
Universidade de Aveiro
2023

Guilherme Baltar
Lopes Cardoso
Lourenço

Sonda Espectral Distribuída de Tempo-Real

Real-Time Distributed Spectral Probe

“In theory, there is no difference between theory and practice. In
practice, there is.”

— Benjamin Brewster

Universidade de Aveiro
2023

Guilherme Baltar
Lopes Cardoso
Lourenço

Sonda Espectral Distribuída de Tempo-Real

Real-Time Distributed Spectral Probe

Universidade de Aveiro
2023

Guilherme Baltar
Lopes Cardoso
Lourenço

Sonda Espectral Distribuída de Tempo-Real

Real-Time Distributed Spectral Probe

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Mestre em Engenharia Eletrónica e Telecomuni-
cações, realizada sob a orientação científica do Doutor Arnaldo Silva de Rodrigues
Oliveira, Professor Associado do Departamento de Eletrónica, Telecomunicações e
Informática da Universidade de Aveiro, e do Doutor Nuno Miguel Gonçalves Borges
de Carvalho, Professor Catedrático do Departamento de Eletrónica, Telecomuni-
cações e Informática da Universidade de Aveiro.

Este trabalho é financiado pela Fun-
dação para a Ciência e Tecnologia
(FCT) e Ministério da Ciência, Tec-
nologia e Ensino Superior (MCTES)
através de fundos nacionais.

Este trabalho também é financiado
por fundos comunitários no âm-
bito do projeto UIDB/50008/2020-
UIDP/50008/2020, FEDER através
do Programa COMPETE 2020
[Projetos IMMINENCE nº 112314
(POCI-01-0247-FEDER-112314) e
POWER nº 070365 (POCI-01-0247-
FEDER-070365)].

o júri / the jury

presidente / president Prof. Doutor José Nuno Panelas Nunes Lau
Professor Associado da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Marco Alexandre Cravo Gomes
Professor Auxiliar da Faculdade de Ciências e Tecnologia da Universidade de Coimbra (Arguente)

Prof. Doutor Arnaldo Silva Rodrigues de Oliveira
Professor Associado da Universidade de Aveiro (Orientador)

agradecimentos /
acknowledgements

Aos meus pais, um grande sentido de gratidão por me apoioarem incondicional-
mente em todo o meu percurso de vida e fazerem-me sempre acreditar em mim.
Obrigado, mãe, obrigado pai.
À minha namorada Beatriz, por todo o apoio nesta jornada.
Aos meus amigos e colegas que fizeram parte deste percurso em especial aos
grandes amigos que fiz pelo caminho Gonçalo, Inês, Henrique, Diogo, Manuel
e Leonardo, que tornaram este percurso muito mais alegre.
Um grande obrigado ao Luís e ao Francisco pela ajuda e orientação no projeto, em
especial no desenvolvimento da plataforma. Aos meus restantes colegas do grupo
de sistemas de rádio, Fábio, José e Samuel, pelo companheirismo e ajuda.
Ao Professor Doutor Hugerles Silva, pela oportunidade de iniciar a minha carreira
na investigação científica e integração no grupo de Sistemas de Rádio. Obrigado
por toda a aprendizagem, orientação e amizade.
Agradeço especialmente ao Professor Doutor Arnaldo Oliveira, meu orientador
nestes últimos dois anos, pelo apoio e oportunidades que me deu, inclusivamente
a de me incluir neste projeto.
Um agradecimento ao Doutor Ricardo Figueiredo pela ajuda, explicações e conver-
sas sobre medições e recetores de Rádiofrequência.
Do grupo de Network Architectures and Protocols um agradecimento ao Doutor
Pedro Rito pela ajuda ao longo do projeto, ao Eurico Dias pela ajuda e conversas
sobre Network Sockets e ao Rodrigo Rosmaninho pela ajuda e conversas sobre
Benchmarking e o Kernel de Linux.
Aos técnicos do Instituto de Telecomunições Paulo Gonçalves, Nuno Silva e António
Correia pela ajuda e boa disposição.
À Universidade de Aveiro, ao Departamento de Eletrónica, Telecomunicações
e Informática e ao Instituto de Telecomunicações por fornecerem as condições
necessárias de trabalho e aprendizagem.
A todos, muito obrigado.

Palavras Chave Sonda Espectral, Rádio Definido por Software, FPGA, Processamento Digital de
Sinal em Tempo Real.

Resumo Os desenvolvimentos tecnológicos nas comunicações sem fios, em particular a im-
plementação das comunicações móveis da quinta geração (5G) e advento de pos-
teriores, juntamente com a rápida expansão da Internet das Coisas (IoT) impulsio-
nada pela adoção da norma IEEE 802.11ax (conhecida comercialmente como WiFi
6 e WiFi 6E), estão a conduzir a um aumento significativo do número de dispositi-
vos sem fios interligados. Até 2025, prevê-se que 55,7 mil milhões de dispositivos
estejam ligados em todo o mundo, 75% dos quais estarão ligados a uma plata-
forma IoT. Este crescimento significativo tornará cada vez mais difícil lidar com o
já escasso espetro eletromagnético, à medida que as bandas existentes se tornam
cada vez mais congestionadas. Neste contexto, as plataformas de sensorização de
espetro tornaram-se ferramentas essenciais para a análise, monitorização e gestão
do espetro.
Neste trabalho, é apresentada uma nova sonda espetral de rádio distribuída de
tempo real. Tanto quanto é do conhecimento do autor, este é o primeiro tra-
balho em que é apresentada uma sonda espetral remotamente reconfigurável e
baseada em Field Programmable Gate Array (FPGA) com uma interface multi-
Gigabit aberta, escalável e implementável num cenário espacialmente distribuído.
Foi configurada uma plataforma determinística de alto desempenho, capaz de exe-
cutar algoritmos personalizados de processamento de sinais digitais em tempo real,
optimizados para a arquitetura da Unidade Central de Processamento (CPU). O
sistema foi testado e validado num ambiente controlado utilizando equipamento de
laboratório de Rádio-Frequência (RF), bem como num cenário de deteção espetral
multi-banda em ambientes interiores. A sonda desenvolvida apresenta um patamar
de ruído de pelo menos -89 dBm numa gama de frequências de 0,8 a 3,5 GHz e é
capaz de receber e processar sinais RF que atingem uma taxa de até 7,86 Gbit/s.

Keywords Spectrum Sensing, Software-Defined Radio, FPGA, Real-Time Digital Signal Pro-
cessing.

Abstract Technological developments in wireless communications, particularly the deploy-
ment of Fifth Generation (5G) mobile communications and emergence of later
ones, alongside the rapid expansion of the Internet of Things (IoT) driven by the
adoption of IEEE 802.11ax (commercially known as WiFi 6 and WiFi 6E), are lead-
ing to a significant increase in the number of connected wireless devices. By 2025,
55.7 billion devices are expected to be connected worldwide, 75% of which will be
connected to an IoT platform. This significant growth will make addressing the
already scarce electromagnetic spectrum increasingly challenging as the existing
bands become increasingly crowded. In this context, spectrum sensing platforms
have become essential tools for spectrum analysis, monitoring, and management.
In this work, a novel distributed real-time radio spectral probe is presented. To the
best of the author’s knowledge, this is the first work in which a remotely reconfig-
urable and Field Programmable Gate Array (FPGA) wideband spectral probe with
an open multi-Gigabit interface, scalable and deployable in a spatially distributed
scenario, is presented. A high-performance, deterministic platform was configured,
capable of running custom real-time digital signal processing algorithms optimized
for the Central Processing Unit (CPU) architecture. The system was tested and
validated in a controlled environment using Radio Frequency (RF) laboratory equip-
ment, as well as in an indoor multi-band spectral sensing scenario. The developed
probe features a noise floor of at least -89 dBm over a frequency range of 0.8 to
3.5 GHz and is capable of receiving and processing RF signals that reach a rate of
up to 7.86 Gbit/s.

Contents

Contents i

List of Figures iii

List of Tables v

Acronyms vii

1 Introduction 1
1.1 Scope . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Publication . 5
1.5 Document Structure . 5

2 Spectral Probes 7
2.1 Introduction . 7
2.2 Software Defined-Radio Receivers 7

2.2.1 Direct-Conversion Receivers 8
2.3 Spectrum Sensing . 9

2.3.1 Spectrum Sensing Techniques 9
2.3.2 Spectrum Sensing Hardware 10

2.4 RF Receiver Performance Characteristics 10

3 System Architecture and Development Platform 17
3.1 Introduction . 17
3.2 General Architecture . 17
3.3 SDR Platform . 18

3.3.1 RF Transceiver . 18
3.3.2 FPGA . 19

3.4 Fronthaul . 19
3.4.1 Radio over Ethernet 19

3.5 Centralized Processing . 20
3.6 Analog RF Front-End and Antenna 21

i

3.7 Final Architecture . 22

4 Implementation 23
4.1 Introduction . 23
4.2 SDR Platform . 23

4.2.1 Loopback Design . 24
4.2.2 Standard Design . 25
4.2.3 Embedded Linux . 25
4.2.4 Network Sockets . 25

4.3 Centralized Processing Implementation 26
4.3.1 Real-Time Digital Signal Processing 27

Digital Filtering . 28
4.3.2 Signal Power Calculation 30
4.3.3 Remote Access . 30

4.4 Analog RF-front end . 31
4.5 Physical Setup . 32

4.5.1 Radio Frequency Instruments 33
4.5.2 Fronthaul . 34
4.5.3 Final Setup . 35

5 Tests and Results 37
5.1 Introduction . 37
5.2 Loopback Tests . 37
5.3 Centralized Processing Tests 39

5.3.1 Spectrum Analysis . 39
5.3.2 Signal Power Measurements 41
5.3.3 Signal Filtering Results 44
5.3.4 Execution Time Results 45

5.4 Spectrum Sensing Campaign 49

6 Conclusion 53
6.1 Final Remarks . 53
6.2 Future Work . 53

A Real-Time Kernel Tunning and Low Jitter Computing Tech-
niques 55

B High-Performance DSP Software Module 63

C Numerical Approximation and Optimized Implementation
for Signal Power Calculation 69

D System Implementation for On-Site Deployment 75

Bibliography 77

ii

List of Figures

1.1 Wall box and Smart Lamp Post. 2
1.2 Aveiro Tech City Living Lab map in Aveiro. 2
1.3 Allocation of the electromagnetic spectrum in Portugal for

the Fourth Generation Long Term Evolution bands and the
Fifth Generation n78 band - retrieved from [4]. 4

2.1 Ideal SDR receiver block diagram. 8
2.2 DCR receiver block diagram with two IQ channels and with-

out the RF front-end. 8
2.3 Cascaded amplifiers block diagram - adapted from [56]. . . . 13
2.4 Output power as a function of input of a RF receiver - re-

trieved from [55]. 15

3.1 High-level block diagram of distributed scenario. 17
3.2 eCPRI packet structure. 20
3.3 Block diagram of analog RF front-end and antenna. 21
3.4 Final system architecture block diagram. 22

4.1 Block diagram of Loopback Design implementation. 24
4.2 2100 MHz 4G LTE n1 FDD downlink band allocation in Por-

tugal - retrieved from [4]. 28
4.3 Frequency response of a 12th order IIR filter implemented

with single and double precision. 29
4.4 Frequency response of a 29th order FIR filter implemented

with single and double precision. 29
4.5 Block diagram of the setup used to enable remote access. . . 31
4.6 QPL9057 evaluation board. 32
4.7 UWB antenna. 32
4.8 Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit [50]. . . . 33
4.9 ADRV9371-WPCBZ radio card [51]. 34
4.10 Si570 Evaluation Board [52]. 34
4.11 Bidirectional SFP+. 35
4.12 Loopback SFP+. 35

iii

4.13 Laboratorial setup of the spectral probe with the LNA and
antenna. 36

5.1 Internal loopback results. 38
5.2 RoE loopback results. 38
5.3 Laboratory setup for the loopback tests. 39
5.4 FFT of the received signal (N = 2.028 ksample) on the server. 40
5.5 FFT of received signal (N = 20.28 sample) on the server. . . 40
5.6 FFT of the received signal (N = 202.8 ksample) on the server. 40
5.7 FFT of the received signal (N = 2028.0 ksample) on the server. 40
5.8 Spectrum of a 100 MHz signal before and after filtering using

an FIR filter with 37 taps and 50 MHz cutoff frequency. . . . 45
5.9 Spectrum of a 100 MHz signal before and after filtering using

an FIR filter with 100 taps and 50 MHz cutoff frequency. . . 46
5.10 Spectrum of a 100 MHz signal before and after filtering using

an FIR filter with 37 taps and 20 MHz cutoff frequency. . . . 47
5.11 Spectrum of a 100 MHz signal before and after filtering using

an FIR filter with 100 taps and 20 MHz cutoff frequency. . . 48
5.12 Spectral occupancy of 4G, and 2.4 GHz ISM bands. 50
5.13 Spectral occupancy of 5G bands. 51

B.1 Graph of the average execution time of the optimized and
non-optimized FIR filter implementations as a function of the
number of filter taps featuring linear regressions. 66

C.1 Absolute error of the signal power approximation as a func-
tion of the signal approximation power for signals with 2028
and 20280 samples. 72

D.1 Field-ready system setup. 76

iv

List of Tables

2.1 Comparison of spectral probes based on FPGA with transceiver,
USRP, and SA. 11

4.1 RF chain cascaded NF, and noise floor calculations for differ-
ent frequencies. 31

4.2 UWB antenna gain at different frequencies. 32

5.1 Measurements of received signal power and absolute error for
different signal powers without digital and RF chain gains. . . 42

5.2 Measurements of received signal power and absolute error for
different signal powers with 30 dB digital reconfigurable gain
only. 42

5.3 Measurements of received signal power and absolute error for
different signal powers with 30 dB digital reconfigurable gain
and 21.2 dB gain from the RF chain. 43

5.4 Measured RF chain gain and noise floor values at different
frequencies. 44

5.5 Execution times for the recvfrom C function. Each of the 5
trials received 1000 packets. 46

5.6 Execution times for the byte shifting operation. Each of the
5 trials processed 10 million packets. 47

5.7 Execution times for the whole software pipeline: receiving,
byte shifting, filtering (with 37 filter taps), and signal power
calculation. Each of the 5 trials processed 1000 packets . . . 49

A.1 Execution performance time using the clock_gettime() func-
tion from the C Time library. Each of the five trials made
100 million function calls. 60

A.2 Execution performance in cycles and time using the custom
function based on the rdtscp() instruction. Each of the five
trials made 100 million function calls. 61

v

B.1 Execution performance time of the custom FIR filter function
for different filter tap counts. Each of the five trials made 1
million function calls. 65

C.1 Execution performance time for different signal power cal-
culation implementations considering a signal with 2028 IQ
samples. Each of the five trials made 10 million function calls. 73

vi

Acronyms

3GPP 3rd Generation Partnership Project. 32, 49

4G Fourth Generation. iii, iv, 1, 4, 28, 41, 43, 49, 50, 53

5G Fifth Generation. iii, iv, 1, 2, 4, 18, 19, 32, 41, 43, 49, 51, 53

ADC Analog-to-Digital Converter. 1, 7, 18, 24, 25, 37, 69, 71

API Application Programming Interface. 26

APU Accelerated Processing Unit. 30, 75

ATCLL Aveiro Tech City Living Lab. 1, 35, 43, 75

AVX Advanced Vector Extensions. 6, 20, 27, 47, 54, 63, 64, 69, 72

BBU BaseBand Unit. 19

BIOS Basic Input/Output System. 55

CLI Command Line Interface. 25, 30

CPRI Common Public Radio Interface. 19

CPU Central Processing Unit. 1, 20, 26, 27, 55–59, 61, 63

CR Cognitive Radio. 9

CU Centralized Unit. 24

DAC Digital-to-Analog Converter. 24, 37, 38

DCR Direct-Conversion Receiver. iii, 7–9, 18

DDR4 Double Data Rate 4. 20

DSA Dynamic Spectrum Access. 9

DSP Digital Signal Processing. 6, 20, 26, 27, 40, 54

vii

DTFT Discrete Time Fourier Transform. 27, 28

eCPRI Evolved Common Public Radio Interface. iii, 19, 20, 24, 26, 27, 38,
39, 71

ED Energy Detection. 9, 30

EVM Error Vector Magnitude. 37, 38

FDD Frequency Division Duplex. iii, 18, 28

FFT Fast Fourier Transform. iv, 28, 39–41, 48, 63

FIFO First In First Out. 24

FIR Finite Impulse Response. iii, iv, vi, 6, 24, 27–29, 45–48, 54, 63–66

FMC FPGA Mezzanine Card. 33

FPGA Field Programmable Gate Array. v, 1, 5, 10, 11, 18–20, 23, 24, 26,
32, 33, 37, 47, 75

GPIO General Purpose Input/Output. 75

GRUB GRand Unified Bootloader. 56

IF Intermediate Frequency. 8

IIR Infinite Impulse Response. iii, 28, 29

IoT Internet of Things. 1–3

IP Intellectual Property. 23–25, 32

IQ In-Phase and Quadrature. iii, vi, 8, 20, 23, 24, 27, 30, 37–39, 47, 48, 50,
69, 70, 72, 73

ISM Industrial, Scientific, and Medical. iv, 3, 43, 49, 50, 53

JTAG Joint Test Action Group. 32, 75

LiDAR Light Detection and Ranging. 1

LNA Low-Noise Amplifier. iv, 13, 21, 31, 35, 36, 41–43, 45

LO Local Oscillator. 8

LPF Low-Pass Filter. 28

LTE Long Term Evolution. iii, 1, 4, 28, 32, 41, 43, 49, 53

viii

MDS Minimum Discernible Signal. 13, 14

MPSoC Multiprocessor System on Chip. iii, 3, 23, 32, 33, 75

Msps Megasamples per second. 1, 18, 23, 41

NF Noise Figure. v, 12, 13, 21, 31

NR New Radio. 18, 32, 41, 43, 49

OFDM Orthogonal Frequency-Division Multiplexing. 41

OSI Open System Interconnection. 25

PAPR Peak to Average Power Ratio. 41

PC ID Protocol Control Identifier. 19

PRBS Pseudorandom Binary Sequence. 40, 41

PU Primary User. 9

QAM Quadrature Amplitude Modulation. 8, 37, 40, 41, 44, 71

RF Radio Frequency. iii, v, 1, 5, 7–11, 13, 15, 17, 18, 21, 23, 26, 31, 37, 38,
42–44, 49, 50, 53

RoE Radio over Ethernet. 5, 19, 23–25, 32, 49

RRU Remote Radio Head. 20

SA Spectrum Analyzer. v, 10, 11, 33, 37

SDR Software-Defined Radio. iii, 1, 3, 5, 7–10, 17, 20, 21, 23, 30, 39, 53

SDRAM Synchronous Dynamic Random-Access Memory. 20

SEQ ID Sequence Identifier. 19

SFP Small Form-factor Pluggable. iii, 20, 24, 33–35, 37, 38

SIMD Single Instruction Multiple Data. 6, 20, 27, 29, 48, 54, 63, 64, 69,
72

SMA SubMiniature version A. 33, 35

SNR Signal-To-Noise Ratio. 9, 12, 13

SSH Secure Shell. 30

ix

SU Secondary User. 9

TCC Time Coordinated Computing. 56

TDD Time Division Duplex. 18

TSC Time Stamp Counter. 60, 61

TSN Time Sensitive Networking. 56

UART Universal Asynchronous Receiver/Transmitter. 30, 32, 75

UDP User Datagram Protocol. 25

USB Universal Serial Bus. 1, 32, 75

USRP Universal Software Radio Peripheral. v, 10, 11

UWB Ultra-Wideband. iii, v, 31, 32

VSA Vector Signal Analyzer. 33, 37, 38, 40

VSG Vector Signal Generator. 33, 41

WLAN Wireless Local-Area Network. 14, 49

x

Chapter 1

Introduction

1.1 Scope

This work is inserted in the IMMINENCE project, which carries on the
work of the Aveiro Tech City Living Lab (ATCLL) project. The ATCLL
project developed an advanced communications infrastructure, an urban
data management and innovation platform. A significant part of the infras-
tructure is composed of 44 lamp posts or wall boxes, called nodes, spread
throughout the city of Aveiro and connected by 16 km of fiber optics that
converge on a data center [1]. Each of these nodes is equipped with sensors
such as spectral probes, traffic radars, Light Detection and Ranging (Li-
DAR), and video cameras. The spectral probes are connected to low-cost
commercial Software-Defined Radio (SDR) ADALM-PLUTO connected to
a Raspberry Pi computer to process and collect data [1]. Figure 1.2 depicts
the ATCLL in the map of Aveiro, its fiber connections, and the different
nodes placed in strategic locations in the city.

While the ADALM PLUTO is a versatile tool, it was designed as a learn-
ing platform and has some limitations. Based on the AD9396 transceiver
with 12-bit Analog-to-Digital Converter (ADC)s, it offers a tuning range of
325 MHz to 3800 MHz and a configurable receiver bandwidth of 200 kHz
to 20 MHz. These specifications, especially the bandwidth, are somewhat
limited; for example, it is insufficient to cover an entire Fourth Generation
(4G) Long Term Evolution (LTE) band. In addition, the device’s reliance on
a Universal Serial Bus (USB) 2.0 interface imposes additional constraints,
particularly when it comes to efficient data streaming, with a maximum of
4 Megasamples per second (Msps), hindering real-time data acquisition [2].

In this context, the aim of this project is to develop a spectrum sensing
platform with higher bandwidth, resolution, and real-time data transfer and
processing.

1

Figure 1.1: Wall box and Smart Lamp Post.

Figure 1.2: Aveiro Tech City Living Lab map in Aveiro.

1.2 Motivation

Technological developments in wireless communications, particularly the
emergence of Fifth Generation (5G) mobile communications and beyond,
alongside the rapid expansion of the Internet of Things Internet of Things
(IoT) driven by the adoption of IEEE 802.11ax (commercially known as

2

WiFi 6 and WiFi 6E), are leading to a significant increase in the number of
connected wireless devices. By 2025, 55.7 billion devices are expected to be
connected worldwide, 75% of which will be connected to an IoT platform
[3]. This significant growth will make addressing the already scarce electro-
magnetic spectrum increasingly challenging as the existing bands become
increasingly crowded.

The emergence of new licensed mobile communications technologies nar-
rows the bandwidth available for unlicensed communications. This leads to
the congestion of unlicensed bands.

The congestion of the unlicensed 2.4 GHz Industrial, Scientific, and Med-
ical (ISM) band is an example of this overload and can be noted by the tech-
nologies operating in it, namely: IEEE 802.11 (better known as WiFi), IEEE
802.15.4 (the basis of the physical and media access control layer for low-rate
wireless personal area and industrial networks such as ZigBee, ISA100.11a,
and WirelessHART), IEEE 802.15.1 (commercialized as Bluetooth) and its
evolution Bluetooth Low Energy [5]. In addition to these technologies, the
expansion of the LoRa communication protocol to the 2.4 GHz band was
announced in 2020 [6].

Spectrum monitoring is therefore fundamental to the evolution of wire-
less communications, especially in environments with a high density of con-
nected devices, such as cities and smart industries.

In addition to spectrum analysis, monitoring, and management, the fol-
lowing use cases also arise:

• Experimenting with various spectrum sensing algorithms with real
data [23].

• Capture datasets with different climatic conditions, such as temper-
ature, humidity, and weather, in order to study their impact on the
communication channel [7].

• Capture large datasets to feed emerging artificial intelligence tech-
niques [7].

1.3 Objectives
The main objective of this work is to implement a flexible real-time

spectral probe. To this end, a set of smaller milestones were defined. These
milestones are listed below:

1. Familiarization with the current spectral probe platform.

2. Requirements assessment and architecture delineation.

3. Familiarization with the devices and tools for developing and validat-
ing Multiprocessor System on Chip (MPSoC) and SDR-based systems.

3

Figure 1.3: Allocation of the electromagnetic spectrum in Portugal for the
Fourth Generation Long Term Evolution bands and the Fifth Generation
n78 band - retrieved from [4].

4

4. Setup of a high-performance real-time central processing unit capable
of receiving and processing radio signals.

5. Familiarization with RF laboratory instrumentation and measurement
techniques.

6. Validation of the spectral probe by conducting a multi-band spectral
occupancy campaign.

7. Migration of the lab-based system to a field-ready version.

1.4 Publication
The work done in the scope of this dissertation resulted in the acceptance

of one paper focused on the implementation of a flexible real-time spectral
probe in a spectrum sensing scenario. The accepted paper is listed below:

An RoE-based Real-Time Radio Spectral Probe

G. B. L. C. Lourenço, F. A. Serôdio, L. F. Almeida, H. S. Silva, and A.
S. R. Oliveira in IEEE Radio Wireless Week (RWW), 2024

This paper presents a novel, RoE based, real-time, flexible radio spec-
tral probe designed to address the growing demands for diverse wireless
communication systems. The proposed system architecture encompasses
a remotely reconfigurable design with a (SDR) platform, integrating Field
Programmable Gate Array (FPGA), radio frequency (RF) front-end, and
an open fronthaul. A simultaneous multi-band spectrum occupancy mea-
surement campaign in an indoor environment using the proposed spectral
probe is conducted. To the best of the author’s knowledge, this is the first
work in which a real-time, open, and remotely reconfigurable FPGA-based
spectral probe is presented.

1.5 Document Structure
The remainder of this document is organized as follows:

• Chapter 2, Spectral Probes - An overview of spectrum sensing
techniques, the architecture of RF SDR receivers and some key con-
cepts and figures of merit of RF receivers are presented.

• Chapter 3, System Architecture and Development Platform
- A high-level architecture of the system is presented, followed by a
breakdown of the various subsystems, and ending with a lower-level
architectural representation.

5

• Chapter 4, Implementation - The details of the implementation
and integration of the various subsystems that make up the entire
spectral probe are detailed.

• Chapter 5, Tests and Results - The testing procedures utilized to
validate the system are presented, and the results are analyzed and
discussed.

• Chapter 6, Conclusion - Concluding remarks are made on the work
carried out, followed by a summary of potential future work.

In addition to the chapters described, the following appendices comple-
ment the work conducted with some detailed technical elements.

• Appendix A, Real-Time Kernel Tunning and Low Jitter
Computing Techniques - A real-time low-jitter computing platform
is configured for benchmarking high-performance applications.

• Appendix B, High-Performance DSP Software Module - A
software implementation of a high-performance single precision FIR
filter of arbitrary order using AVX-512 SIMD operations, and other
non-optimized DSP functions are presented.

• Appendix C, Numerical Approximation and Optimized Im-
plementation for Signal Power Calculation - A numerical ap-
proach for calculating signal power is described, its associated error is
studied, and a software implementation is detailed, optimized, tested,
and validated.

• Appendix D, System Implementation for On-Site Deploy-
ment - A walkthrough of the design migration process to a different,
field-ready board.

6

Chapter 2

Spectral Probes

2.1 Introduction

For a better understanding of the design and implementation of an SDR-
based spectral sensing platform, this chapter presents an overview of some
key concepts and techniques. First, the ideal architecture of an SDR receiver
will be discussed and compared to the most common implementable archi-
tecture. Next, some of the spectrum sensing campaigns carried out over the
last few decades will be presented, and the main techniques used will be
mentioned, as well as the setups used, exploring the hardware architectures
and the associated tradeoffs. Finally, a set of concepts and figures of merit is
presented that will later serve to characterize the performance of the system
implemented in this work.

2.2 Software Defined-Radio Receivers

An SDR is a radio communication system that employs reconfigurable
software-based components for processing and conversion of digital signals.
While the idealized SDR receiver, shown in Figure 2.1, serves as a con-
ceptual foundation, practical implementations diverge due to a plethora of
limitations such as limited ADC bandwidth, dynamic range, and resolution.
There are several architectures for RF receivers, each with its own set of
advantages and disadvantages. In this context, an advantage corresponds
to a feature that resembles the ideal device, while a disadvantage represents
a feature that detracts from it. This work specifically focuses on discussing
the most common architecture in the context of SDR receivers, namely the
Direct-Conversion Receiver (DCR).

7

DSPADC

Rx
Port

Figure 2.1: Ideal SDR receiver block diagram.

2.2.1 Direct-Conversion Receivers

The DCR, also referred to as Zero-Intermediate Frequency (IF) or Ho-
modyne Receiver, is a radio receiver architecture that directly converts RF
signals to baseband. Instead of using an intermediate frequency, as in tra-
ditional superheterodyne architecture, the DCR tunes a Local Oscillator
(LO) to the same frequency as the desired RF signal, resulting in a zero
intermediate frequency.

Modern Direct-Conversion Receivers DCR implement two separate In-
Phase and Quadrature (IQ) channels, as can be seen in Figure 2.2. A dual
channel scheme is essential for demodulating modern modulation schemes
like Quadrature Amplitude Modulation (QAM), which encode data in both
signal amplitude and phase.

LPF

ADC

Mixer

LO

LPF

ADC

Mixer

90º

Rx
Port

DSP

Figure 2.2: DCR receiver block diagram with two IQ channels and without
the RF front-end.

The shift towards the DCR architecture has been largely driven by

8

the advent of SDR. SDRs seek flexibility, efficiency, and adaptability, and
the DCR design aligns well with these objectives. By eliminating the need
for an intermediate frequency, DCRs simplify the receiver design, reduce cost
and power consumption, and are especially suited for on-chip integration, fa-
voring miniaturization and multifunctionality in modern radio applications
[8].

2.3 Spectrum Sensing
In the last two decades, several measurements of spectral occupancy in

urban environments around the globe have been made [11, 12, 13, 14, 15,
16, 17]. The results suggest that the current spectrum utilization could be
more efficient, especially in the licensed bands, due to the static approach
used for spectrum allocation. Thus, to increase the efficiency of spectrum
usage, the concepts of Cognitive Radio (CR) and Dynamic Spectrum Access
(DSA) arose [18, 19].

In the literature, CR is envisioned as an intelligent wireless communi-
cation system that can sense, learn, and adapt to the surrounding spectrum
environment. The mentioned technology uses advanced algorithms and ma-
chine learning techniques to monitor the RF spectrum, identifying unused
portions (spectrum holes or white spaces) and dynamically adjusting its
transmission parameters [18]. In turn, the main objective of DSA is to en-
able unlicensed Secondary User (SU), to access licensed frequency bands
when they are not being actively used by PU [19]. Essential DSA-enabling
techniques, such as spectrum sensing and geolocation databases are crucial
in achieving this goal.

2.3.1 Spectrum Sensing Techniques

For a DSA-capable device to detect the aforementioned white spaces or
if the licensed bands are not being used by a PU it needs spectrum sensing
capabilities.

In this context several techniques arise namely: Energy Detection (ED),
Matched Filter, Cyclostationary Feature Detection, and Eigenvalue-based
Detection [10]. In the literature, studies demonstrate that when Signal-
To-Noise Ratio (SNR) levels are at 40 dB or higher, all techniques yield
100% accuracy. However, when considering a simplified channel model with
the addition of white Gaussian noise, performance decreases. For lower
SNR values, it can be concluded that ED yields the highest probability of
detection [9]. In addition, it is also the easiest and fastest performance
technique [10]. Despite these attractive properties, the predominant factor
for its use in spectrum occupancy campaigns [11, 12, 12, 13, 14, 15, 16, 17]
is the fact that the receiver does not require any information about the
transmitted signal [9, 10]. The ED method compares the received energy

9

in a particular frequency band to a usually empirically defined threshold
to determine if the band is being used [23]. For reasons of simplicity of
implementation and lack of information about the captured signals, this
will be the preferred technique in this work.

2.3.2 Spectrum Sensing Hardware

Concerning spectrum occupancy, measurement campaigns presented in
several studies [11, 12, 13, 14, 15, 16, 17] are conducted using two main
types of equipment, namely the Spectrum Analyzer (SA) [11, 12, 13, 14],
and Universal Software Radio Peripheral (USRP) [15, 16, 17].

In essence, a SA is a device designed to measure the amplitude of input
signals as a function of frequency. Most SAs are superheterodyne receivers,
functioning essentially as highly sensitive and selective radio receivers. The
typical architecture of an SA includes a tunable RF front end, mixers that
convert signals to an intermediate frequency for easier processing, followed
by filters and digitizers [43]. This working principle is employed to achieve
exceptional performance in instrumentation applications, but it comes with
drawbacks. These include a very high cost, larger form factor compared to
SDR, reduced flexibility in system integration, and susceptibility given their
design tailored for laboratory settings.

USRP is a range of SDRs designed and sold by Ettus Research and
its parent company, National Instruments. These devices are tailored to
facilitate SDR implementations, offering notable flexibility compared to tra-
ditional spectrum analyzers. They consist of RF front ends and an interface
to a host computer, allowing most of the signal processing to be executed
in software. While USRPs provide increased adaptability over dedicated
spectrum analyzers, their hardware abstraction mechanism paradoxically
limits certain flexibilities. Additionally, when matched against a system
built directly on an FPGA and an SDR transceiver with similar specifica-
tions, the USRP might present a higher cost due to the added layers of
abstraction and integration.

Table 2.1 contains a summary of the advantages and disadvantages of
the three typologies discussed.

2.4 RF Receiver Performance Characteristics
The technological advancement of wireless communication systems has

led to their operation with ever-lower power signals in order to save energy or
reduce interference. The power of these signals can in some cases be on the
order of nW or pW, which is barely above noise level. The performance of the
receiver is thus critical for a communication system to be able to operate with
such low power. The aim of this section is to provide a basic introduction
to the key concepts and figures of merit that are essential for characterizing

10

Criteria FPGA + Transceiver USRP SA

Accuracy Cost-dependent Cost-dependent High
Cost Low to Moderate Moderate to High High

Flexibility High Moderate Low
Form Factor Low to Moderate Low to Moderate High
Development
Complexity High Medium Low

Table 2.1: Comparison of spectral probes based on FPGA with transceiver,
USRP, and SA.

the performance of a spectral probe receiver. The key concepts and metrics
that will be used to characterize an RF receiver in this work are:

• Noise Floor
The noise floor is the signal resulting from the summation of all un-
wanted signals in a measurement system. The noise floor consists of
noise from a number of sources, including thermal noise, atmospheric
noise, and noise from the components used to build the measurement
system [57]. Despite the existence of many different variations of noise
sources, it is not necessary to delve into their physical properties to
describe their ultimate impact on system performance. A simplified
noise model consisting of a single theoretical noise generator can be
used [58]. Whilst there are multiple sources of noise that can be com-
bined into a unified source, thermal noise establishes a baseline for
the lowest level that a receiver can measure. Thermal noise arises
from vibrations of conduction electrons and holes due to their finite
temperature. Some of the vibrations have spectral content within the
frequency band of interest and contribute noise to the signals. The
noise spectrum produced by thermal noise is uniform over RF and
microwave frequencies [59]. The power delivered by a thermal source
into an impedance-matched load in Watt is given by:

P = kTB (W) (2.1)

where k is the Boltzmann’s constant (1.38×10−23 J/K), T is the ab-
solute temperature in Kelvin, and B is the bandwidth in Hertz. In the
literature, a reference temperature is defined as Tref = 290 K (16.85
ºC). The equation 2.1 shows the linear relationship between thermal
noise power, temperature, and bandwidth. If the temperature is in-
creased significantly, for example by 20 K, the noise power value rises
from -93.975 dBm to -93.685 dBm, which in some applications makes
the temperature variation negligible, as is the case in this work. To

11

represent very small and very large power values in a compact and
easy-to-interpret format, the dBm unit is widely used in the telecom-
munications industry. The equation for the calculation of the noise
floor in dBm is:

Noise Floor = 10 log10(kTB) + 30 + NF (dBm) (2.2)

where the term NF is the noise factor in dB and is the next concept de-
tailed. Considering an ideal receptor, with NF = 0 dB at the reference
temperature equation 2.2 simplifies to:

Noise Floor = −174 + 10 log10(B) (dBm) (2.3)

Equation 2.3 yields that at the reference temperature, considering a
bandwidth of 1 Hz the noise floor is -174 dBm. The mentioned equa-
tion also reveals an important relationship: increasing the bandwidth
by one decade results in a tenfold increase in the noise floor. This con-
sideration is critical because, ideally, a spectral probe receiver would
have as much bandwidth as desired, but this additional bandwidth
comes at the expense of performance, resulting in a trade-off. For
example, considering a bandwidth of 100 MHz, the maximum value
achievable in this work, the noise floor rises to -94 dBm, assuming
an ideal receiver. This value is of the same order of magnitude as
those used in certain telecommunications technologies which, in order
to operate at such low powers, naturally use reduced bandwidths.

• Noise Factor/Noise Figure
The noise factor is a figure of merit used to indicate the degradation of
the SNR introduced by devices in a signal chain. This figure of merit
can be used to evaluate the performance of an amplifier or a complete
radio receiver. Mathematically, it is defined as:

F = SNRi

SNRo
(2.4)

where SNRi and SNRo are the input and output SNR, respectively.
This formula assumes that the characterized component or system is
at the reference temperature Tref . The noise factor is a unitless ratio.
The Noise Figure (NF) is the logarithm of the noise factor:

NF = 10 log10 F (2.5)

Ideally, a device such as an amplifier would not change the SNR, only
amplify the input signal by its gain. In practice, the amplifier will

12

add its own noise to the signal, making the output SNR always lower
than the input SNR. The NF therefore becomes a crucial aspect in
the design of a signal chain for very low-power applications, where the
signal level is already slightly above the noise floor. In this scenario,
each component’s contribution must be low enough to minimize the
degradation of the SNR. To analyze the impact of each component in
a multi-stage cascade system, a formula introduced by H. T. Friis is
used. For a two-stage system, the formula is as follows:

FReceiver = FA1 + (FA2 − 1)
G1

(2.6)

where FA1 is the noise factor of the first amplification stage with a gain
of G1 and FA2 is the noise factor of the second amplification stage with
a gain of G2 as shown in Figure 2.3.

G1

N1 N2

Ni

Si
G2

SNRi = Si / Ni

Source

SNRo = So / No

Figure 2.3: Cascaded amplifiers block diagram - adapted from [56].

The formula 2.6 reveals that the contribution of the first stage is dom-
inant for the resulting noise factor, assuming that its gain G1 is high,
typically higher than 20 dB.
With this in mind, the first stage in an RF receive chain should be
an amplifier with the lowest possible noise factor/figure and high gain.
This component is typically referred to as Low-Noise Amplifier (LNA).
The formula is rewritten as follows:

FReceiver = FLNA + (FRem − 1)
GLNA

(2.7)

where FRem is the NF of the remainder of the RF chain.

• Minimum Discernible Signal
The Minimum Discernible Signal (MDS) is the lowest signal detectable
by a receiver above the noise floor. However, to actually detect the
signal it is required that the power level should be greater than the
noise floor by an amount that varies with the application. In some

13

literature, MDS is also referred to as sensitivity [59], and it is defined
as:

MDSdBm = Noise FloordBm + SNRmin (2.8)

where the Noise FloordBm is calculated using equation 2.2 and SNRmin
is the minimum acceptable signal-to-noise ratio, in dB, for the receiver
to effectively detect and process the signal. For example, the mini-
mum SNR recommended by Cisco for a Wireless Local-Area Network
(WLAN) 802.11b/g access point is 20 dB, and 25 dB if a wireless voice
telephony system is desired [22].

• Dynamic Range
The dynamic range of a radio receiver is essentially the range of sig-
nal power levels over which it can operate. Ideally, a receiver would
be characterized by constant linearity and exhibit an infinite dynamic
range, enabling it to efficiently process input signals across a vast spec-
trum of power levels. However, reality dictates a different scenario.
Systems, in their operational linear mode, are confined within a finite
range. They are intrinsically constrained, with limitations manifest-
ing at lower and upper thresholds (Figure 2.4), each characterized by
distinct, inherent phenomena. At higher power levels, amplifiers start
to reach so-called compression points, causing a flattening of the out-
put signal or mixers form intermodulation distortion where multiple
frequencies mix and create unwanted signals. At the other end, when
the received signal power is comparable to or below the noise floor,
distinguishing the intended signal from the noise floor becomes unfea-
sible.

As previously mentioned at the beginning of this section, the discussed
metrics will be used to characterize the receiver later in Subsection 5.3.2.

14

Figure 2.4: Output power as a function of input of a RF receiver - retrieved
from [55].

15

16

Chapter 3

System Architecture and
Development Platform

3.1 Introduction

In this chapter, the SDR-based spectral probe is described. In Fig-
ure 3.1, the high-level block diagram of the spectral probe architecture is
presented. This architecture allows exploring different trade-offs between
centralized and distributed processing using both software and hardware-
accelerated techniques.

First, the individual blocks that comprise the system are introduced and
explained to clarify their role in the overall design. Then, a holistic view of
the entire system is presented.

3.2 General Architecture

The overall architecture was designed to include multiple spatially dis-
tributed probes that can sense, process, and send RF signals to the central
processing unit. Figure 3.1 outlines the proposed scenario.

Central
Processing

SDR Platform RF Front End

SDR Platform RF Front EndFrontaul
Optical Link

Frontaul
Optical Link

Figure 3.1: High-level block diagram of distributed scenario.

17

The following sections contain detailed explanations of the structure,
function, and operation of the four main blocks that make up the system.

3.3 SDR Platform
In the following subsections, a detailed exploration of the RF transceiver

and FPGA components is undertaken, highlighting their crucial roles in the
proposed spectral probe architecture.

3.3.1 RF Transceiver

As previously discussed in subsection 2.2.1 the fundamental component
in the architecture of a spectral probe is the RF receiver, crucial for the
accurate capture of radio frequency signals.

The radio front end adopted in this work consists of a single AD9371
flexible broadband transceiver that had been acquired prior to the com-
mencement of this project. The mentioned hardware operates from 300 MHz
to 6000 MHz and covers most of the cellular bands, with up to 100 MHz
and 250 MHz for the receiver and transmitter instantaneous bandwidths,
respectively. The transceiver also provides a dynamically re-configurable
receiver gain of up to 30 dB [24]. The receiver is based on the previously
explained DCR architecture. The ADCs included in the receiver follow the
∆ − Σ topology, featuring a maximum sampling frequency of 122.88 Msps,
and have a resolution of 14 bits, which is a suitable value for a spectral
probe designed to measure signals in the framework of modern communica-
tion technologies. This type of ADC is known to offer a good compromise
between resolution and sampling rate.

The AD9371’s maximum instantaneous receiver bandwidth is sufficient
to capture entire Time Division Duplex (TDD) bands, or either the uplink or
downlink bands in the case of FDD, assigned to modern cellular technologies.
In the specific case of the TDD band n78 defined by the 5G New Radio
(NR) standard, which ranges from 3400 MHz to 3800 MHz in Portugal,
the AD9371’s bandwidth cannot cover the entire band in a single capture.
However, this part of the spectrum is divided into spectrum slices among
different telecom operators, with each slice extending up to a maximum of
100 MHz contiguously [20][21]. Considering these factors, it can be argued
that the AD9371 is a suitable choice for developing a spectral probe capable
of determining the spectral occupation of modern wireless communication
systems up to 6000 MHz.

The demands for real-time data processing in spectral probing are met
by the low latency characteristics of the AD9371. The transceiver’s design
ensures that data is acquired and made available, through its high-speed
serial interface for analysis with minimal delay which is critical given the
system requirements.

18

3.3.2 FPGA

Receiving, processing, and sending the radio samples captured by the
receiver requires a high-performance platform. The inherent flexibility and
parallelism of FPGAs make them the best choice for this task. Recent ad-
vancements place FPGAs at the forefront of decentralizing computational
tasks and enabling real-time processing closer to data sources. Such dynam-
ics create a challenging design scenario for engineers to determine which com-
putations are best suited for edge processing and which should be moved
to a centralized processing unit. This dynamic has added a new layer of
complexity and strategy to digital design, emphasizing the balance between
localized and centralized computing power.

3.4 Fronthaul

As mentioned in subsection 3.3.1, the high throughput that can reach
Gbit/s generated or consumed by the AD9371 transceiver must be efficiently
transported to or from the BaseBand Unit (BBU) via a point-to-point opti-
cal link. In this context, the IEEE 1904.3 RoE standard emerged. This open
and free standard specifies an encapsulation format and transport protocol
for the transport of time-sensitive radio streams over Ethernet-based net-
works [26]. In the context of RoE, Evolved Common Public Radio Interface
(eCPRI) provides a streamlined protocol that enables efficient transporta-
tion of radio signals over Ethernet networks. The eCPRI is a key protocol
in the RoE framework. eCPRI was introduced as an evolution of the earlier
Common Public Radio Interface (CPRI) protocol, with the primary goal
of meeting the growing demands of 5G and future mobile networks. The
transition from CPRI to eCPRI represents a paradigm shift from a more
rigid, fixed-bandwidth interface to a flexible, scalable, and more efficient
interface [46].

3.4.1 Radio over Ethernet

An eCPRI packet in an Ethernet frame primarily consists of an eCPRI
header and its payload. Notably, the eCPRI payload contains the Protocol
Control Identifier (PC ID), Sequence Identifier (SEQ ID), and the eCPRI
Data as depicted in Figure 3.2.

The PC ID, acts as a unique identifier, distinguishing multiple protocol
entities on an Ethernet network. It ensures that data is correctly directed to
specific radio equipment. Essentially, it provides precise coordination among
multiple layers of radio equipment and functions. The SEQ ID field serves as
a sequence number for the messages, ensuring data integrity and continuity.
By tracking the sequence of incoming packets, systems can quickly identify if
any packets are missing or out of order, crucial for maintaining a consistent

19

data flow in radio communications. The most significant portion, the eCPRI
payload, carries the actual data, which can range from IQ samples to control
information.

Figure 3.2: eCPRI packet structure.

3.5 Centralized Processing

In contrast to the hardware-accelerated nature of the FPGAs, the flexi-
bility of the software allows rapid development of flexible applications. This
component is particularly useful in scenarios where timing constraints are
not as strict.

In the proposed architecture, the high throughput generated by the SDR
platform is sent to a server, where the data is processed. The server unit is
based on a Dell PowerEdge R650xs rack server equipped with an Intel Xeon
Gold 6336Y Central Processing Unit (CPU) configured to run 16 physical
cores at 3.1 GHz with 128 GB of Double Data Rate 4 (DDR4) Synchronous
Dynamic Random-Access Memory (SDRAM).

The chosen CPU is an advanced processor tailored for high-performance
tasks and server environments. One of its notable features is its support for
Single Instruction Multiple Data (SIMD) (Single Instruction, Multiple Data)
instructions, specifically the Advanced Vector Extensions (AVX). AVX-512
can significantly increase computing power by allowing the processor to per-
form parallel operations on large data sets, making it invaluable for appli-
cations that require intensive data processing, such as DSP tasks.

To handle high-throughput communication with the Remote Radio Head
(RRU), the server features a Broadcom BCM57410 dual-port GbE 10 Small
Form-factor Pluggable (SFP)+ network adapters with support for Jumbo
frames (up to 9600 Bytes) [32].

20

It should be noted that all the hardware comprising the Centralized
Processing unit was purchased before the start of this work.

3.6 Analog RF Front-End and Antenna

The versatility of the testbed is highlighted by the adaptability of the
RF front end, which is capable of receiving and/or transmitting signals. The
front end can be adapted to suit a wide range of scenarios by adjusting key
characteristics, including antenna, filtering, and amplification chains.

As discussed in Section 2.4, LNAs are essential to boost the performance
of software-defined radio SDR receiver systems. SDRs are typically designed
to wideband and therefore the NF is not optimized for any one particular
frequency. With an LNA and appropriate filtering, performance can be
improved to a particular range of frequencies.

The antenna is an essential component in a spectral probe, responsible
for capturing electromagnetic waves from the surroundings. For a spectral
probe, it’s imperative to select or design an antenna that has a wide fre-
quency response and is sensitive across the intended spectrum of interest.
The antenna’s radiation pattern, gain, and efficiency can significantly affect
the system’s ability to detect and measure signals. In addition, depending
on the probe application, the antenna may need to be directional, focusing
on signals coming from a specific direction, or omnidirectional, capturing
signals from all directions.

Figure 3.3 contains the block diagram illustrating the integration of the
analog RF front-end and antenna into the RF platform.

Figure 3.3: Block diagram of analog RF front-end and antenna.

21

3.7 Final Architecture

After detailing the various blocks that make up the system, Figure 3.4
illustrates the final architecture. The details of the implementation and
integration of the subsystems will be presented in the next chapter.

RoE
IP Block

RF
Front-End

10G/25G
ETH SS
IP Core

10G
SFP+Optical Link

10G
SFP+

Server

FPGA AD9371

ADC

DAC

Figure 3.4: Final system architecture block diagram.

22

Chapter 4

Implementation

4.1 Introduction

This chapter follows the architecture described in the previous chapter
and details the implementation and integration of the various subsystems
that make up the entire spectral probe. It covers the FPGA-based SDR
platform, including distinct design implementations. Key topics include
embedded Linux, network raw sockets, and Centralized Processing. The
chapter concludes with insights into the critical role of the analog RF-front
end in achieving an optimal noise floor.

4.2 SDR Platform

The implementation of the FPGA-based SDR platform started from
AMD’s RoE and Analog Devices’ AD9371 example designs. The implemen-
tations of both designs were initially done in parallel and independently.

The first AD9371 design was implemented in a bare metal system, that is,
without an operating system. The sample design requires an external 30.72
MHz reference clock to derive its 122.88 MHz operating clock. In its default
configuration, the AD9371 outputs 14-bit resolution IQ samples at 122.88
Msps, providing an instantaneous receiver bandwidth of 100 MHz. Each IQ
component is encoded as a 16-bit value, with a pair of IQ samples totaling 32
bits sampled at 122.88 MSPS. This results in a data rate of approximately
3.93 Gbit/sec. It is important to note that this value depends on the profile
of the AD9371, which is chosen according to the desired bandwidth of the
receiver.

The implementation of the RoE Intellectual Property (IP) Core, a so-
lution developed for the Zynq UltraScale+ MPSoC that utilizes both hard-
ware and software to provide an efficient yet flexible platform, was also
implemented in a bare-metal design, running at 156.25 MHz. Note that
the implementation of this IP core implies the inclusion of the Ethernet

23

subsystem IP core, which operates at the same frequency.
The RoE IP Core was configured to transport packets with the max-

imum allowed eCPRI payload of 8112 bytes, which translates to 2028 IQ
pairs (32-bit each pair). This payload size minimizes packet overhead and
offloads the Centralized Unit (CU) processing, maximizing throughput. Fur-
thermore, Ethernet encapsulation is done by the 10G/25G Ethernet Sub-
system (ETH SS) contained in the RoE example design, carrying eCPRI
packets over Ethernet frames.

The process of integrating the two designs resulted in two distinct imple-
mentations, called Loopback Design and Standard Design. In both designs,
the blocks are connected via standard 64-bit AXI4 stream interfaces. The
ADC input is connected to port RX1 of the AD9371, and the output of the
Digital-to-Analog Converter (DAC) is connected to the TX1 port. Whereas
the RoE IP Core is connected to an SFP+ multi-Gigabit transceiver.

4.2.1 Loopback Design

The Loopback Design was developed to facilitate easy testing and val-
idation of the transmission and front-haul link. Due to the 2:1 relation
between the DAC and the ADC in their transmit and receive datapaths, an
upsampling block with a factor of 2 was implemented in the FPGA, followed
by a Finite Impulse Response (FIR) low-pass interpolation filter with 200
taps and a 100 MHz cutoff frequency. This configuration enables the con-
nection of the ADC output to the DAC, thus creating an internal loopback,
through an asynchronous clock domain crossing First In First Out (FIFO),
bridging the clock domains of the framer and deframer. As a result of this
modification, the output of the upsampling block is 64-bit, which doubles
the previously mentioned bit rate to approximately 7.86 Gbit/s. The Data
Gen/Sink block is an additional block created to generate synthetic data to
validate the correct data framing, followed by a fiber loopback and subse-
quent deframing and sink of the data to verify the matching values. Given
the above bit rate and the total size of the eCPRI packet of 8134 bytes,
this results in a packet being sent every 8.27 µs, or a packet rate of 120.857
kpackets/s.

Async
FIFO

64

64
64

RoE
IP Block

32
Up Sampler

+
 Filter

64

64 64

64
6464

Data
Gen/Sink

SEL

1

0

rx/framer clk domain

tx/deframer clk domain

RF
Front-End

10G/25G
ETH SS
IP Core

SEL

1

0
DAC

ADC
64

10G
SFP+Optical Link

10G
SFP+Server

FPGA

Figure 4.1: Block diagram of Loopback Design implementation.

24

4.2.2 Standard Design

The Standard Design was developed later, as it doesn’t have the disad-
vantage of generating double the throughput, further restricting the timings
for receiving packets on the server side. In this case, the period between
packets is then 16.55 µs, equivalent to a packet rate of 60,428 kpackets/s.
In this design, the blocks added to the previous design have been removed,
with only the need to create a block to concatenate two consecutive 32-bit
samples of the ADC to form a 64-bit data stream compatible with the input
of the RoE framer. This way, data is only made available to the framer
block every two samples of the ADC. This design thus becomes a direct
implementation of the architectural block diagram shown earlier in Figure
3.4.

4.2.3 Embedded Linux

To facilitate development and testing, the system is running an embed-
ded Linux kernel built with PetaLinux tools. This enables a file system
with user-defined applications and easier integration with Analog Devices’
AD9371 device drivers. The file system is also very practical, as it allows
for the storage of files that have been preloaded or sent over the network.
This feature enables full configuration profiles to be stored for the AD9371
so that the spectral probe receiver can be completely reconfigured at run
time.

The use of embedded Linux also allows for an agile configuration at run
time of the transceiver parameters, via a Command Line Interface (CLI).
This configuration via CLI can be done manually or programmatically by
sending commands via the serial device.

4.2.4 Network Sockets

At the time of writing, RoE’s IP Core does not support the calculation
of the User Datagram Protocol (UDP) checksum [45]. The absence of check-
sum calculation makes receiving packets with this transport protocol on the
server side impractical, as the network card detects the malformation of
the packet when calculating the checksum using accelerated hardware, and
rejects the packet. To circumvent this problem, it would be necessary to
implement a software sniffer capable of analyzing all packets arriving at the
network card. The inherent inefficiency of this implementation is therefore
made unfeasible by the system’s time-critical requirements. Bearing these
considerations in mind, the use of the transport layer is known in the Open
System Interconnection (OSI) model as Layer 4 was eliminated. The net-
work architecture is simplified to point-to-point connections implemented
through the Data Link Layer (Layer 2 in the OSI model) [47].

25

The need to access and manipulate the fields in eCPRI packages requires
a level of control that traditional socket programming cannot adequately
provide, leading to the adoption of raw sockets. Raw sockets allow direct
access to the communication protocols, bypassing the traditional protocol
stack [48].

To implement raw sockets, the choice was made to use the Berkeley inter-
face, a decision based on its recognized flexibility and efficiency in network
communication. Berkeley sockets originated from the Berkeley Software Dis-
tribution UNIX operating system and have become an industry standard
Application Programming Interface (API) to create and use sockets [49].

Initially, the raw socket implementation commenced with Python, capi-
talizing on its inherent capacity to swiftly prototype scripts. Python’s rich
library ecosystem and intuitive syntax facilitated the developmental phases,
ensuring that ideas were promptly translated into code. However, for the
sake of performance optimization and reduction in jitter, a transition to the
C programming language was essential. C, with its low-level access and
low function overhead, ensured that raw sockets were executed with optimal
performance. The computational efficiency of C significantly minimized la-
tency, delivering a level of performance that not only met but exceeded the
stringent requirements for real-time processing and management of eCPRI
packets in complex network environments.

This trend of software development based on an initial prototyping and
validation stage in Python and subsequent implementation in C to achieve
high performance was prevalent throughout the work.

4.3 Centralized Processing Implementation

As mentioned in the 3.5 Section, the flexibility of software development
makes it an attractive approach for implementing and testing different algo-
rithms, namely Digital Signal Processing (DSP) techniques. While one can
argue that the high sample throughput of RF makes it attractive to imple-
ment processing on FPGA, it’s also true that modern CPU can efficiently
implement algorithms with high performance and reduced variability using
a few specialized techniques. All programs developed in this thesis are run
on a fine-tuned low-jitter computing platform described in detail in Section
A. The Python language was used for initial testing and prototyping of the
algorithms because of its flexibility, rich libraries, and ease of development.
Once validated, the algorithms were reimplemented in C for maximum per-
formance and determinism.

It should be mentioned that, although a multi-threaded multi-core pro-
ducer -consumer application was developed using classical POSIX pthread
mutual exclusion and synchronization mechanisms implemented in C with
mutexes and condition variables, this approach introduced higher variabil-

26

ity in execution times. Therefore, a single-threaded, single-core approach
was preferred. Developing such applications composed of multiple threads
running on different CPU cores with such strict time requirements on the
order of µs units, with low execution time variability would be a challenge
for a master’s thesis on its own.

To support the 8134-byte eCPRI packets, the network card’s maximum
transfer unit setting has been configured accordingly.

The first step was to reconstruct the IQ samples from the payload of the
packets since they follow the big-endian network byte order. This required
reordering the bytes of the 16-bit encoded IQ component of each sample.

4.3.1 Real-Time Digital Signal Processing

Although there are several libraries in Python that use C implementa-
tions of various DSP algorithms, their interpreted and dynamically typed
nature prevents them from being used in applications with time-critical re-
quirements. The C implementation of these algorithms used in these Python
libraries, such as the well-known SciPy library, can be consulted and the
documentation itself mentions that these implementations can be optimized
[33].

With this in mind, and in the absence of a native C DSP library with an
FIR filter implementation featuring SIMD AVX512 instructions to achieve
maximum performance, a custom software module, described in detail in Ap-
pendix B, was developed with the appropriate algorithms. It should be noted
that a library platform/architecture agnostic that contains kernels of SIMD
code for different mathematical operations, including convolution called Vok
(used in the GNU Radio software toolkit), already existed when the FIR fil-
ter was implemented [34]. However, at the time of writing, this library only
supports up to AVX-256 instructions, limiting the maximum performance
achievable to half. Given that the filtering operation is one of the most com-
putationally demanding functions, it made sense to invest resources in its
implementation in order to obtain the best possible performance. In addi-
tion, at the time of this writing, the Intel Integrated Performance Primitives
library was discovered, which provides a comprehensive set of application
domain-specific, highly optimized functions, including those for signal pro-
cessing with digital filters implemented. However, it’s worth noting that
the source code is not available, only the binaries, which limits the scope
of the analysis. Nevertheless, the application of advanced techniques using
SIMD instructions on high-end CPUs is an intriguing educational exercise.
As future work, it would be interesting to compare the performance of the
developed method with the function provided by Intel.

Another fundamental DSP tool is the Discrete Time Fourier Transform
(DTFT), which already has an implementation optimized for several CPU
architectures, the FFTW (Fastest Fourier Transform in the West). This C

27

subroutine library allows the computation of DTFT in one or more dimen-
sions, of arbitrary input size, and of both real and complex data, as well
as the discrete cosine/sine transform. This software won the H. Wilkinson
Prize for Numerical Software in 1999 and is still used as the mainframe for
these computations, namely in MATLAB and Python Fast Fourier Trans-
form (FFT) implementations [44].

Digital Filtering

Since most of the bands allocated for wireless communications have dif-
ferent bandwidths, sometimes less than the default 100 MHz receiver band-
width, it is necessary to filter out the adjacent bands. Another possible
scenario would be to simply analyze the occupancy of different telecom op-
erators which would also require filtering out different slices of the spectrum.

Figure 4.2 illustrates both scenarios described above, where the width of
a given band is 60 MHz, less than the maximum value of the receiver, and
each telecom operator has slices of the spectrum with different widths.

Figure 4.2: 2100 MHz 4G LTE n1 FDD downlink band allocation in Portugal
- retrieved from [4].

To isolate the desired frequency band, it’s imperative to either center
the local oscillator frequency accordingly or implement a software-based
frequency shift. After this adjustment, a Low-Pass Filter (LPF) should be
applied, characterized by a bandwidth that matches the specific frequency
band of interest.

Although the FFT is used to implement digital filtering in some sce-
narios by converting the convolution operation in the time domain into a
multiplication in the frequency domain, this approach only becomes advan-
tageous for signals with higher numbers of samples than those used in this
dissertation, 2028 samples. For this number of samples, the computational
load of FFT proved to be too high to meet the tight time requirements.

In the process of designing the digital LPF, the first decision was the
choice between FIR and IIR filters. Each option has distinct advantages.
While IIR filters offer increased rejection with lower-order filters, they can
become unstable, especially when the cutoff frequencies are well below the
sampling frequency. Furthermore, in practice, using more than a dozen
recursion coefficients can also push the filter toward instability [35]. On
the other hand, FIR filters offer simplicity of implementation, unconditional

28

stability, and consistent frequency response, especially when implemented
in single precision. While phase response wasn’t a significant factor for the
application, the rejection factor was. A notable advantage of single-precision
implementation is the ability to perform twice as many parallel operations
using SIMD compared to double-precision.

The figures 4.3 and 4.4 highlight the effect of the floating point pre-
cision on the frequency response of the IIR and FIR filters. Both filters
were designed for a 122.88 MHz sampling frequency and a 10 MHz cutoff
frequency. The response of the FIR filter remained practically unchanged
when implemented in single-precision, while the IIR filter became unstable.

0 10 20 30 40 50 60

Frequency (MHz)

-60

-50

-40

-30

-20

-10

0

M
a

n
it
u

d
e

 (
d

B
)

IIR - Single Precision

IIR - double precision

Figure 4.3: Frequency response of a
12th order IIR filter implemented
with single and double precision.

0 10 20 30 40 50 60

frequency (MHz)

-120

-100

-80

-60

-40

-20

0

M
a

n
it
u

d
e

 (
d

B
)

Single Precision

Double Precision

Figure 4.4: Frequency response of a
29th order FIR filter implemented
with single and double precision.

Taking all this into account and mainly weighing up the factor of uncon-
ditional stability, greater invariability depending on the implementation in
single or double precision, and filter design with a narrower cut-off frequency,
the FIR filters were considered more suitable.

The next step in designing the FIR filter was to choose the windowing
method. The choice of windowing is critical to minimizing ripple in the
ripple in the passband and maximizing attenuation in the rejection band.

The Kaiser window is a one-parameter family of window functions that
maximizes the ratio of the main lobe energy to the side lobe energy. Another
advantage of Kaizer windows is that by keeping the window length constant,
the shape factor, known as the β parameter, can be used to design the
passband and stopband ripples [36]. This is an important advantage over
other windows where there is a three-way trade-off between window length,
ripple size, and passband bandwidth [37]. Larger β values provide lower
side-lobe levels but at the price of a wider main lobe. Taking all this into
account, the β value chosen was 3.5.

As a final note, it should be noted that despite all the techniques to
optimize the implementation of the FIR filter, this is still a task with a high

29

computational burden. This creates a compromise between the order of the
filter and therefore its rejection performance and the computational load.

4.3.2 Signal Power Calculation

After reconstructing the IQ samples and filtering the bands of interest,
one use case already discussed is to determine the power in that band to
allow spectrum occupancy analysis. This simple technique, known as ED,
is discussed in the Subsection 2.3.1.

In order to achieve maximum performance, a careful signal power ap-
proximation method is introduced, implemented, tested, optimized, and
benchmarked in the appendix C.

4.3.3 Remote Access

As mentioned in the 4.2.3 Subsection, the SDR platform runs embedded
Linux to add certain convenient features to the system. These features
allow remote and flexible access from the server to the SDR platform via
the Accelerated Processing Unit (APU), which serves as a communication
middleman. This architecture makes it possible to develop programs that
run on the server and automatically reconfigure the probe’s parameters. A
simple and powerful example of this mechanism is for the server to be able
to change the frequency of the receiver oscillator, capture and process the
samples, and thus scan the spectrum.

To establish this connection, the server first needs to establish an SSH
connection to APU, which has been implemented programmatically using
the Paramiko library in Python and libssh in C. Once it has access to the
APU, the server sends commands for the APU to execute, but the commands
sent are set to write directly to the serial device corresponding to the USB
UART connection that exists between the APU and the SDR platform. This
emulates a direct connection from the server to the APU. It should be noted
that the server and the APU have to be on the same network. Figure 4.5
illustrates the proposed strategy.

The main advantage of this strategy for ensuring remote access pro-
grammatically is flexibility, since the server has access to the Linux CLI
the configuration of parameters becomes entirely the responsibility of the
AD9371 drivers. The main disadvantage is the latency of the whole process,
from sending the Secure Shell (SSH) command to interpreting the command
by the AD9371 drivers to reconfiguring the probe’s parameters. This whole
process is in units of milliseconds, which depending on the application can
be several orders of magnitude above the requirements.

Another disadvantage that could be pointed out is the need for the APU,
but this is already integrated into the posts for other purposes.

30

Linux FPGA
KitMPSoCCentralized

Processing SSH APU USB
UART

Figure 4.5: Block diagram of the setup used to enable remote access.

4.4 Analog RF-front end

Although the analog RF chain is not the primary focus of this paper, its
importance in achieving the lowest possible noise floor cannot be overstated.
The RF chain is fundamental to the overall performance of the system and
directly affects the sensitivity and accuracy of signal detection, as mentioned
in 2.4.

For proof-of-concept, the LNA considered is the QPL9057 from Qorvo,
in which the bandwidth is compatible with the AD9371. In the 600 MHz
to 4000 MHz frequency range, the LNA presents more than 20 dB of gain
and a noise figure of less than 0.6 dB [27]. Additionally, it exhibits a high
linearity, and a gain variation of less than 2.0 dB across this range, ensuring
consistent performance over this frequency range. Therefore the analog RF
front-end jointly with the AD9371 receiver provides a suitable solution for
sensing cellular bands.

To quantify receiver performance, the equations 2.3 and 2.7 were adopted,
considering a laboratory temperature of 21 ºC and a bandwidth of 100 MHz.
This approach yielded values shown in Table 4.1 for the expected cascaded
NF and noise floor based on the AD9371 and LNA gains and NF values
retrieved from the datasheets [24] [27].

Freq.
(GHz)

AD Gain
(dB)

AD NF
(dB)

LNA Gain
(dB)

LNA NF
(dB)

NF
(dB)

Noise Floor
(dBm)

0.8 21.0 0.6 30.0 12.0 1.0 -92.9
2.6 23.5 0.5 30.0 13.5 0.9 -92.8
3.5 22.8 0.6 30.0 14.0 1.0 -92.9

Table 4.1: RF chain cascaded NF, and noise floor calculations for different
frequencies.

Considering the noise floor values from Table 4.1, it is also possible to
calculate the dynamic range of the receiver. This calculation takes into ac-
count a maximum input power of -10 dBm at the AD9371 RX port, resulting
in a dynamic range of approximately -60 dB.

The RF signal was captured using a previously developed Ultra-Wideband
(UWB) planar elliptical antenna (Figure 4.7), with a frequency range within
the AD9371 supported range, but it has been specifically matched for the

31

2.6 GHz and 3.5 GHz frequencies, which correspond to the 3rd Generation
Partnership Project (3GPP) LTE B7 and the 3GPP 5G NR n78 bands,
respectively.

Figure 4.6: QPL9057 evaluation
board.

Figure 4.7: UWB antenna.

The gains at different frequencies of the pre-designed antenna are shown
in Table 4.2.

Frequency (GHz) Antenna Gain (dBi)
2.0 1.81
2.5 2.98
3.0 2.76
4.0 3.67

Table 4.2: UWB antenna gain at different frequencies.

4.5 Physical Setup

With the implementation of all the subsystems described, the physical
lab setup is now introduced.

As far as FPGA is concerned, the choice is limited to boards supported by
RoE IP Cores which is developed targeting the Zynq UltraScale+ MPSoC.
Within this restricted set is the ZCU102 Evaluation Kit, which has extensive
documentation and support for the AD9371, making this kit the ideal choice.
The ZCU102 Evaluation Kit is a platform designed by Xilinx to showcase
the Zynq UltraScale+ MPSoC, a state-of-the-art technology that merges a
user-programmable FPGA with a quad-core Arm Cortex-A53, and a dual-
core Cortex-R5F real-time processors. The kit is equipped with a wide range
of high-speed connectivity, memory interfaces, and peripherals, making the
ZCU102 a very flexible kit for prototyping and testing designs. Of all the
features identified in Figure 4.8, of particular relevance to this work are the
Ethernet, USB UART, and Joint Test Action Group (JTAG) connectivity,

32

the SFP+ connectors for the optical link, and the FMC connector for the
interface with the AD9371.

Figure 4.8: Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit [50].

The centerpiece of this spectral probe, the AD9371 transceiver, is em-
bedded in the ADRV9371-WPCBZ radio card, which already has an internal
power supply and provides the interface with its four reception channels, two
of which are auxiliary and two transmission channels via SMA connectors.
As previously mentioned, the interface with the FPGA is entirely provided
by the FMC connector.

To generate its internal operating clock of 122.88 MHz, the AD9371
requires a reference clock signal of 30.72 MHz. To this end, a programmable
clock generator module based on the SI570 integrated circuit was used to
generate the reference clock (Figure 4.10). The clock signal was delivered
to the AD9371 using an SMA cable.

4.5.1 Radio Frequency Instruments

The SMW200A VSG was chosen because of its compatibility with the
AD9371 in terms of frequency range and bandwidth, as well as the ability
to generate test signals with different characteristics, namely configurable
baseband content and finely adjustable output power in a dynamic range be-
tween -100 and -10 dBm. The FSW was chosen because of its flexibility to
behave as either a Vector Signal Analyzer (VSA) or SA, compatibility with
the frequency range and bandwidth, high flexibility in configuring measure-

33

Figure 4.9: ADRV9371-WPCBZ radio card [51].

Figure 4.10: Si570 Evaluation Board [52].

ments, input power range, and overall precision and accuracy. To perform
average power measurements and system calibrations Keysight’s N1913A
power meter was used.

4.5.2 Fronthaul

For the fronthaul optical link, a single mode-fiber cable (Figure 4.11)
with a lucent connector is connected using a bidirectional SFP+ transceiver,
ensuring this way a 10 Gbit connection. On the server side is another bidi-
rectional transceiver that uses wavelength-division multiplexing to share the

34

same optical fiber. In addition, to test the loopback design, the SFP+ loop-
back module shown in Figure 4.12 was used.

Figure 4.11: Bidirectional SFP+. Figure 4.12: Loopback SFP+.

4.5.3 Final Setup

The laboratory setup is presented in Figure 4.13. To connect the LNA
to the AD9371’s Rx1 port, an SMA Male to SMA Male connector was used
and the connection between the LNA and the antenna was made using a
semi-rigid SMA cable to ensure that the position of the antenna was fixed
in a practical way.

The present setup functioned as a development and prototyping itera-
tion framework, leading to the implementation of the system prepared for
installation in the lamppost wall boxes of the ATCLL. To this end, a similar
system was assembled, this time utilizing the Trenz Electronic TEBF0808
carrier board. This choice was driven by considerations of cost and form
factor. The TEBF0808 offered a more economical and compact solution
while maintaining the required functionality. The process of migrating the
design to this new carrier board, along with the associated challenges and
solutions, is detailed in Appendix D.

Following the description of the system’s implementation and final setup,
the next chapter tests the various subsystems mentioned above individually
and the system as a whole, analyzing the results to see if the performance
meets the expectations.

35

Figure 4.13: Laboratorial setup of the spectral probe with the LNA and
antenna.

36

Chapter 5

Tests and Results

5.1 Introduction

With the implementation of the system detailed in the previous chapter,
this chapter focuses on testing and validating the system in a phased ap-
proach, isolating the various subsystems before testing the system as a whole
with a multiband spectral sensing campaign in an indoor environment.

5.2 Loopback Tests

The first loopback test was conducted to ensure that the RF signal was
received correctly. This test consisted of ejecting the RF signal from the
R&S SMW200A VSG into the AD9371’s RX1 port and retransmitting the
signal into the AD9371’s TX1 port to the R&S FSW VSA/SA. Figure 4.13
shows the laboratory setup, where the SFP loopback module is only of rel-
evance for the next test. In this test, the loopback is internal to the FPGA
fabric. The IQ samples at the output of the ADC only pass through the
upconversion and filter block and are directly connected to the input of the
DAC, as shown in the diagram in Figure 4.1. The purpose of this test is
to validate the integration of the AD9371 example design in FPGA and to
baseline only the performance of the receiver and transmitter and the up-
conversion block and filter introduced. To conduct this test, various signals
with different QAM constellation sizes, different bandwidths, and different
carrier frequencies were used. The results using a 60 MHz signal modulated
in 16-QAM constellation at 2.5 GHz are shown in Figure 5.1 where Error
Vector Magnitude (EVM), estimated by VSA, is used as the performance
metric. An EVM value close to 1% serves to validate the receiver’s correct
operation.

The second loopback test was carried out to guarantee the integration of
the RoE IP, validating that the IQ signals validated previously are correctly
framed and deframed according to the packet structure described in Figure

37

Figure 5.1: Internal loopback results.

Figure 5.2: RoE loopback results.

3.2. The procedure for this test is the same as the first, the only difference
is where the loopback is taking effect, which is no longer internal, but rather
using the SFP+ fiber-optic loopback module shown in Figure 4.12. In this
test, the acquired IQ samples are packed into eCPRI Ethernet packets and
placed in the SFP+ transceiver, which converts the electrical signal into
an optical signal. The loopback module sends the optical signal back to a
transceiver, which converts the signal back to the electrical domain. This
signal containing the packets is transported to the deframer block, which
unpacks the IQ samples, which are then placed at the input of the DAC.
The generated RF signal is then placed on the TX1 port and analyzed in
the VSA. The results using a signal equal to the one mentioned in the previ-
ous test are shown in 5.2. The EVM value close to the previous result of 1%
shows that the packing and unpacking of the samples and interfacing with

38

the optical transceiver have been successfully integrated into the previous
design. The laboratory setup for both tests can be seen in Figure 5.3.

Figure 5.3: Laboratory setup for the loopback tests.

5.3 Centralized Processing Tests

After testing and validating the correct capture and packaging of the
samples, the next step was to test the reception, decoding, and processing
of the packets on the server. To ensure that the eCPRI packets are sent
by the SDR platform and accepted by the network card, the TShark soft-
ware was used. TShark is a terminal-oriented version of the well-known
network protocol analyzer, Wireshark, designed for capturing and display-
ing packets when an interactive user interface isn’t necessary or available.
Once the packets were accepted by the network card, the next test was to
programmatically capture and decode the packets using the network sockets
described in Subsection 4.2.4.

5.3.1 Spectrum Analysis

The payload of the eCPRI packets containing the IQ samples was pro-
cessed in order to retrieve the IQ samples. To validate this process, the
frequency spectrum was computed using the FFT and then plotted using a
Python script. The FFT was computed using 1, 10, 100, and 1000 packets
(Figures 5.4, 5.5, 5.6, and 5.7).

39

120 100 80 60 40 20 0 20 40 60 80 100 120
Frequency (MHz)

120

100

80

60

40
M

ag
ni

tu
de

 (d
B)

N = 2028 samples (1 packet(s))

Figure 5.4: FFT of the received
signal (N = 2.028 ksample) on the

server.

120 100 80 60 40 20 0 20 40 60 80 100 120
Frequency (MHz)

140

120

100

80

60

M
ag

ni
tu

de
 (d

B)

N = 20280 samples (10 packet(s))

Figure 5.5: FFT of received signal (N
= 20.28 sample) on the server.

120 100 80 60 40 20 0 20 40 60 80 100 120
Frequency (MHz)

160

140

120

100

80

60

M
ag

ni
tu

de
 (d

B)

N = 202800 samples (100 packet(s))

Figure 5.6: FFT of the received
signal (N = 202.8 ksample) on the

server.

120 100 80 60 40 20 0 20 40 60 80 100 120
Frequency (MHz)

180

160

140

120

100

80

60

M
ag

ni
tu

de
 (d

B)

N = 2028000 samples (1000 packet(s))

Figure 5.7: FFT of the received
signal (N = 2028.0 ksample) on the

server.

The spectrum shown in these Figures is that of a Pseudorandom Binary
Sequence (PRBS) 100 MHz bandwidth signal 16-QAM modulated and a
signal power of -80 dBm with a 3.5 GHz carrier frequency. Analyzing the
spectrum with the naked eye, it looks the same as the spectrum compared
with the VSA, which is configured to have as similar a number of points
and frequency resolution as the instrument allows. Analysis of the figures
also shows that as the number of FFT samples increases, the noise floor
decreases. This was to be expected as it is a fundamental concept in DSP.
By increasing the number of points in the FFT, the frequency resolution also
increases, increasing the number of bins in the FFT. As a result, the power
density of the noise in each bin decreases. At first glance, this technique
appears to improve the distinction between noise and true signal peaks in
the frequency representation. This is often called noise floor reduction and
can help identify weak signals that would otherwise be hidden in the noise

40

when an FFT with fewer points is used. However, this technique makes
two assumptions: the noise is uniformly distributed, which means it has a
constant power density at all frequencies, and the signal must be stationary
during the observation window, that is, the joint probability distribution
is time-invariant, or at least the mean and variance are. Both of these
assumptions must be taken with care, especially the second one, where the
size of the capture window is critical to capture signals using modulations
of modern mobile communications, namely Orthogonal Frequency-Division
Multiplexing (OFDM) used in 4G LTE and 5G NR. In general, and in an
attempt to maintain simplicity and performance, throughout the tests, the
captures will be made using just one or ten packets, made up of 8112 samples
sampled at 122.88 Msps, which is equivalent to a capture window of 66 µs
or 660 µs, respectively.

5.3.2 Signal Power Measurements

After validating the spectrum of the received signal, the next step was
to test and validate the method for calculating the power of the received
signal.

The procedure used was as follows: using a PRBS 100 MHz bandwidth
signal with a 16-QAM modulation and a 2.4 GHz carrier, the signal power
generated by the VSG was changed. It is important to note that the 16-QAM
modulation scheme used imposes an Peak to Average Power Ratio (PAPR) of
5.86 dB, i.e. the maximum power entering the receiver does not correspond
to the average value configured in the equipment, but almost quadruples
it. To avoid damaging the receiver, the maximum power was limited to a
value that did not exceed 0 dBm. The power values shown in this Section
correspond to the average power value of the signal, so the maximum value
is four times higher but far from the maximum limit mentioned. It should
also be noted that the approximation detailed in Appendix C was used for
all the power calculations in this Subsection.

Table 5.1 shows the measured power values for signal strengths between
-10 dBm and -50 dBm without using the AD9371’s digital reconfigurable
gain and the additional gain of the LNA. The results show that the receiver
begins to saturate at values above -10 dBm. Although the compression value
is still quite low, higher power values were not used for safety reasons. At
the lower end of the power range, it can be seen that the system struggles
to measure signal power below -43 dBm due to the increasing influence of
noise. As the power continues to decrease, the reading does not drop below
-47 dBm, which represents the noise floor. At these levels, the system is
completely unable to distinguish the signal from the noise. Throughout this
work, 1 dBm of absolute error was used as the criterion for defining the upper
and lower limits of power. Once this criterion has been established, it can
be said that the dynamic range of the system is 36 dBm. This inadequate

41

value is due to the receiver’s significant noise floor, caused by the high noise
figure mentioned above.

Signal Power Measured Power Absolute Error
(dBm) (dBm) (dBm)
-10.00 −9.82 0.18
-20.00 −20.04 0.04
-30.00 −29.95 0.05
-40.00 −39.78 0.12
-43.00 −42.40 0.60
-46.00 −45.00 1.00
-49.00 −47.37 1.63
-50.00 −47.32 2.68

Table 5.1: Measurements of received signal power and absolute error for
different signal powers without digital and RF chain gains.

In order to lower the noise floor, the AD9371’s maximum reconfigurable
gain of 30 dB was employed, and the results are shown in Table 5.2. As we
can see, the introduction of reconfigurable gain reduces the noise floor by
around 24 dBm, while keeping the upper limit constant. The upper limit
remained constant due to the receiver’s internal compensation mechanism
[25]. Thus, the dynamic range was increased to 60 dB.

Signal Power Measured Power Absolute Error
(dBm) (dBm) (dBm)
-10.00 −10.00 0.00
-20.00 −20.04 0.04
-30.00 −29.98 0.02
-40.00 −39.91 0.09
-50.00 −49.95 0.05
-60.00 −59.97 0.03
-70.00 −69.14 0.86
-73.00 −71.50 1.50
-76.00 −73.64 2.36

Table 5.2: Measurements of received signal power and absolute error for
different signal powers with 30 dB digital reconfigurable gain only.

Despite the reduction in the noise floor, the value of -70 dBm was not
satisfactory, considering the power levels at which modern communication
systems operate, as described in Section 2.4. Therefore, a gain was intro-
duced through the external LNA mentioned in Section 4.4. At the carrier
frequency of the signal used in this test, 2.4 GHz, the RF chain has a gain
of 21.2 dB, including losses in the cable and connector.

42

Signal Power Measured Power Absolute Error
(dBm) (dBm) (dBm)
-35.00 −34.97 0.03
-40.00 −39.98 0.02
-50.00 −50.02 0.02
-60.00 −60.04 0.04
-70.00 −69.99 0.01
-80.00 −79.94 0.06
-90.00 −90.44 0.44
-93.00 −91.72 1.28
-96.00 −93.57 2.43

Table 5.3: Measurements of received signal power and absolute error for
different signal powers with 30 dB digital reconfigurable gain and 21.2 dB
gain from the RF chain.

The results in Table 5.3 are as expected, with the noise floor dropping
from -70 dBm to a satisfactory -90 dBm. Note that the thermal noise at a
laboratory temperature of 294.15 K (21º C) and a bandwidth of 100 MHz
is -93.9 dBm. Therefore, the value obtained comes dangerously close to the
minimum noise floor achievable, considering only the existence of thermal
noise. In practice, there are other noise sources that increase the noise floor.
It could also be argued that with the introduction of the LNA the dynamic
range was reduced to 55 dB. However, one could safely increase the power
and test for -30 dBm average power, corresponding to a maximum power of
-24.14. In this case, assuming a gain of 21.2 dB at 2.4 GHz, the AD9371’s
input power would not exceed 0 dBm. Also, assuming that the system would
continue to operate in its linear range, the dynamic range would remain at
60 dB.

Finally, the gain of the RF chain and the noise floor of the receiver were
measured for the various frequencies corresponding to the 4G LTE bands,
the 2.4 GHz ISM band, and the n78 5GNR band. The results are shown in
Table 5.4 and show that the noise floor is not only sufficiently low, nearly -90
dBm, but also invariant, making the system suitable for spectrum sensing
of modern communication technologies.

The measured noise floor values are approximately 2 dBm higher than
the theoretical calculations presented in Table 4.1. This discrepancy is not
unexpected, since the measurements take into account not only the thermal
noise analyzed but also all other sources of noise present in practical scenar-
ios. Among these, an additional source of noise could be attributed to the
relatively long power cables of the LNA, which are similar to the conditions
existing in the ATCLL lamp posts and wall boxes.

43

Frequency (GHz) RF gain (dB) Noise floor (dBm)
0.8 21.4 -90
1.8 20.5 -89
2.1 21.0 -90
2.4 21.2 -90
2.6 22.0 -91
3.5 21.7 -91

Table 5.4: Measured RF chain gain and noise floor values at different fre-
quencies.

5.3.3 Signal Filtering Results

To evaluate the performance of the filter implemented as described in
Appendix B, the same signal from the previous test was used, with a power
level of -80.30 dBm, was modulated with 16QAM scheme on a 2.6 GHz
carrier with a bandwidth of 100 MHz. To ensure a consistent approach to
testing the signal was recorded and stored in a file.

First, a filter with a cutoff frequency of 50 MHz was applied, expecting to
halve the signal power, which corresponds to a reduction factor of -3 dBm,
expecting a power level of -83.30 dBm. The spectrum of both the original
and the filtered signal is shown in Figure 5.8. In this Figure, it is visible
that although the transition band of the filter is not completely abrupt, the
resulting power level is very close to the expected -83.52 dBm. This result
highlights the effectiveness of the filter in terms of signal power.

For comparison with the previous value, the power of the filtered signal
was calculated using a much higher-order filter with 100 taps. This filter has
a much steeper transition band, as can be seen in Figure 5.9. However, the
power level of the filtered signal shows only a slight variation, measuring
-83.43 dBm. This result shows that a significant increase in the order of
the filter, and thus its execution time, does not necessarily translate into a
significant improvement in performance, especially in terms of signal power.

This procedure was replicated to evaluate the filter’s performance for
narrower bands, this time considering a cutoff frequency of 20 MHz. Once
again, it was observed that although the spectrum has a visually more abrupt
transition (as shown in Figures 5.10 and 5.11) when a higher order filter is
used, the effect on signal power is not significant. The difference in power
was only about 0.20 dBm, indicating that increasing the filter order does
not significantly affect signal power in the context of narrower bandwidths.

The limitations of the filter, including its non-abrupt rejection and non-
zero ripple in the passband, add an additional error term to the power
calculation for the band of interest. It is critical to note that these filter
non-idealities vary significantly with the cutoff frequency used and that the
smaller the cutoff frequency relative to the Nyquist frequency, the greater

44

120 100 80 60 40 20 0 20 40 60 80 100 120
Frequency [MHz]

120

100

80

60

40

M
ag

ni
tu

de
 (d

B)

Signal
Filtered Signal

Figure 5.8: Spectrum of a 100 MHz signal before and after filtering using
an FIR filter with 37 taps and 50 MHz cutoff frequency.

the deviation. The filter coefficients in this section were designed using a
sampling frequency of 245.76 MHz, as per the Loopback Design described
in subsection 4.2.1. In scenarios where the goal is to filter a narrower band
of the spectrum, it would be appropriate to use the Standard Design, which
operates at a sampling frequency of 122.88 MHz, and design filters for that
frequency accordingly.

In summary, this filtering process represents an extra error to consider
in the signal power calculation. In addition to the +/- 0.5 dB bandpass
ripple inaccuracy of the AD9371 receiver when set to a 100 MHz bandwidth,
the approximation error of the power calculation method described in the
Appendix C, and the non-total flatness of the LNA gain over the maximum
bandwidth of 100 MHz. All of these sources of error contribute to the
definition of a conservative uncertainty estimate of +/- 2.0 dBm in the
power calculations.

5.3.4 Execution Time Results

Having validated the implementation of the algorithms, the next step is
to benchmark them. It’s important to remember that in a scenario where
Standard Design is employed, the server must be able to handle a through-

45

120 100 80 60 40 20 0 20 40 60 80 100 120
Frequency [MHz]

120

100

80

60

40

M
ag

ni
tu

de
 (d

B)

Signal
Filtered Signal

Figure 5.9: Spectrum of a 100 MHz signal before and after filtering using
an FIR filter with 100 taps and 50 MHz cutoff frequency.

put of 3.93 Gbit/s, which implies that a new packet must be received and
processed within 16.5 µs.

First, the performance of simply receiving network packets was analyzed
using the network sockets described in subsection 4.2.4.

Trial Mean (µs) STD (µs) Max (µs)
1 2.176 0.298 3.243
2 2.154 0.301 3.376
3 2.130 0.288 5.996
4 2.130 0.316 5.745
5 2.143 0.289 3.543

Table 5.5: Execution times for the recvfrom C function. Each of the 5 trials
received 1000 packets.

As can be seen from the results in Table 5.5, the maximum value varies
greatly from the average value, although the standard deviation is less than
15% of the average value. It should be noted that the network card stalls for
more than 200 µs every 1200 packets and therefore the number of packets
received in each experiment was lower than this value so that the maximum

46

120 100 80 60 40 20 0 20 40 60 80 100 120
Frequency [MHz]

120

100

80

60

40

M
ag

ni
tu

de
 (d

B)

Signal
Filtered Signal

Figure 5.10: Spectrum of a 100 MHz signal before and after filtering using
an FIR filter with 37 taps and 20 MHz cutoff frequency.

value was not completely dominated by this event. In order to mitigate these
problems, it would be interesting to experiment with an ultra-low latency
sub µs range network card, such as the NVIDIA Mellanox MCX512A-ACAT
with a latency of 0.750 µs [61].

Trial Mean (µs) STD (µs) Max (µs)
1 2.662 0.030 2.700
2 2.670 0.017 2.728
3 2.662 0.072 2.713
4 2.660 0.072 2.725
5 2.662 0.030 2.712

Table 5.6: Execution times for the byte shifting operation. Each of the 5
trials processed 10 million packets.

Table 5.6 shows the results of the execution times for the byte-shifting
operation. The byte shifting of the IQ samples could be optimized using
AVX-512 Vector Bit Manipulation Instructions. Alternatively, it would be
much more practical to pre-invert the bytes directly in the FPGA fabric.
The samples would still have to be separated and stored in an array, but

47

120 100 80 60 40 20 0 20 40 60 80 100 120
Frequency [MHz]

120

100

80

60

40

M
ag

ni
tu

de
 (d

B)

Signal
Filtered Signal

Figure 5.11: Spectrum of a 100 MHz signal before and after filtering using
an FIR filter with 100 taps and 20 MHz cutoff frequency.

part of the processing would be reduced, and the use of SIMD instructions
could speed up the process even more.

Benchmarking was also performed for the FFT, which achieved an av-
erage execution time of 21.849 microseconds processing IQ 2028 samples.
For this reason, the calculation of FFT was not included in the processing
pipeline in real-time scenarios. To meet the processing requirement within
the 16.55 µs threshold, a reduction in the number of samples per FFT would
be necessary. Reducing the number of samples to 1024 (the nearest smaller
power of 2) significantly reduces the average execution time to 9.537 µs,
which is within the acceptable range. This adjustment illustrates the trade-
off between frequency resolution and processing speed which is critical to
optimizing system performance.

The results in Table 5.7 once again show the indeterminism characterized
by the significant increase in maximum time and standard deviation caused
by the reception of packets. The most substantial share of the processing
pipeline is digital filtering, which is benchmarked and described in more
detail in Appendix B.

By eliminating the problem of the network card jamming every thousand
or so packets with dedicated hardware for critical applications, the server

48

Trial Mean (µs) STD (µs) Max (µs)
1 12.912 0.329 13.718
2 13.110 0.306 14.248
3 12.958 0.344 14.917
4 12.890 0.106 12.939
5 13.324 0.267 13.876

Table 5.7: Execution times for the whole software pipeline: receiving, byte
shifting, filtering (with 37 filter taps), and signal power calculation. Each of
the 5 trials processed 1000 packets

would be able to receive and calculate the signal strength in less than 5.5 µs,
freeing time for some more demanding algorithms such as digital filtering.
By implementing the remaining optimizations outlined above, it would be
possible to reduce this time even further. Once this problem had been
overcome, it could be claimed that the system was truly real-time.

5.4 Spectrum Sensing Campaign

Finally, to demonstrate the capabilities of the developed system, a multi-
band indoor sensing campaign was conducted. To this end, the spectral
occupancy of the 3GPP-defined LTE downlink bands n20 (800 MHz), n3
(1800 MHz), n1 (2100 MHz), n7 (2600 MHz), WLAN (2400-2483.5 MHz)
contained in the unlicensed ISM, and the 3GPP-defined 5G NR n78 band
(3500-3800 MHz) are probed for a user-defined period (20 hours in this
case). To sense the n78 band, three segments of 100 MHz are considered,
corresponding to four different operators [4].

Algorithm 1 contains the pseudo-code for the developed C program to
conduct the spectrum occupancy campaign at the Telecommunications In-
stitute. To estimate the power in each band, 10 RoE packets were used,
which translates to 20280 samples. Note that in addition to using the pre-
calibrated frequency variant gains for the RF chain, in this experiment the
antenna gain was also subtracted when estimating the received signal power.

The spectral occupancy of 4G, 2.4 GHz ISM; and 5G bands are presented
in Figs. 5.12 and 5.13 respectively. In both figures, a trend across all bands
is noted. The highest occupancy occurs during the working period, while
the minimum occupancy occurs during the dawn. This is expected since the
campaign was carried out in a research institute.

Bear in mind that for these applications, execution times are not critical,
and capturing packets at high rates on the server side easily creates data sets
that exceed Gigabyte sizes. Large data sets are very inefficient to process,
analyze, and generate meaningful graphs.

Concerning Figure. 5.12, the spectrum occupancy data are decimated

49

Algorithm 1: Algorithm used to perform the spectral occupancy
campaign.

while elapsed time < desired capture duration do
for frequency in frequencies_set do

Send command to change frequency;
Receive a given number of RoE packets;
Decode IQ samples;
Compute FIR filter response;
Fetch frequency-dependent RF gains/attenuations;
Compute signal power in dBm;

end
Save power values to timestamped file;
Wait for a predefined idle time;

end

03
:0

0

04
:0

0

05
:0

0

06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

23
:0

0

Time (hour) Jul 25, 2023

-80

-70

-60

-50

P
o

w
e

r
(d

B
m

)

0.8 GHz (n20)

1.8 GHz (n3)

2.1 GHz (n1)

2.4 GHz (WLAN)

2.6 GHz (n7)

Figure 5.12: Spectral occupancy of 4G, and 2.4 GHz ISM bands.

and filtered using a second-order Savitzky-Golay filter with a span of 15
points. The data from Figure. 5.13 are not decimated, but the same filter
type is used, with a span of 5 points. The mentioned filter type is adopted
as it maintains amplitude accuracy without distorting the tendency of the
signals.

The tests conducted in this chapter not only validate the performance
of the individual subsystems but also confirm the overall effectiveness of the
integrated spectral probe system in a controlled, multi-band indoor sensing
campaign. These comprehensive tests, ranging from loopback verifications
to centralized processing benchmarks, have solidified the system’s capabili-
ties in real-world scenarios. The following chapter will outline these results,
draw conclusions, and highlight future lines of work.

50

Figure 5.13: Spectral occupancy of 5G bands.

51

52

Chapter 6

Conclusion

6.1 Final Remarks

In conclusion, this master’s thesis successfully developed a real-time flex-
ible spectral probe, addressing the critical analysis of the increasingly con-
tested electromagnetic spectrum. Through a comprehensive set of tests and
validations, from loopback checks to centralized processing benchmarks, the
system proved effective in an indoors multi-band spectral sensing measure-
ment on the 4G LTE bands, 2.4 GHz ISM band, and the n78 5G band.

The implementation of this complex system required the study and famil-
iarization of a wide range of subjects, including radio receivers and spectrum
sensing techniques, RF instrumentation and measurements, state-of-the-art
SDR technologies, real-time digital processing techniques, socket and net-
work programming and configuring a real-time system Linux based-server.

Through this work, a solid foundation has been laid for future expan-
sions and innovations in spectral detection. Implementing multiple probes
in the Aveiro Tech City Living Lab represents an opportunity for conduct-
ing spatially distributed outdoor spectral occupancy campaigns, providing
valuable insights into spectrum utilization in urban settings.

In summary, this work not only achieved its proposed objectives but also
established a promising path for future investigations and developments in
spectral detection. Through a combination of technological innovation and
applied research, this project significantly contributes to the field of wireless
communications and spectrum detection technologies.

6.2 Future Work

Apart from the most direct course of action, which is to expand the func-
tionality and capabilities of the developed spectral probe, there are several
emerging lines of work:

53

• Finish the installation of multiple probes on the Aveiro Tech City
Living Lab (https://aveiro-living-lab.it.pt/) in the city of Aveiro, in
order to allow us to carry out spatial distributed outdoor spectral
occupancy campaigns.

• Unlock the platform’s transmission capabilities, opening up new possi-
bilities in which one or more systems behave as transmitters and others
as receivers, in line-of- sight or non-line-of-sight scenarios. A testbed
with such infrastructure would allow the research, development, ex-
perimentation, and validation of innovative radio architectures and
techniques, with an emphasis on next-generation systems for smart
city applications.

• Benchmark the packet reception using an ultra-low latency sub µs
network card.

• Measure the noise floor of the system considering smaller bandwidths,
for example, 10 and 20 MHz and perform sensing in more specific lower
bandwidth scenarios.

• Optimize the remaining C functions using AVX-512 SIMD instructions
to maximize performance.

• Incorporate the OpenGL high-performance C graphics library to en-
able the development of applications in C with a graphics component.

• Experiment and compare the performance of the FIR filtering function
implemented using Intel’s Integrated Performance Primitives library
with the developed method and explore other DSP functions.

54

Appendix A

Real-Time Kernel Tunning
and Low Jitter Computing
Techniques

The technological development of modern CPUs, and operating systems
has introduced a number of features aimed at maximizing throughput at
the expense of latency and determinism [28][41]. These hardware and op-
erating system features add several orders of magnitude to the variability
in execution times of the same program. This variability is certainly unac-
ceptable in real-time systems, especially with time constraints on the order
of microseconds, as is the case in this work.

This appendix takes an in-depth look at configuring a low-jitter, real-
time computing platform for benchmarking high-performance applications.
The system is based on an Intel x86-64 Xeon® Gold 6336Y CPU running
Ubuntu 22.04 LTS operating system with the 5.15 real-time kernel, and
without a desktop environment. This configuration process requires full ac-
cess to the system, both BIOS and root, and is specific to Intel x86-64 CPUs
released after 2008, whose microarchitecture is codenamed Nehalem.

The first step in configuring the system was at the hardware/firmware
level, disabling the following options from the Basic Input/Output System
(BIOS):

• Disable all dynamic frequency scaling mechanisms (Intel’s SpeedStep
and Turbo Boost).

• Disable all power management/saving systems.

• Disable Intel’s C-States.

• Disable Hyperthreading.

• Disable Virtualization.

55

• Disable System Management Mode.

In addition to disabling the above options, the CPU was configured to
run at a fixed frequency of 3.1 GHz instead of the default of 2.4 GHz. This
change reduced the number of available physical cores from 48 to 16 due to
total power dissipation limitations. This reduction in the number of cores
available doesn’t affect the system’s performance, as the idealized appli-
cations are mainly single-core single-threaded or multi-core multi-threaded
but with a reduced number of cores (2 to 3). In this context, the gain from
increasing the base frequency by 29% is a substantial advantage.

After the hardware configurations have been set up, the next step is to
reduce variances at the kernel and operating system levels. The purpose of
this process is to avoid any interruption of the intended application by a
kernel or operating system task. In order to run a kernel-priority applica-
tion, the Ubuntu 22.04 LTS operating system was installed with the latest
pre-compiled 5.15 real-time kernel, with the optimized version for Intel pro-
cessors. This specialized version of the real-time kernel is coupled with the
Intel Time Coordinated Computing (TCC) and IEEE Time Sensitive Net-
working (TSN) technologies [38].

While the kernel used is a real-time kernel, it is important to note that
an extensive tuning process is still required to ensure that a user-defined pro-
gram does not suffer from preemption. Although there are guidelines for this
tuning process [40] [41], it is essential to evaluate each system individually
based on its specifications. Typically this process requires experimenting
with different configurations until the desired behavior is achieved [39].

Kernel tuning started by modifying the GRand Unified Bootloader (GRUB),
which is responsible for booting and loading the system kernel and is the
default bootloader Linux systems. GRUB is essential for managing and se-
lecting operating system boot options and parameters, allowing for initial
kernel parameter adjustments that persist after rebooting. The changes
made are detailed below:

• RCU Tuning:

rcu_nocb_poll. This option enables polling for RCU callback
offloading. Normally, the kernel might use a wake-up mechanism,
but with this option, it uses CPUs polling, which can reduce
latencies in real-time workloads.

rcu_nocbs=4-6. Offloads RCU callback processing from the
specified CPUs (in this case, CPUs 4, 5, and 6). It can be useful in
real-time scenarios to offload this work from time-sensitive CPUs.

• Tickless Kernel:

56

nohz=on. Enables adaptive tickless mode in the kernel. When a
CPU is idle, it stops the scheduler tick, saving power and possibly
improving performance for some specific workloads.
nohz_full=4-6. Isolates CPUs 4, 5, and 6 from kernel timer
ticks. The kernel stops sending timer ticks to the specified CPUs
to minimize servicing interrupts and context switching on the
specified CPUs.

• CPU Isolation: isolcpus=managed_irq, domain,4-6. This is used
for CPU isolation. It specifies that CPUs 4, 5, and 6 should be iso-
lated for user-defined applications. The managed_irq means that
managed interrupts will not be delivered to the isolated CPUs.

• Thread and Interrupt Affinity:

kthread_cpus=0,1. Restricts kernel threads to run only on
the specified CPUs, in this case, CPUs 0 and 1. This is used to
ensure that kernel threads don’t run on isolated CPUs.
irqaffinity=0,1: Specifies the default CPU affinity mask for the
interrupt request (IRQ) handlers. Here, it’s set to CPUs 0 and 1,
meaning IRQs will by default be handled by these CPUs unless
specifically reconfigured.

• Idle State: idle=poll. This specifies the idle loop behavior of the
kernel. By setting it to poll, the CPUs will continuously poll while
idle instead of entering a low-power state. This can improve wake-up
times for latency-sensitive applications but at the cost of increased
power consumption.

In addition to the changes made to the GRUB, a startup script was also
developed that executes the following commands on startup:

sudo sysctl kernel.sched_rt_runtime_us=-1. This modifies the
kernel’s scheduler to allow real-time tasks unlimited access to the CPU,
eliminating the default CPU time limit for these tasks.

sudo sysctl kernel.timer_migration=0. Disables timer migration
between CPU cores, anchoring each timer interrupt to its initiating core to
reduce latency.

for ((i=0; i<$num_of_cores; i++)); do echo performance >
/sys/devices/system/cpu/cpu$i/cpufreq/scaling_governor; done.
This sets the scaling governor to performance mode for each core.

Although the Linux real-time kernel enables applications to run with cus-
tomizable kernel priorities and prevent them from being preempted by other
kernel tasks, there is still the inherent preemption mechanism dictated by

57

the kernel’s timer tick. The interrupt handler’s frequency is set by the
CONFIG_HZ constant, with a default value of 250 Hz [42]. This has the
direct consequence of an unpreventable interruption every four milliseconds
with a measured duration in the order of microsecond units. However, given
the strict time requirements of the system, these interruptions are unac-
ceptable. The workaround is to disable this mechanism by manually setting
the kernel parameter CONFIG_PREEMPT_NONE=y and recompil-
ing the Linux kernel. Although deactivating the real-time kernel may seem
counterproductive, it enables the exploitation of the various real-time kernel
mechanisms to increase the determinism of the system. This configuration
is recommended for certain server applications [42].

After the hardware and kernel/operating system were configured metic-
ulously, the next step was to develop a testing application. This application
serves as an instrument for assessing the variability and performance. It
allows for the assessment of the aforementioned hardware and kernel config-
urations, providing insights into their effectiveness and identifying areas that
require further optimization for achieving the required system performance
and reliability. In the development of the program designed for system de-
terminism analysis and benchmarking, multiple techniques were employed
to ensure optimal performance and accuracy. The program was written in
C, a compiled language renowned for its efficiency and performance in crit-
ical applications. Memory locking was employed to maintain the program’s
memory in system memory, eliminating the latency and nondeterminism
introduced by paging. The scheduling policy and kernel priority were de-
fined to guarantee repeatability. Additionally, CPU affinity was set to bind
the program to one of the pre-isolated cores, ensuring dedicated processing
power and reducing potential interference from other system processes. The
two programs below contain C functions that implement the memory lock,
scheduling, and CPU affinity mechanisms, respectively.

1 [caption =C function to perform memory lock and set real -
time scheduling policy and priority .]

2 void set_real_time ()
3 {
4 // lock the program into RAM
5 if (mlockall (MCL_CURRENT | MCL_FUTURE) != 0)
6 {
7 perror (" mlockall ");
8 exit(EXIT_FAILURE);
9 }

10
11 // set scheduling policy and priority
12 struct sched_param param;
13 param. sched_priority = 99; // kernel priority
14
15 if (sched_setscheduler (0, SCHED_FIFO , ¶m) != 0)

58

16 {
17 perror (" sched_setscheduler ");
18 exit(EXIT_FAILURE);
19 }
20 }

The C programming language allows also for the development of multi-
threaded applications in which each thread can be bound to a specific iso-
lated CPU core. This approach guarantees that all threads are executed on
a dedicated processor, which optimizes performance and increases determin-
istic execution times.

Listing A.1: C function to set CPU affinity to specific core.
1 void set_cpu_affinity ()
2 {
3 static const uint16_t CPU_CORE = 5;
4
5 cpu_set_t set;
6 CPU_ZERO (& set);
7 CPU_SET (CPU_CORE , &set);
8
9 if(sched_setaffinity (0, sizeof (cpu_set_t), &set) < 0)

10 {
11 perror (" sche_set_affinity ");
12 exit(EXIT_FAILURE);
13 }
14 }

In order to benchmark and evaluate the temporal behavior of the system,
it is essential to be able to count time with a sufficiently high resolution.
In order to find out the resolution of the method, which is dependent on
the architecture, the function clock_getres() was executed, which returned
a value of 1 ns. This high resolution made the method look promising, so
the following function was developed to count time in ns:

Listing A.2: C function using the clock_gettime() function from the C Time
library.

1 static inline uint64_t nanos(void)
2 {
3 struct timespec ts;
4 clock_gettime (CLOCK_REALTIME , &ts);
5 uint64_t ns = (uint64_t)ts. tv_sec *1000000000 ULL + (

uint64_t)ts. tv_nsec ;
6 return ns;
7 }

Note that the program was compiled using the gcc version 11.4.0 compiler
with the -O2 optimization level because the -O3 option leads to too many

59

optimizations, which not only do not increase the program’s performance,
but increase its variability [60].

Listing A.3: Block of C code used for system analysis.
1 set_cpu_affinity ();
2 set_real_time ();
3
4 # define N 100000000 // 100M
5 static uint64_t time_arr [N];
6 static uint64_t start , end , time;
7 for(uint64_t i = 0; i < N; i++)
8 {
9 uint64_t start = nanos ();

10
11 /* code to be measured :
12 volatile to prevent compiler optimizations */
13 volatile uint64_t tmp = nanos ();
14
15 uint64_t end = nanos ();
16
17 time = end - start;
18 time_arr [i] = time;
19 }

Trial Time ns
Mean STD Max

1 96.0 10.1 60528
2 96.0 9.5 62236
3 96.2 10.0 62614
4 96.3 9.4 61438
5 96.0 9.5 60848

Table A.1: Execution performance time using the clock_gettime() function
from the C Time library. Each of the five trials made 100 million function
calls.

The results presented in Table A.1 revealed great variability, especially
given the maximum value, in the method. It should also be mentioned that
in all the tests the number of cycles exceeded 3100 cycles (1000 ns) more
than 200 times.

This nondeterminism was excessive and so a lower-level alternative was
sought, with as little overhead as possible. The alternative found is based on
the Linux kernel’s implementation of time measurement methods for modern
x86 architectures by accessing the Time Stamp Counter (TSC) counter [31].

The TSC is a 64-bit register present on all modern x86 processors. The
TSC register is monotolly incremented at every clock cycle [29]. As the

60

CPU was configured to run at a constant frequency of 3100 MHz, each clock
cycle is approximately 0.3226 ns. Direct access to this register allows the
development of a high-resolution, low-overhead timer, which is particularly
important for performance benchmarking and real-time tasks.

Listing A.4: C function with inline Assembly code to read the TSC.
1 static inline uint64_t rdtscp ()
2 {
3 uint64_t tsc;
4
5 __asm__ __volatile__ (// begin an inline assembly

block
6 " rdtscp ;" // read the tsc , store into rdx and

rda registers
7 "shl\$32 ,%% rdx;" // shift left 32 bits of TSC value

into rdx
8 "or%%rax ,%% rdx" // combine the upper and lower TSC

32 bits
9 : "=d"(tsc) // output the TSC value to the tsc

variable
10 : // no inputs
11 : "%rax", "%rcx" // inform the compiler rdx and rda

were modified
12);
13
14 return tsc; // Return the TSC value
15 }

Trial Cycles Time (ns)
Mean STD Max Mean STD Max

1 38.0 0.0 49 12.3 0.0 15.8
2 38.0 0.0 78 12.3 0.0 25.2
3 38.0 0.0 55 12.3 0.0 17.7
4 38.0 0.1 75 12.3 0.0 24.2
5 38.0 0.1 85 12.3 0.0 27.4

Table A.2: Execution performance in cycles and time using the custom
function based on the rdtscp() instruction. Each of the five trials made 100
million function calls.

The results from Table A.2 mainly show a very deterministic behavior
and minimal overhead, since there are no library calls, both characteristics
desired in this method. The near-zero standard deviation in cycles means
that this method can achieve a resolution of 1 clock cycle (0.32 ns), providing
extremely high precision for time measurement.

In conclusion, the computing platform was successfully configured, ob-
taining a system with the desired deterministic behavior.

61

62

Appendix B

High-Performance DSP
Software Module

The main focus of this appendix is the implementation and optimization
using SIMD instructions of FIR filters of arbitrary order assuming symmetric
and antisymmetric coefficients.

To complement the aforementioned fftw library, some auxiliary functions
were also implemented in C. These FFT support functions were not opti-
mized since computing the FFT for N = 2028 samples is too time-consuming
considering the system’s time requirements, making optimization a non-
priority. This simple software module implements the following functions in
C:

• fftshift - rearranges a Fourier transform by shifting the zero frequency
component to the center of the array.

• frequency shift - implements a frequency shift of a given value by
multiplying the signal by a complex exponential.

• FIR filter - initialization, filtering, and deallocation.

The implementation of the FIR filter using SIMD AVX-512 instructions
in C, as detailed in the above code, represents an optimized block pro-
cessing approach suitable for handling data sets with a standard length of
2028 samples. This method takes advantage of the AVX-512’s Vectorized
Fused-Multiply Add instruction and 64-byte aligned memory arrays, opti-
mizing memory by maximizing spatial locality. While implementing a filter
exploiting symmetric coefficients could theoretically reduce by half the num-
ber of multiplications, in this SIMD context, such gains are outweighed by
the inefficiencies of accessing non-contiguous memory addresses. This im-
plementation highlights the balance between exploiting advanced hardware
capabilities of modern high-end CPUs and managing the practical challenges
of memory utilization for high-performance digital signal processing.

63

Note that the program was compiled using the gcc version 11.4.0 compiler
with the -O2 optimization level and the mavx512f flag to generate code with
the AVX512 extensions.

Listing B.1: Optimized C function with SIMD AVX-512 instructions to
compute the response of an FIR filter of arbitrary order.

1 void filter_fir_avx_1d (const fir_filter_t * filt , float *
y0 , float * y1 , const float * x0 , const float * x1 ,

uint32_t num_samples)
2 {
3 uint32_t taps = filt ->taps;
4 const uint32_t vec_size = 512 / 32; // process 16x32 -

bit values once
5
6 uint32_t aligned_num_samples = (num_samples - taps) &

~(vec_size - 1);
7
8 for (uint16_t i = 0; i < aligned_num_samples ; i +=

vec_size)
9 {

10 __m512 y_real = _mm512_setzero_ps ();
11 __m512 y_imag = _mm512_setzero_ps ();
12 for (uint16_t j = 0; j < taps; j++)
13 {
14 /* broadcast b[j] to all 16 x32 bit elems in 512- bit

reg */
15 __m512 coef = _mm512_set1_ps (filt ->b[j]);
16
17 /* load 16x32 -bit elems into 512- bit registers */
18 __m512 x_real = _mm512_load_ps (&x0[i + j]);
19 __m512 x_imag = _mm512_load_ps (&x1[i + j]);
20
21 /* fused multiply and add instruction for 16x32 -bit

floats */
22 /* y[n] = y[n] + (x[i-j] * b[j]) */
23 y_real = _mm512_fmadd_ps (x_real , coef , y_real);
24 y_imag = _mm512_fmadd_ps (x_imag , coef , y_imag);
25 }
26
27 _mm512_store_ps (&y0[i], y_real);
28 _mm512_store_ps (&y1[i], y_imag);
29 }
30
31 /* handle non - aligned samples */
32 for (uint32_t i = aligned_num_samples ; i < num_samples

- taps; i++)
33 {
34 float y_real = 0.0f;
35 float y_imag = 0.0f;

64

36
37 for (uint16_t j = 0; j < taps; j++)
38 {
39 y_real += x0[i + j] * filt ->b[j]; // real part
40 y_imag += x1[i + j] * filt ->b[j]; // imaginary part
41 }
42
43 y0[i] = y_real ;
44 y1[i] = y_imag ;
45 }
46 }

Filter Taps Mean (µs) STD (µs) Max (µs)
5 1.867 0.018 1.977
10 2.98 0.015 3.134
20 5.285 0.025 5.559
30 6.759 0.013 7.012
40 8.358 0.025 8.591
50 10.583 0.030 10.88
60 11.614 0.024 11.835
70 13.668 0.028 13.890
80 16.035 0.031 16.249
90 16.724 0.028 16.988
100 18.924 0.029 19.073

Table B.1: Execution performance time of the custom FIR filter function
for different filter tap counts. Each of the five trials made 1 million function
calls.

The benchmark results shown in Figure B.1 show a low standard devi-
ation and a maximum time close to the average execution time, indicating
deterministic behavior, as desired. To analyze the dependency of the exe-
cution time on the number of filter taps, the graph in Figure B.1 has been
plotted.

Analysis of Figure B.1 shows a clear linear relationship between the
number of filter taps and the execution time for both optimized and non-
optimized. This linearity is a consequence of the filter’s computational com-
plexity, which scales proportionally as the number of taps increases. In
addition, the slopes of the lines in the graph provide valuable insight into
the performance gains achieved by the optimized implementation. By com-
paring the slopes, it is possible to quantify the efficiency gain of about 13.35.
In theory, the performance gain from using the AVX-512, which supports
16 simultaneous operations per register, would be expected to approach this
number. In practice, however, this is diminished by the latency associated
with these instructions and the fact that the number of samples is not a

65

10 20 30 40 50 60 70 80 90 100

Filter Taps

0

50

100

150

200

250

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(u
s)

Data (Optimization)
Linear Fit (Optimization)
Data
Linear Fit

Figure B.1: Graph of the average execution time of the optimized and non-
optimized FIR filter implementations as a function of the number of filter
taps featuring linear regressions.

multiple of 16. Consequently, the remaining samples that do not fit into the
16-wide vectorized register must be processed using non-vectorized instruc-
tions, slightly reducing the overall performance gain.

By inverting the linear regression equation, the number of filter coeffi-

66

cients can be calculated based on the desired execution time. For example,
with a target execution time of 8 µs, this method yields 37 taps. This in-
verse calculation is particularly useful for designing filters with performance
constraints in mind, as it allows a direct relationship between execution time
requirements and filter complexity.

67

68

Appendix C

Numerical Approximation
and Optimized
Implementation for Signal
Power Calculation

This appendix explores a numerical approach to estimating the average
power of a digital signal and its associated error for signals with different
power levels and number of samples. Two implementations were developed
to evaluate the performance gain, one trivial and one optimized using AVX-
512 SIMD instructions.

The equation for calculating the average power of a discrete signal with
N samples is given by [54]:

P = 1
N

N−1∑
n=0

|x[n]|2 (C.1)

In the case of an IQ signal, each sample x[n] of the signal x is represented
as x[n] = I[n] + Q[n].

Substituting in C.1 yields:

P = 1
N

N−1∑
n=0

|I[n] + Q[n]|2 (C.2)

The IQ digital samples are encoded by the ADC in values between -8193
and 8192. To convert the values to an electrical quantity in V, the manufac-
turer specifies the conversion factor depending on the configuration of the
transceiver [25]. For the default setting, the ADC range limits correspond
to +/- 280 mV. Taking this into account, the following formula is used to
map the ADC range values to voltage:

69

Vout = (val − ADC_MIN) (V_MAX − V_MIN)
ADC_MAX − ADC_MIN + V_MIN (C.3)

As V_MAX = – V_MIN = V_AMP, substituting the values in C.3
leads to:

Vout = val · 0.560
16385 +

(0.560
16385(−8193) − 0.280

)
= val · M + K,

M = 0.560
16385 , K =

(0.560
16385(−8193) − 0.280

) (C.4)

Equation C.4 demonstrates that converting each component of an IQ
sample requires performing one floating-point multiplication and floating-
point one addition.

Extrapolating the reasoning, for a signal of N IQ samples it is necessary
to perform 2N floating-point multiplications and 2N floating-point addi-
tions.

After converting each sample to a voltage value, v[n], the next step is to
calculate the electrical power of the sample in Watt, denoted as P [n], using
the following formula:

P [n] = v[n]2

Z0
(W) (C.5)

Considering a normalized impedance Z0 = 1 the equation (C.5) simplifies
to:

P [n] = v[n]2 (W) (C.6)

The power in Watt of an IQ sample is then:

P [n] = |Iv[n] + Qv[n]|2 (W) (C.7)

Where Iv and Qv denote the I and Q components converted to voltage
values.

Substituting I[n] for Iv[n] and Q[n] for Qv[n] in C.1 gives the final equa-
tion for calculating the power in Watt of an IQ signal of N samples:

P = 1
N

N−1∑
n=0

|Iv[n] + Qv[n]|2 (W) (C.8)

Equation C.8 shows that in order to compute the power of an IQ signal
with N samples, it is necessary to perform 2N floating-point multiplications
plus 2N floating-point additions. Counting the 2N floating-point multi-
plications and 2N floating-point additions from the conversion process to

70

voltage values gives a total of 4N floating-point multiplications and 4N
floating-point additions.

In order to reduce the computational load, it would be logical to perform
as many operations as possible with the ADC’s encoded values and then
convert them to electrical power.

Substituting each component in equation C.2 with equation C.1 yields:

P = 1
N

N−1∑
n=0

|(I[n] · M + K) + (Q[n] · M + K)|2

= 1
N

N−1∑
n=0

(I[n]2 · M2 + 2M · K · I[n] + K2 + Q[n]2 · M2 + 2M · K · Q[n] + K2)

= 1
N

N−1∑
n=0

[
M2(I[n]2 + Q[n]2)

]
+

N−1∑
n=0

[2MK(I[n] + Q[n])] +
N−1∑
n=0

2K2

P = M2

N

N−1∑
n=0

(I[n]2 + Q[n]2) + 2MK

N

N−1∑
n=0

(I[n] + Q[n]) + 2K2 (W) (C.9)

The equation C.9 enables computations to be performed without the
need to convert voltage values and breaks down the power calculation into
separate terms. Separating the calculation into terms gives rise to an approx-
imation by considering only the term with the sum of the squared samples:

P ≈ M2

N

N−1∑
n=0

(I[n]2 + Q[n]2) (W) (C.10)

The main advantage of this approximation is that it only requires 2N
integer multiplications and 2N integer sums.

The approximation error is expected to be smaller the higher the signal
power, with a non-linear decrease. To evaluate the approximation error of
the C.10 equation depending on the signal power level, a simulation script
was developed in Matlab using the Communications Toolbox. The script
generates a 16-QAM signal with N samples with power levels ranging from
-60 to -10 dBm and with a specified bandwidth, then simulates the ADC
sampling, approximates the signal power, and ultimately calculates the error
in the approximation. The size of the signals was chosen to match the
number of samples carried in one packet and ten eCPRI packets.

The graph in Figure C.1 is as expected, as the power of the received signal
increases, the approximation error decreases with a non-linear behavior.

An initial assessment might suggest that an error at a power level of
-50 dBm of almost 0.1 dBm appears significant, especially given the inher-
ently low power of the signals under observation. However, this perception
changes when the gain provided by the receiver is taken into account. By
factoring in a receiver gain of at least 50 dB, one can effectively map this

71

-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10

Signal Power (dBm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
b
s
o
lu

te
 E

rr
o
r

(d
B

m
)

N = 2028

N = 20280

Figure C.1: Absolute error of the signal power approximation as a function
of the signal approximation power for signals with 2028 and 20280 samples.

signal power to a -100 dBm power value. In this context, an error approx-
imation of only 0.1 dBm is not only acceptable but significantly less than
other inherent uncertainties in the system.

Listing C.1: Optimized C function with SIMD AVX-512 instructions to
approximate the power of an IQ signal.

1 static inline double compute_signal_power_avx_float (const
float * i_vec , const float * q_vec , const uint32_t

num_samples)
2 {
3 const uint32_t vec_size = 512/32; // 16 floats

processed at once
4 __m512 total_sum_squares_vec = _mm512_setzero_ps ();
5
6 for (uint32_t i = 0; i < num_samples ; i += vec_size)
7 {
8 /* load unaligned 16x32 -bit floats */
9 __m512 i_data = _mm512_load_ps (& i_vec[i]);

10 __m512 q_data = _mm512_load_ps (& q_vec[i]);
11
12 /* square the i and q data */
13 __m512 i_square = _mm512_mul_ps (i_data , i_data);
14 __m512 q_square = _mm512_mul_ps (q_data , q_data);
15
16 /* sum the squares */
17 __m512 sum_squares = _mm512_add_ps (i_square ,

q_square);
18

72

19 /* accumulate the sum of squares */
20 total_sum_squares_vec = _mm512_add_ps (

total_sum_squares_vec , sum_squares);
21 }
22
23 float sum_squares_array [vec_size];
24 _mm512_store_ps (sum_squares_array ,

total_sum_squares_vec);
25
26 /* add all the resulting 16x32 -bit floats into a

single float */
27 float sum_squares = 0.0f;
28 for (int i = 0; i < vec_size ; ++i)
29 {
30 sum_squares += sum_squares_array [i];
31 }
32
33 double power_w = M_SQ * (double) sum_squares / (double

) num_samples ;
34 return 10 * log10(power_w) + 30.0; // convert Watt

to dBm
35 }

Trial W/o Approximation Approximation Approx. + Opti.
Mean (µs) STD (µs) Mean (µs) STD (µs) Mean (µs) STD (µs)

1 2.640 0.075 1.708 0.212 0.209 0.018
2 2.640 0.073 1.707 0.209 0.212 0.017
3 2.640 0.068 1.707 0.211 0.209 0.017
4 2.639 0.062 1.707 0.209 0.211 0.017
5 2.640 0.068 1.707 0.210 0.210 0.018

Table C.1: Execution performance time for different signal power calculation
implementations considering a signal with 2028 IQ samples. Each of the five
trials made 10 million function calls.

The execution time results presented in Table C.1, show the performance
gains of the approximation implementation (1.5x) and the optimized approx-
imation implementation (12.6x) over the baseline implementation, reaching
an average execution time of around 200 ns. Note that all implementations
were compiled using the same -O2 optimization level of gcc and executed on
the platform described in Appendix A.

The performance gain obtained over an order of magnitude with an error
of less than 0.1 dBm for signals with powers greater than -100 dBm makes
this approximation an attractive method. By minimizing the computational
load with this calculation, it is possible to invest more processing time in
other more demanding tasks, such as filtering.

73

74

Appendix D

System Implementation for
On-Site Deployment

The transition to on-site deployment within the ATCLL project required
an arduous process of migration and adaptation, particularly with respect to
the system’s hardware architecture. This involved shifting the design to the
Trenz Electronic TEBF0808 carrier board and the Trenz Electronic TE0808
UltraSoM+ TE0808 MPSoC module. This phase was particularly daunting
due to the lack of documentation and, in some cases, inaccuracies in the
information available.

The migration to the TEBF0808 board for field use as part of the AT-
CLL project initially presented several challenges, with limited and some-
times inaccurate documentation dictating a slow migration process. The
task was further complicated by the need to manually remap pins to match
the new development board, a time-consuming process. In addition, config-
uring the second-stage boot loader to meet the new board specifications was
critical to ensure a seamless boot process. A significant amount of develop-
ment effort was devoted to firmware customization, specifically configuring
the on-board reference clock generator, which is essential for generating the
122.88 MHz clock for the AD9371. This was a modification from the lab
setup, which used an external module for clock generation. In addition, the
embedded Linux project underwent considerable customization to adapt to
the new hardware environment. Critical to the deployment was the estab-
lishment of remote setup, reset, and reprogramming capabilities. System re-
sets were performed via GPIO pins through the APU using the NCT5104D
GPIO Linux driver, and both FPGA and processing system reprogramming
was performed remotely via USB UART/JTAG using the Vivado hardware
server running on the APU. This capability was critical for maintaining and
updating the system in the field.

Finally, Figure D.1 shows one of the kits ready for installation. In to-
tal, four of these kits have been assembled and three are already deployed,

75

marking a significant milestone in the practical implementation phase of the
project.

Figure D.1: Field-ready system setup.

76

Bibliography

[1] P. Rito et al., “Aveiro Tech City Living Lab: A Communication, Sensing,
and Computing Platform for City Environments”, in IEEE Internet of
Things Journal, vol. 10, no. 15, pp. 13489-13510, 1 Aug.1, 2023, doi:
10.1109/JIOT.2023.3262627.

[2] Analog Devices, “ ADALM-PLUTO Software-Defined Radio
Active Learning Module”, https://www.analog.com/en/design-
center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-
pluto.html (Accessed July 21, 2023)

[3] innovationatwork.ieee.org, “Demand for Wi-Fi 6 is growing”,
https://innovationatwork.ieee.org/demand-for-wi-fi-6-is-growing/ (Ac-
cessed July 20, 2023).

[4] Spectrum Tracker, “Europe West”, https://www.spectrum-
tracker.com/Portugal (Accessed Oct. 27, 2023)

[5] U. Wetzker, I. Splitt, M. Zimmerling, C. A. Boano and K. Römer, “Trou-
bleshooting Wireless Coexistence Problems in the Industrial Internet of
Things”, in IEEE Intl Conference on Computational Science and Engi-
neering (CSE, IEEE Intl Conference on Embedded and Ubiquitous Com-
puting (EUC), and 15th Intl Symposium on Distributed Computing and
Applications for Business Engineering (DCABES), 2016, pp. 98-98, doi:
10.1109/CSE-EUC-DCABES.2016.167.

[6] G. Halfacree, “Semtech Announces 2.4GHz LoRa Prod-
uct Plans for Single-Frequency Global Deployments”
https://www.hackster.io/news/semtech-announces-2-4ghz-lora-product-
plans-for-single-frequency-global-deployments-4f708d0ec116 (Accessed
Oct. 26, 2023)

[7] C. Luo, J. Ji, Q. Wang, X. Chen and P. Li, ‘Channel State
Information Prediction for 5G Wireless Communications: A Deep
Learning Approach,” in IEEE Transactions on Network Science and
Engineering, vol. 7, no. 1, pp. 227-236, 1 Jan.-March 2020, doi:
10.1109/TNSE.2018.2848960.

77

[8] M. Ratni, D. Krupezevic, Zhaocheng Wang, and J. -U. Jurgensen,
“Broadband digital direct down conversion receiver suitable for soft-
ware defined radio”, in IEEE Int. Symposium on Personal, Indoor
and Mobile Radio Communications, 2002, pp. 100-104 vol.1, doi:
10.1109/PIMRC.2002.1046669.

[9] S. Ziafat, W. Ejaz, and H. Jamal, “Spectrum sensing techniques for cog-
nitive radio networks: Performance analysis” in IEEE MTT-S Int. Mi-
crowave Workshop Series on Intelligent Radio for Future Personal Ter-
minals, 2011, pp. 1-4, doi: 10.1109/IMWS2.2011.6027191.

[10] K. Wasayangkool, et al., “A Performance Comparison of four
Moderns Spectrum Sensing techniques under Noise Uncertainty
and different User Accessing Time”, in 2020 8th International
Electrical Engineering Congress (iEECON), 2020, pp. 1-4, doi:
10.1109/iEECON48109.2020.229568.

[11] M. A. McHenry, et al., “Chicago spectrum occupancy measurements
& analysis and a long-term studies proposal”, in Proc. of IEEE TAPAS,
2006, doi:10.1145/1234388.1234389

[12] M. H. Islam et al., “Spectrum survey in Singapore: Occupancy mea-
surements and analyses,” in Proc. of IEEE CrownCom, 2008, pp. 1-7, doi:
10.1109/CROWNCOM.2008.4562457.

[13] M. Wellens, J. Wu and P. Mahonen, “Evaluation of spectrum occu-
pancy in indoor and outdoor scenario in the context of cognitive radio," in
Proc. of IEEE CROWNCOM, 2007, pp. 420-427, doi: 10.1109/CROWN-
COM.2007.4549835.

[14] N. Faruk, et al., “Large scale spectrum survey in rural and urban envi-
ronments within the 50 MHz–6 GHz bands,” Measurement, 2016, vol. 91,
pp. 228–238, ISSN 0263-2241, doi:10.1016/j.measurement.2016.05.046.

[15] S. Subramaniam, H. Reyes and N. Kaabouch, “Spectrum occupancy
measurement: An autocorrelation based scanning technique using USRP,”
in Proc. of IEEE WAMICON, 2015, pp. 1-5, doi: 10.1109/WAMI-
CON.2015.7120376.

[16] F. Z. el Bahi, H. Ghennioui and M. Zouak, “Indoor spectrum occu-
pancy in Morocco for cognitive radio applications: Measurements and
analysis,” in Proc. of IEEE WINCOM, 2019, Fez, Morocco, 2019, pp.
1-6, doi: 10.1109/WINCOM47513.2019.8942455.

[17] A. Martian, C. Vladeanu and I. Marghescu, “Novel software defined
radio testbed for spectrum occupancy measurements,” in Proc. of IEEE
ISETC, 2020, pp. 1-4, doi: 10.1109/ISETC50328.2020.9301075.

78

[18] J. Mitola and G. Q. Maguire, “Cognitive radio: Making software radios
more personal,” IEEE Personal Commun. Mag., vol. 6, no. 4, pp. 13-18,
Aug. 1999, doi: 10.1109/98.788210.13–18,

[19] Federal Communications Commission, “Notice of proposed rule making
and order: Facilitating opportunities for flexible, efficient, and reliable
spectrum use employing cognitive radio technologies,” ET Docket No.
03-108, Feb. 2005.

[20] Anacom, “Frequências”, https://www.anacom.pt/render.jsp?category
Id=382989 (Accessed June 10, 2023).

[21] Spectrum Tracker, “Portugal”, https://www.spectrum-
tracker.com/Portugal (Accessed June 10, 2023).

[22] Cisco, “Signal-to-Noise Ratio (SNR) and Wireless Sig-
nal Strength”, https://documentation.meraki.com/MR/Wi-
Fi_Basics_and_Best_Practices/Signal-to-
Noise_Ratio_(SNR)_and_Wireless_Signal_Strength (Accessed Oct. 3,
2023).

[23] I. Kakalou et al., “A survey on spectrum sensing algorithms for cogni-
tive radio networks,” in Proc. of IEEE MOCAST, 2018.

[24] Analog Devices,“AD9371 Integrated, Dual RF Transceiver with
Observation Path” https://www.analog.com/media/en/technical-
documentation/data-sheets/AD9371.pdf (Accessed July 20, 2023).

[25] Analog Devices,“AD9371/AD9375 System Development User
Guide UG-992” https://www.analog.com/media/en/technical-
documentation/user-guides/ug-992.pdf (Accessed July. 20, 2023).

[26] J. Korhonen, “IEEE P1904.3 Radio over Ethernet short intro-
duction”, https://www.ieee802.org/1/files/public/docs2016/new-roe-jik-
ieee1904dot3intro-0316-v00.pdf (Accessed September 21, 2023).

[27] Qorvo,“QPL9057 Ultra-Low Noise Flat Gain Amplifier”
https://store.qorvo.com/products/detail/qpl9057evb1-qorvo/631973/
(Accessed July 20, 2023).

[28] G. Paoloni, “How to Benchmark Code Execution on
Intel IA-32 and IA-64 Instruction Set Architectures”
https://www.intel.com/content/dam/www/public/us/en/documents
/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf (Ac-
cessed: September 11, 2023).

[29] Intel, “Intel® 64 and IA-32 Architectures Software Developer Man-
uals”, https://www.intel.com/content/www/us/en/developer/articles
/technical/intel-sdm.html (Accessed: 11 September, 2023).

79

[30] Intel, “Intel® Intrinsics Guide”, https://www.intel.com/content/
www/us/en/docs/intrinsics-guide/index.html (Accessed: Oct. 4, 2023).

[31] L. Torvalds, “Linux kernel”, https://github.com/torvalds/linux/ blob/-
master/arch/x86/kernel/tsc.c (Accessed: Oct. 5, 2023).

[32] Broadcom, “BCM57410 Ethernet NICs”,
https://docs.broadcom.com/doc/12381557 (Accessed July 20, 2023).

[33] Scipy, “firfilter.c”, https://github.com/scipy/scipy/blob/main/scipy/
signal/_firfilter.c (Accessed June 27, 2023).

[34] GNU Radio, “Volk - The Vector Optimized Library of Kernels”,
https://github.com/gnuradio/volk/blob/main/kernels/volk/volk_32f_x2_dot_prod_32f.h
(Accessed June 27, 2023).

[35] Steven W. Smith, ‘The Scientist and Engineer’s Guide to Digital Signal
Processing”, Second Edition, California Technical Publishing, 1999, ISBN
0-9660176-7-6, ISBN 0-9660176-4-1, ISBN 0-9660176-6-8, chapter 19.

[36] J. Smith “Kaiser Window Beta Parameter”
https://ccrma.stanford.edu/%7Ej/sasp/Kaiser_Window_Beta _Pa-
rameter.html (Accessed July 20, 2023).

[37] MathWorks, “Kaiser Window”, https://www.mathworks.com/help/
signal/ug/kaiserwindow.html (Accessed: July 20, 2023).

[38] Canonical, “Real-time Ubuntu is now generally available”,
https://ubuntu.com/blog/real-time-ubuntu-is-now-generally-available
(Accessed June 20, 2023).

[39] E. Barbieri, “Technical deep-dive into a real-time kernel”,
https://ubuntu.com/blog/real-time-kernel-technical (Accessed June
22, 2023).

[40] E. Barbieri, “Tuning a real-time kernel”,
https://ubuntu.com/blog/real-time-kernel-tuning (Accessed June 22,
2023).

[41] E. Khartchenko, “Optimizing Computer Applica-
tions for Latency: Part 1: Configuring the Hard-
ware”, https://www.intel.com/content/www/us/en
/developer/articles/technical/optimizing-computer-applications-for-
latency-part-1-configuring-the-hardware.html (Accessed June 22, 2023).

[42] E. Barbieri, “Low latency Linux for industrial embedded systems –
Part II”, https://ubuntu.com/blog/industrial-embedded-systems-ii (Ac-
cessed Oct. 22, 2023).

80

[43] Rohde & Schwarz, “Measuring with Modern Spec-
trum Analyzers Educational Note”, https://scdn.rohde-
schwarz.com/ur/pws/dl_downloads/dl_application/application_notes
/1ma201_1/1MA201_9e_spectrum_analyzers_meas.pdf (Accessed Oct.
25, 2023).

[44] Matteo Frigo and Steven G. Johnson, “FFTW Documentation”,
https://www.fftw.org/#documentation (Accessed May 7, 2023).

[45] AMD, “Radio over Ethernet Framer v3.0 Product Brief (PB056)”,
https://docs.xilinx.com/v/u/en-US/pb056-radio-over-ethernet (Accessed
March 10, 2023).

[46] CPRI corporation, “Common Public Ra-
dio Interface: eCPRI Interface Specification”,
http://www.cpri.info/downloads/eCPRI_v_2.0_2019_05_10c.pdf
(Accessed Oct. 20, 2023)

[47] Oracle, “Open Systems Interconnection (OSI) Reference Model”,
https://docs.oracle.com/cd/E19504-01/802-5886/intro-45828/index.html
(Accessed May 7, 2023).

[48] IBM, “Raw Sockets”, https://www.ibm.com/docs/en/zvm/7.2?topic=
types-raw-sockets (Accessed May 7, 2023).

[49] Microchip, “Berkeley Sockets”, https://microchipdeveloper.com/tcpip:
berkeley-sockets (Accessed Oct. 2, 2023).

[50] AMD, “Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit”,
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
(Accessed Oct. 7, 2023).

[51] Analog Devices, “ADRV9371 Evaluation Board”,
https://www.analog.com/en/products/ad9371.html (Accessed Oct.
7, 2023).

[52] Digikey, “SI570-PROG-EVB”, https://www.digikey.in/en/products
/detail/skyworks-solutions-inc/SI570-PROG-EVB/4755476 (Accessed
Oct.. 7, 2023).

[53] Intel, “Intel® Xeon® Gold 6336Y Processor 36M Cache, 2.40 GHz”
https://www.intel.com/content/www/us/en/products/sku/215280/intel-
xeon-gold-6336y-processor-36m-cache-2-40-ghz/specifications.html (Ac-
cessed 11 September, 2023).

[54] M. Kuhn, “Digital Signal Processing”,
https://www.cl.cam.ac.uk/teaching/1011/DSP/slides-2up.pdf (Accessed
11 Oct. 2023).

81

[55] L. Sangyoub, “Design and analysis of ultra-wide band-
width impulse radio receiver”, Ph.D. dissertation, University
of Southern California, Los Angeles, 2002. [Online]. Available:
https://www.researchgate.net/publication/35474287_Design_and
_analysis_of_ultra-wide_bandwidth_impulse_radio_receiver

[56] Wikipedia, “Friis formulas for noise”,
https://en.wikipedia.org/wiki/Friis_formulas_for_noise (Accessed
12 Oct. 2023).

[57] everything RF, “What is Noise Floor?”,
https://www.everythingrf.com/community/what-is-noise-floor (Accessed
12 Oct. 2023).

[58] Anton Patyuchenko, “RF Signal Chain Discourse: Proper-
ties and Performance Metrics”, https://www.analog.com/en/analog-
dialogue/articles/rf-signal-chain-discourse.html (Accessed 12 Oct. 2023).

[59] Keysight, “Fundamentals of RF and Microwave Noise Fig-
ure Measurements”, https://www.keysight.com/us/en/assets/7018-
06808/application-notes/5952-8255.pdf (Accessed 12 Oct. 2023).

[60] Gnu Project, “Options That Control Optimization”,
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html (Accessed 15
Oct. 2023).

[61] Mellanox, “ConnectX®-5 EN Card Product Brief”,
https://resource.fs.com/mall/file/datasheet/connectx-5-en-ethernet-
adapter card-datasheet.pdf (Accessed Oct. 26, 2023)

82

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Scope
	Motivation
	Objectives
	Publication
	Document Structure

	Spectral Probes
	Introduction
	Software Defined-Radio Receivers
	Direct-Conversion Receivers

	Spectrum Sensing
	Spectrum Sensing Techniques
	Spectrum Sensing Hardware

	RF Receiver Performance Characteristics

	System Architecture and Development Platform
	Introduction
	General Architecture
	SDR Platform
	RF Transceiver
	FPGA

	Fronthaul
	Radio over Ethernet

	Centralized Processing
	Analog RF Front-End and Antenna
	Final Architecture

	Implementation
	Introduction
	SDR Platform
	Loopback Design
	Standard Design
	Embedded Linux
	Network Sockets

	Centralized Processing Implementation
	Real-Time Digital Signal Processing
	Digital Filtering

	Signal Power Calculation
	Remote Access

	Analog RF-front end
	Physical Setup
	Radio Frequency Instruments
	Fronthaul
	Final Setup

	Tests and Results
	Introduction
	Loopback Tests
	Centralized Processing Tests
	Spectrum Analysis
	Signal Power Measurements
	Signal Filtering Results
	Execution Time Results

	Spectrum Sensing Campaign

	Conclusion
	Final Remarks
	Future Work

	Real-Time Kernel Tunning and Low Jitter Computing Techniques
	High-Performance DSP Software Module
	Numerical Approximation and Optimized Implementation for Signal Power Calculation
	System Implementation for On-Site Deployment
	Bibliography

