
Universidade de Aveiro
2023

Pedro Dinis
Bastos Tavares

NAVEGAÇÃO SOCIAL PARA DESINFEÇÃO DE
ESPAÇOS PÚBLICOS

SOCIAL NAVIGATION FOR PUBLIC SPACE
DISINFECTION

Universidade de Aveiro
2023

Pedro Dinis
Bastos Tavares

NAVEGAÇÃO SOCIAL PARA DESINFEÇÃO DE
ESPAÇOS PÚBLICOS

SOCIAL NAVIGATION FOR PUBLIC SPACE
DISINFECTION

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à conclusão da unidade curricular Dissertação / Projeto / Estágio,
condição necessária para obtenção do grau de Mestre em Robótica e Sistemas In-
teligentes , realizada sob a orientação científica do Doutor Nuno Lau, Professor
Professor Associado do Departamento de Eletrónica, Telecomunicações e Informá-
tica da Universidade de Aveiro, e do Doutor Eurico Pedrosa, Professor Investigador
Doutorado do Departamento de Eletrónica, Telecomunicações e Informática da
Universidade de Aveiro.

o júri / the jury
presidente / president Professor Doutor Vítor Manuel Ferreira dos Santos

Professor Associado C/ Agregação, Universidade de Aveiro

vogais / examiners committee Professor Doutor Luis Paulo Gonçalves dos Reis
Professor Associado, Universidade do Porto - Faculdade de Engenharia

Professor Doutor José Nuno Panelas Nunes Lau
Professor Associado, Universidade de Aveiro

Palavras Chave robótica inteligente, navegação social, mapeamento, desinfeção, deteção de
pessoas.

Resumo A desinfeção de espaços públicos é uma tarefa vital para impedir o alastramento
de doenças, e isso tornou-se ainda mais claro devido à pandemia associada ao
COVID-19. O problema é que esta tarefa é executada por humanos, que se
arriscam a ficar infetados por se exporem ao vírus. Uma possível solução para
esse tipo de problemas seria tornar a desinfeção num processo automático através
do uso de robôs móveis com dispositivos de desinfeção acoplados, quer por radiação
(por exemplo radiação ultravioleta), quer por agentes químicos. Este tipo de
solução requer uma baixa interação entre humanos e a doença, reduzindo o risco de
contaminação dos mesmos. A implementação proposta deve ser capaz de realizar
esta tarefa com humanos ao redor, de forma a não afetar as suas dinâmicas, daí
precisar dum módulo de deteção e rastreamento dos movimentos das pessoas. O
módulo de deteção de pessoas desenvolvido é baseado em LiDARs ao nível das
pernas. Com a informação desses sensores é possível detetar as onde estão as
pessoas que rodeiam o robô e deduzir a sua velocidade. Com esta informação,
o robô pode executar trajetórias socialmente conscientes, ou seja, trajetórias que
contem com as pessoas e seus movimentos de forma a não as perturbar. Com
a este tipo de navegação implementado, o robô deve ser capaz de navegar em
ambientes populados e após implementar navegação orientada à desinfeção, que
está fora do contexto desta dissertação, já deve ser capaz de executar desinfeção
de locais públicos com pessoas presentes.

Keywords intelligent robotics, social navigation, mapping, disinfection, people detection.

Abstract Disinfecting public environments is a vital task to stop the spread of disease, and it
recently became more relevant than ever before with the COVID-19 pandemic. The
problem is that this task is performed by humans, putting them at risk of infection
by being exposed to the virus. A possible solution for this type of problem is to
make that disinfection automatic through a mobile robot carrying a disinfection
device, either utilizing radiation, such as ultraviolet light, or chemicals. This type of
solution would require little to no human intervention with the diseases, reducing
the risk of infection. The proposed implementation should have the ability to
perform the disinfection task with people in its surroundings without affecting
its dynamics, hence the need for a module that detects and tracks people. The
developed people detection and tracking module is based on shin-level LiDARs.
With this sensor information, the robot can detect and track people and deduce
their velocity. After gathering information regarding the people surrounding the
robot, the robot is capable of navigating in a socially conscientious manner,
meaning that it should be able to navigate without disturbing people and their
movements. With this type of navigation implemented, the robot is capable of
navigating in populated environments and when the disinfection-oriented navigation
is implemented, which is out of the context of this dissertation, it should be capable
of executing disinfection of public environments with people present.

Contents

Contents i

List of Figures iii

List of Tables v

Glossary vii

1 Introduction 1

1.1 Problem Description . 2

1.1.1 Objectives . 3

1.1.2 Expected Results . 3

1.2 Document Structure . 3

2 Background 5

2.1 Background Work . 5

2.1.1 People Detection and Tracking . 6

2.1.2 Social Robot Navigation . 7

2.2 State of the Art . 10

2.2.1 People Detection and Tracking . 10

2.2.2 Social Robot Navigation . 11

2.2.3 Disinfection-Oriented Navigation . 13

2.3 Tools . 15

2.3.1 Robot Specifications . 15

2.3.2 Robot Operating System (ROS) . 16

2.3.3 MiR package for ROS . 17

2.3.4 Gazebo . 17

3 People Detection and Tracking Based on LiDAR data 19

3.1 Implementation Using Default Machine Learning Models 20

3.1.1 Datasets . 20

i

3.1.2 Data extraction and labeling for model training 21

3.1.3 Default Model Training . 24

3.2 Implementation Using Alternative Machine Learning Models 24

3.2.1 Alternative Machine Learning Model Training 24

3.2.2 People Tracking . 27

3.3 Adaptations to communication modules . 28

3.4 Tracking Algorithm . 28

3.5 Experiments and Result Analysis . 30

3.5.1 Random Forest . 30

3.5.2 CNN . 30

3.5.3 NN . 31

3.5.4 SVM (Support Vector Machine) . 32

3.5.5 Theoretical Experiments and Results . 32

3.5.6 Empirical Experiments and Results . 33

4 Proposed Social Navigation Algorithm 39

4.1 Costmaps . 40

4.1.1 Costmap Layers . 40

4.2 Global Planner . 42

4.3 Local Planner . 42

4.4 Experiments and Results . 42

4.4.1 Planner Experiments and Results in Simulation 43

4.4.2 Results from Simulation Planner Experiments 49

5 Conclusion 53

5.1 Discussion and Alternative Approaches . 53

5.2 Conclusion . 54

5.3 Future Work . 54

References 55

ii

List of Figures

2.1 Representation of Edward Hall’s interpersonal distances [3] 6

2.2 Example of path adaptation from the elastic band algorithm [10]. a) Path generated by

a planner. b) Path after applying both contraction and repulsion force. c, d) Path as a

dynamic object gets near the path. 8

2.3 Example of space representation in DWA [12]. 9

2.4 Example of Social Momentum decision process [27]. 12

2.5 Example between two paths, one shorter and another that can be faster depending on the

agent’s characteristics. 13

2.6 Light Spectrum and Respective germicidal wavelength [32]. 14

2.7 Example of visible points in the Light Detection And Ranging (LiDAR)s (left) and respective

disinfection dosage (right). [31]. 14

2.8 Representation of built-in sensor ranges. [4] . 15

3.1 Detection process when using the leg detection tool [6]. 20

3.2 The red elements show an example of a point outside the figure, and the blue elements

show a point inside the figure. 22

3.3 Representation of bounding problem relative to clusters with many points. 23

3.4 Leg detection process after adaptations made to the leg detection tool [6]. 23

3.5 Example of a Convolutional process [42]. 25

3.6 Example of Neural Network with dense layer [43]. 26

3.7 Example of how the gamma and C values affect Support Vector Machine (SVM) results. [44] 27

3.8 Nodes and topics directly related to the tracking process (rectangles are topics whereas

ellipses are nodes. 27

3.9 Propagation process over which the GNN algorithm is going to be performed for cluster

association. 29

3.10 Final Convolutional Neural Network (CNN) final model architecture. 31

3.11 Final Neural Network (NN) final model architecture. 32

3.12 Service interaction using original flow. 34

3.13 Service interaction after changes made to code. 35

iii

3.14 Snapshot of leg classification using NN model. 36

3.15 Snapshot of leg classification using Random Forest model. 36

3.16 Example of tracks created . 37

3.17 Visual representation of what the constant velocity model considers the velocity at a set of

waypoints. 38

4.1 Examples of costmap with Proxemic Layer. 41

4.2 Examples of costmap with Passing Layer. 42

4.3 Simulation environments used to test the costmap layers and parameters. 43

4.4 Examples of costmap with default configurations. 44

4.5 Environments used for local planner testing. 46

iv

List of Tables

3.1 Scenario with moving people . 33

3.2 Model performance on test split . 37

4.1 Tests on how simulation/lookahead time affects path completion time 46

4.2 Tests with different weights for the distance to obstacle critic 47

4.3 Parameters changed throughout TEB navigation test configurations. 48

4.4 Scenario with moving people . 49

4.5 Compilation of best results from planners tested in the scenario represented in Fig. 4.5b. 50

4.6 Compilation of best results from planners tested in the scenario represented in Fig. 4.5a. 50

v

Glossary

TEB Timed-Elastic-Band
DWA Dynamic Window Approach
DWB Dynamic Window Approach B
ML Machine Learning
AGV Automated Guided Vehicle
ROS Robotic Operating System
IMU Inertial Measurement Unit
SFM Social Force Model

GNN Global Nearest Neighbor
AGV Automated Guided Vehicles
LiDAR Light Detection And Ranging
CNN Convolutional Neural Network
NN Neural Network
SVM Support Vector Machine
ORCA Obstacle Reciprocal Collision Avoidance

vii

CHAPTER 1
Introduction

As the world was hit by the unprecedented health crisis triggered by the coronavirus,
SARS-CoV-2, space disinfection has become a crucial process in everyone’s lives. The problem
with disinfection of such an infectious virus is that by performing disinfection, the people who
perform those tasks are susceptible to being infected by the disease themselves.

To diminish the risk of infection and reduce the spread of diseases, an alternative to
manual disinfection is needed. To reduce the risk and spread of diseases, this job should not
be performed by humans. A possible way of diminishing the risks for humans who perform
this task is through the use of robots instead.

To perform such a task, the robot needs to be capable of navigating through the environment
safely and in a way that the environment is disinfected correctly. For simple, static, and
unpopulated environments, it may be a relatively simple task, but if such a task is performed
in public spaces where moving people are obstacles, the problem becomes significantly more
complex, especially when the robot can compromise people’s safety.

From the first mobile robots developed to the robots available today, there has been
massive progress, both from the sensors available to aid in navigation to the computational
power inherent to the robots and to the algorithms used to traverse the environments.

A simple solution, which is mainly used in factories, is the use of Automated Guided
Vehicles (AGV)s. AGVs. They are guided by a predefined path that the robot is limited to.
These AGVs can be guided through a variety of methods, from underground wires that emit
a signal that the robot reads, to tapes attached to the floor and more. Some AGVs stop or
can perform small adjustments to avoid possible obstacles in the way, but they lack movement
freedom. These types of robots are sufficient when it comes to simple scenarios where the
predefined paths are most likely not obstructed and in scenarios where there is little to no
interaction with humans because humans can show unpredictable behavior and AGVs are not
equipped to deal with such behavior.

The problem is that it is now more common than ever before for robots to work in
collaboration or, at least, closely with humans. The pervasiveness of robots in people’s lives

1

comes with safety problems that must be tackled adequately, and in later years that task has
been addressed, which has resulted in several navigation methods that are capable of doing so.

Even if robots can navigate environments safely, doing so in a socially aware manner is an
entirely different task that is becoming increasingly relevant as robots become more present
in people’s everyday lives. However, this task is more complex because it requires extensive
processing and must consider a broader range of notions and concepts. The robot should
think of people not only as obstacles but also as social entities. Some relevant metrics that
should be considered when navigating alongside humans are personal spaces, which should
not be crossed, the type of trajectory taken to reach its goals, and the traversal speed of
the robot, among others. These are all metrics that should be considered when building a
social navigation framework. If these metrics are respected, the results should already be
satisfactory as the robot’s behavior most likely will not interfere with the movements made
by the people in its vicinity. But even though there is no interference in the social aspect,
it may still be considered odd behavior. For that reason, another path to follow is to try
mimicking human behavior when put into the scenarios that the robots will be inserted into.
An example of common human behavior is to keep a certain distance from the people ahead,
and if there is no intention to overtake, match the person’s speed. Another example is to, just
like on the roads, stay to the right of the path.

Even with the importance of the previously mentioned metrics, to achieve sociability, it is
worth noting that there is no standardized way of evaluating how socially compliant these
robots are [1]. With that in mind, shortcomings can still be pinpointed according to the
environment in which the robot is used. Depending on the scenario, some aspects may be
more relevant than others, which means that methodologies or algorithms can still be chosen
based on the identified drawbacks.

1.1 Problem Description

Space disinfection has always been an important task, be it from viruses or bacteria. The
coronavirus, SARS-CoV-2, pandemic took that importance a step further, as it became an
indispensable task that had to be performed repeatedly and exhaustively to diminish the
infection rate by the Coronavirus. This repetitive disinfection can be performed through
chemicals or exposure to radiation. For example, ultraviolet radiation. These disinfection
methods can be carried out in multiple ways, and are, in most cases, performed by humans.
The problem is that if humans are inserted in these potentially infected environments, they
are exposed to such diseases, and may get infected, harming the people performing those tasks.
Furthermore, those people can now infect others. For those reasons, disinfection is a task that
can be performed by robot agents by carrying disinfection equipment along the environment
that is to be disinfected. Another improvement would be to perform this task without having
to evacuate everyone from the area and without interfering with the environment that it is
working on.

With this task in mind, the University of Aveiro is involved in the GermiRRad project
whose objective is to use a mobile robot equipped with navigation skills to disinfect populated

2

areas without interfering with the normal dynamics of the environment. Besides not disturbing
the expected behavior of the area, the agent should be able to correctly and thoroughly disinfect
the area. To perform the disinfection task in its entirety, the agent should be able to navigate
among humans, both moving and stationary.

1.1.1 Objectives

This dissertation aims to develop tools that allow the autonomous navigation of a robot
in public indoor environments that are being shared with humans. To achieve this result, the
static parts of the environment where the disinfection task will be performed must be mapped
beforehand without people so that the agent can plan and navigate autonomously in that
same environment when performing the disinfection task. During the disinfection, there is
the possibility of humans being present. Therefore, the agent should be able to detect and
track humans. This detection and tracking are crucial to navigating socially among people so
that the robot can adapt its route and people do not feel threatened or worried. This process
will be developed in the Robotic Operating System (ROS) tool, making both ROS and ROS2
eligible for development.

1.1.2 Expected Results

This thesis aims to develop a system that can serve as the groundwork for performing
disinfection tasks in crowded indoor environments without disrupting the natural dynamics of
the surroundings. The system should be able to identify individuals and adjust its actions
accordingly to prevent any interference or collisions with obstacles and people.

1.2 Document Structure

In Chapter 2 of this document, there is an introduction to the tools used to develop
this thesis and the background work on which this work is based. After introducing the
technologies and methodologies currently used in the industry, the document begins to focus
on the development process. The first chapter to focus on the thesis’ development is Chapter
3. This chapter covers topics from how people detection is going to be performed, both in
terms of tools and techniques that were explored. It starts by explaining the logic behind the
tools used for people detection and leans briefly over how the people tracking algorithm works.
Finally, there is a section that covers the experiments made along with the results gathered
from such experiments. Following the chapter invested in exploring the people tracking
processes, navigation starts being addressed. Chapter 4 tackles social navigation between
global waypoints. This chapter is where the development of obstacle and people avoidance
methodologies is addressed in simulation environments. Finally, Chapter 5, summarizes the
generic ideas of the document along with notes about what could have been done differently
and what the next steps in development would be.

3

CHAPTER 2
Background

Robotics and social navigation have been widely explored in recent years. Robotics
has been investigated to perform tasks that can be high-precision, dangerous, or repetitive,
whereas social navigation is a more recent concept in the field of robotics whose objective is to
traverse an environment safely and in a way that does not interfere with human movements.
From the exploration of social navigation in the context of robotics, a wide variety of tools,
methodologies, and frameworks have been developed and have served as a foundation for this
thesis and research in this area.

In the following sections, the main tools and the publications that served as groundwork
for the development of this thesis will be highlighted.

2.1 Background Work

The first step in understanding the current state of the area being explored is, in this case,
the social navigation area, along with the people detection and tracking that are needed for
the robot to know where the people are so that they can be avoided. When it comes to the
social navigation issues that will be tackled, some well-established concepts and methodologies
and background work serve as a base for many new algorithms and solutions. These solutions
depend on the tools used and the environment in which the tools will be applied. Independent
of the tools used, Edward Hall’s proxemic theory [2] is widely accepted and finds a simplified
way of knowing whether or not something is interfering with a person’s personal space and
causing discomfort Fig. 2.1.

5

Figure 2.1: Representation of Edward Hall’s interpersonal distances [3]

2.1.1 People Detection and Tracking

The basis for this thesis is the detection and tracking of people around the robot. To
perform a person detection, which will lead to a person being tracked, it is crucial to determine
how such detections will be performed. For this thesis, everything will be developed on an
unmodified MiR100 robot [4], as it is the robot being used in the context of the GermiRRad
project. The sensors built into the MiR100 that have enough range to help with people
detection are the shin-level LiDARs and the 3D cameras. Both types of sensors have pros
and cons that depend not only on the kind of sensors but also on how they are mounted onto
the robot. The LiDAR configuration on the MiR100 has 360º degree coverage, which allows
the detection of obstacles and people around the robot. Another argument for the LiDAR
sensor is that LiDARs are not affected by lighting conditions. On the other hand, 3D cameras
offer both depth perception and RGB images of the environment. The RGB data makes it
possible to use computer vision techniques to determine where people are in the environment
and the depth perception allows the robot to understand if it has any objects nearby in three
dimensions, as opposed to the LiDAR, which only has two. Even with these advantages, 3D
cameras have a critical problem. Considering how the cameras are configured, the cameras
are only capable of covering 118º instead of 360º covered by the LiDAR configuration of the
MiR100. Leg detection is crucial for this thesis because it informs the robot where people
are so that it can adapt its behavior to their presence and activities. Otherwise, the robot
would perceive people just like any other obstacle surrounding it. People detection can be
performed in distinct ways and by different sensors.

With the characteristics of the sensors that were just mentioned, the first step is to decide
which sensor or sensors to use. Both options can be explored, but it is preferable to explore
one option at a time, understand if the results for such an option are satisfactory, and proceed
according to the outcome. The sensors chosen to be explored were the LiDARs. This decision

6

was made because of the 360º coverage that the LiDARs provide in the context of the MiR100.
This is indispensable, as the robot must be able to adapt its trajectory in case an obstacle is in
the way. If the robot is not aware of what is surrounding it, it will not detect possible obstacles
in its way and will not act appropriately. Another advantage of the LiDARs over the 3D
cameras is that the data provided by the LiDAR is faster to read and process when compared
to both the depth and RGB information from the 3D cameras. This slower reading and
processing of sensor information could lead to processing delays, which would hinder people
detection and tracking in the context of navigation because either information gets ignored to
keep processing the latest data or the information is processed out of time. Combining all the
reasons for and against each type of sensor information, it was decided that the LiDAR, on
its own, would most likely show better results when compared to the 3D cameras.

After deciding that people detection and tracking would be based on leg detection, some
exploration was carried out, mainly searching for algorithms that use leg detection with
LiDAR information, but also not discarding the possibility of the 3D cameras as, even if they
are not used in this dissertation, they may help in improving the solution for people detection
and tracking.

People detection based on leg detection can be performed using various algorithms. Some
algorithms use features associated with the clusters they create. Those features are fed to
the Machine Learning (ML) models that determine whether the clusters represent people or
not [5] [6]. In this context, a cluster represents a group of nearby laser readings. For a group
of points to be considered a cluster, they must not exceed a certain distance threshold and
the group must be composed of at least x points. Only with those criteria met is a group of
points considered to be a cluster.

Other algorithms, instead of features, use a variety of heuristics [7] to determine whether or
not clusters represent human legs. The clusters detected are put side-by-side with previously
detected clusters and the values returned from the heuristics. The probability of being human
gathered from the previous scan is considered to update a cluster’s probability of being a
human leg.

Another way presented uses sensor fusion between 2D LiDARs and images captured from
a camera [8]. The LiDARs and camera are calibrated and from there, feature extraction
is performed on both data sources independently to train two of their ML models. Upon
classification from each model, both classifications are fused, considering the calibration, and
the result determines whether it detects a person.

2.1.2 Social Robot Navigation

The social navigation task receives people’s detections and tracks. It attempts to navigate
accordingly through the environment, and there is not a single solution to this problem, as
the understanding of this concept keeps improving.

One commonly mentioned algorithm is the Social Force Model (SFM) [9]. Attractive
forces and repulsive forces define this algorithm. The navigation goal defines the attractive
force, and the obstacles define the repulsive force. Yet, humans represent a different form

7

of obstruction with different properties. This is because a person’s personal space must be
respected.

Another possible algorithm for social navigation is the Elastic Band algorithm. The Elastic
Band algorithm is similar to SFM, as it is also based on attractive and repulsive forces. The
main difference is the way these forces are applied. In this algorithm, the path is updated
by initially creating a path with abrupt changes in direction, and then the contractive and
repulsive forces are applied to shape the rough trajectory. The contraction force is the same
as the one applied to an elastic, which makes it so that the elastic follows the shortest path
between the two contraction points. In this case, the start and the end of the path. After
applying both types of forces to the path until the balance between forces is reached, the
algorithm has found its final result. If a new dynamic obstacle is found, the path can be
updated. A visual representation of this behavior is displayed in Fig. 2.2.

Figure 2.2: Example of path adaptation from the elastic band algorithm [10]. a) Path generated by
a planner. b) Path after applying both contraction and repulsion force. c, d) Path as a
dynamic object gets near the path.

Another approach, this time not based on forces, is the Dynamic Window Approach (DWA)
[11] which is a completely different process. The first step in this approach is to understand
which poses are reachable by the robot in a short time frame t while considering its movement
limitations and through a velocity pair constituted by angular and linear velocities so that
the search for the optimal path does not take too much time, which would hinder the robot’s
navigation quality. Besides the mentioned limitations, the angular and linear velocity pairs
that lead the robot into an obstacle are also immediately discarded. This prediction is done
by projecting the robot n up to the expected pose t seconds into the future.

An example of this process is displayed in Fig. 2.3. Where Vs represents "the space of
possible velocities", Va is the space of admissible velocities, or, in other words, the space that

8

allows for movement that does not crash into any obstacles in its trajectory. The clearer area
is admissible, whereas the darker area is not. Vd is the space within the dynamic window
that surrounds the robot. From these areas, Vr is formed, which is the combination of all the
previously mentioned areas.

V r = V s ∩ V a ∩ V d

Figure 2.3: Example of space representation in DWA [12].

Upon defining the feasible velocity pairs (angular and linear) that can be used, an
objective function is used to reach the ideal combination of velocities according to such
objective functions. The parameters considered in the initial approach to this algorithm are
target heading, clearance, and the robot’s velocity. These parameters, when put together along
with their respective weights, form the objective function that determines the best angular
and linear velocities in a given instant.

Another way of reducing the social impact of robot navigation is to create a way for the
robot to perform early adjustments to its behavior so that the people around it know the
trajectory the robot means to take to reach the goal [13]. To create this effect, it is suggested
that if a robot has humanoid characteristics, like sensors in a face-shaped format, the robot
could adapt the trajectory and have gaze control to preemptively indicate its intentions and
not constantly look at the human, which can be unsettling to some people. However, some
robots do not have this capability due to their shape, as is the case with MiR100. Even
without the cue from the gaze control, when using the social navigation algorithm that adapts
early, the results favored only using the social navigation, instead of using it combined with
the gaze control due to a limitation on the movement speed of the robot when implementing
the cost map. Another relevant model is the Obstacle Reciprocal Collision Avoidance (ORCA)
model [3]. It merely tries to avoid collisions, so it does not integrate Social Navigation for
obstacle avoidance, yet it is mentioned often in this area.

Even with these methods, these types of environments can be too complex to be modeled
in a way that is generalizable and robust [14]. Exactly with that argument in mind, and as

9

ML grows in popularity, ML algorithms are a replacement. One example of a ML algorithm is
based on a Markov Decision Process (MDP), which is defined by states, the set of actions, the
probability of getting to a state through an action, and the expected reward. This MDP is
Trajectory Bayesian Inverse Reinforcement Learning (TBIRL) which involves gathering expert
information to train the model and trying to limit the nearly infinite action possibilities to a
finite amount, reducing the computational complexity of the algorithm. To train the model,
six features are needed: the distances to obstacles, the goal, and the heading of the obstacles
and goals.

2.2 State of the Art

Recently, social navigation and people detection and tracking were explored further with
the implementation of new and more complex methodologies to reduce the drawbacks from
previous works and create new methods so that the interactions between humans and robots
can become as seamless as possible. Most importantly, the COVID-19 pandemic struck,
creating new needs, which led to different human dynamics. These dynamics and needs are
responsible for more complex tasks being assigned to robots, and because of that increase in
complexity, robots have to adapt to perform them correctly.

2.2.1 People Detection and Tracking

When it comes to people detection and tracking, there are a variety of more recent methods.
The method proposed by [15], instead of only using geometric features, also uses the relations
between neighboring clusters. This information is relevant because people usually have two
legs, meaning that for one leg to be detected, another should follow, and a set of features
could be formed between both leg detections. Another possibility is to perform detections
through sensor fusion, as proposed by [16] which, in this particular example, makes use of a
2D LiDAR and a camera. In this case, unlike the previously mentioned sensor fusion method
[8], pedestrian detection is performed on the images through a MobileNet-SSD [17] followed
by its tracking, which uses the SORT algorithm [18]. Finally, the pointcloud is compared to
the image, and the points that match the constrained image pixels are extracted, allowing
to position each detection in the environment. This method presents better results but is
limited to the area the camera can cover. Building on previous papers that perform feature
extraction [5] [6], another form of detection has been provided in a more recent study by [19].
This method assumes that the robot already knows the base map and the static elements of
the map. From that base map, when compared to the pointcloud generated by the LiDAR
readings, background extraction can be performed and only leave the segments that do not
match the preconceived map, and clusters are created from those points. The clusters are
then processed, feature extraction is performed, and upon categorization, a Kalman filter is
applied to track these previously classified clusters as humans. However, this assumption can
pose a problem if the map is not known a priori.

It is worth mentioning that after the detections are performed, most methods that include
tracking have them performed through Kalman Filters [6] [20] [19].

10

Most methods addressed were solely based on 2D LiDAR, but a few tools based on image
input are highly influential and maintained to this day and can be used in sensor fusion.
OpenPose [21] is a tool capable of detecting humans and creating a representation of the
human skeleton, among other features, for multiple people in real time. OpenPose uses a
bottom-up methodology, starting from Part Affinity Fields and reaching the result of the limb
and feature representation for one or more individuals. Part Affinity Fields are a form of
representing points of a limb so that, when connected, they can form the limbs of one or more
people. Usually, the points used to describe a limb in an image would be represented as a
point, but with the Part Affinity Field method, these points in the limbs are represented as
vectors, so that the algorithm can account for occlusions in case of multiple people gathering
in a single frame. Another tool available is YOLO [22], which is an object detection tool that
can be adapted to detect humans instead of trying to detect body parts. This tool is used for
object detection but may be used solely for human detection.

2.2.2 Social Robot Navigation

In recent years, social navigation methods have been explored more deeply because robots
are becoming increasingly popular, especially around humans. With the increase in popularity
of ML, learning-based methods and frameworks have been published to improve the existing
ones. An example of a learning-based method is the Crowd-Robot Interaction (CRI) [23].
This work attempts to not only consider Human-Robot interactions, but also Human-Human
interactions, even though it focuses on the first kind of interactions. These are then turned
into weights, which will be fed into a Multilayer Perceptron and return an estimate of the
possible state values based on the crowd, and the weights from the interactions. Afterward,
there was an attempt at introducing different weight definitions into this model instead of the
interaction weights [24]. This attempt used the previously mentioned SFM and ORCA, but it
was not successful in its attempt.

Even though learning methods have started to get traction regarding social navigation,
attempts at building mathematical models have not stopped. A model was published that
considered proxemics and the grouping of people together to create a human-density function
alongside space affordance [25]. Space affordance encompasses areas related to human activities,
which means that people may gather around that area, resulting in potential areas to avoid.
Another framework is called Social Momentum (SM) [26] [27]. This model tries to create
pairwise relations between the agent and the people around it, and in case there is someone
with conflicting paths when trying to reach the goal, the agent tries to detect the side that
other actors try to take to not collide and reinforce that intention by adapting to that change.
An example of a decision process of the SM algorithm is displayed in Fig. 2.4.

Another non-ML approach is Dynamic Window Approach B (DWB) [11]. This approach
is the successor to the DWA mentioned in 2.1.2. The DWB, instead of using a closed set of
weights along with their respective metrics, adopts a critic approach. A critic is responsible
for calculating the performance of a given trajectory according to a certain constraint. Each
critic has an associated weight, and the higher the weight of the critic, the more influence it

11

Figure 2.4: Example of Social Momentum decision process [27].

will have on the robot’s trajectory. This means that the core is the same, yet the architecture
used in code is more flexible because it allows the developer to add critics that fit the scenarios
that are being studied and remove the critics that are thought to be not as important for
that same scenario.

Finally, the Timed-Elastic-Band (TEB) algorithm [28] is built on top of the elastic band
algorithm, mentioned in 2.1.2. This new approach tries to find a balance between the
compression force of the elastic band, which forces the path to be the shortest possible, and
the repulsive force, which is generated by the obstacles and is responsible for keeping the path
at a safe distance from the obstacles and the fastest path possible. It may not be clear at first
the difference between the fastest and the shortest path, but in some cases, these can differ.
A smaller path with a lot of changes in direction may be slower than a slightly longer path
with a smaller number of turns. This phenomenon is displayed in Fig. 2.5 where the black
sections are obstacles and the white area is free space.

12

Figure 2.5: Example between two paths, one shorter and another that can be faster depending on
the agent’s characteristics.

2.2.3 Disinfection-Oriented Navigation

The disinfection-oriented navigation scenario has only recently increased in popularity
because no previous emergency required that specific kind of navigation. The COVID-19
pandemic changed that scenario by creating a state of emergency. What sets this navigation
task apart is that it is not limited to getting to goals, it also has to make sure that the
disinfection process is correctly performed, affecting the global navigation process. At first
glance, a mobile robot carrying UV lights can be obvious, but a variety of static UV disinfection
lamps can be placed strategically to perform this task. A study [29] tested this possibility by
setting a route for a robot to follow and comparing it with the static light at key points, and
found that using a disinfection-oriented navigation algorithm performs better when compared
to the static UV lights according to their benchmark. However, that test also points out
the need for an improved navigation algorithm to tackle cluttered environments. To test the
dosage output, markers were placed throughout the environment and the absorbed energy
was measured, showing that dosages with the moving disinfection system had, on average,
a higher energetic dosage with some exceptions being when the markers were close to the
disinfection rig.

Ultra-Violet Disinfection

The light that is to be used in the context of the GermiRRad is a UV-C light, considered
the most germicidal wavelength range Fig. 2.6. Even with the wavelength of the light used for
disinfection, other variables play a role, such as the distance of the light source, the exposure
time, and the dosage that the virus can withstand. The COVID-19 virus can take 10-20
mJ/cm2 using a direct light of 254nm of wavelength according to [30], and 5 mJ/cm2 according

13

to [31].

Figure 2.6: Light Spectrum and Respective germicidal wavelength [32].

Disinfection Scenarios Description

Scenarios will have different population densities throughout them. This creates a hetero-
geneous environment, not only when it comes to the map of the area but because some areas
will, on average, be more populated, creating areas where a person is more prone to being
infected. Also, if a region is occluded, that area will not be properly disinfected. This can be
caused by obstacles, walls, or even people Fig. 2.7.

Figure 2.7: Example of visible points in the LiDARs (left) and respective disinfection dosage (right).
[31].

A way of defining areas with the highest contamination probability is by using object/area
affordance [33] [25] [34]. This method defines areas of interest based on human behavior
concerning objects or specific sections, which can create areas that should be prioritized.
Another way of doing so is by detecting humans close to each other and crowd density as the
agent moves to the defined waypoints [35]. Upon this detection, a heatmap is generated, and
the detections are represented as Gaussian functions. The Gaussian functions, depending on

14

the number of people, can represent a space with a high risk of contamination. Consequently,
disinfection should be performed in areas with higher priority.

2.3 Tools

This thesis requires some base tools to ease the development process. These tools are the
robot itself, the programming tool, and a driver that serves as a bridge between both the
robot and the programming tool.

2.3.1 Robot Specifications

The MiR100 is a robot designed for indoor navigation capable of withstanding up to
100kg [4]. Sensor-wise, the Mir100 has two safety laser scanners, two 3D cameras in the
front, and four ultrasound sensors. The robot is equipped with two 2D LiDARs with a 270º
coverage angle. Combining both sensors makes it possible to get a 360º view of the robot’s
surroundings, as shown in Fig. 2.8b. The robot also has two 3D cameras in the front with a
118º angle horizontally. The cameras can detect objects at a distance of up to 1950mm ahead
of the robot and 1800mm up and are strictly for navigation purposes, as they are not involved
in the safety system built into the robot. The information from the 3D cameras returns 3D
pointclouds. Besides laser scanners and 3D cameras, the robot is also equipped with four
ultrasound sensors. Two of the sensors are placed in the front of the robot, and the other
two can be placed in the back or front. Depending on the location of the sensors, the sensor
distance limits differ.

The robot can also locate itself on the map. This localization requires the robot’s initial
position, which is used as a reference point, and the data from both the Inertial Measurement
Unit (IMU) and encoder to determine the position and speed of the robot relative to the
starting position. Finally, with all this data and the laser scan data, the MiR100 uses a
Particle Filter to determine the likelihood of the robot’s position by comparing the laser
information with the mapped nearby walls.

Regarding navigation, the robot is equipped with a safety obstacle avoidance system. This
system is based on laser sensors. These laser sensors, along with the robot’s speed based on
the data from the encoders, form Protective Fields, and if the lasers detect the presence of an
obstacle within the defined Protective Fields, the robot stops.

(a) 3D camera sensor ranges. (b) Placement and angles of LiDAR sensors.

Figure 2.8: Representation of built-in sensor ranges. [4]

15

2.3.2 Robot Operating System (ROS)

ROS is a widely used open-source tool that intends to simplify and ease the development
of robotic agents [36]. This tool presents a way to deal with the asynchronous nature of sensor
data in real-world environments by providing the developers with a "middleware" between the
raw data that is provided by the robot’s sensors and the developer. ROS is a tool that uses a
publish/subscribe pattern. This pattern promotes modular code since each node will only
treat data from nodes that they are subscribed to, which makes maintenance and contributions
a simpler process. It also makes reusing code a simple task, as this "middleware" allows for the
creation of isolated code sections that work independently from the system and can be reused
in different projects. The nodes and topics that were just mentioned are core components of
ROS. Nodes are the blocks that process information and contribute to the actions that the
agents perform. To process information, the information has to be fed to the nodes. This data
input is performed through topics. Topics are the connections between the nodes and the
structure that is responsible for making information to the nodes that need it. For topics to
share information, nodes publish messages through them, and the nodes that are subscribed to
that same topic receive those messages. These messages are structured pieces of information,
as each type of message is formed by a set of fields that are published to and received from
the ROS topics. An example is the pose message from the geometry_msgs module, which is
composed of a position and anorientation, which are both associated with their respective ROS
message. However, topics are not the only form of communication. ROS also uses services.
These services are structures that accept a certain message type, and after processing the
data, they return an answer. Services follow a request/response structure, which means that
every request that the service receives produces a response that is guaranteed to be relative
to the correct request.

Besides the structural features from ROS, ROS also has another key component for
debugging and testing. To help with that, ROS has a module that allows one to record data
and replay that same data with little to no changes consistently, which allows the replication
of scenarios that may only occur sparsely. In cases where work depends, for example, on data
from sensors, a rosbag can be used to test if the program is working properly without having
to spend time connecting to the robot itself since test data has already been recorded in a file.
This data is stored in and played from rosbags, or files with the .bag extension, which is a
format specific to ROS.

Rviz

Rviz is a ROS-based visualization tool that has access to the ROS topic information
among other information, such as the robot transformations, and is capable of displaying such
information in a 3D user interface. Topic information extrapolates beyond what is displayed
in the simulator. The ROS topics publish sensor data, paths, and waypoints, among other
types of data. This is useful for the researcher because it allows them to perceive the scenario
considering other pieces of information that are not available either in the real world or in
simulated environments. When dealing with sensor data, even if the data being analyzed

16

corresponds to a short interval, because of the high refresh rate and because each datum has
hundreds or thousands of values, depending on the type of data, analyzing such data solely
through logs becomes a tedious and challenging task. Thanks to the visualization capabilities
Rviz offers, it becomes easier to debug robot code when compared to debugging based solely
on logs because it allows one to display invisible information in both real-life and simulation
scenarios visually. Besides being able to display information, Rviz is also capable of publishing
to ROS topics. An example is navigation goals. Rviz allows the publication of navigation
goals that the robot tries to follow, which makes it a versatile tool for tests.

rqt

rqt is a tool within ROS and is built in Qt, which is a tool used to develop graphical
interfaces. The rqt visualization tool allows the use of a wide range of tools in one place.
Some can help understand the architecture of the project or just a section of that same
architecture, while others allow one to change components’ configurations in real-time or even
send instructions to the robotic agents being tested. The rqt tool, by itself, does not allow one
to perform any of the actions mentioned above, but by associating plug-ins, such functions
become possible because of the core program that is rqt.

2.3.3 MiR package for ROS

MiR does not provide a native API in ROS, yet it provides a REST API to connect devices
to the MiR100 robot. For this reason, to use the MiR100 robot, a third-party driver is needed
to map the REST API requests to the topics in ROS. To perform this task, the mir_robot
package is used [37] allowing us to explore the robot’s functionalities in the ROS environment.

2.3.4 Gazebo

Gazebo is a 3D simulation tool that is built with open-source libraries that can serve
multiple purposes, from the simulation itself to a physics engine, and is mainly used by
designers and developers. This is the case because Gazebo can use 3D models, which are
useful to create environment representations in detail which is usually enough for design
purposes as the 3D representation of the environment makes visualization easier.

In the context of this dissertation, Gazebo is used as a simulation tool because of its
simulation capabilities. Gazebo supports a set of physics engines that simulate real-world
physics in detail, which is crucial when considering that the focus of this dissertation is the
navigation of a robot that must consider the robot’s dynamics and behavior and be able to
simulate the behavior of the sensors in the robot according to their location and the obstacles
that surround them. Lastly, it is compatible with ROS, which is the core of the dissertation’s
implementation. Just like ROS, Gazebo is an open-source tool developed and maintained, for
the most part, by Open Robotics.

17

CHAPTER 3
People Detection and Tracking

Based on LiDAR data

As mentioned in Chapter 2.1, because of the MiR100’s sensor configuration, the people
detection and tracking will be performed based on leg information gathered from the LiDARs.
After the decision relative to the sensors that were used, the first step is to understand how
the LiDAR data is published to ROS. The LiDARs are placed at a 20cm height and have a
perception of 360º around the MiR100 and publish the sensor information to two different
ROS topics, not necessarily, simultaneously. Because of the height of the sensors, if there are
people around it, the LiDAR will detect people’s legs. For that reason, the people detection
process must be based on leg shape, which should allow us to perceive where people are in the
environment. To adapt the people detection algorithm to the LiDAR configuration, research
was made to find a method that would suit this configuration.

When searching for people detection and tracking algorithms, a ROS package built in the
context of the ICRA 2015 conference [6] was tested. The package was tested by using the
datasets that came with the package itself, and the results were promising since accurate
detections and tracks were formed when visually analyzing the data in Rviz. To determine if
the package was suitable for other sensor configurations, the developers of the package suggest
training the model again with new data, and, if needed, adapting the parameters according to
the sensor characteristics.

To train and test this package, the following steps must be followed:
• Label and extract positive and negative data from datasets.
• Train a model with this labeled data.
• Test the performance of the model on different data.

Fig. 3.1 highlights the tool’s structure for human detection and tracking.

19

Figure 3.1: Detection process when using the leg detection tool [6].

3.1 Implementation Using Default Machine Learning Models

3.1.1 Datasets

The data classification task is performed on rosbag files, but different robots have different
sensor characteristics, and researchers may use different tools that use other file formats.
Before training the model with the data from the MiR, other datasets were tested [38]. To
test these datasets, they had to be converted to rosbags using a package [39]. After converting
these datasets, it was found that they were not suitable because there was no data without
people in the scenario to train the model. Another issue with the data is related to the
bounding methods that the package offers to establish the boundaries between the positive and
negative data. This issue is addressed in the next Section (3.1.2). For these reasons, to test if
the algorithm works correctly with the robot’s specifications, bag files were recorded with the
MiR to train and test the algorithm using data recorded by the actual robot. Initially, three
bag files were recorded to train the model, one without people and the robot in motion, and
two with people around the robot and the robot stationary. Later, more files were recorded
to balance the data and increase the variety for each label, so that the ML models are trained
with data that encloses a greater variety of information.

When recording the data from the MiR100 sensors, the LiDAR data was published by two
different sensors in two different ROS topics, which creates an issue when using the leg_tracker
package, since the package only accepts one topic as input both for training and after training
in live scenarios. To bridge this gap, the ira_laser_tools [40] is used. This package allows the
merging of two topics into one topic with a distinct name so that there are no name collisions
between active topics. To merge the laser scans, the origin of the lasers is slightly changed so
that all points of the scan have the same origin point. Because of this change, some points
from the resulting topic may not be exactly in the same position as the original scans, but
the difference is small enough to be negligible.

20

3.1.2 Data extraction and labeling for model training

To extract labeled data from the bag files, the authors of the article [6] suggest using
scenarios where the robot is not moving and with people around it to extract data labeled as
positive, and to record data without people around to extract negative examples with no leg
detections. The next step is to process the data so that it is labeled properly. The original
code from the package in charge of extracting positive data from the bag files would only
extract the clusters from within a bounding box that the user had set.

The original package implementation was found to have two issues. The first is relative to
the bounding box because it could only be defined by the maximum and minimum values of
the x and y axes or through the angles of the points in the scan, with both being limiting
ways of extracting labeled data. By using the option to provide the minimum and maximum
x and y coordinates, the area from which the clusters labeled as positive for training and
testing would necessarily be a rectangle. Additionally, the rectangle would not be adjustable
angle-wise. This is not ideal because it is challenging to create a bag file where only legs
are detected within that bounding box. The alternative built-in method is to provide angles
where only legs are present in the scans, which may be even harder due to the gaps between
legs, which could be considered legs but are not. To overcome these data labeling problems,
another bounding method was implemented. The new method accepts x and y coordinates
to form a polygon and check if the clusters identified in the scan are inside or outside that
polygon. This method is more flexible than both bounding methods built into the package.

The logic behind the algorithm used to understand whether a point is within the defined
polygon is: A straight horizontal line is drawn through the point being classified. From there,
the algorithm only considers the intersections to the left or right of that point. If the number
of times this line intercepts the sides of the polygon is odd, that point is inside the polygon.
This is highlighted in Fig. 3.2. This also works if the line being drawn is vertical or in any
other direction, but the easiest way to perform the calculations is by using horizontal or
vertical lines.

The code used to implement the algorithm is adapted from W.R. Franklin [41]. The
configuration below shows how to configure the extraction node when using the new bounding
method. The difference is that to use the new bounding method, the program receives the
parameters polygon_x and polygon_y, which are the coordinates that define the vertices of
the bounding polygon.

<node pkg="leg_tracker" type="extract_positive_training_clusters"

name="placeholder_name" output="screen">

<param name="load_bag_file"

value="$(find leg_tracker)/file_location.bag"/>

<param name="save_bag_file"

value="$(find leg_tracker)/file_location.bag"/>

<param name="scan_topic" value="/topic_name"/>

<param name="laser_frame" value="example_link"/>

21

Figure 3.2: The red elements show an example of a point outside the figure, and the blue elements
show a point inside the figure.

<param name="tf_data" value="/tf"/>

<rosparam param="polygon_x"> [6,-0.7,-7.5,1]</rosparam>

<rosparam param="polygon_y"> [-1.8,-10,-2,6.5]</rosparam>

</node>

The second problem may not be as evident, but, depending on the granularity and the bag
file itself, it may hinder the training of the detection model. These problems become more
prominent, especially when working with the new bounding method because it can define
more detailed areas. The problem is that, when considering large clusters, their centroids can
be far from the points themselves, and, therefore, when creating the bounding box. the cluster
may be mislabeled, which affects the detection’s performance. As displayed in Fig. 3.3, the
cluster’s centroid is distant from the points that originate it and because the bounding box is
defined close to the points gathered from the scans, the cluster is classified as a positive cluster
because its centroid is within the bounding box even though not a single point from the scan
is within the bounding box. If instead of using clusters the scan points are considered, the
classification for scenarios like the one in Fig. 3.3 becomes correct.

To solve this problem, instead of clustering and, only then, deciding if the clusters are
inside the bounding box or not, the new algorithm goes through each point from the scan and
decides whether or not that point is within the bounding box. After iterating through all
points, the positive clusters are gathered. The points in clusters and within the bounding
box are saved along with the cluster’s centroid, just like in the original version. As a result
of these changes to the bounding-box definition, the data extraction becomes more accurate
compared to the original work.

To capitalize on this change, besides using the files with exclusively non-leg detections as
a data source for negatively labeled data, negative data can also be extracted from the files

22

Figure 3.3: Representation of bounding problem relative to clusters with many points.

from which the leg detections are extracted. When extracting leg and non-leg clusters from
the file, the extracted scans are stored in the same rosbag in their separate topics so they can
be distinguished when training and testing the models. These files with negative examples
can be used to train the model alongside the bags of the moving robot with no people nearby,
as suggested by the developers of the original package.

With the changes performed to the structure of the leg detection algorithm, the architecture
changes from what is displayed in Fig. 3.1 to the one evidenced in Fig. 3.4

Figure 3.4: Leg detection process after adaptations made to the leg detection tool [6].

23

3.1.3 Default Model Training

After the data extraction and processing, this data needs to be fed to the ML model that
is to be trained. The first step is to provide the default model with the positive cluster’s
positions and the scans, both positive and negative. To do so, the rosbags are passed along
with the ROS topics to the script that trains the ML model as arguments. The rosbag, along
with the topics, is passed after one of the following arguments: –pos, –neg, –test_neg or
–test_pos. These arguments are used to understand if the data from the topic is positive or
negative and if it is supposed to be used for training or testing. Upon receiving the data, the
entire bag is used according to the associated argument. The data from the bag is processed
to extract geometric features, which are then used to train or test the leg detection model.
The leg detection model used in the original implementation is a Random Forest Finally, the
ML model is stored in a .yaml file so that it can be used to perform people detection and
tracking in real time. When the original code from the leg_tracker package is used, the leg
classification is performed directly in that same file, which ensures that there is little delay
regarding the classifications being made.

3.2 Implementation Using Alternative Machine Learning Models

Even though the examples present in the package have satisfactory results, there may be
alternative models that result in better outcomes. To understand if that is the case, other
methods were tested. The following sections address the changes needed to test such ML
models. These changes are highlighted alongside the alternative models being tested.

To feed the data from the rosbags to these ML models being tested, the script responsible
for cluster classification was adapted to save the data from the rosbag into a CSV file that
has the data organized and already labeled. This process makes it easy to manipulate the
data used in the training and testing of the rest of the models.

3.2.1 Alternative Machine Learning Model Training

Even though not much work is needed to use the original implementation, there may be
better solutions for this classification problem. With that being considered, some alternatives
were explored to understand if any would perform better than the original. Before starting
the development, the first question to be addressed was which tools to use and what type
of model should be implemented. There is a wide variety of tools commonly used for data
classification using ML, such as TensorFlow, Scikit-Learn, and PyTorch. In theory, when
using the same parameters for the models, the difference between results by implementing one
tool in favor of another is negligible. From these tools, TensorFlow was used due to familiarity,
and Scikit-Learn was also used because it is a high-level tool for ML development. One of
Scikit-Learn’s main objectives is to be accessible to the general public and for that reason,
it did not require much insight in the development of ML to use when compared with the
other solutions. The methods were developed in an attempt to improve the original work.
The different types of ML models developed besides the already implemented Random Forest
are: CNN, NN, and SVM.

24

For these ML models to be used, some changes have to be performed because ML libraries
are not ready to receive the same type of data as the original implementation. To feed the
data from the rosbags to these ML models, the script responsible for cluster classification was
adapted to save the data from the rosbags into a CSV file that has the data organized and
already labeled. This process makes it easy to manipulate the data used in the training and
testing of the rest of the models.

CNN (Convolutional Neural Network)

CNNs are a type of Neural Network that usually receives raw data as input and is most
commonly used in problems that require image-related processing. CNNs are composed of an
input layer, an output layer, and at least one convolutional layer and are commonly followed
by pooling and normalization layers. Convolutional layers work by setting up a kernel that
iterates through each datum to extract features that will be used to classify the datum. In
the example displayed in Fig. 3.5, the convolutional layer is processed by a 3x3 kernel that
iterates the entire input data to generate the output.

Figure 3.5: Example of a Convolutional process [42].

The CNN was tested with the cluster features as training data, which means that the
CNN is extracting features from the arbitrary features extracted from the data. The main
issue with this approach is that the features extracted from each cluster are not ordered in
any specific manner. Even if they were, the features do not have an inherent order to be
arranged in, which means that by swapping the order of the features in the dataset the results
could change the outcome drastically. Each feature relates to the other because it refers to
the same cluster, yet there is no way of knowing if the feature order is optimal.

Even though theoretically CNNs may not be suitable for the problem being tackled, the
method was not discarded. Instead, it was tested to see if the practical results would converge
with the theoretical when it comes to the relationship between neighboring data.

NN (Neural Network)

The Neural Network is the basis of Deep Learning. It has at least three layers: the input,
the output, and at least one hidden layer. This hidden layer can be fully connected or partially
connected. In some cases, it could also be a pooling or normalization layer, the most common
being the first two examples. In Fig.3.6 The Neural Network model uses Dense Layers to
attempt to connect every neuron from the previous layer to the current layer. The number of
neurons depends on the problem’s complexity and the network’s architecture. Just like CNNs,

25

Figure 3.6: Example of Neural Network with dense layer [43].

neural networks are sometimes complemented with pooling layers, normalization layers, or
both.

SVM (Support Vector Machine)

The last method tested was the SVM model. A Support Vector Machine is a model that
may be linear or nonlinear that identifies the optimal boundary to separate data into distinct
classes by generating a maximized margin between these classes. To achieve this, the data is
transformed to be defined by a higher-dimensional environment that allows the classification
of the data linearly or through a hyperplane. The classification depends on the dimensions of
the environment.

To improve the SVM model, three hyperparameters can influence the model’s results:
the kernel type, the C value, and the gamma value. The kernel type changes the formula
that will perform the classification. The C and gamma values must be adapted to reach the
best possible level without losing the ability to generalize the classification in case new and
different data is to be classified. If the data does not present a clear division, a smaller C
value is better because regularization will increase, instead of relying solely on what the data
shows. If the opposite is true, the C value should be higher to allow the results to be more
influenced by the dataset. Another relevant parameter when optimizing SVMs is the gamma
value. The gamma value determines how many pieces of data will influence the training of
the SVM. A visual representation of the results when using different gamma and C values is
shown in Fig. 3.7.

26

Figure 3.7: Example of how the gamma and C values affect SVM results. [44]

3.2.2 People Tracking

After detecting the different people, or, in this case, the people’s legs, the next step for
building a social navigation framework is people tracking. In robot navigation, people tracking
consists of understanding how a person or multiple people evolve in the environment where
the robot has been inserted. This may include a person’s position but also considering that
the person is moving, the movement it is performing, and, if possible, estimating where the
person will move afterward. This information is relevant to the robot because it helps decide
which movements are most appropriate in social scenarios.

The people tracking code section is closely coupled with the leg detections mentioned in
Chapter 3 and alongside the mapping information. In Fig. 3.8, the architecture of nodes and
topics needed to perform people tracking is evidenced. As it is shown in Fig. 3.8 the topics
/map and /detected_leg_clusters are the ones that are provided to the joint_leg_tracker
node, which is responsible for people tracking based on the legs detected, with the information
needed for it to operate.

Figure 3.8: Nodes and topics directly related to the tracking process (rectangles are topics whereas
ellipses are nodes.

27

For the implementation, the package used for leg detection [6] also has built-in people
tracking. This section of the implementation does not rely directly on sensor input or in ML
models that must be trained. For these reasons, and since the communication between these
two sections of the package is already made, there was no need to adapt the code relative to
the connection between the leg detection and the people tracker or the algorithm for people
tracking itself.

3.3 Adaptations to communication modules

For the tracks to be available in the navigation module, data needs to be published by the
people tracker in a different way because of a discrepancy between the tools used regarding
the type of message that the people tracking algorithm publishes and the navigation package
[45], which will be explored in Chapter 4, receives. The navigation package receives a People
message that is not being published by the people tracking module by default. To fix this
problem, Person messages from the people_msgs package [46] began being published so that
the navigation section could use the data from the people that surround the robot. Both
types of ROS messages are composed of the person’s position and velocity, but there are
crucial differences. The one from people_msgs has a field for the reliability of the person’s
track and uses the Point ROS message from that same set of messages both for position and
velocity. The default ROS message published from people tracking uses the Pose message
from people_msgs that uses a Point message for the position and a Quaternion message for
the orientation, which in this case translates to velocity because there is no way of knowing
where a person is facing only using a LiDAR. Both ROS messages are published from the
node responsible for managing people’s tracks onto the respective ROS topics.

Another issue related to communication is that there are two ROS messages within the
project’s environment with the same name. Both are named Person. One of them is from the
leg_tracker package, whereas the other is needed for the navigation package that is present in
people_msgs [46] under the people_msgs/msgs folder. For that reason, the name of the ROS
message from people_msgs was changed to PersonProxemic, since it will only be used for local
planning and because the naming convention continues to make sense even with this change.

3.4 Tracking Algorithm

The implementation [6], when it comes to people tracking, receives as input the leg
positions and the map of the environment. The first step is to track every cluster in the
environment because it may constitute a leg cluster. Each cluster is tracked with the use of a
Kalman Filter which is performed based on its position in x and y along with their velocities
through both x and y axes. The person track is also registered in the same way as the clusters.
The new tracks are considered static since the laser scan does not provide velocity-related
information. After the first track is added, in the second reading, the velocity is updated
considering the constant velocity motion model, which estimates the velocity based on sensor
frequency and the distance between successive readings of the same track.

28

To understand if a track from time t corresponds to another track in time t-1, a Global
Nearest Neighbor (GNN) algorithm is used. The GNN algorithm is performed with the aid of
the Munkres algorithm, which is used to calculate the optimal combination of propagations
and current clusters so that the total distance between correspondences is minimal. A visual
example of propagation is displayed in Fig. 3.9.

The GNN algorithm starts by propagating the tracks from time t-1 to time t. This is
done through the use of the velocity and the position from time t-1 to estimate the position it
would occupy at time t based on the data from time t-1. Then, the data from the estimation
is put against the sensor readings. The readings are compared using the Mahalanobis distance,
and then the corresponding tracks are calculated through the Munkres algorithm, which
minimizes the total distance between all projections and all clusters received in the time t.

Figure 3.9: Propagation process over which the GNN algorithm is going to be performed for cluster
association.

The use of the Mahalanobis distance is important as it calculates the distance between
cluster and projection in variance. If the distance between the projection and cluster is null,
the Mahalanobis distance is 0, if it corresponds to the variance, it is 1. This means that this
method is scale-invariant and can be adapted by adapting the variance of the algorithm.

To create a person track, the detections must follow a set of criteria. The first criterion
that needs to be met is the detection of two tracks that have moved at least 0.5m without
drifting apart. After that first criterion is fulfilled, both tracks must maintain a level of
confidence over a certain threshold. Finally, both tracks must be in freespace[6]. Freespace is
a metric based on the local occupancy grid map. The local occupancy is set to freespace until
there is a non-human observation.

29

3.5 Experiments and Result Analysis

To understand which ML model is best, two experimentation phases were performed.
Theoretical tests, whose results come from the statistics related to the models, such as accuracy,
precision, recall, and F1 score. The second test is the empirical/analytic test, which is used
to corroborate the information gathered by the theoretical tests.

In both tests and for all the ML models tested, the files with the features used for training
and testing had 17 features, but one of the features would always be 0, so that feature was
removed. Besides that flawed feature, other features had issues, such as infinite values and
values represented as NaN. Because of those flaws, the data that had those problems was
removed before the dataset was used for training and testing.

3.5.1 Random Forest

The Random Forest model was already built into the leg_tracker package. Even though
the method was already available, the authors recommend testing other parameters for the
Random Forest because, as sensor characteristics change, the results may vary and benefit
from other parameters for the model. The best results were achieved with few changes to the
original implementation, namely the maximum categories, which were reduced from 1000 to
the default ten from the OpenCV package. The other change made was the number of trees
in the Random Forest. The number of trees is used as a stop condition for tree generation.
This means that if this condition is fulfilled, no more trees are generated [47]. Initially, the
number of trees needed to stop tree generation was 100 and became 200, which means that
only when 200 trees are formed does the Random Forest stop generating new trees to get
closer to the optimal results.

3.5.2 CNN

After cleaning the data, CNNs were tested. The initial tests with a CNN were made to
understand how many epochs were needed to maximize the ML model results. Tests were
made from 50 epochs up to 200. When using up to 100 epochs, accuracy levels were still
increasing much slower than compared to the initial epochs, so more epochs were tested. The
number of epochs that got the best results is 150, since when testing with 200, besides taking
more time, there was little to no improvement in the accuracy compared to the 150 that got
selected. When testing the CNNs, one crucial change was to perform data normalization since
a wide range of values can differ in the order of magnitude, from a -16 to a 3.

The best result gathered from using the CNNs in the test set is the one in Table 3.1 and
was gathered with the architecture displayed in Fig. 3.10.

30

Figure 3.10: Final CNN final model architecture.

3.5.3 NN

The data fed to the NN model was the same as the CNN’s and got the same processing
except for the normalization. Initially, since the code for data preprocessing was adapted from
the CNN to the NN, the process was the same. Yet, tests of the NN revealed that using batch
normalization in the NN resulted in a better outcome. Multiple architectures were explored,
with more or less dense layers as well as units. Since there are a considerable number of
geometric features being given as input, it was thought that increasing the number of units
in a dense layer would most likely be the best option. With this in mind, initial tests were
performed with a lower number of neurons in each layer, starting with 16 up to 96, and going
through 32, and 64. Dropout rates from 0.15 to 0.3, with an increase of 0.05 were tested,
but since overfitting was not apparent, no dropout layers were used in the final NN. After
testing various combinations of dense layer units, the best results were gathered through an
architecture with increasing units in the dense layers with all leaky-relu activation functions.

From all the NNs tested, the best result is displayed in Table 3.1 and was gathered with
the architecture present in Fig. 3.11.

31

Figure 3.11: Final NN final model architecture.

3.5.4 SVM (Support Vector Machine)

Just like when CNNs are used, the SVM model got the data in the same format and
processed it in the same way. The first step is to choose the SVM type. To make this decision,
we have to consider that the problem to be solved is a binary classification, and for that
reason, SVC was picked. From the different SVCs available in Scikit-Learn, SVC, NuSVC, and
LinearSVC, the SVC was picked because LinearSVC is indicated for larger datasets because it
is less computationally intensive and, as per Scikit-Learn’s documentation, SVC and NuSVC
display similar results overall [48].

Upon choosing the ideal SVC, its parameters had to be decided. The C value was the
parameter that was explored next, as its value is one of the parameters that influence the
results of the SVC the most. The C value is used for data regularization. For Scikit-Learn,
the default C value is 1, but as the value was tested, it became clear that such a value was too
small. Lower values of C were tested with worse results, and from there tests were performed
with higher values of C, starting with C as 1000 and going as high as 3000 in intervals of 500.
Out of the tests performed, the best C value found was 2500. The kernel type was chosen
based on performance. The performance of the other kernels available in Scikit-Learn was
tested with the C as 2500 just like the RBF where the RBF kernel was the one with the best
accuracy, as demonstrated in Table 3.1, and the other kernel that got the closest to that value
was the polynomial kernel with 96.56% accuracy.

3.5.5 Theoretical Experiments and Results

To understand which ML model is best, out of the ones mentioned, all models were
optimized individually. After improving the results from the ML models mentioned previously,
the results were gathered and introduced into Table 3.1, so that they could easily be compared.
The comparison was made based on which model had better accuracy. However, if the results
are similar, other metrics were considered to decide which model was best. The results

32

displayed are regarding the values obtained in the test sets.

Table 3.1: Scenario with moving people

Accuracy Precision Recall F1 Score
Random Forest 99.10 99.61 99.61 99.38

CNN 96.47 96.47 96.47 96.47
NN 96.94 96.95 96.94 96.94
SVM 96.70 96.70 96.70 96.66

As displayed in Table 3.1, from the models tested, the results from the Random Forest
implementation were the best out of the ML models tested with an accuracy of 99.10%. One
difference that can be seen when comparing the results from the Random Forest to the other
ML models is that this value differs considerably from all other metrics. That may be the
case because the data is not balanced, meaning that the data gathered has more instances
from one label than the other, which is the result of the data not being treated in the same
manner as the remaining models.

The Random Forest model uses the entirety of the topic for its respective functions
(training and testing data, which can be labeled as positive or negative). The data from other
models is treated differently when compared to the Random Forest. This difference causes
the data to be split differently, which may affect the comparison of the results between the
Random Forest and the remaining models.

3.5.6 Empirical Experiments and Results

To tackle the issue relative to dataset discrepancies, a test was performed to check how the
theoretical results would translate into the real world. To perform this task, another rosbag
was recorded. This rosbag was not used in the training or testing of any model. Instead of
testing with all the models, only the NN model and the Random Forest were tested because
the Random Forest was the one that got the best results and the NN is the model that got
the best results out of the models that used a different data split.

This comes with a choice: "What language should I load the NN model in?" This is
important not only for testing purposes but also because the NN could, in practice, be a
better answer to the problem. This means that not only did it have to work, but it had to be
optimized so that the leg classification could be performed within a reasonable amount of
time.

The first decision to be made is the language since both Python and C++ could be
used. In C++, Tensorflow or PyTorch would need to be imported into the file where cluster
classification is performed, to load the model and classify the data according to the features.
This would be preferable, but the ML libraries would have to be inside the ROS scope to
become accessible, some are not stable, and there was no previous experience with these tools
in C++, which may result in complications when implementing the classification models.

The second option is to use Python. By using Python, the C++ program where cluster
classification is performed in the original code must connect to the Python code. The solution

33

was to create a ROS Service that receives the cluster features, classifies the data, and returns
the results. When using the ROS Service, a connection must be created and the messages
sent get an answer specifically to that message. That way, the service always returns the
value corresponding to the request, which is not the case in the regular ROS publish-subscribe
architecture. This comes with the problem that the code that calls the classification section
needs to wait for that process, which takes time. By maintaining the code structure as it
originally was and calling the classifier for each cluster individually, the classifier would run
through around 70 scans in 100 seconds, meaning an average of a scan every 1.4 seconds.
These and all results were achieved with an Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz.
The flow of the service calls needed to perform leg classification using the original configuration
is evidenced in Fig. 3.12. Assuming that a person walks on average at 3.5km/h (0.972m/s), a
person could move around 1.4 meters from point a to point b, and the scan is still classified
at point a, which is not ideal.

Figure 3.12: Service interaction using original flow.

The solution to the problem is to adapt the code so that the service is called once per scan,
sends the features of every cluster from that scan at once, and creates a single connection
to the service at the start of the program. Instead of creating a connection for each scan,
the processing times became significantly lower, being able to process most of the scans from
the MiR100’s real LiDARs, which is published at around 12.7Hz, due to the reduction of
service calls. With the original implementation, it was already possible to only form a single
connection, and for that reason, in both Figs. 3.12 and 3.13 the connection formation is not
represented. The flow between the main code section and the ROS service after optimizing
the service calls is displayed in Fig. 3.13.

To test the developed ML methods using Tensorflow, the models and the training parame-

34

Figure 3.13: Service interaction after changes made to code.

35

ters were saved after being trained so that they could be loaded to use in run-time.

Figure 3.14: Snapshot of leg classification using NN model.

Figure 3.15: Snapshot of leg classification using Random Forest model.

When testing both the NN and the Random Forest with the new rosbag, the results
from the theoretical tests were corroborated, with the Random Forest presenting better
classification results when compared to the saved NN. An example of both models can be
seen in Figs. 3.14,3.15. Even though the differences may not be noticeable when checking
the RVIZ visualizations presented, the results displayed in Table 3.2 confirm the information
gathered through visualization. This means that the Random Forest classifier, even though

36

Table 3.2: Model performance on test split

Accuracy Precision Recall F1 Score
Random Forest 94.37 98.35 94.21 96.23

NN 94.12 98.13 94.12 94.24

the results were worse than the ones in Table 3.1, was still slightly better than the best NN
configuration.

An important difference between the results from the theoretical and empiric tests is that
both reduced their accuracy significantly, with the Random Forest being the one that was
affected the most, which means that even though the results were better for the Random
Forest, the NN may be capable of a better generalization. However, it still performed better
and did not require the use of service calls for leg classification. In this stage of development,
it can classify mostly, if not all scans that are supposed to be classified, but as the navigation
stack increases, this may impact the stack’s performance negatively. If the classifier cannot
handle the scans properly at one thing and the Random Forest at the other, it is essential to
understand which is more important. Correctly classifying leg clusters or correctly classifying
non-leg clusters.

The next experiment that was performed is related to the tracking algorithm. The
experiment performed to test the tracking algorithm is a mere extension of the previous test.
The difference is that in this test the people tracks were also displayed to understand if they
would adapt accordingly to the detections.

Figure 3.16: Example of tracks created

This tracking method presents satisfactory results when it comes to the position of the
human track since it uses the leg positions to decide where the person is at a given moment,
as is displayed in Fig. 3.16. Furthermore, the tracks visible in Fig. 3.16 are generated along
with detections not too far from one another. Unfortunately, one of the tracks is generated on
detections that do not correspond to actual legs, but in that case, the leg detection module is

37

at fault, not necessarily the tracker.
Even though the positioning of the person is good, the method for velocity estimation has

flaws since it uses the constant velocity model, which implies that the person is moving at a
constant velocity, which can occur occasionally, but it does not adapt well when the movement
is inconsistent, for example, Fig. 3.17, when a person is moving in a curve-like trajectory,
the constant velocity model does not perform well. This is true, but even though people are
mostly predictable, unpredictable behaviors, like a sudden change in direction, are the ones
that can cause the most problems in this velocity model. The issue is that other models would
struggle in the same way because more complex models are not capable of dealing with such
unpredictability either. This can become an important problem if the robotic agent is moving
close to the person because if the robot is moving close to the person, it would have to adapt
quickly to that sudden change. After all, if it is not able to react, it depends on humans to
adapt its behavior according to the robot’s movement, which is unintended. That is where
this motion model can be better than any other. Because the constant velocity method is one
of the simplest, if not the simplest, motion models, this model will update quickly in response
to abrupt changes and therefore have better chances at updating the person’s movement fast
enough for the agent to adapt its behavior accordingly.

Figure 3.17: Visual representation of what the constant velocity model considers the velocity at a
set of waypoints.

38

CHAPTER 4
Proposed Social Navigation

Algorithm

This chapter of the dissertation leans over the information relative to navigation throughout
different environments with and without people to understand which approach is best when
it comes to social navigation. To perform a good enough job at social navigation, global
and local planners and costmaps must be configured, and to understand if the results are
satisfactory, a variety of metrics are involved. These metrics range from the distances to
people to the total distance of the path and the time it takes for the path to be executed.
The development of the social navigation stack is based on the mir_robot package [37]. The
configuration files for the navigation stack were copied to the dissertation package where all
the adaptations will be performed since its code has not been changed.

For the robot to understand its behavior within the environment a SLAM algorithm is
required. Most related work uses a variation of Gmapping, but this thesis was developed
with the help of the iris_lama_ros package, which is a wrapper to ROS [49] of the work
from the same authors of LaMa [50]. This package provides a SLAM algorithm with two
variants, one based on a Particle Filter whereas the other option is based on a method that
tackles the localization problem independently by using only the previous positions and the
Dynamic Likelihood Field to obtain its results. From the research conducted, the accuracy
of this approach is comparable to other commonly used algorithms with low computational
complexity. Since the accuracy results are similar to other SLAM algorithms, the one that
uses the Dynamic Likelihood Field was adopted.

Upon deciding what the base for navigation will be, the navigation stack has to be
developed. The navigation stack can be divided into two parts. The first is environment
representation, and the second is the planning section.

39

4.1 Costmaps

The first step explored was environment representation through the use of costmaps. A
costmap is a method that allows one to determine the state of the environment where the
agent has been inserted based on its occupancy. With the help of a costmap, it is possible
to understand what regions are empty, occupied, or to avoid. These regions to avoid may
not necessarily be close to obstacles, they may represent an area that, even though it is
currently accessible, should not be accessed. Depending on the costmap’s configuration, we
can represent in the costmap different types of obstacles according to the robot’s goal and the
expected surroundings of the agent. Even though the goal affects the costmap configurations,
in most cases, two costmaps are used simultaneously and in a complementary way. The first
kind of costmap is the global costmap. Global costmaps will be used by the global planner to
set a route to the active goals. This path represents a guideline for the ideal route to reach its
goals. However, in non-static scenarios, it can only be a guideline because, generally, it does
not consider sensor data. The second map is the local map, which, unlike global maps, uses
sensor information to account for changes in different elements of the environment. Another
difference is that the global map variant is supposed to represent the map in its entirety,
whereas the local map only extends within a given configurable distance beyond the agent, so
that the local planner does not consume as many resources.

Even though both local and global costmaps have different objectives, they are formed by
overlapping and merging layers. The layers used can change according to the situation, and
each layer can be configured to suit the robot’s needs.

4.1.1 Costmap Layers

Costmaps are generated through the use of layers. These costmap layers are what allow
obstacles to be distinguished.

• Inflation Layer. The Inflation Layer is responsible for indicating that the area relative
to the obstacle is not empty.

• Static Layer. This layer is responsible for mapping the obstacles that are, as the name
of the layer suggests, static, just like walls and tables. It also creates a region around
the obstacle that is likely to be occupied, so that there is a safety margin between the
area represented as empty and the obstacle.

• Obstacle/Voxel Layer. Both Obstacle and Voxel layers are similar, with the difference
being that the Obstacle layer has two dimensions, while the Voxel Layer has three.
These layers are generated through the detection of obstacles in real time through the
use of sensors.

These layers are usually enough to represent and navigate environments without people
in movement. However, in the context of this dissertation, because of the social navigation
aspect, the costmap must also have a way to ensure that people are properly represented to
allow for a safe and adequate coexistence of the robotic agent and the people surrounding it.

40

In the scope of this dissertation, it is fundamental to avoid obstacles and to maintain
socially compliant behavior. For those reasons, the costmap should be able to represent regular
obstacles and people in a way that people have a custom representation, so that the robot
can consider people’s personal spaces and, in case of movement, consider the movement being
performed, so that the people surrounding the robotic agent can move freely without feeling
bothered by the agent’s presence and movement. The navigation_layers ROS package includes
two extra layers, which, in this case, help with people’s representation in the environment.
These layers receive a ROS message with the position and velocity information relative to the
people. This message contains the pose and velocity of each person, which will be used to
adapt the costmap to the expected people’s movement. These layers are as follows:

• Proxemic Layer, which is responsible for adapting the costmap directly to people’s
movements. This is relevant because people generally become uncomfortable when
an object or another person gets too close. For this reason, the ideal Proxemic Layer
should be able to describe which areas should be restricted to avoid placing people in
uncomfortable situations. For this reason, this layer attempts to exclude regions around
people and adapt it depending on the person’s movement. Examples of local and global
costmaps with a proxemic layer are displayed in Figs. 4.1a, 4.1b.

(a) Local costmap example.
(b) Global costmap example.

Figure 4.1: Examples of costmap with Proxemic Layer.

• Passing Layer, is a layer related to social conventions. This layer receives the people’s
movement as input and increases the values of the costmap to the right side of each
individual. The layer decides this based on the movement. If a camera was being used,
the orientation could be determined through image information, but since the sensors
being used are LiDARs there is no other method to determine which way each person is
facing. This layer might help because in most countries people drive on the right side of
the road and overtake through the left. For that reason, people from those countries
commonly favor that behavior even when they are not driving. This layer is an attempt
to condition the robot’s behavior to adapt to such norms. Examples of local and global
costmaps with a passing layer are displayed in Figs. 4.2a, 4.2b. From looking at Figs.
4.2a, 4.2b, it is visible that according to the movement of the people in the environment,
costmap regions will become dark strictly to the right of the people detections performed
as well as their perceived movement.

41

(a) Local costmap. (b) Global costmap.

Figure 4.2: Examples of costmap with Passing Layer.

All these Layers have configurable parameters, which, when changed, may present signifi-
cantly different results.

4.2 Global Planner

The global planner is responsible for defining an outline of what the path to the desired
goals should be according to the environment. The global planner is dependent on the global
costmap to represent the environment. In this case, the global planner needs to gather the
people that surround the robot so that the robot’s global path already considers the presence
of people. It may not seem relevant at first since the local planner will perform adaptations to
the global path, but it is. It is important because some local planners, like DWA and DWB
may have metrics that compare the generated local path against the global one, as to not
deviate too much from it. With that in mind, if the global path already considers the people
in the environment, the adjustments will most likely be reduced.

4.3 Local Planner

The local planner is responsible for performing the adaptations needed to overcome the
changes that occur in the environment, which is essential for social navigation because the
robot must be able to avoid colliding with and disturbing people who might be moving. The
local planners depend mostly on the local costmap to perform their job properly, because if
that is not the case, the local planner would not be able to adapt, since it does not have any
information to work with. However, in some cases, they also depend on the global path. Tests
for local navigation were performed with two different navigation algorithms: DWB (Section
2.2.2) andTEB (Section 2.2.2). Because the DWB algorithm, as previously mentioned, is an
improved version of DWA in terms of architecture and adaptability, DWA will not be tested.
DWB could be used to test DWA, if the critics used are limited to the ones used in DWA.

4.4 Experiments and Results

To be able to navigate in a socially adequate manner, the robot must be able to properly
represent humans around itself through the use of costmaps, and after settling on how to

42

perform a person’s representation, the robotic agent should be able to act according to the
people surrounding it.

4.4.1 Planner Experiments and Results in Simulation

After configuring what will be the basis for the experiments regarding the local planners’
performance, they, along with their respective configurations, are tested. To get the best
configuration for each planner and what planner is best, the first step is to perform navigation
tasks through simulation because the planners, initially, are suboptimal and generate dangerous
behavior that can lead to accidents. Simulation is a crucial starting point for the tests in
real-world environments because it reduces the risk of accidents and are faster to perform.
Even though the simulation tests are not capable of perfectly replicating what happens in
real life, they are a crucial step in safely developing a solution.

Configurations in common between planners being testing

This section is responsible for noting the configuration in which the local planner ex-
periments are performed. This is crucial so that all planners are evaluated under the same
conditions and that an impartial evaluation is performed.

One of the configurations that the planner depends on is the costmaps’ configuration.
To understand which costmap configurations were most suitable for the use case, simulation

scenarios were created. One of the scenarios only had people moving, and another had static
people. These scenarios are evidenced in Figs. 4.3a, 4.3b.

(a) Environment created for experiments with peo-
ple moving through the environment.

(b) Environment created for experiments of the
environment with static people.

Figure 4.3: Simulation environments used to test the costmap layers and parameters.

Regarding the global costmap, the mir_robot package starts by default with a Static layer,
a Voxel, and an Inflation layer. This combination of layers does not accurately represent the
social characteristics of the environment in the costmap. This means that the costmap strictly
provides the representation needed to not crash into people only when they are static. Fig.
4.4a displays how the costmap is by default in the mir_robot package. It represents areas
surrounding walls and people, even though there is no special consideration for the social

43

boundaries associated with humans. Fig. 4.4b shows an example of the results from the initial
layers and configurations of the global map.

(a) Local costmap. (b) Global costmap.

Figure 4.4: Examples of costmap with default configurations.

To overcome the shortcomings of social constraints, both Proxemic and Passing from the
navigation_layers package were added to the global and local maps in an attempt to comply
with social distances and social norms. To adjust the parameters of the layers, rqt_reconfigure
was used so that the results could be seen in runtime, speeding up the testing process. This
reconfiguration, even if saved, does not save directly for later iterations, so this tool was only
used to make the testing process faster. If a better configuration is found, the costmaps are
adapted to use such values.

With both the Proxemic and Passing layers activated and configured, there were cases in
which the Passing layer, perpendicular to the person’s movement, would block routes that do
not interfere with people’s actions. For that reason, the Passing layer was removed, leaving
only the Proxemic layer, which, with parameter tweaking, can create a safe area surrounding
each individual according to its movement. Another factor is that, when a false positive
occurs, the track will also be represented in the costmap by its Passing layer, which may cause
unnecessary hassles to the robot’s planner. In Figs. 4.1b,4.1a, examples of the Local and
Global maps with the tweaked Proxemic layer are displayed. The Proxemic layer was added
to both costmaps so that the global plan could be formed considering the people present when
forming the global plan. This is relevant because most local planners try to stay close to the
global path, and if the global path is generated and that same path crosses a busy area of
the environment, the resulting local plan may be negatively affected by the global plan going
through such areas since it attracts the local plan.

The costmap configurations that resulted from the exploration performed before the
navigation tests are bound to change. The main reason behind the potential need to adapt the
values from the costmaps is that the costmaps are being adjusted based on the default planner
configurations that are suboptimal for social scenarios. For that reason, the robot with the
default navigation configuration is not expected to perform well under social scenarios, which
means that the default costamp configurations will be picked solely through visualization,
which means that the configuration used may be adapted when testing different local planner

44

configurations.
The global planner being used is the SBPL [51] from the ROS package sbpl_lattice_planner

[52] with the ARA* graph search, which is a variation of the A* algorithm. SBPL considers
the robot’s motion model and limitations to generate a graph of poses the robot can move
to and through the use of ARA* it decides which combinations are suitable to reach the
goal. For it to have access to that information, the motion models available in the mir_robot
ROS package were used, so that the global planner could adapt to the MiR100’s motion
characteristics.

Another relevant configuration needed for the navigation process is the update frequency
of the costmap and the costmap publish frequency. By default, the costmap update frequency
is 5Hz and the publishing rate is 1Hz. The maximum robot speed is set to 0.8m/s and the
expected walking speed of a person can go up to 1.34m/s meaning that if the robot is going in
opposite directions to a person, in one second, the distance could change up to 2.16m, which is
a significant distance and may become a bottleneck for navigation. To diminish this issue, the
publishing frequency was changed to 3Hz, which instead of up to 2.16m distance differential
between publications becomes a maximum differential of 0.72m. This significantly increases
the quality of the data used by the local planners, which theoretically should improve their
performances.

The metrics used for planner classification are the time needed to perform a task, the
minimum distance to people, and the number of collisions. Besides these metrics, the paths
taken to perform such tasks are recorded to visualize the path and have a subjective yet more
intuitive way to look at the performance. For the metrics that result from the tests to be as
representative as possible, the global planner was kept the same for all the tests performed, just
like the used cost map layers. It is worth mentioning that, since the local planners are highly
dependent on the configurations, the computational power required for each local planner
can vary. This means that a planner that requires more computational power could affect
the results since the simulation rate could differ from planner to planner. This is important
because, besides avoiding collisions and not disturbing the human activities surrounding the
robot, it is important that the robot perform these tasks efficiently and quickly. Some studies
[13] consider the speed of the robot when passing near people as a performance statistic. In
this case, the speed is replaced by the time spent performing the whole task, and this is
where the performance comes in. To avoid time biases due to the simulation rate, the time
recorded for the test results is the simulation time, which theoretically is not affected by the
performance differences of the planners.

Since the planners have a variety of configurable parameters, it is also crucial to improve
the local planners individually and, only then, make comparisons between them, just like
with the ML models in Chapter 3. These individual tests were performed in the environments
highlighted in Figs. 4.5a,4.5b.

45

(a) Simulation environment with both moving and
static people

(b) Environment with movement without sudden
changes.

Figure 4.5: Environments used for local planner testing.

Experiments and Results using DWB planner in Simulation

The first parameter being tested is the lookahead time, or, in other words, how much time
the planner will consider past the current point in time to generate a trajectory. This is a
relevant factor because, if the value is too small, the adjustments the robot would make would
be performed too late. Following that logic, the higher the lookahead time, the better. The
problem is that by increasing it, the computational complexity can increase, which translates
into slower movement from the robot. Considering both factors, a balanced lookahead time
must be found so that it can adapt and be quick. To test which lookahead time is best,
different lookahead times ranging from 0.8s to 1.5s were tested in four instances each in
environment 4.5a to understand how it would affect the navigation relative to the time spent
on a given task. It is expected that the times will increase along with the lookahead times.

Table 4.1: Tests on how simulation/lookahead time affects path completion time

Lookahead time
(s)

Minimum
completion
time (s)

Maximum
completion
time (s)

Average
completion
time (s)

0.8 (default) 45.7 46.1 45.9
1.1 48.9 49.1 49.0
1.2 49.3 50.9 50.1
1.3 50.7 58.4 53.3
1.4 53.4 83.5 68.7
1.5 69.0 108.9 83.5

The results from the previously mentioned test are displayed in Table 4.1 where it is
confirmed that as the lookahead time increases, the average completion time when using the
same scenario, in this case, scenario 4.5a increases alongside the lookahead time. Not only
that but as the lookahead time increases, the consistency between times decreases, which
creates disparities in the time needed to finish the task. Small time disparities are expected
since there are random factors affecting the robot’s navigation, but, besides being slower,

46

with a lookahead time of 1.3 seconds, the difference between the fastest and slowest times
recorded with the same lookahead time is 7.7s which corresponds to over 15% time required
to complete the same navigation task. For that reason, the following tests with DWB will
only be performed on lookahead times of up to 1.2 seconds.

The next tests performed were meant to understand if the robot was capable of avoiding
collisions while performing navigation tasks. The tests were made with a lookahead time
of 1.1 seconds so that the lookahead time was enough for it to have enough effect without
compromising the performance, and by adapting the weight of the critic relative to the distance
to obstacles, to understand how it affects the safety and compliance of the navigation around
people according to the Edward Hall social space representation [2]. The DWA and DWB
planners do not distinguish between common obstacles and people, at least with the used
critics, so to avoid people, they base their path planning solely on what they receive from the
costmap.

To get the results from Table 4.2, for each weight, 10 attempts were performed, and with
the recorded data, the metrics presented in the other columns were calculated. The results

Table 4.2: Tests with different weights for the distance to obstacle critic

Weight - Lookahead Time Time/trajectory Min. dist. person Collisions
0.01 (default) - 1.1 58.4 0.49 3

8 - 1.1 64.1 0.53 1
16 - 1.1 65.1 0.56 0
32 - 1.1 61.6 0.55 1
16 - 1.2 62.5 0.65 1

in the columns Time/trajectory and Min. dist. person from Table 4.2 do not use data from
the attempts where the robot collided. These values are not considered because if there is a
collision, the attempt is stopped immediately, which creates outliers both in the times per
attempt and for the minimum distances to a person.

When analyzing the values from Table 4.2, it is possible to understand that the default
Obstacle Critic weight is not suitable for this type of scenario. This is evident because of the
number of times the robot collided with an obstacle. The other weights performed better
since the number of collisions was lower than the original. Out of the non-default Object
Critic weights tested, the best results were gathered when the Object Critic’s weight was 16.
Because the best results out of the DWB were gathered with the Objet Critic weight set to
16, the lookahead time was increased from 1.1s to 1.2s, because according to Table 4.1. does
not have a big enough computational impact to be discarded.

Experiments and Results using TEB planner in Simulation

When using the TEB algorithm, there is a set of parameters regarding dynamic obstacles.
These dynamic obstacles are displayed in both global and local costmaps through the use of
the Proxemic Layer. Even though these dynamic obstacles are represented in the costmaps,
these obstacles are not seen by the classifiers as being dynamic since, besides the odd shape

47

of the costmap cells that surround the obstacle, there is no information in the costmap
to inform the planner that the obstacle is a moving obstacle. For that reason, in the
same way that the Proxemic Layer is fed with the dynamic obstacles, the TEB planner
[53], to be able to use the parameters, the dynamic obstacles must be published to the
/move_base_node/TebLocalPlannerROS/obstacles topic with the correct message type, so
that the planner can consider this information when creating the robot’s path. TEB must be
used for this information to be published since the critics used in the DWB planner do not use
dynamic obstacles. If another planner is used, this information is not published since there
would be no advantage to it, which would translate to the program running slower since there
would be more processing required to process the dynamic object’s data and unnecessary
messages would be generated. This information is published along with the data published for
the Proxemic Layer. Ideally, both would receive information from the same source and with
the same message format by default, but keeping the packages "as is" can also be beneficial
because it creates fewer problems related to project versions.

Table 4.3: Parameters changed throughout TEB navigation test configurations.

Parameter Configurations
Names Default 1 2 3 4 5 6
min obsta-
cle dist 0.4 0.4 0.5 0.5 0.5 0.5 0.5

dynamic ob-
stacle infla-
tion dist

0.6 0.6 0.7 0.8 0.8 0.8 0.8

include
dynamic
obstacles

false true true true true true true

obstacle
associa-
tion force
inclusion
factor

1.5 1.5 1.5 1.5 2.0 1.5 1.5

weight ob-
stacle 50.0 50.0 50.0 50.0 50.0 25.0 50.0

weight
dynamic
obstacle

50.0 50.0 50.0 50.0 50.0 50.0 25.0

The TEB algorithm is highly parameterized, and, for that reason, to make sure the
results obtained from it are satisfactory, these parameters must be tweaked to adapt to social
scenarios. If the parameters were not tweaked, the results would most likely not present
good results and could potentially result in the choice of a worse algorithm, leading to worse
performance overall. The configurations used for the tests in Table 4.4 are displayed in Table
4.3. The results displayed in Table 4.4 were gathered in the same way as the results from
Table 4.2, where 10 tests were performed for each configuration, and the data extraction was
also performed using the same principles.

48

Table 4.4: Scenario with moving people

Configuration Time/trajectory (s) Min. dist. person (m) Collisions
Default Config 48.8 0.55 3

Config. 1 45.2 0.64 1
Config. 2 55.8 0.44 1
Config. 3 53.7 0.73 0
Config. 4 51.5 0.61 1
Config. 5 52.4 0.73 1
Config. 6 54.3 0.47 0

A conclusion that can be drawn from the results just by looking at the first two rows
of Table 4.4 is that when TEB is used considering all obstacles to be static, it creates an
incomplete algorithm, even if the costmap is adapted to represent a person’s movement, which
is the case. This can be observed by comparing the results from the Default Configuration
and Configuration 1 in Table 4.4 since the only change between those configurations is that
in the Default Configuration, dynamic obstacles are treated just like the static ones. This
difference alone is critical because the algorithm can somewhat understand where the moving
people intend to move and adapt its behavior accordingly. When TEB only considers the
costmap information, the costmap is adapted, whereas the weight of the cells around these
obstacles may not be given their due importance, which may lead to risky behavior.

4.4.2 Results from Simulation Planner Experiments

To conclude the social navigation Chapter it is necessary to observe the results and decide
which approaches and respective configurations should be considered. The best planners and
respective configurations are decided based on the results available in Tables 4.2 and 4.4
and based on what behaviors are considered to be more suitable when it comes to avoiding
collisions with both people and static obstacles. If no solution has a clear advantage over the
others, a set of options should be carried over for real-world testing. The tests were performed
with simulated people who do not have social awareness, which means that if the robot was
being followed by the person in the simulation and the person was moving quicker, the person
would not consider the robot’s presence and crash into it. Even though this happens in some
scenarios, in most cases, it is avoidable. For that reason, these scenarios were not separated
into different metrics and are counted as crashes when they occur in the navigation process.
Besides the number of times the robot crashed into an obstacle, be it a wall or a person, the
most relevant metric is the minimum distance to people because it is preferable to compromise
the task’s completion speed instead of performing risky behavior to avoid people’s discomfort.

The following tables represent the best five results gathered from the planners and
configurations tested. The planners present in Table 4.5 are the best planner configurations out
of all the tests the the planner’s performance. The configurations for the TEB configurations
are displayed in Table 4.3 whereas the first number in DWB configurations is the weight for
obstacle avoidance critic, and the second is the time that DWB will simulate into the future.
On the other hand, the results from Table 4.6 are used to confirm whether the results from

49

Table 4.5: Compilation of best results from planners tested in the scenario represented in Fig. 4.5b.

Configuration Time/trajectory (s) Min. dist. person (m) Collisions
TEB Config. 3 53.7 0.73 0
TEB Config. 5 52.4 0.73 1
TEB Config. 6 54.3 0.47 0
DWB 16 1.1 65.1 0.56 0
DWB 16 1.2 62.5 0.64 1

Table 4.5 hold up to different scenarios with different movement patterns.

Table 4.6: Compilation of best results from planners tested in the scenario represented in Fig. 4.5a.

Configuration Time/trajectory (s) Min. dist. person (m) Collisions
TEB Config. 3 49.583 1.052 0
TEB Config. 5 48.555 0.563 0
TEB Config. 6 49.912 0.614 0
DWB 16 1.1 53.504 0.886 1
DWB 16 1.2 59.701 0.689 0

Considering the previously mentioned metrics gathered, the DWB and TEB algorithms,
both with the proper set of criteria, have completed the tests without crashing a single time.
Looking back into Edward Hall’s proxemic theory [2], the rough transition distance between
a person’s intimate and personal space is about 50cm. This is not a completely accurate
depiction because of cultural and personal preferences, but serves as a guideline for what is
an acceptable minimum distance between the agent and a person while performing a task.

Considering the 0.50m threshold as the threshold for what is an acceptable distance to a
person, it can be observed in Table 4.5 that, besides the crashes, most planners from the ones
compiled in Table 4.5 can keep the robot at a safe distance relative to the surrounding people.
As can be seen in Table 4.5, after performing the same test in the same environment with
similar people movements, both DWB and TEB have configurations that managed to perform
the task 10 times with slight variations in people’s movement without crashing, which, for that
metric, is the ideal result. Some other configurations led to satisfactory results with a single
collision in all 10 iterations of that test. The next most important metric to decide which
configuration is the best is the minimum distance to a person. In this field, configuration
number three of the TEB algorithm is the one that has the highest value of "minimum distance
to a person" out of the configurations that did not result in any collisions throughout all test
iterations.

All optimizations made to the planning algorithms were made based on the behavior the
robot would present for the environment in Fig.4.5b. Further tests were performed to evaluate
if the local planners could adapt to change and new environments. For that reason, using
the scenario from Fig. 4.5a, a new set of 10 iterations for each of the local planners from
Table 4.5. As can be deduced by analyzing both Tables 4.5 and 4.6, the algorithms can adapt
to new scenarios where people display different movement patterns. These patterns may be

50

considered unpredictable behavior since people in the environment represented in Fig. 4.5a
reach a point where they turn around, which may cause problems because of the constant
velocity motion model that is being used by the leg_tracker.

Besides confirming that the planners can adapt to different environments, when the results
from both Tables 4.5 and 4.6 are combined, it becomes clear that Configurations 3 and 6
from the TEB algorithm are the best because they are the only configurations out of the five
best that had a total of 0 crashes throughout the entirety of the tests performed. Out of
these 2 configurations, Configuration 3 is better, as the minimum distances captured from this
configuration, are much higher without only a slight variation in the average times per task.

51

CHAPTER 5
Conclusion

In this final chapter, the global results of the research made in this dissertation’s context will
be discussed. It also explains what could have been done differently throughout the dissertation
that could have led to better results. The main contributions made by this dissertation to
the field of social navigation will come after this discussion. Finally, the shortcomings of this
dissertation are discussed, and some possible future solutions are presented.

5.1 Discussion and Alternative Approaches

This dissertation presents a framework for social navigation whose initial objective is to be
used in disinfection scenarios. The framework explores a variety of Machine Learning models
in attempts to improve People Detection and Tracking algorithms based on leg detection. The
gathered results for people detection and tracking were positive, even though the model tested
that got the best results for leg classification was a variation of the original. The accuracy of
this model with different tests was never below 94%.

When it comes to social navigation, even though it is hard to affirm in concrete terms
what constitutes a successful social navigation model, it is safe to say that, according to the
experiments performed in simulation and the metrics used to determine whether a trajectory
is socially compliant, the robot’s movement is socially compliant. This is the result of using
the configured costmap layers to adapt to social scenarios in which the robotic agent may be
inserted.

The current costmap layers are capable of representing obstacles based on the environment’s
map and sensor information, they also have a layer responsible for representing a region around
obstacles to increase safety. Apart from these layers, there is also a layer that is responsible
for the representation of the regions that may be dangerous because of the presence and
movement of people.

53

5.2 Conclusion

To summarize, this dissertation provides a framework for social navigation. This frame-
work is based on LiDAR people detection that culminates in a social navigation framework.
Considering that the results of the people detection using LiDAR information are positive
means that the social planner has a solid ground for development. To accomplish such
results, alterations had to be performed to help with the data extraction so that the data
was correctly labeled for proper training and testing. After the people detection and tracking
problem was tackled, the social navigation module was explored. This module was explored
by using different costmap layers and configurations as well as different planners with different
configurations. The costmap and planner were changed to adapt to people’s behavior. The
costmap and planner system was not tested in real-life scenarios, however, the results gathered
in simulation environments are good indicators that the robot would be able to adapt to
such scenarios since the system performs tasks swiftly and can maintain a safe distance from
people.

5.3 Future Work

For this project to be used in a real-life scenario for space disinfection, extra development
and exploration would need to be performed. When it comes to the social navigation aspect,
the navigation framework has only been tested in simulation. Even though the results achieved
after the simulation experiments were positive, to know that the framework works in real-life
conditions, that framework must be tested in real-life scenarios. With that done and with
successful results, the social navigation framework would be ready to use. However, even
with the framework being ready to use, it would need to be complemented with an algorithm
that creates sets of waypoints in the environment according to the disinfection needs and the
people in the environment.

A possible improvement for the social navigation framework is to add the information
gathered from the 3D cameras to the people detection and tracking so that obstacles that are
not at the height of the LiDAR can also be detected, which would help with the detection of
possible obstacles at different heights and, with the aid of sensor fusion, create better human
detections. This could, depending on the types of obstacles in the environment, improve the
results for the robot’s navigation in general and not only social navigation, because this would
help in the detection of people and obstacle perception.

54

References

[1] Y. Gao and C.-M. Huang, “Evaluation of socially-aware robot navigation,” Frontiers in Robotics
and AI, vol. 8, 2022, issn: 2296-9144. doi: 10.3389/frobt.2021.721317. [Online]. Available: https:
//www.frontiersin.org/articles/10.3389/frobt.2021.721317.

[2] N. Brown, “Edward t. hall, proxemic theory.,” 1966.

[3] M. Daza, D. Barrios-Aranibar, J. Diaz-Amado, Y. Cardinale, and J. Vilasboas, “An approach of social
navigation based on proxemics for crowded environments of humans and robots,” Micromachines, vol. 12,
2 2021, issn: 2072666X. doi: 10.3390/mi12020193.

[4] M. I. R. A. (MiR), Mir100 user guide 3rd ed. Mobile Industrial Robots A/S (MiR), Odense, Denmark,
2020. (visited on 2023).

[5] K. O. Arras, O. M. Mozos, and W. Burgard, “Using boosted features for the detection of people in 2d
range data,” in Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007,
pp. 3402–3407. doi: 10.1109/ROBOT.2007.363998.

[6] A. Leigh, J. Pineau, N. Olmedo, and H. Zhang, “Person tracking and following with 2d laser scanners,”
in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 726–733. doi:
10.1109/ICRA.2015.7139259.

[7] T. Taipalus and J. Ahtiainen, “Human detection and tracking with knee-high mobile 2d lidar,” in 2011
IEEE International Conference on Robotics and Biomimetics, 2011, pp. 1672–1677. doi: 10.1109/ROBIO.
2011.6181529.

[8] L. Spinello and R. Siegwart, “Human detection using multimodal and multidimensional features,” in
2008 IEEE International Conference on Robotics and Automation, 2008, pp. 3264–3269. doi: 10.1109/
ROBOT.2008.4543708.

[9] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Physical Review E, vol. 51,
pp. 4282–4286, 5 1995, issn: 1063651X. doi: 10.1103/PhysRevE.51.4282. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevE.51.4282.

[10] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning and control,” in [1993] Proceedings
IEEE International Conference on Robotics and Automation, vol. 2, 1993, pp. 802–807. doi: 10.1109/
ROBOT.1993.291936.

[11] D. V. L. (Robotics), “Fundamentals of local planning,” in ROSCon Vancouver 2017, Open Robotics,
Oct. 2017. doi: 10.36288/ROSCon2017- 900782. [Online]. Available: https://doi.org/10.36288/
ROSCon2017-900782.

[12] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE
Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997. doi: 10.1109/100.580977.

[13] D. V. Lu and W. D. Smart, “Towards more efficient navigation for robots and humans,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 1707–1713. doi:
10.1109/IROS.2013.6696579.

[14] B. Okal and K. O. Arras, “Learning socially normative robot navigation behaviors with bayesian inverse
reinforcement learning,” in 2016 IEEE International Conference on Robotics and Automation (ICRA),
2016. doi: 10.1109/ICRA.2016.7487452.

55

https://doi.org/10.3389/frobt.2021.721317
https://www.frontiersin.org/articles/10.3389/frobt.2021.721317
https://www.frontiersin.org/articles/10.3389/frobt.2021.721317
https://doi.org/10.3390/mi12020193
https://doi.org/10.1109/ROBOT.2007.363998
https://doi.org/10.1109/ICRA.2015.7139259
https://doi.org/10.1109/ROBIO.2011.6181529
https://doi.org/10.1109/ROBIO.2011.6181529
https://doi.org/10.1109/ROBOT.2008.4543708
https://doi.org/10.1109/ROBOT.2008.4543708
https://doi.org/10.1103/PhysRevE.51.4282
https://link.aps.org/doi/10.1103/PhysRevE.51.4282
https://link.aps.org/doi/10.1103/PhysRevE.51.4282
https://doi.org/10.1109/ROBOT.1993.291936
https://doi.org/10.1109/ROBOT.1993.291936
https://doi.org/10.36288/ROSCon2017-900782
https://doi.org/10.36288/ROSCon2017-900782
https://doi.org/10.36288/ROSCon2017-900782
https://doi.org/10.1109/100.580977
https://doi.org/10.1109/IROS.2013.6696579
https://doi.org/10.1109/ICRA.2016.7487452

[15] D. Li, L. Li, Y. Li, F. Yang, and X. Zuo, “A multi-type features method for leg detection in 2-
d laser range data,” IEEE Sensors Journal, vol. 18, pp. 1675–1684, 4 2018, issn: 1530437X. doi:
10.1109/JSEN.2017.2784900.

[16] C. Gu, Q. Gao, and Z. Xing, “Pedestrian localization based on image plane constraint,” in 2021
International Conference on Control Science and Electric Power Systems (CSEPS), 2021, pp. 103–106.
doi: 10.1109/CSEPS53726.2021.00028.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu, and A. C. Berg, “SSD: single shot
multibox detector,” CoRR, [Online]. Available: http://arxiv.org/abs/1512.02325.

[18] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” vol. 2016-
August, 2016, pp. 3464–3468. doi: 10.1109/ICIP.2016.7533003.

[19] J. Chen, P. Ye, and Z. Sun, “Pedestrian detection and tracking based on 2d lidar,” 2019, pp. 421–426.
doi: 10.1109/ICSAI48974.2019.9010202.

[20] C. Álvarez-Aparicio, Á. M. Guerrero-Higueras, F. J. Rodríguez-Lera, J. G. Clavero, F. M. Rico, and
V. Matellán, “People detection and tracking using lidar sensors,” Robotics, vol. 8, 3 2019, issn: 22186581.
doi: 10.3390/robotics8030075.

[21] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh, “Openpose: Realtime multi-person
2d pose estimation using part affinity fields,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019. [Online]. Available: http://arxiv.org/abs/1812.08008.

[22] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv, 2018. [Online]. Available:
http://arxiv.org/abs/1804.02767.

[23] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction: Crowd-aware robot navigation
with attention-based deep reinforcement learning,” in Proceedings - IEEE International Conference on
Robotics and Automation, vol. 2019-May, 2019, pp. 6015–6022. doi: 10.1109/ICRA.2019.8794134.

[24] Ó. Gil and A. Sanfeliu, “Effects of a social force model reward in robot navigation based on deep
reinforcement learning,” vol. 1093 AISC, 2020. doi: 10.1007/978-3-030-36150-1_18.

[25] A. Vega, L. J. Manso, D. G. Macharet, P. Bustos, and P. Núñez, “Socially aware robot navigation
system in human-populated and interactive environments based on an adaptive spatial density function
and space affordances,” Pattern Recognition Letters, vol. 118, pp. 72–84, 2019, issn: 01678655. doi:
10.1016/j.patrec.2018.07.015. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167865518303052.

[26] C. I. Mavrogiannis, W. B. Thomason, and R. A. Knepper, “Social momentum: A framework for legible
navigation in dynamic multi-agent environments,” in Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction, 2018, pp. 361–369. doi: 10.1145/3171221.3171255. [Online].
Available: https://doi.org/10.1145/3171221.3171255.

[27] C. Mavrogiannis, P. Alves-Oliveira, W. Thomason, and R. A. Knepper, “Social momentum: Design and
evaluation of a framework for socially competent robot navigation,” ACM Transactions on Human-
Robot Interaction, vol. 11, no. 2, 2022, issn: 25739522. doi: 10.1145/3495244. [Online]. Available:
https://doi.org/10.1145/3495244.

[28] C. Rösmann, F. Hoffmann, and T. Bertram, “Timed-elastic-bands for time-optimal point-to-point
nonlinear model predictive control,” in 2015 European Control Conference (ECC), 2015, pp. 3352–3357.
doi: 10.1109/ECC.2015.7331052.

[29] L. Tiseni, D. Chiaradia, M. Gabardi, M. Solazzi, D. Leonardis, and A. Frisoli, “Uv-c mobile robots with
optimized path planning: Algorithm design and on-field measurements to improve surface disinfection
against sars-cov-2,” IEEE Robotics and Automation Magazine, vol. 28, 1 2021, issn: 1558223X. doi:
10.1109/MRA.2020.3045069.

[30] IUVA, Iuva covid-19 faq. [Online]. Available: https://iuva.org/iuva-covid-19-faq.

[31] A. Pierson, J. W. Romanishin, H. Hansen, L. Z. Yanez, and D. Rus, “Designing and deploying a mobile
uvc disinfection robot,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021, pp. 6700–6707. doi: 10.1109/IROS51168.2021.9636260.

56

https://doi.org/10.1109/JSEN.2017.2784900
https://doi.org/10.1109/CSEPS53726.2021.00028
http://arxiv.org/abs/1512.02325
https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.1109/ICSAI48974.2019.9010202
https://doi.org/10.3390/robotics8030075
http://arxiv.org/abs/1812.08008
http://arxiv.org/abs/1804.02767
https://doi.org/10.1109/ICRA.2019.8794134
https://doi.org/10.1007/978-3-030-36150-1_18
https://doi.org/10.1016/j.patrec.2018.07.015
https://www.sciencedirect.com/science/article/pii/S0167865518303052
https://www.sciencedirect.com/science/article/pii/S0167865518303052
https://doi.org/10.1145/3171221.3171255
https://doi.org/10.1145/3171221.3171255
https://doi.org/10.1145/3495244
https://doi.org/10.1145/3495244
https://doi.org/10.1109/ECC.2015.7331052
https://doi.org/10.1109/MRA.2020.3045069
https://iuva.org/iuva-covid-19-faq
https://doi.org/10.1109/IROS51168.2021.9636260

[32] P. Chanprakon, T. Sae-Oung, T. Treebupachatsakul, P. Hannanta-Anan, and W. Piyawattanametha,
“An ultra-violet sterilization robot for disinfection,” in 2019 5th International Conference on Engineering,
Applied Sciences and Technology (ICEAST), 2019, pp. 1–4. doi: 10.1109/ICEAST.2019.8802528.

[33] D. Hu, H. Zhong, S. Li, J. Tan, and Q. He, “Segmenting areas of potential contamination for adaptive
robotic disinfection in built environments,” Building and Environment, vol. 184, p. 107 226, 2020, issn:
03601323. doi: 10.1016/j.buildenv.2020.107226. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0360132320305977.

[34] D. I. Kim and E. Martinson, “Human centric spatial affordances for improving human activity recogni-
tion,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2016-
November, 2016, pp. 725–730. doi: 10.1109/IROS.2016.7759132.

[35] C. Tamantini, F. S. D. Luzio, F. Cordella, G. Pascarella, F. E. Agro, and L. Zollo, “A robotic health-
care assistant for covid-19 emergency: A proposed solution for logistics and disinfection in a hospital
environment,” IEEE Robotics and Automation Magazine, vol. 28, pp. 71–81, 1 2021, issn: 1558223X. doi:
10.1109/MRA.2020.3044953. [Online]. Available: https://ieeexplore.ieee.org/document/9340010.

[36] ROS, Ecosystem, 2021. [Online]. Available: https://www.ros.org/blog/ecosystem/.

[37] D. RIC, Mir_robot, 2023. [Online]. Available: https://github.com/dfki-ric/mir_robot.

[38] B. Lau, K. O. Arras, W. Burgard, B. Lau, ·. W. Burgard, W. Burgard, and K. O. Arras, “Multi-model
hypothesis group tracking and group size estimation,” Int J Soc Robot, vol. 2, pp. 19–30, 2010. doi:
10.1007/s12369-009-0036-0. [Online]. Available: https://link.springer.com/article/10.1007/
s12369-009-0036-0.

[39] J. Deray, Carmen_publisher, https : / / github . com / artivis / carmen _ publisher, commit =
e23a779a8a534d6b56af94712df25a0caaae73b8, email = deray.jeremie@gmail.com, 2021.

[40] F. D. Augusto Ballardini Pietro Colombo, Ira_laser_tools, https://wiki.ros.org/ira_laser_tools,
2021.

[41] W. R. Franklin, Plpoly. [Online]. Available: https://wrfranklin.org/Research/Short_Notes/pnpoly.
html.

[42] S. Mostafa and F.-X. Wu, “Chapter 3 - diagnosis of autism spectrum disorder with convolutional
autoencoder and structural mri images,” in Neural Engineering Techniques for Autism Spectrum
Disorder, A. S. El-Baz and J. S. Suri, Eds., Academic Press, 2021, pp. 23–38, isbn: 978-0-12-822822-
7. doi: https://doi.org/10.1016/B978- 0- 12- 822822- 7.00003- X. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B978012822822700003X.

[43] H. Brooks and N. Tucker, “Electrospinning predictions using artificial neural networks,” Polymer,
vol. 58, pp. 22–29, 2014. doi: 10.1016/j.polymer.2014.12.046. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S003238611401146X.

[44] A. C. Mueller, Support vector machines, https://github.com/amueller/COMS4995-s19/blob/master/
slides/unused-aml-09-support-vector-machines/images/img_4.png, 2018.

[45] D. V. Lu, Navigation_layers, https : / / github . com / DLu / navigation _ layers, commit =
8899b6e9504165469468cc966f9030305ed5d827, 2021.

[46] D. V. Lu, People_msgs, https://github.com/wg- perception/people/tree/noetic, commit =
852851cbf0b8a879114c31e657b83a06b7b149b5, 2021.

[47] OpenCV, Rtrees class reference, OpenCV, 2023. [Online]. Available: https://docs.opencv.org/3.4/
d0/d65/classcv_1_1ml_1_1RTrees.html#a4f833672045ab3be645ca0cba0fc7a89.

[48] Scikit-Learn, Nusvc, Scikit-Learn, 2023. [Online]. Available: https://scikit- learn.org/stable/
modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC.

[49] E. Pedrosa, Iris_lama_ros, https : / / github . com / iris - ua / iris _ lama _ ros, commit =
d6c004ab7bd228f347cf26d01d60447f006cc0fa, 2022.

57

https://doi.org/10.1109/ICEAST.2019.8802528
https://doi.org/10.1016/j.buildenv.2020.107226
https://www.sciencedirect.com/science/article/pii/S0360132320305977
https://www.sciencedirect.com/science/article/pii/S0360132320305977
https://doi.org/10.1109/IROS.2016.7759132
https://doi.org/10.1109/MRA.2020.3044953
https://ieeexplore.ieee.org/document/9340010
https://www.ros.org/blog/ecosystem/
https://github.com/dfki-ric/mir_robot
https://doi.org/10.1007/s12369-009-0036-0
https://link.springer.com/article/10.1007/s12369-009-0036-0
https://link.springer.com/article/10.1007/s12369-009-0036-0
https://github.com/artivis/carmen_publisher
https://wiki.ros.org/ira_laser_tools
https://wrfranklin.org/Research/Short_Notes/pnpoly.html
https://wrfranklin.org/Research/Short_Notes/pnpoly.html
https://doi.org/https://doi.org/10.1016/B978-0-12-822822-7.00003-X
https://www.sciencedirect.com/science/article/pii/B978012822822700003X
https://www.sciencedirect.com/science/article/pii/B978012822822700003X
https://doi.org/10.1016/j.polymer.2014.12.046
https://www.sciencedirect.com/science/article/pii/S003238611401146X
https://www.sciencedirect.com/science/article/pii/S003238611401146X
https://github.com/amueller/COMS4995-s19/blob/master/slides/unused-aml-09-support-vector-machines/images/img_4.png
https://github.com/amueller/COMS4995-s19/blob/master/slides/unused-aml-09-support-vector-machines/images/img_4.png
https://github.com/DLu/navigation_layers
https://github.com/wg-perception/people/tree/noetic
https://docs.opencv.org/3.4/d0/d65/classcv_1_1ml_1_1RTrees.html#a4f833672045ab3be645ca0cba0fc7a89
https://docs.opencv.org/3.4/d0/d65/classcv_1_1ml_1_1RTrees.html#a4f833672045ab3be645ca0cba0fc7a89
https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC
https://github.com/iris-ua/iris_lama_ros

[50] E. Pedrosa, A. Pereira, and N. Lau, “A non-linear least squares approach to slam using a dynamic
likelihood field,” Journal of Intelligent & Robotic Systems, vol. 93, pp. 519–532, Mar. 2019. doi:
10.1007/s10846-017-0763-7.

[51] M. Likhachev, Search-based planning with motion primitives, http://www.ros.org/wiki/Events/
CoTeSys-ROS-School?action=AttachFile&do=get&target=robschooltutorial_oct10.pdf, 2010.

[52] M. Phillips, Sbpl_lattice_planner, http://wiki.ros.org/sbpl_lattice_planner, 2018.

[53] C. Rösmann, Teb_local_planner, https://github.com/rst-tu-dortmund/teb_local_planner.git,
2021.

58

https://doi.org/10.1007/s10846-017-0763-7
http://www.ros.org/wiki/Events/CoTeSys-ROS-School?action=AttachFile&do=get&target=robschooltutorial_oct10.pdf
http://www.ros.org/wiki/Events/CoTeSys-ROS-School?action=AttachFile&do=get&target=robschooltutorial_oct10.pdf
http://wiki.ros.org/sbpl_lattice_planner
https://github.com/rst-tu-dortmund/teb_local_planner.git

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Problem Description
	Objectives
	Expected Results

	Document Structure

	Background
	Background Work
	People Detection and Tracking
	Social Robot Navigation

	State of the Art
	People Detection and Tracking
	Social Robot Navigation
	Disinfection-Oriented Navigation

	Tools
	Robot Specifications
	Robot Operating System (ROS)
	MiR package for ROS
	Gazebo

	People Detection and Tracking Based on LiDAR data
	Implementation Using Default Machine Learning Models
	Datasets
	Data extraction and labeling for model training
	Default Model Training

	Implementation Using Alternative Machine Learning Models
	Alternative Machine Learning Model Training
	People Tracking

	Adaptations to communication modules
	Tracking Algorithm
	Experiments and Result Analysis
	Random Forest
	CNN
	NN
	SVM (Support Vector Machine)
	Theoretical Experiments and Results
	Empirical Experiments and Results

	Proposed Social Navigation Algorithm
	Costmaps
	Costmap Layers

	Global Planner
	Local Planner
	Experiments and Results
	Planner Experiments and Results in Simulation
	Results from Simulation Planner Experiments

	Conclusion
	Discussion and Alternative Approaches
	Conclusion
	Future Work

	References

