
Universidade de Aveiro
2023

Hugo André
Costa Barros

Navegação para Desinfeção de Espaços Públicos

Navigation for Disinfection of Public Spaces

Universidade de Aveiro
2023

Hugo André
Costa Barros

Navegação para Desinfeção de Espaços Públicos

Navigation for Disinfection of Public Spaces

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Mestre em Engenharia Eletrónica e Telecomuni-
cações, realizada sob a orientação científica do Doutor José Nuno Panelas Nunes
Lau, Professor Associado do Departamento de Eletrónica, Telecomunicações e In-
formática da Universidade de Aveiro, e do Doutor Eurico Farinha Pedrosa, Inves-
tigador Doutorado do Instituto de Engenharia Eletrónica e Informática de Aveiro -
IEETA da Universidade de Aveiro.

Esta dissertação contou com o
apoio do projeto “Automated Ger-
micidal Irradiation System” com
a referência POCI-01-0247-FEDER-
072237 e foi financiado pelo Fundo
Europeu de Desenvolvimento Re-
gional (FEDER).

o júri / the jury
presidente / president Prof. Doutor Rui Manuel Escadas Ramos Martins

Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da Universi-
dade do Aveiro

vogais / examiners committee Prof. Doutor Luís Paulo Gonçalves dos Reis
Professor Associado da Faculdade de Engenharia da Universidade do Porto

Prof. Doutor José Nuno Panelas Nunes Lau
Professor Associado do Departamento de Eletrónica, Telecomunicações e Informática da Univer-
sidade do Aveiro

agradecimentos /
acknowledgements

Quero começar por agradecer aos meus pais, Manuela e Paulo, por acreditarem
sempre em mim e me apoirem nos momentos mais dificies. Agradeço ao meu irmão
David e avó Sãozinha pelo carinho e apoio.
Um agradecimento especial ao Professor Doutor José Nuno Panelas Nunes Lau
e ao Doutor Eurico Farinha Pedrosa pela paciência e por toda a ajuda prestada
durante esta dissertação.
A todos os meus amigos que me acompanharam ao longo destes anos. Juntos
partilhamos momentos inesqueciveis que irei levar para a vida.
Por fim, gostaria de agradecer à minha companheira Patrícia, sem ela nada disto
teria sido possivel. Obrigado por toda a paciência, apoio e motivação que me
deste.

Palavras Chave ROS, Planeamento de Caminhos de Cobertura, Navegação de Robôs, Localização
em Espaços Interiores, MiR100, Desinfeção Móvel, Sensor Ultravioleta.

Resumo Este documento descreve um projeto destinado a melhorar as soluções actuais
para o planeamento do percurso em cenários de desinfeção. O projeto propõe o
desenvolvimento de um sistema automatizado de irradiação germicida utilizando
um robô móvel para a desinfeção de espaços públicos. A dissertação centra-
se na investigação e desenvolvimento de um sistema de navegação autónomo
integrado no robô, analisando algoritmos de localização e navegação. Pretende-se
desenvolver um sistema capaz de desinfetar espaços interiores utilizando o robô e
um sensor ultravioleta, tendo como objectivos o estudo dos métodos de navegação
existentes, o desenvolvimento de um metodo para visualizar a area irradiada pelo
sensor UV, e o teste e validação das técnicas desenvolvidas.
É discutido o desenvolvimento de um sistema de desinfeção de espaços públicos
com base no uso da framework Robot Operating System (ROS). Para a construção
do sistema, não só foram utilizados pacotes ROS disponiveis online assim como
foram criados pacotes ROS especicos do projeto. Destaca-se a integração com
o ROS do robo MiR100, o método de localização baseado em scan-matching, o
planeamento da navegação usando como planeador global o algoritmo backtracking
spiral (BSA) e como planeador local um controlador PID, e a representação da
área de cobertura do Sensor ultravioleta. O documento também menciona os
parâmetros e componentes envolvidos na operação do sistema e a importância da
cobertura abrangente para fins de desinfeção.
O passo seguinte foi testar o sistema desenvolvido, o cenário de teste e os critérios
de seleção utilizados para avaliar a eficiência da desinfeção e afinar o sistema são
abordados. As métricas utilizadas para avaliar o comportamento da desinfeção
incluem a área desinfectada, o tempo de desinfeção, a sobreposição da área
irradiada e o tempo de exposição à irradiação. São avaliados os parâmetros que
influenciam a eficácia e a eficiência de um robô de desinfeção e são apresentados
os resultados de testes realizados num ambiente simulado. São identificadas as
combinações ideais de parâmetros para obter a melhor cobertura e tempo de
desinfeção. O documento conclui com a escolha final dos parâmetros com base
nas metricas acima referidas sendo a sobreposição da área irradiada a metrica mais
relevante.
Em conclusão, utilizando o MiR100, que é um robô móvel autónomo compacto e
altamente manobrável capaz de transportar cargas até 100kg, equipado com um
sensor UV, foi alcançada uma cobertura de desinfeção de 97,10% após 22 minutos
e 19 segundos, com algumas áreas a serem irradiadas mais do que uma vez. A
cobertura do mapeamento foi bem sucedida, exceto nas áreas próximas das paredes,
que não foram tratadas devido a limitações no cálculo do percurso do algoritmo
BSA.

Keywords ROS, Coverage Path Planning, Robot Navigation, Indoor Localization, MiR100,
Mobile Disinfection, Ultraviolet Sensor.

Abstract This document describes a project aimed at improving current solutions for optimal
path planning in disinfection scenarios. The project proposes the development of
an automated germicidal irradiation system using a mobile robot for disinfection
of public spaces. The dissertation focuses on the research and development of an
autonomous navigation system integrated into the robot, analyzing algorithms for
localization and navigation. The goal is to develop a system that can disinfect
indoor spaces using the robot and an ultraviolet sensor, with objectives including
studying existing navigation methods, developing a UV sensor component, and
testing and validating the techniques developed.
The development of a system for disinfecting public spaces based on the use of the
Robot Operating System (ROS) framework is presented. To build the system, not
only were ROS packages available online used, but project-specific ROS packages
were also created. Highlights include the integration with the ROS of the MiR100
robot, the localization method based on scan-matching, navigation planning using
the backtracking spiral algorithm (BSA) as the global planner and a PID controller
as the local planner, and the representation of the ultraviolet sensor coverage
area. The document also mentions the parameters and components involved in the
system’s operation and the importance of comprehensive coverage for disinfection
purposes.
The next step was to test the developed system, the test scenario and selection
criteria used to evaluate the efficiency of disinfection and tuning the system are
aborded. The metrics used to evaluate the behavior of disinfection include the
disinfected area, disinfection time, overlapping irradiated area, and irradiation
exposure time. It is evaluated the parameters that impact the effectiveness and
efficiency of a disinfection robot and presents the results of tests conducted in a
simulated environment. The optimal combinations of parameters for achieving the
best disinfection coverage and time are identified. The document concludes with
the final choice of parameters based on the overlapping of irradiated area.
In conclusion, using the MiR100 which is a compact, highly maneuverable
autonomous mobile robot capable of carring payloads up to 100kg equiped with a
UV Sensor, a disinfection coverage of 97.10% was achieved after 22 minutes and 19
seconds, with some areas being irradiated more than once. The mapping coverage
was successful, except for areas close to the walls, which were left untreated due
to limitations in the BSA algorithm’s path computation.

Contents

Contents i

List of Figures v

List of Tables vii

Glossary ix

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Thesis Outline . 2

2 Autonomous Navigation 3

2.1 Localization . 4

2.1.1 Adaptive Monte Carlo Localization . 5

2.1.2 Scan Matching-based Localization . 7

2.2 Mapping . 7

2.2.1 Occupancy Grid . 8

2.3 Global Path Planner . 8

2.3.1 A-Star Algorithm . 9

2.3.2 Search-based Planning Lattice . 10

2.4 Mapping Coverage . 13

2.4.1 Spiral Spanning Tree Coverage . 13

2.4.2 Backtracking Spiral Algorithm . 15

2.5 Local Path Planner . 18

2.5.1 Dynamic Window Approach . 18

2.5.2 Time Elastic Band . 19

2.6 The Localization and Mapping package . 20

3 Robot Operating System 23

i

3.1 Development Tools . 25

3.1.1 RViz . 25

3.1.2 rqt_graph . 26

3.2 Gazebo . 26

4 Robot Disinfection State of Art 29

4.1 Real Robots Applications . 30

4.1.1 UltraBot . 30

4.1.2 Smart Cleaner . 31

4.1.3 Intelligent Disinfection Robot . 31

4.1.4 UVD Robot . 32

4.1.5 Ava’s UV Disinfection Robot . 33

4.1.6 Comparison between Disinfection Robots . 33

4.2 Coverage Path Planning . 34

4.2.1 explore_lite package . 34

4.2.2 full_coverage_path_planner package . 35

5 Disinfection of Spaces 37

5.1 Introduction . 37

5.2 MiR100 Robot’s Overview . 37

5.2.1 The mir_robot repository . 38

5.3 Overall Architecture of the Project . 38

5.4 System Architecture . 39

5.4.1 Sensorization . 40

5.4.2 Localization . 43

5.4.3 Navigation . 43

5.4.4 Disinfectioned Area Coverage . 47

5.5 Summary . 48

6 Results and Troubleshooting 49

6.1 Methodology of the tests . 49

6.1.1 Method of Evaluation of the Disinfection . 50

6.2 Evaluation of the UV Sensor’s orientation and tool_radius parameter 53

6.3 Evaluation of the MiR100’s velocity during forward movement and directional changes 54

6.4 Evaluation of the UV Sensor’s Radiation Range . 56

6.5 Evaluation of Disinfection . 57

7 Conclusion and future work 59

7.1 Conclusions . 59

ii

7.2 Future work . 59

Bibliography 61

iii

List of Figures

2.1 Mobile Robot Navigation Blocks . 3

2.2 Breadth-first search planner (left) and Example of task performed by Dijkstra’s algorithm

(right) [39]. 9

2.3 Path from the orange point to the purple point generated by A* algorithm [39]. 9

2.4 A 3D (x, y, θ) lattice with at most five forward actions for each state and no backward

actions. A full set of actions is shown for states s1. For every state, this set of actions is

translated and rotated appropriately, and all actions intersecting obstacles are removed [44]. 11

2.5 Example of a High-resolution action spaces (Left) and a Low-resolution action spaces

(Right) [44]. 12

2.6 Types of subdivision of a 2D-size cell into a D-size subcell. (a) A double-sided edge; (b) a

single-sided edge; (c) node doubling at a disconnected cell. [48] 14

2.7 (a) Path deformation along a single-sided edge; (b) Crossing of spanning-tree edges. [48] 14

2.8 Full Spiral-STC Coverage. The figure possesses two unrealistic features, which were added

for clarity. The tool size D is shown unrealistically large with respect to the work area

size, and the covering tool path is shown curved while it is rectilinear according to the

algorithm. [48] . 15

2.9 Example of a virtual pipe [51]. 17

2.10 Large scenario with consideration of way-points and obstacles. [54] 20

3.1 ROS as a Meta-Operating System [59]. 23

3.2 Example of ROS Computation Graph Level . 25

3.3 RViz . 26

3.4 rqt_graph . 26

3.5 Gazebo . 27

4.1 UltraBot Robot [66] . 30

4.2 Smart Cleaner Robot [68] . 31

4.3 Intelligent Disinfection Robot [69] . 32

4.4 UVD Robot [73] . 33

4.5 Ava’s UV Disinfection Robot [74] . 33

v

5.1 Illustration of the Overall Architecture of the Project . 38

5.2 System Architecture Diagram at ROS Computation Level 40

5.3 Field of view of the LiDAR sensors on the real MiR100 [78] 40

5.4 Field of view of the LiDAR sensors on the simulated MiR100 (left); Field of view of the

front left sensor (middle); Field of view of the rear right sensor (right). 41

5.5 Field of view of the LiDAR sensors on the simulated MiR100 41

5.6 Example of a orientation of UV Sensor of 180º (left image), and a orientation of 90º (right

image). 42

5.7 Position of a payload of 50kg on the MiR100 Robot [78] 43

5.8 Representation of the minimum traversable gap with and robot_radius parameter values. 44

5.9 Illustration of possible configuration for robot_radius and tool_radius parameters [79]. 45

5.10 Example of a coverage path generated using a tool_radius of 0.53115m (left image) and

a tool_radius of 0.29m (right image). 45

5.11 Representation of the "carrot" strategy of tracking_pid [80]. 46

5.12 Representation of the projected global point (PGP) strategy of tracking_pid [80]. . . . 46

6.1 Test scenario used. 49

6.2 Testing Architecture Diagram at ROS Communication Level. 50

6.3 Example of situations where overlapping irradiated area can vary because of different

tool_radius (Top Left=0.4106m; Top Right=0.53115m) or different rangeUV (Bottom

Left=0.5m; Bottom Right=2m) . 52

6.4 Environment state after disinfection. 58

vi

List of Tables

4.1 Comparison between robots and their used algorithms. (Some of them keep their software

confidential.) . 34

6.1 Value range of the parameters manipulated during tests. 50

6.2 Percentage of disinfected area and the corresponding disinfection time for different values

of tool_radius and dirAngle. 53

6.3 Results of tests for different values of target_x_vel and target_yaw_vel and candidate

tool_radius/dirAngle combination of 0.29m/180º. 54

6.4 Results of tests for different values of target_x_vel and target_yaw_vel and candidate

tool_radius/dirAngle combination of 0.53115m/0º. 55

6.5 Results of tests for different values of target_x_vel and target_yaw_vel and candidate

tool_radius/dirAngle combination of 0.4106m/180º. 55

6.6 Results of tests for different values of rangeUV using the configuration of Set 1. 56

6.7 Results of tests for different values of rangeUV using the configuration of Set 2. 56

6.8 Comparison of the two final candidates’ configurations advantages. 57

vii

Glossary

GermIrrad Automated Germicidal Irradiation
System

FEUP Faculty of Engineering of the University
of Porto

LEPABE Laboratory for Process Engineering,
Environment, Biotechnology and Energy

UA University of Aveiro
IEETA Institute of Electronics and Informatics

Engineering of Aveiro
KF Kalman Filter
MCL Monte Carlo Localization
IRIS Lab Laboratory Intelligent Robotics and

Intelligent Systems
GNSS Global Navigation Satellite System
AMCL Adaptive Monte Carlo Locatization
KLD Kullback-Leibler distance
ICP Iteractive Corresponding Point
EM expectation maximization
GVG generalized Voronoi graphs
FIFO first-in-first-out
A* A-Star Algorithm

ARA* Anytime Reparing A-Star Algorithm
ADA* Anytime Dynamic A-Star Algorithm
SBPL Search-based Planning Lattice
Spiral-STC Spiral Spanning Tree Coverage
DWA Dynamic Window Approach
TEB Timed Elastic Band
EB Elastic Band
ROS Robot Operating System
CPP Coverage Path Planning
FCPP Full Coverage Path Planner
BSA Backtracking Spiral Algorithm
BPs Backtracking Points
RLS Reference Lateral Side
OLS Opposite Lateral Side
MBF move_base_flex
PID Proportional-Integral-Derivative
SLAM Simultaneous Localization and Mapping
MiR Mobile Industrial Robots
UV Ultraviolet

ix

CHAPTER 1
Introduction

1.1 Motivation

A highly urbanized and interconnected world presents numerous challenges in various fields.
One is public health, because the possibility of air-mediated microbial diseases becoming an
epidemic is significantly high. Influenza and tuberculosis have been and continue to be major
public health challenges, but recently, the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) aggravated the situation. Regular disinfection of public spaces is essential to
prevent contamination, which can be performed by exposing the materials to radiation (e.g.
ultraviolet) or through chemical agents. In order to make the disinfection process automatic,
mobile robots can be used to transport and control disinfectant equipment. Considering this
need, we propose this dissertation as an investigation project to analyze and test options for
improving current solutions for optimal path planning in disinfection scenarios.

The research project “Automated Germicidal Irradiation System (GermIrrad)”, promoted
by the consortium formed by the company Spinner Dynamics, the Faculty of Engineering of the
University of Porto (FEUP) through the Laboratory for Process Engineering, Environment,
Biotechnology and Energy (LEPABE), and the University of Aveiro (UA) through the Institute
of Electronics and Informatics Engineering of Aveiro (IEETA), has the primary objective of
developing a system based on a mobile robot for disinfection of public spaces without the
need of interrupting its regular activity. FEUP is in charge of the research of the disinfection
method, while UA has the autonomous mobile navigation part of the project. The work
described in this document was created as part of the GermIrrad project as a Master’s thesis
at the University of Aveiro in Electronic and Telecommunications Engineering.

This dissertation describes the research and development in a simulated environment of an
autonomous navigation system that will be integrated into the robot MiR100 being developed
as part of the GermIrrad project. It analyses the most common algorithms for autonomous
navigation, focusing on two critical problems: localization and navigation for disinfection.
These steps are necessary for the robot to act autonomously in the environment in which it
will operate.

1

1.2 Objectives

The aim of this dissertation is to tackle the issue of regular disinfection of public spaces.
The goal is to develop a system that is able to disinfect an indoor space using the robot MiR100
alongside a Ultraviolet (UV) sensor as method of disinfection. The principal objectives of this
work are the following:

• Study of existing methods used in mobile navigation;
• Familiarization with navigation techniques for mapping coverage;
• Development of a component that simulates an UV Sensor;
• Develop or adapt a coverage path planner;
• Development of planning techniques for disinfection;
• Testing and validation of the techniques developed.

1.3 Thesis Outline

This thesis is organized into six more chapters. Chapter 2 gives an description about the
several components needed for autonomous navigation and presents a survey of algorithms
used in robotics. Chapter 3 introduces the ROS framework and presents some development
tools used on it. After that, a robotic 3D simulator presented. Chapter 4 presents a series
of robots developed for disinfecting spaces that use UV sensors to kill pathogens. Then, a
brief comparison between the described robots presented Subsequently, two ROS packages
developed for coverage path planning are described. Chapter 5 introduces the MiR100 robot
used in this project and describes a GitHub repository with useful ROS packages for working
with the robot in a simulated environment. Afterwards, the overall architecture of the work
is presented and then the system architecture at ROS computation graph level is described
followed by the individually explanation of each component used. Chapter 6 presents the
results obtained by the system developed. It focus in the tuning of some parameters so
the proportion between the coverage of disinfection and the time the robot takes to do it is
acceptable. Finally, Chapter 7 discusses those results and suggests improvements that could
be done in the future.

2

CHAPTER 2
Autonomous Navigation

Mobile robot navigation is a field of study that is continually growing in order to substitute
humans for repetitive or dangerous tasks. Navigation made by a robot is classified as
autonomous when the robot can make automatic judgments based on an evaluation of the
surrounding environment. Figure 2.1 shows the components needed by the robot to perform
this type of navigation [1]. They are perception, mapping, localization, cognition and motion
control.

Figure 2.1: Mobile Robot Navigation Blocks

Perception - The perception is the process of extracting the robot’s knowledge of its
surrounding environment. This is done by extracting meaningful information from the
measurements taken by the sensors.

Mapping - Robot mapping is the process of creating a representation of the robot’s
environment in the form of a map.

Localization - Robot localization is the process of determining the position of a robot in
its environment.

Cognition - This is a system’s deliberate strategy to achieve its highest-order goals.

Motion Control - This block describes the control of the robot’s motor outputs to keep
the vehicle on the desired trajectory.

3

Autonomous mobility is a complex problem, and different constraints must be addressed if
the robot must perform in an indoor or outdoor environment. This work focuses on navigation
in indoor spaces, so all the techniques mentioned are used in this type of environment.

This chapter will present an explanation alongside some techniques used in localization,
mapping, and global and local planning. These five problems must be solved to achieve
autonomous navigation.

2.1 Localization

“Where is the robot now?” is the question that needs to be answered when talking about
robot localization [2]. Localization can be considered one of the most important blocks
regarding robot navigation because, without the robot’s estimation of its own position with
respect to the environment, all other blocks corresponding to navigation will not receive the
correct information about the robot’s pose, leading them to provide unreliable data.

When dealing with a robot’s position, it is important to determine the reference with
which it is associated because that will be critical during the cognition process in Figure
2.1. Because of this correlation, localization entails more than merely detecting an absolute
position in space; it entails obtaining a representation of the environment (mapping) and then
calculating the robot’s position in relation to that map [1].

The use of data from the robot’s sensors is critical when attempting to estimate its posture;
yet no instrument is completely precise due to noise and aliasing. These two characteristics
are well described on [1]. There are mainly three types of localization problems that need to
be addressed before proceeding to the localization methods [1][3], being these:

Position tracking - In position tracking, the data provided by the robot’s sensors, its
previous pose and its odometry is used to monitor the robot’s navigation path over time. The
initial position of the robot is known.

Global localization - Global localization consists of estimating the robot’s pose in
relation to the environment.

Kidnapped robot - This problem occurs when the robot thinks it knows where it is
but in fact that it is not its correct position. Recovery from this problem is necessary for
autonomous navigation.

These three problems must be considered when the robot computes its pose (position
and orientation). The robot’s localization can be obtained using several methods, such as
Markov and Kalman Filter (KF) localization [4][5] which are based on Bayes Filter [6]. The
difference between them is that the first uses an arbitrary probability density function over
the localization model, whereas the second uses Gaussians to represent the prediction of the
robot’s position, the localization model, and the information model from the sensors [1]. Monte
Carlo Localization (MCL) [7][8] is an extremely popular algorithm used in robotics to solve
localization problem. This method is also based on the Bayes filter, but it uses particle filter
and can approximate most distributions of practical importance, which gives it an advantage

4

over the previously mentioned algorithms [9]. Another solution is called Scan Matching, which
consists of comparing two consecutive scans of the environment, or the current scan against
the map of the environment, and finding the best alignment between them. This alignment is
used to estimate the robot’s motion and position. This technique can be used to improve the
accuracy of the robot’s localization, especially in environments where odometry is not reliable
[10]. A recent approach to mobile robot localization using scan matching was developed on
Laboratory Intelligent Robotics and Intelligent Systems (IRIS Lab) of IEETA. The likelihood
field is used as a connection link between scan matching and robotic localization, it avoids
the need to establish direct correspondences and reduces computational complexity. The scan
matching problem is formulated as a non-linear least squares problem and solved by using the
Gauss-Newton and Levenberg-Marquardt methods. Additionally, the authors propose a loss
function to reduce the influence of outliers during optimization [11].

Global Navigation Satellite System (GNSS) is one of the most known localization systems
for outdoor environments, but it cannot be used when an accuracy of some meters impacts
the robot’s application. If there was a GNSS’s signal in an indoor environment, it would be
inadequate to guarantee a useful location of the robot [1][12].

Two probabilistic approaches used nowadays to estimate the robot’s actual position in
relation to the map environment will be described below.

2.1.1 Adaptive Monte Carlo Localization

Adaptive Monte Carlo Locatization (AMCL) method is an improvement of the MCL
algorithm. AMCL recurs to the KLD-Sampling [13], which uses the Kullback-Leibler distance
(KLD) to measure the approximation error caused by the sample-based representation of
the particle filter. This approach is more efficient since the size of the sample sets (number
of particles) is constantly adapted. This technique uses a probabilistic motion model and
a probabilistic measurement model to estimate the pose of a robot as it moves through an
environment and to estimate the state of the environment or other objects in the environment
based on sensor measurements, respectively.

There are several sampling motion models available. Some use control inputs as trans-
lational and angular velocities executed over a fixed time interval. However, this type of
model requires the addition of a third noise parameter to generate a space-filling posterior
probability. Others use odometry readings as inputs, assuming that initial and final rotations
and translations are subject to noise. Although technically not controls, using odometry read-
ings similarly to controls simplifies the estimation problem. When it comes to measurement
models, beam models of range finders, likelihood fields for range finders, correlation-based
models and feature-based models are some of those and more information about them can be
find in chapter 6 of [9].

The procedure of AMCL can be described by the Algorithm 1 in which the previous
sample set (χt−1), the map (m), the most recent odometry’s control (ut) and measurement of
the sensors (zt), and the error bounds of the difference between the true posterior and the
sample-based approximation (ε) and of the number of samples probability (1-δ) are used as

5

input. It starts by setting all the bins (b) of the histogram (H) to empty. Then, the algorithm
generates new particles while the number of particles in a set (M) does not exceed (Mχ) or a
user-defined minimum (Mχmin).

The generation of a particle is composed of the two following steps: Firstly, a particle
(xt−1) is extracted from χt−1 and as well, as in the MCL algorithm, a new particle (x[M]

t) is
predicted based on one of the motion models described, then the importance weight (w[M]

t) of
x

[M]
t is calculated using one of the measurement models described, and finally the particle is

inserted into the new sample set (χt). Secondly, the KLD-sampling is implemented, and when
a x[M]

t falls into an empty b, the number of non-empty histogram bins k increases. After that,
the values k, δ, and ε are used to compute the number of particles in the statistical bound
Mχ.

Algorithm 1: KLD-Sampling-MCL Algorithm [9]
Input: Previous weighted sample set - χt−1
Input: Map - m
Input: Most recent control - ut
Input: Most recent measurement - zt
Input: Statistical error bound between the true posterior and the sample-based

approximation - ε
Input: Statistical error bound of the sample-based approximation quality - δ
Output: Actual weighted sample set - χt

1 Function AMCL(χt−1, ut, zt, ε, δ)
2 χt = { };
3 M = 0, Mχ = 0, k = 0;
4 foreach (b in H) do
5 b = empty;
6 end
7 do
8 draw i with probability ∝ w[i]

t−1;
9 x

[M]
t = sample_motion_model(ut, x[i]

t−1);
10 w

[M]
t = measurement_model(zt, x[M]

t ,m);
11 χt = χt + 〈x[M]

t , w
[M]
t 〉

12 if (x[M]
t falls into empty bin b) then

13 k = k + 1;
14 b = non-empty;
15 if (k > 1) then
16 Mχ := k−1

2ε

{
1− 2

9(k−1) +
√

2
9(k−1)z1−δ

}3
;

17 end
18 end
19 M = M + 1;
20 while ((M < Mχ) || (M < Mχmin));
21 return χt;
22 End

6

2.1.2 Scan Matching-based Localization

Scan Matching method determines the relative translation and rotation displacement of
the robot’s pose by overlapping the current map relative to the pose of the robot on successive
sets of raw range readings, or against a map [14][15][16]. This technique offers high precision
and computational efficiency. Iteractive Corresponding Point (ICP), introduced in [17], and
its variants in [18][19] are used to solve the minimization problem generated by the method
used for point registration. Pedrosa et al. [11] and Burguera et al. [20] use a technique called
likelihood field as measurement model, which is a variant of ICP where the direct association
of the data does not exist turning the process more efficient.

2.2 Mapping

In mobile robot navigation, the ability to model the environment where it is moving is
essential. Robots must have sensors that allow them to perceive the outside environment to
obtain a map. Sensors’ measurements are subjected to noise, which, together with the range
limitations of the instruments, are the main problems of mapping.

Due to the existence of diverse environments and mapping’ methods, the maps can be
represented in a 2-D grid, a 2.5-D grid, or a 3-D grid. The focus of this study is indoor mapping,
and for that reason, only 2-D grid approaches will be considered. That does not mean that
2.5-D grid and 3-D grid are not used for indoor mapping, only that these representations of
maps require more computational resources, and when the criterion of choice is a trade-off
between efficiency and accuracy, these ones are far less used.

One of the representations is called Line Maps. Since indoor environments contain primarily
linear structures such as lines and planes, this type of mapping is efficient and accurate. Data
association as well as knowing “how many lines are there” are the principal problems of this
technique and algorithms such as split-and-merge [21], expectation maximization (EM) [22],
RANSAC [23], Hough-Transform [24] and Line-Tracking [25] were developed to deal with
those. An implementation of this method can be seen in [26][27][28].

Another category of environment description is Topological Maps. In this method, the map
is represented by a graph-like structure in which significant places are pointed out and attached
via arcs. An initial approach to this technique can be seen in [29], later generalized Voronoi
graphs (GVG) started to be used to obtain the roadmap of the environment. Choset and
Nagatani [30] employ GVG, via a graph matching process, to obtain the localization of a robot
on a partially explored map. Cheng et al. [31] developed a system that generates a topological
map and uses it together with the loop closing method to build the environment map through
autonomous exploration. In [32], the original GVG is pruned in order to get a more compact
and efficient topological mapping. They have managed to produce an algorithm that is shorter
by several orders of magnitude in terms of total length than other state-of-the-art methods
and is at least 30% faster than them.

Landmark-based Maps are another possibility. This type of mapping is promising in
environments with distinguishable features. Knowing the robot’s pose and estimating the

7

position of the individual landmarks is the goal of this approach [33]. Murrieta-Cid et al. [34]
use a landmark-based model to develop a visual navigation system in natural environments.

In this section another technique will be explained, the occupancy grid method, which
can be considered the most popular when talking about mapping on mobile autonomous
navigation.

2.2.1 Occupancy Grid

This type of mapping model is also known as Grid Maps, and it is an extremely popular
way of representing the environment. As mentioned in [35], this method is known for being
exceptionally robust and easy to implement.

Occupancy grid maps represent the environment by a grid of cells, where for each cell,
information about the area it covers is stored in the form of a single value corresponding to
the state of being occupied or unoccupied [36][37]. This approach is solved by the generation
of probabilistic maps, where the algorithm used to define the occupancy of a cell is based on
Bayes filter described in [33].

The works of Thrun [35] and Stachniss [37] mention some disadvantages of using occupancy
grid maps such as the nonexistence of a technique for accommodating pose uncertainty, the
assumption of independent noise made by the Bayes filter, the existence of discretization
errors, and the requisition of a lot of computational resources.

2.3 Global Path Planner

In autonomous navigation, a Global Planner is an algorithm that creates a path from a
starting position to another position on a given map. This method recurs to path-finding
algorithms as well as costmaps to identify the most optimal path. One drawback of this
approach is the need to use the whole map to compute the path, which requires a large
computational load. Path-finding algorithms are used to compute the less costly path from
one point to another. There are several techniques where each one can use a different method
to calculate the distance between the points that corresponds to the cost of navigation.

Dijkstra’s algorithm [38] is widely used in a weighted grid with non-negative edge weights,
which means that in this method, the map is represented by a grid in which each edge has
a cost or weight assigned to it. This weight symbolizes some aspect of the edge, such as
traversal time, cost, or distance. Starting from the source node, the algorithm explores the
grid breadth-first where the cells are visited in a first-in-first-out (FIFO) way like the figure
2.2 describes, constructing a shortest-path tree as it goes.

8

Figure 2.2: Breadth-first search planner (left) and Example of task performed by Dijkstra’s algorithm
(right) [39].

Other common algorithms used to obtain the shortest path are A-Star and Search-based
Planning Lattice.

2.3.1 A-Star Algorithm

The A-Star Algorithm (A*) [40][41] is a method based on Dijkstra’s algorithm that searches
by using a heuristic function to guide the search towards the goal node (Figure 2.3). The
heuristic function aids in prioritizing nodes that are more likely to lead to the objective,
improving the runtime and memory consumption efficiency of the A* algorithm.

In grid-based path-finding problems, a common heuristic function is the Manhattan
distance, which is the sum of the absolute differences in the x and y coordinates between two
cells. Other common heuristic functions include the Euclidean distance and the Chebyshev
distance. The Euclidean distance is the straight-line distance between two points, while the
Chebyshev distance is the maximum of the absolute differences in the x and y coordinates
between two points. Algorithm 2 is a basic description of this technique.

Figure 2.3: Path from the orange point to the purple point generated by A* algorithm [39].

While efficient, A* seeks an optimal path, which may not be possible given time constraints
and the size of the environments in which autonomous vehicles must operate. Anytime variants
of A* search, such as Anytime Reparing A-Star Algorithm (ARA*) [42] and Anytime Dynamic
A-Star Algorithm (ADA*) [43], have been developed to deal with limited deliberation time.
These algorithms quickly generate an initial, potentially suboptimal solution and then focus
on improving it while deliberation time allows.

9

Algorithm 2: Pseudo-code to perform basic A* [39]
Input: Start/Goal Configurations - start, goal
Input: Costmap information
Output: Planned path totalpath or failure indication

1 Function aStar(start,goal)
2 closedset ← { };
3 openset ← {start};
4 origset ← { };
5 gscore[start] ← 0;
6 fscore[start] ← gscore[start] + heuristic(start, goal);
7 while (openset is not empty) do
8 current ← node in openset with lowest fscore;
9 if (current = goal) then

10 totalpath ← [current];
11 while (current in origset) do
12 current ← origset[current];
13 totalpath.append(current);
14 end
15 return totalpath;
16 end
17 remove current from openset;
18 add current to closedset;
19 for (each neighbor in neighbor_nodes(current)) do
20 if (neighbor in closedset) then
21 continue;
22 end
23 temp_gscore ← gscore[current] + distance(current, neighbor);
24 if ((neighbor not in openset) || (temp_gscore < gscore[neighbor])) then
25 origset[neighbor] ← current;
26 gscore[neighbor] ← temp_gscore;
27 fscore[neighbor] ← gscore[neighbor] + heuristic(neighbor, goal);
28 if (neighbor not in openset) then
29 add neighbor to openset;
30 end
31 end
32 end
33 end
34 return failure;
35 End

2.3.2 Search-based Planning Lattice

The Search-based Planning Lattice (SBPL) global planner was created to tackle the
restrictions imposed by methods that apply efficient graph searches or use highly informative
heuristics to guide the search for feasible paths on a systematic discretization of the environment.
This type of method involves an intensive computational load when applied over large distances,
and SBPL aims to compute complex feasible plans over this environment’s conditions [44].

10

SBPL utilizes the work done in [45], which presents a method to create an efficient search
space for constrained motion planning by encoding only feasible motion plans and using a
systematic approach to generate a minimal set of distinct motion alternatives to construct its
multi-resolution lattice state space that is used along with an incremental search for planning
the suboptimal path in the lattice. A state lattice is a discretization of the configuration space
into a set of states representing configurations and connections between these states, where
each connection indicates a possible path. An example of a lattice can be seen in Figure 2.4.

Figure 2.4: A 3D (x, y, θ) lattice with at most five forward actions for each state and no backward
actions. A full set of actions is shown for states s1. For every state, this set of actions is
translated and rotated appropriately, and all actions intersecting obstacles are removed
[44].

Multi-resolution lattice state space:
The construction of a lattice needs to consider the state space and the action space. The

first one refers to the sampling strategy used for representing the states in the lattice, and the
second is the control set used for inter-state connections [44]. The state space is represented by
a four-dimensional state, (x, y, θ, υ), where (x, y) corresponds to the position of the center of
the vehicle in the world, θ is the orientation of the vehicle, and υ is the translational velocity
of the vehicle.

An action space can be obtained by the following steps. Firstly, the algorithm computes a
group of feasible actions using the trajectory generation algorithm described in article [46] and
the present state of the vehicle. This method has the advantage that each action produced
has its endpoint landing on a lattice state. Secondly, a subset of states is calculated. These
states need to be reachable via a feasible action within a distance between the states of the
present state. Thirdly, the group of feasible actions is checked to see if some longer feasible
action can be represented by a set of shorter feasible actions. If that is the case, the longer
feasible action is removed from the group. Finally, the compact action space that represents
the entire reachable space from the present state is obtained. Figure 2.5 left side image shows
the action space in the lattice for a single state.

11

The multi-resolution lattice approach is implemented to tackle the problem of high
computation and memory usage. This technique uses a high-resolution action space (Figure
2.5 left image) in the neighborhood of the robot and the goal, and a low-resolution action
space (Figure 2.5 right image) elsewhere. The key is to ensure that the high-resolution and
low-resolution lattices join nicely.

Likhachev and Ferguson [44] described the multi-resolution lattice method where, the
action space used in the low-resolution space is a subset of the action space used in the
high-resolution space. In terms of a high-resolution discretization and a lower-resolution
discretization of variables (x, y, θ, υ), the building of the action space used in the low-resolution
space can be described mathematically as follows. A feasible action that connects two states
only belongs to the action space of low-resolution space if that same feasible action belongs to
the high-resolution space and at the same time to the low-resolution discretization. Figure 2.5
right side shows us an image of a low-resolution action space obtained from the high-resolution
action space of Figure 2.5 left side image.

Figure 2.5: Example of a High-resolution action spaces (Left) and a Low-resolution action spaces
(Right) [44].

Incremental search:
Now that the multi-resolution lattice is constructed, the ADA* algorithm mentioned in

Section 2.3.1 is used to perform a backwards incremental search from the goal configuration
towards the current configuration of the vehicle to plan and re-plan the robot’s global path
while the vehicle moves.

The heuristic used on the ADA* is a single Dijkstra’s search that is redone every time the
vehicle pose changes. This search is done until the cost of the cell it is about to calculate is
greater than or equal to the cost of the goal cell. A cell to be searched needs to be reachable
by an existing state that is no more than twice as far, in terms of path cost, than the cell the
center of the robot is in. Path cost refers to an optimal solution through the search space
assuming a perfectly empty environment, which is a highly effective general heuristic. The
search starts at the robot’s pose cell, and the costs of the shortest pathways from that pose
to all the other cells in the surroundings that obey the criteria previously mentioned are
calculated.

12

Optimization:
Calculating the cost of actions in navigation planning is one of the most computacionally

costly aspects because it requires convolving the geometric footprint of the vehicle for a
specific action with a perception map. This problem is optimized using two steps. Firstly,
when the robot performs an action, we precomputed the cells covered by the vehicle for that
individual action. Then, we create two configuration space maps that the planner can use to
avoid performing convolutions. The first of these maps, using the robot’s inner radius as a
reference, it expands all the obstacles in the perception map. The second map uses the outer
radius as reference to do the same as the first map.

Iterating over the states that may possibly be affected by changes in the costmap is
a process that, like the calculation of the cost of actions, requires a certain amount of
computational effort. To mitigate this, the ADA* algorithm must only update the values
of the states that have been calculated in prior planning iterations. So, there is no need to
update the value of a state if it has not been calculated [44].

2.4 Mapping Coverage

Aside from global path planners, coverage algorithms are an important component of
robotics and autonomous systems. Mapping coverage consists of the ability to determining a
path that goes over all the points of an area of interest while taking into account different
requirements, such as shortest path, fastest path, percentage of area covered or the robot
making a specific movement. In a map, a global planner algorithm is used to plan a route
from the beginning point to the destination. It considers the surroundings, obstructions, and
other criteria to select the best route. To discover the shortest path, global planners often
rely on maps of the environment and techniques such as A* or Dijkstra’s algorithms.

A map coverage algorithm, on the other hand, is used to explore and cover a complete
area rather than determining a specific path from one point to another. Map coverage
algorithms function by breaking down the area to be covered into smaller parts or cells and
then determining which cells must be covered and in what sequence. They can employ several
strategies, such as spiral spanning tree coverage or random coverage, to ensure that the entire
region is covered.

In essence, global planner algorithms and map coverage algorithms differ in that global
planners seek the shortest path from a starting point to a destination, whereas map coverage
algorithms seek to cover a whole area taking into account different criteria as aforementioned.
While both types of algorithms are vital for autonomous navigation, they serve different
purposes and use different strategies to accomplish their objectives.

2.4.1 Spiral Spanning Tree Coverage

Spiral Spanning Tree Coverage (Spiral-STC) is an online sensor-based algorithm that uses
an in-robot square-shaped tool to cover a space. This technique assumes that the covering
tool is a square of size D, the robot is only allowed to move the tool in orthogonal directions

13

to the tool’s four sides without rotating the tool during this motion, and the environment is
approximated by a discrete grid of D-size cells.

The initial version of this algorithm, 2D-Spiral-STC, subdivides the work area into 2D-size
cells where only the completely free ones are used. This condition makes it impossible to
cover all of the map’s area. A detailed explanation can be found at [47]. A later version of
Spiral-STC [48][49], called Full-Spiral-STC, subdivides the 2D-size cells into D-size subcells.
This approach makes it necessary to consider the different types of edges (figure 2.6). The
following procedure obtains the trajectory between free cells: Being x the current cell and y

a neighbor cell. The covering tool moves from its current subcell in x to a subcell of y by
following the right side of the spanning tree edges, measured concerning the tool’s direction of
motion.

Figure 2.6: Types of subdivision of a 2D-size cell into a D-size subcell. (a) A double-sided edge; (b)
a single-sided edge; (c) node doubling at a disconnected cell. [48]

The existence of partially occupied edges requires a specific motion: Being α the path
that would have been taken if the cell were completely free, and β the actual path taken by
the covering tool. The trajectory consists of deforming α away from the occupied subcell
without changing the path’s direction until every point of β lies at a distance of D/2 from the
occupied subcell. Figure 2.7 shows a representation of these two types of motion.

Figure 2.7: (a) Path deformation along a single-sided edge; (b) Crossing of spanning-tree edges. [48]

Algorithm 3 describes the steps of the Full-Spiral-STC procedure where a free cell is
considered new if all of its subcells are not yet covered [48]. The recursive method receives
S and the parent cell w as inputs and starts by changing the status of actual cell x to
old. Then, starting with w, the algorithm searches for a new cell neighbor of x in counter-
clockwise order and assigns it to y (scanNewNeighbour(w,x)). The next step is to generate
a spanning tree between x and y (generateST(x,y)). After that, use it alongside the path

14

constructed to move from x to y taking into account the type of edges between these two cells
(moveToSubcell(...)). This process is repeated until the current cell does not have a new

free or partially occupied cell, but in the following interaction inputs, x will be the previous y

and w the previous x. Finally, the robot returns to the S cell. An application of this algorithm
can be seen in figure 2.8.

Algorithm 3: Full Spiral-STC Algorithm
Data: Call STC2(Null,S)
Data: Starting cell - S
Input: Parent cell - w
Input: Actual cell - x
Output: Returns the path for the full coverage of the grid map

1 Function STC2(w, x)
2 x = old;
3 while (x has new free or partially occupied neighboring cell) do
4 cell y = scanNewNeighbour(w,x);
5 spanningTree st = generateST(x,y);
6 moveToSubcell(x,y,st);
7 STC2(x,y);
8 end
9 if (x != S) then

10 moveToSubcell(x,w,Null);
11 end
12 End

Figure 2.8: Full Spiral-STC Coverage. The figure possesses two unrealistic features, which were
added for clarity. The tool size D is shown unrealistically large with respect to the work
area size, and the covering tool path is shown curved while it is rectilinear according to
the algorithm. [48]

2.4.2 Backtracking Spiral Algorithm

The Backtracking Spiral Algorithm (BSA) is a mobile robot coverage strategy that employs
spiral filling paths in conjunction with a wall-follower algorithm [50][51]. Unvisited regions

15

are marked and covered by a backtracking mechanism to ensure completeness. The switch
between the modified grid-based spiral path functionality and the wall-following procedure is
made according to the detection and visitation of unvisited obstacles.

The spiral path algorithm is a set of conditions that define the robot’s route from the
region’s boundary to a central ending point. In this method, the Reference Lateral Side (RLS)
indicates the side where obstacles are to be referenced and Opposite Lateral Side (OLS) the
opposite direction of RLS. While executing this method, the algorithm continuously searches
for unvisited obstacles. If any are detected, the wall-following component is activated to
circumnavigate the obstacle. The wall-following algorithm aligns the obstacle on the RLS of
the robot, stores its first position and starts circumnavigating the object until it reaches the
initial location and starts the spiral path component. During this procedure, the algorithm
detects and marks all the virtual obstacles and Backtracking Points (BPs).

The backtracking method (Algorithm 4) is used to return to previously unvisited areas
where a new spiral-filling procedure can be performed. During the execution of a spiral path,
BPs, which are the cells where there is more than one unknown cell in its vicinity, are detected
and saved before the robot moves forward.

Algorithm 4: Backtracking Method
Data: Backtracking Point - bp
Data: Candidate Backtracking Point - candidateBP
Input: List of Backtracking Points - bps
Input: Criteria Method to Choose the Candidate Backtracking Point - criteria
Output: Returns the robot’s path to the candidate cell

1 Function BactrackingMethod(bps,criteria)
2 forall (bp in bps) do
3 if (isNotUnkownCell(bp)) then
4 discard(bp);
5 end
6 end
7 candidateBP = selectCandidate(bps,criteira);
8 pathCrossing(candidateBP);
9 End

The function isNotUnkownCell(bp) checks if the BP is marked on the grid-map as un-
known. discard(bp) removes that BP from the BPs list. selectCandidate(bps, criteria)

chooses using the criteria method provided (e.g. euclidean distance between the BP and
the robot) the BP to where the robot goes. Finally, pathCrossing(candidateBP) returns
the robot’s path to the candidate cell. This method considers the already free and partially-
occupied cells as candidates, attributing a cost to each possible path found. The path’s
length and paths mainly composed of free cells are two criteria used to decide which route
the robot will use. After selecting the return path, the Virtual Pipe approach (Algorithm
5) is used to guide the robot throw that track from the ending spiral point to the selected
BP. The procedure starts by defining a reference line between all the central points of
the chosen path (referenceLine(path)) and computing the virtual pipe area using this

16

reference line (virtualPipeArea(ref)). Figure 2.9 shows an example of the described
steps. Then, the robot moves along this reference line until it reaches the candidate BP
(reachFinalRefPoint(candidateBP)). During this process, if the cell on the reference line is
partially occupied (obstructedCell(ref.point)), then the robot will check if its center exits
the virtual pipe area while circumnavigating the obstacle on its RLS (exit(pipeArea, RLS)).
If this condition is present, the wall-following method is performed with the obstacle at the
OLS of the robot (wallFollowing(OLS)). The condition being negative, the same technique is
used with an obstacle at the RLS of the robot (wallFollowing(RLS)). The circumnavigation
of the barrier stops when the robot returns to a cell of the reference line (cellsOnRefLine()).

Figure 2.9: Example of a virtual pipe [51].

17

Algorithm 5: Virtual Pipe Algorithm
Data: Cell on the reference line - ref.point
Data: Candidate Backtracking Point - candidateBP
Data: Virtual Pipe Area - pipeArea
Data: Side where obstacles are to be reference - RLS
Data: Opposite direction of RLS - OLS
Data: Reference line between all the central points of the input path - ref
Input: Path returned from the Backtracking Method - path

1 Function VirtualPipe(path)
2 ref = referenceLine(path);
3 pipeArea = virtualPipeArea(ref);
4 while (!reachFinalRefPoint(candidateBP)) do
5 if (obstructedCell(ref.point)) then
6 if (!exit(pipeArea,RLS)) then
7 while (!cellIsOnRefLine()) do
8 wallFollowing(OLS);
9 end

10 end
11 else
12 while (!cellIsOnRefLine()) do
13 wallFollowing(RLS);
14 end
15 end
16 end
17 else
18 moveTo(ref.point.next());
19 end
20 end
21 End

2.5 Local Path Planner

The local planner recurs to a local costmap to keep the robot on the path generated by
the global planner algorithm. Its principal function is collision avoidance, so computation
speed is a must. To acquire such characteristics, this algorithm uses only a tiny portion of the
environment map that corresponds to the surrounding area of the robot and builds a costmap
of that region.

This section will describe the Dynamic Window Approach (DWA) and Timed Elastic
Band (TEB) methods used in local planning.

2.5.1 Dynamic Window Approach

The restrictions imposed by velocities and accelerations led to the creation of DWA. This
technique is based on the motion dynamics of synchro-drive mobile robots. It uses only a short
time interval when calculating the following steering command to eliminate the enormous
complexity of the general motion planning problem [52].

18

The DWA algorithm 6 is subdivided into two steps. Firstly, the search space phase is
subdivided into three parts: the circular trajectories where the robot obtains all the curvatures
forming a two-dimensional velocity search space; the admissible velocities where the previous
search space is restricted to those curvature values in which it is possible to stop the robot
before it reaches the closest obstacle; and the dynamic window where the remaining search
space is reduced to the velocities that the vehicle can reach in a short time interval (X) given
the robot’s limited accelerations. Secondly, the optimization phase in which an objective
function σ in algorithm 6 is maximized. A trade-off between the progress towards the goal
location (heading()), the distance to the closest obstacle on the trajectory (dist()), and
the forward velocity of the robot is made concerning the current pose (position + orientation)
of the robot.

Algorithm 6: DWA Algorithm
Data: Translational Velocity - υ
Data: Rotational Velocity - ω
Data: Type curvature represents the set of velocities (υ, ω)
Data: Short time interval - X
Input: Weight correspondent to the target heading - α
Input: Weight correspondent to the clearance - β
Input: Weight correspondent to the velocity - γ
Output: Velocity of search space Vr with highest value of maximization

1 Function DWA(α, β,Υ)
2 curvature[] Vr, Vs, Va, Vd; /* Circular Trajectories */
3 Vs = getAllCurvatures();
4 curvature curv;
5 foreach (curv in Vs) do /* Admissible Velocities */
6 if (canStopBeforeReachClosestObstacle(curv)) then
7 Va ←curv;
8 end
9 end

10 foreach (curv in Va) do /* Dynamic Window */
11 if (velReachedWithinTimeFrameX(curv,X)) then
12 Vd ←curv;
13 end
14 end
15 Vr = Vs ∩ Va ∩ Vd;
16 curvature[] G; /* Optimization */
17 foreach (curv in Vr) do
18 G ← σ(α∗heading(curv) +β∗dist(curv) +γ∗vel(curv));
19 end
20 return maxValue(G);
21 End

2.5.2 Time Elastic Band

The Time Elastic Band (TEB) [53][54] recurs to the deformation of the path created
by the global planner in order to avoid obstacles. This method is an improvement of the

19

Elastic Band (EB) planner [55] because it uses the robot’s poses, as EB, alongside a temporal
component that allows it to control the speed and acceleration of the robot’s motors.

The planner applies the techniques of external repulsion and internal contraction. Detecting
obstacles triggers the first one, causing the path to deviate from those points. The second is
activated by the generated specific points that cause the computed path to converge in the
direction of the global planners’ path. The combination of these two types of deformations
allows it to avoid obstacles through repulsion and faithfully follow the global plan through
contraction. Figure 2.10 illustrates the behavior of the algorithm when encountering obstacles
along the path.

Figure 2.10: Large scenario with consideration of way-points and obstacles. [54]

In TEB, the repulsion method expresses collision avoidance as an objective function in
terms of piece-wise continuous, differentiable cost function. These cost functions penalize the
robot for violating the collision limitation, repelling it away from obstacles. The contraction
method is used for trajectory optimization by iteratively deforming the initial path generated
by the global planner, considering objectives such as path length, execution time, obstacle
avoidance and compliance with motion constraints. This technique uses temporal information
to be able to consider dynamic constraints as well as real-time adaptation of the trajectory
[54].

2.6 The Localization and Mapping package

The Localization and Mapping (LaMa) package is an advanced software library created
at IRIS Lab in the University of Aveiro. Focused on robotic localization and mapping, the
package offers solutions to complex problems in this field. Here’s a breakdown of the content
and features provided by the package:

Sparse-Dense Mapping Framework
Traditional volumetric grids used in mapping take up a lot of memory. This problem is

addressed by LaMa, which introduces a sparse-dense data structure that significantly improves

20

space and memory efficiency [56]. In addition, an online data compression strategy is employed,
which improves space efficiency without sacrificing time efficiency.

Localization based on Scan Matching
This approach employs a likelihood field and non-linear least squares optimization tech-

niques for efficient robot localization [11]. By iteratively minimizing scan matching errors, it
accurately determines the transformation between current scans and a reference map. The
accuracy of this method is validated by comparing results with ground-truth data, showcasing
reduced iterations and high computational efficiency.

Online SLAM with Dynamic Likelihood Field
In this technique is introduced a rapid scan matching approach for online SLAM [57]. It

leverages a dynamic likelihood field, establishing connections between scan matching and
online SLAM without the need for direct correspondences.

Multi-threaded Particle Filter SLAM
A Rao-Blackwellized particle filter is employed here [58]. This technique utilizes particles

to approximate the posterior distribution, updating both the map and the robot’s pose.
Crucially, the library incorporates resampling methods to maintain particle diversity and
prevent depletion. Additionally, likelihood smoothing and adaptive resampling techniques are
employed to optimize the filter’s performance.

In essence, LaMa stands as a robust and innovative toolkit. Its contributions in sparse-
dense mapping, efficient scan matching, and advanced particle filter SLAM techniques make
it a really good resource.

21

CHAPTER 3
Robot Operating System

Developing software for robotic applications from scratch is a challenging task. Due to
the huge range of hardware and data that robots rely on, even the most basic applications
frequently require extremely sophisticated programming. The Robot Operating System (ROS)
framework has as its official definition the following description:

"ROS is an open-source, meta-operating system for your robot. It provides the
services you would expect from an operating system, including hardware
abstraction, low-level device control, implementation of commonly-used
functionality, message-passing between processes, and package management. It
also provides tools and libraries for obtaining, building, writing, and running code
across multiple computers."

http://wiki.ros.org/ROS/Introduction

ROS addresses this issue by serving as a general-purpose robotics framework. It is not an
operating system, despite its name, but rather a type of middleware that works as a scheduler,
loader, monitor and error handler between applications and distributed computing resources
(Figure 3.1).

Figure 3.1: ROS as a Meta-Operating System [59].

23

At the communication level, ROS processes form a peer-to-peer network that processes
data together. This description only applies to ROS version 1.There is a ROS version 2 with
different characteristics, particularly regarding the Master, but it will not be addressed. There
are seven concepts that we need to understand to be able to master this framework1:

Nodes - ROS is designed to be a decentralized system where nodes are the processes
that perform computation. ROS nodes attempt to build small processes rather than huge
processes with all the features. In the case of a single node error, it is easier to debug and will
not affect the entire program.

Master - The ROS Master provides name registration and lookups to the rest of the
nodes. The Master’s job is to allow individual nodes to find one another. Once these nodes
have found each other, they communicate between themselves on a peer-to-peer basis.

Messages - The node sends or receives data between nodes via a message. Messages are
data structures that represent the information exchanged. Arbitrarily nested structures and
arrays can be included.

Topics - An unidirectional communication channel between nodes is based on a pub-
lisher/subscriber system. The topic is a term used to identify the message’s content that is
exchanged in this channel. A node interested in a specific data type will subscribe to the
relevant topic.

Services - A bidirectional communication channel between nodes is based on a server/-
client system. Services are used when there is a need for a request/response interaction where
one node might request another to execute a rapid process.

Parameter Server - The parameter server allows us to maintain data in a centralized
location. These values are accessible and modifiable by all nodes. The parameter server is
located on ROS Master.

Bags - Bags are a format for storing and retrieving ROS message data. Bags are a crucial
method for storing data that might be difficult to acquire but is required for creating and
testing algorithms.

Figure 3.2 represents an example of the ROS computation graph level. We can see that a
single topic may have numerous concurrent publishers and subscribers, and a single node may
publish and/or subscribe to multiple topics. In general, neither publishers nor subscribers are
aware of the presence of each other.

1http://wiki.ros.org/ROS/Concepts

24

Figure 3.2: Example of ROS Computation Graph Level

We can create a program that does all the computations required in our application, or
we can create sub-programs, each with a specialized function, with the latter being typically
preferable. ROS is also open source, which means we may utilize it for nearly any purpose we
see fit for the development of our program, such as altering pre-existing code for a specific
situation.

3.1 Development Tools

When developing a program using ROS, several tools can help us debug. In this section
we describe two tools that were used in this project.

3.1.1 RViz

RViz is a useful 3D visualization tool for ROS. There is a ROS package called rviz2,
where the node that runs this application is described. The user can subscribe to multiple
topics and see how the system interprets the information. Figure 3.3 represents a possible
environment when we use this tool.

2http://wiki.ros.org/rviz

25

Figure 3.3: RViz

3.1.2 rqt_graph

This application shows us how multiple nodes and topics are related. It generates a graph
of all of them and how they interact. Figure 3.4 displays the environment the user sees when
using this tool.

Figure 3.4: rqt_graph

3.2 Gazebo

Gazebo is one of the most popular open-source 3D simulators because it includes robots,
sensors, environmental models, and realistic simulations with its physics engine. This frame-
work is a very popular robotics simulator due to its outstanding performance. Figure 3.5
shows the appearance of the gazebo simulator.

26

Figure 3.5: Gazebo

Due to being created and provided by Open Robotics, which is responsible for maintaining
ROS, this software is compatible with the robot operating system. A ROS package called
gazebo_ros3 is available, which offers wrappers, tools and additional APIs for using ROS
with the Gazebo simulator.

3http://wiki.ros.org/gazebo_ros

27

CHAPTER 4
Robot Disinfection State of Art

Outbreaks of infectious diseases represent a substantial hazard to human health. It is
believed that the frequency of such breakouts has grown during the last decade. Some
microorganisms that were not previously thought to constitute a general risk to human health
have arisen at the regional and global levels [60].

Mass-gathering constructed settings may become hotspots for pathogen colonization,
transmission, and exposure, spreading infectious illnesses among people in towns, cities,
nations, and throughout the world. Infectious illness epidemics inflict enormous costs on our
society. Frequent cleaning and disinfection, as recommended by the World Health Organization
(WHO) and the Centers for Disease Control and Prevention (CDC), are crucial for reducing
pathogen transmission and exposure and slowing the development of infectious illnesses [61].

The COVID-19 pandemic has been present since late 2019 and has created critical problems
in practically every country. Disinfection has begun to be required for all public meeting
places, including schools, airports, transportation systems, and hospitals [62]. This process
is mainly done by a human workforce, which can be labor-intensive, time-consuming, and
harmful to one’s health, reducing disinfection’s efficacy and efficiency. A virus may persist for
extended periods on several surfaces and spread swiftly within constructed habitats [61].

Robots are an excellent answer to this problem since the virus cannot multiply inside a
robot, and the usage of robots significantly minimizes person-to-person interaction [63]. In the
last half decade, the number of work done in robotics has increased in several areas like public
safety, clinical care, continuity of work and education, quality of life, laboratory and supply
chain automation, and non-hospital care [64]. This work will focus only on the two first areas,
more precisely on the disinfection of public spaces and the disinfection point of care.

This chapter begins by presenting some robots currently used to disinfect public spaces.
After that, the theme of robotic exploration will be addressed, and two methods for coverage
path planning will be explained.

29

4.1 Real Robots Applications

Disinfection robots can use two methods to "kill" pathogens: UV-based and chemical-based
disinfectants.

UV lamps are classified into three types: UV-A (315 to 400nm), UV-B (280 to 315nm),
and UV-C (100 to 280nm). UV-A and UV-B rays cause sunburns in humans. UV-C lamps are
extensively used in disinfection as their radiation has a shorter wavelength and consecutively
emits a greater amount of energy [63].

Sodium hypochlorite (NaClO), hypochlorous acid (HOCl), chlorine dioxide (ClO2), hydro-
gen peroxide (H2O2), alcohol, and ozone (O3) are some liquid-based agents used alongside
robots to disinfect public spaces [65].

4.1.1 UltraBot

UltraBot (Figure 4.1) is a robot developed by researchers from the Intelligent Space
Robotics Laboratory, Space CREI, Skolkovo Institute of Science and Technology in Moscow,
Russia. This robot aims to complete indoor disinfection activities using UV-C lamps, decreasing
the total bacterial count by 94% after ten minutes of exposure to radiation at a distance of
2.8 meters. This robot can operate autonomously in unknown and known environments. It
also has a manual control mode that allows the user to drive the robot by joystick [66].

Figure 4.1: UltraBot Robot [66]

The vehicle has two light detection and ranging (LIDAR) sensors, ten ultrasonic sensors
and four cameras. UltraBot uses the ROS package move_base1 as the main component of its
navigation. The robot uses Google Cartographer2 [67] to perform SLAM when the map of
the environment is not known a priori. Otherwise, when an environment’s model is known,
the ROS package map_server3 provides the model to the robot and the ROS package amcl4

is used to perform the robot’s localization.
1http://wiki.ros.org/move_base
2http://wiki.ros.org/cartographer
3http://wiki.ros.org/map_server
4http://wiki.ros.org/amcl

30

4.1.2 Smart Cleaner

Like the previous robot, the Smart Cleaner (Figure 4.2) aims to disinfect indoor environ-
ments effectively. This robot, developed by researchers from the Department of Electrome-
chanical Engineering in University of Macau (China), uses a hydrogen peroxide atomisation
device to eliminate pathogens. A reduction of the total number of air bacteria by 83.7% and
airborne fungi by 34.9% was achieved on the tests, which exhibited great results [68].

Figure 4.2: Smart Cleaner Robot [68]

Smart Cleaner uses a camera and a LIDAR sensor to navigate autonomously in the
environment. The vehicle uses the ROS platform to navigate autonomously. The ROS
package amcl is used to estimate the robot’s location in relation to the environment, together
with the ROS package openslam_gmapping5, which is used to build the model of this same
environment, allows simultaneous localization and mapping (SLAM).

Smart Cleaner uses as local planner the DWA algorithm and as global planner the A*
algorithm. These two planners are connected to the ROS package move_base to accomplish
its global navigation task.

4.1.3 Intelligent Disinfection Robot

The Intelligent Disinfection Robot (Figure 4.3) was developed by researchers from
Huazhong University of Science and Technology and Shangai Taimi Robot Technology Co.
in China. This robot integrates artificial intelligence algorithms and robotic technologies
for hospital disinfection. It resorts to several mechanisms, such as an ultraviolet lamp, an
ultra-dry mist hydrogen peroxide generator and plasma air purification to efficiently cleanse
indoor environments [69].

5http://wiki.ros.org/openslam_gmapping

31

Figure 4.3: Intelligent Disinfection Robot [69]

The vehicle can navigate effectively in the environment using visual radar, laser radar, a
self-sensing module and ultrasound radar. Intelligent Disinfection Robot utilizes a combination
of visual-inertial monocular Simultaneous Localization and Mapping (SLAM) with map reuse,
a specific indoor global positioning method, and a technique for fusion of multiple time-of-flight
sensors. The visual-inertial monocular SLAM with the map reuse method allows the robot to
localize itself and create a map of its environment. This technology uses visual information
from a camera and inertial measurements to estimate the robot’s motion and create a map of
its surroundings. The map reuse feature allows the robot to use previously created maps to
improve its localization and mapping performance [70].

The indoor global positioning method used by Intelligent Disinfection Robot enables it
to locate itself accurately within indoor environments where GPS signals may be weak or
unavailable [71]. In addition, the robot uses a technique to detect surrounding obstacles
in real-time by fusing data from multiple sensors, providing a more accurate and reliable
detection of obstacles than the direct use of LIDAR or simply fuse ultrasound sensors using
artificial rules [72].

4.1.4 UVD Robot

The UVD Robot6 was a product launched by the company UVD Robots, part of Blue
Ocean Robotics, focusing on developing robots to enhance environmental cleaning. This
vehicle also uses UV-C technology to perform the disinfection [73].

6https://uvd.blue-ocean-robotics.com/features

32

Figure 4.4: UVD Robot [73]

The robot has laser scanners and 3D cameras that detect impediments along its path. The
operator may control the device via tablet using the cameras.

4.1.5 Ava’s UV Disinfection Robot

Ava’s UV Disinfection Robot7 is made by Ava Robotics and offers effective, hands-free
disinfection. It has intelligent features for planning, execution and reporting. By its name, it
is easy to understand that this robot uses UV-C as a method to disinfect the environment
[74]. The robot uses LiDAR, 3D cameras, and an inertial measurement unit to achieve
fully-autonomous navigation.

Figure 4.5: Ava’s UV Disinfection Robot [74]

4.1.6 Comparison between Disinfection Robots

The aforementioned disinfection robots use different algorithms and disinfection methods
to achieve the same objective. Having their features compared gives us an overview of their
capabilities and methods used, which can help us understand what could possibly be used in
this work. The comparison is presented in Table 4.1.

7https://www.avarobotics.com/disinfectionrobots

33

Robot’s Name Localization Mapping Navigation
Local Planner Global Planner

UltraBot AMCL Google Cartogra-
pher

Google Cartogra-
pher

Not Available

Smart Cleaner AMCL Gmapping DWA Algorithm A* Algorithm
Intelligent Disin-
fection Robot

Indoor global po-
sitioning method
for service robots

Not Available Method for fu-
sion of multiple
time-of-flight sen-
sors for service
robots

Visual-inertial
monocular SLAM
with map reuse

UVD Robot Confidential
Ava’s UV Disin-
fection Robot

Confidential

Table 4.1: Comparison between robots and their used algorithms. (Some of them keep their software
confidential.)

4.2 Coverage Path Planning

The process of establishing a path that traverses over all points of an area or volume of
interest while avoiding obstacles is known as Coverage Path Planning (CPP) [75]. Section
2.4 already covered some algorithms developed for this process, but the goal of this section
is to present two ROS packages used in CPP. The methods used for achieving full coverage
of the environment are different. While the full_coverage_path_planner package uses a
technique based on [76] to compute the global plan and the tracking_pid package to generate
the local plan, the explore_lite package is dependent on the configuration of the move_base

node to obtain the global and local plans.

4.2.1 explore_lite package

This ROS package8, developed by Jiří Hörner [77], provides a ROS node for frontier-based
exploration. After starting the node, it will continuously run until the robot cannot find more
frontiers. The nonexistence of frontiers indicates that the robot covered all the environment.
The exploration node on the explore_lite package was designed to be a light-weighted
version of the node with the same function on the code of the explore ROS package 9. This
node correctly handles ROS and tf namespaces, allowing several robots under the same ROS
Master. The mobile navigation of the robot is made by using the ROS standard stack throw
the move_base package. The ROS navigation stack uses a local costmap to search for frontiers
and find paths to frontiers from the robot’s position. The costmap created by move_base

node is built using the Costmap2DROS framework10 which uses ray-tracing from scans. This
approach causes an unnecessary overhead when using those costmaps to search for frontiers.
Local costmaps built from a SLAM constructed map produce better results compared to
the previous ones mentioned. An alternative to this method is provided in this package. A

8http://wiki.ros.org/explore_lite
9http://wiki.ros.org/explore

10http://wiki.ros.org/costmap_2d

34

costmap_client node obtains a local costmap subscribing to a map source in the ROS created
by a mapping algorithm.

The frontier search algorithm weights all the encountered frontiers and chooses the one
with the biggest weight as the next target. This frontier cost is computed through a patch
extending NavfnROS planner11 in the core ROS navigation stack.

4.2.2 full_coverage_path_planner package

This ROS package contains a Full Coverage Path Planner (FCPP) implementation based
on the BSA presented in Section 2.4.2.

full_coverage_path_planner provides a .launch file that triggers the navigation plan-
ning. It starts by generating the coverage path, and after that, “feeds” the local planner
with that data in order to trigger the computation of velocity commands necessary to follow
the path. Those velocity commands are applied to the wheels to properly maneuver the
robot. The full_coverage_path_planner package uses two other ROS packages to fulfill
its purpose:

move_base_flex (MBF) package −→ It is a replacement for the move_base package,
which is the central module of the navigation stack in ROS. MBF offers modular actions for
executing plugins for path planning, motion control, and recovery. More about this package
in [Putz 2018].

tracking_pid package12 −→ It is a tuneable PID control loop to follow a trajectory
accurately. It is used as a local planner on 4.2.2.

11http://wiki.ros.org/navfn
12http://wiki.ros.org/tracking_pid

35

CHAPTER 5
Disinfection of Spaces

5.1 Introduction

At the beggining of this dissertation, a study on different methods of disinfection using
autonomous robots was conducted and presented in Chapter 4.1. Also, a survey of existing
coverage and mapping path planners was made and presented in Section 4.2. The objective of
this analysis was to give us a general idea of the algorithms used for robot disinfection and to
understand what could be used in this work since the development of a coverage algorithm
for disinfecting spaces from scratch is a complex project.

The reason for not using the real robot in this work is due to the approach chosen to
control the coverage of the disinfected area (explained in Section 5.4.4), which requires the real
UV sensor to be installed on top of the robot. I chose Gazebo as the simulation environment
not only because there is a lot of documentation to help with development on this platform,
but also because there is a GitHub repository with a ROS package that allows the use of ROS
alongside the MiR robots and already has launch files to use them in Gazebo Simulator.

5.2 MiR100 Robot’s Overview

The MiR100 is a mobile robot manufactured by Mobile Industrial Robots (MiR), a Danish
company specialist in producing autonomous mobile robots for industrial and commercial use.
The robot is compact, highly maneuverable, and can support payloads of up to 100 kg, making
it suitable for the installation of an ultraviolet light’s emitter. The vehicle is equipped with
laser scanners, 3D cameras, ultrasonic sensors, infrared sensors and wheel encoders, which
it enables the robot to navigate autonomously and avoid obstacles in its path. MiR100 is
powered by an onboard computer that runs on ROS allowing its integration with a range of
different systems and technologies. A repository that provides ROS packages that simulate
the robot and its behavior is already available online, and it will be used in this thesis.

37

5.2.1 The mir_robot repository

A GitHub repository called mir_robot1, created by the German Research Center for
Artificial Intelligence, contains a ROS driver and ROS configuration files for the MiR Robots.
This repository is composed of six ROS packages. In mir_actions package, there are the ROS
actions definitions for the robot. The mir_description package, where the URDF files for the
robot’s model are used, not only, in Rviz simulated environment for the graphic representation,
but also, to define the position of the several parts of the robot essential for many tasks. The
mir_dwb_critics package contains plugins for the dwb_local_planner ROS package which
is a dynamic window local planner used in the Gazebo simulator. The mir_driver package,
which is a reverse ROS bridge to connect to the MiR Robot. The mir_gazebo package, which
has the configuration files and the simulation launch for the robot. The mir_msgs package,
which has the ROS message definitions, and finally, the mir_navigation package, where are
the configuration and launch files of the ROS package move_base.

5.3 Overall Architecture of the Project

Figure 5.1: Illustration of the Overall Architecture of the Project

In order to build a disinfection system for public spaces, we turned to existing GitHub
repositories, represented by the Grey rectangles in Figure 5.1, where ROS packages with

1https://github.com/DFKI-NI/mir_robot

38

useful features for this project are accessible. The mir_robot repository, explained in Section
5.2.1, not only makes it possible to use ROS alongside the MiR100 robot, but also provides
physical and mechanical’s virtual models of the robot itself together with launch files of
a simulated Gazebo environment. The full_coverage_path_planner repository, already
introduced in Section 4.2.2, makes it possible to obtain the path that the robot has to travel
in order to cover a certain map known a priori. The MiR100’s radius and the radius of the
UV sensor ray range are the input parameters used to obtain the coordinates of the path. The
iris_lama_ros repository is nothing more than the integration with ROS of the iris_lama

repository’s features explained in Section 2.6. In this repository, the Scan Matching-based
localization method, which is best explained in Section 2.1 , is the one used in this work. A
fifth repository called mir100_germIrrad was also used, but unlike the previous ones, this
was created from scratch for project’s purposes and contains ROS packages where specific
functionalities are implemented.

Analyzing Figure 5.1 on a ROS package level, we have red, green, blue and purple
rectangles. The red rectangles represent those that are not used in this project. In green
are the packages that are used and have suffered project related changes. In blue are the
packages that are used in this work and have not been modified. Finally, in purple are the
ROS packages created from scratch. A rectangle as a dashed contour means that the ROS
package is external to the GitHub repository.

This section was more directed towards demonstrating the design of the project, while
Section 5.4 will focus on the operation of the system at the ROS computation graph level
(Section 3).

5.4 System Architecture

Figure 5.2 describes at a deeper level how the developed system works. Through a ROS
node called map_server it is possible to provide the map of the environment we want to
disinfect. This ROS node publishes the data in the /map topic to which the move_base_flex

node and irradiation_map node, that will explained in 5.4.1, subscribe. The first step is
to estimate the pose of the robot and to do that the loc2d_ros node that will be explained
in Section 5.4.2. Then we can start the navigation plan described in Section 5.4.3. The
gazebo node also publishes the odometry of the simulated MiR100 on /odom topic, which is
subscribed to by the move_base_flex. Although the move_base_flex node is not part of
the ROS navigation stack, unlike the move_base node, its functionality is to replace it while
being compatible with plugins developed for move_base. The Spiral-STC plugin is used by
move_base_flex as a planner. An explanation of this method is given in Section 5.4.3.

39

Figure 5.2: System Architecture Diagram at ROS Computation Level

5.4.1 Sensorization

SICK S300 Laser Scanners
This project used two SICK S300 LiDARS laser sensors, one mounted on the front left of

the robot and the other on the rear right. Their position is only capable of detecting objects
that intersect a plane 20cm above the floor. It is important to note that, since LiDAR sensors
work with flight times, there are situations that can influence the validity of the data they
collect. An obstacle being transparent or having reflective properties is one such situation;
another is exposing the sensor to strong direct light, thus causing it to detect non-existent
obstacles.

Figure 5.3 shows the coverage area of the two sensors on the real MiR100. We can see
that each LiDAR has a 270º field of view, overlapping on the front right and rear left, thereby
providing a 360º coverage around the robot.

Figure 5.3: Field of view of the LiDAR sensors on the real MiR100 [78]

40

The sensors on the virtual MiR100 simulate the same behavior as those on the real
robot, offering 360º coverage, as can be seen in figure 5.4. The image on the left proves the
aforementioned, which results from the junction of the areas covered by the left front sensor
(middle image) and the right rear sensor (right image).

Figure 5.4: Field of view of the LiDAR sensors on the simulated MiR100 (left); Field of view of the
front left sensor (middle); Field of view of the rear right sensor (right).

UV-Light Irradiation Field
The goal of this component is to represent the area covered by the ultraviolet sensor.

This Sensor does not have neither a simulated model nor its own physics since during the
development of this work there was no final decision about which ultraviolet sensor would be
used.

On the ROS package created, the estimated value of the robot pose relative to the map
is used to calculate an area that corresponds to the area that is being irradiated by the UV
Sensor when the vehicle is in the estimated position with an estimated orientation, as can be
visualized in figure 5.5.

Figure 5.5: Field of view of the LiDAR sensors on the simulated MiR100

In the code, there are four parameters that must be set manually for the program to
work correctly. These parameters are the openAngle, the dirAngle, the rangeUV and the
poseSensor.

41

• openAngle refers to the angular extent of ultraviolet radiation emitted by the sensor;
• dirAngle refers to the orientation in which the sensor is pointing;
• rangeUV refers to the maximum distance reached by the ultraviolet radiation;
• poseSensor refers to the location of the sensor relative to the robot.

Aperture of the UV Sensor
The aperture of the UV Sensor was set to 90º in order to optimize the emission of radiation

so the intensity of radiation could be concentrated in a narrow field.
Orientation of the UV Sensor
The orientation of the UV sensor is configured using the degrees relative to the orientation

of your robot. This means that we need to specify the angle at which the sensor is positioned in
relation to the robot’s direction. For instance, 0 degrees denotes the robot’s forward direction,
90 degrees represents the right side, 180 degrees represents the backward direction, and 270
degrees represents the left side. If the UV sensor is mounted at a 45-degree angle relative
to the robot’s forward direction, it means the sensor is positioned diagonally between the
forward and right directions. Figure 5.6, taking into consideration that the robot is directed
to the right, the left image shows an example of a dirAngle set to 180 degrees and the right
image shows a dirAngle of 90 degrees. This parameter’s configuration will be justified in
Section 6.2.

Figure 5.6: Example of a orientation of UV Sensor of 180º (left image), and a orientation of 90º
(right image).

Range of the UV Sensor
The range of the UV sensor on the robot is vital for ensuring that all surfaces and areas

are adequately exposed to germicidal UV light. A sensor with a longer range can detect and
disinfect surfaces that are farther away, enhancing coverage. This parameter’s configuration
will be justified in Section 6.4.

Sensor Position relative to the Robot Position
The UV Sensor is installed near the center of the top of the robot, slightly shifted to the

rear. Considering that the UV Sensor weight around 50kg. This specific position of the sensor
was chosen based on the MiR100 robot user manual (Figure 5.7), to make sure that both
the Sensor and the robot are stable during operation. The MiR100 robot user manual was
also consulted to ensure that the Sensor position was compatible with the manufacturer’s
specifications and did not interfere with other robot functionality.

42

Figure 5.7: Position of a payload of 50kg on the MiR100 Robot [78]

5.4.2 Localization

In this project, the "Efficient Localization Based on Scan Matching with a Continuous
Likelihood Field" [11] is used as the localization method. This technique was developed at
IRIS Lab and it uses scan-matching (explained in section 2.1.2).

A key component of this implementation was the usage of the ROS node loc2d_ros, which
served as the core of our localization system. This node, available on the iris_lama_ros

repository, housed the algorithms necessary for accurately estimating the robot’s pose.
To integrate LiDAR Sensors (section 5.4.1) data, the loc2d_ros node subscribed to the

ROS topic /scan, where fused data from the two sensors mounted on the robot was published.
This data integration was crucial, providing a comprehensive understanding of the robot’s
surroundings. The fused sensor data served as input for the localization method.

Once the pose estimation is successfully completed, the loc2d_ros node publishes it on
the ROS topic /pose. This timely publication allowed other components of our robotic system
to access accurate localization information, empowering them to make informed decisions
based on the robot’s position and orientation.

5.4.3 Navigation

In this project, for navigation purposes, we use the move_base_flex ROS package to give
the necessary movement orders to the robot in order to reach the target point on the map.
This versatile package provides a robust framework for autonomous robot navigation, being
even more modular and customizable compared to the original move_base package. It allows
users to configure and replace components like planners, controllers, and costmaps easily. The
combination of these components is responsible for generating the navigation path that is
applied to the robot in order to cover the maximum possible area of the map.

In this work, we opted to utilize a coverage planner instead of a global planner. The
reasoning behind this choice was rooted in the primary objective of our robotic system: to

43

comprehensively cover the entire area of the map for disinfection purposes rather than simply
reaching a specific goal point via the least costly route.

Planner - Coverage Planner
A crucial element of our navigation strategy was the choice of a Global Planner, an

important decision that defines the robot’s high-level path planning. In this project, we opted
for the backtracking spiral algorithm (Section 2.4.2). This component is implemented by using
a .launch file from the full_coverage_path_planner GitHub repository (Section 4.2.2),
designed to trigger the coverage planner. Within the .launch file, several input arguments were
incorporated, each tailored to optimize performance and precision in mapping and navigation.
They are map, coverage_area_offset, coverage_area_size_x, coverage_area_size_y,
target_x_vel, target_yaw_vel, robot_radius, tool_radius and rviz.

The map argument references a path to a .yaml file containing a representation of the static
objects of the environment, providing insights into its layout. Additionally, the parameters
coverage_area_size_x, and coverage_area_size_y were both configured as 20m. These
parameters define the dimensions of the coverage area within the map. The target_x_vel

and target_yaw_vel parameters define the robot’s velocities during forward movement
and directional changes, respectively. Fine-tuning these values is essential to achieving a
comprehensive correlation between the duration and quality of disinfection. These parameters
configuration will be justified in Section 6.3.

The robot_radius parameter is used to maintain safe distances from static obstacles.
According to the MiR100 website2, the operational corridor width is 1m and the traversable
gap tolerance is 0.02m, which together make a minimum traversable gap width of 1.02m. This
parameter was configured as 0.53114m because of the configuration example of figure 5.9, and
since this value is not less then half of the minimum traversable gap width, its use is totally
acceptable. Figure 5.8 describes the difference between the value chosen and the minimum
traversable gap width.

Figure 5.8: Representation of the minimum traversable gap with and robot_radius parameter
values.

Furthermore, the tool_radius parameter was used in the discretization of the space
2https://www.mobile-industrial-robots.com/solutions/robots/mir100/

44

so the algorithm could plan a comprehensive coverage strategy, accounting for the robot’s
physical dimensions. The value of this parameter needs to be less or equal to robot_radius

and higher than 0.29m as per the configuration example in figure 5.9. Figure 5.10, on the
left, illustrates the path calculated for a tool_radius of 0.53115m and on the right for a
tool_radius of 0.29m using the same radiation range (Section 5.4.1). It can be seen that
increasing the parameter value causes a decrease in the area that is irradiated more than once.
This parameter’s configuration will be justified in Section 6.2.

Figure 5.9: Illustration of possible configuration for robot_radius and tool_radius parameters
[79].

Figure 5.10: Example of a coverage path generated using a tool_radius of 0.53115m (left image)
and a tool_radius of 0.29m (right image).

Additionally, the rviz parameter allows us to enable or disable the launch of the RViz
tool (Section 3.1.1) with a project specific configuration providing real-time visual feedback
on the robot’s movement, sensor data, and coverage progress.

In our project, we focused on optimizing specific parameters, including target_x_vel,
target_yaw_vel and tool_radius. This parameter tuning process was crucial. It ensured
that our robot navigated efficiently, comprehensively covering the designated area.

Controller - Local Planner
A specialized local planner known as tracking_pid was used in the context of this work.

45

This local planner, on the other hand, has a limitation: it cannot avoid non-stationary objects.
Unlike classic local planners (Section 2.5), which are good at avoiding obstacles, this planner
works more like a controller. Its operation can be described using the following mechanisms:
Tracking Proportional-Integral-Derivative (PID)’s core functionality is its ability to implement
a tunable PID control loop, ensuring accurate adherence to a predefined trajectory. This is
accomplished with an interpolator, which moves a goal along a specified path at a customizable
velocity.

In one of its tracking modes, the planner deploys a concept known as the "carrot", which
is positioned at a specific distance in front of the robot. This carrot serves as a reference
point for computing velocity commands, taking into account both lateral and longitudinal
errors between the current Global Point (GP) and the Control Point (CP) on the trajectory.
By analyzing these errors, the planner adjusts the robot’s movements to maintain accurate
trajectory tracking. Figure 5.11 illustrates this mode.

Figure 5.11: Representation of the "carrot" strategy of tracking_pid [80].

On the second tracking mode, if a smooth path is provided, the controller offers the
flexibility to directly track the path using the robot’s base_link, eliminating the need for
trailing a carrot point. In this scenario, a Projected Global Point (PGP) is computed, serving
as the target for the Control Point (CP) to track. Additionally, the planner can incorporate
yaw error as a control input, further enhancing its ability to precisely follow the specified
path. Figure 5.12 illustrates this mode.

Figure 5.12: Representation of the projected global point (PGP) strategy of tracking_pid [80].

In essence, this local planner, while lacking obstacle avoidance capabilities for dynamic

46

obstacles, excels as a robust controller. Its utilization of PID control loops, coupled with
versatile tracking options such as carrot-based tracking and direct path tracking with yaw
error consideration, underscores its effectiveness in ensuring accurate and efficient trajectory
following within the specified system.

The tracking_pid ROS package introduces two nodes: the interpolator and controller
(Figure 5.2). The interpolator node assumes a central role in the trajectory following
process. Subscribing to the /SpiralSTC/Plan topic, this node receives the calculated path
from the coverage planner. At a given velocity, this node moves a goal over the acquired path
and calculates the control point for that exactly goal.The control point that results from this
process is then published under the /trajectory topic.

Complementing the interpolator, the controller node uses the trajectory data by
subscribing to the /trajectory topic, and a PID controller to calculate the velocity commands
necessary to stay on track. These commands are then published under the /cmd_vel topic.
Finally, the /cmd_vel topic is subscribed to by the gazebo node where the calculated velocity
commands are used by a simulated robot operating within the Gazebo framework to synchronize
its movements so it traverse the coverage path.

5.4.4 Disinfectioned Area Coverage

One of the key challenges in this domain lies in ensuring comprehensive coverage of the
target area by the UV Sensor, guaranteeing that every spot is disinfected. To tackle this
challenge, an approach has been employed, involving the generation and utilization of a
SimpleOccupancyMap from the iris_lama repository (section 2.6).

At the heart of this strategy is the concept of an Occupancy Map or Occupancy Grid

(explained in section 2.2.1), a grid-based representation of an environment where each cell in
the grid represents the occupancy status of a corresponding area in the physical world. In
this case, the area requiring disinfection is mapped out, and the free cells within this map
signify the regions that have already been covered by the robot.

The SimpleOccupancyMap is a dynamic data structure that is continuously updated. Every
time the robot changes its pose, the occupancy map is recalculated to reflect the altered
landscape. This constant update is crucial to maintaining an accurate representation of the
covered area. At the ROS level, the process begins with the ROS node irradiation_map,
which subscribes to the topic /pose. This topic serves as an abstract channel through which the
estimation of the robot’s pose is transmitted. The robot’s pose data is essential in determining
its position and orientation within the environment, enabling the accurate updating of the
current UV Sensor irradiated area (section 5.4.1) and respectively the occupancy map.

Upon receiving the updated pose information, the ROS node processes this data and
subsequently publishes the updated SimpleOccupancyMap onto the topic /map_irradiated.
This topic acts as a broadcast channel, making the occupancy map data accessible to other
components of the robotic system or any external entities requiring this information. By
making the occupancy map publicly available, other modules or systems can leverage this
data for various purposes, such as visualization, analysis, or decision-making processes.

47

5.5 Summary

In this Chapter we gave a brief summary about the characteristics of the real MiR100
and covering the functionalities offered by the mir_robot GitHub repository. We present the
developed system for indoor robot disinfection using the simulated MiR100. We provided
a more detailed description of each ROS package used as well as which parameters can be
tuned in order to improve our disinfection. Furthermore, we discussed the navigation plan
and how the current disinfected area coverage will be controlled during operation. Finally, we
present a functional system that is able to disinfect a static space without dynamic obstacles.

48

CHAPTER 6
Results and Troubleshooting

6.1 Methodology of the tests

The goal of this section is to explain which test scenarios and selection criteria were used
to evaluate the efficiency of disinfection and tune the system to achieve the best possible
disinfection. All the tests in this section are done in a simulated environment. Figure 6.1
presents the map used in the tests.

Figure 6.1: Test scenario used.

The behavior of the disinfection will be recorded and evaluated according to the following
metrics:

• Disinfected Area: Percentage of area that was irradiated by the UV Sensor.
• Disinfection Time: Time it takes for the MiR100 to cover the environment.
• Overlapping Irradiated Area: Area that is irradiated more than one time.
• Irradiation Exposure Time: Time of irradiation exposure per square meter of area.

Several parameters play a crucial role in determining the effectiveness and efficiency of
a disinfection robot. These parameters directly impact the coverage of disinfection and the

49

Parameter Value Range
target_x_vel [0 , 1.5] (m/s)
target_yaw_vel [0 , 1.5] (m/s)
tool_radius [0.29 , 0.53115] (m)
rangeUV [1 , 2] (m)
dirAngle [0 , 360[(deg)

Table 6.1: Value range of the parameters manipulated during tests.

time required to complete the task. Table 6.1 lists the parameters that will be manipulated in
this test phase alongside their value range. Optimizing these parameters involves striking a
balance between coverage, speed and and time exposure. A well-calibrated robotic system,
tailored to the specific environment it operates in, ensures effective disinfection coverage while
minimizing the time required to complete the task without the minimum amount of time
exposure necessary to kill pathogens.

6.1.1 Method of Evaluation of the Disinfection

In order to obtain the metrics necessary to evaluate the developed system the specs ROS
node was created. Figure 6.2 illustrates at the ROS communication level the implementation.
This node is connected to the system presented in Section 5.4.

Figure 6.2: Testing Architecture Diagram at ROS Communication Level.

The following procedure was used to calculate the percentage of disinfected area. The
node created subscribes the /map_irradiated topic and gets the occupancy grid published by
the node irradiation_map there. With that data, we can obtain a TotalCells of 157609 cells
and a OccupiedCells of 5044 cells, knowing that these two values will remain immutable as
long as the map used is not modified. The FreeCells value is recalculated, using Listing 6.1,
every time a new occupancy map is published in /map_irradiated. Equation 6.1 presents
the final calculation to obtain the percentage of disinfected area.

void coverageStatusCallback(const nav_msgs::OccupancyGrid& msg)
{

int numCellsFree = 0;

for (size_t i = 0; i < msg.data.size(); i++)
{

if(msg.data[i] == 0)
{

50

numCellsFree++;
}

}

if (numCellsFree > Coverage)
{

Coverage = numCellsFree;
}

}

Listing 6.1: Callback function for area irradiated occupancy grip update.

DisArea = FreeCells

(TotalCells−OccupiedCells) × 100 (6.1)

The disinfection time was obtained using the implementation in Listing 6.2. The created
node subscribes to the /follow_path/status topic and gets the StartT ime when the goal
starts being processed by the action server, and EndTime when it reaches the end of the
planned path. Equation 6.2 presents the calculation for value of disinfection time in the
format of minutes:seconds.

bool startConditionMet = false;
void goalStatusCallback(const actionlib_msgs::GoalStatusArray::ConstPtr& msg)
{

for (const auto& status : msg->status_list)
{

if (status.status == 1)
{

if (!startConditionMet)
{

startTime = ros::Time::now();
startConditionMet = true;

}
break;

}
else
{

endTime = ros::Time::now();
startConditionMet = false;
break;

}
}

}

Listing 6.2: Callback function for goal status update.

51

DisDuration = StartT ime− EndTime (6.2)

The overlapping irradiated area metric was evaluated because, for a specific area and a
constant intensity of UV radiation, irradiating the same area for more than one time will
be more efficient. This metric was analyzed from a qualitative point of view because of the
type of occupancy map used (Section 5.4.4) does not allow us give a different classification to
those cells. We know that the tool_radius and rangeUV parameters are the ones that may
have more influence in this classification and Figure 6.3 helps us understand why. In case of
tool_radius, it defines how close from the parallel path the robot will pass (Figure 6.3 top
images), and in case of rangeUV, it defines if a the UV ray will reach an bigger portion of
area previously irradiated or not (Figure 6.3 bottom images).

Figure 6.3: Example of situations where overlapping irradiated area can vary because of different
tool_radius (Top Left=0.4106m; Top Right=0.53115m) or different rangeUV (Bottom
Left=0.5m; Bottom Right=2m)

The irradiation exposure time metric was also evaluated in a qualitative way. This metric is
used because, for a specific area and a constant intensity of UV radiation, a longer exposure will
inactivate more pathogens. Here, the parameters that have more influence are target_x_vel

and target_yaw_vel due to being the ones that control the velocity of the robot.

52

6.2 Evaluation of the UV Sensor’s orientation and tool_radius parameter

In this first phase of tests, we determined the most optimal orientation for the UV Sensor
to be employed in tandem with the best-suited value for the parameter tool_radius used for
the path planner (Section 5.4.3). The goal of this section is to understand how parameters
tool_radius and dirAngle influence the percentage of disinfected area and disinfection time.

The approach chosen was to divide by 4 the set of values for tool_radius in Table
6.1 obtaining 0.29m, 0.3503m, 0.4106m, 0.4709m and 0.53115m as the values to be tested.
Regarding the parameter dirAngle that represents the UV Sensor’s orientation (Section
5.4.1), tests were performed for a degree of 0, 90, 180 and 270. In order to achieve the goal, we
assigned to the rest of the parameters mentioned in Section 6.1.1 the constant value presented.

• rangeUV = 1.5m;
• target_x_vel = 1m/s;
• target_yaw_vel = 1m/s;

Table 6.2 presents the results from the tests made in the simulator.

Disinfected Area (%) Disinfection Time (min:sec)
dirAngle dirAngle

90º 0º 270º 180º 90º 0º 270º 180º

tool_radius

0.29 96.79 97.30 84.68 99.30 36:59 36:59 37:01 37:01
0.3503 94.78 95.99 81.74 98.69 28:34 28:34 28:35 28:35
0.4106 92.94 96.62 81.52 97.12 22:14 22:15 22:16 22:16
0.4709 64.04 68.50 56.59 69.52 15:55 15:54 15:56 15:56
0.53115 90.28 98.14 80.91 97.23 19:01 19:01 19:03 19:02

Table 6.2: Percentage of disinfected area and the corresponding disinfection time for different values
of tool_radius and dirAngle.

By analyzing the data, we can confirm that the disinfection time is independent from
the UV Sensor’s orientation. This statement took us to focus mainly on the percentage of
disinfected area. The green values represent the three best disinfected area percentages. The
combination of tool_radius and dirAngle that obtains 99.30% and 98.69% of disinfected
area has the advantage of having a low value of tool_radius which increases the UV Sensor
irradiated area overlapped. On the other hand, their disinfection time is approximately 18
min higher than the fastest time. For the combination that gets 98.14%, its percentage of
disinfection area is less than 1.5% lower than the first two and it has the best disinfection time
of all. The disadvantage of this combination falls into the high value of tool_radius which
decreases the UV Sensor irradiated area overlapped. The yellow values represent possible
candidates that are not part of the top three but present characteristics that make them
possible choices. There are three reasons why we considered them. Firstly, they only take
3 minutes more of disinfection time than the fastest time. Secondly, their percentage of
disinfection area is, in worst case, less than 3% of the best coverage. Thirdly, their value of
tool_radius can still offer a reasonable irradiated area overlapped. When the tool_radius

53

value is set to 0.4709m the planner cannot generate a path that covers the entire map, with
the row represented in red.

We decided that the combinations tool_radius/dirAngle with values 0.29m/180º,
0.53115m/0º and 0.4106m/180º will be taken to the next section of tests (Section 6.3)
where it will be checked how much disinfection time could be gained by manipulating the
velocities (Section 5.4.3).

6.3 Evaluation of the MiR100’s velocity during forward movement and
directional changes

This second phase of tests has the objective of understanding how the variation of
the parameters target_x_vel and target_yaw_vel (Section 5.4.3) corresponding to the
forward movement velocity and directional change movement velocity , respectively, affect the
disinfection area covered and the disinfection time.

In this section, the idea was to divide by two the range of values for both veloc-
ities in Table 6.1 obtaining 0.5m/s, 1m/s and 1.5m/s as values of target_x_vel and
target_yaw_vel to be tested. For the tool_radius and dirAngle parameters, the can-
didate tool_radius/dirAngle combinations taken from Section 6.2 were used. The rangeUV

parameter was kept in 1.5m.
Always taking into account a balance between the three criteria evaluated (Section 6.1),

the goal was to see if the disinfection time could be improved in comparison with the values
in Table 6.2 without affecting the percentage of disinfected area.

Tables 6.3, 6.4 and 6.5 present the disinfection time and percentage of disinfected area
results from the tests made in the simulator.

target_x_vel (m/s)
0.5 1 1.5

target_yaw_vel (m/s)

0.5 99.30% 99.30% 99.30%
42min:55sec 37min:09sec 36min:39sec

1 99.30% 99.30% 99.30%
42min:46sec 37min:01sec 36min:32sec

1.5 99.30% 99.30% 99.30%
42min:44sec 36min:59sec 36min:31sec

Table 6.3: Results of tests for different values of target_x_vel and target_yaw_vel and candidate
tool_radius/dirAngle combination of 0.29m/180º.

54

target_x_vel (m/s)
0.5 1 1.5

target_yaw_vel (m/s)

0.5 97.40% 97.39% 97.36%
22min:17sec 19min:06sec 18min:51sec

1 97.39% 97.39% 97.37%
22min:11sec 19min:01sec 18min:50min

1.5 97.40% 97.37% 97.37%
22min:10sec 19min:01sec 18min:44sec

Table 6.4: Results of tests for different values of target_x_vel and target_yaw_vel and candidate
tool_radius/dirAngle combination of 0.53115m/0º.

target_x_vel (m/s)
0.5 1 1.5

target_yaw_vel (m/s)

0.5 97.12% 97.10% 97.10%
26min:13sec 22min:19sec 21min:59sec

1 97.12% 97.12% 97.09%
26min:11sec 22min:16sec 21min:55sec

1.5 97.10% 97.11% 97.10%
26min:10sec 22min:15sec 21min:55sec

Table 6.5: Results of tests for different values of target_x_vel and target_yaw_vel and candidate
tool_radius/dirAngle combination of 0.4106m/180º.

Analyzing the collected data, we can obtain three main conclusions. Firstly, the percentage
of disinfected area is independent of the velocity during forward movement and directional
changes. Secondly, target_yaw_vel does not have a significant impact on the disinfection
time. Thirdly, disinfection time for target_yaw_vel values of 1m/s and 1.5m/s differs by less
than one minute in all the tables.

The green cells in Table 6.3, Table 6.4 and Table 6.5 represent the best candidate
target_yaw_vel/target_x_vel combination for each candidate tool_radius/dirAngle

combination obtained from Section 6.2. With that said, the candidate tool_radius/dirAngle

combination of Table 6.3 is discarded because, despite having the best irradiated area overlap-
ping of all three, its fastest disinfection time takes eighteen minutes longer than the overall
fastest disinfection time (Table 6.4) and the difference between its percentage of disinfected
area (99.30%) and the overall worst percentage of disinfected area (97.09% in Table 6.5)
is less than 2.5%. The yellow cells represent candidates that offer approximately the same
disinfection time and percentage of disinfected area but are better than the green cells on
irradiation exposure time so we decided that candidates target_yaw_vel/target_x_vel

combination from Table 6.4 and Table 6.5 with their result marked in yellow should be the
ones passing to the final tests. Now we have to evaluate which candidates should pass to the
final phase of tests

55

6.4 Evaluation of the UV Sensor’s Radiation Range

This final phase of test has as its goal to identify how parameter rangeUV (Section 5.4.1)
influences the disinfection. We divided by two the set of values for the range of the UV sensor
in Table 6.1 obtaining 1m, 1.5m and 2m as values to be tested. The parameters’ values from
the previous section were used here, and the results obtained are shown in the Tables 6.6 and
6.7. With that said, we tested two sets with the following values for the parameters:

Set 1: Set 2:
tool_radius = 0.4106m tool_radius = 0.53115m

dirAngle = 180º dirAngle = 0º
target_x_vel = 1m/s target_x_vel = 1m/s

target_yaw_vel = 0.5m/s target_yaw_vel = 0.5m/s

rangeUV (m)
1 1.5 2

Disinfected Area (%) 92.41 97.10 99.30
Disinfection Time (min:sec) 22:19 22:19 22:19

Table 6.6: Results of tests for different values of rangeUV using the configuration of Set 1.

rangeUV (m)
1 1.5 2

Disinfected Area (%) 89.21 97.39 99.25
Disinfection Time (min:sec) 19:04 19:06 19.06

Table 6.7: Results of tests for different values of rangeUV using the configuration of Set 2.

The analysis of the tables yields several conclusions. Firstly, the study reveals that
the rangeUV parameter does not exert any discernible influence on the disinfection time.
Secondly, a closer inspection of the data demonstrates a marginal disparity in the percentage
of disinfected area when comparing rangeUV values of 1.5 meters and 2 meters; the variation
is less than 2.5%. However, when contrasted with a rangeUV of 1 meter, a notable distinction
emerges. In the best-case scenario (Table 6.6), the percentage of disinfected area differs by
more than 4.5%, signifying a bigger impact on disinfection outcomes.

Taking into consideration a fundamental principle: the intensity of UV radiation diminishes
proportionally as the distance from the emission point increases. We can affirm that a shorter
rangeUV value correlates with a higher intensity, highlighting a necessary trade-off: while a
shorter range allows for more intense UV exposure, it inherently limits the coverage area.
Therefore, the range of the UV Sensor chosen was 1.5 meters, and it is marked in green in the
Tables 6.6 and 6.7. The two final candidates for parameter configurations are the following:

56

Candidate 1 Candidate 2
tool_radius = 0.4106m tool_radius = 0.53115m

dirAngle = 180º dirAngle = 0º
target_x_vel = 1m/s target_x_vel = 1m/s

target_yaw_vel = 0.5m/s target_yaw_vel = 0.5m/s
rangeUV = 1.5m rangeUV = 1.5m

6.5 Evaluation of Disinfection

Table 6.8 enumerates the advantages of both final candidates from Section 6.4.

Candidate 1 Candidate 2
Higher Overlapping Irradiated Area Higher Disinfected Area (more 0.22%)
Equal Radiation Exposure Time Less Disinfection Time (less +/- 3 min)
Equal Intensity of UV radiation per Square Meter Equal Radiation Exposure Time

Equal Intensity of UV radiation per Square Meter

Table 6.8: Comparison of the two final candidates’ configurations advantages.

Analyzing the Table 6.8, we verify that both candidates present not only equal intensity
of UV radiation per square meter but also equal radiation exposure time, so that these
metrics are not helpful in the final decision. Candidate 2 takes approximately 3 minutes
more disinfection time than candidate 1, which depending on the space disinfected can be
significant or not. The difference of percentage of disinfected area between the two candidates
is 0.29%, which means that this metric won’t be decisive in the final choice either. Regarding
the overlapping of irradiated area, candidate 1 achieves a better result due to having a lower
tool_radius than candidate 2, which successively means that candidate 2 is able to cover
the same area more than once, enabling more effective disinfection of the space.

Our final choice was to give more weight to the overlapping of the irradiated area rather
than disinfection time, leaving us to opt by the candidate 1. Figure 6.4 shows the state of the
environment tested after disinfection using the values of the parameters of the candidate 1.

57

Figure 6.4: Environment state after disinfection.

To conclude, we could obtain a 97.10% of disinfected area in 22 minutes and 19 seconds
with some of the area irradiated more than once. A method to calculate the value of this
area is to multiply the resolution of the map by the number of pixels that were irradiated
more than once. Unfortunately, this would require the usage of a different type of occupancy
map. The mapping coverage was made successfully leaving only some areas close to the walls
without disinfection, which it is caused by the way BSA algorithm used computes the path.

58

CHAPTER 7
Conclusion and future work

7.1 Conclusions

The main goal of this work was to develop a system that is able to disinfect an indoor
space using the robot MiR100 alongside a UV Sensor as a method of disinfection. We began by
researching existing mobile navigation methods for space coverage and space exploration. Then,
a survey of existing disinfection robots that used an UV Sensor as a method of disinfection was
done. This study helped us understand what method could be used or adapted to our needs
in order to be able to cover an entire indoor space. Finally, we chose the researched coverage
path planner that was more suited according to all the MiR100’s tools available, using the
requirements of the proposed robot navigation for environmental disinfection as a reference
frame. We chose the LaMa localization algorithm, BSA as coverage planner, tracking_pid

as local planner and Gazebo as simulation environment. Simulating the UV sensor, a critical
component of this project, was a challenging task that was successfully achieved.

In conclusion, the developed simulated disinfection system proved to be working in an a
priori known static environment. The robot is able to cover and disinfect an environment at
the same time, which help us test different characteristics of the UV Sensor.

7.2 Future work

One such area involves the integration of local planners with collision avoidance. This
capability would extend our application of robots to crowded or dynamically changing spaces,
including public areas, warehouses, and healthcare facilities. Furthermore, achieving complete
coverage of designated areas is essential to obtaining a more efficient disinfection. After the
initial full_coverage_path_planning, implementing a wall follower algorithm proves to be
invaluable. This algorithm would irradiate areas next to walls, guaranteeing a thorough
disinfection process. Its integration significantly enhances the efficiency and effectiveness of
our system.

Developing a simulation of the UV sensors by incorporating real-world physics and creating
intricate 3D models would increase accuracy. This enhancement ensures a realistic simulation

59

environment, enabling precise testing and validation of the robot’s behavior under diverse
conditions. Moreover, implementing visualization methods that display areas irradiated more
than once would contribute to obtaining crucial insights about the state of disinfection. These
visualizations would not only help in identifying redundant coverage but also would allow for
adjustments in the robot’s behavior.

In conclusion, addressing these challenges would contribute to a more reliable, efficient,
and adaptable system that is able to disinfect an indoor space using a UV Sensor as a method
of disinfection.

60

Bibliography

[1] Roland Siegwart and Illah R. Nourbakhsh and Davide Scaramuzza, Introduction to Autonomous Mobile
Robots. MIT press, 2011.

[2] Shoudong Huang and Gamini Dissanayake, Robot Localization: An Introduction. 2016, 1–10. doi:
https://doi.org/10.1002/047134608X.W8318.

[3] Prabin Kumar Panigrahi and Sukant Kishoro Bisoy, «Localization strategies for autonomous mobile
robots: A review», Journal of King Saud University - Computer and Information Sciences, vol. 34,
6019–6039, 8 Sep. 2022. doi: 10.1016/j.jksuci.2021.02.015.

[4] Dieter Fox and Wolfram Burgard and Sebastian Thrun and Armin B Cremers, «Position Estimation for
Mobile Robots in Dynamic Environments», American Association for Artificial Intelligence (AAAI/I-
AAI), 983–988, 1998. [Online]. Available: https://www.aaai.org/Papers/AAAI/1998/AAAI98-139.pdf.

[5] Welch, Greg and Bishop, Gary and others, «An introduction to the Kalman filter», 1995. [Online].
Available: https://perso.crans.org/club-krobot/doc/kalman.pdf.

[6] M. Sanjeev Arulampalam and Simon Maskell and Neil Gordon and Tim Clapp, «A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking», IEEE Transactions on Signal Processing,
vol. 50, 174–188, 2 2002. doi: 10.1109/78.978374.

[7] Dieter Fox and Wolfram Burgard and Frank Dellaert and Sebastian Thrun, «Monte Carlo Localization:
Efficient Position Estimation for Mobile Robots», 1999, 343–349. [Online]. Available: https://www.
aaai.org/Papers/AAAI/1999/AAAI99-050.pdf.

[8] Frank Dellaert and Dieter Fox and Wolfram Burgard and Sebastian Thrun, «Monte Carlo Localization
for Mobile Robots», 1999, 1322–1328. doi: 10.1109/ROBOT.1999.772544.

[9] Sebastian Thrun and Wolfram Burgard and Dieter Fox, Probabilistic Robotics. MIT Press, 2006.

[10] Gutmann, Jens-Steffen and Schlegel, Christian, «AMOS : comparison of scan matching approaches for
self-localization in indoor environments», in Proceedings of the First Euromicro Workshop on Advanced
Mobile Robots (EUROBOT ’96), IEEE, 1996, 61–67. doi: 10.1109/EURBOT.1996.551882.

[11] Eurico Pedrosa and Artur Pereira and Nuno Lau, «Efficient localization based on scan matching with a
continuous likelihood field», Institute of Electrical and Electronics Engineers Inc., Jun. 2017, 61–66.
doi: 10.1109/ICARSC.2017.7964053.

[12] Piotr Skrzypczynski, «Mobile Robot Localization: Where We Are and What Are the Challenges?»,
Roman Szewczyk and Cezary Zieliński and Małgorzata Kaliczyńska, Ed., vol. 550, Springer International
Publishing, 2017, 249–267. doi: 10.1007/978-3-319-54042-9.

[13] Dieter Fox, «KLD-Sampling: Adaptive Particle Filters», MIT Press, 2001. [Online]. Available: https:
//proceedings.neurips.cc/paper/2001/file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.pdf.

[14] Antoni Burguera and Gabriel Oliver and Juan D. Tardos, «Robust scan matching localization using
ultrasonic range finders», 2005, 1367–1372. doi: 10.1109/IROS.2005.1545183.

[15] Sam T. Pfister and Kristo L. Kriechbaum and Stergios I. Roumeliotis and Joel W. Burdick, «Weighted
range sensor matching algorithms for mobile robot displacement estimation», vol. 2, 2002, 1667–1674.
doi: 10.1109/robot.2002.1014782.

61

https://doi.org/https://doi.org/10.1002/047134608X.W8318
https://doi.org/10.1016/j.jksuci.2021.02.015
https://www.aaai.org/Papers/AAAI/1998/AAAI98-139.pdf
https://perso.crans.org/club-krobot/doc/kalman.pdf
https://doi.org/10.1109/78.978374
https://www.aaai.org/Papers/AAAI/1999/AAAI99-050.pdf
https://www.aaai.org/Papers/AAAI/1999/AAAI99-050.pdf
https://doi.org/10.1109/ROBOT.1999.772544
https://doi.org/10.1109/EURBOT.1996.551882
https://doi.org/10.1109/ICARSC.2017.7964053
https://doi.org/10.1007/978-3-319-54042-9
https://proceedings.neurips.cc/paper/2001/file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.pdf
https://proceedings.neurips.cc/paper/2001/file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.pdf
https://doi.org/10.1109/IROS.2005.1545183
https://doi.org/10.1109/robot.2002.1014782

[16] G Weiss and E V Puttkamer, «A Map Based on Laserscans Without Geometric Interpretation», 1999.
[Online]. Available: http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-2857.

[17] F Lu and E Milios, «Globally Consistent Range Scan Alignment for Environment Mapping», Autonomous
Robots, vol. 4, 333–349, 1997. doi: https://doi.org/10.1023/A:1008854305733.

[18] Luis Montesano and Javier Minguez and Luis Montano, «Probabilistic scan matching for motion
estimation in unstructured environments», IEEE Computer Society, 2005, 3499–3504. doi: 10.1109/
IROS.2005.1545182.

[19] Andrea Censi, «An ICP variant using a point-to-line metric», IEEE Xplore, 2008, 19–25. doi: 10.1109/
ROBOT.2008.4543181.

[20] Antoni Burguera and Yolanda González and Gabriel Oliver, «On the use of likelihood fields to perform
sonar scan matching localization», Autonomous Robots, vol. 26, 203–222, May 2009. doi: 10.1007/
s10514-009-9108-0.

[21] David H. Douglas and Thomas K. Peucker, «Algorithms for the Reduction of the Number of Points
Required to Represent a Digitized Line or its Caricature», Cartographica: the international journal for
geographic information and geovisualization, vol. 10, 112–122, 1973. doi: 10.3138/FM57-6770-U75U-7727.

[22] Todd K. Moon, «The Expectation-Maximization Algorithm», IEEE Signal Processing Magazine, vol. 13,
47–60, 1996. doi: 10.1109/79.543975.

[23] Martin A Fischler and Robert C Bolles, «Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography», Commun. ACM, vol. 24, 381–395, 1981.
doi: 10.1145/358669.358692.

[24] J Illingworth and J Kittler, «A Survey of the Hough Transform», Computer Vision, Graphics, and
Image Processing, vol. 44, 87–116, 1988. doi: 10.1016/S0734-189X(88)80033-1.

[25] Ali Siadat and Axel Kaske and Siegfried Klausmann and Michel Dufaut and René Husson, «An Optimized
Segmentation Method for a 2D Laser-Scanner Applied to Mobile Robot Navigation», IFAC Proceedings
Volumes, vol. 30, 149–154, 1997. doi: 10.1016/S1474-6670(17)43255-1.

[26] L. Zhang and B.K. Ghosh, «Line segment based map building and localization using 2D laser rangefinder»,
vol. 3, IEEE, 2000, 2538–2543. doi: 10.1109/ROBOT.2000.846410.

[27] Viet Nguyen and Stefan Gächter and Agostino Martinelli and Nicola Tomatis and Roland Siegwart, «A
comparison of line extraction algorithms using 2D range data for indoor mobile robotics», Autonomous
Robots, vol. 23, 97–111, Aug. 2007. doi: 10.1007/s10514-007-9034-y.

[28] Jan Elseberg and Ross T. Creed and Rolf Lakaemper, «A line segment based system for 2D global
mapping», 2010, 3924–3931. doi: 10.1109/ROBOT.2010.5509138.

[29] Benjamin J. Kuipers and Yung-Tai Byun, «A Robust, Qualitative Method for Robot Spatial Learning»,
1988, 774–779. [Online]. Available: https://www.cs.utexas.edu/users/ai-lab/pubs/Kuipers+Byun-
aaai-88.pdf.

[30] Howie Choset and Keiji Nagatani, «Topological simultaneous localization and mapping (SLAM): Toward
exact localization without explicit localization», IEEE Transactions on Robotics and Automation, vol. 17,
125–137, Apr. 2001. doi: 10.1109/70.928558.

[31] Hongtai Cheng and Heping Chen and Yong Liu, «Topological Indoor Localization and Navigation
for Autonomous Mobile Robot», IEEE Transactions on Automation Science and Engineering, vol. 12,
729–738, Apr. 2015. doi: 10.1109/TASE.2014.2351814.

[32] Yao Qi and Rendong Wang and Binbing He and Feng Lu and Youchun Xu, «Compact and Efficient
Topological Mapping for Large-Scale Environment with Pruned Voronoi Diagram», Drones, vol. 6, Jul.
2022. doi: 10.3390/drones6070183.

[33] Wolfram Burgard and Martial Hebert and Maren Bennewitz, World Modeling. Springer Berlin Heidelberg,
2008, 853–869. doi: 10.1007/978-3-540-30301-5_37.

62

http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-2857
https://doi.org/https://doi.org/10.1023/A:1008854305733
https://doi.org/10.1109/IROS.2005.1545182
https://doi.org/10.1109/IROS.2005.1545182
https://doi.org/10.1109/ROBOT.2008.4543181
https://doi.org/10.1109/ROBOT.2008.4543181
https://doi.org/10.1007/s10514-009-9108-0
https://doi.org/10.1007/s10514-009-9108-0
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1109/79.543975
https://doi.org/10.1145/358669.358692
https://doi.org/10.1016/S0734-189X(88)80033-1
https://doi.org/10.1016/S1474-6670(17)43255-1
https://doi.org/10.1109/ROBOT.2000.846410
https://doi.org/10.1007/s10514-007-9034-y
https://doi.org/10.1109/ROBOT.2010.5509138
https://www.cs.utexas.edu/users/ai-lab/pubs/Kuipers+Byun-aaai-88.pdf
https://www.cs.utexas.edu/users/ai-lab/pubs/Kuipers+Byun-aaai-88.pdf
https://doi.org/10.1109/70.928558
https://doi.org/10.1109/TASE.2014.2351814
https://doi.org/10.3390/drones6070183
https://doi.org/10.1007/978-3-540-30301-5_37

[34] Rafael Murrieta-Cid and Carlos Parra and Michel Devy, «Visual Navigation in Natural Environments:
From Range and Color Data to a Landmark-Based Model», Autonomous Robots, vol. 13, 143–168, 2002.
doi: 10.1023/A:1019685425452.

[35] Sebastian Thrun, «Robotic Mapping: A Survey», Exploring artificial intelligence in the new millennium,
vol. 1, 1–35, 2002. [Online]. Available: http://ftp.itam.mx/pub/alfredo/ROBOTICS/Navegacion/
thrun.pdf.

[36] Adam Milstein, «Occupancy Grid Maps for Localization and Mapping», Mobile Robots Motion Planning,
New Challenges, 381–408, 2008.

[37] Cyrill Stachniss, Robotic Mapping and Exploration, Bruno Siciliano and Oussama Khatib and Frans
Groen, Ed. Springer Berlin Heidelberg, 2009, vol. 55. doi: 10.1007/978-3-642-01097-2.

[38] E. W. Dijkstra, «A Note on Two Problems in Connexion with Graphs», Numerische Mathematik, vol. 1,
269–271, 1959. doi: 10.1007/BF01386390.

[39] Sá, André, «Navigation of autonomous mobile robots», PhD thesis, 2017. [Online]. Available: http:
//hdl.handle.net/10773/23832.

[40] Peter E. Hart and Nils J. Nilsson and Bertram Raphael, «A Formal Basis for the Heuristic Determination
of Minimum Cost Paths», IEEE Transactions on Systems Science and Cybernetics, vol. 4, 100–107,
1968. doi: 10.1109/TSSC.1968.300136.

[41] Stefan Edelkamp and Shahid Jabbar and Alberto Lluch Lafuente, «Cost-Algebraic Heuristic Search»,
2005, 1362–1367. [Online]. Available: https://tinyurl.com/chjb4dmt.

[42] Maxim Likhachev and Geoff Gordon and Sebastian Thrun, «ARA*: Anytime A* with Provable Bounds
on Sub-Optimality», 2003, 767–774. [Online]. Available: https://tinyurl.com/bdcn3shh.

[43] Maxim Likhachev and Dave Ferguson and Geoff Gordon and Anthony Stentz and Sebastian Thrun,
«Anytime Dynamic A*: An Anytime, Replanning Algorithm», 2005, 262–271. [Online]. Available:
http://ri.cmu.edu/pub_files/pub4/likhachev_maxim_2005_1/likhachev_maxim_2005_1.pdf.

[44] Maxim Likhachev and Dave Ferguson, «Planning long dynamically feasible maneuvers for autonomous
vehicles», International Journal of Robotics Research, vol. 28, 933–945, Aug. 2009. doi: 10.1177/
0278364909340445.

[45] Mihail Pivtoraiko and Alonzo Kelly, «Generating Near Minimal Spanning Control Sets for Constrained
Motion Planning in Discrete State Spaces», 2005, 3231–3237. doi: 10.1109/IROS.2005.1545046.

[46] Thomas M. Howard and Alonzo Kelly, «Optimal rough terrain trajectory generation for wheeled
mobile robots», International Journal of Robotics Research, vol. 26, 141–166, Feb. 2007. doi: 10.1177/
0278364906075328.

[47] Y. Gabriely and E. Rimon, «Spanning-tree based coverage of continuous areas by a mobile robot»,
vol. 2, Institute of Electrical and Electronics Engineers Inc., 2001, 1927–1933. doi: 10.1109/robot.
2001.932890.

[48] Yoav Gabriely and Elon Rimon, «Spiral-STC: An on-line coverage algorithm of grid environments by a
mobile robot», vol. 1, 2002, 954–960. doi: 10.1109/ROBOT.2002.1013479.

[49] ——, «Competitive on-line coverage of grid environments by a mobile robot», Computational Geometry,
vol. 24, 197–224, 2003. doi: 10.1016/S0925-7721(02)00110-4.

[50] Enrique González and Mauricio Alarcón and Paula Aristizábal and Carlos Parra, «BSA: A Coverage
Algorithm», vol. 2, 2003, 1679–1684. doi: 10.1109/iros.2003.1248885.

[51] Enrique González and Oscar Álvarez and Yul Díaz and Carlos Parra and Cesar Bustacara, «BSA: A
complete coverage algorithm», vol. 2005, 2005, 2040–2044. doi: 10.1109/ROBOT.2005.1570413.

[52] Fox Dieter and Wolfram Burgard and Sebastian Thrun, «The Dynamic Window Approach to Collision
Avoidance», IEEE Robotics & Automation Magazine, vol. 4, 23–33, 1997. doi: 10.1109/100.580977.

63

https://doi.org/10.1023/A:1019685425452
http://ftp.itam.mx/pub/alfredo/ROBOTICS/Navegacion/thrun.pdf
http://ftp.itam.mx/pub/alfredo/ROBOTICS/Navegacion/thrun.pdf
https://doi.org/10.1007/978-3-642-01097-2
https://doi.org/10.1007/BF01386390
http://hdl.handle.net/10773/23832
http://hdl.handle.net/10773/23832
https://doi.org/10.1109/TSSC.1968.300136
https://tinyurl.com/chjb4dmt
https://tinyurl.com/bdcn3shh
http://ri.cmu.edu/pub_files/pub4/likhachev_maxim_2005_1/likhachev_maxim_2005_1.pdf
https://doi.org/10.1177/0278364909340445
https://doi.org/10.1177/0278364909340445
https://doi.org/10.1109/IROS.2005.1545046
https://doi.org/10.1177/0278364906075328
https://doi.org/10.1177/0278364906075328
https://doi.org/10.1109/robot.2001.932890
https://doi.org/10.1109/robot.2001.932890
https://doi.org/10.1109/ROBOT.2002.1013479
https://doi.org/10.1016/S0925-7721(02)00110-4
https://doi.org/10.1109/iros.2003.1248885
https://doi.org/10.1109/ROBOT.2005.1570413
https://doi.org/10.1109/100.580977

[53] Christoph Rösmann and Wendelin Feiten and Thomas Wösch and Frank Hoffmann and Torsten Bertram,
«Trajectory modification considering dynamic constraints of autonomous robots», 2012, 1–6. [Online].
Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6309484.

[54] Christoph Rosmann and Wendelin Feiten and Thomas Wosch and Frank Hoffmann and Torsten Bertram,
«Efficient trajectory optimization using a sparse model», IEEE Computer Society, 2013, 138–143. doi:
10.1109/ECMR.2013.6698833.

[55] Sean Quinlan and Oussama Khatib, «Elastic bands: Connecting path planning and control», vol. 2,
Publ by IEEE, 1993, 802–807. doi: 10.1109/robot.1993.291936.

[56] Pedrosa, Eurico and Pereira, Artur and Lau, Nuno, «A sparse-dense approach for efficient grid mapping»,
in 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC),
2018, 136–141. doi: 10.1109/ICARSC.2018.8374173.

[57] ——, «A Non Linear Least Squares Approach to SLAM using a Dynamic Likelihood Field», Journal of
Intelligent Robotic Systems, vol. 93, Mar. 2019. doi: 10.1007/s10846-017-0763-7.

[58] ——, «Fast Grid SLAM Based on Particle Filter with Scan Matching and Multithreading», in 2020
IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 2020,
194–199. doi: 10.1109/ICARSC49921.2020.9096191.

[59] YoonSeok Pyo and HanCheol Cho and RyuWoon Jung and TaeHoon Lim, ROS Robot Programming:
From the basic concept to practical programming and robot application. ROBOTICS Co.,Ltd., 2017.

[60] Susanne A. Kraemer and Arthi Ramachandran and Gabriel G. Perron, «Antibiotic pollution in the
environment: From microbial ecology to public policy», Microorganisms, vol. 7, 6 Jun. 2019. doi:
10.3390/microorganisms7060180.

[61] Da Hu and Hai Zhong and Shuai Li and Jindong Tan and Qiang He, «Segmenting areas of potential
contamination for adaptive robotic disinfection in built environments», Building and Environment,
vol. 184, 10 2020, 15 citações. doi: 10.1016/j.buildenv.2020.107226.

[62] Xi Vincent Wang and Lihui Wang, «A literature survey of the robotic technologies during the COVID-19
pandemic», Journal of Manufacturing Systems, vol. 60, 823–836, Jul. 2021. doi: 10.1016/j.jmsy.2021.
02.005.

[63] Yang Shen and Dejun Guo and Fei Long and Luis A. Mateos and Houzhu Ding and Zhen Xiu and
Randall B. Hellman and Adam King and Shixun Chen and Chengkun Zhang and Huan Tan, «Robots
under COVID-19 Pandemic: A Comprehensive Survey», IEEE Access, vol. 9, 1590–1615, 2021. doi:
10.1109/ACCESS.2020.3045792.

[64] Robin R. Murphy and Vignesh Babu Manjunath Gandudi and Justin Adams, «Applications of Robots
for COVID-19 Response», arXiv preprint arXiv:2008.06976, Aug. 2020, 45 citações. doi: 10.48550/
arXiv.2008.06976.

[65] Yu Lin Zhao and Han Pang Huang and Tse Lun Chen and Pen Chi Chiang and Yi Hung Chen and Jiann
Horng Yeh and Chien Hsien Huang and Ji Fan Lin and Wei Ting Weng, «A Smart Sterilization Robot
System with Chlorine Dioxide for Spray Disinfection», IEEE Sensors Journal, vol. 21, 22047–22057, 19
10 2021. doi: 10.1109/JSEN.2021.3101593.

[66] Stepan Perminov and Nikita Mikhailovskiy and Alexander Sedunin and Iaroslav Okunevich and Ivan
Kalinov and Mikhail Kurenkov and Dzmitry Tsetserukou, «UltraBot: Autonomous Mobile Robot for
Indoor UV-C Disinfection», IEEE Computer Society, 2021, 2147–2152. doi: 10.1109/CASE49439.2021.
9551413.

[67] Hess, Wolfgang and Kohler, Damon and Rapp, Holger and Andor, Daniel, «Real-time loop closure in
2D LIDAR SLAM», in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016,
1271–1278. doi: 10.1109/ICRA.2016.7487258.

[68] Kaicheng Ruan and Zehao Wu and Qingsong Xu, «Smart cleaner: A new autonomous indoor disinfection
robot for combating the covid-19 pandemic», Robotics, vol. 10, 3 Sep. 2021, 13 citações. doi: 10.3390/
robotics10030087.

64

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6309484
https://doi.org/10.1109/ECMR.2013.6698833
https://doi.org/10.1109/robot.1993.291936
https://doi.org/10.1109/ICARSC.2018.8374173
https://doi.org/10.1007/s10846-017-0763-7
https://doi.org/10.1109/ICARSC49921.2020.9096191
https://doi.org/10.3390/microorganisms7060180
https://doi.org/10.1016/j.buildenv.2020.107226
https://doi.org/10.1016/j.jmsy.2021.02.005
https://doi.org/10.1016/j.jmsy.2021.02.005
https://doi.org/10.1109/ACCESS.2020.3045792
https://doi.org/10.48550/arXiv.2008.06976
https://doi.org/10.48550/arXiv.2008.06976
https://doi.org/10.1109/JSEN.2021.3101593
https://doi.org/10.1109/CASE49439.2021.9551413
https://doi.org/10.1109/CASE49439.2021.9551413
https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.3390/robotics10030087
https://doi.org/10.3390/robotics10030087

[69] Yunzhou Fan and Yu Hu and Li Jiang and Qian Liu and Lijuan Xiong and Jing Pan and Wenlu Hu and
Yao Cui and Tingting Chen and Qiang Zhang, «Intelligent disinfection robots assist medical institutions
in controlling environmental surface disinfection», Intelligent Medicine, vol. 1, 19–23, 1 May 2021, 3
citações. doi: 10.1016/j.imed.2021.05.004.

[70] Mur-Artal, Raúl and Tardós, Juan D., «Visual-Inertial Monocular SLAM With Map Reuse», IEEE
Robotics and Automation Letters, vol. 2, no. 2, 796–803, 2017. doi: 10.1109/LRA.2017.2653359.

[71] Jing Pan and Yixing Feng and Man Shen and Vanadium Zhi Su and Liang Liu and Tao Xu, «Indoor
global positioning method for service robots», CN 106052693 B, 2019.

[72] ——, «Method for fusion of multiple time-of-flight sensors for service robots», CN 105955272 B, 2019.

[73] «Environmental Germicidal Inactivation Efficacy of a UVD Robot in an operating theater/room (ot/or)
and traumatology and orthopedic department, general hospital "Dr. Ivo Pedišić" Sisak, Croatia», UVD
Robots, 2021.

[74] «Ava UV Disinfection Robot: Promoting a Safer Workspace», Ava Robotics. [Online]. Available: https:
//www.avarobotics.com/_files/ugd/90f1de_e18953a756b74d08a783324587e3acb3.pdf.

[75] Enric Galceran and Marc Carreras, «A survey on coverage path planning for robotics», Robotics and
Autonomous Systems, vol. 61, 1258–1276, 12 12 2013. doi: 10.1016/j.robot.2013.09.004.

[76] Ercan U Acar and Howie Choset and Alfred A Rizzi and Prasad N Atkar and Douglas Hull, «Morse
Decompositions for Coverage Tasks», The International Journal of Robotics Research, vol. 21, 331–344,
2002. doi: 10.1177/027836402320556359.

[77] Jiří Hörner, «Map-merging for multi-robot system», Faculty of Mathematics and Physics, 2016. [Online].
Available: https://dspace.cuni.cz/bitstream/handle/20.500.11956/83769/BPTX_2015_1_11320_
0_410161_0_174125.pdf?sequence=1&isAllowed=y.

[78] Mobile Industrial Robots A/S, MiR100 User Guide, 2020. [Online]. Available: https://www.mobile-
industrial-robots.com/solutions/robots/mir100/.

[79] Brodskiy, Yury and Schoenmakers, Ferry and Clephas, Tim and Unkel, Jerrel and van Beek, Loy and
Lopez, Cesar, Full Coverage Path Planner (FCPP), 2020. [Online]. Available: https://github.com/
nobleo/full_coverage_path_planner.

[80] Franke, Michiel and Lopez, Cesar, Tracking PID, 2020. [Online]. Available: https://github.com/
nobleo/tracking_pid.

65

https://doi.org/10.1016/j.imed.2021.05.004
https://doi.org/10.1109/LRA.2017.2653359
https://www.avarobotics.com/_files/ugd/90f1de_e18953a756b74d08a783324587e3acb3.pdf
https://www.avarobotics.com/_files/ugd/90f1de_e18953a756b74d08a783324587e3acb3.pdf
https://doi.org/10.1016/j.robot.2013.09.004
https://doi.org/10.1177/027836402320556359
https://dspace.cuni.cz/bitstream/handle/20.500.11956/83769/BPTX_2015_1_11320_0_410161_0_174125.pdf?sequence=1&isAllowed=y
https://dspace.cuni.cz/bitstream/handle/20.500.11956/83769/BPTX_2015_1_11320_0_410161_0_174125.pdf?sequence=1&isAllowed=y
https://www.mobile-industrial-robots.com/solutions/robots/mir100/
https://www.mobile-industrial-robots.com/solutions/robots/mir100/
https://github.com/nobleo/full_coverage_path_planner
https://github.com/nobleo/full_coverage_path_planner
https://github.com/nobleo/tracking_pid
https://github.com/nobleo/tracking_pid

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation
	Objectives
	Thesis Outline

	Autonomous Navigation
	Localization
	Adaptive Monte Carlo Localization
	Scan Matching-based Localization

	Mapping
	Occupancy Grid

	Global Path Planner
	A-Star Algorithm
	Search-based Planning Lattice

	Mapping Coverage
	Spiral Spanning Tree Coverage
	Backtracking Spiral Algorithm

	Local Path Planner
	Dynamic Window Approach
	Time Elastic Band

	The Localization and Mapping package

	Robot Operating System
	Development Tools
	RViz
	rqt_graph

	Gazebo

	Robot Disinfection State of Art
	Real Robots Applications
	UltraBot
	Smart Cleaner
	Intelligent Disinfection Robot
	UVD Robot
	Ava’s UV Disinfection Robot
	Comparison between Disinfection Robots

	Coverage Path Planning
	explore_lite package
	full_coverage_path_planner package

	Disinfection of Spaces
	Introduction
	MiR100 Robot's Overview
	The mir_robot repository

	Overall Architecture of the Project
	System Architecture
	Sensorization
	Localization
	Navigation
	Disinfectioned Area Coverage

	Summary

	Results and Troubleshooting
	Methodology of the tests
	Method of Evaluation of the Disinfection

	Evaluation of the UV Sensor's orientation and tool_radius parameter
	Evaluation of the MiR100's velocity during forward movement and directional changes
	Evaluation of the UV Sensor's Radiation Range
	Evaluation of Disinfection

	Conclusion and future work
	Conclusions
	Future work

	Bibliography

