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Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Engenharia Eletrotécnica,
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Paulo Gonçalves por me terem ajudado em vários aspetos técnicos.
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Palavras-Chave Caracterização de Linearidade, Multi-tom, Dinâmica Não Linear, Razão de
Potência de Rúıdo Varrida, Métrica de Linearidade Esperada.

Resumo A linearidade quantifica quanto um sistema diverge do funcionamento linear
ideal. Infelizmente, a capacidade técnica para caracterizar linearidade é
incompleta. Medir dinâmica não linear e relacionar métricas de linearidade
medidas com sinais de teste diferentes sempre foi um problema. À medida
que as tecnologias de telecomunicação transcendem os limites do hardware
de rádio frequência ao ocuparem bandas mais largas, ao se moverem
para frequências portadoras mais elevadas, e ao usarem sinais modulados
cada vez mais deversificados, o tempo para ultrapassar estas limitações
de caracterização de linearidade fica curto. Este trabalho aborda ambos
problemas. Ele explica como os efeitos de dinâmica não linear se manifestam
sob excitação banda-larga, apresentando uma técnica para os medir: a
razão de potência de rúıdo varrida. E define uma plataforma para comparar
linearidade quando diferentes sinais de teste são usados. Esta plataforma
consiste numa clara compreensão de como o sistema sob teste e o sinal de
teste influenciam a métrica de linearidade esperada, independentemente do
sistema e do sinal, permitindo uma avaliação de linearidade despercebida.





Keywords Linearity Characterization, Multi-tone, Nonlinear Dynamics, Swept Noise
Power Ratio, Expected Linearity Metric.

Abstract Linearity quantifies how much a system drifts from the ideal linear operation.
Unfortunatelly, the technical ability to characterize linearity is incomplete.
Measuring nonlinear dynamics, and relating linearity metrics measured with
different test signals has always been a problem. As telecommunication
technologies transcend the limits of radio frequency hardware by occupying
broader bandwidths, moving to higher carrier frequencies, and using a
more deversified set of modulated signals, the time to overcome these
linearity characterization limitations runs short. This work addresses
both problems. It explains how nonlinear dynamic effects manifest under
broadband excitation, presenting a technique to measure them: swept noise
power ratio. And defines a framework to compare linearity when using
different signals. This framework consists of a clear understanding of how
the system under test and the test signal influence linearity metrics, and of
the expected linearity metric, a linearity metric definition that, regardless of
the system and signal, enables a seamless linearity evaluation.
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Document Outline

This document is organized in four chapters.
Chapter 1 introduces the fundamentals of multi-tone linearity characterization, explains

the motives to keep on researching it, presents the state of the art, defines the work objectives,
and clarifies some assumptions made in this work.

Chapter 2 explains how to detect nonlinear dynamics under broadband excitation using
static reference IMD profiles, evidences the limitations of classical approaches to nonlinear
dynamic characterization, and presents a novel characterization technique: swept NPR.

Chapter 3 defines linearity test signal standards to guarantee consistent linearity metric
measurements, and presents the ELM framework, that enables the comparison of RF system
linearity performance under different test signal excitation.

Chapter 4 concludes, making a critical overview of this work major contributions, limita-
tions, and future work possibilities.
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Chapter 1

Introduction

1.1 Background

RF communication systems are designed to exchange information using the radio electric
spectrum. But real systems are not ideal, they distort and filter input information. In other
words, their output response is a nonlinear dynamic function of the input information.

𝑥(𝑡) RF 

System

y(𝑡)

Figure 1.1: Generic RF system diagram block.

The output response of a nonlinear dynamic system, y(t), is composed of a linear function,
flin[·], and a nonlinear function, fnlin[·], of the input information signal, x(t):

y(t) = flin[x(t)] + fnlin[x(t)] (1.1)

The nonlinear function is further decomposed into a correlated, and uncorrelated response:

fnlin[x(t)] = fnlincorr [x(t)] + fnlinuncorr [x(t)] (1.2)

The correlated response contains some input information, whereas the uncorrelated response,
despite being imposed by the input signal, contains no information.
The linearity level is the linear to nonlinear response ratio at the system output response.

Linearity Level ∝ flin[x(t)]

fnlin[x(t)]
(1.3)

RF system linearity characterization consists of exciting the system with a test signal,
measuring the output response, separating the linear and nonlinear responses, and assessing
the linearity level. Since the nonlinear response produces novel spectral components at
the system output around DC, and around all carrier harmonic frequencies, and the linear
response only filters the input signal spectrum, as shown in Fig. 1.2, the RF system linearity
characterization is performed in the frequency domain, being mostly concerned with in-band
distortion around the carrier frequency, i.e. adjacent-channel and co-channel distortion. The
characterization goal is to determine what spectral components are generated from input to

1
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Figure 1.2: Spectral decomposition of the nonlinear dynamic RF system response.

output, what are their magnitude and phase, what is their relation to the linear response,
and if they manifest dynamic behavior.

There are four major aspects of RF system linearity characterization: instrumentation,
techniques, metrics, and test signals.

1.1.1 Linearity instrumentation

Linearity instrumentation is the development of hardware to perform RF system linearity
characterization, i.e. hardware capable of generating/measuring test signals with desired
temporal amplitude statistics, and spectral magnitude and phase. Thankfully, modern Vec-
tor Signal Generator (VSG), and Vector Signal Analyser (VSA) equipment is capable of
performing the signal generation/measurement tasks required for general purpose RF sytem
linearity characterization, therefore, for most applications, there is no need to develop tailored
hardware, like there was in the past [7, 8].

1.1.2 Linearity characterization techniques

Linearity characterization techniques are methods to configure RF instruments in exper-
imental setups to measure the linear, and the nonlinear RF system response. Most modern

2



techniques use some variation of the experimental setup schematized in Fig. 1.3. In this setup,
the VSG generates the test signal, and the VSA measures the output response.

𝑥(𝑡) RF

System

y(𝑡)
VSG VSA

Figure 1.3: RF system linearity characterization experimental setup.

As stated, the interest nonlinear response in RF system linearity characterization is the
in-band nonlinear response, that includes both co-channel, and adjacent-channel distortion.
Measuring the adjacent channel portion of the nonlinear response is straightforward, it is di-
rectly observed from the output response spectrum, as shown in Fig. 1.4. The complex aspect
of linearity characterization techniques is the measurement of co-channel distortion, whose
spectrum overlaps the linear system response. In fact, RF system linearity characterization
techniques can be grouped based on the method they use to measure co-channel distortion.
The most relevant are notch based, correlation based, and feed-forward based techniques.

f
L1

f
L2

f
U1

f
U1

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Co-channelAdjacent-Channel
Lower

Adjacent-Channel
Upper

Linear Response
Nonlinear Response

Figure 1.4: In-band distortion PSD.

Notch Based Techniques

Notch based techniques filter part of the test signal spectrum to make a nonlinear obser-
vation at the system output1, as depicted in Fig. 1.5. The output PSD within the notch band-
width provides an approximate measure of the co-channel uncorrelated nonlinear response,
whereas the output PSD in the remaining co-channel frequencies provides an approximate

1The heuristic is to use a notch filter that removes less 10% of the total instantaneous bandwidth.
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measure of the linear response. Classically, this measurement was performed with a notch at
the carrier frequency [9, 10]2, but the notch can be placed anywhere within the excitation
bandwidth to evaluate uncorrelated distortion locally [12].

Nonlinear ObservationNotch

RF 

System Y(f)X(f)

Figure 1.5: Notch based characterization technique block diagram.

Correlation Based Techniques

Correlation based techniques assume that the correlated system response is the linear
response, and that the uncorrelated system response is the nonlinear response3. With this
assumption, the correlation factor is the equivalent linear gain between the input, and linear
output signals [13–16]. Therefore, after measuring the input, and output signals, it is possible
to compute the equivalent gain, and obtain the linear, and nonlinear output responses.

Fig. 1.6 summarizes the correlation based characterization technique.

-

RF

System

𝑹𝑿𝒀
𝑹𝑿𝑿

+

Nonlinear Response

X(f) Y(f)

Figure 1.6: Correlation based characterization technique block diagram.

2In the absence of dynamics, the central notch location provides the worst case measurement of uncorrelated
nonlinear distortion [11].

3Correlation based techniques interpret the correlated nonlinear response as part of the linear response.

4



Feed-Forward Based Techniques

Feed-forward based techniques feed the linear system response to the system output
to isolate the nonlinear response, and then measure it [8, 17]. This method requires the
prior knowledge of the linear system response, which can be obtained from small signal
measurements. These techniques are the best suitable for scenarios in which input power level
varies significantly. Fig. 1.7 summarizes the feed-forward based characterization technique.

-

RF

System

a1
+

Nonlinear Response

X(f) Y(f)

H1 f

Figure 1.7: Feed-forward based characterization technique block diagram.

1.1.3 Linearity metrics

Linearity metrics define how the system linear, and nonlinear response measurements are
processed to asses linearity. Classical Multi-tone metrics are linear/nonlinear ratios, that
integrate power in interest bands: the adjacent-channel, and the co-channel [18, 19].

Adjacent-Channel Power Ratio (ACPR) is the ratio between the co-channel output power
and the adjacent-channel distortion power. From Fig. 1.4, it is defined as:

∫ fU1

fL2
Sy(f)df

∫ fL2

fL1
Sy(f)df +

∫ fU2

fU1
Sy(f)df

(1.4)

ACPR can be measured from a simple spectral measurement of the output signal.

NPR is the ratio between the uncorrelated nonlinear output PSD and the correlated
output PSD. From Fig. 1.8, it can be defined as:

NPR =

1
f1−fL2

∫ f1
fL2

Sy(f)df + 1
fU1−f2

∫ fU1

f2
Sy(f)df

1
f2−f1

∫ f2
f1

Sy(f)df
. (1.5)
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Figure 1.8: NPR evaluation bands.

NPR can be measured using correlation based techniques, or using notch based characteriza-
tion techniques. Its first formulation assumes a notch based technique [9].

Co-Channel Power Ratio (CCPR) is the ratio between the co-channel nonlinear output
power and the linear output power. From Fig. 1.4, it is defined as:

∫ fU1

fL2
Sy(f)df

∫ fU1

fL2
Sfnlin

(f)df
(1.6)

CCPR is measured using feed-forward characterization techniques, and accounts for both
correlated and uncorrelated distortion [8, 11].

1.1.4 Linearity test signals

The nonlinear response, contrarily to the linear response, cannot be decomposed into the
sum of the responses to each information component at the system output4. Thus, it must
be measured with signals that replicate the real application modulation characteristics [20],
or signals that force a wide variety of states, like random signals [9, 21].

For a long time, Continuous Wave (CW) and two-tones were the most widely used linearity
test signals [18], but modern RF communication has amplitude, phase, and bandwidth
characteristics that can no longer be represented by these test signals [21–23].

On the other hand, properly designed multi-tone signals produce well characterized wave-
forms that can simulate complex modulated RF signals and specific statistical distributions,
like Additive White Gaussian Noise (AWGN). Furthermore, contrarily to real communica-
tion signals, multi-tones are easy to generate, measure, and replicate. They allow flexible
statistical design with a reduced number of tones, and yield insight into distortion causing
mechanisms [11, 21, 24–28]. Therefore, if possible, it is desirable to support future RF linearity
characterization techniques on multi-tone test signals.

4Nonlinear systems do not enjoy superposition: fnlin[
∑∞

n=1 αnxn(t)] ̸=
∑∞

n=1 fnlin[αnxn(t)]
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A generic multi-tone signal is defined by (1.7).

x(t) =

Q∑

q=1

Aqcos(ωqt+ ϕq) (1.7)

It consist of multiple sinusoidal waves with independent amplitude, Aq, frequency, ωq, and
phase, ϕq. For RF system linearity characterization purposes, the sinusoidal waves fit in a
well-defined frequency grid, meaning that multi-tones are periodic and deterministic signals.

1.2 Motivation

Telecommunication is in constant evolution. As Fifth Generation (5G) technology is
being deployed, researchers are already exploring the challenges and requirements for radio
communication beyond 5G [29]. Each novel technology is expected to have higher capacity,
more users, better energy efficiency, and lower cost than the previous one. But, more
than improving specs, novel technologies aim to improve society in a tangible way. For
example, future satellite technology aims to provide internet and mobile service coverage
worldwide5 [29]. To enable such technological leaps, RF hardware must be stretched beyond
its current performance limits [30]. The same is true for RF linearity measurement science.

This work is aligned with the National Institute of Standard and Technology’s goal to
develop measurement science and standards for the next generations of wireless communica-
tion [31], namely the development of improved nonlinear device characterization and instru-
mentation techniques. It was kickstarted by the need to overcome the NPR characterization
limitations found while characterizing the linearity of K-band Power Amplifier Monolitic
Microwave Integrated Circuit designs for satellite application in a collaborative project with
the European Space Agency [32].

In satellite applications, NPR is the linearity criterion [22, 33, 34], and the identity between
NPR and Error Vector Magnitude (EVM) [14, 35–37] makes NPR aware of modulation error,
which is relevant for mobile applications. But new linearity characterization challenges arise as
these applications occupy broader bandwidths, and move to higher frequency bands, because
nonlinear dynamics can no longer be neglected, and defining appropriate techniques, and
metrics becomes increasingly complex. In fact, there are three major limitations that hinder
the use of NPR in modern telecom: 1) NPR assumes static nonlinearities [12, 37], considering,
at most, linear dynamics; 2) there is a lack of insight of how nonlinear dynamic effects manifest
on the nonlinear response under broadband excitation; 3) the cumulative nature NPR hides
the frequency dependence of the nonlinear response.

Furthermore, linearity metrics must provide insight about the nonlinear distortion limits
for correct system operation. Without this, metrics become just blind marks to meet the
requirement list. A debilitating weakness in this regard is the existent difficulty to perform
measurements that yield comparable linearity metrics, especially when different test signals
are used. This happens because there is no standard linearity characterization test signal,
and it is not easy to establish identities between linearity metrics obtained using different
test signals. These limitations create critical overarching problems. Designers do not have a
universal metric to reference their linearity improved designs. Manufacturers cannot provide
complete linearity characterization of their products, as it is impracticable to test them with

540 % of Earth still does not have access to internet, nor to mobile telecommunication services.
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all communication signals. And application engineers cannot know a priori if a given device
they purchase will comply to the linearity specifications of their application if that signal is
not contemplated on the manufacturer’s datasheet.

Actually, many more RF system linearity characterization limitations could be mentioned
in the scope of novel telecommunication technologies, but for the sake of clarity, this document
focuses only on nonlinear dynamic characterization, linearity metric identities, and test signal
statistics, which are the object of study of this work.

1.3 State of the Art

1.3.1 Nonlinear Dynamic Characterization

The ability to detect and quantify nonlinear dynamics in broadband operation is essential
for modern RF applications. Unfortunately, multi-tone RF system linearity characterization
techniques and metrics capable of this are lacking. They can only be developed after under-
standing how dynamics manifest under multi-tone excitation, and how they can be measured.

Carvalho and Pedro explained how 3rd-order nonlinear dynamics manifest under equal
magnitude two-tone excitation [38]. They demonstrated how baseband impedance variation
produces strong adjacent channel distortion asymmetry when loads are dominantly reac-
tive. Under equal magnitude two-tone excitation, a static system produces symmetrical
adjacent channel distortion. Therefore, adjacent-channel distortion asymmetry is a measure
of 3rd-order nonlinear dynamics. By comparing the measured adjacent channel distortion
asymmetry with the expected static response it is possible to quantify nonlinear dynamics [39].
Therefore, by performing multiple two-tone measurements with different tone spacing, it is
possible to detect and quantify dynamics within the RF system excitation bandwidth. For
a long time, this was the most reliable RF nonlinear dynamic characterization procedure
available. But, for several reasons, in modern RF applications this method has become obso-
lete. As stated, two-tone signals are not representative of modern communication scenarios.
Furthermore, the circuit-level theory that supports this technique is hard to carry over to
system-level linearity characterization, and it is too tightly bound to third-order nonlinearity
and baseband dynamic mechanisms, which leads to incorrect results when the system under
test manifests other nonlinear dynamic behaviors.

Martins et. al. [40] extrapolated RF system nonlinear dynamic characterization to mul-
titone excitation signals. This work shows how to use multiple two-tone measurements to
compute a multi-tone response, and evaluate adjacent-channel and co-channel distortion.
From this endeavor, the authors drew two important qualitative considerations: adjacent-
channel is mostly influenced by mid-band baseband distortion, whereas co-channel distortion
is mostly influenced by baseband distortion near DC. They also noted that memory effects
are observable in the shape of the distortion components. On the downside, this work,
despite being a first step towards multi-tone linearity characterization, is highly influenced
by [38], and suffers from the same limitations. Furthermore, its claim about memory effect
observation is qualitative, and is not supported theoretically. More work is required to
quantify nonlinear dynamic effects in comprehensive metrics. Beyond this, the use of multiple
2-tone measurements to reconstruct the multi-tone response is not generally valid, and is more
laborious than truly performing a multi-tone characterization.

In [23], a multi-tone characterization technique was finally presented for the assessment
of nonlinear dynamics. It uses an offset multi-tone, which is a multi-tone whose frequency
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grid guarantees that each IMD product generated is unique6, meaning that each nonlinear
output frequency is composed of a single IMD product, and that output distortion and
output signal are at distinct frequencies. Therefore, the nonlinear dynamics of different
orders can be characterized directly, and simultaneously from the output response. This work
evidences that offset multi-tone characterization is more sensitive than two-tone characteriza-
tion, particularly near peaks and steep regions of the nonlinear dynamic response. However,
offset multi-tones have scalability issues in terms of the number of tones, and in terms of
the nonlinear orders that can be evaluated. Guaranteeing unique IMD products beyond
third-order is increasingly difficult, and for higher orders it becomes impossible. Beyond this,
the frequency sweep method used for in-band nonlinear dynamic observation is still tightly
bound to the two-tone technique. Scalable RF multi-tone linearity characterization techniques
require a categorically different approach to nonlinear dynamic detection.

This compilation of works evidences that the measurement of nonlinear dynamics requires
tailored characterization techniques. It is not something that can be directly inferred from
classical characterization approaches. In fact, existing multitone linearity metrics are unable
to assess nonlinear dynamics, because they average the distortion power present inband by
integrating the nonlinear response PSD. This hides nonlinear dynamic effects, which are
frequency dependent by definition. Therefore, the use of NPR to assess the linearity of
systems presenting long-term memory effects is misleading. Scalable multi-tone linearity
characterization techniques, and quantifiable metrics to evaluate nonlinear dynamics effects
in modern RF communication scenarios are missing, and are desperately required.

1.3.2 Linearity Metrics: identities and test signal statistics

Linearity measurements are complex, costly, time consuming, and require expertise. There-
fore, it is desirable to be able to predict linearity metrics without having to measure them.
This can be obtained from a good RF system model, or from the decomposition of the system
output response. Figures of merit can be predicted either by computing the system output
using the model, and evaluating the linearity metric, or by establishing an identity, i.e. a
conversion factor, between linearity metrics measured at the system output.

The equivalent gain approach, presented in [13], accurately computes ACPR, NPR, and
EVM under Code Devision Multiple Access (CDMA) signal excitation. This was achieved
using a RF system model based on the AM-AM and AM-PM characteristics of the device
under test. In [11], Pedro and Carvalho, assuming a 3rd-order nonlinear system, related
two-tone and multi-tone figures of merit. They established identities between ACPR, NPR,
CCPR, and Intermodulation Ratio (IMR). These identities were later expressed in terms of
Third-Order Intercept Point (IP3) [41]. In [35], a correlation based approach was used to
decompose the RF system output response, and establish identities between Signal-to-Noise
Ratio (SNR), and EVM. This linked system level metrics and nonlinear distortion. Since then,
efforts were made to relate EVM with NPR [22, 36, 42]. In [37], a best linear approximation
technique is used to obtain EVM, NPR, and ACPR from a single measurement, with the same
setup. Indeed, many works have addressed and presented linearity metric identities. So, why
is this still a relevant research topic? In part, because the published works based on modeling
approaches are not valid in nonlinear dynamic scenarios. Also, because the correlation/best
linear approximation strategies mentioned are valid as long as the test signal remains the

6An offset multi-tone is a standard multi-tone with most tones switched-off. The switch-off is designed to
avoid IMD product overlap. In practice, this linearity characterization technique is notch based.
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same, and with constant power level [12]. In fact, predicting linearity under different test
signal statistics, and for different signal types is a major challenge.

Several studies report test-signal/linearity metric dependence. In [43], Aparin observed
that in reserve link CDMA, linearity changes just by alternating between OQPSK and QPSK
modulation schemes. In [44], the ACPR of the same device is measured with different multi-
tones, and with a real communication signals. The authors observed that all ACPR metrics
are different. No multi-tone was capable of reproducing the real communication signal ACPR.
In [45], for the same device, the NPR measured with an IS-95 signal differs more than 5 dB
from the NPR measured using a Gaussian signal.

Some have worked to formulate and interpret the influence of test signal statistics on
linearity metrics. In [46], authors described modulated signals statistically. Then, with the aid
of behavioral modeling, they computed the output auto-correlation function of a the nonlinear
system, from which it is possible to compute and evaluate ACPR, effectively establishing the
desired relationship between input statistics and linearity metrics. However, this approach
is mathematically complex, and requires specific theoretical development for every desired
input signal statistics, which makes it hard to use. Nonetheless, these considerations enabled
Aparin to explain the linearity differences observed in [43] when alternating between OQPSK
or QPSK modulation schemes in reverse link CDMA. These were imposed by differences in the
high-order statistical moments of these signals. In [47], the initial steps on how to interpret
linearity metrics in light of the test signal amplitude statistics were laid out. It explained
the importance of the test signal PSD on the linearity metric, showing that the likelihood
of nonlinear power levels is more important than maximum instantaneous power, evidencing
the limitations of supporting the linearity analysis on Peak-to-Average Power Ratio (PAPR).
In [48], it was added that to understand the linearity metric imposed by a given test signal,
it is not enough to look to the signal spectrum and the amplitude statistics, it is necessary
to consider the temporal waveform as a whole, i.e. to have in mind both the amplitude and
phase of the test signal spectrum.

Despite these developments, the insight to interpret and predict linearity metrics measured
with different test signals is still short, and in need of expansion.

1.4 Objectives

As stated, this work is aligned with the NIST’s goal to develop measurement science and
standards for the next generations of wireless communication. It aims to improve multi-tone
linearity characterization techniques, and metrics. The major objectives are:

� To develop novel RF system multi-tone linearity characterization techniques and metrics
capable of detecting nonlinear dynamics under broadband excitation;

� And to develop a universal framework to assess and compare RF system linearity when
different test signals are used.

1.5 Assumptions

To avoid doubts and misinterpretations, here is list of assumptions implicit in this work.
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List of assumptions:

� The RF system under test is time-invariant. It is not modified by characterization.

� The term broadband system is used interchangeably with nonlinear dynamic system. It
does not refer to a specific bandwidth, carrier frequency, nor any ratio between the two.

� A broadband excitation is a test signal that excites the relevant nonlinear dynamics
within the excitation bandwidth of a broadband system.

� RF system linearity is a function of the input test signal. Any thermal, bias, loading,
or trapping effect that is not a function of the input test signal is not object of study.

� Nonlinear distortion is produced by the RF system. Mixing, video bandwidth, and
baseband telecommunication subsystems are assumed to be ideal.
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Chapter 2

Nonlinear dynamic detection under
broadband excitation

As RF systems occupy broader bandwidths and move to higher frequency bands, the need
to know how to detect nonlinear dynamics under broadband excitation increases, and defining
appropriate linearity characterization techniques and metrics becomes more complex.

The existing approaches to nonlinear dynamic detection in RF systems rely on techniques
developed under 2-tone excitation, but their theoretical validity under multi-tone excitation
has not been demonstrated. Classical characterization techniques and metrics, such as NPR
and ACPR, are often linked with nonlinear dynamic detection, but it is not proven if, nor how,
they detect nonlinear dynamics. Furthermore, the validated techniques, like the unequally
spaced multi-tone, have scalability issues.

This chapter revisits classical linearity characterization to understand and overcome its
limitations, and presents a solution to detect nonlinear dynamics under broadband excitation.

2.1 Reference IMD profiles and nonlinear dynamic detection

Many works suggest that nonlinear dynamics manifest as a deviation of the observed
IMD response from a reference response [36, 37, 40], but they do not explicitly define
this reference. Without a reference it is not possible to quantify nonlinear dynamics, and
qualitative observations are not rigorous. In this section, it is explained how to define static
IMD reference profiles, and how to quantify nonlinear dynamics.

2.1.1 Static IMD Reference Profile

Fig. 2.1 portrays the static IMD profile concept.
Static nonlinear systems are generally described by (2.1).

y(t) =

∞∑

n=0

anx(t)
n (2.1)

For a given excitation, each monomial imposes a static spectral profile. The linear profile
is an amplified replica of the input excitation spectrum:

Y1(ω) = a1F{x(t)}, (2.2)
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Figure 2.1: Static IMD profiles up to 5th-order, and corresponding full static IMD profile.

the nth-order profile is obtained by convoluting the lower order profile with the input signal:

Yn(ω) = F{anx(t) · x(t)n−1} = anF{x(t)} ∗ F{x(t)n−1}, (2.3)

the full static IMD profile is given by the overlap of all nonlinear order profiles:

YNL(ω) =
∞∑

n=2

Yn(ω), (2.4)

and the RF system linearity analysis focuses on the fundamental envelope IMD profile.

2.1.2 Static IMD profiles under multi-tone excitation

The nth-order response to an equal magnitude multi-tone

x(t) =
1

2
A

2Q∑

q=1

·ej(ωexq t+ϕexq ), (2.5)

with excitation frequency vector

ωexωexωex = [−ωQ, · · · , −ω1, ω1, · · · , ωQ]
T , (2.6)
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and excitation phase vector

ϕexϕexϕex = [−ϕQ, · · · , −ϕ1, ϕ1, · · · , ϕQ]
T , (2.7)

is given by:

yn(t) = gngngn · ej[ωIMDnωIMDnωIMDn t+ϕIMDnϕIMDnϕIMDn ], (2.8)

where gngngn is the nth-order magnitude weighting vector,

gngngn =
1

2
anA

n

(
n

VnVnVn

)
, (2.9)

and ωIMDn
ωIMDnωIMDnt+ϕIMDnϕIMDnϕIMDn is the nth-order IMD phase vector,

ωIMDnωIMDnωIMDnt+ϕIMDnϕIMDnϕIMDn = [VnVnVn · (ωexωexωext+ϕexϕexϕex)]
T . (2.10)

VnVnVn is the nth-order mixing matrix,

VnVnVn =
[
v1v1v1, v2v2v2, · · · , vMvMvM

]T
, (2.11)

that contains all M nth-order mixing vectors,

vmvmvm = [vm1 , vm2 , · · · , vm2Q]
T . (2.12)

Each mixing vector is unique, and respects the following conditions: vmi ∈ N0 ;
∑

vmi = n. In
summary, the nth-order IMD frequency, weight and phase are imposed by the input multi-tone
excitation and the nth-order mixing matrix.

The nth-order static IMD profile at a given frequency, ω, is the phasor sum of all IMD
products that overlap at ω:

Kn(ω) =
∑

i:ωIMDni
=ω

gni · ejϕIMDni (2.13)

Likewise, the full static IMD profile is the sum of all nth-order profiles that overlap at ω:

K(ω) =
∞∑

n=2

Kn(ω) (2.14)

for any equal magnitude multi-tone, for any nonlinear order.

With this formulation it is straightforward to distinguish between correlated and uncorre-
lated IMD profiles. The correlated profile considers IMD products that involve the excitation
frequency in which they overlap:

Kn(ωq)corr =
∑

i:ωIMDni
=ωq ∧

(
Vni,Q−q+1

̸=0 ∨ Vni,Q+q
̸=0

)
; q∈[1,Q]

gni · ejϕIMDni , (2.15)

whereas the uncorrelated profile does not:

Kn(ωq)uncorr =
∑

i:ωIMDni
=ωq ∧ Vni,{Q−q+1,Q+q}=0; q∈[1,Q]

gni · ejϕIMDni . (2.16)
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(b) Example dynamic IMD error profiles.

Figure 2.2: Normalized numerical dynamic IMD profiles.

For equally spaced tones, the interest fundamental envelope bandwidth expands

±N − 1

2
· (Ntones − 1) ·∆f (2.17)

beyond the instantaneous excitation bandwidth1. Where N is the largest odd-order in the
system, Ntones is the number of excitation tones, and ∆f is the carrier spacing.

2.1.3 Detecting Nonlinear Dynamics

Contrarily to memoryless systems, nonlinear dynamic systems filter the static IMD pro-
file according to their frequency dependent response, changing K(ω). Therefore, nonlinear
dynamics can be gauged in the error between the measured IMD profile and static reference
IMD profile given by (2.14):

Error(ω) = Kmeas(ω)−Kref(ω). (2.18)

Constant error within the system bandwidth indicates attenuation/amplification, whereas
frequency dependent error indicates the presence of nonlinear dynamics2. Fig. 2.2 plots the
IMD profiles and dynamic error curves obtained through numerical computation of three
example scenarios that use a 5-tone excitation3. The frequency dependent error confirms the
presence of nonlinear dynamics.

2.2 Classical nonlinear dynamic mechanism:
Review, IMD profile analysis, and limitations

The classic nonlinear dynamic mechanism is depicted in Fig. 2.3. It has two interfering
branches: a static 3rd-order branch, and a dynamic 3rd-order branch. The dynamics are
imposed at baseband by H2(ω), before the IMD conversion to the fundamental carrier.

1Formula (2.17) assumes that even and odd order profiles do not overlap.
2Dynamics are detected at frequencies in which ∂Error(ω)

∂ω
̸= 0

3For numerical example details, refer to [nprJ1, Sec. IV.], attached at the end of this chapter.
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Figure 2.3: Classic IMD mechanism block diagram.

For an equal magnitude 2-tone excitation signal, the envelope 3rd-order static reference
IMD profile, given by (2.13), has equal lower and upper adjacent-channel IMD power4,
regardless of the excitation phase vector. Therefore, in these conditions, adjacent channel
IMD asymmetry and adjacent channel IMD variation with carrier spacing are indicators of
3rd-order dynamics. These features, and the classical nonlinear dynamic mechanism, were
used in [38, 39] to explain and detect baseband dynamics observed at RF. Under multi-tone
excitation, several IMD products overlap at each fundamental envelope IMD frequency, and
the excitation phase vector affects the reference 3rd-order IMD profile given by (2.13). Thus,
adjacent channel features are not sufficient to detect baseband nonlinear dynamics. Note that
such analysis fails to detect the nonlinear dynamics present in the Example I and Example II
symmetrical IMD profiles plotted in Fig. 2.2a.

As explained in section 2.1.3, under multi-tone excitation, baseband dynamics are detected
by the observation of frequency dependent error betweeen the classic mechanism IMD profile
and the 3rd-order static reference profile. The classical mechanism IMD profile is given
by the sum of the static and dynamic branch 3rd-order IMD profiles. The static branch
IMD profile is equal to the reference. The dynamic branch IMD profile is dependent on
the baseband dynamics that enter into play before the IMD conversion from 2nd-order to
3rd-order. Expression (2.19) formulates this conversion:

yn(t) = an x(t)n−1 · x(t)

y3(t) =
a3
a2

· y2(t) ·
1

2
·A ·

2Q∑

q=1

ej(ωexq t+ϕexq )

K3(ωIMD3) =
a3
a2

1

2
A
∑

i,k: ωIMD2i
+ωexq=ωIMD3

K2(ωIMD2i
) · ejϕexq

(2.19)

Basically, each 2nd-order IMD frequency, ωIMD2i
, converts to the 3rd-order IMD frequency

ωIMD2i
+ωexq . Before the conversion, H2(ω) filters each 2nd-order IMD product, K2(ωIMD2i

),
introducing dynamics that are observable at RF, as the static and dynamic branch IMD
profiles interfere with each other.

The classic nonlinear dynamic mechanism was a fundamental tool to understand the
influence of baseband dynamics in RF systems, and it is still useful to conceptualize nonlinear
dynamics in broadband scenarios, but its applicability is limited. An obvious limitation is
that it is bound to 3rd-order, but the limitations span beyond this. Different systems of equal
nonlinear order can produce the same profile for the same excitation signal. For instance, if
the filter H3(ω), in the 3rd-order dynamic system in Fig. 2.4, is given by:

4|K3(2ω1 − ω2)|2 = |K3(2ω2 − ω1)|2
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Figure 2.4: 3rd-order dynamic mechanism block diagram.

H3(ω) =
K3classic(ω)

K3(ω)
, (2.20)

where K3classic is the IMD profile of the classic nonlinear dynamic mechanism, the resulting
fundamental envelope IMD profile is equal to the one produced by the classic mechanism5.

The major problem of mechanism based IMD analysis is its use out of context, regardless
of the test signal excitation, or the system nonlinearity. For example, some characterization
procedures are tailored to specific nonlinear dynamic mechanisms [37, 40]. When using them,
one must know this, and be certain that the system under test complies with the assumptions,
because invalid assumptions lead to incorrect experimental results.

Static reference IMD profiles enable general characterization techniques to detect nonlinear
dynamics that avoid making assumptions about the mechanism that produces them.

2.3 Classical linearity metric limitations

NPR was developed to measure signal to distortion ratio in real communication scenar-
ios. In memoryless scenarios, classical NPR6 is guaranteed to measure the worst signal to
distortion ratio, but in nonlinear dynamic scenarios classical NPR is misleading.

Table 2.1 lists the central notch distortion power, NP, evaluated at ω3 for each example
in Fig. 2.2a. In Example I, the IMD profile minimum occurs at the central frequency. Here,
classical NPR not only underestimates the signal to distortion ratio, it also fails to detect
nonlinear dynamics. By comparing Example I NP, NP = 2, with the reference NP, NP =
50.8, it is possible to circumvent nonlinear dynamic blindness. But this NP reference is not
enough to fix classic NPR. Any dynamics within the notch are hidden, as nonlinear power
accumulates, and any dynamics outside the notch are lost, making it impossible to distinguish
IMD scenarios that are similar within the notch, but different outside the notch. Note that
Example II and Example III have similar NP values, but very distinct IMD profiles7.

Table 2.1: IMD power at the central frequency

Metric Example I Example II Example III Reference

NP (|Y3(ω)|2) 2.0 20.1 18.1 50.8

Table 2.2 lists the lower and upper adjacent channel distortion power, ACPL/ACPU,
for each example in Fig. 2.2a. Once again, without a reference ACP, it is not possible to
detect dynamics. With the aid of the reference ACP, it is possible to detect dynamics in

5Find numerical examples of this in [nprJ1, Sec. V.], attached at the end of this chapter.
6A NPR measurement with a central notch.
7The same conclusions can be drawn from an analysis based on CCPR.
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Example II and Example III8, and to distinguish these nonlinear dynamic scenarios9, but
it is not possible to detect the nonlinear dynamics present in Example I. This happens
because the Example I IMD profile area above and bellow the reference IMD profile in
the adjacent channel is similar, therefore, the accumulation of adjacent channel distortion
power hides nonlinear dynamics, making Example I ACP, ACP = 19.5, and reference ACP,
ACP = 20.5, very similar. Furthermore, note that in ACP the adjacent channel IMD profile
trend differences between Example I and Example II are lost. ACP informs that Example II
is above the reference, true, and that Example I is on top of the reference, not true.

Table 2.2: IMD power at the adjacent channels

Metric Example I Example II Example III Reference

ACPL (|Y3(ω)|2) 19.5 46.1 0.0 20.5

ACPU (|Y3(ω)|2) 19.5 46.1 9.1 20.5

In short, the inhability of classical system level linearity metrics to detect nonlinear
dynamics is twofold: they do not specify a static reference metric, and, by definition10,
they hide nonlinear dynamics in the nonlinear distortion integrals. In other words, classical
linearity metrics lack frequency resolution to detect nonlinear dynamics. Reliable nonlinear
dynamic characterization, capable of measuring both IMD profile level and trend, requires
the definition of a static IMD reference and the measurement of both adjacent-channel and
co-channel IMD with sufficient resolution frequency.

2.4 Swept NPR

From the presented developments, it is possible to extract a list of essential features a
reliable nonlinear dynamic RF system characterization technique must have. It must:

� specify a static IMD reference profile in agreement with the input excitation;

� capture the frequency dependent error between measured and reference IMD profiles;

� perform full inband IMD characterization: adjacent channel + co-channel;

� perform magnitude and phase measurements;

� and avoid blind nonlinear dynamic mechanism assumptions.

Swept NPR was developed to comply with these essential features. It consists of perform-
ing multiple NPR measurements, sweeping the notch location along the excitation bandwidth,
to obtain a full in-band uncorrelated IMD profile.

This technique is performed using an equal amplitude multi-tone test signal, therefore,
the full inband response is given by:

8Example ACP differ more than a factor of two from the reference ACP.
9Example II has a symmetrical ACP, and Example III has asymmetrical ACP.

10Recall the definitions in section 1.1.3.
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∞∑

n=0

Knd
(ω) , ω ∈ inband (2.21)

where Knd
(ω) is the dynamic weighting phasor of order n observed at the system output11.

Using (2.15) and (2.16), the response can be decomposed in correlated and uncorrelated
components:

∞∑

n=0

Knd
(ω) =

∞∑

n=0

Knd
(ω)corr +

∞∑

n=0

Knd
(ω)uncorr (2.22)

In swept NPR, the correlated response is interpreted as the linear response12, and the
uncorrelated response as the interest nonlinear IMD profile. The key for a successful charac-
terization is to understand how to decouple these responses. The uncorrelated IMD profile
can then be used to detect dynamics when compared with a static IMD reference profile.

2.4.1 Measuring the full in-band uncorrelated IMD profile

By definition, the correlated response is restricted to the excitation bandwidth frequen-
cies, i.e. to the co-channel, whereas the uncorrelated IMD profile spans along co-channel
and adjacent channel frequencies. Therefore, under a full spectrum multi-tone excitation13,
the adjacent-channel uncorrelated nonlinear response is observable, but in the co-channel
correlated and uncorrelated responses overlap. These must be decoupled.

Note that in (2.15) and (2.16) if a single excitation tone, ωoff , is turned off, all IMD phasors
correlated with the ωoff excitation phasor are switched off, but all uncorrelated phasors that
fall in ωoff are preserved. Thus, the co-channel uncorrelated IMD response can be measured by
switching off a single excitation tone, taking a measurement, recording the uncorrelated IMD
at the switched off excitation frequency, sweeping the switched off tone along the co-channel,
and repeating this process until all excitation frequencies are characterized. This is the swept
NPR concept, that is illustrated in Fig. 2.5 for a 5-tone signal.

Finally, the uncorrelated IMD profile is decoupled by combining the adjacent channel
and co-channel uncorrelated IMD observations obtained from multiple measurements. The
adjacent channel uncorrelated IMD is obtained from a single full-spectrum measurement,
whereas each co-channel IMD component is obtained from a swept NPR measurement. After
decoupling the uncorrelated IMD profile, the correlated response is obtained by subtracting
the uncorrelated IMD profile from the full spectrum-response initially measured, using (2.22).

The Swept-NPR measurement procedure is summarized in Fig. 2.6 flowchart.

2.4.2 Defining a static IMD profile reference

To define a static IMD profile reference, it is necessary to determine the nonlinear order of
the RF system, and the weight of each static nonlinear order on the response. One approach
to do this is to use input/output observations under full spectrum multi-tone excitation to

11Knd(ω) can be understood as the result of the static weighting phasor, given by (2.13), being filtered by
the system memory effects.

12As usual from a communication perspective [12, 35].
13I.e. a multi-tone with all tones on.
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Figure 2.5: 5-tone example of the swept tone characterization steps.
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Figure 2.6: Swept NPR characterization flowchart.
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extract the best static model of the system in a least squares sense [19, 39], and then use this
model to compute the static IMD profile reference14.

The static IMD reference computation is similar to the uncorrelated IMD profile measure-
ment, but instead of performing measurements, numerical replicas of the experimental signals
are applied to the best static model. First a full spectrum excitation is applied to compute
the adjacent channel static IMD reference, and then swept-tone NPR signals are applied to
compute the co-channel uncorrelated IMD reference.

The static IMD reference extraction procedure is summarized in Fig. 2.6 flowchart.

2.4.3 Signal to noise distortion ratio

When detecting dynamics in nonlinear system responses, it continues to be important to
assess the linearity level, conveyed by a SNDR in classic linearity metrics. In the proposed
method this can be evaluated as follows:

SNDR =
Correlated Power

Uncorrelated Power
(2.23)

The correlated power is the commutative power of the correlated inband response, whereas
the uncorrelated power is the commutative power of the uncorrelated IMD profile. This
formulation accounts for all the power in-band, i.e. co-channel and adjacent channel power.

SNDR, combined with a dynamic error profile, effectively overcomes the aforementioned
limitations of classical linearity metrics.

2.4.4 Characterization example

Lets compare the swept NPR characterization of a memoryless device, ERA-2+, with
the characterization of a nonlinear dynamic device, ZVA-213-S+. The measurements are
performed using two different test signals: an additive white Gaussian Noise 101-tone, and
a phase aligned 5-tone. The devices operate at different carriers, but both signals occupy
100 MHz of instantaneous bandwidth, and excite the devices with -10 dBm15.

Fig. 2.7 plots the error curves between measured and reference IMD profiles. For the ERA-
2+ device, the error is lower than 1 dB for both signals, and the curves are almost horizontal
in the whole band. Therefore, the swept NPR measurement confirms that this device is
memoryless. For the ZVA-213-S+ device, the error can be higher than 3 dB, and there are
several measurements points in which the derivative of the error is not zero, confirming that
the ZVA-213-S+ is a nonlinear dynamic device.

Table. 2.3 lists the SNDR for each measurement scenario, providing a linearity level that
complements the dynamic detection information given by the error curves.

Table 2.3: Experimental SNDR

Metric ERA (5-tones) ZVA (5-tones) Era (101-tones) ZVA (101-tones)

SNDR (dB) 28.0 24.3 28.8 25.8

14This approach minimizes the error between reference and measured IMD profiles, therefore, the
corresponding dynamic error is the minimum error, not the absolute error.

15For details about the characterization, refer to [nprJ1, Sec. VII.], attached at the end of this chapter.
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Figure 2.7: Measured dynamic error profiles.

In summary, a swept-tone NPR characterization is capable of distinguishing nonlinear
dynamic scenarios from static scenarios using the error profiles, and is capable of evaluating
IMD power levels with SNDR, regardless of the multi-tone signal used.

2.5 Swept-Notch NPR vs Multi-Notch NPR

Prior to the development of swept-NPR, the scientific community and industry [37, 42,
50] resorted to multi-notch NPR, hoping to overcome the limitations of classical linearity
metrics to detect nonlinear dynamics. Fig. 2.8 depicts the difference between swept-notch, and
multi-notch NPR. Multi-notch places multiple notches along the system excitation bandwidth.
The idea was that the observation of asymmetrical IMD along the excitation bandwidth
implied the presence of nonlinear dynamics, just like in 2-tone IMR. As already explained,
IMD symmetry features alone do not detect nonlinear dynamics under multi tone excitation
reliably. But the critical limitation of multi-notch NPR is that notching affects IMD outside
the notch, therefore, with multiple notches, each notch affects every other notch.

To exemplify this critical limitation, lets consider a normalized static 3rd-order nonlin-
earity. Table. 2.4 lists, for different linearity characterization techniques, the IMD weight
observed at each co-channel frequency when the nonlinearity is excited with a phase aligned
5-tone signal with different tones switched off16. The CCPR row17 lists the full IMD weight,
contemplating both correlated and uncorrelated IMD. The swept-tone NPR rows, list, high-
lighted in bold, the uncorrelated IMD weight at the switched-off tone. This is the uncorrelated
IMD weight under full-spectrum excitation18. These rows also evidence that switching off a
single tone reduces IMD in the whole excitation bandwidth. The multi-notch NPR rows
evidence that the uncorrelated IMD weight observed at ω2 is highly dependent on which
other tone is switched-off, demonstrating how multi-notch NPR measurements can corrupt
full-spectrum uncorrelated IMD evaluation, even for memoryless scenarios.

In nonlinear dynamics scenarios, the advantage of swept-notch NPR over multi-notch NPR

16For IMD computation details, refer to [nprC2, Sec. II.], attached at the end of this chapter.
17The row in which all tones are switched-on.
18Recall from section 2.4.1, that switching off a single tone cancels all correlated IMD, and preserves all

uncorrelated IMD at the switched off frequency.
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(a) Swept notch NPR. (b) Swept multi-notch NPR.

Figure 2.8: Difference between swept-notch and swept multi-notch NPR.

Table 2.4: Normalized IMD power at ωn as excitation tones are switched off.

Characterization Technique off tones ω1 ω2 ω3 ω4 ω5

CCPR all on 5.625 6.750 7.125 6.750 5.625
Swept NPR ω1 2.250 3.750 4.500 4.500 3.750
Swept NPR ω2 3.000 2.625 3.750 3.375 3.375
Swept NPR ω3 3.375 3.375 2.250 3.375 3.375
Swept NPR ω4 3.375 3.375 3.375 2.625 3.000
Swept NPR ω5 3.750 4.500 4.500 3.750 2.250
Multi-Notch NPR ω2 + ω1 0.350 1.125 2.250 2.625 2.250
Multi-Notch NPR ω2 + ω3 1.875 0.750 0.375 1.875 1.875
Multi-Notch NPR ω2 + ω4 2.250 0.000 2.625 0.000 2.250

is reinforced. Table. 2.5 lists the number of IMD products converted from 2nd-harmonic to
the co-channel frequencies in a classical nonlinear dynamic system under a 5-tone excitation19.
Note that IMD observed at nearby excitation frequencies is mostly converted from the same
2nd-harmonic IMD frequencies. Most IMD products converted to ω2, ω3, and ω4 are converted
from IMD frequencies between −1∆f and 1∆f of the 2nd harmonic, whereas most IMD
products converted to ω1, and ω5 are converted from different IMD frequencies, only the
IMD products converted from the 2nd harmonic, 0∆f, are shared. Thus, notches in different
frequency bands can introduce errors in the uncorrelated IMD measurements imposed by the
dynamics observed in each frequency band. This is problematic. Alternatively, a single notch
can always be narrowed so that dynamics do not vary significantly within its bandwidth.

Fig. 2.9 plots in the same graph swept NPR measurements of an Era2-+ device obtained
from swept-tone NPR, swept-notch NPR, and multi-notch NPR characterization techniques20.
As explained, the swept-tone NPR corresponds to a correct measurement of uncorrelated IMD,
it is the reference NPRmeasurement. The swept-notch measurement is performed by sweeping
a notch that occupies 10 % of the excitation bandwidth along the co-channel, as depicted in
Fig. 2.8. The multi-notch measurement is performed using two notches. Each notch occupies

19For computation details, refer to [nprC1, Sec. II.], attached at the end of this chapter.
20For characterization details, refer to [nprC2, Sec. III.], attached at the end of this chapter.
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Table 2.5: Number of IMD products converted to ωq from frequencies spaced n∆f from the
2nd-harmonic.

n∆f -4 -3 -2 -1 0 1 2 3 4
ω1 1 2 3 4 5 0 0 0 0
ω2 0 2 3 4 5 4 0 0 0
ω3 0 0 3 4 5 4 3 0 0
ω4 0 0 0 4 5 4 3 2 0
ω5 0 0 0 0 5 4 3 2 1

5 % of the excitation bandwidth, so that the total notch bandwidth is equivalent to the
swept-notch measurement. The notches are swept as depicted in Fig. 2.8. The swept-notch
NPR is almost a vertically translated replica of the swept-tone NPR, with a constant error
of 0.6 dB. The multi-notch NPR measurement distorts uncorrelated IMD, because it is not
a vertically translated replica of the reference profile. Note that from 5.64-5.68 GHz the
reference is constant and the multi-notch NPR increases monotonically.

5.62 5.63 5.64 5.65 5.66 5.67 5.68 5.69 5.7 5.71 5.72
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Figure 2.9: Experimental results: swept NPR vs multi-notch NPR.

In conclusion, in respect to uncorrelated IMD characterization, there is no swept-notch
NPR vs multi-notch NPR trade-off. Multi-notch NPR characterization techniques corrupt un-
correlated IMD measurements, swept-notch measurements, with adequate notch bandwidth,
should be used instead. And since both procedures require an equal number of measurements
to fully cover the co-channel if an equivalent notch bandwidth is used, there is simply no
point in using multi-notch NPR
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Abstract—Mobile and Satellite applications are progressively
moving towards broader bandwidths, so nonlinear long-term
memory effects manifested by RF Transmitters must not be
neglected. This trend evidences the need for more informative
and robust broadband linearity metrics.

This work proposes swept notch noise power ratio to capture
co-channel long-term memory effects, moving the scientific dis-
cussion toward the definition of useful metrics for broadband
nonlinear memory assessment.

Index Terms—intermodulation distortion, long-term memory
effects, nonlinear, noise power ratio.

I. INTRODUCTION

Broadband transmitters suffer from long-term memory ef-
fects that cannot be neglected. Moreover, existing linearity
metrics lack robustness to guide standardization, design and to
define safe operation regimes in terms of long-term memory.

Noise power ratio (NPR) is the traditional benchmark for
Satellite PA linearity assessment [1], [2]. NPR characterization
consists in exciting a device with a band-limited addictive
white Gaussian noise (AWGN) signal with a central notch,
as shown in Fig. 1, and evaluate the ratio between the output
power spectral density (oPSD) within the AWGN excitation
and the oPSD within the notch [3]. NPR is thus given by

NPR =
oPSDAWGN

oPSDNotch
. (1)

In other words, NPR averages the intermodulation distortion
(IMD) within the notch for a given signal oPSD. Note that
this NPR definition is a narrow-band approximation, since
it assumes that evaluating the IMD within the central notch
provides the best approximation for the average IMD along
the signal bandwidth.

Several works have studied how IMD manifests in-band [4]–
[6], and it is well documented that for the memoryless case the
uncorrelated IMD maximum occurs at the central excitation
frequency. Thus, the use of a central notch when evaluating
NPR is reasonable in a memoryless system since this tends
to overestimate the average IMD. However, results shown in
the aforementioned studies also indicate that in the presence
of long-term memory effects the uncorrelated IMD maximum
might no longer occur at the central excitation frequency. Thus,
the use of NPR to assess the linearity of systems presenting
long-term memory effects might be misleading, and must
therefore be critically studied.

f

PSD

Fig. 1: Noise Power Ratio Excitation Signal.
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Fig. 2: Broadband RF System Model Under Study.

This work presents that study, tackling NPR linearity assess-
ment limitations in the presence of long-term memory effects.
First, we explain how different long-term memory effects can
produce different co-channel IMD profiles along the signal
bandwidth and how NPR might misrepresent system linearity
in such scenarios. Then, we propose the swept notch NPR
characterization procedure, which is capable of capturing long-
term memory effects along the signal bandwidth. The novel
characterization procedure is corroborated with experimental
results.

II. IMPACTS OF LONG-TERM MEMORY EFFECTS ON NPR

To exemplify how long-term memory effects can impose
different co-channel IMD profiles along the signal bandwidth,
a demonstrative three-slice model, based on [7] and shown in
Fig. 2, is used. It is composed by a dominant linear slice, a
3rd order memoryless nonlinearity and a 3rd order nonlinearity
with memory imposed by upconverted baseband components
and downconverted 2nd harmonic components. Since we want
to analyze memory effects, let’s consider an operation regime
where the nonlinearity with memory is dominant over the
memoryless nonlinearity, i.e. IMD is mostly imposed by the
3rd slice. Let’s also consider that the system is excited by a
multi-sine with equally spaced tones.

In such scenario, after the squarer, (·)2, IMD components
appear at frequencies978-1-7281-0951-0/20/$31.00 ©2020 IEEE
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Fig. 3: IMD products near DC and 2nd harmonic for a 5
tone excitation and examples of possible HBB and H2nd filter
profiles: H1(ω); H2(ω); H3(ω).

TABLE I: Number of IMD products up/down converted to ωn

from frequencies spaced n∆f from DC and 2nd Harmonic.

n∆f -4 -3 -2 -1 0 1 2 3 4
ω1 1 2 3 4 5 0 0 0 0
ω2 0 2 3 4 5 4 0 0 0
ω3 0 0 3 4 5 4 3 0 0
ω4 0 0 0 4 5 4 3 2 0
ω5 0 0 0 0 5 4 3 2 1

ω2nd = ωq1 + ωq2, (2)

where ωq1 and ωq2 can take the value of any tone frequency
of the multi-sine excitation, either positive or negative. Thus,
products where sgn(ωq1) 6= sgn(ωq2) constitute baseband
IMD, while products where sgn(ωq1) = sgn(ωq2) constitute
second harmonic IMD. Fig. 3 displays these IMD products
around DC and the 2nd harmonic for a 5 tone excitation.

After the HBB(ω) and the H2nd(ω) filters, signals are
mixed with x(t). This operation generates IMD at the fol-
lowing frequencies

ω3rd = ω2nd + ωq3, (3)

where wq3 can take the value of any tone frequency of the
multi-sine excitation, either positive or negative. Thus, some
baseband IMD is up-converted to the co-channel, while some
2nd harmonic IMD is down-converted. However, the number
of IMD products converted to each excitation tone depends on
the separation from either DC or the 2nd harmonic of the IMD
products shown in Fig. 3. This dependence is listed in Table I
for a 5 tone excitation. As shown, more products overlap near
the central frequency, ω3, as expected in a memoryless system.

After laying this out, it is easy to understand how the
memory introduced by filters HBB(ω) and H2nd(ω) can affect
differently the co-channel IMD. If both filters have the profile
of H1(ω) in Fig. 3, co-channel IMD is not affected and
presents a memoryless-like profile. However, if both filters
have the profile of H3(ω) in Fig. 3, only products spaced
±3∆f and ±4∆f from DC or the 2nd harmonic are converted
to the co-channel, meaning that no IMD products fall on ω3,
generating a central IMD minimum. On the other hand, if
HBB(ω) has the profile of H3(ω) in Fig. 3 and H2nd(ω) has
the profile of H2(ω) in Fig. 3, the number of IMD products
monotonically decreases from ω1 to ω5. To illustrate these
ideas a 101-tone excitation, replicating AWGN, with 1 MHz
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Fig. 4: Simulation results of the output PSDs and co-channel
distortion PSD for each scenario described.
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Fig. 5: Swept Notch NPR Excitation Concept.

bandwidth at a carrier of 3 MHz is used to excite the system in
Fig. 2. HBB(ω) and H2nd(ω) are designed using the principles
previously described. Fig. 4 shows both the signal oPSD and
the uncorrelated co-channel IMD obtained through simulation.

What is important to retain from this demonstrative analysis
is that a classical NPR characterization procedure is unable to
detect co-channel IMD variations due to long-term memory
effects, like the decreasing IMD shown in Fig. 4; and that
in some cases, like the central minimum co-channel IMD
scenario portrayed in Fig. 4, a classical NPR characterization
can critically underestimate IMD. Thus, better broadband
linearity metrics are required.

III. SWEPT NOTCH NPR

A. Concept

The Swept Notch NPR concept consists in performing
several NPR characterizations in which the notch is swept
along the co-channel, as shown in Fig. 5, instead of performing
a single measurement with a central notch.

The premise is that by doing this it is not only possible
to determine the best co-channel frequency to evaluate the
average co-channel IMD, as it is also possible to detect co-
channel IMD variations due to long-term memory effects.

Fig. 6 presents the swept notch NPR simulation results for
each scenario displayed in Fig. 4. Each “step” on the graph
corresponds to a NPR measurement performed within the
notch located in that co-channel frequency region. The notch
used occupies 5% of the co-channel. As shown, swept notch
NPR is capable of characterizing long-term memory effects
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Fig. 7: NPR Characterization: (a) Setup; (b) Device under test
(DUT).

along the co-channel, as it captures the inverted trend of IMD.
Once again, this graph shows the ineptitude of classical NPR
characterization to evaluate IMD in caricature scenarios like
the central minimum IMD, where it would underestimate the
maximum IMD by 6 dB.

B. Experimental Validation

To validate the swept notch NPR proposal, this characteriza-
tion procedure was tested experimentally. The setup, presented
in Fig. 7a, consists in a R&S SMW200A VSG to generate
the excitation signal and a R&S FSW VSA to measure the
device under test (DUT) output signal. A 1001-tone excitation,
replicating AWGN, with -10 dBm average power is used. The
notch occupies 5% of the co-channel. Two DUTs are tested,
the GaN PA shown in Fig. 7b biased near class B, and an
ERA-2+ PA from mini-circuits. The GaN PA is excited with
a 100 MHz signal at both 2.6 GHz and 3.5 GHz, while the
ERA-2+ is excited with a 50 MHz signal at 5.67GHz. Fig. 8
presents the swept notch NPR measurement of the ERA-2+,
while Fig. 9 presents the measurements of the GaN PA.

The ERA-2+ NPR varies around 18.4 dB and the swept
notch NPR profile along the co-channel strongly indicates a
memoryless behaviour, since NPR tends to improve toward
the edges of the co-channel and to degrade toward the center,
as observed in the memoryless case simulations presented in
Fig. 6, and as theoretically explained in II.

The GaN PA NPR varies around 37.5 dB. The NPR profile
along the co-channel at 3.5 GHz also tends to indicate a
memoryless behaviour, but some asymmetry about the central
frequency is observed between lower and upper frequencies in
the co-channel, which might be due to long-term memory ef-
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Fig. 8: Measured swept notch NPR of the ERA-2+ DUT at
5.67 GHz.
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Fig. 9: Measured swept notch NPR of the GaN DUT at 2.6
GHz and 3.5 GHz.

fects. On the other hand, the NPR profile along the co-channel
at 2.6 GHz clearly deviates from the memoryless profile, as
NPR oscillates around 37 dB and 37.5 dB between -45 MHz
and 40 MHz, indicating more strongly the manifestation of
long-term memory effects. Such profile is distinct from those
simulated and shown in Fig. 6, meaning that the memory
mechanisms of this GaN PA DUT probably differ from those
described in the multi-slice model for conceptualization.

Note that although we cannot guarantee the co-channel IMD
variations observed are only due to long-term memory effects,
these results validate the ability of swept notch NPR to capture
both co-channel IMD profiles that resemble the memoryless
profile, and that differ from the memoryless profile, and thus
the ability of swept notch NPR to characterize co-channel IMD
profile variations due to long-term memory effects.

IV. CONCLUSION

This work evidences the limitations of NPR to assess
linearity in the presence of long-term memory effects.

To overcome such limitations, a swept notch NPR character-
ization procedure to detect the impacts of long-term memory
effects on co-channel IMD was proposed and validated.

Further work is required to transform swept notch NPR in a
quantifiable memory metric capable of extracting useful long-

30



term memory effect models. But swept notch NPR is already
an initial step toward more robust and informative broadband
linearity metrics.
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Abstract—This work exposes limitations of multi-notch NPR,
which have been neglected, that make experimental results hard
to compare with classic NPR measurements. In fact, it demon-
strates, theoretically and experimentally, how swept-notch NPR
is a better linearity metric than multi-notch NPR, particularly
in the presence of nonlinear dynamic effects. This calls for the
replacement of multi-notch NPR by swept-notch NPR.

Index Terms—characterization, intermodulation distortion, lin-
earity, memory effects, noise power ratio, nonlinear distortion.

I. INTRODUCTION

Noise power ratio (NPR) is a central linearity metric in mod-
ern RF communications. It is the linearity criterion for satellite
applications [1], and the establishment of an identity between
NPR and error vector magnitude (EVM) makes it a consistent
metric in several levels of analysis [2], [3], increasing the NPR
relevance for mobile and wireless applications.

As these technologies occupy larger instantaneous band-
widths, and nonlinear dynamic effects become non-negligible,
the classical NPR procedure has to be adjusted. In such
scenarios, multi-notch NPR is an approach that has been
followed both by the scientific community and industry [3]–
[5]. However, multi-notch NPR measurements are difficult
to compare with results obtained using the classical proce-
dure [4]. Beyond this, in the presence of long-term memory
effects, iterative procedures, highly based on experimental
heuristics, are required to obtain consistent results [3].

This work revisits the fundamental issues of NPR - [6]–
[8] - to explain how multi-notch NPR differs from classical
NPR characterization, whereas swept-notch NPR is compatible
with classical NPR. This work also evidences why swept-notch
NPR is the preferred characterization method in the presence
of nonlinear dynamic effects [9]. The presented theoretical
analysis is supported by experimental validation.

II. ISSUES OF MULTI-NOTCH NPR

A. Problem Statement

The discussion on the fundamental issues of NPR started
with the claim that NPR is an optimistic linearity metric,
because it does not capture correlated intermodulation dis-
tortion (IMD) [6], [7]. This claim was answered [8], noting
that in most applications input power levels remain constant.
Under such conditions, correlated IMD is desired signal, and
only uncorrelated IMD should be considered signal distortion.
Thus, uncorrelated IMD can be gauged at a given excitation
frequency, ωq, by switching-off that excitation frequency. This
corresponds to the classic NPR procedure. In [8], it was also
noted that the notch can be placed in any frequency band to

measure uncorrelated IMD, and thus evaluate NPR. However,
it did not address the fact that switching-off ωq does not only
eliminate correlated IMD at ωq, it also eliminates uncorrelated
IMD power that is present in other frequency bands under
the full-spectrum excitation. This is an important reason why
multi-notch NPR is often not comparable with classic NPR.
In [4], it was experimentally observed that in multi-notch
measurements uncorrelated IMD power is dependent on notch
location, and dependent on the type of excitation signal.
No theoretical explanation was provided for this, but it was
stated that a multi-notch method with randomly spread notch
locations is more consistent.

B. Problem Analysis

To evidence the implications of multi-notch NPR, lets
consider a 3rd-order memoryless system, as assumed in prior
art [6]–[8]. For such systems, the full IMD response under
multi-tone excitation can be computed from (1).

yNL3
(t) =

1

23
a3




Q∑

q=−Q
q 6=0

A · ej(ωqt+φq)




3

(1)

For the sake of exemplification, lets consider that this
system is under a 5-tone excitation. This excitation is not a
practical NPR characterization signal. Nonetheless, the anal-
ysis of this simple example highlights behaviors observed
in practice in a comprehensive manner. This evidences the
problem under study, and provides ideas for possible solutions.
Also, assume that A = a3 = 1.

Table. I provides the IMD weight observed at each co-
channel frequency, ω1 to ω5, when the excitation tones listed
in the first column are switched-off. For example, the last row
lists the IMD weight observed at each excitation frequency,
ω1 to ω5, when both ω1 and ω3 tones are switched-off.

TABLE I: IMD at ωn as excitation tones are switched off.

off tones ω1 ω2 ω3 ω4 ω5

all on 5.625 6.750 7.125 6.750 5.625
ω1 2.250 3.750 4.500 4.500 3.750
ω2 3.000 2.625 3.750 3.375 3.375
ω3 3.375 3.375 2.250 3.375 3.375
ω4 3.375 3.375 3.375 2.625 3.000
ω5 3.750 4.500 4.500 3.750 2.250

ω2 + ω1 0.350 1.125 2.250 2.625 2.250
ω2 + ω3 1.875 0.750 0.375 1.875 1.875
ω2 + ω4 2.250 0.000 2.625 0.000 2.250
ω1 + ω3 0.750 1.875 1.125 1.875 1.875978-0-7381-1249-7/21/$31.00 ©2021 IEEE
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The row in which all tones are switched-on lists the full
IMD weight, i.e. it contemplates both correlated and uncorre-
lated IMD, as evaluated by CCPR [7].

The rows in which only one tone is switched-off, corre-
sponding to a classical NPR characterization, list the correct
evaluation of uncorrelated IMD weight at the switched-off
tone, highlighted in bold. This is the uncorrelated IMD weight
under full-spectrum excitation. These rows also evidence that
performing a classical NPR characterization affects IMD in
other frequency bands. In fact, such artifacts, even though not
directly addressed at the time, are observable in the experi-
mental NPR results disclosed in [7]. Furthermore, note that
neaby tones are the most influenced, in terms of IMD power
reduction, when switching-off a single tone, as expected [10].

The rows in which two tones are switched-off represent the
multi-notch NPR characterization. By analyzing the rows in
which ω2 is off, it is perceptible that uncorrelated IMD weight
at ω2 is highly dependent on which other tone is also switched-
off. Similar theoretical analysis has already been noted in [6]
for a 3-tone excitation, but this notion was somehow forgotten
in the scope of multi-notch NPR. When ω1 and ω2 are off,
the uncorrelated IMD weight at ω2 is reduced by 57 %. When
ω3 and ω2 are off, the uncorrelated IMD weight at ω2 is
reduced by 71 %. When ω4 and ω2 are off, the uncorrelated
IMD weight at ω2 is reduced by 100 %. Note that in multi-
notch characterization, the scenario with the highest impact on
the uncorrelated IMD measure is not necessarily the scenario
in which nearby frequencies are switched-off. If uncorrelated
IMD at ω1 and ω3 is obtained from the last row computation,
it can be concluded that uncorrelated IMD is lower at ω1,
thus it is higher at ω3. However, single off-tone measures,
which provide the correct IMD weight under full-spectrum
excitation, indicate that uncorrelated IMD is equal at these
frequencies. These are just some examples that demonstrate
how multi-notch NPR measurements corrupt full-spectrum
uncorrelated IMD evaluation, even for memoryless scenarios.
Such theoretical examples explain the difficulties in obtaining
equivalent NPR metrics from multi-notch NPR and classic
NPR procedures reported in [4].

In truth, for a memoryless scenario there is no need for
multi-notch, nor swept-notch measurements. It is well-known
that memoryless NPR is maximum at the band extremes, min-
imum at the central frequency, and that it follows a parabolic
shape throughout the co-channel [6], [9]. Nonetheless, it is
important to mention that in this scenario a swept-notch NPR
characterization, performed with a sufficiently narrow notch,
is guaranteed to capture the correct uncorrelated IMD trend
under full-spectrum excitation, whereas the same cannot be
guaranteed for every possible multi-notch NPR characteriza-
tion, performed with an equivalent total notch bandwidth.

In a nonlinear dynamic scenario it is easy to show that
switching-off nearby tones is preferable. Table. II recalls
the number of IMD products converted from DC and 2nd
harmonic to the co-channel in a typical nonlinear dynamic
system under a 5-tone excitation, as was first presented in [9].

As shown, IMD observed at nearby excitation frequencies is

TABLE II: Number of IMD products up/down converted to
ωq from frequencies spaced n∆f from DC and 2nd harmonic.

n∆f -4 -3 -2 -1 0 1 2 3 4
ω1 1 2 3 4 5 0 0 0 0
ω2 0 2 3 4 5 4 0 0 0
ω3 0 0 3 4 5 4 3 0 0
ω4 0 0 0 4 5 4 3 2 0
ω5 0 0 0 0 5 4 3 2 1

Fig. 1: Swept-Notch NPR characterization procedure.

mostly converted from the same IMD frequencies. Most IMD
products converted from the 2nd harmonic to ω2, ω3, and ω4

are converted from the same IMD frequencies, whereas most
IMD products converted from the 2nd harmonic to ω1, and
ω5 are converted from different IMD frequencies (only 0∆f
products are shared). Thus, multiple notches in different bands
can always introduce errors in the uncorrelated IMD evaluation
if they are affected by different dynamics, whereas it is always
possible to narrow a single notch so that dynamics do not
vary significantly within it. This is very problematic for multi-
notch approaches, particularly because existing methods work
best for larger notch bandwidths [3], which impose a larger
interference. Therefore, it is preferred to sweep a single notch
when evaluating NPR in the presence of nonlinear dynamics.

III. EXPERIMENTAL VALIDATION

A. Validation Experiments

Three experiments are carried out to verify that swept-notch
NPR is a preferred characterization technique over multi-notch
NPR, as theoretically explained in II. First, NPR measurements
in which a single-tone is switched-off are performed, covering
all co-channel frequencies, to obtain the correct uncorrelated
IMD response under full-spectrum excitation. Then, a swept-
notch NPR characterization, with 10 % notch bandwidth,
is done as depicted in Fig. 1. Finally, a multi-notch NPR
characterization, with 10 % total notch bandwidth, is carried
out as depicted in Fig. 2. At last, the swept-notch NPR, and
multi-notch NPR are compared with the reference NPR to
validate which approach provides better results.
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Fig. 2: Multi-Notch NPR characterization procedure.
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Fig. 3: Experimental Setup: (a) Schematic; (b) Picture.

B. Full-Spectrum Excitation
The input full-spectrum signal used is a 101-tone excitation,

designed to resemble band-limited additive white Gaussian
noise. This is a typical NPR characterization signal [11].
During the experiments, signal power and signal bandwidth
were fixed at −10 dBm and 100 MHz, respectively.

C. Devices Under Test
Two devices were characterized: an Era-2+ [12], which

is a mostly memoryless device, and a ZVA-213-S+ [13],
which is a wideband amplifier likely to manifest nonlinear
dynamic effects. The Era-2+ board operates from 5.55 GHz to
5.75 GHz, having a P1dB of 11 dBm. It is biased with 8.4 V,
consuming 50 mA. When excited at 5.67 GHz, it outputs an
average envelope power of 1 dBm. The ZVA-213-S+ operates
from 800 MHz to 21 GHz, having a P1dB of 24 dBm. It
is biased with 12 V, consuming 340 mA. When excited at
18 GHz, it outputs an average envelope power of 15.6 dBm.

D. Experimental Setup
The experimental bench is depicted in Fig. 3. The VSG

is composed by a Keysight M8190A AWG and a Keysight
E8361C PSG. The AWG generates the input waveform, and
the PSG up-converts it to the desired carrier frequency, while
controlling the envelope signal power. The Keysight N9041B
UXA VSA captures the output waveform. The DC supply is a
TTI PL330DP. This bench is calibrated to capture the desired
waveform synchronously at the output port.

E. Experimental Result Analysis
The Era-2+ and ZVA-213-S+ output power spectral density

(PSD) under full-spectrum excitation, and co-channel uncorre-
lated IMD response for each experiment are depicted in Fig. 4
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Fig. 4: Era-2+ - Full-Spectrum PSD response, and co-channel
uncorrelated IMD obtained from each experiment.
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Fig. 5: ZVA-213-S+ - Full-Spectrum PSD response, and co-
channel uncorrelated IMD obtained from each experiment.

and Fig. 5, respectively. What is most noticeable is that multi-
notch NPR significantly underestimates uncorrelated IMD for
both devices, whereas the swept-notch NPR uncorrelated IMD
measurement is mostly overlapped with the single-tone refer-
ence. The NPR curve analysis throughout the band provides
more details, and further insight into the problem at hand.

Fig. 6 depicts the Era2-+ NPR profiles. The reference
NPR ranges between 32.7-34.1 dB throughout the band. It is
roughly memoryless, since NPR is higher at the band edges,
minimum at the central frequency, and the profile resembles
a parabolic shape. The multi-notch NPR ranges between 35-
36 dB. Throughout the band, the minimum error in relation to
the reference is 1.5 dB, the maximum error is 3 dB, and the
average error is 2 dB. The NPR profile is distorted, because
it is not a vertically translated replica of the reference profile.
Note that from 5.64-5.68 GHz the reference is constant and
the multi-notch NPR increases monotonically. This portrays
how multi-notch NPR can corrupt the uncorrelated IMD
distribution in relation to the full-spectrum excitation. The
swept-notch NPR ranges between 32-33.7 dB. It is mostly
a vertically translated replica of the reference profile, with
a constant error of 0.6 dB. This means swept-notch NPR
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Fig. 7: ZVA-213-S+ - results from NPR experiments.

preserves the uncorrelated IMD distribution in relation to the
full-spectrum excitation.

Fig. 7 depicts the ZVA-213-S+ NPR profiles. The reference
NPR ranges between 28.8-29.6 dB throughout the band. The
profile indicates dynamic behavior: it decreases from 17.95-
17.98 GHz, increases from 17.98-18 GHz, and is constant from
18-18.05 GHz. This is not the memoryless parabolic profile.
The multi-notch NPR ranges between 30-31 dB. Throughout
the band, the minimum error in relation to the reference is
0.4 dB, the maximum error is 1.4 dB, and the average error is
1 dB. In this case, only a slight shape distortion is observed
between 17.95-17.98 GHz, where NPR is constant, instead
of decreasing. Apart from this, the NPR profile is mostly a
vertically translated replica of the reference. The swept-notch
NPR ranges between 28.7-29.9 dB, having a maximum error
of 0.4 dB in relation to the reference. This profile is almost
overlapped with the reference. For this device, the multi-notch
NPR scheme used preserves the correct NPR profile, for the
most part. Nonetheless, the swept-notch NPR metric is better,
overlapping with the reference.

Overall, it was observed that for the scenarios tested, swept-
notch NPR always provided better NPR metrics than multi-
notch NPR, i.e. the NPR metric is closer to the reference
NPR correspondent to the uncorrelated IMD power present

in the full-spectrum excitation. This agrees with and validates
the theoretical predictions presented in II. As both procedures
require an equal number of measurements to fully cover the
co-channel, there is no point in using multi-notch NPR.

IV. CONCLUSION

This work provided theoretical and experimental proofs to
demonstrate that swept-notch NPR obtains better linearity met-
rics than multi-notch NPR. This is an important contribution
to consider for future research, and industry standards that
aim to use NPR as a linearity metric. Swept-notch NPR is a
characterization technique that provides the required robust-
ness to assess linearity in the presence of nonlinear dynamic
effects. Nonetheless, remember that classic NPR procedures
are typically sufficient for memoryless systems.
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Abstract—As radio-frequency (RF) applications occupy larger
bandwidths, nonlinear dynamics become non-negligible. This
work presents a theoretical framework capable of quantifying
the impacts of nonlinear dynamic effects on RF systems through
the observation of intermodulation distortion (IMD) profiles
produced under multi-tone excitation. This framework defines
static reference profiles, and quantifies inband nonlinear dynamic
effects as the error between measured and reference profiles.
This analysis demonstrates that classic linearity metrics, such as
noise power ratio (NPR), adjacent channel power ratio, and co-
channel power ratio do not have sufficient frequency resolution
to reliably evaluate the impacts of nonlinear dynamics manifested
in the IMD profiles produced by broadband RF systems. These
observations result in a list of general characterization guidelines
to overcome the limitations of classical linearity metrics in the
assessment of nonlinear dynamics, and in the proposal and
experimental validation of a novel method, swept-tone NPR,
for the characterization of IMD profiles affected by nonlinear
dynamic effects. Beyond this, the classic nonlinear dynamic
mechanism, responsible for IMD asymmetry, is analyzed under
multi-tone excitation at the system-level for the first time, and the
limitations of mechanism based IMD analysis in the presence
of nonlinear dynamic effects are evidenced with theoretical
examples.

Index Terms—Characterization, intermodulation distortion,
memory effects, multitone excitation, noise power ratio.

I. INTRODUCTION

MODERN radio-frequency (RF) communication sys-
tems, namely mobile and satellite applications, are
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occupying ever broader bandwidths and moving to higher fre-
quency bands. This trend raises novel intermodulation distor-
tion (IMD) characterization challenges, because nonlinear dy-
namic effects can no longer be neglected, thus the definition of
appropriate IMD characterization techniques, and appropriate
linearity metrics, becomes an increasingly complex problem.
In the context of satellite applications, noise power ratio (NPR)
has already been defined as the linearity criterion [1], [2], [3].
Beyond this, the establishment of an identity between NPR and
error vector magnitude (EVM) [4], [5], [6], [7] makes NPR a
consistent linearity metric in several levels of analysis, which
is an indicator of its potential relevance for mobile applications
as they move towards broader bandwidths. However, despite of
the NPR inherent potential and initial hopes of its application
in domains such as design optimization, behavioral modeling,
memory effect characterization, and predistortion [2], [8], [9],
it continues to be mostly used as a final design validation
metric [10], [11], whereas simpler linearity metrics continue
to be preferred for the aforementioned tasks.

Recently, it was demonstrated that unequally spaced multi-
tone load-pull characterization techniques can be effectively
used to guide power amplifier design trade-offs [12], [13]. This
technique is compatible with classical NPR characterization in
narrowband memoryless scenarios [14].

This was an important step towards the adoption of ap-
propriate characterization techniques and appropriate linearity
metrics in modern RF system design, as well as the develop-
ment of novel instrumentation techniques that enable coherent
vector signal analysis and facilitate the fast evaluation of NPR
in modern equipment [15]. However, in the authors’ opinion
there are three major factors preventing the generalized use
of NPR: 1) studies addressing NPR characterization often
assume static nonlinearities [7], [16], considering only linear
dynamic effects; 2) there is a lack of insight of how nonlinear
dynamic effects can manifest in the IMD response under
broadband excitation; 3) nonlinear dynamic effects imply a
frequency dependent IMD response, but the cumulative nature
of classic linearity metrics [17], such as NPR, adjacent channel
power ratio (ACPR), and co-channel power ratio (CCPR) hide
the frequency dependence of the IMD response. There is
therefore a need to better understand how nonlinear dynamic
effects manifest under broadband excitation, and to understand
how to define linearity metrics to capture them.

The work presented in [18] was an important step towards
the understanding of nonlinear dynamics in RF systems, as it

38



2 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.69, NO.9, SEPTEMBER 2021

explains how memory effects can manifest through adjacent
channel asymmetry observations. However, this explanation
is presented in a circuit-level perspective that is hard to carry
over to the system-level. Beyond this, the focus of the analysis
is mostly on 2-tone characterization, while not expanding
on the multi-tone scenario in a comprehensive manner. The
work is also too tightly bound to specific third-order nonlinear
dynamic mechanisms.

In [19], the multi-tone scenario is addressed, establishing
a relationship between 2-tone and multi-tone measurements.
This allowed the developments presented in [18] to be applied
to compute multi-tone responses of nonlinear dynamic RF
systems. The work presents a qualitative analysis of nonlinear
dynamic effects, stating that these effects can be noted in the
shape of distortion components, but a quantitative analysis
is missing. The evaluation of IMD is done using ACPR
and CCPR, which hide the frequency dependence of the
IMD response. Beyond this, the nonlinear dynamic effect
explanation remains at the circuit-level, despite the study
being developed at the system-level, and the work remains
too tightly bound to specific third-order nonlinear dynamic
mechanisms. Furthermore, the use of 2-tone characterization is
ultimately more laborious than multi-tone characterization, and
has critical limitations regarding signal statistics, frequency
domain resolution, and sensitivity.

These limitations of 2-tone characterization strategies have
already been addressed in [20]. In that study an offset multi-
sine strategy is proposed to characterize nonlinear dynamic RF
systems. Offset multi-sines have the advantage of allowing
for separate characterization of co-channel IMD distortion,
and separate characterization of each nonlinear order, but the
disadvantage of scalability as bandwidth, number of tones, and
nonlinear order increase. In [20], a qualitative detection of
nonlinear dynamic effects is observed through IMD spectral
response variation as decoupling capacitors are adjusted, but
an insightful analysis is missing.

In a previous work [21], we have already exposed the lim-
itations of classic NPR characterization techniques to capture
nonlinear dynamic effects within the system co-channel, and
proposed a novel characterization procedure to overcome those
limitations. However, despite insightful, this work lacks a for-
mal representation of the IMD mechanisms, and a quantitative
analysis of the proposed linearity metric.

In this work we:

1) Present a theoretical framework capable of analyzing
IMD profiles produced under multi-tone excitation and
detecting the impacts of nonlinear dynamic effects in a
quantitative manner;

2) Analyze the classic nonlinear dynamic mechanism re-
sponsible for IMD asymmetry, presented in [18], under
multi-tone excitation at the system-level for the first
time;

3) Further expose the limitations of classic characterization
techniques, and linearity metrics, to evaluate the IMD
profiles affected by nonlinear dynamics;

4) Explain the limitations of mechanism based IMD anal-
ysis in the presence of nonlinear dynamic effects;

5) Detail general characterization guidelines for a reliable
evaluation of dynamic IMD profiles, produced by non-
linear dynamic RF systems;

6) Propose a novel characterization method, swept-tone
NPR, for the characterization of IMD profiles affected
by nonlinear dynamic effects, and validate it experimen-
tally.

This work is organized as follows. Section II presents
the theoretical framework. Section III uses this framework
to analyze the classic nonlinear dynamic mechanism at the
system-level. Section IV analyzes three numerical dynamic
IMD profile examples produced by the classic mechanism.
The analysis focuses on the importance of defining refer-
ence responses, and on the limitations of classical linearity
metrics. Section V addresses the limitations of mechanism
based IMD analysis in the presence of nonlinear dynamic
effects. Section VI discusses the implications of this work
on characterization techniques and linearity metrics, detailing
general characterization guidelines, and proposing a specific
characterization method, swept-tone NPR. Section VII present
the experimental validation of the swept-tone NPR character-
ization, which also serves as the experimental proof for the
theoretical framework presented. Finally, Section VIII draws
the major conclusions.

II. NONLINEAR DYNAMIC RF SYSTEMS REVISITED

This section presents the theoretical framework used
throughout this work to analyze nonlinear dynamic effects in
RF systems. Here, foundational concepts are revisited from
the IMD profile point of view. This framework consists of a
frequency domain analysis performed at the system-level, i.e.
an analysis focused only on input/output signal observations.
This contrasts with the conventional analysis performed at the
circuit-level, focused on baseband impedance variation [18].
As stated, the object of the presented analysis is the spectral
IMD profile produced under multi-tone excitation.

The aim is to use IMD profiles to measure nonlinear dy-
namic effects. This implies computing the static IMD profile,
explaining how dynamic effects change the static IMD profile,
and explaining how to measure those changes. The ultimate
goal of this analysis is to provide insight on how to improve
multi-tone linearity metrics, such as NPR, ACPR and CCPR,
to be able to gauge nonlinear dynamic effects.

A. Static IMD Profile - Concept

Static nonlinear systems can be generally described by the
polynomial in (1).

yNL(t) =
∞∑

n=0

anx(t)
n (1)

By shifting the analysis to the frequency domain it is easier
to notice that, for a given excitation, each polynomial term
imposes a specific spectral response profile. The linear spectral
profile is an amplified replica of the input excitation spectrum,
whereas each nonlinear profile can be obtained through the
convolution theorem, as expressed in (2).
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Fig. 1. Normalized envelope IMD profiles produced by a Gaussian excitation
up to the 9th-order. These envelope profiles are overlapped for the sake of
visualization, but they do not all overlap in the same envelope carriers. The
envelope carrier frequencies for each nonlinear order are given by (3).

YNLn
(ω) = F{anx(t) ·x(t)n−1} = anF{x(t)} ∗F{x(t)n−1}

(2)
As an example, let us consider a band-limited additive white

Gaussian noise (AWGN) excitation signal, used in classic NPR
characterization. As shown in Fig. 1, the linear envelope profile
is an amplified version of the input excitation rectangular
spectrum. The second-order envelope profile is triangular, re-
sultant from the convolution of the input rectangular spectrum
with itself. The remaining higher-order envelope profiles can
be roughly approximated by Gaussian pulses, or by inverted
parabolas when observed in logarithmic scale [22]. Note that
Fig. 1 depicts the correct shape of the envelope IMD profiles,
but does not represent the exact amplitude relations, as all
profiles are normalized to the same peak value.

For a given order n, the full frequency response is obtained
by replicating the nth-order envelope profile in each of the
envelope carrier frequencies, fcn , given by (3).

fcn =

{
±fc · (2 · k) if n even, k ∈ [0, n

2 ]
±fc · (2 · k + 1) if n odd, k ∈ [0, n−1

2 ]
(3)

In (3), fc is the fundamental carrier frequency, and k ∈ N0.
The full static IMD response is given by the overlap of

all nonlinear order responses. However, the linearity analysis
is mostly concerned with inband IMD - the envelope IMD
centered at fc (co-channel frequencies + adjacent channel
frequencies, as defined in [17]) - because RF systems filter
out of band IMD before transmission - i.e. the envelope IMD
centered around DC and high-order harmonic frequencies is
typically filtered by RF transmitters. Therefore, throughout this
work when referring to the IMD profile, it is meant as the
inband IMD profile.

B. Static IMD Profile - Multi-Tone Excitations

In modern NPR characterization, analog noise sources were
replaced by reliable digital signal generators [9], [23]. These
procedures are based on equal amplitude multi-tone signals
designed to resemble AWGN. Expression (4) describes a Q-
tone signal.

x(t) =
1

2

2Q∑

q=1

A · ej(ωexq t+ϕexq ) (4)

In (4), ωexq
is the q-th element of the excitation frequency

vector, given by (5), and ϕexq
is the q-th element of the

excitation phase vector, given by (6).

ωexωexωex = [−ωQ, · · · , −ω1, ω1, · · · , ωQ]blue
T (5)

ϕexϕexϕex = [−ϕQ, · · · , −ϕ1, ϕ1, · · · , ϕQ]
T (6)

For a general static nonlinear system, the nth-order re-
sponse, assuming a multi-tone excitation, is given by (7). This
response is obtained by inserting (4) into (1) [17], [23].

yNLn(t) =
1

2n
an

[
2Q∑

q=1

A · ej(ωexq t+ϕexq )

]n

(7)

Using the multinomial theorem, (7) can be expressed as (8).

yNLn
(t) =

1

2n
anA

n
∑

|vvv|=n

(
n

vvv

) 2Q∏

q=1

[
ej(ωexq t+ϕexq )

]vq
(8)

Each nth-order mixing vector, vvv, is unique, and
∑

vi = n.

vvv = [v1, v2, · · · , v2Q]
T ; vi ∈ N0 (9)

Mixing vectors determine the IMD frequencies of each
order, and weight the IMD product magnitude and phase.

The notation can be further simplified into (10).

yNLn(t) = ggg · ej[ωIMDωIMDωIMDt+ϕIMDϕIMDϕIMD] (10)

This notation is achieved by defining the nth-order mixing
matrix, VVV . This matrix contains all m nth-order mixing
vectors, as expressed in (11).

VVV =




v1v1v1
T

v2v2v2
T

...
vmvmvm

T


 (11)

In (10), ggg is the magnitude weighting vector, given by (12),
and ωIMDωIMDωIMDt+ϕIMDϕIMDϕIMD is the IMD phase vector, given by (13).

ggg =
1

2
anA

n

(
n

VVV

)
=

1

2
anA

n




(
n
v1v1v1

)
(
n
v2v2v2

)

...(
n

vmvmvm

)




(12)

ωIMDωIMDωIMDt+ϕIMDϕIMDϕIMD = [VVV · (ωexωexωext+ϕexϕexϕex)]
T (13)

The resulting nth-order weighting phasor, at any fre-
quency ω, is given by the phasor sum described in (14).

Kn(ω) =
∑

i:ωIMDi
=ω

gi · ejϕIMDi (14)
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Kn(ω) represents the nth-order static IMD response pro-
duced under multi-tone excitation. Therefore, the IMD fre-
quencies generated by each nonlinear order, as well as their
weight and phase, are imposed by the input multi-tone ex-
citation and the respective mixing matrix. This means that
the static IMD profile is defined by the input excitation and
by the nonlinear orders of the system. Thus, if the multi-
tone excitation resembles AWGN (statistically), the envelope
profiles generated by each order will be discretized versions
of the envelope profiles shown in Fig. 1.

It is also useful to distinguish between correlated and
uncorrelated IMD weighting phasors. These can be computed
using (15) and (16), respectively.

Kn(ωq)corr =
∑

i:ωIMDi
=ωq ∧ (Vi,Q−q+1 ̸=0 ∨ Vi,Q+q ̸=0); q∈[1,Q]

gi · ejϕIMDi (15)

Kn(ωq)uncorr =
∑

i:ωIMDi
=ωq ∧ Vi,{Q−q+1,Q+q}=0; q∈[1,Q]

gi · ejϕIMDi (16)

C. Detecting Nonlinear Dynamics

Memory observations imply a system whose response is
dependent on excitation frequency. This dependence can be
mathematically expressed by a deviation of the magnitude
and phase weights - the gi’s and the ϕIMDi

’s in (14) - from
the static IMD reference, depending on the frequency terms
involved in each IMD product. Magnitude and phase varia-
tions with frequency are represented, at the system level, by
frequency filters. When analyzing linearity, it is also important
to distinguish linear dynamic effects [7] - the dynamic effects
that affect the first-order response - from nonlinear dynamic
effects - the dynamic effects that affect the static IMD profiles.
Thus, the practicality of describing nonlinear dynamic systems
using multi-slice models [24].

When using two-tone test signals, nonlinear dynamics can
be identified though observations of IMD asymmetry, or
though observations of intermodulation distortion ratio vari-
ation with carrier spacing [18], [25]. However, in a multi-tone
scenario the observation of these features is not a sufficient
condition for the detection of nonlinear dynamics, as already
noted in [18]. As far as the authors’ knowledge goes, a
systematic way to detect nonlinear dynamic effects from IMD
profile observations under multi-tone excitation has not yet
been presented in the literature. Meanwhile, the aforemen-
tioned qualitative criteria based on the 2-tone scenario continue
to be used to detect nonlinear dynamics under multi-tone
excitation [19], [20].

Note that the theoretical tools presented provide sufficient
insight to address this issue. In Section II-B it was shown
that the static IMD profile is imposed by the input multi-tone
excitation, and by the system nonlinear order. As mentioned,
nonlinear dynamics filter the static IMD profile, changing
Kn(ω). Thus, for a given multi-tone excitation, nonlinear
dynamics should be gauged as the error between the measured
dynamic IMD profile and the static reference IMD profile. This
approach can be viewed as an extension of the memory metric,
proposed in [25] for the 2-tone excitation, to the multi-tone

excitation scenario for systems of any nonlinear order. One
advantage of this solution over the one presented in [18] is
that it does not impose limitations on the multi-tone excitation
characteristics.

In fact, it is the specification of the static reference response
in agreement with the input excitation that allows the notion
of expected IMD response, which, as a consequence, allows
the detection of nonlinear dynamics. This becomes evident
by transposing the classic analysis, presented in [18], to the
system-level. It uses an equal magnitude 2-tone excitation,
and assumes a third-order system. By computing the static
third-order weighting phasor in these conditions, using (14),
one IMD product falls in the lower adjacent channel, one
IMD product falls in the upper adjacent channel, and these
IMD products have the same weight. This implies that a
memoryless system must have a flat adjacent-channel IMD
response. Therefore, adjacent channel IMD asymmetry and
adjacent channel IMD variation with carrier spacing become
indicators of nonlinear dynamic effects. It is the understanding
of the reference that gives meaning to the IMD profile analysis!

For systems of any order under multi-tone excitation, it
is difficult to intuitively guess the static reference IMD
profile because many IMD phasors overlap at inband IMD
frequencies, as also expressed in (14). Despite this, expected
IMD responses are often assumed without computing the
reference [5], [7], [19], [20], [21]. This imposes important
limitations on the IMD profile analysis. One is that it is
not possible to do objective comparisons, and qualitative
observations might not be rigorous. Another one is that small
changes in the input signal characteristics can affect the
reference, therefore, not computing the reference can lead
to erroneous considerations. This is most problematic when
the experimental setup is compensated, or the experimental
results are processed, based on incorrect assumptions about the
IMD response. Thus, the importance of specifying the static
IMD reference response under multi-tone excitation when
evaluating nonlinear dynamics, as proposed here.

III. CLASSIC NONLINEAR DYNAMIC RF MECHANISM

When addressing nonlinear dynamic RF systems, the classic
mechanism, first explained in [18], is often assumed. To
complement the circuit-level analysis presented in [18], this
section presents an in-depth system-level analysis, focused on
the IMD profile response under multi-tone excitation.

The classic nonlinear dynamic mechanism is depicted in the
schematic of Fig. 2. It consists of a static nonlinear branch
and a nonlinear dynamic branch. These two branches add,
interfering with each other, to produce the resultant output
envelope IMD profile.

The static nonlinear branch consists of a third-order non-
linearity. Thus, the static branch IMD profile contribution is
directly computed from (14), substituting for third-order.

The nonlinear dynamic branch consists of a second-order
nonlinearity that is filtered before being remixed with the
input signal. It can be viewed as a special case of a dynamic
third-order nonlinearity in which IMD is filtered at baseband
and second-harmonic before manifesting at the fundamental
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𝑥(𝑡)

⋅ 2

⋅ 3

+
y(𝑡)

H2(𝜔) ×

𝑥(𝑡)

Fig. 2. Classic nonlinear dynamic mechanism model. This model addresses
nonlinear dynamics (the linear path is omitted).

and third-harmonic frequencies. If not for H2(ω), this branch
would also constitute a static third-order nonlinearity. To
understand the contribution of the nonlinear dynamic branch
to the resultant envelope IMD profile, we must know exactly
how second-order IMD products convert to third-order IMD
frequencies in this branch. To do that, let us first neglect the
impacts of H2(ω) and address only the nonlinear conversion.

From (7), it is possible to decompose any nonlinearity of
order n as the product of a nonlinearity of order n-1 with the
input excitation, as shown in (17).

yNLn(t) = an x(t)n−1 · x(t) (17)

Thus, the static conversion of a second-order nonlinearity to
a third-order nonlinearity is mathematically described by (18).

yNL3
(t) =

a3
a2

· yNL2
(t) · 1

2
·A ·

2Q∑

q=1

ej(ωexq t+ϕexq ) (18)

Note that each second-order IMD frequency, ωIMD2
, con-

verts to the third-order IMD frequency ωIMD2
+ ωexq

. There-
fore, the conversion gain, given by (19), can be derived
from (14).

K3(ωIMD3) =
a3
a2

1

2
A

∑

∀ωIMD2
+ωexq=ωIMD3

; q∈[1,2Q]

K2(ωIMD2) · ejϕexq

(19)
Equation (19) establishes the phasor relationship between

static second-order IMD profiles and static third-order IMD
profiles. H2(ω) affects the magnitude and phase of each
second-order IMD product, captured in K2(ωIMD2). This
ultimately deviates the nonlinear dynamic branch IMD profile
from the static third-order IMD profile.

Therefore, the sum of the static and dynamic branches, that
produces the resultant IMD profile, is a phasor sum at every
third-order IMD frequency. This means that, when analyzing
the classic nonlinear dynamic mechanism at the system-level
under multi-tone excitation, the nonlinear dynamics introduced
by H2(ω) should be gauged as the error between the resultant
IMD profile and the static third-order IMD reference profile.

IV. DYNAMIC IMD PROFILES - EXAMPLE ANALYSIS

This section analyses distinct examples of dynamic IMD
profiles produced by the classic nonlinear dynamic RF mech-
anism. These examples serve the following purposes:

1) to validate numerically the presented theory;
2) to emphasize the need for a static reference to make

sense of IMD profiles;

3) to evidence the limitations of classic multi-tone linearity
metrics in the presence of nonlinear dynamic effects.

Before the example analysis, the example systems, the input
stimulus, the IMD reference profile, and the computation
method are presented to parameterize the numerical examples.

A. Example Systems

As stated, all examples follow the block diagram of the
classic nonlinear dynamic system, depicted in Fig. 2.

For the sake of simplicity, all the static gains, a2 and a3, are
normalized to 1, and only the filter structure, H2(ω), is varied.
Three examples are considered for analysis. The H2(ω) filters
of examples I, II and III are described in Table. I, Table. II,
and Table. III, respectively.

B. Input Stimulus

In this example analysis, the input stimulus is an equal
magnitude 5-tone excitation, equally spaced and phase aligned.
The amplitude, A from (4), is normalized to 1.

Note that this is not a standard NPR excitation. The NPR
excitation has higher number of tones - i.e. higher frequency
domain resolution - and the tone phases are designed to mimic
band-limited AWGN statistical characteristics. This input stim-
ulus simplification is done for the sake of intelligibility of the
numerical examples, without loss of generality.

The validity of this approach is provided from (8) to (14).
Note that varying the number of tones changes the the mixing
matrix, thus varying the number of IMD frequencies gener-
ated, as expressed in (13). Also, tone phase manipulations
change the weight phasor sum at each IMD frequency, as
expressed in (14). Thus, changing multi-tone excitation pa-
rameters changes the domains of analysis - IMD frequency
and IMD power - but this does not impact the analysis tools
presented, as long as the IMD reference profile is defined in
agreement with the input multi-tone excitation.

C. IMD Reference Profile

As mentioned in Section III, the reference for the classic
mechanism is a static third-order IMD profile. But before com-
puting the reference, the IMD frequency domain of analysis
has to be specified in agreement with the input multi-tone
excitation.

For equally spaced tones, the adjacent channel expands

±n− 1

2
· (Ntones − 1) ·∆f (20)

beyond the co-channel. Where n can be any odd-order, Ntones

is the number of excitation tones, and ∆f is the carrier
spacing. Equation (20) can be derived from (13).

Therefore, for the 5-tone input stimulus, the third-order IMD
reference profile ranges from ω1 − 4∆f to ω5 + 4∆f . Given
this information, the IMD reference profile is computed at the
interest IMD frequencies from (14), substituting for third-order
with a3 normalized to 1. The IMD reference profile is listed
in Table. IV and depicted in Fig. 3.

Here it is assumed that the lowest IMD frequency is higher
than DC. It is also assumed that third-order IMD envelope
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TABLE I
H2(ω) FILTER OF EXAMPLE 1.

H2(ω) −4∆f −3∆f −2∆f −∆f REF ∆f 2∆f 3∆f 4∆f

|H2(ω)| 1 1 0.75 0.75 0.75 0.75 0.75 1 1
H2(ω) 0 0 π π π π π 0 0

TABLE II
H2(ω) FILTER OF EXAMPLE 2.

H2(ω) −4∆f −3∆f −2∆f −∆f REF ∆f 2∆f 3∆f 4∆f

|H2(ω)| 1 1 1 1 1 1 1 1 1
H2(ω) 0 0 0 π π π 0 0 0

TABLE III
H2(ω) FILTER OF EXAMPLE 3.

H2(ω) −4∆f −3∆f −2∆f −∆f REF ∆f 2∆f 3∆f 4∆f

|H2(ω)| 1 1 1 1 1 1 1 1 1
H2(DC) π π π π 0 π π π π

H2(2ω3) π π π π π 0 0 0 0

TABLE IV
REFERENCE FUNDAMENTAL ENVELOPE STATIC THIRD-ORDER PROFILE - 5-TONE EXCITATION

ω1 − 4∆f ω1 − 3∆f ω1 − 2∆f ω1 − 1∆f ω1 ω2 ω3 ω4 ω5 ω5 + 1∆f ω5 + 2∆f ω5 + 3∆f ω5 + 4∆f

0.375 1.125 2.25 3.75 5.625 6.75 7.125 6.75 5.625 3.75 2.25 1.125 0.375

profiles centered at the fundamental and at the third-harmonic
frequencies do not overlap. Such assumptions avoid image
channel overlap, which simplify the example analysis. Note,
however, that the theoretical tools presented are also valid in
such scenarios. In case of image channel overlap, the third-
order IMD reference profile differs from the one presented
here, in accordance to the specific scenario.

D. Classic Mechanism - Numerical Computation Method

As explained in Section III, the classic mechanism IMD
profile is given by the phasor sum of the IMD profiles
produced by the static and dynamic branches. Therefore, the
IMD profile numerical computation starts by the independent
computation the IMD profiles imposed by each branch.

The static branch is a third-order nonlinearity. Thus, the
static branch IMD profile is given by the reference IMD
profile, as explained in Section IV-C.

The dynamic branch performs a frequency conversion from
second-order IMD frequencies to third-order IMD frequencies.
So, before computing the IMD profile, the conversion domain
has to be specified in agreement with the 5-tone input stimulus.
As noted in IV-C, the third-order IMD profile ranges from
ω1−4∆f to ω5+4∆f . Around DC, second-order IMD ranges
from −4∆f to +4∆f . Around the second harmonic, second-
order IMD ranges from 2ω3 − 4∆f to 2ω3 + 4∆f . Note that
second-order IMD frequencies are computed from (13).

After specifying the conversion domain, the conversion gain
of each IMD product is computed from (19). Table. V lists the
static conversion gain from DC, whereas Table. VI lists the

static conversion gain from the second harmonic. As expected,
these conversions differ by a factor of 2.

The dynamic effects, introduced by H2(ω), are computed
by scaling the static conversion gain tables - Table. V and
Table. VI - at each second-order IMD frequency. The scaling
factor is the phasor response of H2(ω) at each IMD frequency.

At this point, the dynamic branch IMD profile is computed
in two steps. First, add Table. V and Table. VI after applying
H2(ω) filtering. Second, compute the line element sum of
the resulting table. For a memoryless conversion, the dynamic
branch IMD profile coincides with the reference, as expected.

Finally, the classic mechanism IMD profile is given by the
sum of the static branch IMD profile and dynamic branch IMD
profile. For a memoryless conversion, this also coincides with
the reference, amplified by 3 dB, as expected.

E. Example Analysis

The IMD profiles produced by each numerical example,
computed as described in Section IV-D, are depicted in Fig. 3.

These IMD profiles present rather unusual trends. Example I
presents a co-channel IMD minimum at the central frequency,
instead of a IMD maximum. Example II presents co-channel
IMD oscillation, having equal power at the start, middle and
end of the band, while having lower power at intermediate
frequencies ω2 and ω4. Example III presents strong adjacent
channel asymmetry, and co-channel IMD power increases
monotonically along the co-channel.

However, one must remember that IMD profile trends alone
do not objectively inform about nonlinear dynamics. The meter
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TABLE V
STATIC CONVERSION TABLE FROM DC TO FUNDAMENTAL FOR THE 5 TONE INPUT STIMULUS

DC− 4∆f DC− 3∆f DC− 2∆f DC−∆f DC DC+∆f DC+ 2∆f DC+ 3∆f DC+ 4∆f

ω1 − 4∆f 0.25 0 0 0 0 0 0 0 0

ω1 − 3∆f 0.25 0.5 0 0 0 0 0 0 0

ω1 − 2∆f 0.25 0.5 0.75 0 0 0 0 0 0

ω1 −∆f 0.25 0.5 0.75 1 0 0 0 0 0

ω1 0.25 0.5 0.75 1 1.25 0 0 0 0

ω2 0 0.5 0.75 1 1.25 1 0 0 0

ω3 0 0 0.75 1 1.25 1 0.75 0 0

ω4 0 0 0 1 1.25 1 0.75 0.5 0

ω5 0 0 0 0 1.25 1 0.75 0.5 0.25

ω5 +∆f 0 0 0 0 0 1 0.75 0.5 0.25

ω5 + 2∆f 0 0 0 0 0 0 0.75 0.5 0.25

ω5 + 3∆f 0 0 0 0 0 0 0 0.5 0.25

ω5 + 4∆f 0 0 0 0 0 0 0 0 0.25

TABLE VI
STATIC CONVERSION TABLE FROM SECOND HARMONIC TO FUNDAMENTAL FOR THE 5 TONE INPUT STIMULUS

2ω3 − 4∆f 2ω3 − 3∆f 2ω3 − 2∆f 2ω3 −∆f 2ω3 2ω3 +∆f 2ω3 + 2∆f 2ω3 + 3∆f 2ω3 + 4∆f

ω1 − 4∆f 0.125 0 0 0 0 0 0 0 0

ω1 − 3∆f 0.125 0.25 0 0 0 0 0 0 0

ω1 − 2∆f 0.125 0.25 0.375 0 0 0 0 0 0

ω1 −∆f 0.125 0.25 0.375 0.5 0 0 0 0 0

ω1 0.125 0.25 0.375 0.5 0.625 0 0 0 0

ω2 0 0.25 0.375 0.5 0.625 0.5 0 0 0

ω3 0 0 0.375 0.5 0.625 0.5 0.375 0 0

ω4 0 0 0 0.5 0.625 0.5 0.375 0.25 0

ω5 0 0 0 0 0.625 0.5 0.375 0.25 0.125

ω5 +∆f 0 0 0 0 0 0.5 0.375 0.25 0.125

ω5 + 2∆f 0 0 0 0 0 0 0.375 0.25 0.125

ω5 + 3∆f 0 0 0 0 0 0 0 0.25 0.125

ω5 + 4∆f 0 0 0 0 0 0 0 0 0.125
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Fig. 3. IMD profiles obtained through numerical simulation: static reference
and nonlinear dynamic examples.

for nonlinear dynamic quantification is the frequency depen-
dence of the error between the IMD profile and reference, not
the IMD profile trend. As shown in Fig. 4, this error is fre-
quency dependent for each example, confirming the presence
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Fig. 4. IMD profile error. Positive error indicates IMD above the static
reference. Negative error indicates IMD bellow the static reference.

of nonlinear dynamics. Note how these are good examples of
how distinct the impacts of nonlinear dynamics on the IMD
profile can be. For instance, Example I and Example II expose
the limitations of expecting nonlinear dynamics to manifest
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TABLE VII
IMD POWER EVALUATION USING CLASSIC LINEARITY METRICS

Metric ACPL ACPU NP CCP

Reference 20.5 20.5 50.8 205.2

Example I 19.5 19.5 2.0 36.5

Example II 46.1 46.1 20.1 88.9

Example III 0.0 9.1 18.1 84.1

through asymmetric IMD profiles/asymmetric errors.
These examples also expose the limitations of classic multi-

tone linearity metrics, such as ACPR, NPR and CCPR, in
the assessment of nonlinear memory effects. Note that these
metrics cannot quantify nonlinear dynamics, because they do
not specify a static reference in accordance with the input
stimulus. Beyond this, even if a reference is postulated, the
integrals, explicit in the definition of these metrics [26], hide
the frequency dependence of the IMD response. Thus, these
metrics cannot gauge the frequency dependence of the error
between measurement and reference IMD profiles, they can
only gauge the difference between measured and reference
IMD power within the evaluation bandwidth. This power
error can incorrectly account a frequency independent error
as nonlinear dynamics. It can also mask nonlinear dynamics
whenever these do not translate into total IMD power errors
within the evaluation bandwidth. This means that these met-
rics, in their classical formulation, lack frequency resolution
to accurately evaluate nonlinear dynamics.

To evidence how relevant information regarding nonlinear
dynamics is lost in classic linearity metrics, IMD power, as
evaluated by ACPR, CCPR and NPR, is listed in Table. VII.
ACPL denotes the IMD power sum from ω1 − 4∆f to ω1 −
∆f , as evaluated by ACPRL. ACPU denotes the IMD power
sum from ω1 + ∆f to ω1 + 4∆f , as evaluated by ACPRU.
NP denotes the IMD power at ω3, as evaluated by a classic
NPR measurement with a central notch. CCP denotes the IMD
power sum from ω1 to ω5, as evaluated by CCPR. Note that
IMD power is adimensional because the numerical example
signals are adimensional.

Consider the ACP. In Example III the ACP measure detects
not only the presence of nonlinear dynamic effects in the L-
band and in the U-band, but it is also capable of detecting
the large error difference between the L-band and the U-
band. However, in Example I the ACP error is too marginal
to confidently detect the existing nonlinear dynamic effects.
Beyond this, the perception of the IMD frequencies in which
IMD power is above or bellow the reference, as observed in
Fig. 4, is lost. This happens because the coarse ACP analysis
loses the frequency resolution required to detect these features
imposed by nonlinear dynamic effects. It is no longer possible
to relate IMD power to specific IMD frequency bands. Also,
observe how ACP is not indicative of the CCP, and vice-versa.

NP detects the absolute IMD error at the central frequency,
ω3, but it is not indicative of the error variations that occur at
other co-channel frequencies. Observe that Example II and
Example III have similar NP, but these examples manifest
very distinct co-channel IMD profiles (refer to Fig. 3 and

𝑥(𝑡)
⋅ 3 H3(𝜔)

y(𝑡)

Fig. 5. Third-order dynamic nonlinear system model. This model addresses
nonlinear dynamics, thus the linear path is not presented.

Fig. 4). This evidences the importance of using swept-notch
NPR measurements [21].

The use of CCP does not necessarily provide a better
insight than NP. As already explained, Example II IMD power
oscillates along the co-channel, whereas Example III IMD
power monotonically increases along the co-channel. The CCP
coarse analysis does not have sufficient frequency resolution
to appropriately capture these variations imposed by nonlinear
dynamic effects. This is the reason why CCP indicates similar
IMD power levels for both scenarios.

The presented analysis indicates that a reliable characteri-
zation of IMD profiles affected by nonlinear dynamic effects
requires the measurement of both adjacent-channel and co-
channel IMD, with sufficient resolution frequency. Then, the
analysis of the measured IMD profile has to be performed in
relation to the static IMD reference profile.

V. LIMITATIONS OF MECHANIM BASED IMD ANALYSIS

As stated in Section III, in RF systems the IMD analysis
is often performed assuming the classic nonlinear dynamic
mechanism. However, IMD analysis based on specific mecha-
nisms have strong limitations in terms of range of applicability.
If the system under test differs from the analysis mechanism,
the analysis is no longer valid. An obvious limitation of the
classic mechanism is that it is strongly bound to third-order
nonlinearity.

Range of applicability limitations directly translate into ex-
perimental setups and procedures in which specific nonlinear
mechanisms are assumed prior to measurement. Studies [7]
and [19] are good examples of nonlinear characterization
based on specific mechanisms. When following this approach,
one must be careful, because whenever incorrect assumptions
are made in experiments, these translate into errors in the
experimental results.

The limitations of mechanism based IMD analysis span
beyond the nonlinear order of the system, because different
systems, of equal nonlinear order, can produce the same
response for a given excitation. Remember, from Section III,
that a static second-order nonlinearity up-converted to third-
order is indistinguishable from a static third-order nonlinearity.
In fact, it is a static third-order nonlinearity. Beyond this, it is
possible to have a different third-order system that produces
the IMD profiles generated by the classic mechanism in
Section IV-E, for the same excitation signal.

Consider the third-order nonlinear dynamic mechanism de-
picted in Fig. 5. It consists of a static third-order nonlinearity
followed by a filter, H3(ω). The static nonlinear contribu-
tion is given by (14), substituting for third-order. The filter,
H3(ω), affects the magnitude and phase of each IMD product
captured in K3(ω). For the example scenario described in
Section IV, the static third-order contribution is given by the
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IMD reference profile, after normalizing a3 to 1. The dynamic
effects, introduced by H3(ω), scale the IMD reference profile.
The scaling factor is the phasor response of H3(ω) at each
third-order IMD frequency. Thus, this mechanism can produce
exactly the IMD profiles shown in Fig. 3, for the same
excitation, if H3(ω) is given by the normalization of the
example IMD profiles by the static IMD reference profile.
Table. VIII, Table. IX, and Table. X list the H3(ω) filters,
obtained through normalization, that produce the IMD profiles
of Example I, Example II, and Example III, respectively.

Therefore, general experimental setups and procedures must
avoid making assumptions about the nonlinear dynamic mech-
anism of the system under test. Such considerations must be
made based on the analysis of unbiased experimental results.
Specific experimental setups and procedures should only be
used when there is prior knowledge about the system, and
there is a need for a tailored characterization.

VI. NONLINEAR DYNAMIC RF SYSTEM
CHARACTERIZATION

So far, the presented work brought important insights into
the analysis of the IMD response produced by nonlinear
dynamic RF systems, exposing relevant limitations of existing
linearity metrics on the quantification of nonlinear dynamics.

This section reframes those insights from a characterization
perspective, summarizing the major contributions of this work
in a way that they can be instrumentally used to improve
characterization techniques, and linearity metrics, on the as-
sessment of nonlinear dynamics.

Beyond this, these contributions are used to propose a novel
characterization procedure that overcomes the most critical
limitations of standard procedures.

A. General Guidelines for Procedures and Metrics

The major contributions already presented can be sum-
marized in a list of general guidelines for more reliable
experimental procedures and linearity metrics, as follows:

1) Specify a static IMD reference profile in agreement with
the input excitation: It was shown that IMD profiles are
highly dependent on the input excitation. The definition of
a reference avoids the misinterpretation of the experimental
results. Beyond this, nonlinear dynamics are detected through
the frequency dependence of the error between measured IMD
profile and IMD reference;

2) Avoid blind mechanism based characterization: It was
explained that mechanism based characterization has a very
restrictive range of validity, and that incorrect assumptions
can lead to experimental errors. Instead of blindly assumming
a nonlinear dynamic mechanism, start from unbiased experi-
mental results before moving to a mechanism based analysis;

3) Perform full inband IMD characterization: It was shown
that in the presence of nonlinear dynamics, adjacent-channel
IMD trends are not necessarily indicative of co-channel IMD
trends, and vice-versa. Capturing both adjacent-channel and
co-channel IMD allows for a more comprehensive understand-
ing of the nonlinear dynamic mechanism being characterized;

4) Perform magnitude and phase measurements: The theo-
retical formulation evidences that important information about
system dynamics is concealed in the phase of the overlapping
IMD products at each IMD frequency. Therefore, magnitude
and phase measurements are preferred over power measure-
ments;

5) Use frequency dependent linearity metrics: It was
demonstrated that informative linearity metrics must capture
the frequency dependence of the measured IMD profile in
relation to the reference with sufficient frequency resolution.

B. Swept-Tone NPR

Given the aforementioned guidelines, this section proposes
a reliable characterization method, based on classic NPR
procedures, to measure IMD profile responses produced by
nonlinear dynamic RF systems.

First, the input stimulus has to be specified. For the swept-
tone NPR the input excitation can be any equal amplitude
multi-tone signal, with equally spaced tones. For those signals,
the full inband response is given by (21), where Knd

(ω) is
the dynamic weighting phasor of order n, observed at the
system output. It results from the static weighting phasor,
given by (14), being filtered by the system memory effects.

∞∑

n=0

Knd
(ω) , ω ∈ inband (21)

From (15) and (16), this inband IMD response can be
decomposed in correlated IMD and uncorrelated IMD com-
ponents, as expressed in (22).

∞∑

n=0

Knd
(ω) =

∞∑

n=0

Knd
(ω)corr +

∞∑

n=0

Knd
(ω)uncorr (22)

In RF systems the desired response is the correlated re-
sponse, because correlated IMD components can be used to
regenerate communication signals at the receiver [4], [16].
Thus, from an RF system perspective, the uncorrelated IMD
response is the interest nonlinear response to be measured.

From a characterization perspective, the full inband re-
sponse, given by (21), is measured with a full spectrum multi-
tone excitation. This measurement fully captures the adjacent-
channel portion of the uncorrelated nonlinear envelope re-
sponse, but overlaps correlated and uncorrelated responses at
the co-channel frequencies.

From (15) and (16), it is perceptible that if a single
excitation tone, ωoff , is turned off, all IMD phasors correlated
with the ωoff excitation phasor are also switched off, but all
uncorrelated phasors that fall in ωoff are preserved. Thus,
the co-channel uncorrelated IMD response can be measured
by switching off a single excitation tone, taking a measure-
ment, recording the uncorrelated IMD at the switched off
excitation frequency, sweeping the switched off tone along
the co-channel, and repeating this process until all excitation
frequencies are characterized in terms of uncorrelated IMD.
To illustrate this procedure, the swept-tone NPR excitation
signals, for a 5-tone input stimulus, are shown in Fig. 6.
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TABLE VIII
H3(ω) FILTER THAT PRODUCES EXAMPLE 1 RESPONSE FOR THE THIRD-ORDER DYNAMIC NONLINEAR CASE

H3(ω) −6∆f −5∆f −4∆f −3∆f −2∆f −∆f REF ∆f 2∆f 3∆f 4∆f 5∆f 6∆f

|H3(ω)| 2 2 1.1 0.74 0.56 0.4 0.2 0.4 0.56 0.74 1.1 2 2
H3(ω) 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE IX
H3(ω) FILTER THAT PRODUCES EXAMPLE 2 RESPONSE FOR THE THIRD-ORDER DYNAMIC NONLINEAR CASE

H3(ω) −6∆f −5∆f −4∆f −3∆f −2∆f −∆f REF ∆f 2∆f 3∆f 4∆f 5∆f 6∆f

|H3(ω)| 2 2 2 1.2 0.8 5
9

12
19

5
9

0.8 1.2 2 2 2
H3(ω) 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE X
H3(ω) FILTER THAT PRODUCES EXAMPLE 3 RESPONSE FOR THE THIRD-ORDER DYNAMIC NONLINEAR CASE

H3(ω) −6∆f −5∆f −4∆f −3∆f −2∆f −∆f REF ∆f 2∆f 3∆f 4∆f 5∆f 6∆f

|H3(ω)| 0 0 0 0 4
9

14
27

34
57

19
27

8
9

2
3

2
3

2
3

2
3

H3(ω) 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 6. Swept-tone notch NPR excitation signals PSD, assuming a 5-tone
excitation.

The aforementioned measurements characterize the full in-
band response and the uncorrelated inband response. These
measurements allow for the computation of the correlated
inband response through (22), by subtracting the uncorrelated
inband response from the full inband response.

It is now important to define the static reference IMD
envelope profile. One approach to define the static reference is
to use system input/output observations. With the full spectrum
multi-tone excitation input/output observations, the best static
model can be computed in a least squares sense [25], [26].
Then, the swept-tone NPR excitations can be applied to this
model to compute the co-channel uncorrelated IMD response.
With this, the best static reference IMD profile can be defined.
Note that in this process no assumptions are made about the
system, and no processing is done on the experimental results.
But assumptions are made about the static reference, which
instead of capturing the real an values from (1), it optimizes

the an values to minimize error in the least squares sense.
This means that deviations of the measured uncorrelated IMD
profile from the static reference uncorrelated IMD profile are
measures of the minimum dynamic deviations, not absolute
deviation measures.

Lets finally address the linearity metrics. When evaluating
linearity it continues to be important to measure the signal to
noise distortion ratio (SNDR), as postulated in classic linearity
metrics. In the proposed method this can be easily evaluated
by (23).

SNDR =
Correlated Power

Uncorrelated Power
(23)

Following the formulation in (22), the correlated power is
given the commutative power of the correlated inband response
spectrum - linear power + correlated IMD power - whereas
the uncorrelated power is given the commutative power of
the uncorrelated inband response spectrum - adjacent-channel
uncorrelated IMD power + co-channel uncorrelated IMD
power. These powers are directly obtained by computing the
cumulative power of the correlated inband response and the
uncorrelated inband response, respectively, which are mea-
sured as explained above.

However, system nonlinear dynamics cannot be neglected.
To capture nonlinear dynamics, the SNDR measure has to be
accompanied by the uncorrelated IMD profile and the refer-
ence IMD profile. The error between these profiles quantifies
the variations due to nonlinear dynamic effects. These profiles
can also be presented in relation to the correlated power, thus
expressing the SNDR variation along the adjacent channel
and co-channel. Note how this overcomes the aforementioned
limitations of ACPR, NPR and CCPR.

The full characterization method proposed is summarized
in the flowchart of Fig. 7.

To speed up characterization in a practical application
scenario, the experimental procedure can be simplified by
swiping a small bandwidth notch instead of a single tone
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Define Multisine

Measure Full Inband Response
Correlated + Uncorrelated → (17)

Compute Best Static Model

Switch Off 1st Tone

Measure IMD at Off Tone

Compare Measured and Reference Uncorrelated Profiles

Compute Measured Correlated Response → (18)

Evaluate SNDR

Compute IMD at Off Tone

Last Tone?

Measurement 
or Reference?

Move to next tone

Yes

Measurement

No

Reference

Fig. 7. Characterization method flowchart.

Fig. 8. Swept notch NPR excitation signals PSD, proposed in [21].

DC

DUTVSG VSA

(a) Setup Schematic.

(b) Setup Picture.

Fig. 9. Experimental Setup.

notch, as proposed in [21]. The swept-notch NPR exitation
signals for such a scenario are shown in Fig. 8. The IMD
profile observations using this method are valid as long as the
system is slowly varying along the co-channel, when compared
to the notch bandwidth, i.e. as long as the notch provides
sufficient frequency resolution to capture the existing nonlinear
dynamic effects. Note, however, that this modification does
not allow for the computation of the correlated response as
previously formulated in (22).

VII. EXPERIMENTAL VALIDATION

The main objective of this section is to validate the theo-
retical contributions of this work experimentally. Namely, evi-
dencing the limitations of classical metrics - ACPR, NPR and
CCPR - in the assessment of nonlinear dynamics, and evidenc-
ing the usefulness of the general characterization guidelines
proposed to overcome those limitations. This is achieved by
comparing the IMD profile obtained from the proposed swept-
tone NPR procedure with IMD power measures obtained from
classical procedures.

Before advancing into the experimental result analysis, the
swept-tone NPR experimental validation is described in terms
of experimental setup, input stimulus, and devices-under-test
(DUTs).

A. Experimental Setup

The experimental setup is designed and configured to per-
form the swept-tone NPR procedure described in Fig. 7.

The experimental bench is depicted in Fig. 9. The VSG
is composed of a Keysight M8190A AWG and a Keysight
E8361C PSG. The AWG is used to generate the desired input
baseband I/Q waveform, whereas the PSG serves to up-convert
this baseband waveform to the desired carrier frequency,
while controlling the envelope signal power. The Keysight
N9041B UXA VSA function is to capture the input/output
I/Q waveforms. The TTI PL330DP DC supply is used to bias
the DUTs.

The DC supply is controlled manually, whereas the VSG
and VSA equipments are remotely controlled to follow the
procedure depicted in Fig. 7 closely. The bench is calibrated
to capture the desired I/Q waveforms synchronously at the
input and output ports.
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B. Input Stimulus

As explained in Section VI-B, the swept-tone NPR specifies
the input excitation as any equal amplitude multi-tone signal,
with equally spaced tones. Before experimentation, this signal
has to be parameterized in power level, bandwidth and number
of tones. Note that the specification of bandwidth and the
number of tones imposes the carrier spacing, which is the
resolution frequency of the swept-tone NPR procedure.

During the experiments, signal power and signal bandwidth
were fixed at −10 dBm and 100 MHz, respectively, whereas
the number of tones was varied. Two input stimulus were
used, one with 5-tones and another with 101-tones. In other
words, one with 25 MHz resolution frequency and another
with 1 MHz resolution frequency.

The 5-tone signal has phase aligned tones. This signal is
similar to the one used for theoretical exemplification, which
allows a familiar transition from the theoretical analysis to the
experimental analysis. The idea is to show that signals with
these characteristics can also be used to measure IMD and
nonlinear dynamics in practical scenarios.

The 101-tone excitation has randomized phases, designed
following the guidelines presented in [27] to resemble AWGN.
This signal corresponds to a typical NPR characterization
signal. The idea is to show that the presented concepts also
apply to characterization signals used for the evaluation of
classic linearity metrics.

C. Devices Under Test

During the experimental procedure, two devices were char-
acterized: an Era-2+ [28], and a ZVA-213-S+ [29].

The Era-2+ is a stable off-the-shelf device known to be
memoryless. It is used to validate the static reference IMD
profile extraction procedure followed in swept-tone NPR char-
acterization. The Era-2+ board operates from 5.55 GHz to
5.75 GHz, having a P1dB of 11 dBm. It is biased with 8.4 V,
consuming 50 mA. It is excited at a 5.67 GHz carrier. For
the input-stimulus with −10 dBm input power, it outputs an
envelope power of 1 dBm, which is in agreement with the
typical gain of 10.7 dB.

The ZVA-213-S+ is a wideband amplifier of interest for
Ku-band radar and satellite applications. Its large operation
bandwidth is an indicator for the manifestation of nonlinear
dynamic effects. This device is used to validate the ability
of swept-tone NPR to gauge nonlinear dynamics. The ZVA-
213-S+ board operates from 800 MHz to 21 GHz, having a
P1dB of 24 dBm. It is biased with 12 V , consuming 340 mA.
It is excited at an 18 GHz carrier. For the input-stimulus
with −10 dBm input power, it outputs an envelope power
of 15.6 dBm, which is in agreement with the typical gain of
26 dB.

D. Experimental Result Analysis

The experimental results are presented in Table. XI and from
Fig. 10 to Fig. 15. Table. XI contains all SNDR measures and
classical linearity metrics measures. The results from Fig. 10
to Fig. 12 refer to swept-tone NPR measures done with the
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Fig. 10. Era-2+ - 5-tone excitation - correlated response and uncorrelated
IMD profiles (Measurement and Reference).
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Fig. 11. ZVA-213-S+ - 5-tone excitation - correlated response and uncorre-
lated IMD profiles (Measurement and Reference).
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Fig. 12. 5-tone excitation - error between uncorrelated response and reference
profile (Era-2+ and ZVA-213-S+). The error curves, even though referent to
different carrier frequencies, are plotted in the same graph to facilitate the
comparison between the two dynamic behaviors.
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Fig. 13. Era-2+ - 101-tone excitation - correlated response and uncorrelated
IMD profiles (Measurement and Reference).
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Fig. 14. ZVA-213-S+ - 101-tone excitation - correlated response and
uncorrelated IMD profiles (Measurement and Reference).
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Fig. 15. 101-tone excitation - error between uncorrelated response and
reference profile (Era-2+ and ZVA-213-S+). The error curves, even though
referent to different carrier frequencies, are plotted in the same graph to
facilitate the comparison between the two dynamic behaviors.

TABLE XI
EXPERIMENTAL RESULTS: IMD POWER METRICS AND SNDR

Metric ACPRL ACPRU NPR CCPR SNDR
Unit dB dB dB dB dB
Eram (5-tones) 33.9 34.4 30.7 30.8 28.0
Erar (5-tones) 34.2 33.9 30.8 30.3 27.6
Zvam (5-tones) 28.6 29.0 29.8 29.9 24.3
Zvar (5-tones) 30.6 30.5 32.6 32.6 26.2
Eram (101-tones) 52.4 47.3 26.9 30.2 28.8
Erar (101-tones) 50.9 46.5 27.1 29.9 28.5
Zvam (101-tones) 47.1 41.8 22.9 27.8 25.8
Zvar (101-tones) 48.3 41.3 21.7 26.1 24.8

5-tone excitation, whereas the results from Fig. 13 to Fig. 15
refer to swept-tone NPR measures done with the 101-tone
excitation. For each measurement performed, each metric was
also evaluated taking into account the reference profile, instead
of the measured uncorrelated IMD profile. These results are
also listed in Table. XI to aid the result analysis.

Lets start with the Era-2+ characterization performed with
5-tones. As shown in Fig. 10, the uncorrelated IMD profile and
the reference profile overlap. Fig. 12 confirms this assessment,
showing that for this device the error between uncorrelated
IMD profile and reference is mostly constant throughout the
band, and that the magnitude of the error never exceeds 1 dB.
Beyond this, the error between uncorrelated IMD profile and
the reference profile for all the metrics listed in Table. XI
never exceeds 0.5 dB. All these results evidence a memoryless
behavior, as expected. The swept-tone NPR measure provides
more frequency resolution than the metrics listed in Table. XI,
which for this memoryless scenario does not provide any
additional information.

The advantages of the swept-tone NPR measures are clear
in the 5-tone experimental results of the ZVA-213-S+ device.
As shown in Fig. 11, the uncorrelated IMD profile is above the
reference throughout the band. The most noticeable feature of
these profiles is the decreasing error between the uncorrelated
IMD profile and the reference along the co-channel frequen-
cies. For this device, the error curve, shown in Fig. 12, reveals
more details. It can be noted that lower-band adjacent-channel
error increases towards the co-channel, whereas higher-band
adjacent-channel error is mostly constant, around 1.5 dB.
The frequency dependence of the error between uncorrelated
IMD profile and reference confirms the presence of nonlinear
dynamics in the IMD response of the ZVA-213-S+ device.
Regarding ACPRL and ACPRU metrics, a 1.5 dB error
is measured between the uncorrelated IMD profile and the
reference profile evaluations, as listed in Table. XI. These
metrics can detect that the uncorrelated IMD profile is above
the reference, but loose the information regarding the adjacent-
channel error trend. Similar considerations can be made about
the NPR and CCPR metrics. Errors of 2.8 dB can detect that
the uncorrelated IMD profile is above the reference, but the
perception that the error decreases along the co-channel is lost.
In the presence of nonlinear dynamics, it is clear that swept-
tone NPR measurements can provide detailed information that
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classic metrics neglect.
Now, consider the Era-2+ characterization performed with

101-tones. Once again, the uncorrelated IMD profile and the
reference overlap, as show in Fig. 13. For this excitation the
error between the uncorrelated IMD profile and the reference
remains constant throughout the band, and lower than 1 dB
in modulus, as depicted in Fig. 15. Apart from the adjacent-
channel measures, all metrics agree with the reference metric
with an error lower than 0.3 dB, as listed in Table. XI.
The adjacent channel error is slightly larger - 1.5 dB -
because these measures are taken at lower powers, where small
absolute errors translate into larger relative errors. Despite
this limitation in the evaluation of ACPR, the experimental
results, particularly the error curves in Fig. 15, confirm the
memoryless behaviour of the Era-2+, now under a 101-tone
excitation.

Finally, lets analyze the ZVA-213-S+ characterization per-
formed with 101-tones. Once again, the uncorrelated IMD
profile and the reference do not overlap, as shown in Fig. 14.
But the uncorrelated IMD trend is now more complex than
observed for the 5-tone excitation. There are several frequency
bands in which the uncorrelated IMD profile is either above,
bellow, or overlapped with the reference, as can be clearly
observed in Fig. 15. Once again, the frequency dependence
of the error between uncorrelated IMD profile and reference
confirms the presence of nonlinear dynamics in the IMD
response of the ZVA-213-S+ device. It is interesting to contrast
the error profile, depicted in Fig. 15, with classical linearity
measures, listed in Table. XI. The ACPRL measure is 1.2 dB
bellow the reference ACPRL. Looking into the error curve
it is perceptible that this skew occurs because in the lower-
band adjacent-channel the cumulative uncorrelated IMD power
above the reference is higher than the cumulative uncorrelated
IMD power bellow the reference. In the higher-band adjacent
channel the impacts of the cumulative analysis are more
severe, because the amount of comulative uncorrelated IMD
power above and bellow the reference is similar. Therefore, the
error between the uncorrelated IMD profile and the reference
in the ACPRU measure is only 0.5 dB, which can mask
the detection of nonlinear dynamics. Note, again, how the
cumulative nature of classic linearity metrics mask important
features of IMD profiles containing nonlinear dynamic effects.
Regarding the NPR and CCPR, errors of 1.2 dB and 1.7 dB
are measured in relation to the reference, respectively. These
errors detect that the uncorrelated IMD profile is bellow the
reference in the co-channel, but the perception of the error
trend is lost.

It is now important to compare the experimental results
obtained for the 5-tone excitation with the results obtained for
the 101-tone excitation. For the Era-2+, the uncorrelated IMD
responses and the error trends reinforce each other, confirming
the memoryless behavior of the device. The same can be
said for the ZVA-213-S+ device, in the sense that nonlinear
dynamic effects are detected with both signals. However, more
work is required to establish an identity between these two
regimes of operation in order to be able to perform a direct
comparison between the results obtained from each excitation,
because IMD profiles and error trends are dependent on

input excitation, as previously explained. The ACPR and NPR
measures vary significantly from one excitation to the other,
which makes them difficult to compare. The CCPR measure
is similar for the memoryless scenario, but in the presence of
memory effects errors can be as large as 6.5 dB. However, the
SNDR measures, evaluated as defined in (23), agree within a
1.5 dB error margin.

Regarding linearity metrics, in a memoryless scenario all
metrics evaluated provide IMD measures with similar levels
of confidence. In the presence of nonlinear dynamics, the error
profile obtained from swept-tone NPR is the most informative
metric. The remaining metrics can be misleading, as demon-
strated by the experiments. In sum, swept-tone NPR is capable
of reliably distinguishing nonlinear dynamic scenarios from
memoryless scenarios, while accurately evaluating IMD power
levels.

Regarding the device under test performance evaluation,
the Era-2+ device is a static nonlinear device that exhibits
a 28.8 dB SNDR at 1 dBm of output power when excitated
at 5.67 GHz, whereas the ZVA-213-S+ device is a nonlinear
dynamic device that exhibits a 25.8 dB SNDR at 15.6 dBm of
output power when excitated at 18 GHz. In these conditions
the Era-2+ SNDR is 3 dB higher than the ZVA-213-S+,
meaning that a higher portion of the output power is desired
signal power. In that sense, it can be said that Era-2+ device
is more linear at delivering 1 dBm of output power at a
5.67 GHz carrier, than the ZVA-213-S+ device at delivering
15.6 dBm of output power at an 18 GHz carrier. This analysis
is not an absolute comparison of the performance of the
devices, because the regimes of operation are too distinct, it
is just to provide an idea of how to use the proposed metrics
to evaluate both dynamics and linearity.

As a final note, observe that it was the definition of the
static reference that allowed an objective interpretation of the
experimental results for every linearity metric considered.

VIII. CONCLUSION

This work presented a theoretical framework capable of
analyzing IMD profiles produced under multi-tone excitation
and detecting the impacts of nonlinear dynamic effects. This
analysis exposed critical limitations of classic linearity metrics
in the assessment of IMD responses produced by nonlinear
dynamic RF systems, and allowed for the definition of general
characterization guidelines to overcome those limitations.

Based on these contributions, a novel characterization
method, based on classic NPR procedures, for the characteri-
zation of IMD profiles affected by nonlinear dynamic effects
was proposed and validated experimentally.

The proposed method, swept-tone NPR, contemplates sev-
eral advantages over previous works addressing NPR charac-
terization, as the novel method:

1) does not require an AWGN excitation. It is consistent
for different multi-tone excitation statistics, and can be
adapted to excitations used in practical scenarios;

2) it captures full inband IMD (adjacent-channel + co-
channel IMD)
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3) it separates the correlated inband response, from the un-
correlated inband response. This allows for an accurate
evaluation of inband SNDR;

4) it is capable of distinguishing memoryless scenarios
from nonlinear dynamic scenarios;

5) it defines a frequency dependent metric, which allows
for the detection fine IMD profile features introduced
by nonlinear dynamic effects, both in adjacent channel
and co-channel frequencies;

6) it is not bound to specific nonlinear mechanisms.
The general characterization guidelines presented are good

practices that allow for the definition of novel characterization
methods, or for the adaptation of exiting methods, to reliably
capture IMD profiles affected by nonlinear dynamic effects
in accordance to specific RF application constraints. This is
particularly important, as RF applications continue to expand
towards broader instantaneous bandwidths and nonlinear dy-
namic effects become more relevant.

Further work is required to establish direct relationships
between experimental results obtained with different excitation
signals, but the initial results presented here indicate the ability
to correctly characterize IMD power level while detecting
nonlinear dynamic effects.

The developments presented in this work can be used in
design, modeling and compensation of nonlinear dynamic RF
systems. However, future developments are required in this
regard, so that reliable linearity metrics, contemplating non-
linear dynamic effects in broadband scenarios, are integrated
in these fields, finally replacing simpler, but invalid, metrics
in these domains of application.
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Chapter 3

A framework to assess and compare
linearity metrics

Two major broadband linearity metric limitations impede the establishment of a uni-
versal framework to measure and compare RF system linearity performance: measurement
inconsistency, and test signal dependence.

In microwaves, Gaussian noise loading is the cornerstone of linearity assessment [9, 46, 53],
but a standard test signal has never been postulated because in theory specifying Gaussian
signals is straightforward. In practice, linearity metric measurements performed with Gaus-
sian signals are inconsistent [12, 20, 37]. This makes it hard to compare metrics measured
with different equipment, different automated toolboxes, and by different users.

Measurements performed with different test signals produce different linearity metrics.
Unfortunately, the knowledge to interpret and compare these metrics was missing, and the
practical need to assess linearity in real system operation made test signal dependence a
critical problem, it forced modern characterization approaches to abandon noise loading
techniques, and to move towards the use of modulated test signals. Now, there are virtually
infinite application dependent linearity metrics.

This chapter presents test signal standards that guarantee consistent linearity metric
measurements, and proposes a solution to overcome linearity metric application dependence.

3.1 Linearity Test Signal Standards

Linearity metrics are test signal dependent. Without specifying relevant signal charac-
teristics, the choices made by automated toolboxes, and by users culminate in inconsistent
measurements. This section discusses how test signal standards can guarantee consistency.

3.1.1 How are Gaussian linearity metric measurements inconsistent?

Gaussian noise loading is the foundation of broadband linearity characterization. How
come that measurements performed with these signals lead to inconsistent linearity metrics?

Lets revisit the Gaussian distribution PDF:

fX(x) =
1√
2πσ

e
−(x−µ)2

2σ2 (3.1)
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Figure 3.1: Theoretical Gaussian PDF.

In theory, Gaussian signals are fully specified by the average amplitude, µ, and by the standard
deviation, σ. In microwaves, µ is zero, and σ2 is the average power. In practice, measurement
inconsistency mostly comes from two overlooked signal characteristics: amplitude range, and
high-power amplitude coverage.

The amplitude range is infinite: x ∈ (−∞,+∞). The ideal Gaussian signal is not repro-
ducible in the lab, its tail is cropped. Without rules for cropping, the test signal distribution
varies depending on measurement choices. Beyond this, Gaussian signals have low probability
of high-power amplitudes that inform about linearity. The net result is that some test signals
probe the nonlinear region better than others, which produces linearity metric variability.

Thankfully, the root causes of inconsistency can be minimized. Amplitude range variabil-
ity can be overcome by specifying a crop factor that balances tail length. A possible solution
is to define the crop factor in terms of σ:

Ppeakcrop = (nσ)2, (3.2)

this is equivalent to specifying a fixed finite PAPR for the test signal:

PAPRcrop =
Ppeak

Pavg
=

(nσ)2

σ2
= n2. (3.3)

The tail should not be so short that it affects the distribution, nor so long that the DAC looses
resolution near the average signal power, where most of the signal samples are. Fig. 3.2 depicts
this trade-off.

The small probability of observing the nonlinear region can be circumvented by the use
of longer test signals, but this can create memory constraints.

Nonetheless, these inconsistency improvements are just halfway towards a standard, and
the use of non-repeatable real communication signals only aggravates the problem. Instru-
mentation grade standards require the same test conditions in every realization. The next
section explains what is required to define a robust linearity test signal standard.
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Figure 3.2: Trade-off between crop factor and DAC range coverage when the cropped Gaussian
distribution fits the full DAC range.

3.1.2 How to define a robust linearity test signal standard?

Robust linearity test signal standards apply a key principle of system identification to
linearity characterization [54, 55], they excite the relevant system states: memory and power.

Exciting all memory states means energizing simultaneously the full system instantaneous
bandwidth with sufficient resolution frequency. In Fig. 3.3, the RF carrier excites fast memory
effects, the instantaneous bandwidth probes memory that spans the envelope period, and the
resolution frequency imposes the slowest long-term memory effect excitation required.
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Figure 3.3: Nonlinear dynamic time constants: τfast ≈ 1
fc
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BW ; τslow ≈ 1
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.

Exciting all relevant power states means that the test signal covers the system power
range, from zero up to the maximum input instantaneous power allowed. Fig. 3.4 depicts the
concept. Each amplitude within this power range is probed according to the test signal PDF.

With multi-tones, memory excitation is asserted by adjusting the number of tones within
the system instantaneous bandwidth to guarantee the required resolution frequency. Power
excitation is asserted by fitting the signal range to the system range.
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Beyond requirement compliance, there are several reasons to use multi-tone signals1: they
preserve time-frequency information during domain conversions; they allow flexible temporal
amplitude statistical design; they provide the same waveform consistently; they can be
generated with basic equipment; and they are license free.

In summary, any signal that fully excites memory and power states is a candidate for
the microwave linearity test signal standard. In practice it makes sense to use signals that
are robust, easy to generate, accessible to everyone, with amplitude statistics that probe
the nonlinear region well, and that can be consistently reproduced. This makes the uniform
multi-tone a suitable choice for the linearity test signal standard.

3.1.3 The uniform multi-tone test signal standard

A standard linearity test signal requires appropriate memory and power excitation. Any
properly designed multi-tone can excite the memory states and cover the full power range,
but the nonlinear region coverage is dependent on the selected amplitude statistics.

A uniformly distributed multi-tone excites all amplitudes within the power range equally:

fX(x) =
1

2a
, (3.4)

where a is the maximum amplitude allowed, and x ∈ [−a, a]. This asserts a similar excitation
of small and large-signal dynamics, which optimizes the nonlinear region coverage. It also
means that the signal PAPR is finite:

PAPR =
Ppeak

Pavg
=

a2

a2

3

= 3. (3.5)

therefore, the uniform signal does not need to be cropped to fit the DAC range, which avoids
quantization and resolution problems.

1Other signals can be used, but that study is outside the scope of this work.
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3.1.4 Uniform vs Gaussian Linearity Metrics

The presented linearity test signal standards impose frequency domain and power range
requirements on the input signal, but linearity metrics are influenced by how the selected
statistics probe the power range. How can linearity metrics measured with different signal
statistics be compared fairly? The influence of statistics on the system response must be
isolated. This is achieved by fixing the spectrum and power range, and changing amplitude
statistics. Fixing the power range means comparing linearity metrics at the same peak power.
Fig. 3.6 shows, for uniform and Gaussian distributions, the difference in amplitude range
between having signals with the same average power, or with the same peak power.
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Figure 3.6: Uniform vs Gaussian distribution amplitude range.

Fig. 3.7 plots linearity metrics measured at the output of the same RF system when excited
with uniform and Gaussian multi-tone test signal standards that occupy the same power
range 2. The superior sensitivity to nonlinear power of the uniform multi-tone manifests in

2For characterization details, refer to [elmJ1, Sec. IV.], attached at the end of this chapter.
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Figure 3.7: Uniform vs Gaussian linearity metrics same power range.

three ways: observable power range; metric value; and metric trend. The uniform linearity
metric is observable at a lower power range, it only requires -2 dBm of peak power with
the experimental setup used, whereas the Gaussian test signal requires 1 dBm. Also, the
uniform metric is lower, meaning that it accumulates more nonlinear power. Finally, up
to the maximum peak power measured, the Gaussian linearity metric trend only detects
3rd-order behaviors, evidenced by the 2 dB metric decrease per dB of input power, whereas
the uniform metric can discern higher order behaviors as peak power goes beyond 1 dBm.

In short, the uniform multi-tone is better than the Gaussian for linearity characterization.

3.2 Expected Linearity Metric

Overcoming linearity metric test signal dependence means being able to predict and
compare the linearity performance of a system under different test signal excitation without
having to measure the system in those test conditions. In other words, being able to establish
identities between metrics obtained with different test signals. ELM enables that.

3.2.1 The ELM definition

The response, y(t), of any nonlinear system can be divided into a linear, and a nonlinear
response to the input signal, x(t):

y(t) = f [x(t)] = flin[x(t)] + fnlin[x(t)] (3.6)

A linearity metric aims to convey the average power ratio between the nonlinear response,
and the linear response of a system over time. Therefore, the Expected Linearity Metric
(ELM) is a principled way to define a linearity metric:

ELM =
E[flin[x(t)]

2]

E[fnlin[x(t)]2]
. (3.7)

The expected values, E[(·)2], can be computed as:
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E[f [x(t)]2] =

∫ ∞

−∞
f [x(t)]2fX(x)dx, (3.8)

where fX(x) is the PDF of the test signal, x(t).

3.2.2 Measuring ELM

In the frequency domain 3, ELM is given by:

ELM =

∫∞
−∞ Sflin[x(t)](f)df∫∞
−∞ Sfnlin[x(t)](f)df

. (3.9)

It is a CCPR like metric that also accounts for adjacent-channel distortion power, so, it can
be measured using the feed-forward characterization technique depicted in Fig. 3.8.

X(𝑓)
+

𝑌𝑛𝑙𝑖𝑛(𝑓)
SUT

Y(𝑓)

𝑌𝑙𝑖𝑛(𝑓)

+

-

Figure 3.8: ELM feed-forward characterization technique.

The ELM measurement steps are the following:

� excite the System Under Test (SUT) with the test signal, X(f).

� observe the SUT response, Y(f);

� feed-forward Ylin(f) to extract Ynlin(f) from Y(f);

� compute ELM.

Ylin(f) is X(f) amplified by the small-signal S21 of the SUT. Input/output signals are gener-
ated/captured using the typical VSG/VSA setup presented in section 1.1.2.

The linearity metrics in Fig. 3.7 are ELM curves, obtained using this method.

3.2.3 Establishing ELM metric identities

According to (3.7), the ELM computation steps are:

� apply x(t) to flin(·), and compute the average power of the linear response;

� apply x(t) to fnlin(·), and compute the average power of the nonlinear response;

� compute ELM.

3Note that E[f [x(t)]] =
∫∞
−∞ Sf [x(t)](f)df .
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This link between the system, the input signal, and ELM is the key to establish linearity
metric identities. With the system model, flin(·) and fnlin(·), and the test signal waveform,
x(t), ELM is computable for any system, for any signal. For computation, the model must
appropriately describe the nonlinear and dynamic behaviors of the system, and the waveform
must be a numerical replica of the real test signal. With this, it is possible to relate and
compare ELM for different test signals using simple and general math. Since E[fnlin[x(t)]

2]
varies nonlinearly with input signal statistics, the ELM identities are, in general, nonlinear
relations, not scalar factors.

Fig. 3.9 overlaps computed and measured ELM of the same RF system under uniform,
and Gaussian multi-tone linearity test signal standard excitation4. The measurement and
computed ELM are in agreement within 1 dB of error up to the measurement noise floor.
This proves that ELM enables users to predict and relate linearity metrics obtained with
different signal excitation without having to measure them in those test conditions.
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Figure 3.9: Measured and computed ELM curves.

The ELM approach is simple and effective. It solves the test signal dependence problem
with the use system models, test signal waveforms, and average power computations. This
simplification speeds up linearity characterization, and intermediate design stages. In some
cases, a single measurement is enough; no need for power sweeps, nor to test for every signal 5.

3.2.4 ELM and communication signals

The argument for using communication signals in linearity characterization has been that
they excite RF systems in real operation conditions. Without identities between linearity
metrics, communication signals provide the desired application specific metric value.

Now, the ELM framework is capable of predicting linearity metrics under real modulated
signals. Fig. 3.10 evidences that. Computed and measured ELM agree when the same RF
system is under LTE signal excitation with different modulation schemes6.

4For computation details, refer to [elmJ1, Sec. IV.], attached at the end of this chapter.
5In [elmJ1], one high-power measurement performed with the uniform multi-tone linearity test signal

standard was enough to extract a model capable of correctly predicting linearity in all measured scenarios.
6The test signal is a R.7 reference channel LTE downlink frame, generated with MATLAB lteRMCDLTool.

For more details, refer to [elmJ1, Sec. IV.], attached at the end of this chapter.
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Figure 3.10: ELM metric evaluated under LTE excitation with different modulation schemes.

Note that when the modulation scheme changes, the linearity metric does not change
significantly. As shown in Fig. 3.11, this happens because as modulation changes, the LTE
signal maintains similar baseband amplitude statistics, the same frequency domain, and
encodes information in the temporal-frequency grid. To retrieve the modulation scheme,
the signal must be decoded, it is not observable at RF. Therefore, it is hard to relate RF
linearity metrics with EVM without decoding.
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Figure 3.11: PDF of LTE signals with different modulation, and normalized peak power.

Furthermore, ELM effectively overcomes the past inability to relate linearity under multi-
tone excitation with linearity in real communication scenarios. All the computed ELM results
presented were obtained from a single high-power measurement of the RF system, excited
with the uniform multi-tone test signal standard. With this measurement it was possible to
accurately model the system and predict ELM under LTE excitation.

The takeaway is: to improve ELM predictive ability it is now more important to probe
nonlinear behavior appropriately, than to mimic real communication signals. The combined
used of ELM and the uniform multi-tone linearity test signal standard is a step towards a
universal framework to measure and compare RF system linearity performance.
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Abstract — Linearity metric dependence on signal statistics
makes linearity requirements application specific, and hard to
interpret and specify. This work presents and validates a simple
method to relate linearity metrics obtained from signals with
different statistical distributions, and evidences why specifying
standard linearity test signals is so important to get universally
traceable linearity metrics in microwave.

Keywords — linearity, metrics, nonlinear distortion, statistics.

I. INTRODUCTION

In microwave, it is consensual that system linearity must be
tested close to real operation [1]. What is not well understood
is how to make traceable measurements, that yield comparable
linearity metrics, when different test signals are used.

Classically, noise loading techniques were used to test all
possible system states. Solid theoretical foundation exists for
Gaussian noise loading, which supports linearity metrics like
noise power ratio, and co-channel power ratio (CCPR) [2],
[3]. Alternatively, real communication test signals have the
advantage of measuring linearity in real operation. Some
works already developed methods to correctly characterize
signal distortion under modulated signal conditions [4], but
real communication signals are non-repeatable, therefore not
suitable for a standard, and there is a lack theoretical support to
interpret linearity metrics measured with non-Gaussian signals.
Different statistical distributions produce different linearity
metrics [5], [6], [7], [8], [9], [10], and there is no simple
method to relate them.

So, how can we make traceable linearity measurements
that provide comparable metrics? For that, we need standards
to design linearity test signals, and we must establish identities
between metrics obtained from different signals. To the
authors’ knowledge, no one has yet presented an easy method
to achieve this. This work presents and validates a theoretical
framework to compute linearity metrics at the output of any
nonlinear static system for any test signal, that can relate
metrics obtained from different signals, and makes important
considerations about standards for linearity test signals.

II. THEORETICAL FRAMEWORK

The response, y(t), of a general static nonlinear system to
any excitation signal, x(t), can be given by [11]

y(t) =
∞∑

n=1

anx(t)
n, (1)
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Fig. 1. Statistical distributions normalized to unitary average power: (a)
complementary cumulative distribution function (CCDF); (b) PDF.

where an is the nth-order kernel. This response can be divided
in linear and nonlinear responses, as described in (2) and (3).

ylin(t) = a1x(t) (2)

ynlin(t) =
∞∑

n=2

anx(t)
n (3)

From (1) to (3), a baseband equivalent signal representation
is assumed, so, only inband terms are contemplated.

Linearity metrics are power ratios computed from
measurements of the system response over time. These depend
on excitation signal statistics on an average sense [1].

From the average power of the moments of x(t) [12]

E[(x(t)n)2] =

∫ ∞

−∞
(x(t)n)2fX(x(t)) dx, (4)

where fX(x) is the probability density function (PDF) of x(t),
it is possible to define the expected linearity metric (ELM) as
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the ratio of the average power of the linear response over the
average power of the nonlinear response, as expressed in (5).

ELM =
E[(a1x(t))

2]

E[(
∑∞

n=2k+1(anx(t)
n))2]

. (5)

Likewise, average moment power can be computed from
its power spectral density (PSD) [12], as follows:

E[(x(t)n)2] =

∫ ∞

−∞
Sxn(f) df. (6)

So, in the presented formulation, that only contemplates
the inband response, ELM is also given by (7).

ELM =

∫max(flin)

min(flin)
Sylin

(f) df
∫max(fnlin)

min(fnlin)
Synlin

(f) df
(7)

Equation (7) evidences that ELM is a CCPR like metric
that also contemplates adjacent-channel distortion power.

By knowing the system kernels and the excitation
distribution, (5) can be used to compute the ELM for any
signal, and to compare metrics obtained from different signals
in any desired conditions (e.g. same average/peak power).
With (7) it is possible to validate experimentally the theoretical
ELM by performing a CCPR like characterization [3].

Note that the presented formulation can be adapted to
nonlinear dynamic system models, and that the use of CCPR
characterization for ELM assessment, as presented here, is also
valid for nonlinear dynamic systems.

III. EXPERIMENTAL PROCEDURE

The ELM theory is valid if the ELM obtained from CCPR
like characterization equals the theoretical ELM given by (5).

The experimental ELM is obtained by exiting the device
under test (DUT) with x(t), and observing its response, y(t).
Then, ylin(t) and ynlin(t) are obtained by subtracting from
y(t) a replica of x(t) linearly amplified by the measured
small-signal s-parameters of the DUT. Finally, ELM is
obtained from (7). This is measured at several power levels.

The theoretical ELM is computed from (5) using a DUT
model, which is extracted in a least-squares sense from a
high-power input-output observation of x(t), and y(t).

Three statistical distribution excitations are used: Gaussian,
uniform, and Laplacian. Each distribution is realized by a
2001 multitone with 10 MHz bandwidth. Thus, all signals
are bandlimited and white. The multitone design follows the
guidelines in [13]. It is assumed that the multitone sample is
large enough to approximate the desired statistical PSD, which
is reasonable, since its statistics agree with the theoretical
definition, presented in [12], up to 10−5, as shown in Fig. 1a.

The DUT is an ERA2+ power amplifier board from
mini-circuits. It is biased with 7.3 V and 40mA. It is excited
at 5.67 GHz. Its input 3 dB compression point is 3 dBm, and
the measured s21 parameter is 10 245◦.

The experimental setup, depicted in Fig. 2, consists of:
a Keysight M8190A to generate the baseband signal; a

DC

DUTVSG VSA

(a)

PC

(b)
Fig. 2. Measurement Setup: (a) Schematic; (b) Photo.

Keysight E8267D to up-convert the baseband signal to the
desired carrier frequency; a Keysight N9041B for synchronous
input/output baseband signal measurement; a TTI PL320QMD
for DUT bias; and a computer for measurement automation.

IV. EXPERIMENTAL RESULT ANALYSIS

Fig. 3 shows the input/output PSD for each distribution at
an average input power of -9 dBm. Note that the same input
PSD produces different output PSDs for each excitation. This
evidences the importance of signal excitation, namely phase
information, in intermodulation distortion profiles [14].
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Fig. 3. Input and output PSD for each excitation distribution at -9 dBm
average input power.

Fig. 4a and Fig. 4b show the theoretical and measured
ELM versus average and peak power, respectively. The
theoretical ELM is computed from a DUT model extracted
with a high power uniform excitation measurement. Table 1
lists the model normalized mean squared error (NMSE)
performance for each distribution. NMSE is given by (8).

NMSEdB = 10 log

(∑ |ymeas(t)− ymodel(t)|2∑ |ymeas(t)|2
)
. (8)

Table 1. NMSE @6dBm peak power of polynomial model extracted from
uniform signal when tested with different signals.

Test Signal
Gaussian Uniform Laplacian

-26 dB -30 dB -27 dB

Measured and theoretical ELM agree well until the
experimental setup noise floor (25 dB metric range for
Laplacian and Gaussian, 30 dB for uniform). The uniform
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Fig. 4. Experimental and theoretical ELM for each tested distribution: (a)
ELM vs average power; (b) ELM vs peak power.

distribution allows for a larger metric range because all power
levels are equiprobable. Also, the uniform distribution allows
for a greater dynamic power range for ELM assessment, both
in terms of average power, and peak power. The peak power
level was limited to 6 dBm to avoid damaging the DUT.

Lets interpret the metrics in light of the distributions used.
For equal average power, the uniform metric is better,

because in that case it has much lower peak power than the
Gaussian, and Laplacian distributions. The Laplacian metric is
the worst since it has higher probability of high peak powers
than the Gaussian. This is clearly depicted in Fig. 1b.

For equal peak power, the Laplacian metric is better
because its instantaneous amplitude values are the most
narrowly concentrated around zero. The uniform metric is the
worst because it has the highest probability of high-power
amplitudes. This can also be understood from Fig. 1b.

These metrics are easily relatable through (5). The proof
is that theoretical ELM curves can correctly estimate the
measured ELM up to the noise floor for any of the tested
distributions, despite being computed from a model extracted
from a single high-power uniform excitation measurement.

V. FINAL DISCUSSION

This work provided tools to assess linearity under different
signal excitation, and evidenced the issues of interpreting
metrics without test signal standards. Similar distributions, like
the Gaussian and Laplacian, have 1 dB ELM differences when
assessed at the same peak power, but these can reach 6 dB

when compared at the same average power. Direct comparisons
are harder to make between unlike distributions. With the
presented tool, this is now much easier, but for traceable
linearity metrics, a standard test signal is still required! What
distribution is most suited for this?

This initial work points towards the uniform distribution.
It operates in a wider power range, it is easy to clearly define
its peak power and generate it without clipping. Furthermore,
it is hard to specify universal standards for Gaussian and
Laplacian distributions. The theoretical amplitude ranges are
infinite, where should they be truncated? How to avoid further
generator clipping? Beyond this, these distributions have
low probability of high power amplitudes, meaning that the
nonlinear region is less probed when compared to a uniform
distribution when the signals occupy the full DUT dynamic
range, which is particularly problematic in dynamic scenarios.

Future art developments should aim to answer these
questions, so that a standard linearity test signal can be defined,
and so that we finally get traceable linearity metrics.
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Abstract—This work proposes a uniformly distributed multi-
tone linearity test signal standard to overcome the inconsistency
problem of broadband linearity metric measurements that has
impeded the establishment of a universally accepted framework
to assess and compare RF system linearity. Beyond this, a novel
linearity metric is proposed to solve the problem of linearity met-
ric application dependence: the expected linearity metric (ELM).
The ELM formulation allows it to be computed using simple and
general math from the RF system behavioral model, and the test
signal waveform. The experimental results show that by exciting
an RF system with the proposed linearity test signal standard it
is possible to use the input/output data from a single high power
measurement to accurately predict the linearity performance of
that system under different signal excitation. This is verified for
LTE signals, which shows that the proposed approach effectively
eliminates linearity metric application dependence. Our method
provides consistent measurements, and enables a fair comparison
of linearity performance between different systems, and relates
linearity metrics between different test signals. In this document
several guidelines are provided on how to best use ELM for
different applications, being among the relevant remarks the use
of ELM to objectively determine the input backoff required to
meet desired linearity performance when using different signals.

Index Terms—linearity, metrics, nonlinear distortion, statistics.

I. INTRODUCTION

System linearity is key in modern wireless telecommuni-
cation technologies and standards [1]. They require robust
linearity metrics capable of providing insightful requirements
about the true limits of co-channel and adjacent channel
distortion for correct system operation. Without this capability,
linearity metrics become just blind marks that must be met
to comply with the requirement list, but do not necessarily
translate into tangible practical implications. A debilitating
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weakness of modern linearity characterization in this regard is
the existent difficulty in making traceable measurements, that
yield comparable linearity metrics, especially when different
test signals are used. Two important reasons for this are the fact
that there is no standard linearity characterization test signal,
and that it is not easy to establish identities between linearity
metrics obtained using different test signals.

The closest thing resembling a standard multi-tone linearity
test signal in microwave applications is the use of Gaussian
noise loading techniques. They are the base that supports
linearity metrics like adjacent channel power ratio, noise power
ratio, and co-channel power ratio [2], [3], [4]. In theory, it
is easy to specify a Gaussian test signal, it only requires
the specification of the average amplitude, which is zero in
microwave applications, and the specification of the standard
deviation, which is the average signal power. In practice, it is
hard to guarantee repeatable linearity characterization using a
Gaussian test signal. The work reported in [5], that presented a
widely used linearity characterization setup, already mentions
the very high metric variability that can be observed in
measurements with Gaussian test signals, and the need to
use large waveforms to mitigate such variation. Two major
factors that difficult laboratory generation of Gaussian signals
are their infinite amplitude range, and their low probability of
high-power samples. Thus, despite the usefulness of Gaussian
signals in microwave applications, it is desirable to have a
more robust and repeatable test signal standard to trace linear-
ity metric measurements; a test signal that can be accurately
reproduced in any lab in the world, in any test conditions.

The nonexistence of identities to relate linearity metrics
obtained with different test signals, allied with the need to
assess system linearity close to real operation, lead to linearity
characterization performed with modulated signals instead of
Gaussian test signals. However, real communication signals
are non-repeatable, therefore, they are also not suitable for a
linearity test signal standard. Nonetheless, several works have
efforted to relate nonlinear distortion with relevant modulated
signal metrics like error vector magnitude (EVM) [6], [7], [8],
[9], [10], [11], [12], and it is now possible to perform classical
distortion characterization and correctly predict its influence
on EVM under modulated signal conditions.

But linearity metrics measured with real communication
signals are application dependent, they are only meaningful
for that specific communication signal. Several studies report
this test-signal/metric dependence. In [13], Aparin showed
that the Gaussian approximation can be used to accurately
predict the cross-modulation distortion of forward link CDMA
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signals with a large number of channels, but that it is not
accurate for reverse link CDMA signals. This has to do with
differences in signal high-order statistical moments, that in
the reverse link can produce differences in linearity just by
alternating between OQPSK or QPSK modulation schemes.
To be able to accurately predict linearity, the author had
to specifically develop the theoretical statistical analysis of
the CDMA signal. The study reported in [14] compared
ACPR metrics measured with different multitone signals with
ACPR metrics measured with real communication signals. The
authors observed that multitone signals with similar PAPR to
the real communication signal obtained better ACPR metrics,
but none of the multitones was capable of reproducing the
metric obtained with the real communication signal. In [15]
it was shown that, for the same device, the NPR measured
with an IS-95 signal differs more than 5 dB from the NPR
measured using a Gaussian signal.

The influence of test signal on linearity metrics is now
well-known, but it is not very well understood or studied.
In [3] it is recognized that it is very complex to accurately
describe real modulated signals mathematically, so this work
proposes the use of a statistical representation of the signal
to study linearity. This way, with the aid of a behavioral
model it is possible to compute the auto-correlation function
at the output of a nonlinear system, given the input signal
statistics. This allows for the computation of linearity metrics
at the system output. But the proposed approach, besides
being mathematically complex, requires specific theoretical
development for each input signal statistics that we might want
to consider, making it hard to use. This is also the limitation
of the statistical analysis presented in [13], it is specific to
CDMA signals. The work reported in [16] laid out the initial
steps on how to interpret linearity metrics in light of the
amplitude statistics of the test signal used for measurement,
evidencing the limitations of supporting the linearity analysis
on simple statistical metrics like PAPR. In [17] it was added
that to understand the linearity metrics imposed by a given
test signal, it is not enough to look into the signal spectrum
and the amplitude statistics, it is necessary to consider the
temporal waveform as a whole, meaning that it is necessary
to have in mind both the amplitude and phase of the test
signal spectrum. Despite these relevant developments, there
is still not enough insight to clearly interpret linearity metrics
measured with different test signals, or to relate them.

All these linearity characterization limitations create critical
overarching problems. Designers do not have a universal
metric to reference their linearity improved designs. Manu-
facturers cannot provide complete linearity characterization of
their products, as it is impracticable to test them with all com-
munication signals. And application engineers cannot know
a priori if a given device they purchase will comply to the
linearity specifications of their application if that signal is not
contemplated on the manufacturer’s datasheet. Therefore, the
specification of a robust standard linearity characterization test
signal, and the establishment of identities between standard
metrics and metrics obtained from modulated signals, is a
fundamental step towards traceable linearity characterization.

In [18], we presented a simple theoretical framework to

compute and relate linearity metrics at the output of any
nonlinear static system for any test signal. Here, we expand
our initial contribution in greater detail by:

• Providing a formulation that can contemplate dynamics;
• Addressing the specification of standard linearity charac-

terization test signals, focusing on Gaussian, Laplacian,
and uniform statistical distributions;

• Validating our approach using LTE signals;
• And providing guidelines to help designers, manufactur-

ers, and application engineers to measure, provide, use,
and interpret linearity metrics in practical scenarios.

This article is organized as follows. Section II expands on
the theoretical formulation of signal statistics and linearity
metric identities presented in [18]. Section III addresses the
details of explicitly specifying linearity characterization test
signals. Section IV presents the experimental validation of
the article hypothesis with generic test signals, and modulated
signals. Section V provides guidelines to use linearity metrics
in an effective manner, according to user goals. At last,
Section VI presents the final conclusion.

II. LINEARITY METRICS: DEFINITION AND IDENTITIES

The output signal, y(t), of a nonlinear system is a function
of the input signal, x(t). This function can be divided into a
linear, and a nonlinear response [19]:

y(t) = f [x(t)] = flin[x(t)] + fnlin[x(t)] (1)

Linearity metrics are defined as some kind of average power
ratio between the linear response and the nonlinear response
over time [20]. Knowing this, it is useful to define the expected
linearity metric (ELM) as:

ELM =
E[flin[x(t)]

2]

E[fnlin[x(t)]2]
=

∫∞
−∞ Sflin[x(t)](f)df∫∞
−∞ Sfnlin[x(t)](f)df

. (2)

This definition uses the relation between average power,
E[(·)2], and power spectral density (PSD) [21], S(f), to define
ELM as a metric that can be interchangeably evaluated in the
time-domain or in the frequency domain with ease. Recall that
E[(·)2] can be computed as follows:

E[f [x(t)]2] =

∫ ∞

−∞
f [x(t)]2fX(x)dx, (3)

where fX(x) is the probability density function PDF of x(t).
The ELM time-domain definition evidences the link be-

tween input-signal statistics, the system, and the linearity
metric, independently of the signal or system used. This link is
the key to understand how to compute and establish identities
between linearity metrics obtained from different test signals.

Using a Volterra series representation of a general nonlinear
dynamic system [22], flin[x(t)] and fnlin[x(t)] are given by (4)
and (5), respectively, where ynlin(t) is given by (6).

flin[x(t)] =

∫ ∞

−∞
h1(τ)x(t− τ)dτ (4)
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Fig. 1. Statistical distributions PDFs normalized to the same peak power.

fnlin[x(t)] =
∞∑

n=2

ynlin(t) (5)

ynlin(t) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
hn(τ1, . . . , τn)·

· x(t− τ1) · . . . · x(t− τn) · dτ1 · . . . · dτn
(6)

In the Volterra series, hn is the nth-order system kernel, and
τn is a temporal delay that spans the system memory. If the
system is memoryless, ELM resorts to the formulation in [18].

By knowing the system kernels it is possible to compute the
ELM for any signal. In other words, it is possible to predict and
compare linearity metrics obtained from different test signals.
But note that linearity metric identities are not scalar factors,
they are nonlinear relations that vary with power. Using the
presented formulation, if different input signals have the same
average power and occupy the same spectrum, they have the
same E[flin[x(t)]

2], but different E[fnlin[x(t)]2]. The latter can
only be the same if the signals are statistically identical [22].
Otherwise, the denominator in (2) varies nonlinearly according
to the input signal statistics.

The frequency domain formulation resembles well-known
metric definitions like ACPR, CCPR, and NPR. Thus, notched,
feed-forward, or correlation based characterization techniques
can be used to evaluate ELM experimentally [23], [24], [12].
In fact, when using a bandpass representation, ELM only
contemplates in-band distortion components that are relevant
for microwave applications, and becomes a CCPR like metric
that also accounts for adjacent-channel distortion power.

In summary, for any test signal, ELM can be computed from
the system model, and measured using well-known character-
ization procedures. But have in mind that ELM, as any other
linearity metric, depends nonlinearly on the system under test
and on the test signal. Therefore, direct ELM comparisons
between different systems and signals are conveyed by the
nonlinear relation in (2), not just by simple scalar factors.

III. SPECIFYING STANDARD LINEARITY TEST SIGNALS

From system identification, we know that test signals must
excite all relevant system states. Applying this principle to
linearity characterization means guaranteeing an appropriate
excitation of memory, and amplitude states [25]. To probe all

relevant memory states, the test signal must cover the system
spectral domain with sufficient resolution [23]. Covering the
amplitude domain implies that the test signal must swing
across the system full dynamic range. This is guaranteed by
exciting the system at the average power that matches the
signal peak power with the maximum instantaneous excitation
power allowed by the system. But note that different ampli-
tudes are probed differently according to the test signal PDF,
fX(x). Therefore, when specifying a linearity characterization
standard, it is critical to have in mind signal characteristics
like the PDF, dynamic range, and peak-to-average power ratio
(PAPR), as well as their reproducibility in the laboratory.

Table. I presents the theoretical value of these signal charac-
teristics for the well-known Gaussian, Laplacian, and uniform
statistical distributions. The average power, peak power, and
PAPR are respectively computed as follows:

Pavg =

∫ +∞

−∞
x2fX(x)dx, (7)

Ppeak = max(|x|2), (8)

PAPR =
Ppeak

Pavg
. (9)

In the Gaussian distribution, m stands for the average am-
plitude, and σ is the standard deviation. In the Laplacian
distribution, λ is the decay factor. In the uniform distribution,
a is the maximum amplitude allowed.

TABLE I
DISTRIBUTION STATISTICAL CHARACTERISTICS.

Gaussian Laplacian Uniform

fX(x)
1√
2πσ

e
−(x−m)2

2σ2 λ
2
e−λ|x|, λ > 0 1

2a

range x ∈ (−∞,∞) x ∈ (−∞,∞) x ∈ [−a, a]

Pavg σ2 2
λ2

a2

3

Ppeak ∞ ∞ a2

PAPR ∞ ∞ 3

TABLE II
CRITERIA FOR CROPPING DISTRIBUTIONS

Gaussian Laplacian

Ppeakc (nσ)2
(

ln(pct)
λ

)2

PAPRc n2 ln(pct)2

2

At first glance, there is a clear difference between the
uniform distribution and the reminder distributions in Table. I,
it has a well-bound range, whereas the Gaussian and Laplacian
distributions have an infinite dynamic range. The infinite
amplitude range implies that it is impossible to generate a
theoretical Gaussian/Laplacian signal. In practice its tail must
be cropped. This raises questions about where to truncate
the signal. For instrumentation grade standards, it must be
guaranteed that the distribution is cropped at the same am-
plitude, in every realization. Otherwise, each realization is
performed with a slightly different distribution. In theory, this
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can be overcome by specifying a well-defined crop factor
for each distribution, as suggested in the Ppeakc column of
Table. II. Ppeakc specifies the cropped peak power at which
PAPRc is evaluated, n is the Gaussian distribution crop factor,
defined in terms of σ, and pct is the Laplacian distribution
crop factor, defined as a percentage of λ

2 . But guaranteeing
these crop conditions in the lab is not trivial at all! First, the
cropped distribution must fit the DAC range, meaning that
the longer the tail, the lower the resolution near the average
power, where most of the signal samples are. Furthermore, if
the average power is swept to assess the linearity metric, the
generator will saturate differently at the high-power samples
as power increases, leading to a further truncation of the tail,
which cannot be precisely controlled, and that depends on
the average signal power. The uniform distribution avoids all
these problems, because it allows the maximum distribution
amplitude to be set to the maximum instantaneous excitation
power allowed by the system while providing a uniform
quantization of all amplitude states. This makes PAPR a well-
defined metric in practical uniform distributions, which is not
the case for Gaussian/Laplacian distributions.

The low probability of high-power samples is another
important limiting factor to consider when using Gaus-
sian/Laplacian signals as linearity characterization test signal
standards, because the high-power samples are the ones that
inform about the system linearity. This means that Gaus-
sian/Laplacian waveforms must be very large to contemplate
all relevant high power amplitudes, which can create memory
constraints in waveform generation and reception. This prob-
lem makes it hard to guarantee coverage of all relevant high
power states of a nonlinear dynamic system. Once again, the
uniform distribution overcomes this problem. It covers the sys-
tem dynamic range with a uniform amplitude quantization that
asserts that both small and large-signal dynamics are excited in
a similar manner [26]. To evidence the better coverage of the
uniform distribution of the high-power amplitude range, Fig. 1
plots the Gaussian, Laplacian, and uniform distribution PDFs
for the same peak power, i.e. when the distributions cover the
full system dynamic range.

In conclusion, any signal that complies with the aforemen-
tioned frequency domain, and temporal amplitude statistics
requirements can be used as a test signal. When using dis-
tributions with infinite domains it is required to specify well-
defined crop factors. Nonetheless, from a linearity charac-
terization test-signal standard point of view, it makes sense
to use amplitude statistics that adequately probe the large
amplitude range that informs on the system nonlinear behavior.
From the presented analysis, the uniform distribution is suited
for such a standard. It samples all relevant amplitude and
dynamic states equally, and its definition is sufficiently robust
to allow repeatable and traceable linearity measurements. Note
that uniform statistics differ from real communication signal
statistics, but with the ELM, and its ability to relate metrics
obtained from different signals, this is no longer as important
as it was in the past. Now it is more important to probe
nonlinear behavior appropriately, which improves the ELM
predictive ability, than to mimic real communication signals.

Let’s now discuss the standard linearity characterization

DC

DUTVSG VSA

(a)

PC

(b)

Fig. 2. Measurement Setup: (a) Schematic; (b) Photo.

signal type. Multi-tones are a good candidate for this standard.
They are easily generated in any RF lab without the need
for a license. They don’t loose information in time-frequency
domain conversions. And they can easily comply to the
test signal requirements here stated. When using multi-tones,
the memory state excitation can be asserted by assigning a
number of equal magnitude tones that guarantees the required
resolution frequency within the system pass-band. The desired
amplitude statistics can be obtained following the multi-tone
generation technique presented in [22]. The use of equal
magnitude multitones is preferred, because it has been shown
to make a better coverage of the amplitude states [25]. And,
as will be shown in the following section, when properly
designed, multi-tone test signals can be used with ELM to
predict linearity under real communication scenarios.

IV. EXPERIMENTAL VALIDATION

The goal of this experimental section is to validate that
the measured ELM can be predicted/computed from an ap-
propriate system model, and that this model can predict the
measured ELM under different excitation signals, evidencing
that the technique presented in this work is not only useful for
multi-tone linearity test-signal standards, but also useful in real
communication scenarios. Furthermore, this section expands
on the impact that different linearity test signal standards have
on the measured ELM with empirical evidence.

A. Device under test and experimental setup

All the system output response measurements presented in
this work are measured at the output of an ERA2+ power
amplifier board from mini-circuits. It is biased with 7.3 V
and 40 mA, as recommended in the datasheet. It is excited at
5.67 GHz. Its input 3 dB compression point is 3 dBm, and
the measured s21 parameter is 10 245◦.

The s-paramenter measurements are obtained using a
Keysight PNA-X N5242A, calibrated using a Keysight
N7555A electronic calibration module.

The experimental setup used for linearity characterization is
depicted in Fig. 2. It is a standard vector signal analysis bench
which consists of: a Keysight M8190A to generate the base-
band signal; a Keysight E8267D to up-convert the baseband
signal to the desired carrier frequency; a Keysight N9041B for
synchronous input/output baseband signal measurement; a TTI
PL320QMD for device under test (DUT) bias; and a computer
for measurement automation.

74



FIGUEIREDO et al.:LINEARITY METRICS: SIGNAL STATISTICS AND METRIC IDENTITIES 5

-6 -4 -2 0 2 4 6
Amplitude (V)

10-5

10-4

10-3

10-2

10-1

100
C

C
D

F

Gaussian Multitone
Gaussian Theory
Uniform Multitone
Uniform Theory
Laplacian Multitone
Laplacian Theory

(a)

-4 -2 0 2 4
Amplitude (V)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
D

F

Gaussian Multitone
Gaussian Theory
Uniform Multitone
Uniform Theory
Laplacian Multitone
Laplacian Theory

(b)

Fig. 3. Statistical distributions normalized to unitary average power: (a)
complementary cumulative distribution function (CCDF); (b) PDF.

B. Linearity characterization test signals

The experimental validation is performed with two different
signal types: multitone signals to study the impact of different
linearity test signal standards in linearity metric measurements,
and LTE signals to study ELM measurements in real commu-
nication scenarios.

1) Multitone test signals: A multitone test signal standard
is designed for each of the statistical distributions studied
in Section III: the Gaussian, the uniform, and the Laplacian
distribution. Each distribution is realized by a 2001 multitone
with 10 MHz bandwidth. Thus, all signals are bandlimited and
white. The multitone design follows the guidelines in [22]. It is
assumed that the multitone sample is large enough to approxi-
mate the desired statistical PSD, which is reasonable, since
its statistics agree with the theoretical definition, presented
in [21], up to 10−5, as shown in Fig. 3a. Test signal input
power is swept from -20 dBm of average power up to 6 dBm
of peak power, which is assumed to be the maximum input
peak power allowed before damaging the DUT. Note that this
input peak power is near the 3 dB compression point when
the device is operated at CW.

2) LTE test signals: The signal used is the LTE downlink
reference measurement waveform. It is generated with the
MATLAB lteRMCDLTool. The reference channel used is the
R.7, which generates a baseband signal with 10 MHz band-
width, covering the same frequency domain as the multitone
test signals from the previous section. The LTE waveform used
contains a full LTE frame with 10 ms duration. Different LTE
signals are generated with the following modulation schemes:
QPSK, 16QAM, 64QAM, and 256QAM. Fig. 4 shows the

TABLE III
NMSE @6DBM PEAK POWER OF POLYNOMIAL MODEL EXTRACTED FROM

UNIFORM SIGNAL WHEN TESTED WITH DIFFERENT SIGNALS.

Test Signal
Gaussian Uniform Laplacian

-26 dB -30 dB -27 dB

16QAM example LTE waveform with normalized average
power. For all LTE signals, input power is swept from -15
dBm of average power up to 6 dBm of peak power.
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Fig. 4. Temporal sample of a LTE 16QAM frame with normalized average
power.

C. ELM validation and predictive ability

To validate the proposed hypothesis, we defined specific and
independent procedures to measure and compute the ELM.

The measured ELM is obtained using a feed-forward based
linearity characterization technique as follows: first, using the
experimental setup depicted in Fig. 2, we excite the DUT
with the test signal, x(t), and observe its response, y(t); then,
ynlin(t) is obtained by subtracting ylin(t) from y(t); finally,
the ELM is obtained using (2). Note that ylin(t) is a linearly
amplified replica of x(t), and that the amplification factor is
given by the measured small-signal s21 parameter of the DUT.
This measurement procedure is repeated for each power level,
for each test signal.

The theoretical ELM is computed using a model of the DUT.
First, we excite the DUT with a uniform multi-tone linearity
test signal standard that occupies the full system dynamic
range, meaning that the signal peak power matches the DUT
maximum input peak power, as suggested in Section III. Next,
from a single input/output observation of the uniform multi-
tone test signal we extract the DUT model in a least squares
sense. A polynomial model in our example. Table III lists the
model normalized mean squared error (NMSE) performance
for each multitone test signal distribution used at the maximum
input peak power. NMSE is given by (10).
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NMSEdB = 10 log

(∑ |ymeas(t)− ymodel(t)|2∑ |ymeas(t)|2
)
. (10)

The aforementioned experimental steps are performed with
Fig. 2 bench. Then, for each power level and test signal, a
simulated replica of the experimental RF test signal is applied
to the DUT model. The linear response is given by applying
the test signal to the linear kernels, expressed in (4), and the
nonlinear response is given by applying the test signal to the
nonlinear kernels, expressed in (5). This guarantees that the
ELM takes into account the temporal waveform as a whole
- test signal spectrum amplitude and phase - as suggested
in [17]. Finally, the theoretical ELM is computed using (2).

Fig. 6a and Fig. 6b show the theoretical and measured
ELM for different multitone linearity test signal standards
versus test signal average and peak power. And Fig. 7a and
Fig. 7b show the theoretical and measured ELM for LTE
test signals with different modulation schemes versus test
signal average and peak power. The markers correspond to
experimental measurement points, and the dashed lines to the
theoretical predictions. For both signal types, the measured
and theoretical ELM are in agreement within 1 dB of error up
to the experimental setup noise floor. These results validate
both our hypothesis, as well as the ELM predictive ability.
Our hypothesis is validated because the computed ELM for
the uniform multitone test signal with 6 dBm of input peak
power agrees with the measured ELM for that signal, at that
power level. Basically, we can correctly compute the ELM
measured in the same conditions that the DUT is modeled.
The ELM predictive ability is also validated because from the
model extracted from a single high-power uniform multitone
measurement it is possible to predict the ELM for uniform
multitone test signals with lower power levels, and for different
multitone and LTE test signals within the same power range.
This proves that if the system model is sufficiently good within
the excitation domain, it is possible to predict and relate ELMs
for different test signals.

To the authors knowledge, this is the first time metric identi-
ties are successfully established between linearity metrics ob-
tained with different test signals since the problem of linearity
metric dependence on test signal was first mentioned in works
like [13], [14], [15]. Note that contrarily to some previous
state of the art works [3], [13], the presented approach does
not require dedicated theoretical development for each test
signal, and does not require complex mathematics like auto-
correlation functions. Our approach just introduces system
models, already extensively used in design and linearization
applications, to aid linearity characterization, and performs
average power measurements, that can be done with standard
RF equipment such as power meters or VSAs.

Furthermore, these results are achieved with a simple DUT
model, with lower performance than can be achieved by state
of the art modeling strategies, as evidenced by Table. III. This
means that the proposed strategy is sufficiently robust to make
correct ELM predictions using simple models, and that it is
likely possible to obtain even better results if state of the art
models are used. But we must reinforce: our proposal is not

model dependent. The ELM is always measured using the
same well-defined experimental procedure presented above.
This procedure does not depend on the system, nor on any
model we may use to describe it. But to predict ELM in
non-measured scenarios we obviously need a model that can
appropriately describe the system. That can be any kind of
model. Here, a simple polynomial model obtained from a
single input/output measurement of the uniform multitone
linearity test signal standard was enough to predict linearity for
all the presented test scenarios. To the best of our knowledge,
this has not been achieved before. This achievement allows
us to speed up linearity characterization, and this may also
speed up intermediate design stages. In some scenarios, like
the one presented, a single measurement is enough. No need
for power sweeps, nor to test for every signal.

A final note, the 25 dB ELM range observed in the experi-
mental results is imposed by the feedforward setup used. ELM
range can be increased by improving instrumentation.

D. Linearity test signal standards - experimental analysis

Before interpreting the experimental results plotted in Fig. 6
in light of the test signal distribution, first, take a look at
Fig. 5, and realize the importance of the test signal in linearity
assessment. Fig. 5 evidences that signals with the same input
PSD, but different amplitude statistics produce different inter-
modulation distortion profiles [23]. It is important to remember
that when assessing linearity. Not only average signal power
matters, phase information is also very important.

Fig. 6a plots ELM against average input power. This is how
linearity metrics are typically plotted, but have in mind that
uniform, Gaussian, and Laplacian test signals cover different
power ranges in this scenario, as evidenced by Fig. 3b. Also,
Fig. 6a depicts that distributions with lower PAPR enable
larger average input power observation domains. They can
reach higher average powers without exceeding the maximum
input power allowed by the system under test. This is obvious,
but important. It justifies why the uniform distribution can
reach higher average input powers.

By analyzing the individual ELM trend with average in-
put power for each distribution we observe that ELM, like
IMR and NPR [27], [28], can identify dominant nonlinear
behaviors. Note that ELM decreases at a 2 dB/dB rate for
the whole measurement range for the Gaussian and Laplacian
signals. This indicates a dominant 3rd-order nonlinearity. For
the uniform signal this is only observed up to 0 dBm, beyond
which ELM starts decreasing at a lower rate, which implies
interference between 3rd and 5th order nonlinearities.

Let’s now analyze the influence of signal statistics on the
linearity metric. If we draw a vertical line in Fig. 6a to compare
metrics at the same average power level, we obtain different
values, and that difference is explained by the signal statistics.
The uniform metric is the most linear, because, for the same
average power, the uniform multitone signal has a much lower
peak power than the Gaussian, and Laplacian signals. As
previously stated, and as depicted in Fig. 3b, the power range
of each signal is not the same. The Laplacian metric is the
most nonlinear because the Laplacian signal has higher PAPR
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and higher probability of occurrence of high power samples
than the Gaussian signal, as shown in Fig. 3a.

If we now draw an horizontal line to know the average
input excitation power level required to have the same linearity
metric, we observe that ELM can help us predict the backoff
level required when the system excitation signal is changed
according to the application. Signals with higher PAPR require
more backoff to have similar linearity requirements. But note
that the backoff required is not equal to the signal PAPR, it
depends on the dominant nonlinear behavior. For ELM values
between 15-22 dB (i.e. the 3rd-order dominant region) the
Gaussian signal, which has 10 dB PAPR, requires 3 dB backoff
from the uniform test signal to have the same ELM. And the
Laplacian signal, which has 15 dB PAPR, requires 7 dB of
backoff. For example, to meet a 20 dB ELM linearity criterion,
the uniform test signal can be excited up to -3.5 dBm of
average input power, the Gaussian signal can only go up to
-6.5 dBm, and the Laplacian signal up to -10.5 dBm. But in
regions dominated by other nonlinear behaviors, the backoff
levels required can differ. For instance, if we trust the model
in the 25-30 dB ELM region, which is empirically bellow the
noise floor, the theoretical curves indicate that in this region
the required backoff levels are smaller.

Fig. 6b plots ELM against peak input power. In this unusual
graph, linearity metrics along the same vertical line are given
by test signals that cover the same system power range, as
shown in Fig. 1. A brief analysis of Fig. 6b based on signal
statistics tells us that in this scenario the uniform linearity
metric is the least linear, because it has the highest probability
of high power amplitudes, whereas the Laplacian metric is
the most linear, because it has its amplitude samples most
narrowly concentrated around zero.

Actually, Fig. 6b provides us a fair comparison of test signal
standard sensitivity to nonlinear distortion power exactly be-
cause test signals along the same vertical line cover the same
power range. The plotted curves evidence three reasons why
the uniform test signal has the highest sensitivity to nonlinear
power among the measured test signals: observable power
range; metric value; and metric trend. The uniform linearity
metric is observable (i.e. it is above the noise floor) at a lower
power range. With our setup, it is possible to observe the
uniform linearity metric with -2 dBm of peak power, whereas
the Gaussian test signal requires 2 dBm, and the Laplacian 3
dBm. Also, at the same power range, (i.e. along the same
vertical line), the uniform metric is lower, meaning that it
accumulates more nonlinear power according to (2). Finally,
up to the maximum peak power measured, the Gaussian and
Laplacian linearity metric trends exhibit a 3rd-order behavior,
2 dB/dB, whereas the uniform metric, within the same power
range, can discern higher order behaviors as peak power goes
beyond 1 dBm. Furthermore, the uniform test signal PAPR is
closer to CW and 2-tone signal PAPR [29], therefore, the use
of the uniform signals can make narrowband and broadband
linearity metrics easier to compare, because even though they
do not cover the same frequency domain, they cover the power
range in a more similar way than the Gaussian test signal.

Overall, these results and their analysis convey a very clear
need: the need to specify a linearity test signal standard in

order to consistently measure the same linearity metric when
measuring the same device. Without such a standard, metrics
can easily vary up to 6 dB for the same device, at the
same input average or peak power values. And this is just
from the small sample of signals analyzed in this work. How
can we seriously specify and meet linearity requirements if
there is room for such metric variation with slight statistical
amplitude manipulation? This linearity test signal standard
must be clearly definable in amplitude range and frequency
domain, must probe the nonlinear region appropriately, and
must be easy to generate in any RF lab. As experimentally
validated here, the uniform multitone is a good candidate that
meets the aforementioned criteria.

A final and important note regarding ELM and its predictive
ability. Observe that the theoretical ELM curve remains true
to the measured results even when higher-order effects enter
into play. This is a major improvement on previous identities
established between linearity metrics [30], [31], which were
not only limited to Gaussian multitone signals, but also limited
to 3rd-order nonlinearities.
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Fig. 5. Input and output PSD for each excitation distribution at -9 dBm
average input power.

E. ELM in real communication scenarios

Finally, let’s analyze ELM performance in real communi-
cation scenarios using LTE test signals.

The most important thing about Fig. 7 results, as already
mentioned, is that the theoretical ELM agrees with the mea-
sured ELM. In other words, the ELM approach based on
multitone signals is capable of predicting linearity metrics
under real modulated signals. Meaning that with the ELM
framework we have overcome the limitations found in the past
to relate linearity under multitone excitation with linearity in
real communication scenarios [14], [20].

The most surprising thing about Fig. 7 results, is that
when the modulation scheme changes, the RF linearity metric
does not change. To understand why that happens we must
look into the baseband signal statistics. As shown in Fig. 8,
despite the fact that signal modulation changes, the amplitude
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Fig. 6. Experimental and theoretical ELM for each tested distribution: (a)
ELM vs average power; (b) ELM vs peak power.

statistics of the baseband LTE waveform remain the same.
This has to do with the way LTE signals are generated.
When modulation changes, the LTE signal maintains similar
baseband amplitude statistics, the same frequency domain,
and encodes information in the temporal-frequency grid. To
retrieve the modulation scheme, the signal must be decoded,
it is not directly observable at RF. This means that in some
communication scenarios, that use OFDM, such as LTE ap-
plications, it is hard to relate RF linearity metrics with EVM
without decoding.

After understanding this, the experimental results make
sense. The LTE ELM manifests an intermediate linearity per-
formance between Laplacian and Gaussian test signals, which
is expected from the LTE signal statistics, whose distribution
is in-between the Laplacian and the Gaussian distribution.
The ELM trend also manifests dominant 3rd-order nonlinear
behavior, as ELM decreases 2 dB/dB. The slight metric change
with modulation scheme versus peak input power in Fig. 7b
(less than 1 dB) has to do with the slight change in distribution
near the maximum amplitude observed in Fig. 8a.
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Fig. 7. Experimental and theoretical ELM for LTE signals with different
modulation schemes (a) ELM vs average power; (b) ELM vs peak power.

V. GUIDELINES FOR BROADBAND LINEARITY METRIC USE

As mentioned in Section I, the lack of broadband linearity
test signal standards to measure linearity metrics, and the lack
of knowledge to establish identities between metrics obtained
with different test signals, or the lack of knowledge to even
compare and interpret such metrics, was a critical limitation
of the broadband linearity characterization art. It hindered
the fair assessment of system linearity performance, and it
created overarching problems to designers, manufacturers, and
application engineers who must make informed decisions and
provide technical answers based on linearity metrics. Here we
compile the most significant contributions of this work into
guidelines to help linearity metric users make fair decisions.

A. Guidelines for designers

The job of RF system designers is to balance design
parameters to meet performance requirements, like linearity.

Broadband linearity assessment has always been a challenge
for designers. Without linearity test signal standards it is
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Fig. 8. LTE signal statistics normalized to unitary average power: (a) CCDF;
(b) PDF.

hard to obtain consistent metric results, and to make fair
linearity performance comparisons. Without metric identities,
broadband linearity metrics become application specific, and
there is no easy way to assert the absolute linearity per-
formance of systems designed for different applications. In
short, contrarily to narrowband linearity metrics, broadband
linearity metrics were inconsistent. Therefore, the reluctance
to abandon narrowband linearity optimization design strategies
is understandable. But this work provides designers with some
better answers, which can motivate the development of novel
design strategies supported by broadband linearity metrics.

First, lets address metric consistency. As proved in Sec-
tion IV, uniformly distributed signals are highly sensitive to
nonlinearity. And, as suggested in Section III, a fair assessment
of system linearity requires the excitation of all power and fre-
quency states. Therefore, the ELM measured from the system
response to a uniform test signal that forces the maximum
limits of operation of the system - i.e. that excites the full
power range and the full frequency band - is a consistent
linearity performance indicator that can be used to guide
design optimization. For example, the DUT measured in this
work has a 9 dB ELM when excited with a uniform multitone
test signal that forces its maximum limits of operation (6 dBm
of peak input power). Devices with higher ELM at their limit
of operation are more linear than the DUT here tested. By
opposition, devices with lower ELM are less linear. As you
can see, this metric provides an objective way to compare
system linearity. But, of course, it must be considered in the
context of other relevant system performance parameters, such
as power, carrier frequency, and bandwidth.

The linearity metric application independence is achieved by
the ELM formulation. Using (2) it is possible to easily predict
and compare linearity performance for specific application
scenarios. For that, we only require appropriate system models,
and appropriate test signal descriptions. For instance, from
the results presented in this work, it is possible to predict
that the system under test, when excited with -9 dBm of
average input power, has a 17 dB ELM for the Laplacian
signal, a 24 dB ELM for the Gaussian signal, and a 21 dB
ELM for the LTE signal. This solves the linearity performance
comparison problem between systems designed for different
applications. Also, it enables designers to understand, in
intermediate design stages, the impact their decisions have
on linearity performance for certain applications. This allows
them to make design decisions that optimize linearity for
specific applications, or to make compromises that provide
the best overall linearity, regardless of the signal.

The aforementioned insights should be straightforward to
incorporate in modern RF system design flows, and their
usage will enable designers to understand better the broadband
linearity dependence on design parameters, and their trade-offs
with other performance requirements, which will ultimately
potentiate better broadband RF system designs.

B. Guidelines for Manufacturers

Manufacturers must provide their customers with the linear-
ity specification of their products, and in modern applications
the broadband linearity performance is increasingly relevant.

Without ways to relate linearity metrics obtained with differ-
ent test signals, manufacturers had no choice but to refrain to
measuring linearity metrics with real communication signals.
But this made the linearity performance specific to the selected
application, which narrows the number of potential interest
users. Manufacturers could try to circumvent this by per-
forming linearity measurements with several interest signals,
but this is cumbersome, time consuming, and impracticable,
particularly if we have in mind the number of all possible
interest communication signals.

Now, with the ELM and its ability to relate linearity met-
rics measured with different test signals, manufacturers only
have to provide linearity metrics measured with a consistent
linearity test signal standard, such as the uniformly distributed
multitone, and a good behavioral model of their product.
With this it is possible to predict the ELM for any signal
using (2). Evidently, manufacturers should also complement
their information with ELM measurements using some interest
application test signals, as well as the theoretical predictions
using (2). Therefore, the manufacturer datasheet data about
linearity could include curves like the ones plotted in Fig. 6a

By using ELM, the number of potential users grows, be-
cause now users are equipped with an additional tool that helps
them understand if a given product fits their linearity needs.

C. Guidelines for Application Engineers

The broadband linearity characterization limitations found
by application engineers relate with the manufacturer guide-
lines from the previous section: in the past, if the manufacturer
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datasheet did not specify broadband linearity for the applica-
tion engineers are working on, they could not know if a given
device met their linearity requirements before buying it. With
ELM there are ways to circumvent this problem.

If the linearity metric for the desired application is provided
by the manufacturer in a graph like Fig. 6a, application
engineers only have to verify if the input level of backoff
that meets the linearity requirement is complaint with all other
application requirements. Lets say we need a 20 dB ELM, and
that we are using a Gaussian signal in our application. Fig. 6a
immediately tells the application engineer that this DUT can
be used up to -7 dBm of average input power, which might,
or might not, comply with other requirements, such as output
power or efficiency.

On the other hand, if the linearity metric for the desired
application is not provided in the manufacturer datasheet,
application engineers can now input their signal into the
manufacturer model, and simply compute ELM using (2). For
instance, lets say we have the same 20 dB ELM specification,
but that we are using LTE signals. By computing ELM from
the DUT model, the application engineer would get the dashed
lines in Fig. 7a, and would realize that he needs an additional
2 dB of input power backoff to meet the linearity requirement
with this device, and would have tools to study how this
impacts other application requirements.

ELM can make the life of application engineers easier in
respect to broadband linearity performance interpretation.

VI. CONCLUSION

This work addressed the problem of broadband linearity
metric consistency by detailing how to specify robust stan-
dard linearity test signals. This standard enables traceable
and repeatable linearity measurements in the RF laboratory.
This work also addressed the problem of linearity metric
application dependence, by proposing the ELM formulation.
ELM allows simple linearity metric computation from the
system behavioral model and the test signal waveform.

Among the most relevant contributions of this work are:
• ELM as a linearity metric that can be interchangeably

evaluated in the time and frequency domains, and that
allows the comparison of linearity metrics obtained with
different test signals through simple and general math.

• The insights on how test signal statistics affect linearity
metrics, and on why the uniform test signal is more
sensitive than the Gaussian test signal to nonlinear power.

• The proof and clarification that multitone test signal
linearity measurements can be used to effectively predict
linearity performance in real communication scenarios.

• ELM as a tool to objectively predict the required input
power backoff to meet a desired linearity metric level.

• The guidelines for the best use of broadband linearity
metrics by designers, manufacturers, and RF engineers.

The important takeaway from the study is that for linearity
characterization purposes, and to support modeling, it is better
to use uniformly distributed multitone linearity characteriza-
tion test signals that fully excite all relevant system states, than
to use Gaussian test signals, or real communication signals.

The linearity performance in real operation can be predicted
using ELM, or can also be complementary measured, but the
guiding measurement to assess and compare linearity metrics
should be performed with the uniform linearity characteriza-
tion standard signal.

After stating this, the hope is that ELM becomes widely
used as a broadband linearity characterization metric, and that
the developments presented in this work can help motivate
future research to effectively incorporate ELM as a design
goal in the broadband RF system design flow.
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Chapter 4

Conclusion

To wrap up, lets make a brief critical overview of the presented work, focusing on its
major state of the art contributions, its limitations, and potential future work directions.

4.1 Major Contributions

This work contributed to NPR, nonlinear dynamic characterization, and linearity metrics1.
The major contributions to each topic are succinctly summarized in the following bullet points.

NPR contributions:

� Evidenced the limitations of using classical NPR, and multi-notch NPR to characterize
linearity in nonlinear dynamic scenarios with theory, simulation, and experiments.

� Provided theoretical support to the use of multi-tones with different statistics, and
different number of tones to assess NPR.

� Developed swept NPR to measure nonlinear dynamics and linearity simultaneously in
nonlinear dynamic scenarios.

Nonlinear dynamic characterization contributions:

� Demonstrated theoretically the limitation of classical mechanism based approaches to
nonlinear dynamic characterization in broadband excitation scenarios.

� Developed a tool to detect nonlinear dynamics under broadband excitation: the static
IMD reference profile. Nonlinear dynamics are detected by computing the dynamic
error between the measured system nonlinear response, and the static IMD profile.

Linearity metric contributions:

� Laid out procedures to define linearity test signal standards that guarantee consistent
linearity metric measurements.

� Defined two linearity metrics: SNDR and ELM.

1All published works, properly grouped in research topics, are listed in the Published Works chapter.
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� Enabled, with ELM, the comparison of linearity metrics measured with different test
signals, regardless of the test signal, and regardless of the system under test.

In hindsight, the contributions of this work have improved multi-tone linearity charac-
terization techniques, and metrics. It is now possible to detect nonlinear dynamics under
broadband excitation, and linearity test signal standards, allied with ELM, are a step towards
a universal framework to assess and compare RF system linearity.

4.2 Limitations

This work, as any, has technical and scope limitations.

The technical limitations are mostly related with the practical implementation of the
proposed solutions. The most relevant technical limitations are:

� The swept NPR procedure requires a large number of measurements. This is complex
and time consuming, and might not be feasible in some practical scenarios.

� It is not obvious how to correctly define a static IMD reference profile in practice.

� It is hard to implement linearity test signal standards in practice, because it is hard to
convince everyone to follow the proposed methodology.

The scope limitations are imposed by the assumptions made in this work. They limit the
use of the presented techniques in the context of some relevant RF systems and applications.
The most limiting assumption is the single input, single output analysis of RF system linearity.
This excludes Multiple Input Multiple Output (MIMO) systems, which are increasingly
relevant [30]. Beyond this, the bias and loading conditions, neglected in this work, are also
relevant in MIMO RF systems.

But note that these limitations do not subtract the value added by the aforementioned
contributions, that solved existing RF system linearity characterization problems. They
merely frame the range of applicability of this work, and obviate how its impact can be
further amplified by leaving open and clear future work opportunities.

4.3 Future Work

Many future RF systems will be massive MIMO systems with large active antenna ar-
rays [30]. Therefore, future work should aim to expand the contributions here presented to
MIMO RF system linearity characterization, which implies the following developments:

� appropriately define multiple input linearity test signals;

� define linear, and nonlinear responses per each output port;

� assess linearity per channel;

� understand how to assess system linearity globally.
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However, real MIMO RF systems are not ideal. The lack of port isolation, imposed by
the practical implementation need for high integration, introduces coupling/crosstalk effects
between the system ports. Coupling effects affect linearity by introducing both loading and
bias drift [58, 59]. These inputs must be considered in future developments. Furthermore,
system integration also implies loss of access to individual input/output ports. MIMO RF
system linearity characterization must be performed Over the Air. This adds enormous
complexity to linearity characterization because, now, the linear and nonlinear responses are
radiated differently into space, following distributions that are not well understood [60–62].
This means that a spatial dimension must be added to linearity characterization.

Another relevant pathway for future work is to improve RF system design. Many modern
RF systems continue to be designed using CW and two-tone signals [63–65]. Multi-tones are
mostly used for the final experimental validation. This happens because designers lack insight
on how multi-tone linearity metrics can be used to guide and improve their designs. Some
worked to understand the important system design trade-offs between linearity, efficiency, and
output power under multi-tone excitation [20, 66, 67]. Now, to enable first pass design for
modern RF applications, it is necessary to incorporate the nonlinear dynamic analysis here
presented, and develop a framework to perform RF system design informed by multi-tone RF
system linearity in a seamless way to designers.
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