

𝑆∗
𝐷

𝑆𝐷

)
𝑑𝑆𝐷

𝑑𝑡

+𝐺9

(
1 −

𝐸∗
𝐷

𝐸𝐷

)
𝑑𝐸𝐷

𝑑𝑡
+𝐺10

(
1 −

𝐼∗
𝐷

𝐼𝐷

)
𝑑𝐼𝐷

𝑑𝑡
+𝐺11

(
1 −

𝑅∗
𝐷

𝑅𝐷

)
𝑑𝑅𝐷

𝑑𝑡
+𝐺12

(
1 − 𝑀∗

𝑀

)
𝑑𝑀

𝑑𝑡
.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(43)

Consider the endemic equilibrium point (𝐸𝐸𝑃 ) , 𝔼∗ of equation (5) such that

𝜃1 =
(
𝜏1𝐼

∗
𝐹
+ 𝜏2𝐼

∗
𝐷
+ 𝜏3𝜆 (𝑀∗)

)
𝑆∗

𝐻
+ 𝜇1𝑆

∗
𝐻
− 𝛽3𝑅

∗
𝐻

, 𝜇1 + 𝛽1 + 𝛽2 =

(
𝜏1𝐼

∗
𝐹
+ 𝜏2𝐼

∗
𝐷
+ 𝜏3𝜆 (𝑀∗)

)
𝑆∗

𝐻

𝐸∗
𝐻

,

𝜎1 + 𝜇1 =
𝛽1𝐸

∗
𝐻

𝐼∗
𝐻

, 𝛽3 + 𝜇1 =
𝛽2𝐸

∗
𝐻

𝑅∗
𝐻

, 𝜃2 =
(
𝜅1𝐼

∗
𝐹
+ 𝜅2𝐼

∗
𝐷
+ 𝜅3𝜆 (𝑀∗)

)
𝑆∗

𝐹
+ 𝜇2𝑆𝐹 ,

𝜇2 + 𝛾 =

(
𝜅1𝐼

∗
𝐹
+ 𝜅2𝐼

∗
𝐷
+ 𝜏3𝜆 (𝑀∗)

)
𝑆∗

𝐹

𝐸∗
𝐹

, 𝜎2 + 𝜇2 =
𝛾𝐸∗

𝐹

𝐼∗
𝐹

,

𝜃3 =
(

𝜓1𝐼
∗
𝐹

1 + 𝜌1
+

𝜓2𝐼
∗
𝐷

1 + 𝜌2

𝜓3𝜆 (𝑀∗)
1 + 𝜌3

)
𝑆∗

𝐷
+ 𝜇3𝑆

∗
𝐷
− 𝛾3𝑅

∗
𝐷

, 𝜇3 + 𝛾1 + 𝛾2 =

(
𝜓1𝐼

∗
𝐹

1 + 𝜌1
+

𝜓2𝐼
∗
𝐷

1 + 𝜌2

𝜓3𝜆 (𝑀∗)
1 + 𝜌3

)
𝑆∗

𝐷

𝐸∗
𝐷

,

𝜎 + 𝜇 =
𝛾1𝐸

∗
𝐷

, 𝛾 + 𝜇 =
𝛾2𝐸

∗
𝐷

, 𝜇 =

(
𝜈1𝐼

∗
𝐻
+ 𝜈2𝐼

∗
𝐹
+ 𝜈3𝐼

∗
𝐷

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪

(44)
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3 3
𝐼∗

𝐷

3 3
𝑅∗

𝐷

4
𝑀∗ ⎪⎭
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Then, by substituting (5) into (43), we have

𝑑
𝑑𝑡

= 𝐺1

(
1 −

𝑆∗
𝐻

𝑆𝐻

)(
𝜃1 + 𝛽3𝑅𝐻 − 𝜇1𝑆𝐻 − 𝜒1

)
+𝐺2

(
1 −

𝐸∗
𝐻

𝐸𝐻

)(
𝜒1 −

(
𝜇1 + 𝛽1 + 𝛽2

)
𝐸𝐻

)
+𝐺3

(
1 −

𝐼∗
𝐻

𝐼𝐻

)(
𝛽1𝐸𝐻 −

(
𝜎1 + 𝜇1

)
𝐼𝐻

)
+𝐺4

(
1 −

𝑅∗
𝐻

𝑅𝐻

)(
𝛽2𝐸𝐻 −

(
𝛽3 + 𝜇1

)
𝑅𝐻

)
+𝐺5

(
1 −

𝑆∗
𝐹

𝑆𝐹

)(
𝜃2 − 𝜒2 − 𝜇2𝑆𝐹

)
+𝐺6

(
1 −

𝐸∗
𝐹

𝐸𝐹

)(
𝜒2 −

(
𝜇2 + 𝛾

)
𝐸𝐹

)
+𝐺7

(
1 −

𝐼∗
𝐹

𝐼𝐹

)(
𝛾𝐸𝐹 −

(
𝜇2 + 𝜎2

)
𝐼𝐹

)
+𝐺8

(
1 −

𝑆∗
𝐷

𝑆𝐷

)(
𝜃3 − 𝜇3𝑆𝐷 − 𝜒3 + 𝛾3𝑅𝐷

)
+𝐺9

(
1 −

𝐸∗
𝐷

𝐸𝐷

)(
𝜒3 −

(
𝜇3 + 𝛾1 + 𝛾2

)
𝐸𝐷

)
+𝐺10

(
1 −

𝐼∗
𝐷

𝐼𝐷

)(
𝛾1𝐸𝐷 −

(
𝜇3 + 𝛿3

)
𝐼𝐷

)
+𝐺11

(
1 −

𝑅∗
𝐷

𝑅𝐷

)(
𝛾2𝐸𝐷 −

(
𝜇3 + 𝛾3

)
𝑅𝐷

)
+𝐺12

(
1 − 𝑀∗

𝑀

)((
𝜈1𝐼𝐻 + 𝜈2𝐼𝐹 + 𝜈3𝐼𝐷

)
− 𝜇4𝑀

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(45)

Using the endemic equilibrium point (𝐸𝐸𝑃 ) described in equation (44), we simplify the equation (45) as

𝑑
𝑑𝑡

= 𝐺1

(
1 −

𝑆∗
𝐻

𝑆𝐻

)((
𝜏1𝐼

∗
𝐹
+ 𝜏2𝐼

∗
𝐷
+ 𝜏3𝜆 (𝑀∗)

)
𝑆∗

𝐻
+ 𝜇1𝑆

∗
𝐻
− 𝛽3𝑅

∗
𝐻
− 𝜇1𝑆𝐻

−
(
𝜏1𝐼𝐹 + 𝜏2𝐼𝐷 + 𝜏3𝜆 (𝑀)

)
𝑆𝐻 + 𝛽3𝑅𝐻

)

+𝐺2

(
1 −

𝐸∗
𝐻

𝐸𝐻

)((
𝜏1𝐼𝐹 + 𝜏2𝐼𝐷 + 𝜏3𝜆 (𝑀)

)
𝑆𝐻 −

(
𝜏1𝐼

∗
𝐹
+ 𝜏2𝐼

∗
𝐷
+ 𝜏3𝜆 (𝑀∗)

)
𝑆∗

𝐻
𝐸𝐻

𝐸∗
𝐻

)

+𝐺3

(
1 −

𝐼∗
𝐻

𝐼𝐻

)(
𝛽1𝐸𝐻 −

𝛽1𝐸
∗
𝐻

𝐼𝐻

𝐼∗
𝐻

)
+𝐺4

(
1 −

𝑅∗
𝐻

𝑅𝐻

)(
𝛽2𝐸𝐻 −

𝛽2𝐸
∗
𝐻

𝑅𝐻

𝑅∗
𝐻

)
+𝐺5

(
1 −

𝑆∗
𝐹

𝑆𝐹

)((
𝜅1𝐼

∗
𝐹
+ 𝜅2𝐼

∗
𝐷
+ 𝜅3𝜆 (𝑀∗)

)
𝑆∗

𝐹
+ 𝜇2𝑆

∗
𝐹
− 𝜇2𝑆𝐹

−
(
𝜅1𝐼𝐹 + 𝜅2𝐼𝐷 + 𝜅3𝜆 (𝑀)

)
𝑆𝐹

)

+𝐺6

(
1 −

𝐸∗
𝐹

𝐸𝐹

)((
𝜅1𝐼𝐹 + 𝜅2𝐼𝐷 + 𝜅3𝜆 (𝑀)

)
𝑆𝐹 −

(
𝜏1𝐼

∗
𝐹
+ 𝜅2𝐼

∗
𝐷
+ 𝜅3𝜆 (𝑀∗)

)
𝑆∗

𝐹
𝐸𝐹

𝐸∗
𝐹

)

+𝐺7

(
1 −

𝐼∗
𝐹

𝐼𝐹

)(
𝛾𝐸𝐹 −

𝛾𝐸∗
𝐹

𝐼𝐹

𝐼∗
𝐹

)
+𝐺8

(
1 −

𝑆∗
𝐷

𝑆𝐷

)((
𝜓1𝐼

∗
𝐹

1 + 𝜌1
+

𝜓2𝐼
∗
𝐷

1 + 𝜌2

𝜓3𝜆 (𝑀∗)
1 + 𝜌3

)
𝑆∗

𝐷
+ 𝜇3𝑆

∗
𝐷
− 𝛾3𝑅

∗
𝐷

−
(

𝜓1𝐼𝐹

1 + 𝜌1
+

𝜓2𝐼𝐷

1 + 𝜌2

𝜓3𝜆 (𝑀)
1 + 𝜌3

)
𝑆𝐷 − 𝜇3𝑆𝐷 + 𝛾3𝑅𝐷

)

+𝐺9

(
1 −

𝐸∗
𝐷

𝐸𝐷

)((
𝜓1𝐼𝐹

1 + 𝜌1
+

𝜓2𝐼𝐷

1 + 𝜌2

𝜓3𝜆 (𝑀)
1 + 𝜌3

)
𝑆𝐷 −

(
𝜓1𝐼

∗
𝐹

1 + 𝜌1
+

𝜓2𝐼
∗
𝐷

1 + 𝜌2

𝜓3𝜆 (𝑀∗)
1 + 𝜌3

)
𝑆∗

𝐷
𝐸𝐷

𝐸∗
𝐷

)

+𝐺10

(
1 −

𝐼∗
𝐷

𝐼𝐷

)(
𝛾1𝐸𝐷 −

𝛾1𝐸
∗
𝐷

𝐼𝐷

𝐼∗
𝐷

)
+𝐺11

(
1 −

𝑅∗
𝐷

𝑅𝐷

)(
𝛾2𝐸𝐷 −

𝛾2𝐸
∗
𝐷

𝑅𝐷

𝑅∗
𝐷

)
+𝐺12

(
1 − 𝑀∗

𝑀

)(
𝜈1𝐼𝐻 + 𝜈2𝐼𝐹 + 𝜈3𝐼𝐷 −

(
𝜈1𝐼

∗
𝐻
+ 𝜈2𝐼

∗
𝐹
+ 𝜈3𝐼

∗
𝐷

)
𝑀

𝑀∗

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(46)
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Then, equation (46) can be expressed as follows:
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𝑑
𝑑𝑡

= −𝐺1𝜇1𝑆𝐻

(
1 −

𝑆∗
𝐻

𝑆𝐻

)2
+𝐺1𝜏1𝑆𝐻𝐼𝐹

(
1 −

𝑆∗
𝐻

𝑆𝐻

)(𝐼∗
𝐹

𝑆∗
𝐻

𝐼𝐹 𝑆𝐻

− 1
)
+𝐺1𝜏2𝑆𝐻𝐼𝐷

(
1 −

𝑆∗
𝐻

𝑆𝐻

)(𝐼∗
𝐷

𝑆∗
𝐻

𝐼𝐷𝑆𝐻

− 1
)

+𝐺1𝜏3𝑆𝐻𝜆 (𝑀)
(
1 −

𝑆∗
𝐻

𝑆𝐻

)(𝜆 (𝑀∗)𝑆∗
𝐻

𝜆 (𝑀)𝑆𝐻

− 1
)
+𝐺1𝛽3𝑅𝐻

(
1 −

𝑆∗
𝐻

𝑆𝐻

)(
1 −

𝑅∗
𝐻

𝑅𝐻

)
+𝐺2𝜏1𝑆𝐻𝐼𝐹

(
1 −

𝐸∗
𝐻

𝐸𝐻

)(
1 −

𝐼∗
𝐹

𝑆∗
𝐻

𝐸𝐻

𝐼𝐹 𝑆𝐻𝐸∗
𝐻

)
+𝐺2𝜏2𝑆𝐻𝐼𝐷

(
1 −

𝐸∗
𝐻

𝐸𝐻

)(
1 −

𝐼∗
𝐷

𝑆∗
𝐻

𝐸𝐻

𝐼𝐷𝑆𝐻𝐸∗
𝐻

)

+𝐺2𝜏3𝑆𝐻𝜆 (𝑀)
(
1 −

𝐸∗
𝐻

𝐸𝐻

)(
1 −

𝜆 (𝑀∗)𝑆∗
𝐻

𝐸𝐻

𝜆 (𝑀)𝑆𝐻𝐸∗
𝐻

)

+𝐺3𝛽1𝐸𝐻

(
1 −

𝐼∗
𝐻

𝐼𝐻

)(
1 −

𝐸∗
𝐻

𝐼𝐻

𝐸𝐻𝐼∗
𝐻

)
+𝐺4𝛽2𝐸𝐻

(
1 −

𝑅∗
𝐻

𝑅𝐻

)(
−

𝐸∗
𝐻

𝑅𝐻

𝐸𝐻𝑅∗
𝐻

)

−𝐺5𝜇2𝑆𝐹

(
1 −

𝑆∗
𝐹

𝑆𝐹

)2
+𝐺5𝜅1𝑆𝐹 𝐼𝐹

(
1 −

𝑆∗
𝐹

𝑆𝐹

)(𝐼∗
𝐹

𝑆∗
𝐹

𝐼𝐹 𝑆𝐹

− 1
)
+𝐺5𝜅2𝑆𝐹 𝐼𝐷

(
1 −

𝑆∗
𝐹

𝑆𝐹

)(𝐼∗
𝐷

𝑆∗
𝐹

𝐼𝐷𝑆𝐹

− 1
)

+𝐺5𝜅3𝑆𝐹 𝜆 (𝑀)
(
1 −

𝑆∗
𝐹

𝑆𝐹

)(𝜆 (𝑀∗)𝑆∗
𝐹

𝜆 (𝑀)𝑆𝐹

− 1
)
+𝐺6𝜅1𝑆𝐹 𝐼𝐹

(
1 −

𝐸∗
𝐹

𝐸𝐹

)(
1 −

𝐼∗
𝐹

𝑆∗
𝐹

𝐸𝐹

𝐼𝐹 𝑆𝐹 𝐸∗
𝐹

)

+𝐺6𝜅2𝑆𝐹 𝐼𝐷

(
1 −

𝐸∗
𝐹

𝐸𝐹

)(
1 −

𝐼∗
𝐷

𝑆∗
𝐹

𝐸𝐹

𝐼𝐷𝑆𝐹 𝐸∗
𝐹

)

+𝐺6𝜅3𝑆𝐹 𝜆 (𝑀)
(
1 −

𝐸∗
𝐹

𝐸𝐹

)(
1 −

𝜆 (𝑀∗)𝑆∗
𝐹

𝐸𝐹

𝜆 (𝑀)𝑆𝐹 𝐸∗
𝐹

)
+𝐺7𝛾𝐸𝐹

(
1 −

𝐼∗
𝐹

𝐼𝐹

)(
1 −

𝐸∗
𝐹

𝐼𝐹

𝐸𝐹 𝐼∗
𝐹

)

−𝐺8𝜇3𝑆𝐷

(
1 −

𝑆∗
𝐷

𝑆𝐷

)2
+

𝜓1𝑆𝐷𝐼𝐹 𝐺8(
1 + 𝜌1

) (
1 −

𝑆∗
𝐷

𝑆𝐷

)(𝐼∗
𝐹

𝑆∗
𝐷

𝐼𝐹 𝑆𝐷

− 1
)
+

𝜓2𝑆𝐷𝐼𝐹 𝐺8(
1 + 𝜌2

) (
1 −

𝑆∗
𝐷

𝑆𝐷

)(𝐼∗
𝐷

𝑆∗
𝐷

𝐼𝐷𝑆𝐷

− 1
)

+
𝜓3𝑆𝐷𝜆 (𝑀)𝐺8(

1 + 𝜌3
) (

1 −
𝑆∗

𝐷

𝑆𝐷

)(𝜆 (𝑀∗)𝑆∗
𝐷

𝜆 (𝑀)𝑆𝐷

− 1
)
+𝐺8𝛾3𝑅𝐷

(
1 −

𝑆∗
𝐷

𝑆𝐷

)(
1 −

𝑅∗
𝐷

𝑅𝐷

)
+

𝜓1𝑆𝐷𝐼𝐹 𝐺9(
1 + 𝜌1

) (
1 −

𝐸∗
𝐷

𝐸𝐷

)(
1 −

𝐼∗
𝐹

𝑆∗
𝐷

𝐸𝐷

𝐼𝐹 𝑆𝐷𝐸∗
𝐷

)
+

𝜓2𝑆𝐷𝐼𝐹 𝐺9(
1 + 𝜌2

) (
1 −

𝐸∗
𝐷

𝐸𝐷

)(
1 −

𝐼∗
𝐷

𝑆∗
𝐷

𝐸𝐷

𝐼𝐷𝑆𝐷𝐸∗
𝐷

)

+
𝜓3𝑆𝐷𝐼𝐹 𝐺9(

1 + 𝜌3
) (

1 −
𝐸∗

𝐷

𝐸𝐷

)(
1 −

𝜆 (𝑀∗)𝑆∗
𝐷

𝐸𝐷

𝜆 (𝑀)𝑆𝐷𝐸∗
𝐷

)

+𝐺10𝛾1𝐸𝐷

(
1 −

𝐼∗
𝐷

𝐼𝐷

)(
1 −

𝐸∗
𝐷

𝐼𝐷

𝐸𝐷𝐼∗
𝐷

)
+𝐺11𝛾2𝐸𝐷

(
1 −

𝑅∗
𝐷

𝑅𝐷

)(
−

𝐸∗
𝐷

𝑅𝐷

𝐸𝐷𝑅∗
𝐷

)
+𝐺12𝜈1𝐼𝐻

(
1 − 𝑀∗

𝑀

)(
1 −

𝐼∗
𝐻

𝑀

𝐼𝐻 𝑀∗

)
+𝐺12𝜈2𝐼𝐹

(
1 − 𝑀∗

𝑀

)(
1 −

𝐼∗
𝐹

𝑀

𝐼𝐹 𝑀∗

)
+𝐺12𝜈3𝐼𝐷

(
1 − 𝑀∗

𝑀

)(
1 −

𝐼∗
𝐷

𝑀

𝐼𝐷𝑀∗

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(47)

Equation (47) can be written as

𝑑
𝑑𝑡

=+,

where

 = −𝐺1𝜇1𝑆𝐻

(
1 −

𝑆∗
𝐻

𝑆𝐻

)2

−𝐺5𝜇2𝑆𝐹

(
1 −

𝑆∗
𝐹

𝑆𝐹

)2

−𝐺8𝜇3𝑆𝐷

(
1 −

𝑆∗
𝐷

𝑆𝐷

)2
23

and
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 = 𝐺1𝜏1𝑆𝐻𝐼𝐹

(
1 −

𝑆∗
𝐻

𝑆𝐻

)(𝐼∗
𝐹

𝑆∗
𝐻

𝐼𝐹 𝑆𝐻

− 1
)
+𝐺1𝜏2𝑆𝐻𝐼𝐷

(
1 −

𝑆∗
𝐻

𝑆𝐻

)(𝐼∗
𝐷

𝑆∗
𝐻

𝐼𝐷𝑆𝐻

− 1
)

+𝐺1𝜏3𝑆𝐻𝜆 (𝑀)
(
1 −

𝑆∗
𝐻

𝑆𝐻

)(𝜆 (𝑀∗)𝑆∗
𝐻

𝜆 (𝑀)𝑆𝐻

− 1
)
+𝐺1𝛽3𝑅𝐻

(
1 −

𝑆∗
𝐻

𝑆𝐻

)(
1 −

𝑅∗
𝐻

𝑅𝐻

)
+𝐺2𝜏1𝑆𝐻𝐼𝐹

(
1 −

𝐸∗
𝐻

𝐸𝐻

)(
1 −

𝐼∗
𝐹

𝑆∗
𝐻

𝐸𝐻

𝐼𝐹 𝑆𝐻𝐸∗
𝐻

)
+𝐺2𝜏2𝑆𝐻𝐼𝐷

(
1 −

𝐸∗
𝐻

𝐸𝐻

)(
1 −

𝐼∗
𝐷

𝑆∗
𝐻

𝐸𝐻

𝐼𝐷𝑆𝐻𝐸∗
𝐻

)
+𝐺2𝜏3𝑆𝐻𝜆 (𝑀)

(
1 −

𝐸∗
𝐻

𝐸𝐻

)(
1 −

𝜆 (𝑀∗)𝑆∗
𝐻

𝐸𝐻

𝜆 (𝑀)𝑆𝐻𝐸∗
𝐻

)
+𝐺3𝛽1𝐸𝐻

(
1 −

𝐼∗
𝐻

𝐼𝐻

)(
1 −

𝐸∗
𝐻

𝐼𝐻

𝐸𝐻𝐼∗
𝐻

)
+𝐺4𝛽2𝐸𝐻

(
1 −

𝑅∗
𝐻

𝑅𝐻

)(
−

𝐸∗
𝐻

𝑅𝐻

𝐸𝐻𝑅∗
𝐻

)
+𝐺5𝜅1𝑆𝐹 𝐼𝐹

(
1 −

𝑆∗
𝐹

𝑆𝐹

)(𝐼∗
𝐹

𝑆∗
𝐹

𝐼𝐹 𝑆𝐹

− 1
)
+𝐺5𝜅2𝑆𝐹 𝐼𝐷

(
1 −

𝑆∗
𝐹

𝑆𝐹

)(𝐼∗
𝐷

𝑆∗
𝐹

𝐼𝐷𝑆𝐹

− 1
)

+𝐺5𝜅3𝑆𝐹 𝜆 (𝑀)
(
1 −

𝑆∗
𝐹

𝑆𝐹

)(𝜆 (𝑀∗)𝑆∗
𝐹

𝜆 (𝑀)𝑆𝐹

− 1
)
+𝐺6𝜅1𝑆𝐹 𝐼𝐹

(
1 −

𝐸∗
𝐹

𝐸𝐹

)(
1 −

𝐼∗
𝐹

𝑆∗
𝐹

𝐸𝐹

𝐼𝐹 𝑆𝐹 𝐸∗
𝐹

)
+𝐺6𝜅2𝑆𝐹 𝐼𝐷

(
1 −

𝐸∗
𝐹

𝐸𝐹

)(
1 −

𝐼∗
𝐷

𝑆∗
𝐹

𝐸𝐹

𝐼𝐷𝑆𝐹 𝐸∗
𝐹

)
+𝐺6𝜅3𝑆𝐹 𝜆 (𝑀)

(
1 −

𝐸∗
𝐹

𝐸𝐹

)(
1 −

𝜆 (𝑀∗)𝑆∗
𝐹

𝐸𝐹

𝜆 (𝑀)𝑆𝐹 𝐸∗
𝐹

)
+𝐺7𝛾𝐸𝐹

(
1 −

𝐼∗
𝐹

𝐼𝐹

)(
1 −

𝐸∗
𝐹

𝐼𝐹

𝐸𝐹 𝐼∗
𝐹

)
+

𝜓1𝑆𝐷𝐼𝐹 𝐺8(
1 + 𝜌1

) (
1 −

𝑆∗
𝐷

𝑆𝐷

)(𝐼∗
𝐹

𝑆∗
𝐷

𝐼𝐹 𝑆𝐷

− 1
)
+

𝜓2𝑆𝐷𝐼𝐹 𝐺8(
1 + 𝜌2

) (
1 −

𝑆∗
𝐷

𝑆𝐷

)(𝐼∗
𝐷

𝑆∗
𝐷

𝐼𝐷𝑆𝐷

− 1
)

+
𝜓3𝑆𝐷𝜆 (𝑀)𝐺8(

1 + 𝜌3
) (

1 −
𝑆∗

𝐷

𝑆𝐷

)(𝜆 (𝑀∗)𝑆∗
𝐷

𝜆 (𝑀)𝑆𝐷

− 1
)
+𝐺8𝛾3𝑅𝐷

(
1 −

𝑆∗
𝐷

𝑆𝐷

)(
1 −

𝑅∗
𝐷

𝑅𝐷

)
+

𝜓1𝑆𝐷𝐼𝐹 𝐺9(
1 + 𝜌1

) (
1 −

𝐸∗
𝐷

𝐸𝐷

)(
1 −

𝐼∗
𝐹

𝑆∗
𝐷

𝐸𝐷

𝐼𝐹 𝑆𝐷𝐸∗
𝐷

)
+

𝜓2𝑆𝐷𝐼𝐹 𝐺9(
1 + 𝜌2

) (
1 −

𝐸∗
𝐷

𝐸𝐷

)(
1 −

𝐼∗
𝐷

𝑆∗
𝐷

𝐸𝐷

𝐼𝐷𝑆𝐷𝐸∗
𝐷

)
+

𝜓3𝑆𝐷𝐼𝐹 𝐺9(
1 + 𝜌3

) (
1 −

𝐸∗
𝐷

𝐸𝐷

)(
1 −

𝜆 (𝑀∗)𝑆∗
𝐷

𝐸𝐷

𝜆 (𝑀)𝑆𝐷𝐸∗
𝐷

)
+𝐺10𝛾1𝐸𝐷

(
1 −

𝐼∗
𝐷

𝐼𝐷

)(
1 −

𝐸∗
𝐷

𝐼𝐷

𝐸𝐷𝐼∗
𝐷

)
+𝐺11𝛾2𝐸𝐷

(
1 −

𝑅∗
𝐷

𝑅𝐷

)(
−

𝐸∗
𝐷

𝑅𝐷

𝐸𝐷𝑅∗
𝐷

)
+𝐺12𝜈1𝐼𝐻

(
1 − 𝑀∗

𝑀

)(
1 −

𝐼∗
𝐻

𝑀

𝐼𝐻 𝑀∗

)
+𝐺12𝜈2𝐼𝐹

(
1 − 𝑀∗

𝑀

)(
1 −

𝐼∗
𝐹

𝑀

𝐼𝐹 𝑀∗

)
+𝐺12𝜈3𝐼𝐷

(
1 − 𝑀∗

𝑀

)(
1 −

𝐼∗
𝐷

𝑀

𝐼𝐷𝑀∗

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(48)

To simplify (48), let

𝑎 =
𝑆𝐻

𝑆∗
𝐻

, 𝑏 =
𝐸𝐻

𝐸∗
𝐻

, 𝑐 =
𝐼𝐻

𝐼∗
𝐻

, 𝑑 =
𝑅𝐻

𝑅∗
𝐻

, 𝑒 =
𝑆𝐹

𝑆∗
𝐹

, 𝑓 =
𝐸𝐹

𝐸∗
𝐹

, 𝑔 =
𝐼𝐹

𝐼∗
𝐹

,

ℎ =
𝑆𝐷

𝑆∗
𝐷

, 𝑟 =
𝐸𝐷

𝐸∗
𝐷

, 𝑛 =
𝐼𝐷

𝐼∗
𝐷

, 𝑚 = 𝜆 (𝑀)
𝜆 (𝑀∗)

, 𝑙 =
𝑅𝐷

𝑅∗
𝐷

, and 𝑘 = 𝑀

𝑀∗ .

One gets from (48) that

 = 𝜏1𝑆𝐻𝐼𝐹

(
1 − 1

𝑎

)( 1
𝑎𝑏

− 1
)
+ 𝜏2𝑆𝐻𝐼𝐷

(
1 − 1

𝑎

)( 1
𝑎𝑛

− 1
)
+ 𝜏3𝑆𝐻𝜆 (𝑀)

(
1 − 1

𝑎

)( 1
𝑎𝑚

− 1
)

+𝛽3𝑅𝐻

(
1 − 1

𝑎

)(
1 − 1

𝑑

)
+ 𝜏1𝑆𝐻𝐼𝐹

(
1 − 1

𝑏

)(
1 − 𝑏

𝑎𝑓

)
+ 𝜏2𝑆𝐻𝐼𝐷

(
1 − 1

𝑏

)(
1 − 𝑏

𝑎𝑛

)
+𝜏3𝑆𝐻𝜆 (𝑀)

(
1 − 1

𝑏

)(
1 − 𝑏

𝑎𝑚

)
+ 𝛽1𝐸𝐻

(
1 − 1

𝑐

)(
1 − 𝑏

𝑐

)
+ 𝛽2𝐸𝐻

(
1 − 1

𝑑

)(
1 − 𝑏

𝑑

)
+𝜅1𝑆𝐹 𝐼𝐹

(
1 − 1

𝑒

)( 1
𝑒𝑓

− 1
)
+ 𝜅2𝑆𝐹 𝐼𝐷

(
1 − 1

𝑒

)( 1
𝑛𝑒

− 1
)
+ 𝜅3𝑆𝐹 𝜆 (𝑀)

(
1 − 1

𝑒

)( 1
𝑚𝑒

− 1
)

+𝜅1𝑆𝐹 𝐼𝐹

(
1 − 1

𝑓

)(
1 − 𝑓

𝑒𝑛

)
+ 𝜅2𝑆𝐹 𝐼𝐷

(
1 − 1

𝑓

)(
1 − 𝑓

𝑒𝑛

)
+ 𝜅3𝑆𝐹 𝜆 (𝑀)

(
1 − 1

𝑓

)(
1 − 𝑓

𝑚𝑒

)
+𝛾𝐸𝐹

(
1 − 1

𝑓

)(
1 − 𝑔

𝑓

)
+

𝜓1𝑆𝐷𝐼𝐹(
1 + 𝜌1

) (
1 − 1

ℎ

)( 1
ℎ𝑔

− 1
)
+

𝜓2𝑆𝐷𝐼𝐹(
1 + 𝜌2

) (
1 − 1

ℎ

)( 1
ℎ𝑛

− 1
)

+
𝜓3𝑆𝐷𝜆 (𝑀)(

1 + 𝜌3
) (

1 − 1
ℎ

)( 1
𝑚ℎ

− 1
)
+ 𝛾3𝑅𝐷

(
1 − 1

ℎ

)(
1 − 1

𝑙

) 𝜓1𝑆𝐷𝐼𝐹(
1 + 𝜌1

) (
1 − 1

𝑟

)(
1 − 𝑟

ℎ𝑔

)
+

𝜓2𝑆𝐷𝐼𝐹(
1 + 𝜌2

) (
1 − 1

𝑟

)(
1 − 𝑟

ℎ𝑛

)
+

𝜓3𝑆𝐷𝐼𝐹(
1 + 𝜌3

) (
1 − 1

𝑟

)(
1 − 𝑟

𝑚ℎ

)
+ 𝛾1𝐸𝐷

(
1 − 1

𝑛

)(
1 − 𝑛

𝑟

)
( )( ) ( )( ) ( )( ) ( )( )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪

(49)
24

+𝛾2𝐸𝐷 1 − 1
𝑙

1 − 𝑙

𝑟
+ 𝜈1𝐼𝐻 1 − 1

𝑘
1 − 𝑘

𝑐
+ 𝜈2𝐼𝐹 1 − 1

𝑘
1 − 𝑘

𝑔
+ 𝜈3𝐼𝐷 1 − 1

𝑘
1 − 𝑘

𝑛
.
⎪⎭
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We express the equation (49) as

 = 𝜏1𝑆𝐻𝐼𝐹

(
1 − 𝑏

𝑎𝑐
+ 1

𝑎𝑐
− 1

𝑏

)
+ 𝜏2𝑆𝐻𝐼𝐷

(
1
𝑎𝑛

− 1 + 1
𝑎2𝑛

+ 1
𝑎

)
+ 𝜏3𝑆𝐻𝜆 (𝑀)

(
1

𝑎𝑚
− 1 + 1

𝑎2𝑚
+ 1

𝑎

)
+𝛽3𝑅𝐻

(
1 − 1

𝑑
− 1

𝑎
+ 1

𝑎𝑑

)
+ 𝜏1𝑆𝐻𝐼𝐹

(
1 − 𝑏

𝑎𝑓
− 1

𝑏
+ 1

𝑎𝑓

)
+ 𝜏2𝑆𝐻𝐼𝐷

(
1 − 𝑏

𝑎𝑛
− 1

𝑏
+ 1

𝑎𝑛

)
+𝜏3𝑆𝐻𝜆 (𝑀)

(
1 − 𝑏

𝑎𝑓
− 1

𝑏
+ 1

𝑎𝑓

)
+ 𝜏2𝑆𝐻𝐼𝐷

(
1 − 𝑏

𝑎𝑚
− 1

𝑏
+ 1

𝑎𝑚

)
+ 𝛽1𝐸𝐻

(
1 − 𝑏

𝑐
− 1

𝑐
+ 𝑏

𝑐2

)
+𝛽2𝐸𝐻

(
1 − 𝑏

𝑑
− 1

𝑑
+ 𝑏

𝑑2

)
+ 𝜅1𝑆𝐹 𝐼𝐹

(
1

𝑒𝑓
− 1 − 1

𝑒2𝑓
+ 1

𝑒

)
+ 𝜅2𝑆𝐹 𝐼𝐷

(
1
𝑒𝑛

− 1 − 1
𝑒2𝑛

+ 1
𝑒

)
+𝜅3𝑆𝐹 𝜆 (𝑀)

(
1

𝑒𝑚
− 1 − 1

𝑒2𝑚
+ 1

𝑒

)
+ 𝜅1𝑆𝐹 𝐼𝐹

(
1 − 𝑓

𝑒𝑛
− 1

𝑓
+ 1

𝑒𝑛

)
+ 𝜅2𝑆𝐹 𝐼𝐷

(
1 − 𝑓

𝑒𝑛
− 1

𝑓
+ 1

𝑒𝑛

)
+𝜅3𝑆𝐹 𝜆 (𝑀)

(
1 − 𝑓

𝑚𝑒
− 1

𝑓
+ 1

𝑚𝑒

)
+ 𝛾𝐸𝐹

(
1 − 𝑔

𝑓
− 1

𝑓
+ 𝑔

𝑓 2

)
+

𝜓1𝑆𝐷𝐼𝐹(
1 + 𝜌1

) (
1 − 1

ℎ
− 1

ℎ2𝑔
+ 1

ℎ

)
+

𝜓2𝑆𝐷𝐼𝐹(
1 + 𝜌2

) (
1 − 1

ℎ
− 1

ℎ2𝑔
+ 1

ℎ

)
+

𝜓3𝑆𝐷𝜆 (𝑀)(
1 + 𝜌3

) (
1

𝑚ℎ
− 1 − 1

ℎ2𝑚
+ 1

ℎ

)
+ 𝛾3𝑅𝐷

(
1 − 1

𝑙
− 1

ℎ
+ 1

ℎ𝑙

)
+

𝜓1𝑆𝐷𝐼𝐹(
1 + 𝜌1

) (
1 − 𝑟

ℎ𝑔
− 1

𝑟
+ 1

ℎ𝑔

)
+

𝜓2𝑆𝐷𝐼𝐹(
1 + 𝜌2

) (
1 − 𝑟

ℎ𝑛
− 1

𝑟
+ 1

ℎ𝑛

)
+

𝜓3𝑆𝐷𝐼𝐹(
1 + 𝜌3

) (
1 − 𝑟

ℎ𝑚
− 1

𝑟
+ 1

ℎ𝑚

)
+𝛾1𝐸𝐷

(
1 − 𝑙

𝑟
− 1

𝑙
+ 1

𝑟

)
+ 𝛾2𝐸𝐷

(
1 − 𝑟

ℎ𝑔
− 1

𝑟
+ 1

ℎ𝑔

)
+ 𝜈1𝐼𝐻

(
1 − 𝑘

𝑐
− 1

𝑘
+ 1

𝑐

)
+ 𝜈2𝐼𝐹

(
1 − 𝑘

𝑔
− 1

𝑘
+ 1

𝑔

)
+𝜈3𝐼𝐷

(
1 − 𝑘

𝑛
− 1

𝑘
+ 1

𝑛

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(50)

Now we make use of the following basic inequality.

Proposition 6. If 𝜖(𝑦) = 1 − 𝑦 + ln𝑦, then 𝜖(𝑦) ≤ 0 such that 1 − 𝑦 ≤ − ln𝑦 if and only if 𝑦 > 0.

From equation (50), we have

1 − 1
𝑑
− 1

𝑎
+ 1

𝑎𝑑
=
(
1 − 1

𝑑

)
+
(
1 − 1

𝑎

)
−
(
1 − 1

𝑎𝑑

)
. (51)

Using Proposition 6 and the concept of geometric mean, equation (51) can be written as(
1 − 1

𝑑

)
+
(
1 − 1

𝑎

)
−
(
1 − 1

𝑎𝑑

) ≤ −ln
( 1

𝑑

)
− ln

(1
𝑎

)
+ ln

( 1
𝑎𝑑

)
≤ ln

(
𝑎 × 𝑑 × 1

𝑎𝑑

)
= ln (1) = 0.

(52)

Following similar procedures in (52), we get

1 − 𝑐

𝑏
− 1

𝑐
+ 1

𝑏
≤ 0, 1 − 𝑝

𝑚
− 1

𝑝
+ 1

𝑚
≤ 0, 1 − 𝑑

𝑏
− 1

𝑑
+ 1

𝑏
≤ 0.

From equation (47), the global stability holds only if 𝑑
𝑑𝑡

≤ 0. Now, if  < , then 𝑑
𝑑𝑡

will be negative definite, which implies that 
𝑑
𝑑𝑡

< 0 and 𝑑
𝑑𝑡

= 0 only at the endemic equilibrium point 𝔼∗. Hence, by LaSalle’s invariance principle [28], the only invariant set in {(
𝑆𝐻 (𝑡),𝐸𝐻 (𝑡), 𝐼𝐻 (𝑡),𝑅𝐻 (𝑡), 𝑆𝐹 (𝑡),𝐸𝐹 (𝑡), 𝐼𝐹 (𝑡), 𝑆𝐷(𝑡),𝐸𝐷(𝑡), 𝐼𝐷(𝑡),𝑅𝐻 (𝑡)

)
∈ℝ12

+
}

: 
{(

𝑆𝐻 (𝑡), 𝐸𝐻 (𝑡), 𝐼𝐻 (𝑡), 𝑅𝐻 (𝑡), 𝑆𝐹 (𝑡), 𝐸𝐹 (𝑡), 𝐼𝐹 (𝑡),
𝑆𝐷(𝑡), 𝐸𝐷(𝑡), 𝐼𝐷(𝑡), 𝑅𝐻 (𝑡)

)
→ 𝔼∗} is the singleton endemic point 𝔼∗. Thus, any solution to the rabies model (5) which intersect the 

interior ℝ12
+ limits to 𝔼∗ is globally asymptotically stable whatever 0 > 1. □
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