
Universidade de Aveiro
2023

Paulo Sérgio
Maravilha Gasalho

Sistema de Gestão de Múltiplos Destinos baseado
em micro-serviços

Micro-service-based Multi Destination Management
System

Universidade de Aveiro
2023

Paulo Sérgio
Maravilha Gasalho

Sistema de Gestão de Múltiplos Destinos baseado
em micro-serviços

Micro-service-based Multi Destination Management
System

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à obtenção do grau de Mestre em Engenharia de Computadores
e Telemática, realizada sob a orientação científica do Doutor Osvaldo Rocha
Pacheco, Professor auxiliar do Departamento de Eletrónica, Telecomunicações e
Informática da Universidade de Aveiro, e da Doutora Zélia Maria de Jesus Breda,
Professora auxiliar do Departamento de Economia, Gestão, Engenharia Industrial
e Turismo da Universidade de Aveiro.

o júri / the jury
presidente / president Professor Doutor Carlos Manuel Azevedo Costa

Professor Associado com Agregação do Departamento de Eletrónica, Telecomunicações e Infor-
mática da Universidade de Aveiro

vogais / examiners committee Professor Doutor Miguel Angel Guevara López
Professor Adjunto do Instituto Politécnico de Setúbal - Escola Superior de Tecnologia de Setúbal

Professor Doutor Osvaldo Manuel da Rocha Pacheco
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da Universi-
dade de Aveiro (orientador)

agradecimentos /
acknowledgements

Agradeço desde já aos meus orientadores, ao Professor Doutor Osvaldo Pacheco e
à Professora Doutora Zélia Breda pela paciencia e pelo incansável apoio prestado
ao longo de todo este processo.
Aos meus pais e avós que tanto me apoiaram ao longo do curso e que viveram os
meus sucessos e insucessos com tanta intensidade, acreditando sempre em mim.
A Carolina, por me ter apoiado e ajudado nas fases mais criticas da realização
desta dissertação.
A todos os amigos que fiz ao longo do curso e que levo agora para a vida.
A todos, o meu muito obrigado.

Palavras Chave API, Aplicações WEB, Arquitetura Baseada em Microsserviços, Bases de Dados
PostgresSQL, Destinos Turísticos, Sistema de Informação, Sistemas de Gestão de
Destinos

Resumo Atualmente, os destinos turísticos recorrem a Sistemas de Gestão de Destinos
como forma de divulgarem junto da procura turística as ofertas turísticas que têm
disponíveis nas suas regiões. No entanto, o que ocorre é que a adoção destes siste-
mas de informação é ainda muito baixa, o que se deve essencialmente aos elevados
custos da sua implementação, pois atualmente é necessário criar um sistema deste
tipo completamente de raiz. Esta dissertação teve assim como principal objectivo
provar que é possível desenvolver uma plataforma que permita criar sistemas de
gestão de destinos de forma muito mais rápida e económica, através da construção
de uma infraestrutura partilhada por vários destinos, onde seria possível reutilizar
ao máximo os componentes de software de um SGD. O resultado foi a criação de
um plataforma composta por um módulo de gestão, onde para além de ser possível
criar e gerir SGD, permite ainda que os gestores de produtos turísticos anunciem
os seus serviços. Além disso foi também criado um portal demonstrador que si-
mula a oferta de um destino turistico, com o intuito de validar o sistema criado.
Em termos tecnológicos, é de destacar o facto de que o Backend assenta numa
arquitetura baseada em microserviços que permite uma rápida escalabilidade, ex-
tensibilidade e eficiência energética que são objetivos chave para o sucesso deste
projeto.

Keywords API, Architecture Based on Microservices, Destination Management Systems, In-
formation Systems, PostgreSQL Databases, Touristic Destinations, WEB Applica-
tions

Abstract Nowadays, tourist destinations use Destination Management Systems as a way
of publicizing tourist demand and the tourist offers they have available in their
regions. However, the adoption of these information systems is still very low, es-
sentially due to the high costs of implementing them, as it is currently necessary to
create a system of this type completely from scratch. The main aim of this disser-
tation was, therefore, to prove that it is possible to develop a platform that allows
destination management systems to be created much more quickly and econom-
ically by building an infrastructure shared by several destinations, where it would
be possible to reuse the software components of a DMS as much as possible. The
result was the creation of a platform comprising a management module, where,
as well as being able to create and manage DMSs, it also allows tourism product
managers to advertise their services. A demonstrator portal was also created to
simulate the offer of a tourist destination to validate the system created. In techno-
logical terms, it is worth highlighting that the Backend is based on an architecture
based on microservices, which allows for rapid scalability, extensibility, and energy
efficiency, which are critical objectives for the success of this project.

Contents

Contents i

List of Figures iii

List of Tables v

Acronyms vii

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Document Structure . 2

2 State of Art 5

2.1 Introduction . 5

2.2 Software Architectures . 5

2.3 Web Development Architectures . 9

2.4 Database Server . 10

2.4.1 Relational Database . 10

2.5 Application Server . 12

2.5.1 Spring Boot . 12

2.6 Web Server . 12

2.6.1 React . 12

2.7 Related Projects . 13

2.7.1 Visit Alentejo . 13

2.8 Conclusion . 17

3 System Requirements and Architecture 19

i

3.1 Introduction . 19

3.2 System Requirements . 20

3.2.1 Requirements Gathering Process . 20

3.2.2 Actors . 21

3.2.3 Functional Requirements . 22

3.2.4 Non Functional Requirements . 26

3.2.5 General Data Protection Regulation . 26

3.3 System Architecture . 27

3.3.1 Physical and Technological model . 27

3.3.2 Domain model . 28

3.4 Conclusion . 30

4 Implementation 31

4.1 Introduction . 31

4.2 API Gateway and Discovery Server . 31

4.2.1 API Gateway . 31

4.2.2 Discovery Server . 33

4.3 Authentication . 34

4.4 Business Microservices . 36

4.5 Frontend/Backend connection . 44

4.6 Conclusion . 45

5 Results and Discussion 47

5.1 Introduction . 47

5.2 Portal and Management System: Prototypes . 47

5.2.1 Portal . 47

5.2.2 Management . 51

5.3 System Performance . 55

5.3.1 Load Test . 56

5.4 Conclusion . 59

6 Conclusions and Future Work 61

6.1 Final Considerations . 61

6.2 Future work . 61

References 63

ii

List of Figures

2.1 Layered Architecture. Figure from [8] . 6

2.2 Event-Driven Architecture. Figure from [8] . 7

2.3 MicroKernel Architecture. Figure from [8] . 8

2.4 MicroServices Architecture. Figure from [8] . 9

2.5 3-tier Client-Server Architecture. Figure from [12] . 10

2.6 Visit Alentejo Homepage . 14

2.7 Visit Alentejo - Where to sleep . 15

2.8 Visit Alentejo - Hotel Detail . 16

2.9 Visit Alentejo - Events . 17

3.1 Multi-Destination Management System - Proposed Solution 20

3.2 Management Module - Use Case Diagram . 23

3.3 Portal Module - Use Case Diagram . 25

3.4 Physical and Technological Model . 28

3.5 Domain Model . 29

4.1 Spring Cloud Gateway Dependency . 32

4.2 Api Gateway Routes . 32

4.3 Cross-Origin Resource Sharing (CORS) Configurations 33

4.4 Eureka Server Dependency . 33

4.5 Eureka Server Configurations . 33

4.6 Eureka Client Dependency . 34

4.7 Eureka Client Configurations . 34

4.8 Authentication Dependencies . 34

4.9 Accomodation Microservice Dependencies . 37

4.10 Accomodation Microservice Packages . 38

5.1 Aveiro Region Portal - Main Page . 48

iii

5.2 Aveiro Region Portal - More Detail about a Touristic Product 49

5.3 Aveiro Region Portal - Do a Reservation of a Touristic Product 49

5.4 Aveiro Region Portal - Do a Rating of a Touristic Product 50

5.5 Aveiro Region Portal - My Ratings Page . 50

5.6 Aveiro Region Portal - My Reservations Page . 51

5.7 Multi-Destination Management System - Main Page . 52

5.8 Multi-Destination Management System - My Touristic Product Reservations 52

5.9 Multi-Destination Management System - Activities/Events List 53

5.10 Multi-Destination Management System - Create Restaurant/Bar Advert 53

5.11 Multi-Destination Management System - Locations List 54

5.12 Multi-Destination Management System - Create Location 54

5.13 Multi-Destination Management System - Destinations List 55

5.14 Multi-Destination Management System - Create Destination 55

5.15 JMeter - Test Plan . 57

5.16 JMeter - Thread Properties . 57

iv

List of Tables

4.1 Authorization Representational State Transfer (REST) API endpoints 36

4.2 Restaurant-Bar Service REST API endpoints . 39

4.3 Accomodation Service REST API endpoints . 40

4.4 Non Touristic Service REST API endpoints . 40

4.5 Activities-Events Service REST API endpoints . 41

4.6 Rating Service REST API endpoints . 42

4.7 Reservation Service REST API endpoints . 42

4.8 Destination/Location Service - Destination REST API endpoints 43

4.9 Destination/Location Service - Location REST API endpoints 43

4.10 Portal - Needed Endpoints By Microservice . 44

4.11 Management - Needed Endpoints By Microservice . 45

5.1 JMeter - Portal Modules Test Results . 58

5.2 JMeter - Management Module Test Results . 58

v

Acronyms

API Application Programming Interface
CORS Cross-Origin Resource Sharing
CRUD Create, Read, Update and Delete
CSS Cascading Style Sheets
DMOs Destination Management Organizations
DMS Destination Management System
DTO Data Transfer Object
HTTP Hypertext Transfer Protocol
HTML HyperText Markup Language
JDBC Java Database Conectivity
JSON Javascript Object Notation

JWT JSON Web Token
MVC Model-View-Controler
ORDBMS Object-Relational Database

Management System
RBAC Role Based Access Control
REST Representational State Transfer
RDBMS Relational Database Management

System
SQL Structured Query Language
UI User Interface

vii

Chapter 1
Introduction

1.1 Motivation

Today, tourism plays a vital role in the economy of several countries and is even their most
significant source of income. However, this activity is not neglected even by governments with
lower tourist demand [1]. Therefore, it is in the general interest that the tourist attractions of
a given region or place are well publicized to reach as many people as possible.

Thus, those responsible for the management of a tourist destination, which, according to
Bunghez [1], consists of a "place or geographical space where a visitor or tourist stops for a
night or a period, or the end of a tourist’s vacation, whether traveling for tourist or business
reasons" are beginning to take an interest in online platforms where they provide tourist
demand with the possibility of planning their trips and promoting their tourism products. [2]

These platforms consist of the Destination Management System (DMS), which, according
to the literature, can be described as a collection of computerized information about a
destination, accessible in an interactive way [3], and which act as a link between the Destination
Management Organizations (DMOs) and the tourist companies located in the destination,
allowing the DMOs to coordinate their operations and manage their relationships [4]. These
are usually driven by the DMOs and can be considered synonymous with the technological
infrastructure of an DMOs [5], which can be private, public, or public-private sector.

However, the adoption of these systems by destinations is still very low, which is essentially
due to the high implementation costs and the delay in development resulting from the
technological difficulties that have to be overcome [6], which makes it hard for many small
destinations with little financial capacity, to join this type of innovation. This is because
currently, a destination that wants to implement a solution of this type needs to create at
least two modules: a portal module that visitors use to the destination and that consists of
the means of dissemination intended by the destination and a management module where
those who manage the destination announce the tourist activities that will appear on the
portal. In addition, it is necessary to create all the software components from scratch for both
modules, from the database to the backend and finally to the Frontend, and also to host this
entire system on a physical server or in its cloud with all the costs that this entails.

1

1.2 Goals

This dissertation has several objectives, the main one being to prove that it is possible
to develop a platform that allows DMS to be created much more quickly and economically,
building an infrastructure shared by the various destinations. It should, therefore, be possible
to reuse the software components for both the portal module and the management module as
much as possible, making it possible to create a new DMS for a given destination by creating
only a customized front end for the destination portal, with all the remaining components
being generic and usable in multiple destinations.

In addition, it is also necessary to ensure that this solution makes it possible to add
new functionalities or support new tourism products, thus making it possible to satisfy the
needs of as many tourist destinations as possible without breaking compatibility with existing
functionalities and assessing whether the basic functionalities that will be implemented initially
satisfy the requirements of the system’s main stakeholders.

As stated above, one of the main objectives is to reduce the costs of creating and maintaining
a DMS, so this solution could prove particularly interesting for low-density territories, which
often cannot access this type of innovation due to budget constraints and will therefore find it
easier to adopt a system of this type.

However, it must also be ensured that a Multi-Destination Management System of this
type performs similarly to a system made from scratch for a given destination. From the point
of view of a visitor to a given region, it is seen as an isolated system for each destination.

From the point of view of software architecture, it is also the aim of this dissertation to
prove that an architecture based on microservices makes it possible to provide a fast, stable,
and efficient response to the objectives mentioned above.

Finally, to fulfill these objectives, a prototype of a Multi-Destination Management System
was developed with a management module shared between the various destinations and two
portal modules representing two different tourist destinations. This prototype was validated
from a performance point of view using load tests.

1.3 Document Structure

This document is, therefore, structured as follows.
Chapter 2 presents some aspects of software engineering, such as the most commonly

used software architectures and how the web works, demonstrating its typical structure and
presenting each layer. It then shows one of the DMS analyzed to make the prototype for this
dissertation.

Chapter 3 mentions the requirements needed to develop the system and also presents the
architecture created to achieve the objectives above.

Chapter 4 details the implementation behind this solution, namely some relevant aspects of
the system’s backend and how the Frontend consumes the endpoints provided by Application
Programming Interface (API).

2

Chapter 5 demonstrates the implemented solution and validates its performance using
system load tests.

This document ends in Chapter 6, where some final considerations are made about the
solution, and some points for future improvement are highlighted.

3

Chapter 2
State of Art

2.1 Introduction

This chapter will explore some relevant aspects of the literature, both from a software
engineer’s point of view and from the point of view of the destination management technologies
that tourism currently uses, to design a truly innovative system that fulfills the objectives set
for this dissertation.

From the point of view of software engineering, some aspects relevant to the development of
a software solution will be studied, such as software architecture, and some of the most widely
used architectures will be presented, as well as their strengths and weaknesses. In addition
to this, following the typical structure of a web application, it will also be explained what a
relational database consists of. Three of the best-known Relational Database Management
System (RDBMS) will be presented, and a performance comparison will be given. It will
detail what the Backend of an application consists of, three well-known frameworks will be
presented, and the advantages and disadvantages of each framework will be compared. Finally,
it will describe what the Frontend of an application consists of, giving and comparing three
frameworks widely used for this purpose.

From the point of view of the destination management technologies that the tourism
sector currently uses, three DMS used by three different tourist destinations will be presented,
showing the main functionalities of each one and the possible flaws each has.

2.2 Software Architectures

A key point in the design and construction of complex software systems is their archi-
tecture. Good architecture helps ensure that the system meets essential requirements in
performance, reliability, portability, scalability, and interoperability. Bad architecture can
have dire consequences [7].

Thus, it is important to study various types of architectural patterns, such as the following:

Layered Architecture. A layered architecture pattern is a software architecture pattern that
organizes an application into several hierarchical layers, each having precise obligations.

5

Companies traditionally use this pattern as it allows a division of the software to be produced
by teams.

The layers of a layered framework typically consist of a presentation layer, a business
logic layer, and a records layer, as shown in Figure 2.1. The presentation layer is responsible
for processing the data entered by the user and displaying the results to the person. The
business logic layer contains the business rules of the software and manages data processing
and auditing. The persistence layer is responsible for storing and retrieving the information.

One of the advantages of this architecture is its modularity since changes in one layer no
longer affect the other layers, which facilitates installation, verification, and scalability.

However, this type of layered architecture consists of a monolithic architecture and,
therefore, has more difficulty scaling than other solutions. Even though it can be scaled by
splitting the layers into separate physical deployments and/or creating particular application
instances in multiple virtual machines, it becomes costly and inefficient because all the
application functionality has to be scaled. Also, the layered architecture is not very fault
tolerant - a fatal failure anywhere in the application brings down the entire functionality of
the application [8].

Figure 2.1: Layered Architecture. Figure from [8]

Event-Driven Architecture. An event-driven architecture (EDA) is a software architecture
pattern in which applications talk to each other through events asynchronously and decou-
pled, reducing dependencies and enabling greater flexibility and scalability. This pattern is
particularly beneficial in complicated systems, including financial or healthcare industries,
where information is constantly changing, and real-time processing is required.

In this architecture, the publish-subscribe topology is used, where the events are sent to
all the subscribed components, which receive and process the events independently, as seen in
Figure 2.2.

6

One of the advantages of this architecture is its performance since event-driven systems
can handle large amounts of data and demanding processing requirements.

However, this architecture can still introduce some complexity, as event control and
processing require additional infrastructure and coordination. Furthermore, the asynchronous
nature of the architecture can make it difficult to guarantee the consistency of information
and the integrity of transactions. Thus, this type of architecture is not recommended if its
processing is request-based, where it is common for the user to request data from a database
or perform basic Create, Read, Update and Delete (CRUD) operations on system entities [8].

Figure 2.2: Event-Driven Architecture. Figure from [8]

MicroKernel Architecture. A MicroKernel architecture pattern is a software architecture
pattern in which a piece of software is divided into a central system, called the core, and a set
of optional plug-in modules that increase its functionality.

In this architecture, the core provides the software’s primary infrastructure and functional-
ity. In contrast, the plug-in modules provide additional capabilities and capacities, as shown
in Figure 2.3. Plug-in modules can thus be developed independently, speeding up development
times for improvements and validation.

However, although this architecture has some flexibility since plug-in modules can be
added or removed as desired, all requests have to go through the core, which causes some
bottlenecks at this point in the software, making this architecture not very elastic and scalable.
In addition, it is also not fault-tolerant due to the kernel because a failure in the kernel affects
the entire system [8].

7

Figure 2.3: MicroKernel Architecture. Figure from [8]

Microservices Architecture. Microservices architecture is a software architecture pattern in
which an application is composed of a set of small independent services that can by themselves
answer requests or communicate with each other through Hypertext Transfer Protocol (HTTP)
requests. These services are, however, designed to implement particular business domains and
can be developed, tested, and implemented independently, allowing for greater flexibility and
scalability [9].

Furthermore, this type of architecture allows microservices to be developed using a
variety of programming languages and technologies, allowing programmers to choose the most
appropriate tools for each service.

One of the most significant advantages of this architecture is its scalability, as microservices
can be easily scaled up or down as required to deal with varying levels of traffic and processing
requirements. In addition, the modular nature of the architecture allows for easier maintenance
and updates, as each service can be updated independently without affecting the rest of the
application.

However, this type of pattern can introduce some complexity in development as services
must be designed and managed carefully to ensure they are correctly integrated and compatible,
and also, in the case where they are distributed, it can become more difficult to ensure data
consistency and maintain transactional integrity. Although these difficulties exist, it is possible
to minimize them by choosing a development framework suitable for such an architecture,
with good documentation and a high adoption by the community [8].

In an architecture of this type, the number of services often scales quickly, and therefore,
it becomes very complex for the clients to manage which service to request at any given time.
Thus, API Gateways are typically used in this type of architecture, which are nothing more
than a particular service that works as the only gateway to the application, encapsulating
internal aspects of the implementation and also supporting essential functionalities such as
permissions verification, Load balancing, caching of requests and system monitoring.

The main difficulty in implementing API Gateway lies in its ability to handle high
simultaneous requests and performance requirements, which can be overcome by using more
efficient load balancing algorithms and in the limit by using multiple API Gateways if the
application needs it [10].

8

Another point that is a common characteristic in this type of architecture is the use of a
separate database for each of the microservices, as can be seen in 2.4. However, this does not
necessarily have to be the case, and there are even implementations with a single database for
all microservices or no single database, with some databases being shared with several services.
Here, the responsibility lies with the software architect, who will evaluate the application’s
needs [8].

Figure 2.4: MicroServices Architecture. Figure from [8]

2.3 Web Development Architectures

As seen above, there are multiple architectures to guide software architects in software
development. Still, depending on the type of software to be implemented, some are more
suitable than others. Web applications use an architectural pattern called the client-server
pattern. In this pattern, there can be applications with multiple layers, but in web applications,
the most commonly used are three layers of communication:

• The web server, also called the presentation layer, is responsible for presenting data to
the client, receiving their requests, and returning responses. This layer usually runs
in a web browser and can be developed using HyperText Markup Language (HTML),
Cascading Style Sheets (CSS), and Javascript. This layer is often called the application’s
Frontend.

• The application server, also known as the logic layer, is the heart of the application
and is responsible for implementing the application’s business logic used to process user
requests, often cross-referenced with information from the database server to return a
result to the user. This layer is typically implemented using languages such as Java,
Python, or PHP and communicates with the web server layer via API calls. This layer
is often called the application’s Backend.

9

• The database server is the application’s data layer and is where the information processed
is stored and managed. There are various types of relational database systems, which
will be discussed in the next section [11].

This architecture can be visualized in detail in the Figure 2.5.

Figure 2.5: 3-tier Client-Server Architecture. Figure from [12]

To ensure communication between layers, there are various communication protocols, but
the most widely used is the HTTP [12].

It is also important to note that computer science has developed various tools that simplify
the implementation of the various layers that this standard has, namely the application’s
frontend and backend layers, which are called frameworks.

2.4 Database Server

2.4.1 Relational Database

A relational database is a type of database where data has well-defined relationships with
each other. In this model, the information is stored in tables, which represent the entities
of the information system, and the columns of these tables represent the attributes of these
entities. In each row of these tables, there is a unique identifier (primary key), and there may
also be identifiers for other tables, thus establishing the relationship (foreign keys) in addition
to the data itself.

Relational databases are often considered transactional and, therefore, characterized by the
implementation of the properties Atomicity, Consistency, Isolation, and Durability (ACID),
being mostly chosen by programmers looking for these characteristics:

• Atomicity - all changes to the data associated with a transaction are performed as if it
were a single operation.

• Consistency - data is kept consistent at the beginning and end of a transaction.
• Isolation - The effect of a transaction is kept invisible to others until it is confirmed to

avoid confusion.
• Durability - upon successful transaction completion, changes to the data are persisted

and not canceled, even if the system fails [13].

10

As we have seen, a relational database deals only with data organization based on a
relational model without performing management tasks. For this, there are RDBMS. An
RDBMS consists of software that allows the management, consultation, storage, and retrieval
of information in a database of this type. A common feature of all RDBMS is the use
of the Structured Query Language (SQL). This language is the standard used to interact
with relational database management systems, allowing the database administrator to insert,
update, or delete rows of data efficiently [14].

Some examples of DBMSs widely used today are PostgreSQL, MySQL, and Microsoft
SQL Server, which will be detailed below:

Microsoft SQL Server

Microsoft SQL Server is a RDBMS developed and licensed by Microsoft, created in 1989.
Some of the main features of this database management system are support for complex data
types, transaction control, advanced indexing, data warehousing, high availability, and various
security options [15]. The SQL Server product is primarily a paid solution with Standard and
Enterprise versions. There is also a free Express version to be used for small applications [16].

Postgres

PostgreSQL is an Object-Relational Database Management System (ORDBMS), a database
management system that manages an object-relational database. An object-relational database
turns out to be an extension of relational databases with some features of object-oriented
programming languages. So this type of database turns out to integrate better with these.
PostgreSQL dates back to 1973 and has been developed and popularized by the open-source
community since 1996. Currently, this database management system is used by, among others:
Apple, Cisco, Instagram, Spotify, and Skype, among others.

PostgreSQL is ACID (atomicity, consistency, isolation, durability) compliant, is transac-
tional, and includes support for common B-tree indexes and hashes. It has updatable and
materialized views, triggers, and foreign keys. It also supports functions (including some
NoSQL) and stored procedures [17].

MySQL

MySQL is an open-source RDBMS created in 1995 and currently being maintained by
Oracle. This system implements a mechanism that significantly improves query execution
speed by storing the last queries and their results in a cache. In addition, this system
supports a wide range of data types, including numeric, date/time, character, Javascript
Object Notation (JSON), boolean, and enumerated, supports various indexes, such as B-tree,
hash, R-tree, and inverted indexes, and provides different encrypted options for access control,
offering reliable security. However, although this system does not yet have features as extensive
as PostgreSQL, it is still considered an excellent option for various types of Web applications
[18].

11

Performance Comparison

Let’s analyze a study conducted at the Lublin University of Technology about the perfor-
mance of the above databases. We can conclude that PostgreSQL is the database management
system with the best performance compared to Microsoft SQL Server and MySQL for a
large number of records (more than 1000 records), having a lower performance for a lower
number of records (up to 1000 records) to MySQL. This confirms the popularity that MySQL
has for simple applications with little scalability and the notoriety that PostgreSQL has for
more demanding applications with a more significant need to scale at the persistence level.
Combined with this is the fact that PostgreSQL is based on an open-source license, which is a
significant point for controlling development costs [16].

2.5 Application Server

2.5.1 Spring Boot

Spring Boot is one of the most widely used backend frameworks in the world, based
on another popular Java framework called Spring. Spring Boot’s mission is to simplify the
creation of web applications by relying on the principles of convention rather than configuration,
which allows developers to focus more on business logic and less on server configuration. In
addition, this framework is optimized for microservice-based architecture, which allows the
programmer to easily implement issues relating to communication between services, discovery
of microservices, exposing them to the client, and security of all services [19].

In terms of Spring Boot’s strengths, the following stand out:

• Rapid Application Development allows developers to produce production-level applica-
tions quickly

• Automatic configuration allows programmers to spend less time since the framework
automatically performs configurations such as accessing the database via Java Database
Conectivity (JDBC) or recognizing classes in the services.

• Starter POMs which consist of dependency packages that are essential for specific tasks
in a microservice, such as the spring-boot-starter-web dependency, which allows you to
raise an Model-View-Controler (MVC)-based REST API without the need for additional
dependencies.

• Actuator makes it possible to control and manage the state of applications in areas such
as health, metrics, or shutdown.

• Integration with other well-known libraries and frameworks such as Hibernate, Spring
Cloud, or Spring Data [19].

2.6 Web Server

2.6.1 React

ReactJS is an open-source JavaScript library created by Facebook to build single-page
User Interface (UI) that allows you to use data from the backend and update it without
reloading the entire web page [20].

12

Some of the most important points that the ReactJS library implements are:
• Unidirectional information flows from parent components to child components, which

simplifies the development and debugging of these applications.
• Virtual DOM to efficiently update and render components whenever changes occur in

the application.
• Optimized performance thanks to features such as splitting large components into

smaller ones or lazy loading.
• Declarative, since it allows developers to define how they want the interface to look,

React performs the operations behind it to realize this [20].
Since ReactJS is only a JavaScript library, it is necessary to create or use a framework

already started by a third party that has dependencies that allow routing, data fetching, and
HTML generation and that already contains a basic structure that is ready to work with [21].

A prevalent example of these frameworks is Create React App, which Facebook officially
supports, and with just one npm command, you can start developing a web application with
ReactJS libraries [22].

2.7 Related Projects

In terms of projects related to the aim of this dissertation, according to the research
carried out, it was impossible to find any system that, on a single platform, makes it possible
to create and manage multiple tourist destinations, sharing resources.

However, it was possible to find some DMS implemented from scratch, which made it
possible to gather functional requirements for the Multi-Destination Management System
implemented. Thus, DMS were explored at the national level, such as Terras de Trás os
Montes and VisitAlentejo, and at the European level, VisitBerlin, and Visit.Brussels.

However, in order not to make this dissertation too extensive, only one system will be
described in the following section, which was chosen because it was the most complete and
easy to use. VisitAlentejo will be presented next.

2.7.1 Visit Alentejo

The VisitAlentejo website is a DMS run by Turismo do Alentejo and the Alentejo Regional
Tourism Promotion Agency, which aims to publicize and promote tourism in the Alentejo
region. Its main functions are to advertise tourist attractions such as places to sleep, where to
eat, what to do in the region and events, as well as offer the chance to take a virtual tour of
some of the region’s tourist attractions and allow potential visitors to plan their trip, as can
be seen on the main page of the DMS in Figure 2.6.

13

Figure 2.6: Visit Alentejo Homepage

Suppose you analyze the system’s functionalities in more detail. In that case, you’ll notice
that the "Where to sleep", "Where to eat" and "What to do" pages are similar, all with a list
of tourist products by location and the possibility of applying various filters or carrying out
a direct search for a particular tourist product. An example of these pages can be found in
Figure 2.7 with the "Where to sleep" page.

14

Figure 2.7: Visit Alentejo - Where to sleep

After clicking on an advert, it is possible to obtain more information about a tourism
product. Although they vary according to the type of tourism product, there are some
common characteristics such as the name, address, contact details, features of the tourism
product, and photographs, as can be seen in Figure 2.8, with information about residential
tourism.

15

Figure 2.8: Visit Alentejo - Hotel Detail

As previously mentioned, VisitAlentejo also has a list of tourist events in the region,
showing the events taking place and those yet to take place, as Figure 2.9 shows.

16

Figure 2.9: Visit Alentejo - Events

To summarise, in terms of VisitAlentejo’s strengths, the following should be highlighted:

• The system’s main functionalities (Where to sleep, Where to eat, What to do, and
Events)

• The possibility of making a virtual visit
• Features presented in each tourism product
• Filters offered to the user in each of the listings

In terms of absences, it is important to mention:

• Inability to book directly through DMS
• Absence of a system of ratings and opinions from other users
• Lack of useful or emergency contacts in each location

2.8 Conclusion

In this chapter, it was possible to understand how the process of choosing a suitable
software architecture for creating an information system works and, more specifically, to know
how a typical web architecture works. It was also possible to analyze three of the best-known
database management systems in terms of performance and thus decide which is most suitable
for this dissertation. In addition, more in-depth research was carried out into both the backend
framework and the frontend framework used.

Finally, four existing DMS in production were analyzed, and the one considered the most
complete and advantageous of the four was examined in greater detail.

17

Chapter 3
System Requirements and Architecture

3.1 Introduction

As we have seen previously, the scope of this dissertation is much more than developing a
DMS for a particular destination, but instead creating a prototype system that demonstrates
that it is possible to manage multiple destinations sharing the same resources and infrastructure
as much as possible.

This type of solution introduces several advantages over the development of DMS from
scratch, such as :

• Reuse of Resources, since the services developed by several destinations can be used
without having to implement everything again

• Scalability of the solution, which also allows new functionality to benefit multiple
destinations at the same time quickly

• Energy Efficiency, since the various destinations will share the same computational
resources, resources can be managed by favoring the destination that needs more at any
given time.

• Cost control, because once several destinations reuse the same infrastructure, it is possible
to develop DMS at controlled costs, which favors both small and large destinations.

To create the project’s Backend, which can be seen in Figure 3.1, the literature was analyzed
to find the best software architecture solution. The conclusion was that an Architecture
based on Microservices could respond more successfully to scalability, ease of maintenance,
replaceability, fault tolerance, and reliability than a monolithic architecture typically used to
create DMS from scratch. This meant that the architecture chosen for the Backend of this
project was one based on microservices [23].

On the Frontend, there need to be two different types of web applications with which the
system users can interact, as we can see in Figure 3.1 and which will be:

• Portal modules used by tourists interested in a particular tourist destination where they
can obtain information about restaurants, hotels, tourist activities, and useful contacts
about the destination and assign ratings or book some of these tourist products. These

19

modules will be independent between destinations, i.e., each destination will have its
portal module.

• Management Module that will be used by those who exploit these tourism products,
which can advertise and publicize their business, and also by system administrators
that would act as moderators of the content that would then be available to multiple
portals. In this case, there will only be one management module shared by all the portal
modules of the Multi-Destination Management System.

Figure 3.1: Multi-Destination Management System - Proposed Solution

In this chapter, the issues presented here will be more detailed, namely the requirements
necessary for the development of the system shown and also the software architecture found
to solve the proposed problem successfully.

3.2 System Requirements

This section presents the system requirements specification due to the first phase of system
development. The following subsections start with a description of the requirements-gathering
process, followed by a description of the context, the actor identification, the use case diagrams,
and the non-functional requirements of the solution.

3.2.1 Requirements Gathering Process

In the requirements gathering phase, it was necessary to collect the most pressing needs on
the part of tourism agents and compile them most generically and comprehensively possible

20

for all destinations.
To realize this goal, a literature review was first carried out to understand the primary

needs of the DMOs and also what the gaps and limitations of existing DMS were. In addition,
an analysis was made of several existing online systems, and the standard functionalities
between them were recorded. In the second phase, several meetings were held with an expert
in the tourism field to assess whether the points considered essential in the first phase made
sense for most destinations. Finally, the requirements raised were divided by the various
services, always making them as specific and independent of each other as possible.

Thus, and in a generic way, the following basic requirements were raised:

• Currently, a tourist destination wishing to have a DMS in its region has to carry it
out completely from scratch, which requires a very high development cost and a longer
time to get into production. Thus, and as we saw earlier, one of the requirements that
the Multi-Destination Management System must meet is to be reusable by multiple
destinations, being only necessary to create a portal for the destination and taking
advantage of the management module and the entire backend that is shared by various
destinations.

• Even if the same backend powers the portal modules and uses the same services, it
is necessary that the user seems completely united and independent DMS, making it
possible to customize the DMS portal according to the preferences of each destination.

• The primary stakeholders in a DMS were defined as the restaurant and nightlife industry,
hotels and local accommodations, Adventure, Nature, Beach, Cultural, and Health
tourism, and it was also considered essential to inform users of important contacts such
as fire brigades, police, and hospitals/health centers. However, it should be possible to
add new tourism stakeholders if necessary or to specialize some existing services further
by creating new, more specific ones.

• The management of the content published on the platform by the tourism product
managers should be simple through a management module with a user-friendly interface
available to the platform administrators in charge of this task, which will thus enrich
the DMS implemented by the software administrators.

• The system should be fed by any owner/manager of a tourism product, such as a
restaurant owner, who should be able to quickly register on the platform and advertise
his business, which, after approval by a platform administrator, will be visible to any
DMS user.

These generic requirements will be presented in more detail in the following subsections.

3.2.2 Actors

The target users of all the portal modules implemented will be tourists who use the portals
of each destination as a source of information about a destination they want to visit or have
visited. On the management module side, the primary users will be all tourism product
managers who wish to advertise and publicize their business on the destination portal. In
addition, the platform administrators will also be users of the management module to perform

21

management, control, and regulation tasks of the tourism products published by the tourism
product managers. They are also responsible for maintaining, testing, and improving the
functionalities and performance of the system implemented.

Thus, we can define the actors of the implemented system as represented in the following
list:

• Tourists/Visitants
Tourists/Visitants will be the most numerous users of the platform. They will consult

all tourism products available at a given destination; they should be able to access all
information on a given product, make a reservation, and, at the end of the experience,
rate it.

• Touristic Product Managers
Touristic product managers will generally be the owners of tourism products of a

destination with an interest in advertising their business in the DMS of the destination.
They should have access to the management module, be able to publish their tourism
products, see the ratings given by users, and manage the reservations made on the
platform. They should also have access to the portal module, just like the tourists.

• Platform Administrators
Platform Administrators will be responsible for creating new supported destinations

on the platform, approving or rejecting the advertisements that the tourism product
managers make, checking that no unauthorized content is published, and requesting
corrections to the advertisements. They will also be responsible for fixing bugs reported
by the various destinations on the platform, implementing new services to meet the
needs of new destinations, and making optimizations, among other issues related to the
system code. In addition, they should also accumulate the accesses that the touristic
managers have in the management module and the accesses that the tourists have in
the portals.

3.2.3 Functional Requirements

After having made a generic collection of the requirements that the Multi-Destination
Management System must meet and identified the main stakeholders in this type of information
system, the functional requirements will now be defined.

However, it should be taken into account that the system was developed as a proof of
concept, and therefore, some functional requirements, such as the reservation of tourism
products and the description of tourism products, were kept simple; if the system moves into
production in the future a complete specification will be required.

Thus, it will be explained what the system will do in detail and the functionalities that
each actor has at his disposal, divided into the two modules that will be available. It will also
be used from now on the concept of listings, which will work as a way to agglomerate the
advertisements that managers of tourism products can create, namely advertisements of the
restaurant and nightlife industry, hotels and accommodation, and Adventure, Nature, Beach,
Cultural and Health tourism.

22

Management Module

Figure 3.2: Management Module - Use Case Diagram

Figure 3.2 presents the use cases model of the management module, with the interactions
that the actors using this system perform on it.

In the following list, the use cases of the presented model will be detailed:

• Manage Locations
The platform administrator must be able to add new locations to the system and

edit or delete existing locations. The use case allows the tour manager actor to perform
all CRUD operations on locations.

• Manage Destinations
The platform administrator must be able to create new destinations, which will act

as a grouping of several locations. The destination concept will be a filter to make the
DMS for a particular destination. The use case allows the actor to add, edit, and delete
destinations, as well as associate locations with destinations.

• Manage Listings

23

The tourism product manager/owner must be able to create and edit listings in the
various tourism products supported by the platform (i.e., hotels and accommodation,
restaurants, and bars, useful contacts, activities/events), as well as view their pending
and approved listings. The platform administrator, in this use case, can view the listings
of all managers.

• Manage reservations
The manager/owner of a tourism product should be able to view the reservations

made by tourists on his tourist products. The platform administrator, in this use case,
can view the reservations of all the managers.

• Approve Listings
The platform administrator can approve/reprove the listings created by the tourism

product managers/owners. This use case allows the platform administrator to review and
approve new listings made by the tourism product managers/owners before publication
in the system.

• Delete listings
The platform administrator can delete listings created by tourism product man-

agers/owners. This use case allows the platform administrator to delete old or obsolete
listings made by the tourism product managers/owners.

• Login/Logout
All the actors of the management module must be able to login into the platform to

access the management module use cases since all of them require authentication and
authorization. Likewise, they must be able to logout when they no longer need to carry
out this type of tasks.

• Platform Maintenance
The platform administrator must be able to perform maintenance tasks and improve

the platform or even add new services and features. This actor will have access to all
the use cases of the system and access to the source code and system databases.

24

Portal Module

Figure 3.3: Portal Module - Use Case Diagram

Figure 3.3 presents the use cases model of the portal module, with the interactions that
the actors using this system perform on it.

The following list details the use cases of the presented model:

• View listings
Tourists should be able to view listings of all tourism products. It should also be

possible to see the description of each tourism product. This use case should be the
only one in the system where no authentication is required.

• Reserve Experience
Tourists should be able to select a listing and book an experience (e.g., reserve a

hotel room or reserve a table in a restaurant).
• Rate/Review Experience

Tourists should be able to evaluate and provide feedback on an experience after
enjoying it, which can help other tourists make informed decisions.

• View my ratings
Tourists should be able to access a page with all the ratings they have given to the

experiences they visited.
• View my reservations

Tourists should be able to access a page with all the reservations they have made on
the different tourism products of the platform.

• Login/Logout
Tourists should be able to log in to the platform as a way of being able to access the

portal module use cases, as all of them (except for viewing listings) require authentication

25

and authorization. Likewise, they must be able to logout when they no longer need to
carry out this type of tasks.

3.2.4 Non Functional Requirements

For the Multi-Destination Management System to become a competitive and innovative
solution compared to made-from-scratch DMS, the following non-functional requirements
have been taken into account:

• Performance and Scalability
The system should be highly responsive to user interactions with the UI, ensuring

acceptable response times when requests are sent to the server. The system database
should be horizontally and vertically scalable, if necessary, to handle large amounts of
data without compromising performance as business needs increase.

• Reusability
One of the innovations that this product should bring is the possibility to reuse the

vast majority of its components to create new solutions based on it. It should be possible
to instantiate new DMS by creating only portal modules for each unique destination
interested in using the system.

• Usability
It is necessary to guarantee that the platform is user-friendly and does not have a

high learning curve, leading the actors of both modules to execute the implemented
functionalities without many steps and without being subject to errors.

• Extensibility
The platform should be easily extensible in functionalities to support new needs of

new destinations interested in having an implementation based on it. This extension
cannot influence the functionalities already implemented, neither at the performance
level nor at the stability level of the system in general.

• Maintainability
After the implementation in the final client, the platform must be easy to maintain

by the intervenients and not demand too much effort from the platform administrators.

3.2.5 General Data Protection Regulation

The Multi-Destination Management System designed in this work takes into account
compliance with the European Union’s General Data Protection Regulation. [24]

In the act of registration, there is a need to collect data from the users of the system
for the realization of functionalities that require authorization/authentication. Therefore,
all users, before registering, have at their disposal a consent with which they must agree.
In this consent, it is explained who has access to the personal data, which is the tourist
destination where they are registering, and the entity responsible for the Management of the
Multi-Destination Management System, which ultimately has visibility over the data of all
destinations.

In addition, the data requested from users are the minimum necessary for the proper
functioning of the solution; no data that is not necessary for its use is requested, and the

26

legitimate holder of the data has the right to request the deletion of their data from the
platform at any time.

3.3 System Architecture

In this section, a software architecture that implements the system requirements will be
presented and defended, starting with the physical and technological model of the solution
and then the domain model of the various microservices of the system.

3.3.1 Physical and Technological model

Figure 3.4 shows the system’s physical and technological architecture, describing how the
various components will interact. The diagram has, therefore, been grouped into the frontend
side, the backend side, and the persistence side.

On the Frontend side, as we saw earlier, the system’s users can interact with two different
types of web applications: the portal modules, which are used by all the players in the
system and each destination has its own, and the management module, which is used by
the tourism product managers and platform administrators and is unique and common to
all destinations. These applications were developed using the Create React App framework
and, as web applications, only require a computer or mobile device with Internet access to
access them. These web applications make requests and receive responses from the Backend,
presenting them to users.

The Backend is responsible for providing the Frontend with a set of endpoints available
on a single IP address and a single port belonging to the Gateway. Communication will
thus take place via the HTTP protocol, using the GET, POST, PUT, and DELETE verbs,
depending on the request made. Subsequently, the discovery service will indicate to the
API Gateway the route of the respective microservice that responds to it, depending on the
endpoint called. On the microservice side, the request will go through the respective business
logic and, if necessary, can exchange information with the database. In terms of software
architecture, the backend is based on microservices. This option is because, compared to other
architectures studied, it is the one that best meets the non-functional requirements raised in
the previous subsection. It is an architecture widely used today, and the learning curve is more
accessible, making development faster and more efficient. From a technological point of view,
the programming language chosen was Java, as it is a very well-documented programming
language with excellent support for microservice architectures and is the language I feel most
comfortable developing software in; the development framework chosen was SpringBoot, as it is
a technology that is well adapted and prepared for an architecture based on microservices, as it
has well-constructed and accessible documentation and a wide range of support dependencies
to aid development.

On the persistence side, a PostgreSQL database management system was chosen because
it offers a better quality/cost ratio for a large volume of data. At this early stage, it was
decided to use a single database for all the services; since this project is still just a research

27

project, it didn’t make sense to use a database for each service, as this would make the project
more demanding to run locally and wouldn’t bring significant advantages.

Figure 3.4: Physical and Technological Model

3.3.2 Domain model

The domain model shown in Figure 3.5 describes the various entities, attributes, and
relationships that exist in the Backend of the Multi-Destination Management System. Although
the architecture of the system backend is based on microservices, there is a need for intra-
services communication. Therefore, in this model, many relationships are not between entities

28

of the same microservice. However, this diagram aims to explain these interactions, abstracting
the type of architecture used.

Figure 3.5: Domain Model

Looking at the diagram from top to bottom, we have the destination entity. This entity
defines each of the destinations that the system can have and a destination is composed of
several locations, and a location can belong to several destinations; that is, we are facing
a relationship of many to many. Let us think about the following example: Aveiro can be
considered a location and constitute by itself a DMS. However, Aveiro can belong to another
destination, for example, the Aveiro region, and form another DMS. Thus, we have two
different systems for the same locality.

Next, we have the entities that correspond to the various stakeholders that were considered
most relevant during the collection of requirements, the hotels/accommodation, the restaurants

29

and bars, the tourist activities (here we include the various types of activities that do not fit
into the previous ones) and the non-tourist activities (the useful services and contacts of a
place). These entities will hereafter be referred to as business entities. The attributes defined
in each of the business entities result from the specificities of each of them that were raised
during the requirements survey. Thus, there is a 1 to many relationship with the location
entity since each business entity has a location, and each location has multiple business
entities.

The business entities establish a 0-to-many relationship with the classification entity since
each business entity can have none or many classifications of its services, and it also has a
0-to-many relationship with the reservation entity, except for the non-tourist entity that there
is no point in allowing reservation since it is a purely informative module for the tourist.

Finally, we have the user entity, which has a 0-to-many relationship with the reservation
entity and the rating entity since it may have no rating or reservation or many in the various
business entities. Besides, users can have only one role in the system, which can be USER,
MANAGER, or ADMIN; however, these roles can belong to several users, thus establishing a
1-to-many relationship.

3.4 Conclusion

The main focus of this chapter was to gather all the requirements needed to develop an
innovative system for managing multiple tourist destinations. Thus, the stakeholders in a
system of this type, the main actors, and the functional and non-functional requirements the
system must meet were analyzed. In addition, an architecture that successfully responds to
the proposed problem was presented, along with the technologies used to develop the system.
Finally, the system’s domain model was introduced, including the entities necessary for proper
functioning.

30

Chapter 4
Implementation

4.1 Introduction

In this chapter, the most critical and essential details for implementing the architecture
proposed in section 3.2 of the previous chapter will be explained. The first thing that will
be presented is the core of the entire Multi-Destination Management System, which is the
system’s Backend.

In the Backend, it will be explained in detail the implementation used in the API Gateway,
the Discovery service, and how they communicate with each other. It will also explain all the
authentication and authorization mechanism that is used by all microservices of the project,
along with the essential endpoints that are exposed for this purpose. Finally, implementation
details will be presented across the various Business Microservices, along with the endpoints
they make available to the outside.

In the Frontend, we won’t go into too much technical detail since this academic project
is just a proof of concept. However, it is crucial to present the type of endpoints that the
various Portal modules and the Management module must consume.

4.2 API Gateway and Discovery Server

This section will present the implementation performed for the API Gateway, the Discovery
service, and how both services communicate.

4.2.1 API Gateway

The API Gateway used in this system is the Gateway created under the Spring Cloud
project [25]. To configure and use this implementation, it was first necessary to create a new
microservice in the project, then add the Maven dependency with the artifact id spring-cloud-
starter-gateway in the pom.xml of the microservice, as we can see in Figure 4.1 and create
some settings in the application.yml file used to start the microservice.

31

Figure 4.1: Spring Cloud Gateway Dependency

The configurations that were necessary to introduce in the application.yml were essential
to indicate to the API Gateway where the routes for each of the microservices of the project,
where it was stated a URI, the predicates that must be followed for the construction of the
URL and some filter by route, as it is possible to see in the example that the Figure 4.2
demonstrates, and some CORS configurations standard to all microservices of the system
were also added, namely the allowed HTTP operations, the allowed headers and the allowed
origins by the Gateway as we can see at the Figure 4.3.

Figure 4.2: Api Gateway Routes

32

Figure 4.3: CORS Configurations

It is also imperative to mention that in each of the routes for the microservices, the URIs
are not with a direct IP/port or DNS pair for the service but a load balancing address since
this API Gateway will use a Discovery service to point to each of the microservices as will be
explained in the next section.

4.2.2 Discovery Server

The discovery service used in this system uses the implementation of the Spring Cloud
project, just like the API Gateway, named Netflix Eureka Server. This technology assumes
creating a server that will work as Eureka Server, where all microservices must register (Eureka
Client) so that the API Gateway knows where they are.

So, looking at the implementation of Eureka Server, it was necessary to create a new
microservice in the project. In this microservice, it was required to add the maven dependency
with the artifact id spring-cloud-starter-netflix-eureka-server in pom.xml as shown in figure
4.4, add the annotation "@EnableEurekaServer" in the main Java file of the microservice
and add some settings in the application.properties file. The necessary configurations for the
proper functioning of the Discovery Server were to add a port to the service, in this case 8761,
and add the properties "register-with-eureka" and "fetch-registry" to false, as shown in figure
4.5, which if they were set to true would cause that when starting the server, the embedded
client would try to register itself on the Eureka server and also try to fetch the registration,
which is not yet available. [26]

Figure 4.4: Eureka Server Dependency

Figure 4.5: Eureka Server Configurations

Looking now at the implementation of the various Eureka Clients, it was necessary to
add in all the business microservices the maven dependency with the artifact id spring-

33

cloud-starter-netflix-eureka-client in pom.xml, as shown in figure 4.6, add the annotation
"@EnableEurekaClient" in the main Java file of each of the microservices and add some
settings in the application.properties file. The necessary settings to add to the clients were
the defaultZone, which corresponds to the URL where the discovery service is, and add the
property "preferIpAddress" to True, which means that the registration of the instance on the
Eureka server will be done through the IP address, as shown in the Figure 4.7.

Figure 4.6: Eureka Client Dependency

Figure 4.7: Eureka Client Configurations

After these settings, the Discovery Server already knows where the various microservices
are and can provide the API Gateway the addresses of Load Balancing where they are, so it is
possible to request the URL of the API Gateway. The whole system takes care of forwarding
it to the microservice destination.

4.3 Authentication

Like most applications, the Multi-Destination Management System needs to recognize a
user’s identity to filter and protect the data they can access, depending on their permissions.

It was, therefore, necessary to create a new microservice called "authorization server" and
add a security dependency integrated into the Spring Cloud project, which has the artifact
id spring-cloud-starter-oauth2, as shown in Figure 4.8. This dependency was chosen because
it is highly integrated with the API Gateway, the Discovery service, and the microservices
implemented since they all use dependencies from the Spring Cloud project. [27]

Figure 4.8: Authentication Dependencies

Then, it was necessary to create the user entity, which stores the personal information
required for the proper functioning of the system, such as user name, password, phone number,
address, and name, and also create the role entity, which is also associated with the user
entity.

In subsection 3.1.2, the system actors were presented, and it was concluded that the system
actors would be the tourists, the tourism product managers, the tourism technicians, and
the development team. It was also supposed that all these actors have access to the portal
module and may or may not have access to the platform management module with varying

34

permissions. Thus, the solution used a Role Based Access Control (RBAC) where three roles
were defined: USER, MANAGER, and ADMIN.

The Tourist, as an actor who only has access to the Portal module, has the role USER;
the Tourism Product Managers, as they have access to the Portal module and access with
restrictions to the management module, have the role MANAGER, and finally, the tourism
technicians and the development team, as they have access to the Portal module and to the
management module without restrictions, have the role ADMIN.

To carry out this separation of roles, two registration endpoints were created:/registration,
which is used by the portal modules and assigns the role of USER to those who register
through it, and /registration-manager, which is used by the management module and gives
the role of MANAGER to those who register through it. In the case of the ADMIN role, as
it is a role that only a very restricted group of users will have access to, it will be assigned
through the database to the users who need it by someone responsible for administering the
entire Multi-Destination Management System.

After registration, it is necessary for users to log into the modules, and for this, the native
endpoint of the Spring OAuth2 dependency will be used, the /oauth/token, which returns an
authorization token that will be used in all authenticated requests from the Multi-Destination
Management System. In table 4.1, it can be understood how the authorization service
endpoints can be used and their functionality for the system.

In addition, it was also necessary to perform some specific configurations involving the
extension of abstract classes and the implementation of some Spring Security and Spring
OAuth 2 interfaces. These configurations allowed the following:

• Add support for RBAC
• Perform validation of endpoints that need to pass authentication from those that are

free to access
• Add some CORS settings namely the allowed REST methods, allowed sources, and

allowed headers
• Settings for generation and validation of generated JSON Web Token (JWT) Tokens

It was also necessary to add in all the other microservices of the system (except the
API Gateway and the Discovery Service), the dependencies previously mentioned, and the
configurations of the endpoints that need to pass through authorization that is specific for
each microservice.

35

Path (/authorization) HTTP Method Authorization Query Params Body Function to the system

/oauth/token POST
Basic
Username: web
Password: 123

username:{username}
password:{password}
grant_type:password
manager: y/n

N/A

It logs into the system, obtaining the token that
will be used in all authenticated requests.

To login in the management module it is necessary
to pass manager=y.
To login in the portal modules it is necessary
to pass manager= n.

/registration POST No Auth N/A

{
"name": {name},
"username": {username},
"password": {password},
"phone": {phonenumber},
"address": {address}
}

Allows users to register in the portal modules,
being assigned the role USER.

/registration-manager POST No Auth N/A

{
"name": {name},
"username": {username},
"password": {password},
"phone": {phonenumber},
"address": {address}
}

Allows users to register in the management module,
being assigned the role MANAGER.

Table 4.1: Authorization REST API endpoints

4.4 Business Microservices

As seen in Figure 3.4 from the previous chapter, the system’s business logic has been
divided into various autonomous and independent microservices that respond to the specific
needs of those considered the system’s main stakeholders. These microservices have been
given the name business microservices.

Thus, based on the functional collection of requirements presented in Chapter 3, the
following business microservices were implemented:

• Restaurant - Bar
• Accommodation
• Non-Touristic
• Activities - Events

In addition to the microservices that directly implement the logic of the stakeholders
in the system, we also have three other business microservices that are shared by all the
microservices presented above:

• Destination - Location
• Rating
• Reservation

The business microservices follow the MVC software design pattern. The choice of this
software design pattern has to do with the fact that it is an architecture very well supported by
Spring Boot and is widely used to develop REST API in architectures based on Microservices.
[28]

All these microservices have a very similar implementation, with only the entities, business
logic, and exposed endpoints varying. Therefore, to make this dissertation less exhaustive, only
the process of creating a business microservice will be presented in detail, but all the endpoints
of the other microservices will be shown later. So, as an example, for the Accommodation
microservice, after its creation, it was necessary to add some maven dependencies to the

36

microservice’s pom.xml. The dependencies used for the microservice to work properly were
those shown in Figure 4.9:

Figure 4.9: Accomodation Microservice Dependencies

Starting with the dependency at the top of the figure, we have the one identified with
the artefact id spring-boot-starter-web, which includes all the libraries and configurations
needed to start a web application. We have the dependency with the artefact id spring-cloud-
starter-oauth2, which, being part of the Spring Cloud project, includes support for OAuth 2.0
authentication, which is used in this project. We also have the spring-boot-starter-data-jpa
dependency, which consists of a package with various dependencies that simplify the process
of integrating relational databases with Spring Boot.

In addition to these, and still, within the dependencies created by the Spring Framework,
we have the dependency identified with the artefact id spring-cloud-starter-config, which
consists of a package of other dependencies, in this case, used to manage configuration files
external to the application which are loaded dynamically when it starts up [29], and the
dependency identified with the artefact id spring-cloud-netflix-client which, as explained above,
is required for all services (except eureka server) so that this discovery service can locate all
the microservices in the system.

In terms of dependencies outside the Spring Framework, we used the dependency with the
artifact id springdoc-openapi-ui, which allows us to generate endpoint documentation on a

37

Swagger page automatically; we also used the dependency with the artifact id lombok, which
helps a lot to reduce the repetitive processes typical of the Java language by automatically
generating getters/setters and constructors and, finally, we used the dependency with the
artifact id postgresql, which is essential for ensuring connectivity with PostgreSQL databases.

Figure 4.10: Accomodation Microservice Packages

In terms of package structure, all the system’s microservices are divided into the layers
recommended by the MVC software architecture standard, as can be seen in figure 4.10.

So, starting at the top, we have the "Config" package, which contains two classes responsible
for the configurations needed for the microservice to work correctly. In this case, the
configurations that had to be added implement security rules such as the endpoints that must
undergo authentication and authorization for those exposed for anonymous use and the JWT
token’s public key configurations. On the side of the "Controller" package, there is a class that
manages inputs and outputs with the system’s users. For this purpose, the REST protocol
was chosen, as it is the most widely developed and used standard in WEB communication
today. So, a set of GET, POST, PUT, and DELETE endpoints were implemented according
to the system’s needs. As far as security is concerned, it was ensured that the endpoints
implemented in the controller comply with the principle of minimum permissions, i.e., a user
should only have access to the resources strictly necessary for the actions they intend to
perform. Therefore, the endpoints are protected by Roles. Next is the "Model" package, which
contains the classes that implement the microservice’s entities and models. These classes
include all the information that the microservice needs, whether it’s mapping the database to
a Java object (via the entities), a Java object used to transfer data within the microservice
Data Transfer Object (DTO) or a Java object used to define the attributes that the request
from a REST endpoint should receive. The "Repository" package contains all the classes
that query the database. These queries can be made in the form of a native SQL query or
generated automatically via Spring Data JPA, and the result of these queries can be mapped
directly to one of the entities found in the "Model" package. Finally, the "Service" package
contains all the classes responsible for implementing the microservice’s business logic, i.e.,
these service classes bridge the gap between the repositories and the data obtained from them
and stored in the models with the necessary business processing so that it is finally possible
to deliver this information to the clients via the controllers.

These aspects are common to the system’s various business microservices. However, there

38

Path
(/api/restaurants-and-bars) HTTP Method Authorization Query Params Body Function to the system

"" POST Bearer Token N/A

{
"name": String
"description": String
"price": String
"operationHour": String
"address": String
"phoneNumber": String
"photo": byte[]
"menu": byte[]
"typeOfFood": String
"location": Location
}

Allows users with Administrator or
Manager roles to create restaurants/bars
adverts for the system.
Once created, the advert is pending
validation by an administrator user.

"" PUT Bearer Token N/A

{
"name": String
"description": String
"price": String
"operationHour": String
"address": String
"phoneNumber": String
"photo": byte[]
"menu": byte[]
"typeOfFood": String
"location": Location
}

For users with the Administrator role,
you can change the information for all
the restaurants/bars in the database,
and for users with the Manager role
for all the restaurants/bars they manage.

After the update, the announcement
is pending validation by an
administrator user.

"" GET Bearer Token N/A N/A

For users with the Admin role, you
can get all the restaurants/bars in
the database, and for users with the
Manager role, all the restaurants/bars
they manage.

/destination/{id} GET No Auth id: Long N/A
Allows users to obtain all
restaurants/bars in a given
destination without any authentication.

/{id} GET No Auth id: Long N/A

Allows users to obtain specific
information about a
restaurants/bars without any
authentication.

/{id} DELETE Bearer Token id: Long N/A Allows administrator users to delete any
restaurants/bars from the system.

/approve/{id} POST Bearer Token id: Long N/A

Allows administrator users to approve
restaurants/bars adverts, which are
automatically visible on the respective
portals.

Table 4.2: Restaurant-Bar Service REST API endpoints

are several differences in the business rules implemented between the multiple microservices
since the needs that each microservice has to meet are entirely different.

The following tables show the endpoints implemented in all the microservices, with full
details of how to use them and the functionality they implement in the system:

39

Path
(/api/hotel-and-accomodations) HTTP Method Authorization Query Params Body Function to the system

"" POST Bearer Token N/A

{
"name": String
"description": String
"address": String
"phoneNumber": String
"pricePerNight": Double
"accomodationFeatures": String
"photo": byte[]
"location": Location
}

Allows users with Administrator or
Manager roles to create
hotel/accommodation adverts for the
system.
Once created, the advert is pending
validation by an administrator user.

"" PUT Bearer Token N/A

{
"name": String
"description": String
"address": String
"phoneNumber": String
"pricePerNight": Double
"accomodationFeatures": String
"photo": byte[]
"location": Location
}

For users with the Administrator role,
you can change the information for all
the hotels/accommodations in the
database, and for users with the
Manager role for
all the hotels/accommodations they
manage.

After the update, the announcement
is pending validation by an
administrator user.

"" GET Bearer Token N/A N/A

For users with the Admin role, you
can get all the hotels/accommodations
in the database, and for users with the
Manager role, all the
hotels/accommodations they manage.

/destination/{id} GET No Auth id: Long N/A
Allows users to obtain all
hotels/accommodation in a given
destination without any authentication.

/{id} GET No Auth id: Long N/A

Allows users to obtain specific
information about a
hotel/accommodation without any
authentication.

/{id} DELETE Bearer Token id: Long N/A Allows administrator users to delete any
hotel/accommodation from the system.

/approve/{id} POST Bearer Token id: Long N/A

Allows administrator users to approve
hotel/accommodation adverts, which are
automatically visible on the respective
portals.

Table 4.3: Accomodation Service REST API endpoints

Path
(/api/non-tourists) HTTP Method Authorization Query Params Body Function to the system

"" POST Bearer Token N/A

{
"name": String
"description": String
"address": String
"phoneNumber": String
"hoursOfOperation": String
"location": Location
}

Allows users with Administrator role to
create non touristic adverts for the
system.
Once created, the advert is pending
validation by an administrator user.

"" PUT Bearer Token N/A

{
"name": String
"description": String
"address": String
"phoneNumber": String
"hoursOfOperation": String
"location": Location
}

Allows users with the Administrator role
to update information for all non touristic
adverts of the system

After the update, the announcement
is pending validation by an
administrator user.

"" GET Bearer Token N/A N/A
Allows users with the Admin/Manager role, to
get all the non-touristic adverts in
the system.

/destination/{id} GET No Auth id: Long N/A
Allows users to obtain all
non-touristic adverts in a given
destination without any authentication.

/{id} GET No Auth id: Long N/A

Allows users to obtain specific
information about a
non-touristic advert without any
authentication.

/{id} DELETE Bearer Token id: Long N/A Allows users with Admin role to delete any
non-touristic adverts from the system.

/approve/{id} POST Bearer Token id: Long N/A

Allows users with Admin role to approve
non-touristic adverts, which are
automatically visible on the respective
portals.

Table 4.4: Non Touristic Service REST API endpoints

40

Path
(/api/activities-events) HTTP Method Authorization Query Params Body Function to the system

"" POST Bearer Token N/A

{
"name": String
"activityPartner": String
"partners":String
"description": String
"address":String
"phoneNumber":String
"activityDuration": Integer
"activityGroup": Integer
"photo": byte[]
"location": Location
}

Allows users with Administrator or
Manager roles to create
activities/events adverts for the
system.
Once created, the advert is pending
validation by an administrator user.

"" PUT Bearer Token N/A

{
"name": String
"activityPartner": String
"partners":String
"description": String
"address":String
"phoneNumber":String
"activityDuration": Integer
"activityGroup": Integer
"photo": byte[]
"location": Location
}

For users with the Administrator role,
you can change the information for all
the activities/events in the database,
and for users with the Manager role
for all the activities/events
they manage.

After the update, the announcement
is pending validation by an
administrator user.

"" GET Bearer Token N/A N/A

For users with the Admin role, you
can get all the activities/events in
the database, and for users with the
Manager role, all the activities/events
they manage.

/destination/{id} GET No Auth id: Long N/A
Allows users to obtain all
activities/events in a given
destination without any authentication.

/{id} GET No Auth id: Long N/A

Allows users to obtain specific
information about a
activities/events without any
authentication.

/{id} DELETE Bearer Token id: Long N/A Allows administrator users to delete any
activities/events from the system.

/approve/{id} POST Bearer Token id: Long N/A

Allows administrator users to approve
activities/events adverts, which are
automatically visible on the respective
portals.

Table 4.5: Activities-Events Service REST API endpoints

41

Path
(/api/ratings) HTTP Method Authorization Query Params Body Function to the system

"" POST Bearer Token N/A

{
"comment": String
"score": Integer
"touristicProductId": Long
"ratingType": String
}

Allows all authenticated
users to create
ratings/criticisms for the
various types
of tourist product adverts
in the system.

They can then assign a
rating from 1 to 5
and write a comment
about the advert.

"" PUT Bearer Token N/A

{
"comment": String
"score": Integer
"touristicProductId": Long
"ratingType": String
}

Allows all authenticated
users to update
the ratings/criticisms that
they have made
on the different tourist
product adverts
in the system.

/ratings-by-product-id
/{touristicProductId} GET No Auth touristicProductId: Long N/A

Allows all users to obtain
the
ratings/criticisms of a tourist
product
they are viewing without
any authentication.

/myratings GET Bearer Token N/A N/A

Allows users to obtain all the
ratings/criticisms they have
made of the tourist products
they have visited.

/{id} DELETE Bearer Token id: Long N/A
Allows users to delete their
ratings/reviews on the various
tourist products in the system.

Table 4.6: Rating Service REST API endpoints

Path
(/api/reservations) HTTP Method Authorization Query Params Body Function to the system

"" POST Bearer Token N/A

{
"touristicProductId": Long
"startDate": LocalDate
"endDate": LocalDate
"reservationType": String
}

Allows all authenticated
users to create
reservations for the
various types
of tourist product adverts
in the system.

"" PUT Bearer Token N/A

{
"touristicProductId": Long
"startDate": LocalDate
"endDate": LocalDate
"reservationType": String
}

Allows all authenticated
users to update
the reservations that
they have made
on the different tourist
product adverts
in the system.

/myreservations GET Bearer Token N/A N/A

Allows users to obtain all
the reservations they have
made in the tourist products
they want to visit.

/reservations-by-username
/{username} GET Bearer Token username: String N/A

Allows users with admin
permissions to obtain the
reservations that any user of
the system has made on all
tourist products .

/reservations-of-manager GET Bearer Token N/A N/A

Allows users with
admin or manager permissions
to obtain the reservations made
by users in the
products they have advertised.

/{id} GET Bearer Token id: Long N/A
Allows users to obtain specific
information about a reservation
that they made.

/{id} DELETE Bearer Token id: Long N/A
Allows users to delete their
reservations on the various
tourist products in the system.

Table 4.7: Reservation Service REST API endpoints

42

Path
(/api/destination) HTTP Method Authorization Query Params Body Function to the system

"" POST Bearer Token N/A

{
"id": Long
"name": String
"isActive": boolean
"locations": Set<Location>
}

Allows users with admin
permissions to create new
destinations to the system

"" PUT Bearer Token N/A

{
"id": Long
"name": String
"isActive": boolean
"locations": Set<Location>
}

Allows users with admin
permissions to update
information of the destinations
of the system

"" GET Bearer Token N/A N/A
Allows users with admin
permissions to obtain all
the destinations of the system

/{id} GET Bearer Token id: Long N/A

Allows users with admin
permissions to obtain
specific information about
the destinations.

/{id} DELETE Bearer Token id: Long N/A
Allows users with admin
permissions to delete the
destinations of the system.

Table 4.8: Destination/Location Service - Destination REST API endpoints

Path
(/api/location) HTTP Method Authorization Query Params Body Function to the system

"" POST Bearer Token N/A

{
"id": Long
"name": String
}

Allows users with admin
permissions to create new
locations to the system

"" PUT Bearer Token N/A

{
"id": Long
"name": String
}

Allows users with admin
permissions to update
information of the locations
of the system

"" GET Bearer Token N/A N/A
Allows users with admin
permissions to obtain all
the locations of the system

/{id} GET Bearer Token id: Long N/A

Allows users with admin
permissions to obtain
specific information about
the locations.

/{id} DELETE Bearer Token id: Long N/A
Allows users with admin
permissions to delete the
locations of the system.

Table 4.9: Destination/Location Service - Location REST API endpoints

43

4.5 Frontend/Backend connection

As seen above, the Multi-Destination Management System uses a client-server architecture
in which a single server serves multiple clients (portal modules and the shared management
module). In this chapter, the server component of the system has been presented so far, and
this subsection will show how the clients communicate with the server.

The Multi-Destination Management System server exposes the various endpoints imple-
mented in the business microservices via the gateway (port 8090). Thus, the multiple clients
make HTTP requests to the gateway, sending information to the microservices or, conversely,
collecting data from them.

In the case of the portal modules, the endpoints used are mainly of the GET type. Their
request must provide a unique ID as a query parameter, which will be used to identify and
differentiate the destination by the server and return the information advertised about the
tourist destination. In addition to GET endpoints, portals also use POST endpoints to allow
the user to categorize or book tourism products. Table 4.10 shows the endpoints consumed
by the portals per microservice.

Business Microservice Endpoint HTTP Method
Restaurant-Bar /restaurant-bar/api/restaurants-and-bars/destination/{destinationId} GET
Accommodation /hotel-accomodation/api/hotel-and-accomodations/destination/{destinationId} GET
Activities-Events /activities-events/api/activities-events/destination/{destinationId} GET

NonTourist /non-tourist/api/non-tourists/destination/{destinationId} GET
/rating/api/ratings POST
/rating/api/ratings/ratings-by-product-id/{product_id} GETRating
/rating/api/ratings/myratings GET
/reservation/api/reservations POST

2-3 multiplecolor[HTML]EFEFEFReservation /reservation/api/reservations/myreservations GET

Table 4.10: Portal - Needed Endpoints By Microservice

The management module functions as a CRUD, i.e., it implements the creation, reading,
updating, and deletion functionalities for the system’s various microservices. However,
depending on each user’s permissions, some endpoints may not be authorized for all users
with access to this platform. Table 4.11 shows the endpoints the management module uses to
implement its functionality and the permissions required to be authorized to use them.

44

Business Microservice Endpoint HTTP Method
/restaurant-bar/api/restaurants-and-bars GET
/restaurant-bar/api/restaurants-and-bars POST
/restaurant-bar/api/restaurants-and-bars PUT
/restaurant-bar/api/restaurants-and-bars/{id} GET
/restaurant-bar/api/restaurants-and-bars/{id} DELETE

Restaurant-Bar

/restaurant-bar/api/restaurants-and-bars/approve/{id} POST
/hotel-accomodation/api/hotel-and-accomodations GET
/hotel-accomodation/api/hotel-and-accomodations POST
/hotel-accomodation/api/hotel-and-accomodations PUT
/hotel-accomodation/api/hotel-and-accomodations/{id} GET
/hotel-accomodation/api/hotel-and-accomodations/{id} DELETE

Accommodation

/hotel-accomodation/api/hotel-and-accomodations/approve/{id} POST
/activities-events/api/activities-events GET
/activities-events/api/activities-events POST
/activities-events/api/activities-events PUT
/activities-events/api/activities-events/{id} GET
/activities-events/api/activities-events/{id} DELETE

Activities-Events

/activities-events/api/activities-events/approve/{id} POST
/non-tourist/api/non-tourists GET
/non-tourist/api/non-tourists POST
/non-tourist/api/non-tourists PUT
/non-tourist/api/non-tourists/{id} GET
/non-tourist/api/non-tourists/{id} DELETE

NonTourist

/non-tourist/api/non-tourists/approve/{id} POST
/location/api/destination GET
/location/api/destination POST
/location/api/destination PUT
/location/api/destination/{id} GET
/location/api/location GET
/location/api/location POST
/location/api/location PUT

Destination-Location

/location/api/location/{id} GET
/reservation/api/reservations/reservations-of-manager GETReservation /reservation/api/reservations/reservations-by-username GET

Table 4.11: Management - Needed Endpoints By Microservice

4.6 Conclusion

This chapter presents the most critical aspects of implementing the system. The focus
was on some essential microservices for implementing an architecture based on microservices,
namely the API Gateway and the Discovery Server. Afterward, we explained how we
implemented a user authentication and authorization mechanism for the system. In addition,
the essential details in implementing the microservices that contain the business logic of the
system’s stakeholders and the endpoints that each of these services implements were also
presented. As a way of making it possible to create one or more frontends for the portal
modules or the management module, it was also explained by microservice which endpoints
would need to be consumed to guarantee the correct functioning of the solution.

45

Chapter 5
Results and Discussion

5.1 Introduction

This chapter will demonstrate and analyze the results obtained from this work. Since
a functional prototype was developed with two portals simulating two tourist destinations
and a management platform, a brief presentation of the prototype will be made. However,
specific details of the front-end created will not be analyzed since the aesthetic and usability
component of the solution developed is outside the scope of this dissertation. The results of
the system’s performance tests will also be presented and discussed, in particular, the load
tests carried out using the JMeter tool.

5.2 Portal and Management System: Prototypes

To better present and validate the implemented solution, two prototypes were created:
one of a portal for a destination, in this case, the Aveiro region, and a management platform
that can be used by various managers of tourism products in various destinations. All the
functionalities that were implemented in the Backend of the solution are functional in the two
front-end prototypes.

5.2.1 Portal

To demonstrate how the implemented system could be used, two prototype portals were
created for two tourist destinations, the Terras de Trás os Montes and the Aveiro region.
However, since the functionalities of the portals are similar, only the Aveiro region portal
will be extensively presented. In Figure 5.1, we can see the home page of the destination
Portal. Here, various Hotels/Accommodations, Restaurants/Bars, Activities/Events, and
Useful Contacts for the destination are advertised. It’s also worth noting that in all the
adverts you can find more information about the tourism product and make a reservation or
rating (except for useful contacts).

47

Figure 5.1: Aveiro Region Portal - Main Page

As soon as the user selects the more information option available on all DMS adverts,
they have access to information about the tourism product, which, as explained above, varies
depending on the type of advert they are viewing. They also have access to the comments
and ratings that other users have made, as shown in Figure 5.2.

48

Figure 5.2: Aveiro Region Portal - More Detail about a Touristic Product

Suppose the user is interested in a particular tourism product. In that case, they can make
a reservation by selecting the "Reservation" button in the respective advert and being directed
to a pop-up where they can choose the dates they want to book, as seen in Figure 5.3.

Figure 5.3: Aveiro Region Portal - Do a Reservation of a Touristic Product

After enjoying the tourism product, the user can rate the experience by clicking on the
rating button in the respective advert, being directed to a pop-up where they can assign a
rating from 1 to 5 in the form of stars and write a short comment, as seen in Figure 5.4.

49

Figure 5.4: Aveiro Region Portal - Do a Rating of a Touristic Product

If they wish, users can also consult the ratings given to the tourist products they have
visited, as shown in Figure 5.5.

Figure 5.5: Aveiro Region Portal - My Ratings Page

In addition, they can also check the reservations they have pending and have made in the
past, as shown in Figure 5.6.

50

Figure 5.6: Aveiro Region Portal - My Reservations Page

However, it’s important to remember that the tasks "do a reservation", "do a rating", "view
my reservations" or "view my ratings" require the user to be registered and logged in to the
destination’s Portal.

5.2.2 Management

As explained above, one of the aims of the system is to create a management module
that can be made available to tourism product managers to advertise their businesses,
which, after approval by a system administrator, are automatically displayed on one or more
tourist destination portals. A prototype of a management module was therefore created that
demonstrates how it would be possible to support the flows that tourism product managers
can make in the system and also how administrators control the entire platform.

Figure 5.7 shows the main page of the management platform, which has a sidebar on the
left-hand side with the various functionalities of a tourism product manager, which will be
presented in more detail in the following figures.

51

Figure 5.7: Multi-Destination Management System - Main Page

In the "All Reservation" option, you can find all the reservations made for the manager’s
tourism products, with information on the advert, the username of the person who made the
reservation, and the start and end dates of the reservation, as can be seen in Figure 5.8.

Figure 5.8: Multi-Destination Management System - My Touristic Product Reservations

In each tourist product (Restaurants/Bars, Hotels/Accommodations or Activities/Events),
you can find a list of the tourist products that the manager has advertised or, if you are an
admin user, with all the advertisements that all the managers have advertised.

In this list, managers can find details of their ads, their approval status, and an option
to edit them. If they are admins, they can also approve, reject ads, and delete ads from
the system. Figure 5.9 shows the list of system activities/events from the point of view of a
system administrator.

52

Figure 5.9: Multi-Destination Management System - Activities/Events List

In addition, both admin and manager users can add new ads to the system, but only
admin users can add useful contacts to the system. Figure 5.10 shows an example of a page
for creating an advertisement, in this case, for a restaurant/bar in the system.

Figure 5.10: Multi-Destination Management System - Create Restaurant/Bar Advert

The administrators, as explained in Chapter 3, have the possibility and responsibility of
adding locations to the system so that the tourism product managers of those locations can
publish their businesses. Thus, they have access to a list of all the locations that are already
available, and they have access to a page for adding new locations, as shown in Figure 5.11
and Figure 5.12, respectively.

53

Figure 5.11: Multi-Destination Management System - Locations List

Figure 5.12: Multi-Destination Management System - Create Location

Later, after creating locations, administrators can create tourist destinations on the
platform, associating one or more locations with each Destination. This can be seen in the
example in Figure 5.13, where there is a list of all the tourist destinations the Multi-Destination
Management System supports, along with the locations each Destination has. It is also possible
to see how creating a tourist destination works in Figure 5.14. Once the Destination has been
created, the system administrator will have access to a destination identifier, which he will
use as a filter in the endpoints presented in Chapter 4 as necessary for creating a new portal.

54

Figure 5.13: Multi-Destination Management System - Destinations List

Figure 5.14: Multi-Destination Management System - Create Destination

5.3 System Performance

To ensure that the performance of a Multi-Destination Management System can be the
same or similar to that of a single DMS, it was necessary to carry out some performance tests
on the system. Various types of performance tests can be carried out on software, but the
most common are:

• General performance test: the system under test is in a normal hardware and software
environment without any pressure.

• Stability test: the system is put into continuous operation to see if it remains stable.
• Load test: As with the stability test, the system is put into continuous operation, but it

will be close to the pressure limit it can withstand. This type of test thus provides a

55

method for testing whether the system operates stably in a critical state. It is often used
to evaluate the system’s capacity or to assess where its performance can be improved.

• Stress test: In this test, the system is subjected to increasing pressure until it collapses
to test the maximum pressure it can withstand. In this way, it is possible to determine
at what load condition the system’s performance is in a state of failure to obtain its
performance limit [30].

So, to understand the limits that a Multi-Destination Management System can have, it was
decided to evaluate the performance through load tests, which allowed us to conclude possible
improvements in each of the business microservices and also to understand the performance
that the system has with multiple destinations sharing the same infrastructure.

5.3.1 Load Test

Conditions

To analyze the results obtained in the system load tests credibly, it is important to know
under what conditions the test was carried out, what tool was used, and what parameters
were used in the trial.

About the conditions under which the test was carried out, it was carried out locally on
the machine where the system was developed since it is a prototype and is, therefore, not
deployed on any server. These conditions mean that the performance of the machine itself
can have an impact on the values obtained in the tests, in particular, the minimum, average,
and maximum response times for requests. Still, it also allows conclusions to be drawn about
the system’s performance.

The software used for the load tests is Apache JMeter. This tool is an open-source
application based on Java that allows you to carry out load tests, functional tests, or unit
tests on an application. Using JMeter, it is possible to simulate multiple simultaneous users
making requests to a web application and evaluate the performance of the software using
metrics such as response time, transfer rate, and number of failures. This solution also has a
GUI to create test plans and export the results as web dashboards [31].

Parameters

In terms of test parameters, it was necessary to choose the endpoints most representative
of the typical interaction flow that users will carry out and also to determine appropriate load
values for a performance test of this type, bearing in mind that the system is running on a
personal computer with all the limitations that this brings.

Figure 5.15 shows how the test plan was structured. Two thread groups were created, one
for the portal modules and the other for the management module.

56

Figure 5.15: JMeter - Test Plan

In the portal modules thread group, the login endpoint used in these modules and the
GET-type REST requests that are initially called to populate a portal were added, and
these requests were all duplicated to simulate two portals from two different destinations. In
the management module’s thread group, the login endpoint used was also added, and the
typical GET-type REST requests that a tourism product manager calls in their normal flow
of interaction with the system were added.

In terms of relevant parameters for each thread group, we have the number of threads,
which consists of the number of concurrent users that will be simulated in the test, the
ramp-up period, and the loop count, which JMeter uses to determine how long it will take to
operate all the selected threads, and the duration of the test. [32] In the two thread groups
created, the parameters used are visible in Figure 5.16.

Figure 5.16: JMeter - Thread Properties

57

Results

After carrying out the tests, various relevant data on the performance of the Multi-
Destination Management System were returned. Still, the number of executions, the percentage
of requests that returned an error, the average, minimum, and maximum response times, and
the size of the packets received by JMeter already allow us to draw reasonable conclusions.

Portals Load Test Statistics
Requests Executions Response Times(ms) Network (KB/sec)

Label Samples Fail Error % Average Min Max Received
Activities/Events Portal 1
Request 694 0 0.00% 147.23 63 1168 160.00

Activities/Events Portal 2
Request 506 0 0.00% 297.53 140 1891 263.60

Hotel/Accomodation Portal 1
Request 804 0 0.00% 556.88 118 3612 434.66

Hotel/Accomodation Portal 2
Request 694 0 0.00% 567.82 228 3599 621.06

Login Request 805 0 0.00% 328.42 234 1376 2.55
Non Tourist Portal 1
Request 694 0 0.00% 33.91 12 895 1.74

Non Tourist Portal 2
Request 505 0 0.00% 27.45 13 110 1.64

Restaurant/Bar Portal 1
Request 803 429 53.39% 74185.20 1732 98454 1749.53

Restaurant/Bar Portal 2
Request 694 388 55.91% 83612.61 7638 100025 1808.48

Table 5.1: JMeter - Portal Modules Test Results

Management Load Test Statistics
Requests Executions Response Times(ms) Network (KB/sec)

Label Samples Fail Error % Average Min Max Received
Activities/Events Management
Request 1161 0 0.00% 168.76 79 1460 354.02

Hotel/Accomodation Management
Request 1460 0 0.00% 670.39 187 3746 1351.09

Login Request 1461 0 0.00% 325.53 241 1361 4.68
Non Tourist Management
Request 1161 0 0.00% 26.35 11 155 5.27

Restaurant/Bar Management
Request 1460 829 56.81% 80576.60 7895 104600 8999.72

Table 5.2: JMeter - Management Module Test Results

Analysing Table 5.1 and Table 5.2, it is possible to conclude that the response times for
requests made on the portals are shorter than those made in the management module.

In addition, it can be seen that the restaurant/bar service has excessively high response
times for requests and packet sizes, which causes a high percentage of requests to be returned
in error, as the server is unable to cope with a large load of requests with a large packet size.

On the other hand, it can be concluded that the other microservices in the system have
very reasonable response times, given the load applied to the system and the conditions under
which the test was carried out.

58

Discussion

Taking into account the results of the system tests, it is possible to conclude that the size
of the restaurant and bar microservice responses needs to be optimized. The reason identified
for the size of the responses in this microservice being so large is that in each advert, the
menu and photo are stored in the database in the form of an array of bytes and returned
directly in response to the request made to the microservice. One way around this problem
could be to host the images/documents in a service external to the system, store the URL
in the database, and return it in the request responses. It is also possible to see that with a
considerable load applied to the system, the remaining services are pretty stable and resilient,
with good response times to requests. However, to draw better conclusions about the system
load, the test must be run after the project has been deployed in a real environment.

5.4 Conclusion

This chapter presented the results obtained in this dissertation, namely through the
creation of a prototype portal for a tourist destination and the creation of a management
module that supports multiple tourist destinations, where some of the main functionalities of
the implemented prototypes were discussed from the point of view of the system’s users. In
addition, load tests were carried out on the system using the JMeter software, which highlighted
some of the strengths of the implementation and some points for future improvement but also
proved that using an infrastructure shared by multiple destinations does not mean sacrificing
the system’s performance in general.

59

Chapter 6
Conclusions and Future Work

6.1 Final Considerations

The main aim of this dissertation was to prove that it is possible to develop a platform that
allows DMS to be created much more quickly and economically by building an infrastructure
shared by several destinations, where it would be possible to reuse the software components
of a DMS as much as possible.

To achieve this goal, a Backend based on microservices was created, where each microservice
consisted of one of the most abundant types of business in the world of tourism, as well as
support microservices such as Reservations and Rating. In addition, to demonstrate that
this backend was functional and that the functionalities of each service were suitable for each
business, a Frontend for a management module was created to illustrate how the tourist offer
could advertise its products and services on the system, and two portals for two different
tourist destinations were created to demonstrate the possibility of more than one tourist
destination using the same infrastructure.

Finally, the portals were created, and the management module was also used to carry
out load tests on the system to prove that even if the infrastructure feeds multiple tourist
destinations, it can be just as performant as a system implemented from scratch and unique
to each tourist destination.

The Multi-Destination Management System therefore proves to be a viable alternative for
destinations with low financial capacity, which can thus access a system of this type without
having to give up optimum performance, stability, and functionalities.

6.2 Future work

This work has created the basis for a platform that allows multiple DMS to be made based
on the same infrastructure and has been designed in such a way that it can be improved and
new functionalities introduced quickly. In terms of future steps, the most essential thing in the
first phase would be to optimize the way files and images are stored in the system’s database,
as this would guarantee a faster response time to requests. A compelling improvement that
could make it possible to commercialize the system would be to create a more beautiful and

61

dynamic front end for the destination portals, which could promote the destinations and use
the microservices implemented.

Finally, it would also be interesting to improve the operation of the booking microservice
so that it would allow users to know which days are already booked and make it possible to
book by hours and minutes and not just by whole days.

62

References

[1] C. L. Bunghez, “The importance of tourism to a destination’s economy,” Journal of Eastern Europe
Research in Business & Economics, vol. 2016, 2016.

[2] J. Estevao, M. J. Carneiro, and L. Teixeira, “Destination management systems’ adoption and management
model: Proposal of a framework,” Journal of Organizational Computing and Electronic Commerce,
vol. 30, no. 2, 2020.

[3] D. Buhalis, “Information and telecommunications technologies as a strategic tool for small and medium
tourism enterprises in the contemporary business environment,” pp. 254–275, 1994.

[4] C. Petti and G. Solazzo, “Architectural scenarios supporting e-business models for a dms,” in Information
and communication technologies in tourism 2007, Springer, 2007.

[5] WTO, E-business for tourism-practical guidelines for destinations and businesses, 2001.

[6] C. A. Martins, “Determinantes da implementação de uma estratégia de negócio eletrónico por parte das
organizações de gestão de destinos turısticos,” Ph.D. dissertation, Universidade de Aveiro (Portugal),
2018.

[7] D. Garlan, “Software architecture: A roadmap,” in Proceedings of the Conference on the Future of
Software Engineering, 2000, pp. 91–101.

[8] “Software Architecture Patterns Understanding Common Architecture Patterns and When to Use
them,” Microsoft. [Online]. Available: https://get.oreilly.com/rs/107-FMS-070/images/Software-
Architecture-Patterns.pdf.

[9] N. Dmitry and S.-S. Manfred, “On micro-services architecture,” International Journal of Open Informa-
tion Technologies, vol. 2, 2014.

[10] J. Zhao, S. Jing, and L. Jiang, “Management of api gateway based on micro-service architecture,” in
Journal of Physics: Conference Series, IOP Publishing, vol. 1087, 2018, p. 032 032.

[11] What is a three-tier architecture? [Online]. Available: https://www.ibm.com/topics/three-tier-
architecture.

[12] S. Sulyman, “Client-server model,” IOSR Journal of Computer Engineering, vol. 16, pp. 57–71, Jan.
2014. doi: 10.9790/0661-16195771.

[13] D. Kunda and H. Phiri, “A comparative study of nosql and relational database,” Zambia ICT Journal,
vol. 1, no. 1, pp. 1–4, 2017.

[14] “What is a relational database?” IBM. [Online]. Available: https://www.ibm.com/topics/relational-
databases.

[15] M. Ilić, L. Kopanja, D. Zlatković, M. Trajković, and D. Ćurguz, “Microsoft sql server and oracle:
Comparative performance analysis,” in The 7th International conference Knowledge management and
informatics, 2021.

63

https://get.oreilly.com/rs/107-FMS-070/images/Software-Architecture-Patterns.pdf
https://get.oreilly.com/rs/107-FMS-070/images/Software-Architecture-Patterns.pdf
https://www.ibm.com/topics/three-tier-architecture
https://www.ibm.com/topics/three-tier-architecture
https://doi.org/10.9790/0661-16195771
https://www.ibm.com/topics/relational-databases
https://www.ibm.com/topics/relational-databases

[16] R. Wodyk and M. Skublewska-Paszkowska, “Performance comparison of relational databases sql server,
mysql and postgresql using a web application and the laravel framework,” Journal of Computer Sciences
Institute, 2020.

[17] “PostgreSQL Vs MySQL: Different Databases For Different Use Cases,” Panoply. [Online]. Available:
https://blog.panoply.io/postgresql-vs.-mysql.

[18] “PostgreSQL vs MySQL: The Critical Differences,” Integrate.IO. [Online]. Available: https://www.
integrate.io/blog/postgresql-vs-mysql-which-one-is-better-for-your-use-case/.

[19] M. Mythily, A. Samson Arun Raj, and I. Thanakumar Joseph, “An analysis of the significance of spring
boot in the market,” in 2022 International Conference on Inventive Computation Technologies (ICICT),
2022. doi: 10.1109/ICICT54344.2022.9850910.

[20] P. Rawat and A. N. Mahajan, “Reactjs: A modern web development framework,” International Journal
of Innovative Science and Research Technology, 2020.

[21] “Start a new react project,” Meta OpenSource, 2023. [Online]. Available: https://react.dev/learn/
start-a-new-react-project.

[22] “Getting started with React,” Mozilla, 2023. [Online]. Available: https://developer.mozilla.org/en-
US / docs / Learn / Tools _ and _ testing / Client - side _ JavaScript _ frameworks / React _ getting _
started.

[23] L. De Lauretis, “From monolithic architecture to microservices architecture,” in 2019 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), IEEE, 2019, pp. 93–96.

[24] 10 medidas para preparar a aplicação do regulamento europeu de proteção de dados. [Online]. Available:
https://www.sg.pcm.gov.pt/media/33598/06.pdf.

[25] Spring Cloud Gateway. [Online]. Available: https://spring.io/projects/spring-cloud-gateway.

[26] Spring Cloud Netflix. [Online]. Available: https://spring.io/projects/spring-cloud-netflix.

[27] An Intro to Spring Cloud Security. [Online]. Available: https://www.baeldung.com/spring-cloud-
security.

[28] G. Mak, “Spring mvc framework,” in Spring Recipes: A Problem-Solution Approach, Springer, 2008.

[29] Spring cloud config. [Online]. Available: https://docs.spring.io/spring- cloud- config/docs/
current/reference/html/#_quick_start.

[30] J. Wang and J. Wu, “Research on performance automation testing technology based on jmeter,” in 2019
International Conference on Robots Intelligent System (ICRIS), 2019, pp. 55–58. doi: 10.1109/ICRIS.
2019.00023.

[31] V. Tiwari, S. Upadhyay, J. K. Goswami, and S. Agrawal, “Analytical evaluation of web performance
testing tools: Apache jmeter and soapui,” in 2023 IEEE 12th International Conference on Communication
Systems and Network Technologies (CSNT), 2023, pp. 519–523. doi: 10 . 1109 / CSNT57126 . 2023 .
10134699.

[32] G. Mahajan, D. V. Attar, and S. Kalamkar, “Generation of jmeter scripts for performance testing
of moodle server,” in 2022 4th International Conference on Advances in Computing, Communication
Control and Networking (ICAC3N), 2022, pp. 2277–2281. doi: 10.1109/ICAC3N56670.2022.10074284.

64

https://blog.panoply.io/postgresql-vs.-mysql
https://www.integrate.io/blog/postgresql-vs-mysql-which-one-is-better-for-your-use-case/
https://www.integrate.io/blog/postgresql-vs-mysql-which-one-is-better-for-your-use-case/
https://doi.org/10.1109/ICICT54344.2022.9850910
https://react.dev/learn/start-a-new-react-project
https://react.dev/learn/start-a-new-react-project
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/React_getting_started
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/React_getting_started
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/React_getting_started
https://www.sg.pcm.gov.pt/media/33598/06.pdf
https://spring.io/projects/spring-cloud-gateway
https://spring.io/projects/spring-cloud-netflix
https://www.baeldung.com/spring-cloud-security
https://www.baeldung.com/spring-cloud-security
https://docs.spring.io/spring-cloud-config/docs/current/reference/html/#_quick_start
https://docs.spring.io/spring-cloud-config/docs/current/reference/html/#_quick_start
https://doi.org/10.1109/ICRIS.2019.00023
https://doi.org/10.1109/ICRIS.2019.00023
https://doi.org/10.1109/CSNT57126.2023.10134699
https://doi.org/10.1109/CSNT57126.2023.10134699
https://doi.org/10.1109/ICAC3N56670.2022.10074284

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Goals
	Document Structure

	State of Art
	Introduction
	Software Architectures
	Web Development Architectures
	Database Server
	Relational Database

	Application Server
	Spring Boot

	Web Server
	React

	Related Projects
	Visit Alentejo

	Conclusion

	System Requirements and Architecture
	Introduction
	System Requirements
	Requirements Gathering Process
	Actors
	Functional Requirements
	Non Functional Requirements
	General Data Protection Regulation

	System Architecture
	Physical and Technological model
	Domain model

	Conclusion

	Implementation
	Introduction
	API Gateway and Discovery Server
	API Gateway
	Discovery Server

	Authentication
	Business Microservices
	Frontend/Backend connection
	Conclusion

	Results and Discussion
	Introduction
	Portal and Management System: Prototypes
	Portal
	Management

	System Performance
	Load Test

	Conclusion

	Conclusions and Future Work
	Final Considerations
	Future work

	References

