
Universidade de Aveiro
2023

Jorge Miguel
Ferreira da Silva

Aproximações algorítmicas de informação em
análise de dados

Algorithmic information approximations in data
analysis

Universidade de Aveiro
2023

Jorge Miguel
Ferreira da Silva

Aproximações algorítmicas de informação em
análise de dados

Algorithmic information approximations in data
analysis

Tese apresentada à Universidade de Aveiro para preenchimento dos
requisitos necessários à obtenção do grau de Doutor em Engenharia
Informática, desenvolvida sob orientação científica do Doutor Sérgio
Guilherme Aleixo de Matos, Professor Auxiliar do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro
e co-orientação científica do Doutor Diogo Rodrigo Marques Pratas, In-
vestigador Auxiliar do Departamento de Eletrónica, Telecomunicações
e Informática da Universidade de Aveiro.

Thesis presented to the University of Aveiro for fulfillment of the neces-
sary requirements to obtain the degree of Doctor in Informatic Engineer-
ing, developed under scientific supervision of the Doctor Sérgio Guil-
herme Aleixo de Matos, Assistant Professor at the Department of Elec-
tronics, Telecommunications and Informatics at the University of Aveiro
and scientific co-supervision of Doctor Diogo Rodrigo Marques Pratas,
Assistant Researcher at the Department of Electronics, Telecommuni-
cations and Informatics at the University of Aveiro.

Trabalho financiado pela Fundação para a Ciência e a Tecnologia (FCT)
pela bolsa de doutoramento SFRH/BD/141851/2018.

Work funded by the Portuguese Foundation for Science and Technol-
ogy (FCT) through the doctoral grant SFRH/BD/141851/2018.

o júri / the jury

presidente / president Doutora Anabela Botelho Veloso,
Professora Catedrática, Universidade de Aveiro.

Doutor Mário Alexandre Teles de Figueiredo,
Professor Catedrático, Universidade de Lisboa;

Doutor André Osório e Cruz de Azerêdo Falcão,
Professor Associado, Universidade de Lisboa;

Doutor André Nuno Carvalho Souto,
Professor Auxiliar, Universidade de Lisboa;

vogais / examiners committee Doutor Sérgio Guilherme Aleixo de Matos (Orientador),
Professor Auxiliar, Universidade de Aveiro;

Doutor Sónia Cristina Alexandre Gouveia,
Investigadora Auxiliar, Universidade de Aveiro.

To my little Brother

“It’s always darkest before the dawn.”
– Thomas Fuller

“No pessimist ever discovered the secrets of the stars,
or sailed to an uncharted land,

or opened a new heaven to the human spirit.”
– Helen Keller

“Life has a way of testing a person’s will,
either by having nothing happen at all

or by having everything happen at once.”
– Paulo Coelho

Acknowledgments When I started this journey, I had a dream to make this world slightly
better. Unfortunately, just when you think you have it all under control,
life throws you a curve ball. The truth is that life can be challenging for
everyone and make simple things hard. In my case, however, I was
lucky enough to have good friends and kindhearted people in my life.
In that regard, a special thanks to Professor Sérgio Matos and re-
searcher Diogo Pratas for allowing me to carry out my research project
and for their guidance and support, which were essential to this work’s
success. I gratefully acknowledge the “Fundação para a Ciência e Tec-
nologia” (FCT) for making this thesis work possible through the grant
SFRH/BD/141851/2018. I am also thankful to the Bioinformatics group
at the Institute of Electronics and Informatics Engineering of Aveiro
(IEETA) for providing me with equipment and guidance throughout this
dissertation.
Finally, I express my deepest gratitude to all my mentors, family, and
friends for their guidance, friendship, support, and patience. Particu-
larly, I would like to thank:

• My loving parents and my partner Ana, my brother and Rufus who
have supported me in every way possible. I can never repay what
you have done for me;

• Professor Augusto Silva, who always mentored and guided me;
• Professor Carlos Costa, who introduced me to the bioinformatics

group and always had my best interest at heart;
• All friends and colleagues from IEETA, which through the years,

have had so much patience and taught me so much;
• My longtime friends, Pedro N., Saraiva, Miguel N., and Tiago S.,

thank you for the good times, conversations and outbursts;
• Rui Antunes, which gave me a helping hand every time I was hav-

ing trouble with LaTeX;
• João Almeida, despite its rough attitude, was always there to help

me when I needed it most;
• Tiago Almeida, which help me carry this heavy boulder to the finish

line;
• God for giving me strength throughout this journey.

A final word to all of those who have helped me.
Saying thank you just does not seem enough. Without your help and
emotional support, I wouldn’t have finished this journey.
I hope to repay what you’ve done for me by helping others. I will use
your selfless support as a model as I move forward.

Palavras-chave Informação Algorítmico-Estatística, Complexidade Kolmogorov, Com-
pressão de Dados, Genómica, Classificação de Dados.

Resumo Apesar de serem altamente heterogéneos, todos os dados podem ser
reduzidos a uma sequência de bits. A complexidade de Kolmogorov
analisa os dados dessa maneira, medindo a complexidade de uma se-
quência de bits, ao determinar o comprimento de um dos programas
mais pequenos que, quando executado, gera essa sequência de bits e
pára.
Embora a complexidade de Kolmogorov não seja computável, ela pode
ser aproximada e, como tal, é possível realizar análises de dados us-
ando essas aproximações. Esta dissertação relaciona-se diretamente
com este assunto, uma vez que estuda estas aproximações na de-
scrição de diferentes tipos de dados, criando potenciais aplicações.
Primeiro, usamos medidas de aproximação de complexidade de Kol-
mogorov em dados genómicos. Demonstramos que o uso de compres-
sores de dados específicos para quantificação da complexidade dos da-
dos impacta profundamente a identificação taxonómica de genomas, a
sua classificação e organização.
Em seguida, examinamos a aplicação destas medidas em objetos dig-
itais bidimensionais, especificamente em pinturas artísticas. Usando
estas medidas, desenvolvemos técnicas que podem ser valiosas para
atribuição e validação de autoria de arte, categorização e organização
de estilo de arte e explicação de conteúdo de arte.
Posteriormente, aplicamos essas medidas a dados gerados por
Máquinas de Turing. Especificamente, usando estas medidas, investig-
amos a relação entre as complexidades algorítmicas e probabilísticas
das fitas da Máquina de Turing. A complexidade é estudada global-
mente por meio da investigação dos padrões gerados por Máquinas
de Turing, criadas sequencialmente e localmente por meio de perfis de
complexidade. Além disso, introduzimos um método para aumentar a
complexidade probabilística mantendo a complexidade algorítmica.
Finalmente, usando o conhecimento do estudo efetuado à complexi-
dade das fitas da Máquina de Turing, apresentamos uma metodolo-
gia que procura programas que geram aproximadamente a mesma se-
quência de dados que fornecemos ao programa.

Keywords Algorithmic-Statistical Information, Kolmogorov Complexity, Data Com-
pression, Genomics, Data Classification.

Abstract Despite being highly heterogeneous, all data can be reduced to a string
of bits. Kolmogorov complexity analyses data in this way, measuring
a string’s complexity by determining the length of a smallest program
which, when executed, generates that string and halts.
Even though Kolmogorov complexity is noncomputable, it can be ap-
proximated, and as such, it is possible to perform data analysis using
these approximations. This dissertation ties in directly with this subject
since it studies Kolmogorov complexity approximations in data descrip-
tion and its potential applications.
First, we use Kolmogorov complexity approximation measures in ge-
nomic data. We demonstrate that using specific data compressors to
quantify data complexity profoundly impacts genomic taxonomic identi-
fication, classification, and organization.
Afterwards, we examine the application of information-based measures
in 2-dimensional digital objects, specifically artistic paintings. Using
these measures, we developed techniques that can be valuable for art
authorship attribution and validation, art style categorization and orga-
nization, and art content explanation.
Subsequently, we apply Kolmogorov approximations to data generated
by Turing Machines. Specifically, using these measures, we investigate
the relationship between the algorithmic and probabilistic complexities
of the Turing Machine tapes. Complexity is studied globally by inves-
tigating probabilistic complexity patterns yielded by sequentially gener-
ated TMs, and locally using complexity profiles. Furthermore, we also
introduce a method for increasing probabilistic complexity while retain-
ing the same algorithmic complexity.
Finally, using the knowledge from studying Turing Machine tapes, we in-
troduce a methodology that, given a string, searches for programs that
generate approximately the same output.

Table of contents

Table of contents i

List of figures v

List of tables vii

List of abbreviations ix

1 Introduction 1
1.1 Overview . 2
1.2 Motivation . 2
1.3 Methodology . 3
1.4 Objectives . 4
1.5 Thesis Outline . 4
1.6 Contributions . 5

2 Background 7
2.1 Contextualization . 8
2.2 Information theory and compression . 8

2.2.1 Information theory . 8
2.2.2 Information distances and approximations 14
2.2.3 Normalized Relative Compression . 17

2.3 Summary . 18

3 Complexity analysis of natural sequences 19
3.1 Contextualization . 20
3.2 Research questions and contributions . 20
3.3 Biological background . 21

3.3.1 Life . 21
3.3.2 Genome and proteome . 23
3.3.3 Viruses . 23
3.3.4 Inverted Repeats . 25

3.4 Data compression in genomic data . 26

i

TABLE OF CONTENTS

3.5 Methods . 27
3.5.1 Information-based measures . 27
3.5.2 Other measures . 29
3.5.3 Classification . 29

3.6 Complexity analysis of viral genomes . 30
3.6.1 Data description . 31
3.6.2 Determining the optimal way to quantify probabilistic-algorithmic

information in viral sequences . 32
3.6.3 Viral genome analysis and its visualization 36

3.7 Taxonomic classification . 44
3.7.1 Viral classification . 44
3.7.2 Archea classification . 49

3.8 Summary . 51

4 Complexity analysis of artistic paintings 53
4.1 Contextualization . 54
4.2 Research questions and contributions . 54
4.3 Introduction . 55
4.4 Methods . 56

4.4.1 Information-based measures . 56
4.4.2 Two-point height difference correlation function 57
4.4.3 Dataset . 58
4.4.4 Assessment pipeline . 58

4.5 Kolmogorov approximations in images . 58
4.5.1 Finding an effective data compressor 58
4.5.2 Comparison of NC and BDM . 59
4.5.3 Insights . 62

4.6 Artist painting analysis . 63
4.6.1 Global measures analysis . 63
4.6.2 Combining the NC with the roughness exponent of HDC function . 66
4.6.3 Local complexity of paintings . 68
4.6.4 Insights . 73

4.7 Artist painting classification . 74
4.7.1 Evaluation of measures for classification purposes 74
4.7.2 Insights . 75

4.8 Summary . 75

5 Complexity analysis of Turing Machines 77
5.1 Contextualization . 78
5.2 Research questions and contributions . 79
5.3 Turing Machines . 79

ii

TABLE OF CONTENTS

5.4 Methods . 80
5.4.1 Turing Machines configuration . 80
5.4.2 Search approaches . 81
5.4.3 Probabilistic complexity . 82
5.4.4 Normal and dynamic complexity profiles 83
5.4.5 Increasing the probabilistic complexity of TM’s tape 84

5.5 Viability assessment of the Normalized Compression (NC) 87
5.5.1 Assessment . 87
5.5.2 Insights . 88

5.6 Global analysis of Turing Machine tapes . 89
5.6.1 Probabilistic complexity patterns of Turing Machines 89
5.6.2 Insights . 92

5.7 Analysis of probabilistically complex Turing Machine tapes 93
5.7.1 Analysis using normal and dynamic complexity profiles 93
5.7.2 Insights . 94

5.8 NC and Block Decomposition Method (BDM) comparison 95
5.8.1 Comparison analysis between NC and BDM 95
5.8.2 Insights . 96

5.9 Increasing the probabilistic complexity of Turing Machine tapes 96
5.9.1 Applying methods I and II . 96
5.9.2 Insights . 98

5.10 Summary . 99

6 On solving the inverse problem through approximation 101
6.1 Contextualization . 102
6.2 Research questions and contributions . 102
6.3 Considerations regarding the inverse problem 103

6.3.1 Global aspects . 103
6.3.2 Inverse problem in case of study . 104

6.4 Methods . 105
6.4.1 General configuration . 105
6.4.2 Loss function . 105
6.4.3 Search approaches . 106
6.4.4 Guided search optimizations . 108
6.4.5 Data representation . 109

6.5 Performance evaluation using synthetic data 110
6.6 Results . 110
6.7 Insights . 114
6.8 Conclusions . 115

iii

TABLE OF CONTENTS

7 Conclusions and Future Work 117
7.1 Contextualization . 118
7.2 Relevant findings . 118
7.3 Future research directions and work limitations 122

References 127

Appendices 151

A Appendix of Chapter 3 153
A.1 Content . 153
A.2 Additional information of chapter 3 . 153

A.2.1 Data compressors and level selection benchmark 153
A.2.2 Viral genome analysis . 153

A.3 Website . 164
A.4 Software and hardware recommendations 164
A.5 Reproducibility . 164

A.5.1 Viral analysis and taxonomic classification 164
A.5.2 Archaea taxonomic classification . 166

B Appendix of Chapter 4 169
B.1 Content . 169
B.2 Additional information of chapter 4 . 169

B.2.1 Comparison towards normalized images 169
B.2.2 Kruskal minimum spanning tree . 170

B.3 Website . 171
B.4 Software and hardware recommendations 171
B.5 Reproducibility . 172

B.5.1 Installation . 172

C Appendix of Chapter 5 175
C.1 Content . 175
C.2 Additional Information of chapter 5 . 175

C.2.1 Probabilistic complexity patterns of Turing Machines 175
C.2.2 Comparison between BDM and NC 175

C.3 Software and hardware recommendations 175
C.4 Reproducibility . 176

C.4.1 Creating Project and intalling tools 176
C.4.2 Recreate plots of Chapter 5 . 177
C.4.3 Run TMCompression . 179

iv

List of figures

2.1 Transmission of information through a channel. 9
2.2 Diagrams of relation between algorithmic mutual information, Kolmogorov

complexity, and Shannon mutual information and entropy. 11

3.1 A metagenomic representation of the tree of life. 22
3.2 Illustrations of types of virus morphology. 24
3.3 Variation of NC and Normalized Block Decomposition Method (NBDM)

with an increase of mutation rate of a sequence. 33
3.4 Comparison between cmix and GeCo3 for Human Herpesviruses. 34
3.5 Selection of a level for GeCo3 from a pool of 19 levels. 35
3.6 Average Normalized Compression (ANC) and average sequence length per

viral group by genome type. 37
3.7 Average Normalized Compression (ANC) and average sequence length per

viral group by realm. 38
3.8 Average Normalized Compression and average sequence length per the gen-

era of the Herpesviridae family, for various Human Herpesviruses, and min-
imal bi-directional complexity profiles of Lymphocryptovirus and Mardivirus. 40

3.9 Cladograms showing average NC of each viral group, and the normalized
compression capacity (𝑁𝐶𝐶). 42

3.10 Cladogram showing average difference (𝑁𝐶𝐼𝑅0
− 𝑁𝐶𝐼𝑅1

> 0) 43
3.11 Scatter-plots of Normalized Compression vs. sequence length and GC-

Content. 43
3.12 Frequency of genome sequences per viral genus using radial plot. 48

4.1 Benchmark of lossless data compression tools specifically for the processed
dataset of artistic paintings. 59

4.2 Impact of increasing pseudo-random substitution on NC and BDM normal-
izations. 60

4.3 Information-based measures evaluation in different types of images. 61
4.4 Information-based measures evaluation in a super-sampled image. 62
4.5 Examples of artistic paintings with different levels of complexity. 64
4.6 Authors’ average NBDM1 and NC for images with different quantizations. . 65

v

LIST OF FIGURES

4.7 Authors’ average NBDM2 for images with different quantizations. 66
4.8 Combining the HDC with NC. 67
4.9 Some authors’ fingerprints for different numbers of blocks. 69
4.10 Heat maps of the local complexity matrix of some authors. 70
4.11 Artists’ cladogram computed resorting to the UPGMA algorithm. 71

5.1 Super-exponential growth in Total Number of Turing Machines (TNTM). . 81
5.2 Heat map of Normalized Compression with an increase in permutation and

edition rate. 88
5.3 A plot of all TMs tested NC and length. 90
5.4 The average value for the length, required bits and NC of each tape inside

and outside the specific regions. 91
5.5 Regional average rule complexity profiles. 92
5.6 Complexity profiles of some filtered TMs. 93
5.7 Comparison between the NC and BDM for 10,000 TMs. 96
5.8 Comparison between method I and method II. 97
5.9 The first 59 characters of TMs’ tapes before and after method II was applied. 98
5.10 The tapes’ average final length, variation of the bits required and NC, with

the increase in number of rule iterations and tape iterations. 99

B.1 Artists’ cladogram computed recurring to Kruskal minimum spanning tree. 171

C.1 Average rule complexity profiles obtained from pseudo-randomly selected
TMs. 176

C.2 Comparison between the NC and BDM for 10,000 TM that have run over
50,000 iterations. 177

vi

List of tables

3.1 Depiction of the genome type by the highest NC, normalized compression
capacity and difference. 36

3.2 Accuracy results obtained for viral taxonomic classification. 46
3.3 F1-score results obtained for viral taxonomic classification tasks using dif-

ferent classifiers. 46
3.4 Accuracy obtained for viral taxonomic classification task using XGBoost

classifier. 47
3.5 F1-score obtained for the viral taxonomic classification task using XGBoost

classifier. 47
3.6 Accuracy and F1-score results for archaea taxonomic classification using all

features. 50
3.7 Accuracy and F1-score results from archaea taxonomic classification using

XGBoost classifier. 50

4.1 Mantel Test between distance matrices and average difference between them. 70
4.2 Accuracy results obtained for the test set in style and author classification

task. 75

5.1 Rule matrix for a TM with #𝑄 = 2 and #𝜃 = 2. 81
5.2 The average and maximum standard deviation of the length of the tape and

NC obtained in each TM group. 89
5.3 The average and maximum standard deviation of the NC and NBDM ob-

tained in each TM group. 95

6.1 Results obtained for sequential, Monte Carlo and guided search. 111
6.2 Global measures obtained by developed methodology. 114

A.1 Depiction of the parameters used in the six custom levels. 154
A.2 Depiction of the parameters used in the template of a target context model. 155
A.3 Depiction of the top NC values by viral taxonomic group. 156
A.4 Depiction of the viral taxonomic groups with the highest NC values. 158
A.5 Depiction of the viral taxonomic groups with the highest normalized com-

pression capacity using only the inverted repeats subprogram. 160

vii

LIST OF TABLES

A.6 Depiction of the viral taxonomic groups with the highest difference of values
between 𝑁𝐶𝐼𝑅0

− 𝑁𝐶𝐼𝑅1
. 162

B.1 Author’s Average difference and the percentage difference between normal-
ized and non-normalized images for the NBDM1,NBDM2, NC, and 𝛼. . . . 170

viii

List of abbreviations

A adenine
A-T adenine-thymine
AIT Algorithmic Information Theory

BDM Block Decomposition Method

C cytosine
C-G cytosine-guanine
CD Conditional Compression Distance
CS Computer Science
CTM Coding Theorem Method

DNA Deoxyribonucleic acid
dsDNA double-stranded deoxyribonucleic acid
dsRNA double-stranded ribonucleic acid

FCM Finite-Context Model
FISH Fluorescence In Situ Hybridization

G guanine
GC GC-Content
GNB Gaussian Naive Bayes

ID Information Distance
IRs inverted repeats
ITRs inverted terminal repeats

KNN K-Nearest Neighbors

LDA Discriminant Analysis

MDL Minimum Description Length
MML Minimum Message Length
mRNA messenger ribonucleic acid

NC Normalized Compression

ix

LIST OF ABBREVIATIONS

NCD Normalized Compression Distance
NID Normalized Information Distance
NR normalized redundancy
NRC Normalized Relative Compression

ORFs open reading frames

R redundancy
RNA Ribonucleic acid

SL Sequence Length
ssDNA single-stranded deoxyribonucleic acid
ssRNA single-stranded ribonucleic acid
SVM Support Vector Machine

T thymine
TM Turing Machine
TNTM Total Number of Turing Machines
tRNA transfer ribonucleic acid

U uracil
ULS Universal Levin Search

XGB XGBoost

x

Chapter 1

Introduction

a Trinity- Jorge Miguel Silva, 2020.

“The man who moves a mountain
begins by carrying away small stones.”
– Confucius, Confucius: The Analects

1

CHAPTER 1. INTRODUCTION

1.1 Overview

Humans are social creatures that rely heavily on information communication as a
survival tool. After language development, the need to share information efficiently led
humans to create written systems. These systems, unlike other modes of communication
(such as a painting), use a finite and discrete set of symbols to express a concept [1,
2]. Any written language can be thought of in this way since messages are formed by
combining and arranging symbols in specific patterns. Later, the continued improvement
of communication led to the development of computing machines and information science.

The first well-documented mechanical computer was the difference engine by Charles
Babbage in 1822, which gave rise to the analytical engine in 1837. This engine encapsulated
most of the elements of modern computers [3, 4]. A century later, a universal calculating
machine (Turing Machine) was introduced by Alan Turing [5]. During this time, Harry
Nyquist, Ralph Hartley, and Claude Shannon helped lay the groundwork of information
theory.

Interestingly, Computer Science can be defined as a discipline that studies complexity,
information structures [6], and the algorithmic processes that describe and transform in-
formation [7]. These definitions reinforce the understanding that Computer Science (CS)
has historical roots in information theory and can be seen as a generalization of infor-
mation theory concerned not only with the transmission of information but also with its
transformation and interpretation.

This dissertation ties in directly with this subject by studying Kolmogorov complexity
approximations as data descriptors and describing novel applications for them. Further-
more, we will tackle one of the most fundamental questions in CS, “What can be efficiently
automated?” [8], by creating prototypes of novel applications that use/are Kolmogorov
complexity approximations.

1.2 Motivation

Gregory Chaitin described Algorithmic Information Theory (AIT) as the results of
“putting Shannon’s information theory and Turing’s computability theory into a cocktail
shaker and shaking vigorously. The basic idea is to measure the complexity of an object by
the size in bits of the smallest program for computing it” [9]. An adequate description since
AIT explores the relationship between computation and the information of its generated
strings [10].

Informally, a string’s information content is equal to the size of its most compressed,
self-contained representation. A self-contained representation is a program that outputs
the original string when executed.

Most lossless compression algorithms are limited to finding simple probabilistic regu-
larities since they were designed for fast storage reduction. Although compressors’ prob-
abilistic nature has already been much studied, algorithmic modelling has yet to be fully

2

CHAPTER 1. INTRODUCTION

explored.
Given that lossless data compression is closely linked to the ideas of Minimum Message

Length (MML) [11] and Kolmogorov complexity [12–14], it seems reasonable to incorporate
algorithmic modelling into compressors. Nonetheless, noise and other characteristics of
natural data reduce the efficiency of programs that measure information based on pure
algorithmic schemes rather than those that use probabilistic methods.

This thesis explores this dynamic between algorithmic and probabilistic methods and
how Kolmogorov complexity approximations can be used as descriptors of different data
types. Specifically, we first analyse the application of these approximations in genomic
sequences (1 dimension), in images of artistic paintings (2 dimensions), and finally on
algorithmically generated data. The latter type of data is used to study the inversion
problem and how we may be able to approximate a solution.

1.3 Methodology

Computer Science offers a wide variety of methodologies that can be applied when
carrying out a research project [15, 8]. However, we opted to apply the experimental CS
methodology approach in our work. This methodology is widely used in different fields
such as machine learning and natural language processing [8], and since it is most effective
with problems that require a complex software solution and to evaluate new solutions for
problems [15, 8], it seems to be the most adequate methodology to fulfil the work we
intend to develop.

This methodology can be divided into two phases. The first constitutes an exploratory
phase when the researcher identifies the questions that should be asked in order to solve
the problem and then identifies the concepts that facilitate creation of the solution to the
problem. This is followed by the evaluation phase, when the researcher attempts to answer
these questions using the concepts identified in the exploratory phase. This methodology
usually culminates in the development of a prototype system that demonstrates the created
solution is feasible [16].

In this work, the identified research question is: “Are current Kolmogorov com-
plexity approximations efficient data descriptors and valuable in novel appli-
cations?” In turn, this question can be divided into a set of questions such as: “Are
Kolmorogov complexity approximations appropriate for different data types?”; “What ex-
amples of applications can be developed using Kolmogorov complexity approximations?”
and “Is it computationally feasible to create an approximation solution to the inversion
problem?”

After some research, we hypothesized that it may be possible to answer these ques-
tions by applying Kolmogorov complexity approximation measures to data obtained from
different sources. Using these methods, we will study the underlying structure of data and
perform classification and identification tasks.

Information-based measures are approximations of the Normalized Information Dis-

3

CHAPTER 1. INTRODUCTION

tance, a “universal similarity measure, and is an objective recursively invariant notion by
the Church–Turing thesis” [17]. Since these metrics do not use background knowledge from
input data, they do not evaluate specific features. Consequently, they can potentially be
applied to any type of digital data [18], and therefore, seem the most adequate to represent
data and measure information similarity between strings.

Although some indications favour these hypotheses, we must conduct meticulous vali-
dation to demonstrate their validity. This will predominantly be done by comparing our
method with other state-of-the-art solutions. Furthermore, we have created open-source
code for the developed prototypes, which serve as a proof of concept of the developed work
and allow the user to verify the validity of our experiments.

1.4 Objectives

This doctoral work investigates Kolmogorov complexity approximations in different
settings. From a methodological standpoint, we will evaluate the applicability of Kol-
mogorov complexity approximations in different data types, showcasing their effectiveness
as data descriptors.

As such, this work will include the following research tasks:

• Investigate the capability of Kolmogorov complexity approximations as data de-
scriptors. For that purpose, we will analyse the behaviour of compression, and
Block Decomposition Method measures in synthetic and natural data, with 1 and 2
dimensions, and from algorithmic and probabilistic sources.

• Investigate possible applications and use cases where Kolmogorov complexity ap-
proximation measures can be used to achieve state-of-the-art results in classification
tasks.

• Investigate possible methods that create approximate solutions to the inverse prob-
lem.

1.5 Thesis Outline

This document is divided into seven chapters:

• Chapter 1 is the introduction.

• Chapter 2 gives a background to information theory, its approximations, and derived
measures.

• Chapter 3 describes the complexity analysis of 1d structure strings.

• Chapter 4 describes the complexity analysis performed on 2d structure strings.

4

CHAPTER 1. INTRODUCTION

• Chapter 5 shows the developed work performed in probabilistic and algorithmic
information.

• Chapter 6 showcases the developed work in determining a program approximating
a given string.

• Finally, Chapter 7 summarizes the findings and future work of the thesis.

1.6 Contributions

International Journals

• Jorge Miguel Silva, Diogo Pratas, Tânia Caetano, Sérgio Matos. The complexity
landscape of viral genomes. GigaScience, vol. 11, August 2022.

• Jorge Miguel Silva, Diogo Pratas, Rui Antunes, Sérgio Matos, Armando J. Pinho.
Automatic analysis of artistic paintings using information-based measures. Pattern
Recognition, p. 107864, February 2021.

• Diogo Pratas, Jorge Miguel Silva. Persistent minimal sequences of SARS-CoV-2.
Bioinformatics, vol. btaa686, p. 4, August 2020.

• Jorge Miguel Silva, Eduardo Pinho, Sérgio Matos, Diogo Pratas. Statistical Com-
plexity Analysis of Turing Machine Tapes with Fixed Algorithmic Complexity Using
the Best-Order Markov Model. Entropy, vol. 22, no. 1, January 2020.

• Diogo Pratas, Morteza Hosseini, Jorge Miguel Silva, Armando J. Pinho. A
reference-free lossless compression algorithm for DNA sequences using a competitive
prediction of two classes of weighted models. Entropy, vol. 21, p. 1074, November
2019.

Conference Proceedings

• Jorge Miguel Silva, João Almeida. The value of compression for taxonomic identi-
fication, Proceedings of the 35th IEEE International Symposium on Computer-Based
Medical Systems, CBMS, Shenzhen, China, p. 276-281, July 2022.

• Jorge Miguel Silva, Diogo Pratas, Tânia Caetano, Sérgio Matos. Feature-Based
Classification of Archaeal Sequences Using Compression-Based Methods. Proceed-
ings of the 10th Iberian Conference on Pattern Recognition and Image Analysis,
IbPRIA, Aveiro, Portugal, p. 309-320, May 2022.

• Jorge Miguel Silva, Diogo Pratas, Tânia Caetano, Sérgio Matos. Archaea Tax-
onomic Classification. Proceedings of the 27th Portuguese Conference on Pattern
Recognition, RecPad 2021, Évora, Portugal, November 2021.

5

CHAPTER 1. INTRODUCTION

• Jorge Miguel Silva, Diogo Pratas, Sérgio Matos. Comparison and Evaluation of
Information-based Measures in Images. Proceedings of the 26th Portuguese Confer-
ence on Pattern Recognition, RecPad 2020, Évora, Portugal, October 2020.

• Jorge Miguel Silva, Diogo Pratas, Sérgio Matos. Evaluation of Statistical Com-
plexity in Viral Genome Sequences. 25th Portuguese Conference on Pattern Recog-
nition, RECPAD2019, Porto, Portugal, October 2019.

Open-source Software

• TM Neural Finder Repository. Link: https://github.com/bioinformatics-
ua/TM-Neural-Finder

• SPTTM Repository. Link: https://github.com/jorgeMFS/spttm;

• COMPressor tAxonomic ClassificaTion (C.O.M.P.A.C.T.) Repository. Link: https:
//github.com/bioinformatics-ua/COMPACT;

• Complexity ANalysis VirAl Sequences (C.A.N.V.A.S.) Repository. Link: https:
//github.com/jorgeMFS/canvas;

• Archaea Taxonomic Classification (ARCHAEA) Repository. Link: https://gith
ub.com/jorgeMFS/Archaea;

• Classification and identification of Archaea (ARCHAEA2) Repository. Link: https:
//github.com/jorgeMFS/Archaea2;

• Measuring probabilistic-algorithmic information of artistic paintings (PANTHER)
Repository. Link: https://github.com/asilab/panther;

• Turing Machine Recreator (TMRecreator). Link: https://github.com/jorgeMFS/
TMRecreator;

• TMCompression Repository. Link: https://github.com/asilab/TMCompression;

• Benchmark in ALgorithmic And Natural data ComprEssion (B.A.L.A.N.C.E.)
Repository. Link: https://github.com/jorgeMFS/balance.git.

Websites

• PANTHER Website. Link: http://panther.web.ua.pt/;

• CANVAS Website. Link: https://asilab.github.io/canvas/.

6

https://github.com/bioinformatics-ua/TM-Neural-Finder
https://github.com/bioinformatics-ua/TM-Neural-Finder
https://github.com/jorgeMFS/spttm
https://github.com/bioinformatics-ua/COMPACT
https://github.com/bioinformatics-ua/COMPACT
https://github.com/jorgeMFS/canvas
https://github.com/jorgeMFS/canvas
https://github.com/jorgeMFS/Archaea
https://github.com/jorgeMFS/Archaea
https://github.com/jorgeMFS/Archaea2
https://github.com/jorgeMFS/Archaea2
https://github.com/asilab/panther
https://github.com/jorgeMFS/TMRecreator
https://github.com/jorgeMFS/TMRecreator
https://github.com/asilab/TMCompression
https://github.com/jorgeMFS/balance.git
http://panther.web.ua.pt/
https://asilab.github.io/canvas/

Chapter 2

Background

bAnimal Entropy- Jorge Miguel Silva, 2019.

“Information can only be acquired in two ways:
by choice or by chance.”

– Joey Lawsin, Originemology

7

CHAPTER 2. BACKGROUND

2.1 Contextualization

As mentioned in Chapter 1, this work aims to investigate Kolmogorov complexity
approximations as data descriptors and exemplify potential novel applications.

Since data can take many forms and come from many sources, creating a suitable rep-
resentation that accommodates these variations is challenging. Consequently, researchers
tend to focus on specific niches with specific data to achieve better results. Contrarily,
in this work, we use algorithmic Kolmogorov information approximations to describe and
represent different types of data. To do this, we base ourselves on the assumption that
making a lossless representation of the data’s information simplifies the pattern inference
process and the measurement of similarities between patterns. We will try to demonstrate
this assumption throughout this dissertation using different data types and sources. We
expect that aitll provide relevant information for pattern inference and enable data com-
parison. Based on this assumption, in this chapter, we will survey regarding information
theory, AIT background, information-based measures, and its approximations.

2.2 Information theory and compression

Informally, information can be thought of as some message stored or transmitted us-
ing some medium. For instance, when painting, a message is being represented using a
continuous set of patterns with a seemingly endless number of possible forms. However,
the development of written systems created the need to divide our environment into a
finite number of atomic units, which were expressed using symbols [1, 2]. Any written
language can be thought of in this way since messages are formed by arranging symbols in
specific patterns. This process is independent of the symbols used, the selecting process,
or language, since information is just a choice from a pool of possible symbols (alphabet).

The need to create faster and more efficient ways of transmitting information across
long distances created an engineering challenge: the increment of noise over long distances,
making it unworkable to separate the signal from the noise [19]. As such, there was a need
to create mechanisms capable of encoding the source message as a high-energy signal and
decoding the transmitted message on the target. This issue was solved by implementing an
encoder on the message’s source and a decoder on the message’s target (Figure 2.1). First,
the encoder modified the source message information, adding redundancy. Afterwards, the
decoder received the coded transmitted data and decoded the message, trying to replicate
the source message. Information theory was created as a consequence of this challenge
and the attempts to solve it.

2.2.1 Information theory

The first known attempts to quantify information were made by Nyquist (1924) [20]
and Hartley (1928) [21]. Nyquist, interested in engineering aspects of telegraph signals,
addressed the problem of quantifying “intelligence” and the “line speed” at which a commu-

8

CHAPTER 2. BACKGROUND

Source
Message

Encoder

Target
Message

Decoder

Channel

Noise

t r

Coded
Transmission((Received

Transmission((

Adds
Redundancy {{

Figure 2.1: Transmission of information through a channel.

nication system can transmit it. Hartley introduced the notion of information, which could
be quantitatively measured and depended only on the receiver’s capacity to distinguish
the sequence of symbols that had been intended by the sender, regardless of any associated
meaning or semantic aspect the symbols might represent. He defined the entropy (𝐻) for
each symbol as

𝐻 = 𝑛 log (𝑠), (2.1)

where 𝑛 is the number of symbols on the message, and 𝑠 is the number of possible symbols
(alphabet cardinality).

Later in 1948, Claude Shannon made contributions to the information theory field
by creating a quantitative communication model as a probabilistic process underlying
information theory. Shannon introduced the notion of information entropy and redundancy
of a source, the concept of mutual information and side information, and the channel
capacity of a noisy channel. He also defined the bit as the information entropy of a binary
random variable that is 0 or 1 with equal probability, or the information that is obtained
when the value of such a variable becomes known [22]. Shannon built upon the work of
Nyquist and Hartley by defining the notion of average information, also called Shannon
entropy. Shannon entropy is defined as

𝐻 = −
𝑁

∑
𝑖=0

𝑝𝑖 × log2 𝑝𝑖, (2.2)

where 𝑝𝑖 is the probability of each character. The logarithm base two is used due to the
binary scale [23]. Shannon formalization assumes that the objects encoded are outcomes
of a known random source. It ignores the object itself and only considers the features of
the random source, one of the possible results of which is the object [24].

Following the work of Shannon, in 1960, Solomonoff presented the basic ideas of AIT
in work where he devised a method to overcome problems associated with the application

9

CHAPTER 2. BACKGROUND

of Bayes’s rule in statistics [25]. Later on, in a two-part paper published in 1964 [26, 27],
he introduced the notion of complexity (now broadly known as Kolmogorov complexity)
as an auxiliary concept to obtain a universal a priori probability and proved the invari-
ance theorem governing AIT. This universal a priori probability 𝑀(𝑥) is defined as the
probability that the output of a universal Turing Machine (TM) 𝑈 starts with the string
𝑥 when provided with fair coin flips on the input tape.

Algorithmic information theory was also developed independently by Kolmogorov and
Chaitin in 1965 and 1966, respectively. Kolmogorov improved upon Shannon’s probabilis-
tic information description by adding two quantitative information definitions: combina-
torial and algorithmic [28].

Solomonoff, Kolmogorov, and Chaitin showed that, among all the algorithms that
decode strings from their codes, there is an optimal one. This algorithm, for all strings,
allows codes as short as allowed by any other, up to an additive constant that depends on
the algorithms but not on the strings themselves. Concretely, algorithmic information is
a measure that quantifies the information by determining its complexity. This complexity
(𝐾) of the string 𝑠 is given by

𝐾(𝑠) ∶= min
𝑝

{𝑙(𝑝) ∶ 𝑈(𝑝) = 𝑠}, (2.3)

where 𝑙 is the length of a shortest binary program 𝑝 that computes 𝑠 on a universal TM
𝑈 and halts [28].

This notion of algorithmic Kolmogorov complexity became widely adopted and is cur-
rently the standard for performing information quantification. It differs from Shannon’s
entropy because it considers that the source creates structures that follow algorithmic
schemes [29, 30], rather than perceiving it as a probabilistic function that generates sym-
bols. While Solomonoff applied this idea to define a universal probability of a string on
which inductive inference of the succeeding digits of the string can be created, Kolmogorov
used it to define several functions of strings, such as complexity, randomness, and infor-
mation. It is also worth mentioning that besides the algorithmic nature [31], Chaitin also
carried out substantial work regarding the halting problem [32–34]. Furthermore, Chaitin
introduced Ω [10, 35] a non-computable number [35], defined as the probability that an
optimal computer halts, where the optimal computer is a universal decoding algorithm
used to define the notion of program-size complexity.

Given two strings, 𝑥 and 𝑦, the Conditional Kolmogorov complexity, 𝐾(𝑥|𝑦) is defined
as the length of a shortest binary program which, having 𝑦 given as an auxiliary input,
computes 𝑥 and halts. And finally, the Conjoint Kolmogorov complexity of the strings 𝑥
and 𝑦, 𝐾(𝑥, 𝑦), is defined as the length of a shortest binary program which, without any
auxiliary information, computes both 𝑥 and 𝑦 (and how to separate them) and halts. In
turn, these three definitions are related by the chain rule

𝐾(𝑥, 𝑦)⏟
Conjoint complexity

= 𝐾(𝑥)⏟
Complexity

+ 𝐾(𝑦|𝑥)⏟
Conditional complexity

, (2.4)

10

CHAPTER 2. BACKGROUND

K(x,y) ≈ K(y,x)

y)
K(x) K(y)K(x|y) K(y|x)

I(x:y)

I(y:x)

(a) Diagram showing the relation between algorithmic mutual informa-
tion and different Kolmogorov complexities

H(x,y)

H(x) H(y)H(x|y) H(y|x)I(x;y)

(b) Diagram showing the relation between Shannon mutual information
and different entropies

Figure 2.2: Diagrams depicting the relation between algorithmic mutual information and
Kolmogorov complexity, and Shannon mutual information and entropy.

when ignoring constants that asymptotically become irrelevant. Using the chain rule
of Equation (2.4) and the symmetric property of the conjoint Kolmogorov complexity,
𝐾(𝑥, 𝑦) = 𝐾(𝑦, 𝑥), we can quantify the algorithmic mutual information, 𝐼(𝑥 ∶ 𝑦), which
provides the mutual dependence between the two strings, as

𝐼(𝑦 ∶ 𝑥) = 𝐾(𝑥) − 𝐾(𝑥|𝑦),

𝐼(𝑥 ∶ 𝑦) = 𝐾(𝑦) − 𝐾(𝑦|𝑥),

𝐼(𝑥 ∶ 𝑦) = 𝐼(𝑦 ∶ 𝑥).

(2.5)

Using Equation (2.4) of the chain rule and Equation (2.5) we can construct a diagram,
shown in Figure 2.2a that ties together the algorithmic mutual information, 𝐼(𝑥 ∶ 𝑦),
Kolmogorov complexity, 𝐾(𝑥) and 𝐾(𝑦), Kolmogorov conditional complexity, 𝐾(𝑥|𝑦) and
𝐾(𝑦|𝑥), and Kolmogorov conjoint complexity, 𝐾(𝑥, 𝑦) and 𝐾(𝑦, 𝑥), of the string 𝑥 and 𝑦.

This relationship shows a high degree of similarity to the mutual information concept
introduced by Shannon, 𝐼(𝑥; 𝑦), shown in Figure 2.2b, where mutual information is related
to the joint entropy 𝐻(𝑥, 𝑦), individual entropy, 𝐻(𝑥) and 𝐻(𝑦), and the conditional
entropy 𝐻(𝑥|𝑦) and 𝐻(𝑦|𝑥) [36].

11

CHAPTER 2. BACKGROUND

There are several variants of algorithmic complexity, the most successful of which was
the prefix complexity introduced by Levin [37], Gács [38], and Chaitin [10]. Further-
more, an axiomatic approach to Kolmogorov complexity based on Blum axioms [39] was
introduced by Burgin [40].

From the roots of algorithmic Kolmogorov complexity [14], Wallace formulated [41]
the idea of minimum message length (MML). MML is described as compressed two-part
codes for the data corresponding to replacing negative-log probabilities in Bayes’ rule by
Shannon–Fano code lengths [42]. Independently from Wallace, Rissanenn described the
Minimum Description Length (MDL) principle in a series of papers starting with his paper
in 1978 [11]. The basic idea underlying the MDL principle is that statistical inference can
be used as an attempt to find regularity in the data. MDL is based on two main pillars:
regularity implies high compression, and compression can be considered learning. Any
regularity in the data can be used to compress it; as such, regularity in data may be
identified with the ability to compress it. On the other hand, compression can be viewed
as a way of learning since the more we can reduce data without loss of information, the
more we understand its underlying structure. MDL joins these two insights and tells us
that, for a given set of hypotheses 𝐻 and dataset 𝐷, we should try to find the hypothesis
or combination of hypothesis in 𝐻 that compresses 𝐷 the most.

Another possible way to quantify information was given by Bennett, who introduced
the notion of Logical Depth. Essentially, it adds to Kolmogorov complexity the notion of
time and, as such, can be defined as the time required by a standard universal TM 𝑈 to
generate a given string from an algorithmically random input [43].

An area strongly connected with AIT is the theory of algorithmic randomness, which
studies random individual elements in sample spaces, mostly the set of all infinite binary se-
quences, e.g., a sequence of coin tosses represented as a binary string. While Kolmogorov’s
formalization of classical probability theory assigns probabilities to sets of outcomes and
determines how to calculate such probabilities, it does not distinguish between individual
random and non-random elements. For instance, in a uniform distribution, a sequence of
𝑛 zeros has the same probability as any other outcome of 𝑛 coin tosses, namely 2−𝑛. How-
ever, there is an intrinsic notion that such sequences are not random, which is even more
pronounced in infinite sequences. The current view of algorithmic randomness proposes
three paradigms to determine what a random object is: unpredictability (in a random
sequence, it is difficult to predict the next element of a sequence); incompressibility (a
random sequence is not feasibly compressible); and measure of theoretical typicalness (a
random sequence passes all feasible statistical tests). Martin-Löf in 1966 [44] defined a
random sequence based on the measure of theoretical typicalness. Earlier researchers such
as Von Mises [45] gave insights into describing a random sequence by formalizing a test
for randomness. If a sequence passed all tests for randomness, it would be a random
sequence. The problem was that, if we considered all possible tests, any sequence would
not be random because it would be rejected by the test whose sole purpose was to reject
that particular sequence. Martin-Löf’s critical insight was to formally use the theory of

12

CHAPTER 2. BACKGROUND

computation to define the notion of a test for randomness. Namely, he did not consider
the set of all tests but the set of effective tests (computable tests). Martin-Löf also proved
that this set of all effective tests for randomness can be subsumed by a universal test for
randomness [44]. Unfortunately, deciding if a sequence passes the test is not computable.
Although applying the universal test for randomness is unfeasible in practice, this notion
can be approximated. An example can be found in data compressors since, given an ar-
bitrary sequence and applying a series of models to compress the string, it is possible,
although in a very limited way, to evaluate the randomness of the string. The idea behind
using data compressors is that if a string is well compressed, there are repetitive patterns,
meaning it is not random.

It is necessary to mention that other authors have made approaches to randomness via
incompressibility (e.g., prefix-free Kolmogorov complexity [37, 38, 10]) or unpredictability
(constructive martingales [46]). Despite the progress in information theory, quantifying
information is still one of the most challenging open questions in computer science since
no computable measure encapsulates all concepts surrounding information. Thus, one
usually chooses between two options to quantify information: Shannon entropy or an
approximation of algorithmic complexity.

Shannon entropy poses some problems since it is not invariant to the description of the
object and its probability distribution [47]. Furthermore, it lacks an invariance theorem,
forcing us to decide on a characteristic shared by the objects of interest [48]. On the
other hand, algorithmic complexity is only approximately attainable since the Kolmogorov
complexity is non-computable [14]. These approximations are computable variants of the
Kolmogorov complexity and are bounded by time and resources.

Data compressors have been used to approximate the Kolmogorov complexity, as the
bit stream produced by a lossless data compression algorithm allows the reconstruction
of the original data with the appropriate decoder, and therefore, can be seen as an upper
bound of the algorithmic complexity of the sequence [49]. However, the problem with using
fast general-purpose data compressors is that most of their implementations are based on
estimations of entropy [50] and thus are no more related to algorithmic complexity than
to Shannon entropy. It is possible to embed specialized algorithms into data compressors
to achieve state-of-the-art compression results [51]. These results show the importance
of efficiently combining probabilistic and algorithmic models. Nonetheless, contrary to
probabilistic data, which may be explored in advance, algorithmic modelling requires
exhaustive search, human knowledge, or machine learning.

A substantial result in algorithmic modelling was the algorithm proposed by Levin to
solve inversion problems [52, 53]. The Universal Levin Search (ULS) consists of an iterative
search algorithm that interleaves the execution of all possible programs on a universal TM
𝑈, sharing computation time equally among them until one of the executed programs
manages to solve the inversion problem provided. This search uses Levin complexity,
a resource-bounded generalization of the algorithmic Kolmogorov complexity making it
computable. In the context of a TM, these resources are the maximum number of cells

13

CHAPTER 2. BACKGROUND

of the work tape used (space) and the number of execution steps (time). As such, a
time-bounded version of Equation (2.3) can be obtained as

𝐾𝑡(𝑠) ∶= min
𝑝

{𝑙(𝑝) + log(time(𝑝)) ∶ 𝑈(𝑝) = 𝑠}, (2.6)

where the time taken to generate the string 𝑠 is considered, executing all possible programs
in lexicographic order [14]. Despite this, the ULS is currently intractable due to hidden
multiplicative constants in the running time and the need to make verification fast. To
bridge this gap, Hutter proposed a more general and asymptotically fastest algorithm,
which solves these problems at the cost of an even larger additive constant [54, 55]. More
recent approaches such as the Coding Theorem Method (CTM) [56] and its derivation, the
Block Decomposition Method (BDM) [48], approximate local estimations of algorithmic
complexity providing a closer connection to the algorithmic nature. The main idea is to
decompose the quantification of complexity for segmented regions using small TMs [56].
To model the probabilistic nature, such as noise, it commutes into a Shannon entropy
quantification.

2.2.2 Information distances and approximations

Using the knowledge obtained from the definitions of Kolmogorov complexity, it is
possible to create a distance based on the quantity of information. This was first proposed
by Charles Bennett et al. in 1998, when he introduced the notion of Information Distance
(ID) [57] as

𝐼𝐷(𝑥, 𝑦) = max {𝐾(𝑥|𝑦), 𝐾(𝑦|𝑥)}, (2.7)

as the maximum length of a shortest binary program for a reference universal prefix
TM which, with input 𝑥, computes 𝑦, as well as the inverse, with input 𝑦, computes 𝑥.

In 2004 the Normalized Information Distance (NID) was introduced as a normalized
version of the ID [17] as

𝑁𝐼𝐷(𝑥, 𝑦) =
max {𝐾(𝑥|𝑦), 𝐾(𝑦|𝑥)}
max {𝐾(𝑥), 𝐾(𝑦)}

. (2.8)

The problem with the NID metric is that, while appealing, its use is unpractical since
the Kolmogorov complexity is non-computable [58, 59], although it may be approximated.

The Coding Theorem Method and the Block Decomposition Method

While the Kolmogorov complexity is non-computable, it can be approximated with
programs with that purpose. As previously mentioned, a possible approximation is the
CTM [56], and its improved version, BDM [48], which approximate local estimations of
algorithmic complexity providing a closer relationship to the algorithmic nature. This
approximation decomposes the quantification of complexity for segmented regions using
small TMs [56].

14

CHAPTER 2. BACKGROUND

The CTM uses the algorithmic probability between the frequency with which a string
is produced using a random program and its algorithmic complexity. The more frequent a
string is, the lower its Kolmogorov complexity, and the lower the frequency of strings, the
higher their complexity. The BDM increases the capability of a CTM, approximating local
estimations of algorithmic information based on Solomonoff-Levin’s algorithmic probabil-
ity theory. In practice, it approximates the algorithmic information, and when it loses
accuracy, it approximates the Shannon entropy. This approach has shown encouraging
results for many different purposes [60–62]. However, it has also shown underestimation
issues related to side information [63].

It is possible to perform two types of normalization of the BDM. The first one is given
by the number of elements (length) of the digital object as

𝑁𝐵𝐷𝑀1(𝑥) =
𝐵𝐷𝑀(𝑥)
|𝑥| log2 |𝜃|

, (2.9)

where |𝜃| is the size of the alphabet and |𝑥| is the length of the string 𝑥.

The second is the normalization of the BDM performed using a minimum complexity
object (BDM𝑀𝑖𝑛) and a maximum complexity object (BDM𝑀𝑎𝑥). A minimum complexity
object is filled with only one symbol, like a binary string of only zeros. In contrast, a
maximum complexity object is an object that, when decomposed (by a given decomposition
algorithm), yields slices that cover the highest CTM values and are repeated only after
all possible slices with a given shape have been used once. Using these two objects, the
NBDM2 for a given string can be computed as

𝑁𝐵𝐷𝑀2(𝑥) =
𝐵𝐷𝑀(𝑥) − 𝐵𝐷𝑀𝑀𝑖𝑛
𝐵𝐷𝑀𝑀𝑎𝑥 − 𝐵𝐷𝑀𝑀𝑖𝑛

, (2.10)

where 𝐵𝐷𝑀(𝑥) is the BDM value of 𝑥, 𝐵𝐷𝑀𝑀𝑖𝑛 is the minimum complexity object, and
𝐵𝐷𝑀𝑀𝑎𝑥 is the maximum complexity object.

Kolmogorov complexity is invariant only up to a constant factor, which depends on the
choice of a description language 𝐾 = 𝐾′ + 𝐿, where 𝐾 is the total complexity, 𝐾′ is the
description of the object and 𝐿 is the description of the language. As such, by performing
the normalization according to Equation (2.10), the normalization aims to remove the
constant factor as

𝐾 − 𝐾𝑀𝑖𝑛
𝐾𝑀𝑎𝑥 − 𝐾𝑀𝑖𝑛

=
𝐾′ + 𝐿 − 𝐾′

𝑀𝑖𝑛 − 𝐿
𝐾′

𝑀𝑎𝑥 + 𝐿 − 𝐾′
𝑀𝑖𝑛 − 𝐿

=
𝐾′ − 𝐾′

𝑀𝑖𝑛

𝐾′
𝑀𝑎𝑥 − 𝐾′

𝑀𝑖𝑛
, (2.11)

where 𝐾𝑀𝑎𝑥 and 𝐾𝑀𝑖𝑛 are the maximum and minimum Kolmogorov complexity objects
and 𝐾′

𝑀𝑎𝑥 and 𝐾′
𝑀𝑖𝑛 are the maximum and minimum Kolmogorov complexity description

of the objects.

15

CHAPTER 2. BACKGROUND

Data compression measures

Another approximation of the Kolmogorov complexity is provided by data compressors.
Approaches based on data compression are a natural solution to measure complexity, since
with the appropriate decoder, the bit stream produced by a lossless compression algorithm
allows reconstruction of the original data, and therefore, can be seen as an upper bound
of the algorithmic complexity of the sequence (see [49] for a mathematical explanation of
safe approximation).

Using the compression-based approach, a normalized version, known as the NC was
created as

𝑁𝐶(𝑥) =
𝐶(𝑥)

|𝑥| × log2 |𝜃|
, (2.12)

where 𝑥 is the string, 𝐶(𝑥) represents the number of bits needed by the lossless data
compression program to represent the string 𝑥, |𝜃| is the size of the alphabet and |𝑥| is the
length of the string 𝑥.

The NC compares the information contained in strings independently from their sizes.
However, in order to create metrics that compare two strings using lossless compression
algorithms, the Conditional Compression Distance (CD) (Equation (2.13)) and its nor-
malized counterpart, the Normalized Compression Distance (NCD) were developed as

𝐶𝐷(𝑥, 𝑦) = max {𝐶(𝑥|𝑦), 𝐶(𝑦|𝑥)}, (2.13)

and

𝑁𝐶𝐷(𝑥, 𝑦) =
max {𝐶(𝑥, 𝑦) − 𝐶(𝑥), 𝐶(𝑦, 𝑥) − 𝐶(𝑦)}

max {𝐶(𝑥), 𝐶(𝑦)}
⇔

𝑁𝐶𝐷(𝑥, 𝑦) =
𝐶(𝑥𝑦) − min {𝐶(𝑥), 𝐶(𝑦)}

max {𝐶(𝑥), 𝐶(𝑦)}
.

(2.14)

They assume that the chain rule of Kolmogorov complexity is mapped to the compres-
sion domain and that the conjoint compression, 𝐶(𝑥, 𝑦), corresponds to the total number
of bits required to compress the conjoint information content of the strings 𝑥 and 𝑦, as well
as the information on how to split them. This process is usually approximated through
concatenation [64]. Both these compression-based distances compute the distance between
two strings using the number of bits needed to describe one of them when a description of
the other is available, as well as the number of bits required to describe each of them.

The NCD is a normalized metric distance (𝑁𝐶𝐷 𝜖(0, 1]). It is a direct computation
of the NID and generates a non-negative value, where distances near 0 indicate similarity
between two strings, and values near 1 indicate dissimilarity.

Usually, to compute the NCDmetric, the chain rule is applied (Equation (2.14)) instead
of performing a direct substitution of the Kolmogorov Conditional complexity by the Con-
ditional Compression. This is due to the fact that to make a direct replacement, the com-
pressors needed to be capable of performing conditional compression (𝐶(𝑥|𝑦) 𝑎𝑛𝑑 𝐶(𝑦|𝑥)),

16

CHAPTER 2. BACKGROUND

which was initially not achievable by most compressors [65]. Consequently, the NCD
usually used the conjoint compression (𝐶(𝑥, 𝑦) 𝑎𝑛𝑑 𝐶(𝑦, 𝑥)), which was computed as the
compression of the concatenation of the 𝑥 and 𝑦 strings. However, performing the conjoint
compression by assuming concatenation reduced the efficiency of the measurement [66].

A more efficient way to compute the NCD would be to apply a direct form of conditional
compression as

𝑁𝐶𝐷(𝑥, 𝑦) =
max {𝐶(𝑥|𝑦), 𝐶(𝑦|𝑥)}
max {𝐶(𝑥), 𝐶(𝑦)}

. (2.15)

This approach defines conditional compression, 𝐶(𝑥|𝑦), as the number of bits needed
by the lossless compression program to represent the digital object 𝑥 given the digital
object 𝑦 as an auxiliary input, and 𝐶(𝑦|𝑥) as the inverse [67, 68].

It is also worth mentioning that NCD measures the information between two strings
and is robust to some degree of noise [69]. This behaviour is verified as long as the
compressor is normal (possess the property of Distributivity, Symmetry, Monotonicity,
Idempotency, and Density [36, 66]) and has an internal model capable of performing a
correct representation of the strings’ nature.

2.2.3 Normalized Relative Compression

The NCD measures a distance between two strings, in other words, it respects the
properties of identity, symmetry and triangle inequality. However, there are some cases
where the usage of semi-distances is more advantageous, namely when it is intended to
measure the information of a digital object relative to another. This implies that two
distance properties cannot be fulfilled, namely the property of symmetry and the triangle
inequality [64].

An important method to approximate relative information between strings is by using
relative compressors which can be based on Markov models [70] or dictionaries [71–73].
These relative compressors perform the compression of the digital object 𝑥 relatively to 𝑦,
𝐶(𝑥||𝑦), by first modelling and organizing the data of the digital object 𝑦, without knowing
the content of the digital object 𝑥. Then, the model of the digital object 𝑦 is frozen and
used exclusively to measure the number of bits needed to describe 𝑥, with the information
from the 𝑦 object. Furthermore, 𝐶(𝑥||𝑦), can be seen as the sum of the information content
provided, symbol by symbol, after processing the complete 𝑥, according to

𝐶(𝑥||𝑦) =
|𝑥|

∑
𝑖=1

𝐶(𝑥𝑖||𝑦). (2.16)

To assess the overall quantities of relative information between two strings, the Nor-
malized Relative Compression (NRC) was developed as

𝑁𝑅𝐶(𝑥, 𝑦) =
𝐶(𝑥||𝑦)

|𝑥| × log2 |𝜃|
. (2.17)

17

CHAPTER 2. BACKGROUND

The NRC can be seen as a string’s fraction that cannot be represented by another
string, regardless of the redundancy of this fraction. Although this measure cannot answer
specific questions relative to distances (since it is a semi-distance), it is helpful since it can
infer insights into dissimilarity or completeness. Unlike the NCD, the NRC does not require
the computation of the self-similarity term, 𝐶(𝑥), and only depends on one compression.
This decreases the computation time and provides a more predictable behaviour since it
relies on only one approximation function. In contrast, the NCD uses a ratio between two
approximation functions [74].

2.3 Summary

This chapter analyses the information theory, approximations of the Kolmogorov com-
plexity, and its derived distances and measures.

Since the success of classification and identification tasks largely depends on feature
selection and data representation, the success of our work depends on performing a cor-
rect data representation [75, 76]. Furthermore, considering different representations can
entangle and hide different explanatory factors of variation behind the data, by creating
an adequate representation of the data, we will identify the underlying explanatory fac-
tors hidden in the observed environment of low-level sensory data [75]. Finally, although
specific domain knowledge can be used to design representations, we assume that learning
with generic priors is more advantageus because it may lead to more robust and condensed
data representations.

On the other hand, using compression measures can be quite valuable since they can
provide insights into dissimilarity or completeness between data.

In the next chapter, we will start by analysing the applicability of algorithmic Kol-
mogorov complexity approximations in describing and detecting patterns of 1-dimensional
biological data.

18

Chapter 3

Complexity analysis of natural
sequences

cThe metamorphosis of man - Jorge Miguel Silva, 2020.

“The butterfly’s attractiveness derives not only from colours
and symmetry: deeper motives contribute to it.

We would not think them so beautiful if they did not fly,
or if they flew straight and briskly like bees, or if they stung,

or above all if they did not enact the perturbing mystery of metamorphosis:
the latter assumes in our eyes the value of a badly decoded message,

a symbol, a sign.”
– Primo Levi

19

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

3.1 Contextualization

This chapter focuses on studying and applying the Kolmogorov complexity on strings
encoded as 1d data structures. Since Kolmogorov complexity provides several ways to
examine different natural processes, we use it to analyse genomic sequences, which are
strings with finite length and quaternary alphabet. We perform this analysis by first testing
two ways of approximating the Kolmogorov complexity, the block decomposition method
and lossless data compressors. Efficient data compressors that consider the probabilistic
and algorithmic characteristics of the data seem more capable of identifying small programs
embedded in this type of biological data. As such, we use them to analyse and classify
genomic sequences. As will be shown in this chapter, the use of specific data compressors
to quantify data complexity (Kolmogorov complexity) profoundly impacts viral genomes’
identification, classification, and organization. This chapter follows the structure:

• Research questions and contributions;

• Biological background;

• Data compression in genomic data;

• Methods;

• Complexity analysis of viral genomes;

• Taxonomic classification;

• Summary.

3.2 Research questions and contributions

This chapter aims to use approximations of the Kolmogorov complexity to analyse
natural genomic sequences. By doing so, we aim to answer several questions: What
is the best approach to detecting and quantifying small programs embedded in natural
sequences? What information can be obtained by analysing the complexity landscape of
viral genomes? Moreover, how much information is present in a viral genome sequence?
Can this information be used for classification and viral taxonomic identification? If so,
can this be true for other genomic sequences?

In the following sections, we will answer these questions, present the information ob-
tained from performing an extensive complexity analysis of the viral genome, and demon-
strate that this information can be used to obtain state-of-the-art results in the taxonomic
identification of organisms.

20

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

3.3 Biological background

In this chapter, we work with Deoxyribonucleic acid (DNA) and Ribonucleic acid
(RNA) genomic sequences. To introduce several concepts, we provide background re-
garding general aspects of organisms with the notions of genome and proteome, as well
as a more in-depth description of viruses, archaea, and finally, a description of Inverted
Repeats.

3.3.1 Life

Life is a quality that discerns matter that has biological processes from that which does
not. Living matter has biological processes, such as signalling and self-sustaining mecha-
nisms, and has, by definition, the capability for growth, response to stimuli, metabolism,
energy transformation, and reproduction.

There are many different types of life, including bacteria, fungus, protists, archaea,
and plants. Furthermore, in the case of viruses, they are considered to be matter near the
edge of being alive. This classification occurs because they share some traits with living
beings but are incapable of metabolizing and require a host cell to make new products.

The gene is the heredity unit, and the cell is the basic structural and functional unit
in Earth’s life forms. All cells possess cytoplasm enclosed within a membrane contain-
ing numerous biomolecules like proteins and nucleic acids. They reproduce through cell
division, where the parent cell splits into two or more daughter cells and passes its sur-
vival/behaviour instructions (genes) onto a new generation, sometimes producing genetic
variation.

Organisms are individual entities of life composed of cells which are open systems that
maintain homeostasis and have a life cycle. Organisms can be prokaryotes or eukaryotes,
and in the case of eukaryotes can either be unicellular or multi-cellular.

Prokaryotes are characterized by being the most diverse group of organisms and being
unicellular. They are separated into the bacteria and archaea domains [77].

On the other hand, eukaryotes are portrayed by the presence of membrane-bound
compartments in the cytoplasm. Specifically, a membrane-bound cell nucleus, and other
membrane-bound compartments (called organelles), i.e. mitochondria, Golgi apparatus,
and the chloroplasts [78]. Eukaryotes comprise the animal, plant and fungi domains.
Despite having very different morphologies and physiologies, all living organisms are time-
limited [79], the end of an organism’s existence being marked by death, which is the
irreversible cessation of all biological activities that maintain it.

To avoid the organism’s complete eradication, they perform a replication process where
all or some of their heredity unities (genes) are passed to their offspring. This process
can occur using a single individual (asexual process) or combining information from two
progenitor organisms (sexually). Due to the pressure of natural selection and genetic
variation, organisms have diversified and evolved, giving rise to various domains of life and
millions of species that can be traced back to a common ancestor, as shown in Figure 3.1.

21

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

Figure 3.1: A metagenomic representation of the tree of life using ribosomal protein se-
quences of a tree of life according to Hug et al.[80].

Figure 3.1 shows the separation of bacteria, archaea, and eukaryotes. Despite their
structural resemblance, bacteria and archaea are very different types of prokaryotes. Ar-
chaea have genes and metabolic pathways more closely related to eukaryotes, particularly
transcription and translation enzymes. In addition, archaeal biochemistry is distinct, as
proven by the isoprene-composed and ether-bond phospholipids of their cell membranes.
Furthermore, archaea exist in practically every habitat despite being initially discovered

22

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

in extreme environments, such as hot springs and salt lakes.
On the other hand, as seen in the Figure 3.1, viruses are not included in the tree of

life, not only because they do not share characteristics with cells but also because while
cellular life has a single, common origin, viruses are polyphyletic, meaning they have many
evolutionary origins. As such, a possible description of their place in the tree of life could
be dead leaves that have fallen off a tree at different points in time.

3.3.2 Genome and proteome

Despite all differences, all living beings and viruses possess genetic information. Living
beings use DNA, whereas some viruses can use RNA. DNA and RNA sequences have a
quaternary alphabet, adenine (A), cytosine (C), guanine (G), and thymine (T) for DNA
and uracil (U) in RNA (instead of thymine). Adenine and guanine are categorized as
purines, while cytosine and thymine as pyrimidines. Watson and Crick described the
double helix structure of DNA [81]. This discovery showcased Chargaff’s parity rule [82],
where the total percentage of complementary nucleotides, i.e. adenine-thymine (A-T) and
cytosine-guanine (C-G), in a double-stranded deoxyribonucleic acid (dsDNA) molecule,
should be equal.

The dsDNA molecule is composed of two anti-parallel chains containing genes that
encode the instructions necessary for the development and survival of the organisms. These
genes can have coding (exons) and non-coding (intron) regions. The coding regions of the
genes (exons) are used to create proteins. In living beings, this occurs in a two-step
process: The first step is transcription, where DNA is used to create a single-stranded
RNA molecule known as messenger ribonucleic acid (mRNA), whose nucleotide sequence
is complementary to the DNA used. The second step is translation, where a mature
mRNA molecule is used as a template for synthesizing a new protein. This process can
be different in the case of viruses.

In the translation of RNA to protein, one amino acid is added to the protein strand
for every three bases in the RNA, called codons. This process occurs using a specialized
RNA molecule called transfer ribonucleic acid (tRNA), which has three unpaired bases
(anticodon) complementary to the codon it reads on the mRNA and is also covalently
linked to the amino acid defined by the complementary codon.

When the tRNA attaches to its complementary codon in an mRNA strand, the ri-
bosome binds its amino acid payload to the new polypeptide chain, which is synthesized
from the amino terminus to the carboxyl terminus. The polypeptide chain has complex
interactions, which create a three-dimensional structure that characterizes a protein and
is fundamental for its functioning.

3.3.3 Viruses

Viruses are a strong driving force of life and evolution. They are the shortest and most
abundant life realm, estimated at around 1031 particles [83]. Likewise, viruses occupy

23

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

almost every ecosystem [84–86] and infect all types of life forms [87, 88].
They are submicroscopic biological infectious agents that require living cells of an

organism to be active for replication [89]. They can exist outside of their host in the form
of independent particles named virions composed of the genetic material (DNA or RNA)
enclosed by the capsid. This protein shell protects the viral genome, and at the same time,
it is extracellular and promotes its entry into the host cells [90].

Most viruses possess capsids with helical (Figure 3.2 A) or icosahedral (Figure 3.2
B) arrangements [91, 92]. Different viruses, like bacteriophages, have developed other
structures composed of elongated capsids attached to a cylindrical tailed sheet (Figure 3.2
C) [93]. Others have an outer lipid bilayer named viral envelope (Figure 3.2 D), which is
constituted by a modified form of the host’s cell membranes. Viroids have naked genomes
without any protective layer. Like viruses, they use the host’s machinery to replicate, but
their genomes do not encode proteins [94]. Furthermore, some viruses are dependent on
another virus species in the host cell to be transmitted to new cells. They were named
‘satellites’ and may represent evolutionary intermediates of viroids and viruses [95, 96].
Regarding mutability, the viral and viroid realm is the most mutable [97] of the realms.

Figure 3.2: Illustrations of types of virus morphology. Virus (A) is a helical virus, where
the capsoid has a helical shape that envelops the genomic material, virus (B) is icosahedral
following cubic symmetry, (C) depicts a complex virus, namely a bacteriophage with a
prolate capsid protecting the genomic material, and (D) is virus covered by a viral envelop.

Viral genomes can be of dsDNA, single-stranded deoxyribonucleic acid (ssDNA),
double-stranded ribonucleic acid (dsRNA), single-stranded ribonucleic acid (ssRNA) or
mixed nature, being linear or circular molecules [98]. The ssRNA viruses can be further
classified as positive- or negative-ssRNA, depending on the sense of their RNA strand.
These features determine the viral replication and mRNA synthesis pathways. For in-
stance, (+)-ssRNA is directly translated into proteins by the host cell’s ribosomes, acting
as mRNA. On the other hand, (-)-ssRNA needs to be converted to a (+)-ssRNA by
an RNA-dependent RNA polymerase (RdRp) before translation. RdRp also transcribes
dsRNA to mRNA (using the negative strand as a template), and it is indispensable for
the replication of RNA viral genomes. Finally, ssDNA and dsDNA usually use the host’s
DNA-dependent RNA polymerase to form mRNA. However, before this process, ssDNA

24

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

is converted to a dsDNA by a DNA polymerase upon cell invasion [99], which is also the
enzyme involved in the replication of DNA viruses. The RdRps have a high error rate due
to their low proofreading activity and, therefore, replication of RNA viruses is much more
prone to mutation than that of DNA viruses [100].

Viruses have a vast variation in size, ranging from around 10 nm with small genomes
to viruses with similar dimensions and genome sizes to bacteria and archaea [101, 102].
These viruses are called giant viruses and contain many unique genes currently not found
in other life forms.

There can also be hybrid viruses [103], making it difficult to identify species [104].
There are several possible combinations for the creation of a hybrid virus. One possible way
of occurring is the infection of a host’s cell by two or more related viruses and consequential
exchange of sequences between viruses. The result is the creation of a new variant derived
from the parental genomes. Another possible way is the recombination of RNA viral
genomes with the host’s RNA. Finally, there is evidence that small DNA viruses could
have been created by recombination events between RNA viruses and DNA plasmids [103].

Although the origin of viruses is still uncertain, they play an essential role in the evo-
lution of living organisms since they are horizontal gene transfer vehicles. This biological
phenomenon increases genetic diversity. Furthermore, it occasionally allows viral genetic
material to integrate into the host genomes, transferred vertically to its offspring. This
property is so preponderant in evolution that the origin of the eukaryotic nucleus might
be related to this process [105–107].

Additionally, viral genomic integration allows us to infer the evolutionary distance
between hosts by observing the shared virus integrated into their genomes. For instance,
in humans, viruses frequently establish persisting infections [108] and imprint their genetic
material in the tissues throughout life, displaying phylogeographic patterns. These can be
used as markers to understand the human population history and migrations better and
provide new insights into unidentified individuals’ origins on both global and local scales
[109]. In this respect, the JC polyomavirus is one of the most comprehensively studied
viruses. Its genotype-specific global spread has been suggested to indicate the origins of
modern [110] and ancient humans [111–113]. Furthermore, a worldwide study supported
the co-dispersal of this virus with major human migratory routes and its co-divergence
with human mitochondrial and nuclear markers [114].

3.3.4 Inverted Repeats

Inverted repeats (IRs) are nucleotide sequences with a downstream reverse complement
copy, causing a self-complementary base-pairing region [115]. Consequently, IRs usually
fold into different secondary structures (hairpin- and cruciform-like structures, pseudo-
knots) that participate or interfere in many cellular processes in all forms of life, including
DNA replication [116, 100]. Due to these traits, IRs play an essential role in genome
stabilization and destabilization [117], contributing to mutability. This mutability can

25

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

create diseases in the short term [118], but over long periods leads to cellular evolution
and genetic diversity [119]. In many viruses, IRs in pseudoknots are involved in ribosomal
frameshifting. This translational mechanism allows the production of different proteins
encoded by overlapping open reading frames (ORFs) of the same mRNA [120, 121]. This
feature allows them to encode a more significant amount of genetic information in small
genomes and constitutes another level of gene regulation [122].

The genomes of some viruses, such as parvovirus, are flanked by inverted terminal
repeats (ITRs) that form hairpin structures functioning as a duplex origin of replication
sequence [116, 123]. Therefore, these ITRs contain most of the cis-acting information
needed for viral replication and viral packaging [123]. In adeno-associated viruses, ITRs
are essential for intermolecular recombination and circularization of genomes [124]. IRs
can also function as termination transcription signals, especially in giant viruses [125, 126].

3.4 Data compression in genomic data

In genomics, sequences can be codified as messages using a four-symbol alphabet
(𝜃 = {𝐴, 𝐶, 𝐺, 𝑇 } for DNA sequences and 𝜃 = {𝐴, 𝐶, 𝐺, 𝑈} for RNA sequences). These
messages contain instructions for survival and replication of the organism, its morphol-
ogy and historical marks from previous generations [127]. Initially, genomic sequences
were compressed with general-purpose data compressors such as gzip [128], bzip2 [129],
or LZMA [130]. However, this paradigm shifted towards using a specific compression
algorithm after the introduction of BioCompress [131]. Genomic data compressors can
outperform general-purpose data compressors since they are designed to consider specific
genomic properties such as the presence of a high number of copies and substitutional
mutations, and multiple rearrangements, such as inverted repeats [132, 133].

Given this advantage of using specific data compressors for the compression of ge-
nomic data, several algorithms have emerged to model these genomic data behaviours
[134]. Specifically, several algorithms have been created to model repetitions and inverted
repetitions in the genome regions through simple bit encoding, dictionary approaches and
context modelling [135–145].

Currently, state-of-the-art data compressors have different objectives, such as opti-
mizing for compression strength or prioritizing a balance between compression speed and
compression capability. Examples of the latter are NAF (Nucleotide Archival Format)
[146, 147] and MBGC (Multiple Bacteria Genome Compressor) [148], which are more
suitable for large data collections and are frequently used by computational biologists.
Data compressors focused on compressibility at the expense of more computational re-
sources, on the other hand, generally apply probabilistic and algorithmic model mixtures
combined with arithmetic encoding. Among the best compressors regarding compression
ratio performance for various genomic sequences, the best results are provided by cmix
[149], XM [150], Jarvis [151], and Geco3 [51]. For additional information regarding data
compressors’ compressibility capacity of genomic sequences, see [152]. Cmix [149] is a

26

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

general-purpose lossless data compression program that optimises compression ratio at
the cost of high CPU/memory usage. It is based on PAQ compressors [153, 154] but
dramatically increases the amount of processing per input bit and computational memory.
Current updates include LSTM (Long Short-Term Memory) based models [155]. The XM
compressor [150] uses three types of experts: repeat models, a low-order context model,
and a short memory context model. On the other hand, Jarvis [151] uses a competi-
tive prediction model that estimates for each symbol the best class of models to be used.
There are two classes of models: weighted context models and weighted stochastic repeat
models, where both classes of models use specific sub-programs to handle inverted repeats
efficiently. Finally, GeCo3 [51], currently one of the best performing reference-free data
compressors, uses neural networks to improve upon the results of specific genomic models
of GeCo2 [156]. Specifically, the neural networks are used in mixing multiple contexts
and substitution-tolerant context models of GeCo2. Furthermore, GeCo3 has embedded
subprograms capable of detecting genome-specific patterns, such as inverted repeats.

3.5 Methods

This section describes the measures used in this chapter. Specifically, we first define
and contextualize the information-based measures used: the Normalized Block Decompo-
sition Method, the NC with different subprograms, the Normalized Compression Capacity
(NCC), the difference between NCs, and the minimal bi-directional complexity profiles.
Afterwards, we define another important measure, GC-Content. Finally, we described the
classification pipeline, specifically, the features and classifiers used as well as the metrics
used to evaluate the model’s performance.

3.5.1 Information-based measures

In this subsection, we describe the NC, the minimal bi-directional complexity profiles,
and the Normalized Block Decomposition Method (NBDM).

Normalized Block Decomposition Method (NBDM)

In this chapter, we use BDM to perform a comparison with the Normalized Compres-
sion. Consequentially we considered the normalization of the BDM (NBDM) by sequence
length BDM as described in Equation (2.9) of Chapter 2. In this case, since we have a
four-symbol alphabet in genomic sequences, 𝑙𝑜𝑔2(4) = 2, and NBDM is computed as

𝑁𝐵𝐷𝑀(𝑥) =
𝐵𝐷𝑀(𝑥)

2 × |𝑥|
. (3.1)

Normalized Compression

We used NC as described in Chapter 2. Since we have a four-symbol alphabet in
genomic sequences, the NC is computed as

27

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

𝑁𝐶(𝑥) =
𝐶(𝑥)

2 × |𝑥|
. (3.2)

Given the normalization, the NC can compare the proportions of information contained
in the strings independently from their sizes [157]. If the compressor is efficient, then it can
approximate the quantity of probabilistic-algorithmic information in data using affordable
computational resources. In our work, to determine the NC, we made use of the state-
of-the-art genome compressor GeCo3 [51], using level 16, which yielded the best average
results (benchmark provided in the results section).

Besides computation of the NC using the standard configuration of this model, we also
computed the NC using GeCo3 with three subprogram configurations. These subprogram
configurations address the different compression aspects:

• 𝐼𝑅0 → uses the regular context model without IR detection;

• 𝐼𝑅1 → uses IR detection simultaneously with the regular context model;

• 𝐼𝑅2 → uses the IR detection sub-program without regular context models.

There was a need to determine the sequences with the highest normalized compression
capacity (𝑁𝐶𝐶) in some cases. When the compressor was only using the subprogram 𝐼𝑅2,
𝑁𝐶𝐶 was computed as 𝑁𝐶𝐶𝐼𝑅2

(𝑥) = 1 − 𝑁𝐶𝐼𝑅2
. Only positive values were considered

to filter computations where the compressor could not compress the sequence sufficiently.
Another measure used to quantify inverted repeats was the difference between 𝑁𝐶𝐼𝑅0

and
𝑁𝐶𝐼𝑅1

.

Minimal bi-directional complexity profiles

A complexity profile is a numerical sequence describing for each symbol (𝑥𝑖) of a
sequence 𝑥 the number of bits required for its compression assuming a causal order [158].
A minimal bi-directional complexity, 𝐵(𝑥), profile assumes the minimal representation of
compressing the sequences using both directions independently, namely ⃗⃗⃗⃗⃗⃗⃗𝐶(𝑥𝑖) as from the
beginning to the end of the sequence, and ⃖⃖⃖⃖⃖⃖⃖𝐶(𝑥𝑖) as from the end to the beginning [159].
Accordingly, these profiles are defined as

𝐵(𝑥𝑖) = min{ ⃗⃗⃗⃗⃗⃗⃗𝐶(𝑥𝑖), ⃖⃖⃖⃖⃖⃖⃖𝐶(𝑥𝑖)}. (3.3)

The construction of these profiles follows a pipeline formed of many transformations,
including reversing, segmenting, inverting, and the use of specific low-pass filters after data
compression to achieve better visualization. To compute these profiles, we use the GTO
toolkit [160].

The generation of these profiles is robust to localize specific features in the sequences,
namely low and high complexity sequences, inverted repeat regions and duplications,
among others.

28

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

3.5.2 Other measures

The other two measures used to perform viral analysis and classification are the GC-
Content (GC) and the length of the viral genome |𝑥|.

GC-Content (GC) represents the proportion of guanine (G) and cytosine (C) bases out
the quaternary alphabet (𝜃 = {𝐴, 𝐶, 𝐺, 𝑇 /𝑈}). The GC percentage is given by the number
of cytosine (C) and guanine (G) bases in a viral genome 𝑥 with length |𝑥| according to

𝒢𝒞(𝑥) = 100
|𝑥|

|𝑥|

∑
𝑖=1

𝒩(𝑥𝑖||𝑥𝑖 ∈ 𝜉), (3.4)

where 𝑥𝑖 is each symbol of 𝑥 (assuming causal order), 𝜉 is a subset of the genomic alphabet
containing the symbols {𝐺, 𝐶} and 𝒩 the program that counts the numbers of symbols
in 𝜉.

GC-content is variable between different organisms and correlates with the organism’s
life-history traits, genome size [161], and GC-biased gene conversion [162]. Furthermore, in
RNA viruses, excess C to U substitutions accounted for 11–14% of the sequence variability
of viruses, indicating that a decrease in GC-content is a potent driver of RNA viruses’
diversification and longer-term evolution [163]. As such, this measure helps perform viral
classification.

On the other hand, it was shown that the number of base stackings (typical arrange-
ment of nucleobases found in the three-dimensional structure of nucleic acids) is one of
the most critical elements contributing to the thermal stability of double-stranded nucleic
acids. Furthermore, due to the relative locations of exocyclic groups, GC pairings have
higher stacking energy than AT or AU pairs [164]. This energy accumulation in the GC
pair in an organism’s genome makes the DNA more prone to mutation. Thus, over time,
a species tends to decrease its GC-content to become more stable [165], giving us further
information regarding viral characterization.

3.5.3 Classification

We tested several machine learning algorithms to perform the genomic and taxo-
nomic classification task: Linear Discriminant Analysis (LDA) [166], Gaussian Naive Bayes
(GNB) [167], K-Nearest Neighbors (KNN) [168], Support Vector Machine (SVM) [169],
and XGBoost classifier (XGB)[170].

Linear Discriminant Analysis is a generalization of Fisher’s linear discriminant, a
method used in statistics and other fields, to find a linear combination of features that
separates classes of objects. The resulting combination can be used as a linear classifier
[166]. Gaussian Naive Bayes is defined as a supervised machine learning classification
algorithm based on the Bayes theorem following Gaussian normal distribution [167]. K-
Nearest Neighbors is another approach to data classification, taking distance functions
into account and performing classification predictions based on the majority vote of its
neighbours [168]. Support Vector machines are supervised learning models with associated

29

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

learning algorithms that, using data, construct a hyperplane in high-dimensional space to
perform classification [169]. Finally, XGBoost [170] is an efficient open-source implemen-
tation of the gradient boosted trees algorithm. Gradient boosting is a supervised learning
algorithm that predicts a target variable by combining the estimates of a set of simpler
models. Specifically, new models are created that predict the residuals or errors of prior
models and then added together to make the final prediction. This task uses a gradient
descent algorithm to minimize the loss when adding new models. XGBoost can use this
method in both regression and classification predictive modelling problems.

The accuracy and weighted F1-score were used to select and evaluate the classification
performance of the measures. Accuracy is the proportion of correct classifications in the
total number of cases examined, while the F1-score is computed using the precision and
recall of the test. We utilized the weighted version of the F1-Score due to the presence of
imbalanced classes.

For comparison of the results obtained, we assessed the outcomes obtained using a
random classifier. For that purpose, for each task, we determined the probability of a
random sequence being correctly classified (𝑝ℎ𝑖𝑡) as

𝑝ℎ𝑖𝑡 =
𝑛

∑
𝑖=0

[𝑝(𝑐𝑖) ∗ 𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑐𝑖)], (3.5)

where 𝑝(𝑐𝑖) is the probability of each class, determined as

𝑝(𝑐𝑖) =
|𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑐𝑙𝑎𝑠𝑠|
|𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑡𝑜𝑡𝑎𝑙|

.

On the other hand, 𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑐𝑖) is the probability of that class being correctly classified.
In the case of a random classifier,

𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑐𝑖) = 1
|𝑐𝑙𝑎𝑠𝑠𝑒𝑠|

.

3.6 Complexity analysis of viral genomes

Despite the significant impact of viruses on the evolution of living beings and the ecosys-
tem, our understanding of viruses is still relatively limited compared to other realms of
life. In particular, the complexity landscape of viruses is unknown. Complexity analysis of
genome sequences is not new and is frequently performed by data compressors, which serve
as an upper bound to Kolmogorov complexity. Many examples of these studies appeared
after the creation of the first data compressor for DNA sequences [171]. Specifically, data
compression has been used to detect repeated sequences in the Plasmodium falciparum
DNA, and observed patterns were related to large-scale chromosomal organization, and
gene expression control [171]. The XMAligner tool [172] was created for pairwise genome
local alignment, which considers a pair of nucleotides from two sequences related if their
mutual information in context is significant. They used a lossless compression method

30

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

to measure the information content of nucleotides in sequences. Graph compression was
used to compare large biological networks [173]. This method involved compressing the
original network structure and then measuring the similarity of the two networks using the
compression ratio of the concatenated networks. The method was applied to several organ-
isms, showing an efficient ability to measure the similarities between metabolic networks.
Data compression was used to approximate the Kolmogorov complexity and applied to
data derived from sequence alignment data [174]. This process identified a novel way of
predicting three aspects of protein structure: secondary structures, inter-residue contacts
and the dynamics of switching between different protein states. An analysis of the com-
plexity of different DNA genomes was performed, demonstrating various evolution-related
findings linked with complexity, notably that archaea have a higher relative complex-
ity than bacteria and eukaryotes on a global scale. Furthermore, viruses have the most
complex sequences according to their size [157]. Metagenomic composition analysis of
a sedimentary ancient DNA sample was performed using relative compression of whole-
genome sequences [175]. The results showed that several viruses and bacteria expressed
high levels of similarity relative to the samples. Finally, an alignment-free tool was created
to accurately find genomic rearrangements of DNA sequences following previous studies,
which took alignment-based approaches or performed Fluorescence In Situ Hybridization
(FISH) [176].

Given the applicability of compression methods in the analysis of genomic sequences
and intending to understand viruses better, in this section, we conduct an extensive com-
plexity analysis of the viral world through the automatic computational analysis of its
genome complexity and associated characteristics. Specifically, we use a genomic com-
pressor to analyse the complexity across viral taxonomies and quantify the algorithmic
information embedded in viral genome sequences better represented by small programs.

Since studying the complexity of a DNA/RNA sequence requires efficient data com-
pressors that take into account the probabilistic and algorithmic characteristics of the
data, we compared several state-of-the-art genomic data compressors and another approx-
imation of the Kolmogorov complexity besides data compression. This comparison was
made to evaluate their ability to detect IRs with increasing levels of mutations. Conse-
quently, the best method was used to analyse viruses’ complexity and overall abundance
of inverted repeats and to construct cladograms.

The following subsections describe the database and discuss the results obtained.

3.6.1 Data description

The dataset is composed of 12,163 complete reference genomes from 9,605 viral taxa
retrieved from NCBI database on 22 January 2021 1. The download was performed in
a custom manner to retrieve the taxonomic id, host and geolocation of each reference

1 https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineag
e_ss=Viruses,%20taxid:10239&SourceDB_s=RefSeq&GenomeCompleteness_s=complete&CreateDate_dt
=1998-01-01T00:00:00.00Z%20TO%202021-01-22T23:59:59.00Z

31

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Viruses,%20taxid:10239&SourceDB_s=RefSeq&GenomeCompleteness_s=complete&CreateDate_dt=1998-01-01T00:00:00.00Z%20TO%202021-01-22T23:59:59.00Z
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Viruses,%20taxid:10239&SourceDB_s=RefSeq&GenomeCompleteness_s=complete&CreateDate_dt=1998-01-01T00:00:00.00Z%20TO%202021-01-22T23:59:59.00Z
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Viruses,%20taxid:10239&SourceDB_s=RefSeq&GenomeCompleteness_s=complete&CreateDate_dt=1998-01-01T00:00:00.00Z%20TO%202021-01-22T23:59:59.00Z

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

genome. The metadata header was removed from each sequence using the GTO toolkit
[160], where any nucleotide outside the quaternary alphabet {𝐴, 𝐶, 𝐺, 𝑇 /𝑈}, was replaced
by a random nucleotide from the quaternary alphabet. Notice that the sequences with
symbols outside the alphabet are scarce. Finally, the type of genome and the taxonomic
description of each sequence were retrieved using Entrez-direct [177].

Then, the retrieved NCBI sequences were filtered to remove possibly contaminated or
poorly sequenced sequences. Firstly, using the taxonomic metadata, sequences that did
not hold complete taxonomic information down to the genus rank and any sequences that
maintained a taxonomic description of unclassified were removed. Secondly, we applied
a filter to remove outlier sequences. Specifically, after computing all sequences’ length,
GC-Content, and Normalized Complexities, sequences whose measure fell outside 𝜇±3×𝛿
(approximately 0.03% of all sequences) of any measure were removed. A total of 182
sequences were removed since they most likely have errors in the assembly process or
contamination. After filtering, we kept 6,091 of the initial 12,163 sequences.

3.6.2 Determining the optimal way to quantify probabilistic-
algorithmic information in viral sequences

Viral genomes have specific characteristics, for example, short length, high average
complexity, and specific structures, that require the proper optimization of the data com-
pressor to provide higher modelling adaptability and efficiency. As such, to find the best
way to analyse the complexity of viral genomes, we performed three separate tests: one
using synthetic data to simulate small program detection; another using a small sample of
natural sequences to determine the best time-compressibility compressor; and a final step
to determine the best configuration for the selected method.

Synthetic sequence benchmark

Genomes have small subprograms embedded in them. One of the most relevant for
characterization is the subprogram that creates Inverted Repeats. These subsequences
occurring in viral genomes are better described using simple algorithmic approaches. To
benchmark the ability of different programs to quantify IRs accurately, we created a ge-
nomic sequence of 10,000 nucleotides in which the last 5,000 were inverted repeats of the
first 5,000. This length was chosen since the median size of the viral genomes is 9,836 bases.
This sequence was mutated incrementally from 0% to 10%, meaning that the number of IR
bases decreases with the increase of nucleotide substitutions. For each sequence, the NC
was computed with: i) GeCo3 [51], without and with the IR detection program (𝐼𝑅0 and
𝐼𝑅2, respectively), ii) PAQ8 [178] and iii) Cmix [149] (Figure 3.3). The Normalized Block
Decomposition Method (NBDM) [48] was also computed as a measure more predisposed
to algorithmic nature quantification. Results show that GeCo3 with the 𝐼𝑅2 subprogram
compresses the sequences better than the other programs, resulting in a lower NC at 0%
mutational rate (Figure 3.3). No other compressor (cmix and PAQ8) could detect IRs and

32

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

compress the sequence. Furthermore, NBDM cannot detect the IRs, as shown by the same
high NC across sequences with various mutation rates. It is also evident that GeCo3 with
𝐼𝑅2 can detect IRs even in the presence of substantial mutations (5% of mutation) and is
sensitive to different levels of nucleotide substitutions, as seen by the increase in NC with
the increase of the mutational rate (i.e. decrease of IRs). The difference between 𝑁𝐶𝐼𝑅0

and 𝑁𝐶𝐼𝑅1
, both computed with GeCO3, was also analysed as a supplementary measure

to show the significance of IRs in genomic sequence compression. Its profile is inverse
to the 𝐼𝑅2 and confirms that the accumulation of nucleotide substitutions decreases the
number of IRs in the sequence.

0 2 4 6 8 10

Mutation Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

li
ze

d
 C

o
m

p
re

s
s

io
n

NBDM

NC (PAQ8) NC IR
0
(GeCo3)

NC IR
2
(GeCo3)

NC IR
0

NC IR
1

- (GeCo3)

NC (CMIX)

Figure 3.3: Plot describing the variation of NC and Normalized Block Decomposition
Method (NBDM) with an increase of mutation rate of a sequence (0%-10%). The NC
was computed using the state-of-the-art genomic compressor (GeCo3[51]) and a general-
purpose compressor (PAQ8 [178]). The red line depicts the NBDM, the NC value using
cmix with brown, and PAQ8 by a purple line. Furthermore, the GeCo3 compressor with
(𝐼𝑅2) and without the IR detection subprogram (𝐼𝑅0) is shown in orange and blue lines,
respectively. Finally, the green line shows 𝑁𝐶𝐼𝑅0

− 𝑁𝐶𝐼𝑅1
.

Comparison between state-of-the-art compressors

Cmix [149] and GeCo3 [51] are state-of-the-art genomic compressors. To assess the
viability of each compressor, we tested their computational time and NC values on a small
sample consisting of 8 medium size viral genomes. The results, presented in Figure 3.4,
show that the compression ratio of GeCo3 is, on average, slightly better, with a much

33

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

more reasonable computational time (on average, three orders of magnitude faster than
cmix).

100

101

102

D
u

ra
ti

o
n

 (
s
e
c
o

n
d

s
)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

N
o

rm
a
li
ze

d
 C

o
m

p
re

s
s
io

n

cmix GeCo3

AverageHHV-1 HHV-2 VZV EBV HCMV HHV-6A HHV-6B HHV-7 KSHV AverageHHV-1 HHV-2 VZV EBV HCMV HHV-6A HHV-6B HHV-7 KSHV

Figure 3.4: Comparison between cmix and GeCo3 when applied to various Human Her-
pesviruses regarding computational time and compression ratio obtained (NC).

Fine tuning GeCO3 parameters

Since GeCo3 provided better results in the sample and contains many types of com-
pression levels [51], we next finetuned the GeCo3 parameters to find a better configuration
that achieves good average compression results. To this end, we selected 19 levels of mod-
els in GeCo3, which correspond to the default 13 levels of the GeCo3 compressor and six
others built for this task. The list of the levels used and the parameter descriptions can
be found in Table A.1 and Table A.2 of Appendix A. The 13 default levels of the com-
pressor have increasingly higher complexity and take longer to run since they use higher
context models. Therefore, since the first and lightest level performed best, the other six
custom-built levels were also built with lightweight models. These models were applied to
each viral genome from the dataset, and their NC was computed.

We evaluated the frequency of each level yielding the lowest NC (provided the best
compression for a given sequence; Figure 3.5 A) and determined the sum of the NC from
the compression of all reference genomes for each model (Figure 3.5 B). Overall, we selected
level 16 because it provided the lowest NC on average (28.38% as the best compression
level) and the lowest NC sum from compressing all reference genomes. This level is formed
of a mixture using a neural network with the following models:

• Model 1 → context-order of 1, an alpha parameter of 1 (without inverted repeats),
and a gamma parameter of 0.7 (parameters explained in Table A.2 of Appendix A);

• Model 2 → context-order of 12, an alpha parameter of 1/50 (with inverted repeats),
and a gamma parameter of 0.97.

The chosen level comprises two models with a small and average context model. This

34

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Compression Level

0

5

10

15

20

25

F
re

q
u

e
n

c
y

27
.1

2%

5.
54

%

9.
27

%

6.
69

%

4.
10

%
4.

51
%

0.
47

% 1.
38

%

1.
32

%

0.
25

% 1.
32

%

0.
18

%
0.

67
%

0.
00

%

0.
00

%

28.38%

3.
76

%

3.
76

%

1.
28

%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Compression Level

10000

10200

10400

10600

10800

11000

S
u

m
 o

f
N

o
rm

a
li
ze

d
 C

o
m

p
re

s
s
io

n

o
f

E
a
c
h

 V
ir

a
l
G

e
n

o
m

e

10
32

8.
36 10

37
5.

53 10
41

3.
37

10
42

5.
48

10
42

7.
40

10
42

7.
64

10
62

7.
04

10
54

7.
11

10
54

7.
11

10
73

9.
38

10
54

7.
11

10
73

8.
87

10
80

0.
99

10
38

8.
90

10
38

8.
87

10
32

6.
86

10
33

7.
25

10
33

7.
25 10

38
8.

69

Figure 3.5: Selection of a level for GeCo3 from a pool of 19 levels. (A) depicts the
frequency of each level providing the best NC results, and (B) shows for each level the
sum of the NC from the compression of all reference genomes. For better visualization,
please visit the website https://asilab.github.io/canvas/.

configuration performed better because most viral genomes are small and compact, where
a small genomic space usually separates repetitions and IRs. Therefore, the depth of the
models is more adapted to provide higher efficiency to the average of the viral genomes
than, for example, a higher context model (higher than 13) that can perform marginally
better in more extensive and repetitive sequences but which loses sensitivity in the average
of the genomes.

Insights

During this analysis, GeCo3 was shown to have good computational time and com-
pressibility, ability to detect IRs (unlike the other methods used), and was resistant to
substitutional mutation up to 10%, showing that it can also deal with this extreme nature
of genomic data, namely approximate IRs. For these reasons, GeCo3 was chosen as the
method to perform this complexity analysis.

35

https://asilab.github.io/canvas/

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

3.6.3 Viral genome analysis and its visualization

The core of the viral genomes was analysed in terms of complexity landscape, includ-
ing the trends, singularities, and patterns for both the use or absence of IRs. The NC,
using GeCo3, with 𝐼𝑅0, 𝐼𝑅1 and 𝐼𝑅2 subprograms was determined and the 𝑁𝐶𝐶𝐼𝑅2

was
calculated. The outcome was interpreted according to the genome type or the taxonomic
group, together with the average of their genome sizes (Figure 3.6 and Table 3.1). Notice
that the NC can compare proportions of the absence of redundancy independently from
the sizes of the genomes. This value is complementary to the normalized redundancy.
Specifically, the redundancy (R) of a sequence x is defined as

𝑅(𝑥) = |𝑥| log2 |𝜃| − 𝐶(𝑥), (3.6)

where |𝑥| is the length of the sequence, |𝜃| is the cardinality of the alphabet and 𝐶(𝑥) is
the compressed size of 𝑥 in bits, and the normalized redundancy (NR) as

𝑁𝑅(𝑥) = 1 −
𝐶(𝑥)

|𝑥| log2 |𝜃|
. (3.7)

Complexity landscape according to genome type

According to NCBI, the virus’s genomes are of five types: dsDNA, ssDNA, dsRNA, ss-
RNA and mixed-DNA. On average, RNA viruses mutate faster than DNA viruses, double-
strand viruses mutate slower than single-stranded viruses, and genome size correlates neg-
atively with mutation rate [179]. Results show that ssDNA, followed by mixed-DNA and
dsRNA viruses, have higher NC, whereas dsDNA genomes have the lowest (Figure 3.6; Ta-
ble 3.1). In general, smaller genomes are less complex and are more likely to contain fewer
repeats, and hence, have less redundancy, and ssDNA, mixed-DNA and dsRNA genomes
have smaller average sequence lengths (3282 bp, 3258 bp, and 8377 bp; Table 3.1).

Table 3.1: Depiction of the genome type by the highest NC, normalized compression
capacity (𝑁𝐶𝐶) and difference. 𝑁𝐶𝐶 is computed by 𝑁𝐶𝐶 = 1 − 𝑁𝐶𝐼𝑅2

> 0, and the
difference (diff) as difference = 𝑁𝐶𝐼𝑅0

− 𝑁𝐶𝐼𝑅1
. Furthermore, the shows the genomes’

average sequence length (SL) and GC-Content (GC).

Normalized Compression Inverted Repeats Difference

Genome NC SL GC Genome NCC SL GC Genome diff SL GC

ssDNA 1.065 3282 0.447 dsDNA 0.029 84721 0.485 ssDNA 0.006 4672 0.435

mixedDNA 1.050 3258 0.491 ssDNA 0.026 5981 0.389 dsDNA 0.006 80636 0.470

dsRNA 1.047 8377 0.456 ssRNA 0.015 13425 0.393 mixedDNA 0.002 3311 0.434

ssRNA 1.013 9564 0.437 dsRNA 0.015 19911 0.396 dsRNA 0.001 6186 0.431

dsDNA 0.977 70353 0.481 ssRNA 0.001 10197 0.433

According to the 𝑁𝐶𝐶 and the 𝑁𝐶𝐼𝑅0
−𝑁𝐶𝐼𝑅1

results, dsDNA and ssDNA have more

36

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

104

0.90

0.95

1.00

1.05

1.10

1.15 N
o

rm
a

lize
d

 C
o

m
p

re
s

s
io

n

mixedDNAssRNAssDNA dsDNA dsRNA

S
e

q
u

e
n

c
e

 L
e

n
g

th

1015*

2767*

2020*

279*

10*

3282 3258

8377

9564

70353

IR IR IR0 1 2

* Number of samples

Figure 3.6: Average Normalized Compression (ANC) and average sequence length per viral
group by genome type.

significant quantities of IRs than the other genome types. This can be due to ITRs present
at the ends of some dsDNA viruses, such as Adenovirus and Ampullaviruses, and ssDNA
virus as Parvoviruses, or other IRs structures that perform ribosomal frameshifting.

This analysis shows that the redundancy of dsDNA is higher than ssDNA, but for RNA
viruses, the opposite occurs. The sequences that showed a higher normalized redundancy
of the ssRNA relative to dsRNA have approximately the same length. However, the
dataset of dsRNA has less than one order of magnitude in the number of sequences. This
difference is natural since ssRNA is much more abundant than dsRNA. Nevertheless, this
discrepancy could justify the higher normalized redundancy of ssRNA in the first instance.
Although the lower average NC values of ssRNA are similar to dsRNA, the dsRNA has
higher NC extremes. Therefore, we argue that this difference in the number of sequences
in the dsRNA is not significant in changing the lower average of the ssRNA. Also, ssRNA
is more prone to mutation than dsRNA [180]. On the other hand, extensive C to U
mutations have been reported in many mammalian RNA viruses [163]. This behaviour
was detected during a much faster evolution of the SARS-CoV- 2, an ssRNA virus [181].
Therefore, the faster average decrease of GC-content in ssRNA viruses explains a decrease
in the ssRNA entropy, and hence, average NC. A higher GC-content (approximately 2%)
of the dsRNA over ssRNA strengthens these outcomes (Table 3.1).

Complexity landscape according to taxonomic level

In complexity analysis of viral genomic sequences, when considering the realm taxo-
nomic level (Figure 3.7), the lowest NC values were obtained for Adnaviria, Varidnaviria

37

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

and Duplodnaviria (Tables A.3 and A.4 in Appendix A). These results are consistent with
the genomic grouping since they are composed exclusively of dsDNA viruses and have
the highest sequence lengths. Hence, an inverse correlation between genome size and NC
was generally observed as with the genome type analysis (Figures 3.6 and 3.7) and oc-
curs across all taxonomic levels (Table A.4 of Appendix A). However, within these three
realms, Adnaviria has the lowest sequence length and presents higher compressibility than
Varidnaviria and Duplodnaviria, suggesting that the last are highly complex.

N
o

rm
a

lize
d

 C
o

m
p

re
s

s
io

n

2423 2423 2423

1156 1156 1156

1999 1999
1999

209 209

209

1 1 1

12 12 12

Realm

S
e

q
u

e
n

c
e

 L
e

n
g

th

Riboviria

Monodnaviria

Duplodnaviria

Varid
naviria

Ribozyviria

Adnaviria

104

105

0.90

0.95

1.00

1.05

1.10

2423*

1156*

1999* 2091*

12*

1*

9332

4380

1682

33068

78102

109560

IR IR IR0 1 2

* Number of samples

Figure 3.7: Average Normalized Compression (ANC) and average sequence length per viral
group by realm. To view all boxplots by groups of realm, kingdom, phylum, class, order,
family, and genus, please visit the website https://asilab.github.io/canvas/.

Regarding IRs, Adnaviria was the realm where the highest compression was obtained
using the 𝐼𝑅2 subprogram (highest rate of IRs; Table A.5 in Appendix A). Consequently,
its only recognized kingdom, Zilligvirae, also has one of the highest NCC values (Table A.5
in Appendix A). Adnaviria is a realm constituted of mostly A-form dsDNA viruses, and
the ends of their genomes contain ITRs [182]. A-form is proposed to be an adaptation
allowing DNA survival under extreme conditions since their hosts are hyperthermophiles
and acidophiles microorganisms from the archaea domain [182, 183]. The fact that Ad-
naviria presented the lowest NC might indicate that their genomes require redundancy to
survive such extreme environments. The kingdom of Trapavirae, belonging to the realm of
Monodnaviria, is also composed of dsDNA viruses that infect halophilic archaea. Together
with the kingdom of Zilligvirae, Trapavirae presented the highest difference between IRs
and standard compression (Table A.6 in Appendix A). These results also support that IRs
can stabilize the DNA of viruses in extreme environments. It has already been demon-
strated that archaeal viruses with linear genomes use diverse solutions to protect and

38

https://asilab.github.io/canvas/

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

replicate the genome ends, including covalently closed hairpins and terminal IRs [184].
Botourmiaviridae presented the highest complexity at the family level, followed by Al-

phasatellitidae and Tolecusatellitidae families (Table A.4). Botourmiaviridae is composed
of ssRNA viruses that infect plants and filamentous fungi [185]. Curiously, plants and fungi
have higher redundancy despite the lower redundancy of their pathogens. Alphasatelliti-
dae and Tolecusatellitidae are families of satellite viruses that depend on the presence of
another virus (helper viruses) to replicate their genomes. These satellite viruses have min-
imal genomes, making sense that they possess very low redundancy. Regarding IRs, Mala-
coherpesviridae, Herpesviridae, and Rudiviridae contained the highest 𝑁𝐶𝐼𝑅0

− 𝑁𝐶𝐼𝑅1

difference (Table A.6 in Appendix A). Malacoherpesviridae and Herpesviridae are evolu-
tionarily close dsDNA viruses, since they belong to the order of Herpesvirales [186]. Mala-
coherpesviridae encompasses the genera Aurivirus and Ostreavirus, which infect molluscs.
Herpesviridae are also known as herpesviruses and have reptiles, birds and mammals as
hosts. This family will be discussed in more detail in the following subsection. Rudiviridae
is a family of viruses with linear dsDNA genomes that infect archaea. The viruses of these
families are highly thermostable and can act as a template for site-selective and spatially
controlled chemical modification. Furthermore, the two strands of the DNA are covalently
linked at both ends of the genomes, which have long ITRs [187]. Again, these IRs could
be an adaptation to stabilize the genome.

Complexity landscape of the Herpesviridae family

Here we analysed the complexity landscape of the genera of the Herpesviridae family
in more detail, and the results show a significant variation between them (Figure 3.8 A).
Mardivirus had the highest 𝑁𝐶𝐼𝑅0

− 𝑁𝐶𝐼𝑅1
difference among all viruses, and only three

other genera (out of thirteen) of herpesviruses were within the ten highest differences list
(Table A.6 in Appendix A). Indeed, the genus Mardivirus had the highest compression,
whereas the genus Lymphocryptovirus possessed very low compression with the 𝐼𝑅2 sub-
program. We performed the minimal bi-directional complexity profiles of one sequence of
each virus to visualize their distribution of complexity locally (Figure 3.8 C). As we can
see, Human herpesvirus 4 (also known as Epstein-Barr virus) has more internal repeats
(Figure 3.8 C, 𝐼𝑅0 profile) detected and fewer IRs (Figure 3.8 B; 𝐼𝑅2 profile). The op-
posite occurs with the Falconid herpesvirus-1 strain S-18, where IRs are more prominent
than internal repetitions. Furthermore, these regions determined with compression profiles
coincide with actual regions detected in the genome with other methods (Figure 3.8 C;
first profile).

Next, we analyse a particular group of the Herpesviridae family, the human her-
pesviruses (HHVs), regarding their genome complexity and IRs abundance. Some of these
viruses are involved in globally prevalent infections and cancers and are characterized
by lifelong persistence with reactivations that can potentially manifest life-threatening
conditions [188]. Globally, the HHVs present a higher redundancy than other viruses (Fig-

39

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

Figure 3.8: Average Normalized Compression (ANC) and average sequence length per
the genera of the Herpesviridae family (A) and for various Human Herpesviruses (B).(C)
minimal bi-directional complexity profiles of Lymphocryptovirus and Mardivirus. In panel
A, two genera were selected, one with a low level of IRs (Lymphocryptovirus) and one
with a high level of IRs (Mardivirus). Then, a representative reference sequence was
selected (Lymphocryptovirus - Human herpesvirus 4 or EBV, NCBI Reference Sequence:
𝑁𝐶_024450.1; Mardivirus - Falconid herpesvirus 1 strain S-18, NCBI Reference Sequence:
𝑁𝐶_009334.1) and used to create minimal bi-directional complexity profiles.

ure 3.8 B). These viruses are divided into i) the alpha-subfamily members, namely herpes
simplex virus type 1 and 2 (HSV-1 and HSV-2) and varicella-zoster virus (VZV), ii) the
beta-subfamily of human cytomegalovirus (HCMV) and human herpesviruses 6A, 6B, and
7 (HHV-6A, HHV-6B, and HHV-7) and iii) the gamma-subfamily of Epstein-Barr virus
(EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV). Specifically, the EBV, one
of the most potent cell transformation and growth-inducing viruses known, capable of
immortalizing human B lymphocytes, contains a higher redundancy than the other HHVs
(Figure 3.8 B). The other gamma-herpesvirus, KSHV, has the genome with the highest
𝑁𝐶𝐼𝑅1

(Figure 3.8 B). Unlike the beta- and gamma-subfamilies, the alpha-subfamily is
characterized by a substantial quantity of IRs, as suggested by the NCs with 𝐼𝑅1 and
𝐼𝑅2 configurations (Figure 3.8 B). The VZV has the shortest genome and the highest NC
within this group. These differences might be justified by the different rates of evolution
within these genomes [189]. Considering the beta-subfamily members, HCMV contains a
small proportion of IRs while having a substantial-high NC relative to other HHVs being
analysed. Since the HCMV has the largest genome, this was surprising because the NC
typically has an inverse correlation with the genome size and the quantity of IRs. The

40

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

other beta-subfamily members are the Human Herpesvirus 6A, 6B, and 7, which produced
lower NCs (with 𝐼𝑅1 and 𝐼𝑅2 configurations) compared to the other HHVs, with a low
quantity of IRs, an effect that their integrating function might favour. For instance, HHV-
6A and 6B can integrate their genomes into the telomeres of latently infected cells [190,
191]. Thus, their genomes contain subsequences similar to the human telomere regions
that can be formed by internal nucleotide repetitions [192]. As such, these are sequences
with very low complexity, and hence, highly compressible.

Alternative visualization methods of the viral complexity landscape

After analysing the results, we wanted to display the results qualitatively. As such, we
generated Cladograms depicting the redundancy (NC; Figure 3.9 A) and the prevalence
of inverted repeats (NCC; Figure 3.9 B) on each taxonomic branch. In addition, we per-
formed the same analysis to portray the relation between inverted and internal repetitions
(Figure 3.10). These cladograms show the broad picture of the regions with more complex
and less redundant sequences, regions rich in inverted repeats, and regions with a higher
prevalence of inverted repeats relative to standard repetitions in the genomes.

Another way to analyse the results is by producing 3D-scatter plots of randomly sam-
pled values obtained from computing the features’ sequence length (SL), NC and GC-
content (GC; Figure 3.11 A) or 2D-scatter plots of their projections (Figure 3.11 B and
C), both concerning a particular taxonomic level (herein realm). Analysing the sequence
length projections (Figure 3.11 B), it is evident that there is a logarithmic downtrend
of the NC with the increase in sequence length. Thus, although longer sequences have,
on average, greater complexity (absolute quantities), they have higher redundancy, which
the data compressor takes advantage of to perform a better compression. On the other
hand, the NC vs the GC-content displays a normal distribution around the 0.5 GC-mark,
with higher complexities associated with a similar frequency of occurrence of the four
bases A, C, G, T/U (Figure 3.11 C). This result also makes sense since, in principle,
a well-distributed frequency of bases has more complex sequences which are harder to
compress. The image also shows that the NC, GC and SL seem to discriminate between
different taxonomic groups (Figure 3.11). As such, in the following section, we analyse the
classification capability of these features.

Insights

During this analysis, we identify that, on average, dsDNA viruses are the most redun-
dant (least complex) according to their size, and ssDNA viruses are the least redundant.
Contrarily, dsRNA viruses show a lower redundancy relative to ssRNA viruses.

In the analysis at the taxonomic level, we have found indications that some viruses that
infect extremophiles are more redundant and possess more IRs, indicating the presence of
an adaptation to stabilize the genome in these environments.

In-depth analysis of the human herpesviruses indicated that higher compressibility and

41

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

Figure 3.9: Cladograms showing average NC of each viral group (A), and the normalized
compression capacity (𝑁𝐶𝐶) (B). 𝑁𝐶𝐶 results were obtained by 𝑁𝐶𝐶 = 1−𝑁𝐶𝐼𝑅2

> 0.
The colour red depicts the highest complexity, and blue the lowest. The first cladogram
describes the NC of each taxonomic branch. Red shows genomes with less redundancy, and
blue more redundancy. On the other hand, the second cladogram depicts the prevalence
of inverted repeats on each taxonomic branch. Red indicates branches with genomes with
a high percentage of inverted repeats, whereas blue shows branches with a low percentage.
For better visualization, please visit the website https://asilab.github.io/canvas/.

abundance of inversions in herpesvirus might be associated with viral genome integration
and showed that it is possible to provide the structural description of the viral genome
using minimal bi-directional complexity profiles.

42

https://asilab.github.io/canvas/

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

Figure 3.10: Cladogram showing average difference (𝑁𝐶𝐼𝑅0
−𝑁𝐶𝐼𝑅1

> 0). Red depicts the
branches where on average, the genome possesses more inverted repetitions than internal
repetitions (higher difference), whereas blue represents the branches with fewer inverted
repetitions than internal repetitions (smaller difference).

Sequence Length

N
o

rm
a
li
z
e
d

 C
o

m
p

re
s

s
io

n

GC-Content

N
o

rm
a

li
ze

d
 C

o
m

p
re

s
s

io
n

GC-ContentSequence Length

N
o

rm
a
li
ze

d
 C

o
m

p
re

s
s
io

n

Duplodnaviria

Riboviria

Monodnaviria

Varidnaviria

Ribozyviria

Adnaviria

0.3

0.4

0.5

0.6

0.7
0

50,000
100,000

150,000
200,000

250,000
300,000

350,000

0.8

0.9

1.0

1.1

1.2

10
3

10
4

10
5

0.8

0.9

1.0

1.1

1.2

0.3 0.4 0.5 0.70.6
0.8

0.9

1.0

1.1

1.2

Figure 3.11: Scatter-plots of Normalized Compression vs. sequence length and GC-
Content (A), Scatter-plots of Normalized Compression vs. sequence length (B) and Nor-
malized Compression vs. GC-Content (C).

43

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

3.7 Taxonomic classification

Metagenomics is a vast field that enables the discovery of taxonomic and physiological
information of species collected from their natural environment. Acquiring this infor-
mation is especially important given the role that microorganisms play in terms of the
structural and functional balance of the ecosystem, medicine and patient health status, as
well as industrial and economic activity [193]. Due to its importance, this field has become
instrumental in medicine, forensics, and exobiology [104].

The rapid growth of metagenomics has led to the generation of large amounts of ge-
nomics data. As a result, several institutions host distinct genomic repositories. These
data can be used to help researchers conduct genomic analysis. However, to do so, a
correct characterization and identification of the genomic samples present in these repos-
itories are vital since repositories correctly catalogued facilitate filtering and selection for
research. This characterization can be done by identifying the organisms in the metage-
nomics samples. However, the identification of the organism is not always conclusive [194].
The leading cause is that most classification pipelines rely on reference-based comparison
approaches to perform organism identification [195], where the reconstructed sequence is
compared to a collection of references stored in a database. Problems occur when perform-
ing reference-based identification since this method is ineffective when there is a variation
between the sequences of known organisms in the database, when irregularities are intro-
duced during the reconstruction process of the organism being identified, or when a new
organism is being sequenced [196, 197].

Other approaches have recently been used to identify organisms without reference-
based methods. Karlicki et al. [198] developed a deep learning-based categorization sys-
tem. The system first classifies nuclear and organellar eukaryotic fractions. Afterwards,
it separates organellar sequences into plastidial and mitochondrial categories. Zhang et
al. [199] used k-mers as genomic features for viral genome identification.

In the previous section, we observed that the NC, GC and SL features seem capable of
discriminating between different viral taxonomic groups. Consequently, in this section, we
analyse and propose a feature-based methodology for classification that uses NC and other
simple features. We will start by performing viral classification using a viral database and
then archaea classification in a database of archaea genomic sequences.

3.7.1 Viral classification

SOTA of viral taxonomic classification

Although sequence alignment is essential for genomic analysis, the fact that pairwise
and multiple alignment methods are often slow led to the popularization of fast alignment-
free methods for sequence comparison. Most alignment-free methods are based on word
frequencies for words of a fixed length or word-matching statistics. Others use the length
of maximal word matches, and others rely on spaced-word matches (SpaM). These inex-

44

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

act word matches allow mismatches at certain pre-defined positions and can accurately
estimate phylogenetic distances between DNA or protein sequences using a stochastic
model of molecular evolution [200]. This approach has also been updated as the Mul-
tiple Spaced-Word Matches (Multi-SpaM) method, which is based on multiple sequence
comparison and maximum likelihood [201]. Regarding viral sequences, many studies were
performed on alignment-free sequence comparison and classification. For instance, Gar-
cia et al. [202] developed a dynamic programming algorithm to create a classification
tree using metagenome viruses. To create the classification tree, k-mer profiles of each
virus’ metagenome were created, and proportional similarity scores were generated and
clustered. Using the JGI metagenomic and NCBI databases, the authors identified the
correct virus (including its parent in the classification tree) 82% of the time. Zhang et al.
[199] created an alignment-free method that employed k-mers as genomic features for a
large-scale comparison of complete viral genomes. After determining the optimal k for all
3,905 complete viral genomes, a dendrogram was created, which shows consistency with
the viral taxonomy of the ICTV and the Baltimore classification of viruses. He et al. [203]
proposed an alignment-free sequence comparison method for viral genomes based on the
location correlation coefficient. When applied to evolutionary analysis of common human
viruses, including SARS-CoV-2, Dengue virus, Hepatitis B virus, and human rhinovirus,
it achieves the same or even better results than alignment-based methods. Finally, Huang
et al. [204] proposed a classification method based on discriminant analysis, employing
the first and second moments of positions of each nucleotide of the genome sequences as
features, and performed classification of genomes regarding their Baltimore classification
and family (12 families), obtaining a maximum value of accuracy of 88.65% and 85.91%,
respectively.

Feature-based archaea taxonomic classification

Considering these studies, here we aim to create an alignment-free feature-based clas-
sification method. We performed eight classification tasks using the viral dataset. Specifi-
cally, the sequences were classified regarding their genome type, realm, kingdom, phylum,
class, order, family, and genus. To that end, we conducted a random 80-20 train-test
split on the dataset to perform viral classification. Due to classes being imbalanced in
the dataset, we performed several actions. First, we did not consider classes with fewer
than four samples. Depending on the classification task, the number of samples decreased
from 6,091 to the values shown in Table 3.2 (number of classes column). Secondly, we
performed a stratified train-test to ensure each label’s representability in the train and
test sets. Finally, instead of performing k-fold cross-validation, we performed the random
train-test split fifty times and retrieved the average of the evaluation metrics. Then, we
computed the Accuracy and the Weighted F1-score to select the best-performing method.

We applied 5 types of classifiers: Discriminant Analysis (LDA) [166], Gaussian Naive
Bayes (GNB) [167], K-Nearest Neighbors (KNN) [168], Support Vector Machine (SVM)

45

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

[169] and XGBoost (XGB) classifier [170].
We performed classification using six different features: Sequence Length (SL), GC-

Content (GC), the NC values for the best performing model, and the NC of the same
model with IR configuration to 0, 1 and 2. These six features were fed to all the classifiers,
and the accuracy and weighted F1-score were measured to determine which classifier was
best suited for this task.

Tables 3.2 and 3.3 depict the accuracy and weighted F1-score values obtained for
each classifier. For all classification tasks, the best performing classifier was the XGBoost
classifier.

Table 3.2: Accuracy results obtained for viral taxonomic classification tasks regarding
genome type, realm, kingdom, phylum, class, order, family, and genus. The classifiers
used were Linear Discriminant Analysis (LDA), Gaussian Naive Bayes (GNB), K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), and XGBoost classifier (XGB).

Classification Classes Samples LDA GNB SVM KNN XGB

Genome 5 6089 67.32 74.14 72.41 84.40 87.25
Realm 5 5799 75.95 80.95 81.38 88.71 92.57
Kingdom 10 5788 73.49 78.76 78.41 85.49 90.96
Phylum 17 5778 61.59 56.75 55.88 71.28 83.41
Class 34 5845 51.15 52.95 47.56 63.47 80.23
Order 48 5838 48.89 55.65 48.89 60.62 79.62
Family 102 5990 36.64 43.24 27.05 42.99 74.46
Genus 360 4673 44.60 36.79 18.82 17.65 68.71

Table 3.3: F1-score (F1) results obtained for viral taxonomic classification tasks regarding
genome type, realm, kingdom, phylum, class, order, family, and genus. The classifiers
used were Linear Discriminant Analysis (LDA), Gaussian Naive Bayes (GNB), K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), and XGBoost classifier (XGB).

Classification Classes Samples F1LDA F1GNB F1SVM F1KNN F1XGB

Genome 5 6089 0.6549 0.736 0.6989 0.836 0.8662
Realm 5 5799 0.7496 0.8001 0.7949 0.8817 0.9234
Kingdom 10 5788 0.7238 0.7640 0.7512 0.8410 0.9039
Phylum 17 5778 0.5824 0.5226 0.4435 0.6891 0.8299
Class 34 5845 0.4780 0.4562 0.3803 0.5896 0.7963
Order 48 5838 0.4435 0.4798 0.3832 0.5462 0.7884
Family 102 5990 0.3042 0.3517 0.1681 0.3429 0.7323
Genus 360 4673 0.3600 0.2956 0.0682 0.0621 0.6561

Following this, we analysed if all features were necessary. For that purpose, the XG-
Boost classifier was used with only the NC feature, the NC with SL and GC, and finally,

46

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

using all features. The obtained accuracies are shown in Table 3.4, and the weighted
F1-score results are shown in Table 3.5.

Table 3.4: Results obtained for viral taxonomic classification task regarding the genome
type, realm, kingdom, phylum, class, order, family, and genus using XGBoost classifier.
The features used were the genome sequence length (SL), the GC-content (GC) and the
NC values for the best model, the same model with IR configuration to 0, to 1 and 2.
The results correspond to the accuracy, and the probability of a random sequence being
correctly classified (𝑝ℎ𝑖𝑡) using a random classifier.

Classification Classes Samples phit
Accuracy

NC NC+GC NC+ SL+GC All without SQ All Features

Genome 5 6089 20.00 75.57 80.60 87.11 81.24 87.25

Realm 5 5799 20.00 77.90 84.56 92.25 86.16 92.57

Kingdom 10 5788 10.00 76.44 82.51 90.82 84.06 90.96

Phylum 17 5778 5.88 63.97 70.69 82.36 73.21 83.41

Class 34 5845 2.94 59.83 65.90 79.05 68.66 80.23

Order 48 5838 2.08 58.44 65.08 78.20 67.88 79.62

Family 102 5990 0.98 43.35 54.06 72.46 58.34 74.46

Genus 360 4673 0.28 35.59 50.02 67.32 54.23 68.71

Table 3.5: F1-score obtained for the viral taxonomic classification task regarding genome
type, realm, kingdom, phylum, class, order, family, and genus. The features used were
the genome sequence length (SL), the GC-content (GC) and the NC values for the best
model, the same model with IR configuration to 0, 1 and 2.

Classification Classes Samples
F1-score

NC NC+GC NC+ SL+GC All without SL All Features

Genome 5 6089 0.7490 0.7988 0.8649 0.8051 0.8662

Realm 5 5799 0.7726 0.8401 0.9200 0.8569 0.9234

Kingdom 10 5788 0.7518 0.8131 0.9026 0.8295 0.9039

Phylum 17 5778 0.6234 0.6926 0.8194 0.7188 0.8299

Class 34 5845 0.5742 0.6404 0.7844 0.6705 0.7963

Order 48 5838 0.5568 0.6292 0.7736 0.6598 0.7884

Family 102 5990 0.4112 0.5187 0.7118 0.5636 0.7323

Genus 360 4673 0.3248 0.4661 0.6417 0.5089 0.6561

The best results are obtained when using all features. This improvement increased
when the number of classes was higher, demonstrating that the different compression sub-

47

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

programs (𝐼𝑅0, 𝐼𝑅1, and 𝐼𝑅2) are more helpful in classifying more specific taxonomic
groups. The results show a decrease in accuracy and F1-score when there is an increase
in the number of classes. Specifically, we obtained the best performance in the realm clas-
sification of the virus (accuracy - 92.57%, F1-score - 0.9234) and our lowest performance
in genus classification (accuracy - 68.71%, F1-score - 0.6561). This decrease is mainly
because the average number of samples per class decreases as the number of classes in-
creases. As such, many classes may still have an insufficient number of samples to be
accurately classified. Figure 3.12 represents the number of samples (genome sequences)
per viral genus.

Potexvirus-36

Circ
oviru

s-34

Alp
hapoly

om
aviru

s-
41

Alp
habaculo

viru
s-

47

C
yc

lo
vi

ru
s-

48

A
lp

h
a
vi

ru
s-

3
0G

e
m

in
ia

lp
h

a
sa

te
lli

ti
n

a
e
-4

1

B
a

d
n

a
v
ir

u
s-

6
1

E
n

te
ro

v
ir

u
s
-3

0

G
e

m
y

c
irc

u
la

rv
iru

s
-4

3

B
e

ta
sa

te
llite

-6
8

Pahexavirus-50

Potyvirus-123

Carlavirus-44

Fromanvirus-58

Betapolyomavirus-34

Polerovirus-30

Ila
rv

iru
s-

30

Fla
viv

iru
s-

68

M
ast

re
vi

ru
s-

40

O
rb

iv
ir
us-

48

P
h

ie
ta

v
iru

s
-3

1

G
a

m
m

a
p

a
p

illo
m

a
v

iru
s
-3

7

O
rth

o
b

u
n

y
a

v
iru

s
-1

1
6

Przon
d
ovirus-2

9 M
astadenovirus-65

Tobam
ovirus-33

Mammarenavirus-38 Begomovirus-436

Orthohantavirus-48

Figure 3.12: Frequency of genome sequences per viral genus using radial plot.

Furthermore, part of the classification inaccuracies can be explained by possible errors
in the assembly process of the original sequence or eventual sub-sequence contamination
of parts of the genomes. Moreover, other inaccuracies could be due to several genomes
being reconstructed using older methods that have been improved since then [205].

Despite being pertinent, the alignment-free studies are not directly comparable due to
sample size, absence of classification metrics and source code. Furthermore, the method
proposed in this work is not only alignment-free but also feature-based, providing a higher
level of flexibility since it does not resort directly to the reference genomes but rather
features that the biological sequences share. Therefore, we compared our results with
the outcome obtained using a random classifier as a measure of comparison. Specifically,
for each task, we determined the probability of a random sequence being correctly classi-
fied (𝑝ℎ𝑖𝑡). Overall, there is a vast improvement over the random classifier, showing the

48

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

importance of the features used in the classification process.
These results show that we could automatically and accurately distinguish between

viral genomes at different taxonomic levels using the XGBoost classifier with all features
(NC with different configurations, GC-content and SL). However, a decrease in accuracy
when approaching the lowest taxonomic levels was observed, which can be increased with
future entries to the database. Furthermore, when analysing viral sequences from en-
vironmental samples, the original viral genome length is often unknown. Therefore, we
computed the accuracy of a model that does not include this feature. Although we obtain
a lower accuracy and F1-score, the results indicate that the method is still reliable for fast
and efficient viral taxonomic identification in these scenarios.

3.7.2 Archea classification

Since the results obtained for in-depth taxonomic identification of viruses seem promis-
ing, we tried to analyse this methodology when applied to other genome sequences. In
this case, we experimented with the archaea domain.

Data description

The dataset comprises all archaea genome samples (FASTA format) in the NCBI
database on 10 January 2022. In total, 2,437 samples were retrieved. After retrieving
all the data from the NCBI database, the dataset was processed according to Section 3.6.1
and filtered by discarding sequences without any taxonomic information. As a result of
the filtering process, a total of 667 (of the initial 2,437) samples remained for classification.
All these samples contain genomic sequences and their taxonomic descriptions.

Feature-based viral taxonomic classification

Using the archaea dataset, we performed taxonomic classification of the archaea re-
garding their phylum, class, order, family, and genus. The same setup as in viral analysis
was performed, using the same classifiers and stratified train-test split. We also did not
consider classes with fewer than four samples. Depending on the classification task, the
number of samples decreased from 667 to the values shown in Table 3.6. The table also
shows the results of feeding all genomic features to the classifiers.

For all classification tasks, the best performing classifier was the XGBoost classifier,
with the second-best results being obtained using LDA for the majority of the classification
tasks.

On the other hand, different features were fed to the XGBoost classifier to determine
the best features to be used. Table 3.7 shows the most relevant entries (only NC feature
and when combining all features).

Overall, the best results were obtained for all feature groups in the phylum classification
task. The worst classifications were present in the order/family classification task despite

49

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

Table 3.6: Accuracy (Acc) and F1-score (F1) results for archaea taxonomic group classi-
fication using all features. The classifiers used were Linear Discriminant Analysis (LDA),
Gaussian Naive Bayes (GNB), K-Nearest Neighbors (KNN), Support Vector Machine
(SVM), and XGBoost classifier (XGB).

Group Classes Samples
SVM GNB KNN LDA XGB

Acc F1-score Acc F1-score Acc F1-score Acc F1-score Acc F1-score

Phylum 5 660 44.36 0.4436 48.35 0.4835 68.45 0.6845 60.11 0.5600 96.09 0.9606

Class 10 615 29.10 0.2910 42.33 0.4233 52.41 0.5241 59.76 0.5674 93.35 0.9314

Order 20 634 23.64 0.2364 31.01 0.3101 36.53 0.3653 52.33 0.4804 89.67 0.8930

Family 29 623 22.84 0.2284 31.77 0.3177 33.92 0.3392 51.82 0.4703 89.50 0.8889

Genus 55 543 12.47 0.1247 27.69 0.2769 17.47 0.1747 60.67 0.5753 91.50 0.9048

Table 3.7: Accuracy (Acc) and F1-score (F1) results from archaea taxonomic group clas-
sification using XGBoost classifier. The features used were the genome’s sequence length
(SL), GC-content (GC), and NC.

Group Classes Samples Phit
NC All

Acc F1-score Acc F1-score

Phylum 5 660 20.00 65.76 0.6423 96.09 0.9606
Class 10 615 10.00 50.65 0.4933 93.35 0.9314
Order 20 634 5.00 41.75 0.3963 89.67 0.8930
Family 29 623 3.45 41.57 0.3872 89.50 0.8889
Genus 55 543 1.82 37.47 0.3263 91.50 0.9048

not having the highest number of classes. In contrast, remarkable results were obtained
for the genus classification task, which has the highest number of classes.

For comparison purposes, we assessed the outcomes obtained using a random classifier.
Specifically, for each task, we determined the probability of a random sequence being cor-
rectly classified (𝑝ℎ𝑖𝑡). Overall, there is a substantial improvement relative to the random
classifier, showing the features’ importance in the classification process. For instance, the
probability of a random classifier correctly identifying the genus of a given sequence was
1.82%, whereas, in our best classification, we obtained 91.50% accuracy. These results
are particularly encouraging, given the small sample size and the diversity of labels in the
dataset.

In the genomic features, despite the NC being the most relevant, the ensemble of fea-
tures improved the accuracy and F1-score in all tasks. These results are significant in
archaea, given that this classification is challenging since a set of these archaea have not
been isolated in a laboratory and were only detected by their gene sequences in environ-
mental samples.

50

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

Furthermore, these results are congruent with the results obtained for viral classifica-
tion and reinforce that this method can be efficiently utilized in identifying organisms.

Insights

The results show that the efficient approximation of the Kolmogorov complexity of
sequences can accurately perform taxonomic identification and classification. Regarding
the features selected, surprisingly, rich genomic features suffice to correctly identify viruses
and archaea’s taxon, even with a large number of labels. These results are significant since
they show that this methodology facilitates the classification of viruses and archaea, usually
identified from metagenomic samples.

3.8 Summary

In this chapter, we have analysed the usage of approximations of the Kolmogorov
complexity to analyse natural genomic sequences. The results show that efficient approx-
imation of the Kolmogorov complexities of viral sequences as measures that quantify the
absence of redundancy profoundly improves genomes’ identification, classification, and
organization. The same was verified for archaea taxonomic identification.

After optimization, we benchmark a specific data compressor (GeCo3) against other
approaches for computing an upper bound of the sequence complexity. Specifically, GeCo3
was compared with high compression ratio general-purpose data compressors (PAQ and
cmix) and a measure that combines small algorithmic programs and Shannon entropy
(BDM). Unlike the other approaches, we show that GeCo3 can efficiently address and
quantify regions properly described by simple algorithmic sources, namely inverted repeats
(exact and approximate), among other characteristics.

Using an optimized compression level of GeCo3 in an extensive viral dataset, we pro-
vide a comprehensive landscape of the viral genome’s complexity, comparing the viral
genomes at several taxonomic levels while identifying the genome regarding the lowest
and highest proportion of complexity. Specifically, on average, dsDNA viruses are the
most redundant (least complex) according to their size, and ssDNA viruses are the least
redundant. Contrarily, dsRNA viruses show a lower redundancy relative to ssRNA viruses.

By performing analysis at various taxonomic levels, we have also found evidence to sup-
port that viruses infecting archaeal extremophiles possess a more redundant genome and
abundance of IRs. This suggests an adaptation of the genomes to resist the environment
they inhabit.

We perform an in-depth analysis of the human herpesvirus regarding its genome com-
plexity and abundance of IRs. We suggest that higher compressibility and abundance of
inversions in herpesvirus may be associated with viral genome integration.

We describe and use minimal bi-directional complexity profiles of one sequence of each
virus to visualize the distribution of complexity of these sequences locally. These profiles

51

CHAPTER 3. COMPLEXITY ANALYSIS OF NATURAL SEQUENCES

can describe structural regions detected in the genome with other methods, proving the
description capability of data compression at a structural level.

We reveal the importance of efficient data compression in genome classification tasks,
explicitly showing that the complexity, when combined with simple measures (GC-content
and size), is efficient in accurately distinguishing between viral and archaea genomes at
different taxonomic levels without using direct comparisons between sequences.

The methods and results presented in this work provide new frontiers for studying viral
genomes’ complexity, magnifying the importance of developing efficient data compression
methods for automatic and accurate viral analysis and its usage for organism taxonomic
identification.

52

Chapter 4

Complexity analysis of artistic
paintings

d Dream world - Jorge Miguel Silva, 2021.

“The purpose of art is to lay bare the questions
that have been concealed by the answers.”

– James Baldwin

53

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

4.1 Contextualization

After using Kolmogorov complexity approximations to analyse 1-dimensional natural
strings, specifically genomes, in this chapter, we will focus on studying and applying the
Kolmogorov complexity approximations in 2-dimensional data structures. In this case, we
will analyse images of artistic paintings.

We use the block decomposition method and lossless data compressors to examine
the potential of these information-based measures as descriptors of images. We notice
that both approaches have different merits and initially consider them both in analysing
artistic paintings. After the first analysis of both author and style complexity, we use
compression measures combined with the roughness exponent (𝛼) of the two-point height
difference correlation (HDC) function and observe that these measures can distinguish
different styles. Next, we create different regional complexity descriptions of paintings
and use them to create author complexity fingerprints. From these fingerprints, we create
cladograms depicting relations and influences between authors. Finally, we use these
measures to obtain state-of-the-art author and style classification results. This chapter
follows the structure:

• Research questions and contributions;

• Introduction;

• Methods;

• Kolmogorov approximations in images;

• Artist painting analysis;

• Artist painting classification;

• Summary.

4.2 Research questions and contributions

In this chapter, we use approximations of the Kolmogorov complexity to analyse im-
ages. Concretely, we introduce novel solutions for automatic computational analysis of
artistic paintings and the problem of artist authentication. When addressing artist au-
thentication and classification, several questions arise: What defines a painter’s style?
How does the author expose information? How does the author differ from and relate to
other artists? Furthermore, taking inspiration from information theory: How do we best
quantify information in a painting? How is the information utilized across the canvas?
Moreover, what can information quantification tell us about the author’s style, way of
painting, and relationships with other authors? These complex questions are at the core
of this chapter, where we describe and compare solutions for unsupervised measures of

54

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

probabilistic and algorithmic information in images (2D) of artistic paintings.
Our contributions are as follows:

• We perform a direct comparison between state-of-the-art unsupervised probabilis-
tic and algorithmic information measures to specify each measure’s strengths and
weaknesses.

• We show that hidden patterns and relationships present in artistic paintings can be
identified by analysing their complexity.

• We show an efficient stylistic descriptor by combining the Normalized Compression
and a measure of the paintings’ roughness.

• We propose a new descriptor of the artists’ style, artistic influences, and shared
techniques.

• We show that average local complexity describes how each artist typically composes
and distributes the elements across the canvas and, therefore, how their work is
perceived.

• We demonstrate that these measures can serve as useful auxiliary features capable
of improving current methodologies in the classification of artistic paintings.

4.3 Introduction

Artistic paintings are concrete visual expressions of human evolution and creativity to
share emotions, values, visions, beliefs, and trends of history and culture. The creation,
interpretation, and analysis of artistic paintings are social, contextual, subjective, passive,
and, beyond superficial characteristics, complex to compute and automatize [206]. In
particular, it is theorized that art is an output of social agents, particularly a human
experience, that can only be imitated by machines [207].

The process of measuring the information contained in paintings is non-trivial. For
example, artistic paintings contain information related to schools, periods, and artists
[208]. The artistic community widely uses automatic computational analysis of artistic
paintings for authentication of artistic paintings [209, 210]. Currently, this process does
not substitute human experts completely, but it is an essential additional control for fraud
and misleading detections [211]. Furthermore, applying new techniques and pre-existing
ones that are new to the field can be helpful for authorship attribution, fraud detection,
art style categorization and organization, and even for art content explanation.

The idea of automatic computational analysis of artistic paintings is mature [209,
210], and the artistic community has widely relied on it to authenticate artistic paintings.
Specifically, the characteristics of artistic paintings have been analysed through several
probabilistic techniques and properties, namely fractal [212], wavelet-based [209], hidden

55

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

Markov models [213, 214], Fisher kernel based [215], sparse coding model [216, 217], colour
and brightness [210], illumination [218], stroke [219, 220], print index [221], and entropy-
based analysis [222, 223]. Recently, the work of Machado and Lopes [223], using fractional
calculus, showed the potentiality of measures based on entropy to describe the hierarchical
clustering of paintings and their correlation with artistic movements.

Regarding style and author classification, several recent studies have proposed using
Convolutional Neural Networks (CNNs). A straightforward approach is to combine fea-
tures extracted from multiple CNN layers, as proposed by Peng et al. [224]. Another more
effective approach is based on representing images by the principal components of a Gram
matrix, which captures correlations across the different feature maps obtained from a con-
volutional layer of a pre-trained deep CNN, such as VGG16 or VGG19. Mao et al. [225]
combine this representation with the features from all the five convolutional blocks of the
VGG16, learning a joint representation that can simultaneously capture the content and
style of visual arts. On the other hand, Chu et al. [226] apply a support vector machine
(SVM) to the Gram representation to perform author and style classification. Then, they
improve the results by automatically learning correlations between feature maps.

As previously mentioned, in this chapter, we bring the notion of Kolmogorov complex-
ity to the field of artistic painting analysis and classification. Measuring the information in
paintings requires fast, efficient, and automatic computation due to the diversity and large
number of existing artistic paintings [227]. To measure the information (or complexity)
contained in paintings, we first need to define the quantity of information in an image.
We define the quantity of information of an image as the smallest number of bits required
by a model to represent an image losslessly. To perform this task, the model searches
for unknown patterns of similarity between sub-regions of the image [228–230] and uses
this information to create this compressed representation of the image, relying exclusively
upon the patterns of the two-dimensional pixels without using exogenous information.

In the following sections, we will explain how data compression and other Kolmogorov
complexity approximations behave as descriptions of images and artistic paintings.

4.4 Methods

In this section, we describe the measures used, their normalizations, the methodology,
and the compression benchmark performed.

4.4.1 Information-based measures

In this subsection, we describe the Normalized Compression and two BDM normal-
izations when applied to this problem. Then, we establish the local application of the
Normalized Compression to create a complexity matrix for each author and the methods
used to create a distance matrix and the cladogram.

56

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

Normalized Compression (NC)

We used NC as described in Chapter 2. Since we consider a binary matrix of each im-
age, |𝜃| = 2, log2 2 = 1. Given the normalization, the NC allows comparing the information
contained in the strings independently from their sizes [157].

Normalized Block Decomposition Method (NBDM)

In this chapter we use both normalizations of BDM described in Equations (2.9)
and (2.10) of Chapter 2. We perform a direct comparison between the NC and the NBDM1,
and we compare the two types of BDM normalization and their impact on the results.

Local complexity analysis using the Normalized Compression

The NC was used to approximate the local (or regional) complexity of images of artistic
paintings. To that end, all the dataset images were divided into 16x16 blocks (256 equal
regions) and the NC was computed for each block, generating a complexity matrix. Other
patch sizes were also tested, specifically patch sizes of 8x8 and 32x32 blocks. Following
this operation, the average complexity matrix was generated for each author, using the
complexity matrices of their paintings. The average complexity matrices were then used
to obtain a similarity matrix, in which the distance between matrices was determined as

d(A,B) =
𝑛

∑
𝑖=0

𝑛

∑
𝑗=0

∣ 𝑎𝑖𝑗 − 𝑏𝑖𝑗 ∣, (4.1)

where 𝑑 is the distance between the complexity matrix 𝐴 and 𝐵, and 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are the
complexity values at the index 𝑖 and 𝑗 of matrices 𝐴 and 𝐵, respectively. Subsequently,
using the similarity matrix, a cladogram was computed resorting to two methods, namely
UPGMA (unweighted pair group method with arithmetic mean) [231] and the Kruskal min-
imum spanning tree algorithm [232], in order to portray complexity relationships among
different authors.

4.4.2 Two-point height difference correlation function

The two-point height difference correlation (HDC) function was computed to quantify
brightness contrast as

HDC(𝑟) = [ℎ(⃗𝑥 + ⃗𝑟) − ℎ(⃗𝑥)]2 = 1
𝑁𝑟

∑
�⃗�,| ⃗𝑟|=𝑟

[ℎ(⃗𝑥 + ⃗𝑟) − ℎ(⃗𝑥)]2, (4.2)

where 𝑟 is the distance between two-pixel points, the overbar represents the spatial average
at a fixed distance 𝑟 for all possible points, 𝑁𝑟 is the number of possible pairs at a distance
𝑟, ℎ(𝑥) is pixel intensity at position 𝑥. Using the HDC function, its roughness exponent
as

57

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

𝛼 =
log10(𝐻𝐷𝐶(𝑟𝑓𝑖𝑛𝑎𝑙)) − log10(𝐻𝐷𝐶(𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙))

log10(𝑟𝑓𝑖𝑛𝑎𝑙) − log10(𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
, (4.3)

where the roughness exponent (𝛼) is the slope of the HDC curve in a double logarithmic
plot of the surface growth model. The slope was calculated from 𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 10 to 𝑟𝑓𝑖𝑛𝑎𝑙,
which matches the point where the HDC function saturates, approximately 30% of the
image’s width.

4.4.3 Dataset

The dataset used for the complexity analysis of artistic paintings contains 4,266 images
of paintings by 91 artists with approximate geometric sizes [208]. The 91 artists are well-
known, such as Claude Monet, Frida Kahlo, Henri Matisse, Jackson Pollock, Picasso,
Rembrandt, and Salvador Dali.

4.4.4 Assessment pipeline

In order to evaluate the information-based measures fairly, we designed a pipeline for
processing images. It respects the following steps: obtaining the dataset images; converting
the images to PGM format; quantization of the images to 8 bits (256 levels) using the
Lloyd-Max algorithm; binarization of the images (conversion to 01 format in ASCII) and
finally, applying the information-based measurements (NC, NBDM1 and NBDM2).

Quantization was performed to reduce the precision of the pixels (alphabet) in images,
enabling the filtering of minor variations that might occur during the digitalization process.
Lloyd-Max algorithm [233, 234] was used to make the errors small in the regions where
the signal is most likely. In addition, the images were binarized since the BDM currently
only supports a small alphabet.

4.5 Kolmogorov approximations in images

In this work, we develop, use, and compare unsupervised pattern recognition techniques
to quantify information in images of artistic paintings. We rely on two approaches, namely
data compression using the NC, and the Block Decomposition Method (BDM), to estimate
information of both probabilistic and algorithmic sources.

4.5.1 Finding an effective data compressor

To compute the NC, we have to find an effective data compressor, meaning a compres-
sor that best represents each image, while using practical resources. Since our aim is later
to apply this measure to a dataset of artistic paintings, we compared seven compression
tools, namely GZIP [128], BZIP2 [129], XZ [235], LZMA [130], AC [236], PPMD [237],
and PAQ8 [238].

58

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

Figure 4.1: Benchmark of lossless data compression tools specifically for the processed
dataset of artistic paintings. The y-axis depicts the sum of bytes to compress the dataset,
where each image was compressed individually using each tool.

As depicted in Figure 4.1, the PAQ8 tool shows the best compression ratio for this
dataset. It shows an improvement of ≈ 26% over the second-best tool (XZ). The disadvan-
tage is the use of higher RAM and substantially more computational time. Nevertheless,
since our purpose is to find the number of bits of the shortest program to reproduce the
image, it is affordable to spend these computational resources. Therefore, we used the
PAQ8 tool to compress each of the quantized images. The code was compiled using the
package provided from the PAQ website[154]. The version selected was PAQ8kx v7, and
it ran with the mode with the highest level to achieve the best compression rates at the
expense of speed.

The PAQ8 compressor uses a context mixing algorithm between many models inde-
pendently predicting each quantized pixel’s next bit [239]. The predictions are combined
using a neural network and arithmetic coding [240, 241]. For more information on PAQ,
see the work of Knoll and Freitas [153]. The computations ran on a single-core Ubuntu
Linux computer at 2.13 GHz with 16 GB of RAM. Using this machine, the compression
of the whole dataset with PAQ8 required approximately 270 hours of real-time without
parallelization. The results indicate that PAQ8 is the most effective for this dataset.

4.5.2 Comparison of NC and BDM

In order to compare NC with BDM regarding capacity to represent probabilistic and al-
gorithmic information in images, we performed three types of tests. Namely, we compared
the robustness of both measures according to increasing rates of random pixel changes in
paintings, tested their application on different types of images, and assessed the minimal
information bounds.

In the first test, we assessed the impact of an increasing rate of pixel editions using
a pseudo-random uniform distribution and compared both information-based measures.

59

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

This approach is not identical to image noise but rather a pure edition of pixels. For
this purpose, for three authors (Theodore Gericault, Marc Chagall, and Rene Magritte),
we selected a painting and made 50 adulterated copies of each with an increasing edition
rate (from 1 to 50%). Finally, we measured the NC, the NBDM1 (Equation (2.9)), and
NBDM2 (Equation (2.10)) in all the paintings. NBDM1 considers the normalization by
the length of the input object, NBDM2 performs a normalization that aims to mimic the
removal of the constant factor related to Kolmogorov complexity (see Equation (2.11)).

Figure 4.2: Information-based measures evaluation. Impact of increasing pseudo-random
substitution on information-based measures: NC (approximated using the PAQ8 algo-
rithm) and two BDM normalizations (NBDM1 and NBDM2).

Figure 4.2 depicts the values obtained for the NC and BDM. The results show that,
when using the same type of normalization, NC is more robust to the increment of pixel
edition than NBDM (NBDM1). Since the NBDM2 normalization does not consider the
constant of the description language, it shows more robust behaviour than NBDM1, which
increases rapidly with the increase of pixel edition. Since NC and NBDM1 have the same
type of normalization, we will focus on comparing these normalizations from now on.

In the second test, we applied both measures to six datasets with distinct natures
(9 images each) to understand how NBDM1 and NC behave with different types of im-
ages. The six datasets were: artistic images from 2 different datasets [208, 242]; cellular
automata images; diabetic retinopathy images [243]; chest computed radiography (CR)
images [244], and photographic images [245].

The results are depicted in Figure 4.3. Overall, the NC and NBDM1 show similar
behaviour across the majority of the datasets. The exception to this the cellular automata
dataset, which exhibit more algorithmic behaviour.

The cellular automata dataset is constituted by images created with small programs
with simple rules. Whereas the compressor has difficulty compressing this type of image,

60

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

Figure 4.3: Information-based measures evaluation. Values of the NC and NBDM1 for
different types of images.

the BDM can point to their algorithmic nature and thus attribute them a very small value.
This outcome shows the importance of the BDM in detecting simple algorithmic outputs
embedded in data.

For the last test, we selected one of the most complex images identified by the NBDM
in the previous test. Then, we used it to evaluate if the BDM could accommodate specific
data alterations. This test is depicted in Figure 4.4.

After the binarization process, we performed a super-sample image transformation
where each char was amplified to a 4x4 representation. This value was selected since the
BDM has the default block size value of 4x4 in 2D structures. After this operation, the
BDM was computed for the original and the super-sampled image. While the original
image was measured with 370981 bits, the super-sampled image had only 79 bits. This
abrupt decrease in complexity indicates that the BDM underestimates the amount of infor-
mation contained in the object. This underestimation occurs because the BDM analyses
object information in blocks instead of looking at the whole object. Specifically, blocks
analysed by the BDM have the same size as the super-sample image transformation. As
a result, the complexity attributed to each block is approximately zero since each block
is composed of all zeros or ones. Hence, the overall value attributed to the complexity of
the object will drop dramatically.

This analysis shows that BDM is not prepared to deal with the information associated
with the choice of the model, unlike the NC. Instead, the NC relies on a lossless data
compressor bounded by a maximum information channel capacity.

61

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

Figure 4.4: Information-based measures evaluation. Image transformation pipeline lead-
ing to BDM underestimation of the amount of information contained in the transformed
object.

In these three tests, we can notice some advantages and limitations of both measures.
However, ranking these measures is unfair because they have different characteristics and
natures. Therefore, we will use the NC and NBDM in a combined mode to recover insights
and characteristics from the images of the artistic paintings.

4.5.3 Insights

By benchmarking several compressors, we found that the most effective compressor for
the artistic dataset under study is PAQ8.

When evaluating the NC and two normalizations of the BDM regarding their robust-
ness when images undergo uniform pixel editing, we found that the NC is more robust
than BDM with the same kind of normalization.

When we compared NC and NBDM using different images, we found that the results of
the NC and NBDM are similar, except for the cellular automata dataset, which exhibited a
more algorithmic behaviour. The cellular automata data was created with small programs
with simple rules. While the compressor had difficulty compressing this data, BDM could
approximate their algorithmic nature and thus assign them a value close to a minimal
complexity value. The ability to identify an algorithmic nature incorporated in the data
demonstrates the relevance of BDM as a measure.

Compression makes use of the digital object in its entirety to create the shortest possible
representation without loss of information. This is reflected in the NC, a compression-
based measure. In contrast, BDM divides the digital object into blocks and, based on the
complexity of the blocks, estimates the image complexity in its entirety. Consequently,
BDM cannot determine the information shared between the blocks, which causes it to

62

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

increase, compared to the NC, with the increase in uniform pixel editing.
On the other hand, the fact that BDM cannot determine the information shared be-

tween the blocks causes it to underestimate the amount of information contained in the
object when performing a super-sample image transformation. Since the ampliation size
was the same as the blocks analysed by BDM, the complexity attributed to each block was
approximately zero. Consequently, the overall value attributed to the image complexity
decreased dramatically.

4.6 Artist painting analysis

Here, we investigate using information measures to analyse the Painting-91
dataset[208]. In the following subsections, we present the results of applying the com-
plexity approximation measures, combining the NC with the HDC function, measuring
local complexity for different authors, and constructing a cladogram.

We also measure the impact of normalizing these images by applying the abovemen-
tioned measures to the dataset after normalization. Afterwards, we compare the average
variation and percentage difference between the results obtained for each author. These
results are shown in Section B.2.1.

4.6.1 Global measures analysis

In this subsection, we measure an approximation to the Kolmogorov complexity for the
dataset of artistic paintings. The same pipeline, described in Section 4.4.4, was used, with
the difference that the Lloyd-Max algorithm quantization was set to 16, 64, and 256 levels
(4, 6, and 8 bits, respectively). It is important to note that the Lloyd-Max algorithm
forced normalization of the images for the 16 and 64 levels, while 256 was the original
level of the images, and as such, these images were not normalized. This process was
performed to evaluate the impact of quantization on the measures used to approximate
the Kolmogorov complexity in artistic painting images. From the results obtained, we
show unknown characteristics and insights into temporal traits.

In general, the complexity of each painting follows the example of Figure 4.5. Paintings
with low complexity are classified as abstract and minimalist, following simple patterns. As
the complexity increases, we start to recognize paintings with different local complexities,
meaning there are regions with high complexity and detail (generally at the centre/bottom
of the paintings) surrounded by low complexity regions (same colour background), known
as chiaroscuro. This pattern begins fading as the complexity increases, since the highest
complexity paintings are also the most irregular, detailed, and convoluted.

Each artist’s average complexity is described in Figure 4.6 as the average NBDM1 and
NC, respectively. Each artist has an associated colour, and lines of the same colour illus-
trate its relative positional deviation in different quantizations. Noticeably, quantization
impacts the NBDM1 more than the NC, since the relative positioning between authors

63

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

Figure 4.5: Examples of artistic paintings with different levels of complexity (8 bits quan-
tization). The NC and NBDM1 values are displayed bellow each painting.

varies more in the former. On average, the variation is 13.4 ± 11.37 relative positions of
each author in NBDM1, while in NC, the variation is 4.9 ± 4.3 positions.

Despite the higher variation in the NBDM1, both measures can detect styles with
low and high complexity. Artists such as Mark Rothko, Lucio Fontana, Piet Mondrian,
and El Lissitzky can be easily identified on the low side of the complexity spectrum.
Minimalism, Abstract Expressionism, and Constructivism movements are associated with
these styles. On the other hand, artists also from Abstract Expressionism, such as Willem
de Kooning, Jackson Pollock, and Jasper Johns, characterize the highest complexity side
of the spectrum, as well as other artists with a more detailed and convoluted style, like
Gustav Klimt and Vincent van Gogh.

Abstract Expressionism is characterized by aggressive features combined with random

64

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

Figure 4.6: Average Normalized Block Decomposition Method using NBDM1 (A), and
Average Normalized Compression (B) for each author where images of paintings where
quantized for 4, 6, and 8 bits. The authors are sorted by the value of NBDM1 and
NC, respectively. To see this result in more detail, please visit the website described in
section B.3.

and geometric features and spontaneity [246]. Abstract Expressionism artists are present
at both extremes of the complexity spectrum because this style is divided into two oppo-
sites, Action Painting and Colour Field. In Action Painting, the paint was thrown directly
on the canvas, through instinctive gestures, where chance and randomness determined
the evolution of painting [247]. This style is characteristic of artists like Jackson Pollock
(known for the technique of “dripping”) and Willem de Kooning. On the other hand,
Colour Field is more mystical and meditative. This style of painting has few elements in
the frames, indefinite limits, and explores the sensory effects of colour and the subtlety
of chromatic relations [248]. A specific example of an artist that followed this trend was
Mark Rothko. In all cases, Jackson Pollock had complexity values completely different
from other artists, the average complexity of his paintings being approximate to random
(normalized value close to 1). Although he denied his paintings were random, similar re-
sults were also found in previous work, which defined Jackson Pollock’s dripping paintings
as not typical artworks [210].

65

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

The same results for NBDM2 are presented in Figure 4.7.

Figure 4.7: Author’s average Normalized Block Decomposition Method (ANBDM) using
NBDM2 for 4, 6, and 8-bit quantization. The authors are sorted by the value of NBDM2.
To see this result in more detail, please visit the website described in section B.3.

This measure, on average, has a relative positional variation of 13.2 ± 13.2, a value
slightly lower than in NBDM1, although with a higher average standard deviation. This
aspect, combined with the fact that the author positions vary slightly from their position
in NBDM1, demonstrates that, overall, normalization has minimal impact on the measure,
and thus, does not influence the results obtained with BDM.

4.6.2 Combining the NC with the roughness exponent of HDC function

We used the average NC and the roughness exponent (𝛼) of the two-point height dif-
ference correlation (HDC) function, which measures the roughness exponents of brightness
surfaces, to assess the ability of these measures to distinguish different styles. Accordingly,
we made use of style-labelled paintings available in the dataset. From these labelled im-

66

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

ages, we computed their author’s average NC and the value of 𝛼. The roughness exponent
was used as an additional measure since it has proven to be capable of some differentiation
between styles [210]. We discarded the usage of BDM due to quantization impacting it
more than the NC. Using the average NC and 𝛼 of each labelled painter, we created a scat-
ter plot (Figure 4.8) and represented each artistic movement as an ellipse, with the centre
in the points centre of mass and with a width corresponding to the standard deviation.

Figure 4.8: Combining the HDC with NC. (A) Average and standard deviation for each
style in NC and 𝛼, respectively. (B) Results grouped by styles using average NC and
average 𝛼 of HDC for each artist labeled on the dataset.

As shown in Figure 4.8 (A), each measure alone is not capable of efficiently separating
styles. However, when combined, the styles are well confined into different regions (except
for Abstract Expressionism), showing that together these measures are representative of
artistic movements. The roughness exponent 𝛼 captures the brightness and relative spatial
position level and is correlated to variations in painting techniques and genres [210]. The
NC adds to the level of brightness and relative spatial position provided by the HDC, the
notion of average information present in each artist’s painting. This amount of information
differs depending on the artistic movement and historical circumstances.

Interestingly, similar to NC, the roughness exponent of the HDC varies greatly in
Abstract Expressionism, and in this artistic movement, there is an inverse correlation
between the NC and 𝛼. Artists like Jackson Pollock and Willem de Kooning (Action
Painting) presented a high average NC and a low 𝛼, whereas, Mark Rothko (Colour Field)
had polar results. This atypical behaviour corroborates the big difference between the two
currents of Abstract Expressionism. The Action Painting usage of instinctive gestures and
randomness creates high NC values and spatial correlation approaching a random image.
In contrast, in Colour Field, we get more minimalist images with high spatial contrast
between regions but low complexity.

67

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

The capacity of these measures to differentiate styles will be further explored in Sec-
tion 4.7, where we use these as features for style and author classification.

4.6.3 Local complexity of paintings

After exploring the global impact of NBDM and NC on paintings and styles, we focused
on local complexity of the paintings.

Picking the best block size

When creating the fingerprints, we tried to select a patch size that is the minimum
for the differences in the compression rate to be significant and capable of being used as
a measure between paintings. To this end, we computed the regional complexity of each
image for the 8x8, 16x16, and 32x32 blocks of the image. It is worth mentioning that for
the regional complexity of 8x8 and 16x16, all images were divided into the same number
of tiles, resulting in tiles with slightly different sizes. On the other hand, for the 32x32
regional complexities, the images were divided into blocks of the same size, except for the
last tiles, which were the remainder of each image since the image size was not an exact
multiple of the desired tile size. There are two reasons for this difference in the method
of dividing blocks. Firstly, when we divide the image into a few blocks, each block has
a reasonable size and therefore, the variation with the addition of a row or column does
not affect the results of the compression. With small tiles, adding a column or row affects
the compression results of each tile more significantly. Secondly, cropping tiles with the
same size in larger blocks would cause a large remainder, which would be more inaccurate
than distributing the remainder among the other blocks. The results of each author’s
fingerprints (computed for the 8x8, 16x16, and 32x32 blocks) are shown in the website
(Section B.3). Furthermore, some illustrative results are exemplified in Figure 4.9.

Qualitatively, as can be seen in Figure 4.9, the images of the authors show similar
patterns for each author. However, with the increase in patch size, from 16x16 blocks
to 32x32 blocks, the patterns become less noticeable, as such a good balance between
detail and differentiation would be the 16x16 blocks. Quantitatively, we computed the
distance matrix for each author using images of different patch sizes. On those distances,
we performed the Mantel test and measured the average difference between them. The
results are shown in Table 4.1.

Since the matrices correspond to distances computed for the same measure but with
a different number of blocks, the distance between authors is expected to be similar and
yield a high correlation between distance matrices. The results show a high correlation
between the distances computed from 8x8 and 32x32 fingerprints towards the 16x16 dis-
tance. However, there is a higher correlation (0.951) and lower average variation between
8x8 and 16x16 fingerprints distance than between 16x16 and 32x32 fingerprints distance
(0.918). These results reveal that the increase in the number of blocks from 16x16 to 32x32
decreases consistency between the same author’s fingerprints as the correlation between

68

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

Figure 4.9: Heat maps of the local complexity matrix (fingerprint) of some authors for the
different number of blocks the images were divided. This fingerprint shows the author’s
range of complexity and where they paint with more detail. To see all fingerprints, please
visit the website described in section B.3.

distances decreases significantly. Thus, we can conclude that the 16x16 fingerprints can
give a more optimized balance between detail and differentiation since it retains correla-
tion to the 8x8 fingerprints and provides a more detailed map of the author’s complexity
range.

Analysing local complexity of paintings

To analyse the paintings’ local complexity, we divided the images into identical quadri-
lateral sizes and measured the algorithmic information for each (16x16 blocks). Then, we
computed the average of each quadrilateral for all the paintings for each painter. The
results are shown in Figure 4.10, illustrating the same authors as those in Figure 4.5.

69

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

Table 4.1: Mantel Test between distance matrices and average difference between them.
For the Mantel test, all results had a p-value of 0.001.

Comparison methods Mantel Test Average ± Standard Deviation

16x16 blocks* 0.955 3.262 ± 2.820
8x8 vs 16x16 blocks 0.951 14.959 ± 12.372
32x32 vs 16x16 blocks 0.918 74.092 ± 50.952

* Normalized vs non-normalized images.

However, the matrices of Figure 4.10 were computed using all the authors’ paintings in
the dataset. The complete results are available on the website described in section B.3.

Figure 4.10: Heat maps of the local complexity matrix (fingerprint) of some authors,
computed with the NC average. This fingerprint shows the author’s range of complexity
and the locations in the canvas painted with more detail (or complexity). To see all
matrices, please visit the website described in section B.3.

All artists have a unique complexity matrix (fingerprint). This fingerprint shows, on
average, where artists paint with more detail and emphasis, as well as their average range
of complexity. For instance, Jackson Pollock and Jasper Johns show high complexity
values dispersed over the canvas. At the same time, artists like Francis Bacon and George

70

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

de la Tour focus more on the centre of the canvas, and Mark Rothko and Piet Mondrian
have their highest complexities around the paintings’ borders.

Since the 16x16 fingerprints conveyed the best results regarding detail and differentia-
tion, the cladograms were constructed utilizing the distance computed from the fingerprints
with this block size. Two cladograms were constructed to portray the relations between
different artists. One cladogram was constructed using the UPGMA algorithm, which is
illustrated in Figure 4.11, and another was built using the Kruskal minimum spanning
tree algorithm [232], which is depicted in the Figure B.1 in Section B.2.2.

Figure 4.11: Artists’ cladogram computed resorting to the UPGMA algorithm. Each artist
has a sample painting and a colour associated with one of his styles (the colour was chosen
based on nearest leaves) assigned to him, as well as a description of some styles usually
associated with the author. To obtain an improved view of the cladogram, please visit the
website described in section B.3.

71

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

The cladogram shows the fingerprint’s ability to group artists from the same artistic
movements. Broad groupings of artists from styles are present in the cladogram: Renais-
sance, Baroque, Romanticists, Impressionists, Surrealism, Cubism, and Abstract Expres-
sionism. Also, the cladogram shows smaller groupings of sister leaf-nodes with the same
style. The cladogram also depicts relationships of influence between authors of different
artistic movements. For example, this relation is seen in the case of Titian, who influenced
Diego Velazquez; Caravaggio, who influenced Francisco de Zurbarán; Frida Kahlo, who
influenced Amedeo Modigliani; Sandro Botticelli who influenced William Blake; Claude
Lorrain who influenced Joseph Mallord William Turner; and Peter Paul Rubens who in-
fluenced Jean-Antoine Watteau.

On the other hand, some authors seem unrelated in style and influence, for instance,
Francis Bacon and Georges de la Tour, George Braque and Hieronymus Bosch, Peter Paul
Rubens and Frida Kahlo, Max Ernst and Giorgione, and Rembrandt van Rijn and Roy
Lichtenstein. There may be many reasons for this, for instance, the number of regions the
images were divided in can be sub-optimal for some images of artistic paintings, decreasing
the sensitivity of the measure and jeopardizing the cladogram’s construction. On the other
hand, the algorithm used to measure the similarity between matrices or the algorithm
used to construct the cladogram (UPGMA) may not be the most appropriate for all cases.
However, we have tested the Kruskal minimum spanning tree algorithm, which generated
similar results (Section B.2.2). Additionally, these seemingly unrelated connections could
reveal undiscovered elements and relationships. For instance, one of Roy Lichtenstein’s
early artistic idols was Rembrandt van Rijn. Moreover, if artists are not related regarding
the artistic movement or influence, the vicinity between them could be representing another
property. This aspect is not necessarily related to the period or movement the artists were
inserted in, but rather, the way they projected their compositions, ideas, and impressions
onto the canvas. Complexity can be approximated by the total number of properties
transmitted by an object and detected by an observer. By dividing images into blocks of
equal size and evaluating their local complexity, we are quantifying the local information
being transmitted. On the other hand, by averaging the canvas results per artist, we obtain
a matrix that describes how they present information to the observer. This information
intertwines various notions critical to how the work is perceived, such as composition,
which describes where the artist places the subject and how the background elements
support it, as well as the unity, balance, movement, rhythm, focus, contrast, pattern,
and proportion of the painting. For instance, the proximity between Hans Holbein and
Vermeer could be due to both of them having used optics to achieve precise positioning
in their compositions, namely by performing a combination of curved mirrors, camera
obscura, and camera lucida [249].

The fingerprints can also convey the notion of space by depicting where the positive
(subject itself, usually more detailed) and the negative (the area of painting around it)
areas are on the canvas. Artists can play with a balance between these two spaces to further
influence how viewers interpret their work. Therefore, the similarity between different

72

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

artists concerning the regional (local) complexity can reflect the similarity in thought
regarding their approaches to painting. For instance, the proximity between Francis Bacon
and Georges de la Tour could be due to the former being heavily influenced by the Baroque
style and making dramatic use of contrasts of light and shadow. These methods are
characteristic of the chiaroscuro principle and its radicalization in the Tenebrista school
(signature style of Georges de la Tour) [250, 251]. The intense contrasts of light and
shadow highlight the characters, and although exaggerated, lighting increases the feeling
of realism, making the muscles and facial expressions more evident. Simultaneously, the
presence of large blackened areas highlights the chromatic reach and the illuminated space,
which acquire their value as elements of the composition.

4.6.4 Insights

We found that paintings with low complexity are abstract, minimalist, and follow sim-
ple patterns. Paintings with a slightly higher average complexity possess different regional
complexities, specifically, a region with high complexity and detail surrounded by a back-
ground of low complexity. This noticeable pattern begins to fade with more complexity,
and the most complex paintings are globally irregular, detailed, and convoluted.

Regarding the average complexity values for each artist, we found that NC and NBDM
behave similarly, but quantization has a bigger impact on NBDM. We also establish that
the low side of the complexity spectrum was characterized by Abstract Expressionism, Min-
imalism, Constructivism movements, with authors such as Mark Rothko, Lucio Fontana,
Piet Mondrian, and El Lissitzky. Also, artists from Abstract Expressionism characterized
the high complexity side of the spectrum, such as Willem de Kooning, Jackson Pollock,
and Jasper Johns, as well as other artists with a more detailed and convoluted style, like
Gustav Klimt and Vincent van Gogh. Due to two different currents (Colour Field with
authors with low average complexity and Action Painting with authors with high com-
plexity), Abstract Expressionism was present at the polar ends of the spectrum. In all
cases, Jackson Pollock had average complexity values that were completely different from
other artists, the average complexity of his paintings being close to random. Although he
denied being a creator of random paintings, this result and others [210] seem to indicate
that Jackson Pollock’s dripping paintings are not typical artworks, possibly related to the
artist including many symbolic layers and dispersion intentions over the canvas.

When evaluating the artists’ average NC and the roughness exponent (𝛼) of the HDC
function in the labelled images of the dataset, we found that styles are well confined into
different regions, showing that the combination of these measures gives a robust repre-
sentation of artistic movements. Specifically, the NC adds to the brightness and relative
spatial position shown by the roughness exponent, the notion of average information in
each artist’s painting, consistent within the same style and historical circumstances. We
also detected that in Abstract Expressionism, the NC is inversely correlated to 𝛼. Artists
related to Colour Field painting presented a high 𝛼 and low NC, whereas artists related

73

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

to Action Painting presented the exact polar results (low 𝛼 and high NC).
We divided the image into equal quadrilateral parts and estimated the local complexity

of each painting on the dataset, using it to ascertain each artist’s average regional ma-
trix (fingerprint). Data complexity measures the total number of properties transmitted
by a digital object and detected by an observer (plus the language used). By dividing
images into blocks of equal size and evaluating its local complexity, we quantified the
local information being transmitted. Furthermore, by averaging the canvas results per
artist, we obtain a unique fingerprint that describes how the author exposes information
to the observer. Among other things, these fingerprints give specific insights into each
artist’s way of painting, showing where, on average, they paint with more detail and give
more emphasis, while also providing insights into each artist’s range of complexity. Using
these matrices, we computed a distance matrix and utilized it to construct a cladogram.
We discovered that these cladograms aggregated authors of the same style close to each
other and artists’ influencing relationships, like Francis Bacon and Georges de la Tour,
and George Braque and Hieronymus Bosch. Furthermore, we observed proximity between
artists due to shared methods and techniques which are not correlated with the time or
artistic movement. For example, the proximity between Hans Holbein and Vermeer, who
do not share styles but who both used optics to achieve precise positioning in their com-
positions. This evidence shows that artists’ fingerprints contain critical information about
how the work is perceived, such as composition, unity, balance, movement, rhythm, focus,
contrast, pattern, and proportion of the painting and space.

4.7 Artist painting classification

To evaluate the use of these measures quantitatively for classification purposes, we
assessed their impact when used as additional features to improve state-of-the-art classi-
fication methods.

4.7.1 Evaluation of measures for classification purposes

To perform quantitative evaluation, we recreated a recently published state-of-the-
art (SOTA) method as a baseline and improved the results by combining our proposed
measures. Based on current methods [225, 226], we extracted a Gram representation using
the first convolutional layer from the fifth convolutional block of the VGG16 network,
which was pre-trained with the ImageNet dataset (no significant result difference was
found between the use of VGG16 or VGG19). Then, principal component analysis (PCA)
was applied to the Gram matrix to reduce the dimensionality, and finally, this vector was
provided to an SVM to perform classification.

Afterwards, the features obtained from computing the HDC and the regional complex-
ity were used for author and style classification using the XGBoost classifier [170] and
combined with the SOTA classifier via a Voting Classifier ensemble. The results of the

74

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

SOTA and ensemble classifiers, applied to the Paintings-91 dataset in the author and style
classification task using the labels provided in the dataset, are shown in Table 4.2.

Table 4.2: Accuracy results obtained for the test set in style and author classification task
using state-of-the-art (SOTA), SOTA with regional complexity (RC) feature and ensemble
with our measures (RC and HDC).

Task Classes Images SOTA SOTA+RC SOTA+RC+HDC+RC

Style 13 2338 0.622 0.644 0.650
Author 91 4266 0.480 0.490 0.500

The results show that including the regional complexity increased the accuracy of the
results by 2.2 p.p. and 1.0 p.p in the style and author classification tasks, respectively.
Moreover, the overall inclusion of the proposed measures (HDC + RC) increased the ac-
curacy in both classification tasks by 2.8 p.p. and 2.0 p.p. in the style and author classifi-
cation tasks, respectively. These results indicate that these predictors are useful auxiliary
features capable of improving current methodologies in classifying artistic paintings. These
results are congruent with those obtained by Nanny et al. [252], since handcrafted features
and non-handcrafted features seem to extract different information from the input images,
and as a result, the fusion of the two types of features improves the results obtained when
using non-handcrafted features only. Furthermore, regional complexity (RC) has a higher
impact on improved accuracy than the HDC features, demonstrating the importance and
distinction of regional complexity as a feature.

4.7.2 Insights

We show that regional complexity and HDC extract information that differs from non-
handcrafted features and improve current methodologies in classifying artistic paintings.

Regional complexity provided the most significant increase in accuracy in the classifi-
cation tasks, showing its relevance as a descriptor of images of artistic paintings.

4.8 Summary

In this chapter, we introduce novel solutions to the field of computer analysis of artis-
tic paintings and the problem of artist classification and authentication. Specifically, we
assessed the viability of unsupervised measures that approximate the quantity of proba-
bilistic and algorithmic information to perform these tasks.

Our direct comparison between NC and BDM allowed us to understand the strengths
and weaknesses of both measures. Although BDM has difficulty dealing with uniform
pixel edition and information quantification given the block representability, it serves as
a useful tool to measure and identify data content similar to simple algorithms. On the

75

CHAPTER 4. COMPLEXITY ANALYSIS OF ARTISTIC PAINTINGS

other hand, the NC is more robust to data alterations (pixel edition and quantization)
and can measure the quantity of information without underestimation.

Regarding the application of information-based measures in artistic paintings, we stud-
ied and developed techniques that can be valuable for art authorship attribution and val-
idation, art style categorization and organization, and art content explanation. Namely,
the NC proved to be a robust measure that gives us some insight into the complexity of
different styles, showing hidden patterns and relationships in artistic paintings that share
the same range in complexity. Furthermore, it could be a stylistic descriptor when coupled
with the roughness exponent 𝛼. On the other hand, fingerprints depict how each author
typically spreads content on canvas. Thus, they can provide a suitable means of art con-
tent explanation and be valuable for art authorship attribution and validation. Moreover,
since complexity approximations provide insights into artists’ way of painting, they can
be used as a means of relating authors, therefore being useful in depicting artists’ stylistic
influences, and shared techniques. Additionally, using the distance between the artists’
regional complexity, we find some interesting links between artists regarding the use of
space, technique, composition, rhythm, and proportion.

Finally, we demonstrated that the regional complexity and the HDC function of the
paintings could serve as useful auxiliary features capable of improving current methodolo-
gies in author and style classification of images of artistic paintings.

76

Chapter 5

Complexity analysis of Turing
Machines

e Oak Tree - Jorge Miguel Silva.

“Come up to me on the mountain and stay here,
and I will give you the tablets of stone

with the law and commandments
I have written for their instruction.”

– Moses, Bible: Exodus 24:12

77

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

5.1 Contextualization

In the previous chapters, we analysed 1d and 2d data using Kolmogorov complexity
approximations, specifically data compressors and the BDM. We found that these approx-
imations help describe, understand, and classify these data types. In this chapter, we take
a closer look at data generated from algorithmic sources, specifically Turing Machines
(TMs). Sources that generate symbolic sequences with the same algorithmic complex-
ity may differ in probabilistic complexity. For example, in the case of Turing Machines,
machines with the same algorithmic complexity can create tapes with different statistical
complexity.

Specifically, in this chapter, we will use a compression-based approach to measure
the global and local probabilistic complexity of specific TM tapes. Both measures are
estimated using the best-order Markov model. For the global measure, we use the NC,
while for the local measures, we define and use normal and dynamic complexity profiles
to quantify and localize lower and higher regions of probabilistic complexity.

We assess the validity of our methodology on synthetic and natural genomic data,
showing that it is tolerant to increasing rates of editions and block permutations. Re-
garding analysis of the tapes, we localize patterns of higher probabilistic complexity in
two regions for a different number of machine states. Furthermore, we show that these
patterns are generated by a decrease in the tape’s length, caused by small rule cycles.
Additionally, we use BDM to analyse the TM tapes.

Finally, we provide a simple algorithm to increase the probabilistic complexity of a
TM tape while retaining the same algorithmic complexity. The structure of this chapter
is as follows:

• Research questions and contributions;

• Turing Machines;

• Methods;

• Viability assessment of the NC;

• Global analysis of TM tapes;

• Analysis of probabilistically complex TM tapes;

• NC and BDM comparison;

• Increasing the probabilistic complexity of TM tapes;

• Summary.

78

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

5.2 Research questions and contributions

In this chapter, we study data generated from algorithmic sources and assess their prob-
abilistic patterns. The sources have identical conditions and are evaluated using global
and local measures. When performing this analysis, several questions arise: Is there a
correlation between probabilistic and algorithmic complexity? Is there a way to quantify
and localize higher and lower regions of probabilistic complexity? Can we systematically
increase probabilistic complexity while retaining the same algorithmic complexity? This
chapter revolves around these challenging questions. To try and answer them, we fix
the source exclusively to an algorithmic nature, combining different rule configurations
while keeping the number of states and cardinality fixed. This configuration is used to
measure and analyse the probabilistic complexity of the TM tapes using compression-
based approaches approximated by the best-order Markov model. First, we assess this
compression-based approach according to different levels of symbol substitutions and per-
mutations of contiguous blocks of symbols. After definition and assessment, we identify
some patterns in these TMs. Then, we define and introduce the normal and dynamic
complexity profiles as local measures to quantify and localize higher and lower regions
of probabilistic complexity. Next, we compare the BDM with our compression-based ap-
proach. Finally, we describe a simple algorithm to increase the probabilistic complexity
of the tape while maintaining the same amount of algorithmic complexity.

Our contributions are as follows:

• We showed that in two regions Turing Machines have on average higher NC (and
lower tape length).

• We localized these regions and identified the cause as short cycles in the rules that
output tapes with smaller length through the complexity profiles.

• We analyse statistically complex TM tapes.

• We compare BDM with compression-based measures.

• We create a simple algorithm to increase the probabilistic complexity of the tape
while maintaining the same amount of algorithmic complexity.

5.3 Turing Machines

Turing’s proposal on automatic machines (Turing Machines) simplified the concept of
decision machines by defining an abstract machine that handles symbols on a strip of tape
according to a table of rules. Despite the simplicity of the mathematical model, a TM
(TM) is capable of simulating the logic behind any computer algorithm provided to it
[253]. Specifically, a TM is composed of a rule table, a head, and a state, and operates on
a memory tape divided into discrete cells. The machine starts with an initial state and

79

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

its head positioned at a given point of the tape. In this position, it scans a single symbol
of the tape and based on the scanned symbol, initial state, and instruction table, the TM
writes a symbol on the tape and changes its position. This process repeats continuously
until the machine enters its final state, causing a halt in the computation [254].

Formally, a TM can be defined as a 7-tuple 𝑇 = ⟨𝑄, Γ, 𝑏, 𝜃, 𝛿, 𝑞0, 𝐹 ⟩, where: 𝑄 is a
finite, non-empty set of states; Γ is a finite, non-empty set of tape alphabet symbols; 𝑏 ∈ Γ
is the blank symbol; 𝜃 ⊆ Γ ⧵ {𝑏} is the set of input symbols; 𝑞0 ∈ 𝑄 is the initial state; and
𝐹 ⊆ 𝑄 is the set of final states or accepting states. Finally, the transition function, 𝛿 is
characterized by 𝛿 ∶ (𝑄 ⧵ 𝐹) × Γ↛𝑄 × Γ × {𝐿, 𝑅, 𝑁}, where 𝐿 is left shift, 𝑅 is right shift,
and 𝑁 is no shift. The initial tape contents are said to be accepted by 𝑇 if it eventually
enters a final state of 𝐹 and halts. Despite this definition, there are many variants of
these machines. For instance, there are models which allow symbol erasure or no writing,
models that do not allow motion [255], and others which discard the stop criteria or final
state, and consequently, do not halt.

With this model, a mathematical description of a simple device capable of arbitrary
computations was developed, capable of proving properties of computation in general, and
in particular of proving the uncomputability of the halting problem [5].

5.4 Methods

5.4.1 Turing Machines configuration

In this chapter, we analyse the output of simple TMs. All TMs have a binary or
ternary set of symbols 𝜃2 = {0, 1} 𝑜𝑟 𝜃3 = {0, 1, 2}, with a matching set of tape symbols
Γ = {0, 1} 𝑜𝑟 Γ = {0, 1, 2}. These TMs have the following specific conditions:

• The machines start with a blank tape (all set to zero, 𝑏 =“0”);

• The machines do not have an internal condition to halt (𝐹 = ∅);

• The halting is performed by an external condition representing a certain number of
iterations that is set the same in every TM;

• The TMs are restricted to read only one tape character at a time and perform three
types of movement on the tape, namely move one cell to the left, move one cell to
the right, or stay in the same position.

Table 5.1 shows a matrix rule 𝑀 example for a TM with #𝑄 = 2 and #𝜃 = 2. Given
a scanned symbol and the internal state of the TM, there is a triple that provides the
TM information regarding the next symbol to write on the tape from the set 𝜃2, the next
movement of the head relative to the tape (left = 0, stay = 1, right = 2) and the next
internal state from the set 𝑄 = {0, 1}. This matrix table is used to fill the tape across a
given number of iterations. Each TM starts with the initial state of “0”, and the tape with
the initial symbol “0”. With these initial conditions, the TM reads the tape’s symbol and,

80

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

given the value read and the rule matrix, changes the tape symbol at the current position,
its internal state, and the position of the head on the tape.

Table 5.1: Rule matrix for a TM with #𝑄 = 2 and #𝜃 = 2.

Symbol 0 1

State 0 (0, 1, 1) (0, 2, 0) (write, move, state)
1 (1, 0, 1) (1, 2, 0)

5.4.2 Search approaches

Since we want to study the probabilistic complexity of TM tapes for different config-
urations, we created many TMs, as specified in Section 5.4.1 with a small cardinality of
states and alphabet (#𝑄, #𝜃). These TMs were then analysed as a whole, followed by a
more detailed analysis targeting TMs with specific configurations. For #𝑄 × #𝜃 ≤ 6, we
performed a sequential search through all possible TMs. Since the total number of Turing
Machines (TNTM) increases in a super-exponential way ((3 × #𝜃 × #𝑄)#𝜃×#𝑄, as shown
in Figure 5.1), it becomes computationally intractable to run all the TMs for larger values
of (#𝑄, #𝜃). Therefore, to approximate the results of a complete traversal of the TMs
domain, we applied a Monte Carlo algorithm [256] to select TMs from their total pool for
#𝑄 ∈ {4, … , 10} and #𝜃 = 2, since this algorithm is widely used to obtain qualitative
information regarding the behaviour of large systems [257].

Figure 5.1: Super-exponential growth in TNTM, with the increase in number of states
(#Q), and a fixed alphabet cardinality (#𝜃 = 2).

To perform a sequential search through all possible TMs of a pair (#𝑄, #𝜃), we consider
that each TM is represented by its rule matrix 𝑀 and define a total order relation between
them. Furthermore, we consider this order to start with an initial TM (𝑡𝑚0), which has
its rule matrix filled with the same tuple (0, 0, 0). The definition of next(𝑀) → 𝑀 was
based on a succession of increments that would carry to the next significant attribute on

81

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

overflow. When the last possible 𝑀 is reached, 𝑀 returns to its configuration of 𝑡𝑚0. As
an example, for #𝑄 = #𝜃 = 2, all four elements of the first TM rule matrix would start
at (0, 0, 0), and the last TM would have all elements defined as (1, 2, 1).

To provide a unique numerical identifier (𝑖𝑑) for each TM within the set of TNTM for
a pair (#𝑄, #𝜃), we mapped 𝑀 → 𝑖𝑑 (Algorithm 1). The inverse function 𝑖𝑑 → 𝑀 is well
defined and can be inferred from the former algorithm.

Algorithm 1: Mapping a TM rule matrix 𝑀 to a unique identifier 𝑖𝑑, in order
to traverse through all TMs.
1 #𝑅 = #𝑄 × #𝜃 × 3;
2 𝑖𝑑 = 0;
3 for each 𝑐 in 𝑀 do
4 𝑖𝑑 = 𝑖𝑑 × #𝑅 + 𝑐.𝑤𝑟𝑖𝑡𝑒 + (𝑐.𝑚𝑜𝑣𝑒 + 𝑐.𝑠𝑡𝑎𝑡𝑒 × 3) × #𝜃 ;
5 end
6 return 𝑖𝑑;

In contrast, in the Monte Carlo approach, rather than starting in one rule matrix
and ending in another, TMs are randomly configured by sampling each cell’s components
(write, move, state) from uniform distributions.

In both search cases, we took advantage of multiple processing cores of the same
machine by subdividing the entire group of TMs into different jobs. For the sequential
search, the domain was evenly split into as many partitions as the number of jobs in
parallel. However, this separation was not required in the Monte Carlo algorithm. At the
end of each job, the extracted measures were collected into a single measure set.

5.4.3 Probabilistic complexity

We used data compression to measure the probabilistic complexity of the output tape
created by the TM after 𝑛 iterations. The NC was used as the compression measure
(Equation (2.12)). 𝐶(𝑥) is computed as

𝐶(𝑥) = −
|𝑥|

∑
𝑖=1

log2 𝑃(𝑥𝑖|𝑘), (5.1)

where 𝑃 is the probability of each string symbol 𝑥𝑖 occurring given a context k.
Probability P is computed using a Markov model, which is a finite-context model that

predicts the following outcomes given a past context 𝑘 [144]. Specifically, a Markov model
loads the input using a given context 𝑘 and updates its internal model. This internal
model is used to compute the probability of any character being read at a given point.

The Markov model operates in two distinct stages: estimation and update. During
the estimation stage, the model leverages the given context 𝑘 to predict the probability of
each character in the input sequence. The update stage consists of refining the internal
model based on the observed input, thus improving the prediction accuracy.

In the estimation stage, the Markov model computes the probability of a character 𝑥𝑖

occurring, given the context 𝑘, as follows:

82

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

𝑃(𝑥𝑖|𝑘) =
𝑁(𝑥𝑖, 𝑘) + 𝛼
𝑁(𝑘) + 𝛼|𝜃|

, (5.2)

where 𝑁(𝑥𝑖, 𝑘) is the number of times the character 𝑥𝑖 appears after the context 𝑘, 𝑁(𝑘)
is the total number of occurrences of the context 𝑘 in the input sequence, 𝛼 is Laplace
smoothing and |𝜃| is the size of the alphabet.

During the update stage, the model refines the internal representation by incrementing
the corresponding counters for 𝑁(𝑥𝑖, 𝑘) and 𝑁(𝑘) each time a new character 𝑥𝑖 is observed
after the context 𝑘. This process allows the model to learn and adapt to the input data,
enhancing the prediction accuracy.

In the case of Algorithm 2, the tape produced by the TM is provided to the Markov
model with context 𝑘. Then, this model is used to determine the NC by computing the
normalized summation of the probability of each character occurring on the tape.

Algorithm 2: Determine the NC of a generated TM tape.
Input : tape
Output: nc

1 for (i = 0; i < tape.size(); ++i) {
2 element_value = markov_table.get_element_occurrence_for_context(tape[𝑖]);
3 sum_context_occurrences = summation(markov_table.get_context_occurrences(tape[𝑖]));
4 markov_table.update_model(tape[𝑖])+=1;
5 value += 𝑙𝑜𝑔2(element_value/sum_context_occurrences);
6 }
7 tape_length = tape.get_length();
8 normalizer = tape_length × 𝑙𝑜𝑔2(alphabet_cardinality);
9 return nc = value / normalizer;

5.4.4 Normal and dynamic complexity profiles

Some probabilistically complex tapes were analysed individually by studying how the
NC behaved with the increase in the number of characters currently written on the tape
(length of the tape). This study was carried out in two forms: a normal complexity
profile and a dynamic complexity profile of the tapes. The normal complexity profile is
computed after the TM is halted by an external condition representing a certain number
of iterations, while the dynamic complexity profile is computed during the TM execution.
It is also worth mentioning that the normal complexity profile was applied to the sequence
of rules used by the TMs.

A normal complexity profile can be seen as a numerical sequence ⃗⃗⃗⃗⃗⃗⃗⃗𝑁(𝑥𝑖) containing
values that express the predictability of each element from 𝑥 given a compression function
𝐶(𝑥). Assuming 𝑥𝑏

𝑎 is a subsequence of 𝑥 from position 𝑎 to 𝑏, we define a complexity
profile as

⃗⃗⃗⃗⃗⃗⃗⃗𝑁(𝑥𝑖) = 𝐶(𝑥𝑖|𝑥𝑖−1
1). (5.3)

Notice that 𝐶(𝑥) has a causal effect, which means it is assumed that, for ⃗⃗⃗⃗⃗⃗⃗⃗𝑁(𝑥𝑖), we

83

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

have to access the elements previously ⃗⃗⃗⃗⃗⃗⃗⃗𝑁(𝑥1), ⃗⃗⃗⃗⃗⃗⃗⃗𝑁(𝑥…), ⃗⃗⃗⃗⃗⃗⃗⃗𝑁(𝑥𝑖−1) by order. The profile was
normalized to compare tapes with different alphabets according to

⃗⃗⃗⃗⃗⃗⃗𝐶(𝑥𝑖) =
⃗⃗⃗⃗⃗⃗⃗⃗𝑁(𝑥𝑖)
log2 |𝜃|

, (5.4)

where log2 |𝜃| is the normalization factor by the cardinality of the alphabet.
The number of bits needed to describe 𝑥 can be computed as the sum of the number

of bits of each 𝑥𝑖, namely,

𝐶(𝑥) =
|𝑥|

∑
𝑖=1

⃗⃗⃗⃗⃗⃗⃗⃗𝑁(𝑥𝑖), (5.5)

where, as 𝑖 increases, the compressor is asymptotically able to accurately predict the
following outcomes, because it creates an internal model of the data. In other words, 𝐶 is
memorizing, and in some cases, learning.

The dynamic complexity profile can be defined as

⃗⃗⃗⃗⃗⃗⃗⃗𝐷(𝑥𝑡) = 𝑁𝐶(𝑥𝑖
1, 𝑡), (5.6)

where 𝑥𝑖
1 is the 𝑥 sequence generated at the time iteration 𝑡 considering that 𝑥 is described

from position 1 to 𝑖. As such, the dynamic profile was computed by providing the tape
to the Markov model during the TM’s execution time (while the tape is being edited),
computing the NC in small intervals as described in Equation (2.12).

5.4.5 Increasing the probabilistic complexity of TM’s tape

We also investigated the formulation of a methodology capable of consistently increas-
ing the TM tapes’ probabilistic complexity while maintaining the machines’ algorithmic
complexity. To this end, we created two methods:

• Method I aims to increase probabilistic complexity by optimizing the impact of the
rules on the TM’s probabilistic complexity (aggregation of fundamental rules).

• Method II aims to globally increase probabilistic complexity by iteratively changing
the TM’s rules.

The first method provided exciting conclusions regarding the interaction between crit-
ical rules, whereas the second proposed method consistently increases the probabilistic
complexity of the tapes. It is worth mentioning that in every computation of the NC, the
best Markov model was selected, and the set of TMs has specific conditions (specified in
Section 5.4.1).

Method I

The main principle of the method described in Algorithm 3 is to maximize the relevance
of a given rule on the TM by computing an impact measurement of the rule using the NC.

84

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

This metric is used as a selection criterion of rules when merging two randomly generated
TMs.

The first premise is that a rule can be essential in a certain sub-network of rules at a
particular time. The second premise is that we can successfully join essential rules relevant
to the source matrix by maximizing impact metrics. Even if specific rules lost relevance
during the TM merging process, since the value of their impact decreased, these rules
would be replaced by others that would fit the TM rule matrix better.

Algorithm 3: Method I: pseudo-code algorithm.
Input : merge_number, number_of_states, alphabet_size
Output: tm

1 rule_matrix_1 = rule_matrix.random(number_of_states, alphabet_size);
2 for (it = 0; it < merge_number; ++it) {
3 nc_matrix_1 = Compute_nc_matrix(rule_matrix);
4 rule_matrix_2 = rule_matrix.random(number_of_states, alphabet_size);
5 nc_matrix_2 = Compute_nc_matrix(rule_matrix);
6 rule_matrix_1 = tm_merge(rule_matrix_1, nc_matrix_1, rule_matrix_2, nc_matrix_2);
7 }
8 return tm(rule_matrix);
9 Function 𝑡𝑚_𝑚𝑒𝑟𝑔𝑒(𝑟𝑢𝑙𝑒_𝑚𝑎𝑡𝑟𝑖𝑥_1, 𝑛𝑐_𝑚𝑎𝑡𝑟𝑖𝑥_1, 𝑟𝑢𝑙𝑒_𝑚𝑎𝑡𝑟𝑖𝑥_2, 𝑛𝑐_𝑚𝑎𝑡𝑟𝑖𝑥_2):
10 for (index = 0; index < rule_matrix_1.size(); ++index) {
11 nc_rule_1 = nc_matrix_1[index];
12 nc_rule_2 = nc_matrix_2[index];
13 if (𝑛𝑐_𝑟𝑢𝑙𝑒_2 > 𝑛𝑐_𝑟𝑢𝑙𝑒_1) then
14 rule_matrix_1[index] = rule_matrix_2[index];
15 end
16 }
17 return rule_matrix;
18 Function 𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑛𝑐_𝑚𝑎𝑡𝑟𝑖𝑥(𝑟𝑢𝑙𝑒_𝑚𝑎𝑡𝑟𝑖𝑥):
19 tm = tm(rule_matrix);
20 nc_original = nc(tm, number_iterations);
21 summation_nc=0; for (i = 0 i < rule_matrix.size(); ++i) {
22 original_rule = rule_matrix[i];
23 for (𝑟𝑢𝑙𝑒 = (0, 0, 0) … (𝑤𝑚𝑎𝑥, 2, 𝑠𝑚𝑎𝑥)) {
24 if (rule ≠ original_rule) then
25 rule_matrix[i] = rule;
26 summation_nc += nc(tm, number_iterations);
27 end
28 }
29 average_nc = summation_nc/(number_possible_rules - 1);
30 rule_relevance = nc_original - average_nc;
31 nc_matrix[i] = rule_relevance;
32 rule_matrix[i] = original_rule;
33 }
34 return nc_matrix;

The algorithm can be decomposed into steps: (1) Generate a random rule matrix for
a TM. (2) Run TM through n iterations. (3) Compute NC of resulting TM using its
tape. (4) (i) For each element in the rule matrix, change its content sequentially to every

85

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

possible outcome ((0, 0, 0) … (𝑤𝑚𝑎𝑥, 2, 𝑠𝑚𝑎𝑥)) other than the original rule, and maintain the
remaining matrix unedited; (ii) for each outcome, run the TM n iterations and compute
the resulting tape’s NC; (iii) compute the average of all resulting NC values; (iv) compute
the impact of the original rule in the element by calculating the difference between the
original NC from Step (3) and the average NC from Step (iii); and (v) store the resulting
value (𝑖𝑚𝑝𝑎𝑐𝑡 ∈ [−1, 1]) in an impact matrix, with the same size of the rule matrix, at
the same index of the element in the rule matrix. (5) Repeat Steps (1)–(4) to generate
another random rule matrix for a TM and obtain its impact matrix. (6) Merge the first
and second TMs by selecting the rules with the highest impact value, creating a new TM.
(7) Calculate the impact matrix of the new TM. (8) Keep generating and merging other
new randomly generated TMs for n iterations.

This impact metric is vital as it allows us to assess the relevance of a given rule since:

1. An impact of zero means that the rule is not used by TM, as the mean probabilistic
complexity from changing it does not alter from the original;

2. An impact value closer to 1 means that the rule is more relevant, as changing the
rule results in a decrease in the probabilistic complexity of the tape compared to the
original rule;

3. An impact closer to −1 signifies that the rule decreases the probabilistic complexity
of the tape.

Method II

In contrast to the previous method, this more straightforward method iteratively at-
tempts to increase the probabilistic complexity of the tape by changing TM rules. This
method, described in Algorithm 4, looks at the global impact a rule has on the probabilistic
complexity of the TM’s tape and tries to increase the global NC.

The algorithm goes as follows: (1) While the length of the TM is smaller than a
limit (set as 100 here), generate a random rule matrix, run TM through n iterations and
determine the length of the generated tape. (2) Compute the NC of the resulting TM
using its tape. (3) For the number of iterations defined: (i) randomly select a matrix
rule index; (ii) randomly change the value of the rule; (iii) run TM for n iterations; (iv)
determine the length and NC of the generated tape; and (v) if the resulting NC is higher
than the previous maximum and the length is higher than 100 characters, keep the new
rule. Finally, (4) Retrieve the new TM.

In the next section, we assess our compression-based method regarding noise (substi-
tutions) and permutations in synthetic and actual genomic data.

86

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

Algorithm 4: Method II: pseudo-code algorithm.
Input : number_of_states,alphabet_size,number_of_iterations
Output: tm

1 while length<100 do
2 rule_matrix = rule_matrix.random(number_of_states,alphabet_size);
3 length=tm(rule_matrix).get_length();
4 end
5 nc = nc(rule_matrix);
6 for (it = 0; it ≠ number_of_iterations; ++it) {
7 random_index=random(rule_matrix.size());
8 rule=rule_matrix[random_index];
9 new_rule=rule.random();
10 rule_matrix[random_index]=new_rule;
11 nc_rule=nc(rule_matrix);
12 new_length=tm(rule_matrix).get_length();
13 if (nc<nc_rule AND new_length>100) then
14 nc=nc_rule;
15 else
16 rule_matrix[random_index]=rule;
17 end
18 }
19 return tm(rule_matrix);

5.5 Viability assessment of the NC

In this section, we validate using the NC computed with the best Markov model.
To make this assessment, we made use of synthetic and natural inputs. The synthetic
input was a string of 500 zeros followed by 500 ones, whereas the natural inputs were
the complete genome sequences of the Microplitis demolitor bracovirus segment O and the
Human parvovirus B19 isolate BX1 (both retrieved from NCBI 1).

5.5.1 Assessment

For each type of data, the substitution probability of the string increased from 0%
to 100%, and the string was randomly permuted in blocks of increasingly smaller sizes.
At each point, the NC was computed using the best Markov model (𝑘 ∈ {2, … , 9}) (the
model that provides the highest compression for that given string) and the obtained results
were plotted as a heat map (Figure 5.2). It is worth mentioning that, since the generated
synthetic data have low probabilistic complexity and genomic data usually have high
probabilistic complexity, in synthetic data, the substitution was randomly set to generate
any symbol of the alphabet 𝜃 = {0, 1} in order to increase the complexity of the string. On
the other hand, in genomic data, the substitution was fixed to generate always a specific
nucleotide (symbol of the alphabet) to decrease the complexity continually.

As shown in Figure 5.2, the NC behaves as expected, increasing as the substitution
rate of the strings increases in synthetic data and decreasing in biological data.

1 https://www.ncbi.nlm.nih.gov/nuccore/

87

https://www.ncbi.nlm.nih.gov/nuccore/

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

Figure 5.2: Heat map of Normalized Compression with an increase in permutation and
edition rate. Generated string starting with 500 zeros followed by 500 ones (top); NC_-
007044.1 Microplitis demolitor bracovirus segment O, complete genome (bottom-left);
and MH201455.1 Human parvovirus B19 isolate BX1, complete genome (bottom-right).

The same occurs regarding a random permutation of the synthetic and natural strings.
There was a significant increase in NC with the increase in the number of blocks permuted
for the synthetic input. The same occurred in genomic data. Although less noticeable
due to being more probabilistically complex than the synthetic sequence, an increase in
the NC with an increase in the number of blocks permuted can be seen in both genomic
sequences. This occurrence is more pronounced in the Microplitis demolitor bracovirus
genome sequence than in the Human parvovirus B19 isolate BX1 genome sequence since
the latter has higher probabilistic complexity.

5.5.2 Insights

The results of the assessment suggest that the NC is a tolerant way of dealing with
substitutions and permutations when computed in this manner. As such, this methodology
could be successfully applied to measure the output of TM tapes since, besides being an
ultra-fast method of obtaining information about the tape, it can cope with the presence
of substitutions and permutations in a string and is thus a good estimator of probabilistic
complexity on a tape.

88

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

5.6 Global analysis of Turing Machine tapes

This section analyses the probabilistic complexity of TMs with a different alphabet
and state cardinality. We look at regions with spikes in NC and investigate the reason for
their occurrence using global metrics and average rule complexity profiles.

5.6.1 Probabilistic complexity patterns of Turing Machines

All TMs ran for 50,000 iterations. This value was selected since a considerable number
of iterations can still be performed in a reasonable computational time. The tapes pro-
duced by each TM were analysed with Markov models of context 𝑘 ∈ {2, … , 9}, and the
smallest NC was selected. Table 5.2 shows the average length of the tape and NC as well
as its standard deviation obtained for each group of TMs with a different pair of (#𝑄, #𝜃).
Due to the limited availability of computational resources, the number of sampled TMs
in the Monte Carlo search approach was the same order of magnitude as the TNTM for
#𝑄 = 3 and #𝜃 = 2.

Table 5.2: The average and maximum standard deviation of the length of the tape and
NC obtained in each TM group.

#𝜃 #Q TM No. Search Approach Mean Amp ± std Mean NC ± std

2 2 20,736 Sequential 32,055 ± 20,836 0.22724 ± 0.420,95
2 3 34,012,224 Sequential 29,745 ± 20,609 0.22808 ± 0.42330
3 2 34,012,224 Sequential 32,603 ± 19,923 0.17887 ± 0.38230
2 4 34,000,000 Monte Carlo 28,146 ± 20,348 0.22753 ± 0.42403
2 5 34,000,000 Monte Carlo 26,932 ± 20,092 0.22643 ± 0.42403
2 6 50,000,000 Monte Carlo 25,963 ± 19,856 0.22512 ± 0.42363
2 7 50,000,000 Monte Carlo 25,164 ± 19,636 0.22356 ± 0.42285
2 8 30,000,000 Monte Carlo 24,477 ± 19,433 0.22219 ± 0.42215
2 9 30,000,000 Monte Carlo 23,882 ± 19,245 0.22079 ± 0.42134
2 10 30,000,000 Monte Carlo 23,357 ± 19,068 0.21933 ± 0.42039

A moving average low-pass filter was applied to the obtained values of data compres-
sion, the tape’s length was normalized by the maximum size obtained for its pair (#𝑄, #𝜃),
and the results were expressed as plots for #𝑄 ∈ {2, … , 6}, as presented in Figure 5.3. We
did not create the plots for higher cardinalities due to the under-sample of computed TM
relative to the TNTM. Nevertheless, the plots show an interesting relationship between
the tape’s length and the NC. In particular, the NC tends to be higher for tapes with a
shorter length. There are two significant reasons for this: firstly, smaller strings have few
elements and thus are harder to compress. This occurs mainly in machines that only pro-
duce 1 to 10 elements in the tape. Secondly, there is a correlation between smaller tapes
created by TMs with intertwined rules and a high NC value. This increase in probabilistic

89

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

complexity in short tapes is caused by TMs systematically re-writing portions of the tape
several times and consequently increasing the probabilistic complexity.

Figure 5.3: Plot of all TMs in Table 5.2. NC value is in blue, and the tape’s normalized
length is in yellow. The x-axes of the plots represent the index of the TM computed
according to Algorithm 1. The blue background is the plot that corresponds to the
group of TMs with #𝜃 = 3 and #𝑄 = 2; all other plots have #𝜃 = 2.

Overall, the TM plots show two large regions with a significant NC spike and a smaller
tape length. Moreover, these regions persist for TMs with a different #𝑄 and #𝜃, at least
for the cardinality under examination (see circles in Figure 5.3).

To examine this phenomenon, we computed the average bits required to represent the
generated tapes inside these regions, the NC, and the tape’s length. Furthermore, we
sampled from this pool 5000 TMs from inside and outside this region (except for #𝑄 and

90

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

#𝜃 = 2, with only 2000 selected). These sampled TMs ran for 1000 iterations. Figure 5.4
depicts these results:

• The length of TM’s tape (top-left);

• The required bits to perform compression of the tape (top-middle);

• The corresponding NC value (top-right);

• The average required bits to perform compression of index rules used by each TM
(bottom-left);

• The corresponding NC value (bottom-right).

Figure 5.4: The average value for the length of TM’s tape (top-left); average required
bits to perform compression of the tape (top-middle); and average NC value (top-right),
inside and outside the regions marked with circles in Figure 5.3. The average bits required
(bottom-left); and the average NC value obtained for the rules used by the TM (bottom-
right), inside and outside the regions marked with circles in Figure 5.3

By analysing Figure 5.4, we observe that, for all TM(#𝑄, #𝜃), the length of the tape
and bits required to compress it are, on average, higher outside the circle lines than inside
this region. In contrast, the average NC is higher inside the region. This information
demonstrates that, despite the seemingly higher probabilistic complexity, tapes are, in
fact, not more probabilistically complex but rather simply smaller in size. On average,
the tapes inside this region require fewer bits to represent than those outside this region.
Consequently, the results are only caused by the logarithmic normalization factor of the
NC, which creates this discrepancy in values, not the complexity of the sequence itself.

Regarding the NC and the average bits required to represent the index of the rules

91

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

used, we notice that in both cases, the indexes of the rules are, on average, more easily
compressible inside the regions under analysis (Figure 5.4, bottom). This data indicates
the presence of smaller rule cycles in these regions, making it easier for the Markov models
to compress them. To see this, we performed the normal complexity profile of these
rules and computed their average. Figure 5.5 shows the important regions of these rule
complexity profiles (all complete profiles are shown in Section C.2.1, Figure C.1).

Figure 5.5: Regional capture of average rule complexity profiles obtained from pseudo-
randomly selected TMs with #𝑄 ∈ {2, 3, 5, 6} and #𝜃 = 2 up to 1000 iterations.

The rule complexity profiles have a higher complexity outside the region than inside.
Furthermore, the decrease in complexity occurs faster inside the region than outside. This
difference is incremented with the increase in the cardinality of states. These results
indicate that the rule cycles are smaller inside this region. These small rule cycles (that
create low probabilistic complexity) are going back and forth in tiny regions of the tape,
decreasing its overall size. This decrease in size coupled with the low complexity of the
rules produces, on the one hand, models that require fewer bits to represent the tape and,
on the other hand, a higher NC value due to its dividing factor |𝑥|.

We conclude that given the same number of iterations, TM tapes in these regions
possess smaller lengths and higher NC due to similar short cycles. The regions in Figure 5.3
were created because these short cycles occurred in TMs, which were grouped due to the
sequential generation order of the TM rules (changes in the rules).

5.6.2 Insights

Using the Normalized Compression, we showed that some TMs have higher Normalized
Compression (and smaller tape length) in two regions (shown up to six states). These
regions correspond to probabilistic low complexity regions, and have a high NC due to
tape size.

We localized these regions and, using average rule complexity profiles, identified this
grouping as being caused by short cycles in the rules that output tapes with smaller

92

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

lengths. Since the probabilistic complexity of the TM tapes was measured assuming a
sequential generation order of the rules (changes in the sequential rules), these similar
short cycles with similar configurations were grouped together.

5.7 Analysis of probabilistically complex Turing Machine
tapes

In this section we look at probabilistically complex TM tapes by applying the normal
and the dynamic complexity profiles.

5.7.1 Analysis using normal and dynamic complexity profiles

To create the normal and dynamic complexity profiles, we filtered from each pair
(#𝑄, #𝜃) in Table 5.2 the top 15 TMs with a tape length larger than 100 characters and
the highest NC. Figure 5.6 depicts the normal and dynamic complexity profiles obtained
from the TMs with the highest NC for their state cardinality when run until each has a
tape length of 10,000.

Figure 5.6: Normal complexity profiles (left); and dynamic complexity profiles (right)
obtained for some of the filtered TMs. Each TM has a different cardinality of states or
alphabet.

We can draw some conclusions from the normal complexity profile from the results.
Firstly, all machines have tape regions that are harder to compress given the prior knowl-
edge of the Markov table, thus the spikes. These spikes are regions where the tape pattern
has been altered due to changes in the machine’s state or part of the tape being rewritten.

Furthermore, similarly to Figure 5.2 (top), where an increase in the number of string
editions leads to an increase in the probabilistic complexity of the string, the profiles of
Figure 5.6 (left) show the tape regions which have suffered more edition. This edition is
caused by complex rule interchange, which is harder to compress (more probabilistically
complex).

93

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

Regarding the dynamic complexity profile, TMs that create a tape with simple repeti-
tive patterns have a dynamic complexity profile that decreases their NC across time until
it reaches approximately zero. This behaviour is also observed in TMs with the highest
NC (#𝑄 ∈ {2, 3, 4}, #𝜃 = 2). However, with the increase in the number of rules, the
compression capacity of these tapes starts to decrease due to more complex patterns be-
ing generated. These patterns change during the creation of the tape due to interlocked
changes in TM states and changes in received inputs.

As expected, in both the normal and dynamic complexity profiles, with the increase in
#𝑄 and #𝜃, there is an increase in the number and size of spiky regions (normal complexity
profile) and the value of NC (dynamic complexity profiles). These results imply that the
number of rules influences the amount of information on the tape. Notably, TMs with
more rules have the potential to generate tapes that are generally harder to compress.

The results obtained show that these profile methods can localize higher probabilistic
complexity for different purposes. On the one hand, the normal complexity profile can
localize regions of higher and lower probabilistic complexity (assuming the machine has
reached the external halting condition) and localize regions of short cycles of rules. On
the other hand, the dynamic complexity profile is capable of localizing temporal dynam-
ics of probabilistic complexity, showing where there is an abrupt change in probabilistic
complexity.

5.7.2 Insights

In this section, we studied probabilistically complex TM tapes by applying the normal
and dynamic profiles described in Section 5.4.4.

The normal and dynamic complexity profiles serve as approximate measures that can
detect complexity change in the events through spatial and temporal quantities. The nor-
mal complexity profiles localize higher and lower probabilistic complexity regions assuming
the machine reaches the external halting condition. In contrast, the dynamic complexity
profiles localize temporal dynamics of probabilistic complexity through the dynamics of
the tape (while running). The latter identifies when a change in complexity occurs at a
certain depth. It is worth mentioning that a similar concept, Algorithmic Information
Dynamics (AID), was introduced by Zenil, Kiani, and Tegnnér [258]. AID explores the
effects of perturbations to systems and data (such as strings or networks) on their underly-
ing computable models. It uses algorithmic probability between variables to determine the
probability for the dependency (and direction between variables) and the set of candidate
models explaining such a connection. On the other hand, the dynamic complexity profiles
localize temporal dynamics of probabilistic complexity through the modification cycles of
the tape. Namely, it shows where there is an abrupt change in the probabilistic complexity
during the TM’s execution. Moreover, it detects the rules that directly influence the tape’s
probabilistic complexity during the TM’s run time. Although these notions are similar,
they differ because one relies on NC to compute the probabilistic complexity of the tape

94

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

in a dynamic temporal way, whereas the other uses algorithmic probability to determine
the smallest program to represent that pattern after the perturbations have taken place.

5.8 NC and BDM comparison

After considering the relationship between the algorithmic complexity of TMs and the
probabilistic complexity produced by their tapes and applying complexity profiles as local
measures to quantify and localize higher and lower regions of probabilistic complexity,
in this section, we compared the NC and the BDM regarding their ability to detect the
probabilistic complexity of tapes.

5.8.1 Comparison analysis between NC and BDM

To perform the comparison between NC and BDM, we pseudo-randomly selected 10,000
TMs with 6, 8, or 10 states and a binary alphabet, and ran each for 50,000 iterations.
The NC and the one-dimensional normalized BDM (according to [48]) were applied to
the tapes obtained. The average results can be observed in Table 5.3, and the overall
behaviour for TMs with #𝑄 = 10 and #𝜃 = 2 can be seen in Figure 5.7 (images for all
analysed states are shown in Figure C.2 in Appendix C). Notice that, in Figure 5.7, the
results are presented after applying a moving average low-pass filter. Furthermore, tape
length was normalized by the maximum size obtained for its pair (#𝑄, #𝜃) and, to observe
BDM compared to the NC, the BDM results were scaled in the left image by a 102 factor.
An example with non-scaled BDM is also presented in the right image.

Table 5.3: The average and maximum standard deviation of the NC and NBDM obtained
in each TM group.

#𝜃 #Q TM No. Mean Amp ± std Mean BDM ± std Mean NC ± std

2 6 10,000 26,359.6 ± 19,821 0.00042801 ± 0.011328 0.21631 ± 0.41753
2 8 10,000 24,471.8 ± 19,353 0.00045401 ± 0.010250 0.21975 ± 0.42054
2 10 10,000 23,123 ± 19,157 0.00060360 ± 0.012539 0.22696 ± 0.42404

Similar to Table 5.2, there is a decrease in the tape’s length when the number of states
increases. Additionally, in this sample, BDM and NC increase with the number of states.
The results indicate that the algorithmic nature of BDM allows for a tiny representation
of these data. Internally, BDM uses values derived from the computation of small TM.
Consequently the BDM can represent TM tapes with very small values. Nevertheless, for
a higher number of states, the BDM is progressively approximated by our methodology.

95

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

Figure 5.7: Comparison between the NC and BDM for 10,000 TM with #𝑄 = 10 and
#𝜃 = 2 that ran over 50,000 iterations: (Left) BDM scaled by a factor of 102; and (Right)
same example but with non-scaled BDM.

5.8.2 Insights

Herein we compared the NC and the BDM in analysing the TM tapes. BDM efficiently
describes the TM tapes since it uses TM values for their complexity estimation. Never-
theless, for a higher number of states, the BDM progressively approximates the statistical
values since the algorithmic approach of the BDM is constituted by a set of small TMs,
currently up to a maximum number of five states in a binary alphabet. Since BDM has
been computed for this number of states, it lacks the information to represent some Tur-
ing Machine tapes after this state cardinality. This effect grows with an increment in the
number of states.

On the other hand, the probabilistic approach used in the BDM is more simplistic
than ours, making the proposed method more relevant for this specific application. Fur-
thermore, since this analysis aims to quantify the probabilistic complexity of the TM
tapes with the same algorithmic complexity, the BDM is unsuitable for use in this use
case because the BDM has algorithmic models in its internal composition. Nevertheless,
for an application of quantification of both algorithmic and probabilistic complexity, a
combination of both methods would approximate the complexity of strings efficiently.

5.9 Increasing the probabilistic complexity of Turing Ma-
chine tapes

In this section, we analyse the impact of methods I and II on increasing the probabilistic
complexity of TM tapes.

5.9.1 Applying methods I and II

Methods I and II were implemented and tested regarding their ability to increase
probabilistic complexity. Method I was instantiated 200 times, where in each instance,
100 TMs were merged according to Algorithm 3. Method II was instantiated 2000 times
(10 times more since it is a faster algorithm) for 1000 iterations. In both methods, all TMs

96

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

had a #𝑄 = 10 and #𝜃 = 2, and were executed for 50,000 tape iterations. The compared
results can be observed in Section 5.9.1.

Regarding method I (Section 5.9.1, left), both top and bottom plots show that this
algorithm decreases the tapes’ length by half while retaining approximately the same bits
required to represent the tape and slightly increasing the NC. This method shows incon-
clusive results as the bits required to compress the tape are, on average, approximately the
same. Therefore, the tape length shrinkage is responsible for the increase in NC. However,
this could mean that information on the tapes is being condensed.

Moving on to the results obtained for method II, both top and bottom plots show
that this algorithm, on average, decreases tape length while significantly increasing the
bits required to represent the tape and the NC value. Besides being much faster than
the previous method, it can systematically increase the probabilistic complexity of TMs.
These results are a consequence of the way this method behaves. The method tries to
change the rules by looking at the outcome of the TM’s tape NC rather than augmenting

Figure 5.8: Comparison between method I (left) and method II (right). (Top) Plots show
the length of the tapes, bits required to represent the sequence, and the NC obtained for
200 TMs after a low-pass filter was applied. (Bottom) Plots show the average tape length
(bottom-left); average bits required (bottom-middle); and NC (bottom-right). Green
and red represent TMs before and after the method was applied, respectively. For method
I, the average corresponds to 200 instances, and for method II to 2000.

97

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

the rule’s impact on the tape. Figure 5.9 presents two tape evolution examples using
method II.

Tape 1 Before:01

Tape 1 After: 111111111110011110111100111011110011001110111110111100110011

Tape 2 Before:00

Tape 2 After: 111101011011111110110100111010010000001001111000100100111101

Figure 5.9: The first 59 characters of TMs’ tapes before and after method II was applied.

To evaluate method II better, we altered the number of rule iterations it uses to improve
(𝑖𝑡 ∈ {50, 100, 200, … , 32, 000}), the number of iterations the TM can write on the tape
(𝑛 ∈ {500, 1000, 2000, … , 8000}), and computed for 2000 instances:

• The final average length of the tape;

• The variation of the bits required (BR) to represent the tape (BRvar = 1
𝑛

×
∑𝑛

𝑖=1(𝐵𝑅𝑓𝑖𝑛𝑎𝑙 − 𝐵𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙));

• The variation of NC (NCvar = 1
𝑛

× ∑𝑛
𝑖=1(𝑁𝐶𝑓𝑖𝑛𝑎𝑙 − 𝑁𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙)).

The results of this process are shown in Figure 5.10.
It is possible to observe in Figure 5.10 that both rule iterations and iterations on

the tape play a significant role in the probabilistic complexity of the TM. The method
demonstrates that as the number of rule iterations increases (iterations that try to increase
the NC value of the tape), both the variation of the NC (maximum average increase of
40%) and bits required (maximum average increase of 55 bits) increase. At the same time,
the length of the tape decreases (minimum of 111 characters of tape length).

On the other hand, the variation of the NC and bits required act interestingly. Firstly,
for a reduced number of rule iterations, the NC is higher for a lower number of tape
iterations, showing an overall improvement of the NC due to the small tape size. However,
as the number of rule iterations increases, so does the variation of the NC and bits required,
showing an actual increase in the probabilistic complexity of the TMs’ tapes. This result
indicates that the sequence is getting increasingly complex with the number of iterations,
as the only way to sustain an increase in complexity is by creating rules with non-repeatable
patterns. As such, the decrease in tape length observed when using method II implies that
the rules obligate the rewriting of certain parts of the tape, making it more compact and,
thus, harder to describe by a probabilistic compressor. Accordingly, a simple adaptation
of method II can be made to decrease probabilistic complexity while maintaining the
same algorithmic complexity (the opposite). This adaptation allows the variation of the
probabilistic complexity of a TM tape according to the desired value while maintaining
the same algorithmic complexity.

5.9.2 Insights

In this section, we evaluated methods to increase the probabilistic complexity of TM
tapes while maintaining the same amount of algorithmic complexity. Although method I

98

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

Figure 5.10: Average final length of the tape (top-left); variation of the bits required to
represent the string (top-right); and variation of the NC (bottom), with the increase in
number of rule iterations and tape iterations.

provided inconclusive results, method II could effectively increase probabilistic complexity
while retaining algorithmic complexity. The value of the probabilistic complexity can be
set to the desired number instead of the maximum using a simple variation of method II.
This algorithm can be applied for ultra-fast generation from a short program, outputting
tapes with a desired probabilistic complexity while the algorithmic complexity remains low.
This algorithm may have many applications in genomics, metagenomics, and virology. For
example, the output of these TMs can be used as an input to test and quantify the accuracy
of genome assembly algorithms for different complexities from non-stationary sources. The
significant advantage is that the output has high-speed generation without the need to store
any sequence besides the program’s configurations. Another application is the simulation
of progressive mutations in metagenomic communities. It can also complement absent
regions of genome viruses given sequencing incapabilities or DNA/RNA degradation (using
similar probabilistic complexity). A broader application is the benchmark of compression
algorithms used to localize complexity in the data given possible algorithmic sources.

5.10 Summary

Turing Machine tapes with the same algorithmic complexity may have very different
probabilistic complexities. In this study, we analysed the behaviour of TMs with specific
conditions regarding the probabilistic complexity of their generated tapes. To carry out
this study, we created low algorithmic complexity TMs (a small number of states and

99

CHAPTER 5. COMPLEXITY ANALYSIS OF TURING MACHINES

alphabet). We used a compression-based measure approximated by the best-order Markov
model to measure the quantity of probabilistic complexity in the output tapes.

After assessing the compression-based approach regarding symbol editions and block
transformations, we identified that TMs with the same number of states and alphabet
produce distinct tapes with higher NC patterns in two regions. Furthermore, we showed
that these two regions are related to repetitive short cycles in the configuration matrix,
given sequential modifications in the matrix that create shorter tapes.

We introduced normal and dynamic complexity profiles as approximate measures to
quantify local complexity. The normal complexity profiles localize regions of higher and
lower probabilistic complexity for machines that reached the external halting condition.
The dynamic complexity profiles localize probabilistic complexity’s temporal dynamics
through the tape’s modification cycles. We showed examples using both profiles and
applied them to achieve some findings in this chapter regarding global quantities.

Additionally, we compared a measure that uses both algorithmic and probabilistic
approaches (BDM) to analyse the tapes. The fact that the tapes were created by TMs with
the mentioned specific conditions makes BDM an efficient describer of the tapes. However,
for a higher number of states, BDM is progressively approximated by our methodology.

Finally, we developed an algorithm to increase a tape’s probabilistic complexity pro-
gressively. This algorithm creates a tape that evolves through a stochastic optimization
rule matrix that is modified according to the quantification of the NC. As such, this algo-
rithm can be modified to variate the value of the NC. We pointed out some of its potential
applications in the bioinformatics field.

100

Chapter 6

On solving the inverse problem
through approximation

f Abraham meets Melchizedek - Jorge Miguel Silva.

“When you find your path, you must not be afraid.
You need to have sufficient courage to make mistakes.

Disappointment, defeat, and despair
are the tools God uses to show us the way.”

– Paulo Coelho

101

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

6.1 Contextualization

Despite being highly heterogenous, all data can be reduced to a string of bits. Kol-
mogorov Complexity analyses data in this way. It estimates the complexity of data as
the length of a smallest program that, when run, generates the string and halts. Despite
Kolmogorov complexity being noncomputable, it can be approximated.

In the previous chapter, we evaluated the usage of NC to select the best Markov model
that minimizes the complexity quantity of TM tape. Although the algorithmic complexity
of the TMs that generate the tapes is the same for a set of (#𝑄, #𝜃) since the number
of rules is the same, the output tapes can vary widely in size and form (a good example
being the Busy Beaver [259]). Hence, the approximation of the probabilistic complexity
provided by the NC of the tapes generated differs substantially from tape to tape. While
it is relatively easy to compress repeated sequences, the compression of some sequences
with an algorithmic scheme has proven difficult to do by simple probabilistic compressors.
However, the string is simple to describe using the rule matrix. This problem is an inverse
problem since the rule matrix given the produced TM tape.

Suppose it is possible to develop a close algorithmic representation of a digital object,
even if it is not the smallest representation possible. In that case, the applications are
tremendous since we can (besides losslessly representing data in a compressed manner)
get insights into the underlying structure of the data itself. Detecting algorithms in data
can allow for better data compression, comprehension, and behavioural prediction.

As such, in this chapter we aim to create a program that can represent approximately
any given string. However, this problem is very complex due to the high dimensionality
and heterogeneity of the data. Consequently, this chapter presents only an initial proposal,
and there is still much work to be done in order to function correctly for any type of string.
The remainder of this chapter is divided as follows:

• Research Questions and Contributions;

• Considerations regarding the inverse problem;

• Methods;

• Results;

• Summary.

6.2 Research questions and contributions

As previously mentioned, algorithmic Kolmogorov complexity, although non-
computable, can be approximated. One meaningful approximation is performed by data
compressors, which are an upper bound of the algorithmic complexity of the sequence.
However, most lossless data compression algorithms are limited to finding simple proba-

102

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

bilistic regularities because these algorithms have been designed for fast storage reduction.
Still, some compressors like GeCo3 [51], and PAQ [239, 153] are designed for compression
ratio improvement at the expense of more computational resources. These lossless data
compression algorithms are hybrids between probabilistic and algorithmic schemes. This
algorithmic approach differs from most lossless data compression algorithms since it con-
siders that the source creates structures that follow algorithmic schemes and, as such,
does not only perceive data as being generated from a probabilistic function. Conse-
quently, they detect some algorithmic schemes in data and use them in data compression.
But, more importantly, they show the importance of efficiently combining models that
address probabilistic and algorithmic nature. Raw data is not only algorithmic in nature,
and its characteristics, quantity of noise, and precision, on average, affect the efficiency of
programs that measure information using pure algorithmic schemes more than those of a
more probabilistic nature. Although nature can be based on algorithmic schemes, it is not
limited to them. This other part is based on non-computable sources that make logical
descriptions inconsistent [260, 261].

This chapter will explore a possible approximation solution for the inverse problem.
Specifically, we propose a method that, given a target string 𝑦, tries to find a program
that approximately describes that string. So how do we look for a program that generates
the algorithmic schemes present in data? Furthermore, how do we do this in a way that
is tolerant to noise and from a single example? These are the questions at the core of this
chapter, which we will try to answer. When dealing with this problem, it is crucial to
create a solution that leverages the algorithmic and probabilistic methods for the solution
to be tolerant to noise and flexible in finding various algorithmic schemes in data. Another
aspect that needs to be considered is the computational time required by this method, as
it needs to be executed in feasible computational time.

As a result, we have made the following contributions in this chapter:

• A method of approximating a solution for the inverse problem;

• Three different search solutions.

6.3 Considerations regarding the inverse problem

6.3.1 Global aspects

Mathematical models are a key tool in the scientific pursuit of understanding our world.
When a mathematical model is known, it is employed to predict the system’s behaviour,
given some parameters that describe a system. This approach is known as mathematical
modelling, and the parameters are called model parameters.

In the inverse problem, causal factors are estimated using a set of observations. Since
they provide information about parameters that are not directly observable, they are
among the most paramount mathematical issues in science and mathematics, always being

103

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

present: e.g., estimating a planet’s density from measurements of its gravitational field;
determining a function that generates a sequence number; determining from where a fire
weapon was shot, given the position of the bullet hole; decrypting a cryptographic message;
finding a program that generated a given string.

Formally in an inverse problem, given the generated observation data (𝑑𝑜𝑏𝑠), we seek
to identify the model parameters. As such, we look for the model parameters 𝑝 such that
(at least approximately)

𝐹(𝑝) = 𝑑𝑜𝑏𝑠, (6.1)

where 𝐹 is the forward map, 𝐹(𝑝) is the data predicted by model 𝑝. Using this formulation,
we can also think of the discrepancy between 𝑑𝑜𝑏𝑠 and 𝐹(𝑝) (𝐷(𝑑𝑜𝑏𝑠, 𝐹 (𝑝))) as the residuals
associated with the model. They are essential to assess the model’s viability since their
analysis indicates if the assumed model is realistic or not. The biggest challenge of the
inverse problem is that it is an unstable process: noise and errors can be tremendously
amplified, making a direct solution challenging. This is especially true for the case of raw
data, which is common in scientific areas and is why probabilistic approaches have become
prevalent when trying to solve these types of problems.

6.3.2 Inverse problem in case of study

Despite the progress of probabilistic methods, there is value in studying the algorithmic
modelling of problems. For example, in data compression, although the probabilistic
approaches have been highly studied, algorithmic modelling is yet to be fully explored.

In our case, finding the program that defines a given string allows us to losslessly rep-
resent compressed data and get insights into the underlying structure of the data itself.
This is because data compression can be viewed as a way of learning since the more we
can reduce data without losing their description, the more we understand their underly-
ing structure [11]. Consequently, we could understand its structure better by finding an
algorithmic program that describes a string in a compressed manner.

As seen in the previous chapter, sequences that follow algorithmic schemes are easier
to compress with the algorithmic knowledge of how to compress them. The complex part
is the inverse problem of how to determine from a target string what is the algorithm that
generated it. We know of two approaches to solve this problem: human inspection and
automatic computational search. Human inspection is primarily subjective, unpredictable,
and requires programming time, while automatic computation is incremental and constant.
Furthermore, given the size of the problem, it is only rational to use a computational
solution.

Unfortunately, it is intractable to perform a sequential search due to the super-
exponential growth of TMs associated with higher cardinalities of the alphabet or states.
One might try to tackle the problem with a resource-bounded approach similarly to Levin
[52, 53] or Hutter search [54, 55], although, in search of long strings, the problem also be-

104

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

comes unfeasible. More recent approaches are the CTM [56] and its derivation, the Block
Decomposition Method [48]. These approaches decompose the quantification of complex-
ity for segmented regions using small TMs. Furthermore, they change into a Shannon
entropy quantification when modelling the probabilistic nature, such as noise. This nu-
merical method that implements the ULS in a resource-bounded way has shown promising
results in different applications. However, as seen in Chapters 3 and 4, it also has shown
problems such as the incapacity to detect small programs such as IRs and underestimating
the amount of information contained in the object.

Inspired by a data compressor that combines models addressing the probabilistic and
algorithmic nature of data, in the following section, we introduce a novel method that
aims to create an approximate solution to the inversion problem by discovering Turing
Machines that define or approximately define a given string.

6.4 Methods

6.4.1 General configuration

Usually, data compressors use a probabilistic approach to look for patterns in strings.
The program follows a fixed set of rules to analyse string patterns, and using these patterns
creates a probabilistic model that it uses to compress the data. Instead of following this
reasoning, our proposal balances probabilistic and algorithmic methods. This equilibrium
is performed using algorithmic methods to generate output and probabilistic methods to
assess similarities between the generated and target strings.

Our proposal has two modules to approximate an algorithmic source that produces a
target string 𝑦. Module 1 uses Turing Machines as string generators (their tapes), and
module 2 uses Finite-Context Model (FCM) to determine the loss between the generated
string 𝑥 and target string 𝑦. Turing Machines have the same configuration as those refer-
enced in the previous chapter. Each TM starts at state zero, interacts with a blank tape
(tape full of zeros), and stops after 𝑛 iterations, producing the tape 𝑥. The generated
string 𝑥 is then compared to the target string 𝑦.

To compare the generated string with the target tape, we used FCMs. Each Markov
model loads the generated tape using a context 𝑘 and updates its internal model. This
internal model is used to compute the probability of any character being read at a given
point. After reading the generated strings, the FCMs are used to compute the loss function
between strings. This process of generation and evaluation of similarity is performed until
a solution is found or a 𝑁 number of executions are performed. At this point, the program
outputs its best results obtained.

6.4.2 Loss function

To determine the similarity between a target string and the generated TM tape, we
computed a loss (𝐿) using the FCMs. Specifically, FCMs were loaded with the target

105

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

string (𝐹𝐶𝑀(𝑦)) and saved in the program’s memory. When a generated string 𝑥 is
created, other FCMs with the same contexts as 𝐹𝐶𝑀(𝑦) are created and loaded with 𝑥
(𝐹𝐶𝑀(𝑥)). The models are paired for each context 𝑘 and then used to compute the loss
function.

The loss is determined using three main components, two based on the Kull-
back–Leibler divergence (𝐷𝐾𝐿) and one based on a length difference penalization.

Particularly, the loss is determined according to

𝐿 = 𝐷𝐾𝐿(𝑦 ∥ 𝑥)𝑐𝑜𝑛𝑑 + 𝐷𝐾𝐿(𝑦 ∥ 𝑥)𝑠𝑒𝑞 + 𝜆(𝐿(|𝑥|, |𝑦|)), (6.2)

where 𝐷𝐾𝐿(𝑦 ∥ 𝑥)𝑐𝑜𝑛𝑑 is the Kullback–Leibler divergence determined between the con-
ditional distributions of the FCM from the predicted string (𝑥) given the target string
(𝑦); 𝐷𝐾𝐿(𝑦 ∥ 𝑥)𝑠𝑒𝑞 is the Kullback–Leibler divergence determined between distributions
of occurrence of a substring 𝑠 of size (𝑘+1), where 𝑘 is the context of the FCM; 𝜆 is a con-
stant multiplication factor and 𝐿(|𝑥|, |𝑦|) is the loss penalization from the size difference
between 𝑥 and 𝑦.

The conditional Kullback–Leibler divergence (𝐷𝐾𝐿(𝑦 ∥ 𝑥)𝑐𝑜𝑛𝑑) is determined as

𝐷𝐾𝐿(𝑦 ∥ 𝑥)𝑐𝑜𝑛𝑑 = 1
|𝑐|

|𝑐|

∑
𝑖=0

|𝜃|

∑
𝑗=0

𝑃 𝑦(𝜃𝑗|𝑐𝑖) × log2 (
𝑃 𝑦(𝜃𝑗|𝑐𝑖)
𝑃 𝑥(𝜃𝑗|𝑐𝑖)

) , (6.3)

where |𝜃| is the cardinality of the alphabet 𝜃, |𝑐| is the cardinality of all prefixes for an
alphabet 𝜃 and a context 𝑘, determined by |𝑐| = 𝜃𝑘. 𝑃 𝑦(𝜃𝑗|𝑐𝑖) is the conditional probability
of a letter 𝜃𝑖, given the prefix 𝑐𝑗.

The Kullback–Leibler divergence for a given prefix 𝑐𝑗 followed by the alphabet letter
𝜃𝑖 is determined as

𝐷𝐾𝐿(𝑦 ∥ 𝑥)𝑠𝑒𝑞 = 1
|𝑐|

|𝑐|

∑
𝑖=0

|𝜃|

∑
𝑗=0

𝑃 𝑦(𝑐𝑖𝜃𝑗) × log2 (
𝑃 𝑦(𝑐𝑖𝜃𝑗)
𝑃 𝑥(𝑐𝑖𝜃𝑗)

) , (6.4)

where 𝑃 𝑦(𝑐𝑖𝜃𝑗) is the probability of a given sequence of prefix 𝑐𝑗 followed by the alphabet
letter 𝜃𝑖 occurring.

And finally, the loss penalization from the size difference between 𝑥 and 𝑦 is computed
as

𝐿(|𝑥|, |𝑦|) =

⎧{{
⎨{{⎩

− 𝑙𝑜𝑔2(
|𝑦|
|𝑥|

), |𝑥| ≤ |𝑦|

− 𝑙𝑜𝑔2(
|𝑥|
|𝑦|

), |𝑥| > |𝑦|
. (6.5)

6.4.3 Search approaches

In order to perform the search for strings, we defined three search approaches:

• Sequential search;

106

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

• Monte Carlo search;

• Guided search.

Sequential and Monte Carlo searches served as baseline methods to compare the guided
search. It is worth mentioning that for all search approaches, multiple processing cores
were used.

To perform a sequential search, we used the same approach explained in Chapter 5,
where we navigate through all possible TMs of a pair (#𝑄, #𝜃) by considering that each
TM is represented by its rule matrix 𝑀 and define a total order relation between them.
The unique numerical identifier (𝑖𝑑) was computed using the same notation explained in
Section 5.4.2 and Algorithm 1.

Monte Carlo algorithm [256] was used again since this algorithm is widely used to
obtain qualitative information regarding the behaviour of large systems [257]. As explained
in Section 5.4.2, rather than starting in one rule matrix and ending in another, the method
was used to configure TMs randomly by sampling each cell’s components (write, move,
state) from uniform distributions.

The guided search is a derivation of A*, an informed search algorithm drafted in terms
of weighted graphs. In the A* algorithm, the search starts from a specific starting node of
a graph and seeks to find a path to a goal node having the smallest cost. It holds a tree
of paths originating at the start node and extends those paths one edge at a time until its
termination criterion is met. In our derivation, length penalization was considered as the
heuristic, and the cost was the average of the Kullback–Leibler divergences. Furthermore,
one node is composed of a TM rule matrix and the loss obtained from the tape generated
after 𝑛𝑖𝑡 iterations.

Initially, the program receives as input the alphabet cardinality, state cardinality, the
number of tape iterations (𝑛𝑖𝑡) each Turing Machine runs, and the number of attempts
to approximate the solution (𝑛𝑡𝑜𝑡𝑎𝑙_𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠). Then, with this knowledge, our algorithm
selects 𝑛 starting nodes (one node each running thread) with a random state matrix and
associated cost. In each thread, the algorithm will run 𝑛𝑡𝑜𝑡𝑎𝑙_𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠/𝑛𝑡𝑟𝑒𝑎𝑑𝑠 attempts to
find a TM that represents a given TM tape.

After defining each thread’s initial node, each starting node will determine its succes-
sors. In this case, each successor has a rule matrix that differs in one rule from its ancestor
node. In total, the number of possible successors (𝑛𝑝_𝑠𝑢𝑐) for a node is given by

𝑛𝑝_𝑠𝑢𝑐 = (#𝜃 × #𝑄 × 3 − 1)(#𝜃 × #𝑄). (6.6)

Using each successor’s rule matrix, a TM is created and run for 𝑛𝑖𝑡 iterations to obtain
its generated tape 𝑥. Then, utilizing the generated tape, a loss is computed towards the
target string. This pair is inserted into a node and added to the list of nodes to open.
This list is ordered by the nodes with fewer costs (in this case, the lower loss). The
ancestor node is then moved to a synchronized, unordered set of visited nodes shared

107

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

among threads. Afterwards, a successor node not included in the set of visited nodes is
opened. The process is repeated until the number of attempts is reached or a solution is
found. During this process, the nodes which provided the smallest costs are retained in a
top 𝐾 list.

6.4.4 Guided search optimizations

Due to the sheer size of the search space, some other optimizations were performed
on this search. Namely, the creation of a patience mechanism, the selection of random
successors, selective loss increment for successor nodes, and providing a good initialization
of the starting nodes.

The patience mechanism was performed to prevent nodes from getting stuck on a
specific local minimum. Each thread has a maximum patience number (𝑀𝑎𝑥𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒)
which, once reached, stops the search process in that thread, discards the nodes to be
opened and restarts the search with a new node using a random rule matrix. The maximum
patience number is a function of the current loss value as

𝑀𝑎𝑥𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 1
2 × 𝑙𝑐

+ 𝑐, (6.7)

where 𝑙𝑐 is the loss of the current node being opened, and 𝑐 is the baseline maximum pa-
tience value. This heuristic value and the function that relates loss and maximum patience
were refined by trial and error. The mechanism works by incrementing the patience value
(which starts at zero) every time the current node has the same loss as its ancestor. On
the other hand, when loss decreases, the patience value returns to zero. When the level
of patience reaches the maximum value for patience, the search in that thread stops and
is restarted with a new never-visited node with a rule matrix filled with pseudo-randomly
generated rules. After this restart, the patience value returns to zero, and the process
starts again.

Another improvement to the algorithm was the selection of random successors from
the total pool of possible successors. Due to the large number of possible successors each
node has and the space of search characteristic of this problem, instead of opening all
possible nodes, only a sample of random successors is selected to compute its loss. This
number of successors also depends upon the loss of the current node being opened since
the aim is to have fewer successor nodes of a node with high loss rather than nodes with
smaller losses. As such, at a given point, the number of successor nodes is determined by

𝑛𝑠𝑢𝑐 = 2
𝑙𝑐

+ 𝑛𝑚𝑖𝑛, (6.8)

where 𝑛𝑚𝑖𝑛 is the minimal number of successors for a given node, determined as

𝑛𝑚𝑖𝑛 = 𝑙𝑜𝑔2(𝑛𝑝_𝑠𝑢𝑐 + 1) × 100. (6.9)

Once again, these values are heuristics determined by trial and error.

108

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

Another mechanism introduced to navigate the search space faster, and avoid local
minima, is the selective loss penalization of successor nodes. Concretely, instead of running
all iterations of the TM, each successor runs for a small number of iterations first. Following
this short run, the nodes that, at that point, have the same loss as the ancestor node (at
the same number of iterations) are attributed a final loss equal to the ancestor node plus
a penalization (1% loss of the ancestor node).

Finally, the initialization is performed, and instead of generating a random node for
each thread, each thread generates 10 initial nodes. Since the node to open is a priority
queue, the first node to be used is the one with the smallest loss.

6.4.5 Data representation

The bit representation of the target string 𝑦, is defined as 𝐵(𝑦). In the case of finding
a program that represents 𝑦, the generated string 𝑥 is the same as 𝑦 and the number of
bits (𝐵(𝑦)) is expressed by

𝐵(𝑦) = 𝐵𝑎𝑙𝑔𝑜(𝑦), (6.10)

where 𝐵𝑎𝑙𝑔𝑜(𝑦) is the number of bits that a Turing Machine when executed for 𝑛 iterations
outputs the target string 𝑦. Likewise, 𝐵𝑎𝑙𝑔𝑜(𝑦) can be defined as

𝐵𝑎𝑙𝑔𝑜(𝑦) = 𝑟𝑚𝑏𝑖𝑡𝑠 + ⌈𝑙𝑜𝑔2(𝑁𝑡𝑎𝑝𝑒𝑖𝑡
)⌉, (6.11)

where ⌈𝑙𝑜𝑔2(𝑁𝑡𝑎𝑝𝑒𝑖𝑡
)⌉ is the bits required to represent the number of tape iterations used

by the TM; and 𝑟𝑚𝑏𝑖𝑡𝑠 is the bits required to represent the rule matrix, which is computed
as

𝑟𝑚𝑏𝑖𝑡𝑠 = (⌈𝑙𝑜𝑔2(#𝑄)⌉ + ⌈𝑙𝑜𝑔2(#𝜃)⌉ + ⌈𝑙𝑜𝑔2(𝑀)⌉)(#𝑄 × #𝜃), (6.12)

where M is the number of movements the Turing Machine can take, which is always 3
(left, fixed, right); ⌈𝑙𝑜𝑔2(#𝑄)⌉ is the number of bits required to represent the number of
states used; and ⌈𝑙𝑜𝑔2(#𝜃)⌉ is the bits required to represent the alphabet used.

If the program does not find a program that represents the string (𝑥 ≠ 𝑦), and obtains
only an approximation of the target string 𝑦, the bits required to describe 𝑦, will be
computed as

𝐵(𝑦) = 𝐵𝑎𝑙𝑔𝑜(𝑦) + ⌈𝐶(𝑦||𝑥)⌉, (6.13)

where 𝐵𝑎𝑙𝑔𝑜(𝑥) is the number of bits required to represent the best program found that
represents the target string 𝑦 (according to Equation (6.11)), and 𝐶(𝑦||𝑥) is the relative
compression. 𝐶(𝑦||𝑥) can be seen as the number of bits used to represent 𝑦, having
exclusively the information from the string 𝑥. It measures the residual bits associated
with the tape generated using the algorithmic model and is computed as

109

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

𝐶(𝑦||𝑥) = −
|𝑦|

∑
𝑖=0

𝑙𝑜𝑔2(𝑃 (𝑦𝑖|𝑥)). (6.14)

The bits required to simply represent the string 𝑦 is determined as

𝐵(𝑦) = ⌈|𝑦| × 𝑙𝑜𝑔2(#𝑄)⌉. (6.15)

6.5 Performance evaluation using synthetic data

To evaluate the performance of each method, we devised an experiment that, using
method I described in Chapter 5, created TMs with increasingly more probabilistic com-
plexity. Specifically, for each state-alphabet cardinality pair, 10 tapes were generated after
1000 iterations of a TM, where each tape was generated to fit into an NC bucket. The first
tape 𝑁𝐶 ∈] 0, 0.2] , the second 𝑁𝐶 ∈] 0.2, 0.4] , and so on. These tapes were generated
for #𝜃 ∈ {2, 4} and #𝑄 ∈ {2, 4, 8, 16, 32, 64}.

After their creation, these tapes were used to assess the performance of the search
methods. All three search methods were executed for each of the tapes. The search TMs
were initialized with the same state and alphabet as the tapes generated by the Turing
Machines. If a tape was generated with a two state and a two symbol alphabet (#𝜃,
#𝑄) = 2, the search was only executed in this space. Furthermore, the iterations used to
generate the tapes were also provided to the search program. All searches had a maximum
of 10,080,000 attempts to find the target tape, and run in 18 threads (each thread searched
for 560,000 TM). Each attempt corresponded to a TM being tested as the generator of the
solution. After the program finds a program that generates the string or if the maximum
number of executions is reached, the program halts and outputs the best-obtained results
to a file. The number 10,080,000 was selected because it roughly corresponds to 10 minutes
of computation using 18 cores. It is worth mentioning that our program has a seed input
parameter, and as such, all these searches can be replicated.

6.6 Results

Table 6.1 shows the results obtained from the sequential, Monte Carlo and guided
search for the generated TM tapes with #𝜃 ∈ {2, 4} and #𝑄 ∈ {2, 4, 8, 16, 32, 64}. For
each file, the search runs for, at the maximum, 10,080,000 attempts, corresponding to
approximately 10 minutes.

110

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

Table 6.1: Results obtained for sequential, Monte Carlo and guided search. The table
shows the minimum loss obtained per file for each search performed as well as the bits
required to represent the target object as a string 𝐵(𝑦), and with our program (𝐵𝑎𝑙𝑔𝑜(𝑥)+
⌈𝐶(𝑦||𝑥)⌉). In bold are the searches that found a TM that generates the target tape 𝑦
and the TM that could be more compressed with our method rather than simply using
the tape as representation.

#Q,#𝜃 NC
Min loss

B(y)
Balgo(x) + ⌈C(y||x)⌉

Sequential Monte Carlo Guided Sequential Monte Carlo Guided

2, 2]0.0,0.2]
0,00 0,00 0,00 252 36 36 36

0,00 0,00 0,00 168 27 27 27

2, 4

]0.0,0.2]
0,00 0,00 0,00 334 51 51 51

0,00 0,00 0,00 402 60 60 60

]0.2,0.4]
3,37E-03 1,75E-03 0,00 128 59 59 59

9,90E-02 5,32E-02 3,53E-03 120 57 57 51

]0.4,0.6]
0,00 0,00 0,00 572 59 59 59

4,80E-03 0,00 0,00 501 70 59 59

]0.6,0.8] 2,13E-02 4,71E-03 8,44E-05 185 58 57 57

2, 8

]0.0,0.2]
1,29E-02 0,00 0,00 501 129 117 117

0,00 0,00 0,00 401 107 107 107

]0.2,0.4]
8,43E-02 0,00 0,00 113 116 115 115

1,56E-01 2,75E-03 1,57E-04 104 118 113 112

]0.4,0.6]
5,91E-03 0,00 0,00 668 115 115 115

5,20E-02 0,00 0,00 384 108 107 107

]0.6,0.8]
2,08E-02 0,00 0,00 239 107 107 107

9,53E-02 3,23E-03 0,00 194 127 113 113

2, 16

]0.0,0.2]
1,57E-03 0,00 0,00 144 236 235 235

0,00 0,00 0,00 334 235 235 235

]0.2,0.4]
1,02E-01 2,32E-04 0,00 126 245 242 242

1,06E-01 2,74E-04 0,00 162 257 242 242

]0.4,0.6]
7,43E-03 0,00 0,00 668 254 243 243

5,85E-03 0,00 0,00 668 235 235 235

]0.6,0.8]
6,76E-01 0,00 0,00 377 603 242 242

1,40E-01 0,00 0,00 236 245 242 242

]0.8,1,0]
6,20E-01 3,02E-05 0,00 1001 1227 235 235

6,37E-01 9,57E-03 0,00 371 597 235 235

2, 32

]0.0,0.2]
1,14E-02 0,00 0,00 144 542 531 531

1,53E-03 0,00 0,00 600 523 523 523

]0.2,0.4]
4,88E-02 0,00 0,00 119 530 529 529

1,49E-01 0,00 0,00 126 525 523 523

]0.4,0.6]
1,61E-02 0,00 0,00 329 523 523 523

6,52E-01 0,00 0,00 230 744 529 529

111

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

#Q,#𝜃 NC
Min loss

B(y)
Balgo(x) + ⌈C(y||x)⌉

Sequential Monte Carlo Guided Sequential Monte Carlo Guided

]0.6,0.8]
7,39E-01 0,00 0,00 601 1115 531 531

5,63E-01 0,00 0,00 358 756 523 523

]0.8,1,0]
9,01E-01 5,52E-02 6,79E-03 134 648 549 553

7,24E-01 0,00 0,00 261 775 523 523

2, 64

]0.0,0.2]
4,40E-02 0,00 0,00 498 1164 1163 1163

1,17E-01 0,00 0,00 108 1173 1170 1170

]0.2,0.4]
1,51E-01 0,00 0,00 148 1174 1169 1169

8,78E-02 0,00 0,00 112 1174 1171 1171

]0.4,0.6]
5,84E-01 1,27E-04 0,00 252 1352 1169 1169

6,36E-01 0,00 0,00 221 1375 1163 1163

]0.6,0.8]
5,53E-01 0,00 0,00 554 1512 1163 1163

3,59E-01 0,00 0,00 305 1184 1170 1170

]0.8,1,0]
9,41E-01 6,22E-04 3,32E-04 459 1613 1177 1177

1,01E+00 0,00 1,54E-05 282 1436 1163 1163

4, 2

]0.0,0.2]
2,97E-02 0,00 0,00 256 61 59 59

0,00 5,09E-04 0,00 466 60 60 60

]0.2,0.4]
7,59E-02 1,06E-01 4,92E-02 210 75 77 59

4,65E-02 4,32E-02 2,56E-02 218 53 53 51

]0.4,0.6] 1,01E-01 9,32E-02 3,03E-02 256 59 56 52

4, 4

]0.0,0.2]
1,94E-04 0,00 0,00 996 108 107 107

4,35E-05 0,00 0,00 1992 118 118 118

]0.2,0.4]
4,48E-02 2,62E-02 0,00 368 131 161 113

2,88E-02 1,42E-03 1,07E-04 276 111 107 107

]0.4,0.6]
3,50E-02 1,64E-03 0,00 300 109 108 107

2,70E-01 1,11E-01 3,52E-02 364 421 264 125

4, 8

]0.0,0.2]
3,05E-02 0,00 0,00 576 254 243 243

3,77E-04 0,00 0,00 288 236 235 235

]0.2,0.4]
5,16E-03 0,00 0,00 1142 254 243 243

3,40E-02 0,00 0,00 1000 237 235 235

]0.4,0.6]
2,01E-01 3,82E-02 3,34E-02 216 347 246 253

3,07E-01 1,04E-03 0,00 1092 1141 253 242

]0.6,0.8]
4,46E-01 3,01E-01 2,07E-01 250 437 409 367

3,12E-01 2,13E-01 1,05E-01 212 405 394 268

4, 16

]0.0,0.2]
1,08E-01 0,00 2,18E-05 1334 525 523 523

7,24E-05 0,00 0,00 1992 534 534 534

]0.2,0.4]
2,11E-01 2,89E-03 5,56E-05 386 846 547 533

1,23E-01 3,39E-02 1,39E-02 212 550 532 530

]0.4,0.6]
1,92E-01 6,83E-02 3,63E-02 478 709 546 535

1,65E-01 3,16E-03 0,00 356 817 531 529

]0.6,0.8]
3,53E-01 2,62E-01 1,36E-01 264 739 637 612

112

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

#Q,#𝜃 NC
Min loss

B(y)
Balgo(x) + ⌈C(y||x)⌉

Sequential Monte Carlo Guided Sequential Monte Carlo Guided

4,95E-01 3,67E-01 3,17E-01 220 723 726 617

4, 32

]0.0,0.2]
4,55E-02 0,00 0,00 574 1165 1163 1163

3,49E-02 0,00 0,00 402 1174 1172 1172

]0.2,0.4]
1,95E-01 1,26E-01 9,75E-02 238 1193 1193 1179

2,88E-01 9,84E-02 8,43E-02 268 1201 1193 1192

]0.4,0.6]
4,77E-01 8,43E-02 6,88E-02 342 1429 1187 1174

2,65E-01 1,01E-02 1,30E-04 242 1359 1163 1163

]0.6,0.8]
4,40E-01 2,42E-01 1,69E-01 254 1400 1313 1270

4,93E-01 3,60E-01 2,69E-01 210 1356 1317 1250

]0.8,1,0]
4,87E-01 4,56E-01 4,49E-01 230 1376 1369 1313

4,99E-01 3,92E-01 3,88E-01 216 1351 1321 1355

4, 64

]0.0,0.2]
7,05E-04 0,00 0,00 668 2591 2580 2580

1,26E-01 3,26E-02 2,60E-02 522 2589 2580 2582

]0.2,0.4]
1,02E-01 1,50E-02 1,48E-02 362 2605 2586 2592

5,34E-01 1,60E-01 1,70E-01 582 3136 2608 2605

]0.4,0.6]
5,07E-01 3,11E-01 2,52E-01 348 2902 2793 2731

5,33E-01 2,73E-01 2,53E-01 582 3107 2860 3119

]0.6,0.8]
4,48E-01 2,32E-01 2,94E-01 320 2874 2710 2755

5,10E-01 3,14E-01 3,28E-01 244 2798 2773 2699

]0.8,1,0]
5,91E-01 4,77E-01 4,77E-01 242 2796 2789 2789

6,10E-01 4,75E-01 4,75E-01 246 2800 2789 2789

The results show that the methodology functions accurately for synthetic data. In-
dependently of the searching mechanism used, the model finds candidate programs that
approximate the tape after the 10,080,000 attempts. Two variables affect the approxi-
mation: the NC of the tape generated and the TNTM. On the one hand, the higher the
NC of a tape, the more complex it is, and the fewer examples of programs representing
that string. On the other hand, with the increase of state and alphabet cardinality, the
TNTM increases, and the larger the searching space. As a result, the search becomes
increasingly more difficult. In terms of search, the sequential search obtained the worst
results, followed by the Monte Carlo search, whereas the best results were systematically
achieved by the guided search.

Moreover, guided search found the most solutions, indicating this methodology’s supe-
riority. This is better observed in Table 6.2, where the minimal average loss of each method
is illustrated, as well as the percentage number of found solutions. As can be seen, the best
minimal average loss for the experiments was achieved by the guided search (5,12E-02).
Furthermore, it obtained the most significant number of found solutions (60,64%).

However, this outperformance did not translate to the compression of the tape, where
Monte Carlo and guided search obtained similar results, despite guided search using, on

113

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

Table 6.2: Global measures obtained by developed methodology.

Global Measures Sequential Monte Carlo Guided

Average Loss 2,33E-01 6,24E-02 5,12E-02
Number of solutions 8 47 57
Found solutions (%) 8,51 50,00 60,64

Average Bits (𝐵𝑎𝑙𝑔𝑜(𝑥) + ⌈𝐶(𝑦||𝑥)⌉) 815,30 725,21 719,50
Compressed 35 41 41
Compressed (%) 37,23 43,62 43,62

average, fewer bits. This is the result of fundamentally 2 aspects. First, the number
of attempts that were provided for each search. With such a long search space, finding
optimal solutions with only 10 minutes of computation is complex. Secondly, the length
of the generated tapes was small (they were generated with only 1000 iterations), which
made the tapes (especially the more complex ones) have small sizes. Even though all
generated tapes had a minimum length of at least 100 symbols, this size is small, and
as a result, the bits required to represent the program is larger than the bits required to
represent the tape itself.

6.7 Insights

Using our method in synthetic data revealed that navigating such an ample space and
finding programs that represent the strings is possible using our methodology.

The results also indicate that guided search outperformed other methods. The results
also show that less statistically complex tapes are easier to find because they occur more
commonly within the search space. Nonetheless, data compression results showed similar
results between guided and Monte Carlo searches. The two main factors for this were a
low number of attempts to find the optimal solution by the guided search and the size of
the target string.

We defined a time-constrained evaluation method to create a mechanism that would
validate our methodology. We were sure the target string existed within that number of
iterations and alphabet and state cardinality. Unfortunately, to do so, we could only search
for small tapes (the minimum size of each generated tape was 100 symbols). Consequently,
the compression suffered since in many cases more bits were required to represent the
program than those to represent the target string itself.

These results seem promising, however, there are some aspects to consider. First, the
program knows the number of states, alphabet, and iterations the tape generated. Without
this knowledge, the search space increases. This point may be overcome if we first assume
that the alphabet of the program is the same as the one present in the string. After fixing
the alphabet cardinality, we can perform a random search between state cardinality with a

114

CHAPTER 6. ON SOLVING THE INVERSE PROBLEM THROUGH APPROXIMATION

fixed number of iterations to finetune the location of the search. After choosing the space
to search, we can look for the best number of iterations by using the parameter (𝑤), which
provides a range from the initial number of iterations where loss computations would be
determined. The iterations that provided the best results would be set as the new number
of iterations, as the cycle would repeat. Furthermore, the 𝑤 interval would increase with
smaller losses.

The second aspect is that the search was performed in synthetically generated data,
and raw data is much noisier and more complex. Only with more testing can we determine
the best approach to take.

6.8 Conclusions

This chapter proposes a methodology to approximate the inverse problem and find
programs representing a given string. Our initial results show that finding solutions in
vast spaces is possible in a short amount of time. This validates that our methodology
based on a loss using the Kullback-Leibler divergence works and that an approximation
method is possible using a derivation of the A* search. Nonetheless, more work needs to
be done to fine-tune the solution by testing it in a more significant number of instances
and applying it to raw data.

115

Chapter 7

Conclusions and Future Work

g Übermensch - Jorge Miguel Silva, 2020.

“The light shines in the darkness,
and the darkness did not overcome it.”

– John, Bible: John 1:5

117

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Contextualization

In this dissertation, we investigated Kolmogorov complexity approximations as data
descriptors and described novel applications for different data types. Specifically, we first
examined 1-dimensional data, using genomic sequences for this analysis. In this analysis,
we portrayed the viral complexity landscape of viruses. Furthermore, we detected small
programs (IRs) in genomic sequences using Kolmogorov complexity approximations and
performed an in-depth taxonomic classification using compression-based measures.

Next, we investigated the usage of Kolmogorov complexity approximations of 2-
dimensional data by using a dataset of artistic paintings. We showed that approximations
could improve state-of-the-art classification results and serve as an explanatory descriptor
of art and how artists paint. Subsequently, we analysed pure algorithmic data by inves-
tigating TM outputs and the relation between probabilistic and algorithmic complexity.
Among other things, we described an algorithm to progressively increase a tape’s prob-
abilistic complexity while retaining the same algorithmic complexity. Finally, in the last
chapter, we reflect on the inversion problem and possible workaround to solve it by ap-
proximation. To that end, we use compression-based measures and searching strategies to
detect programs representing the output. This last chapter completes this doctoral thesis
by presenting some closing remarks. Specifically, we highlight the most relevant findings
from this thesis, indicate some of the limitations of our work, and point out future research
directions obtained from the research developed during this Ph.D.

7.2 Relevant findings

The main results of this thesis arise from the comprehensive experiments carried out
at different levels and with different data types. Notwithstanding, all studies involved
the usage of Kolmogorov complexity approximations. Our main findings are summarized
below:

• BDM can be used to measure and identify data content generated by simple algo-
rithms. On the other hand, it cannot detect programs embedded into data, such as
inverted repeats, and has difficulty dealing with information quantification due to
block representability. Furthermore, BDM efficiently describes the TM tapes since
it uses TM values for their complexity estimation. Nevertheless, for a higher number
of states, the BDM is progressively approximated by the NC computation since the
algorithmic approach of the BDM is constituted by small TMs.

• The NC computation using data compressors with embedded subprograms can ac-
curately detect some algorithmic patterns, such as inverted repeats. It is robust
to data alterations (pixel edition, substitutions, permutations and quantization),
and can measure the quantity of information without underestimation. It is also a
good data descriptor, providing good classification results in diverse tasks, such as

118

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

taxonomic identification and author and style attribution.

• We have demonstrated the importance of Kolmogorov complexity approximations in
data description and classification. Moreover, we have shown that this information
can be combined with other simple features to achieve state-of-the-art results.

• We describe and use minimal bi-directional complexity profiles of one sequence of
each virus to visualize the distribution of complexity of these sequences locally. These
profiles can describe actual regions detected in the genome with other methods,
proving the description capability of data compression at a structural level.

• We proposed and described an average regional complexity matrix of an artist (fin-
gerprint) by dividing the image into equal quadrilateral parts and averaging the
estimated local complexity of each painting. Complexity measures the total number
of properties (plus the language used) transmitted by an object and detected by
an observer. By dividing images into blocks of equal size and evaluating its local
complexity, we quantified the local information being transmitted. This fingerprint
is a good data descriptor and helpful for classification and content explanation.

• We described the normal and dynamic profiles for analysing TM tapes. These com-
plexity profiles serve as approximate measures that can detect complexity change
in the events through spatial and temporal quantities. The normal complexity pro-
files localize higher and lower probabilistic complexity regions assuming the machine
reaches the external halting condition. In contrast, the dynamic complexity profiles
localize temporal dynamics of probabilistic complexity through the dynamics of the
tape (while running). The latter identifies when a change in complexity occurs at
a certain depth. Moreover, it detects the rules that directly influence the tape’s
probabilistic complexity during the TM’s run time.

• We developed an algorithm to increase a tape’s probabilistic complexity progres-
sively. This algorithm creates a tape that evolves through a stochastic optimization
rule matrix that is modified according to the quantification of the NC. We pointed
out some of the applications of this algorithm in the bioinformatics field.

At a biological level, we identified that:

• On average, dsDNA viruses are the most redundant (least complex) according to
their size, and ssDNA viruses are the least redundant. Contrarily, dsRNA viruses
show a lower redundancy relative to ssRNA viruses.

• Some viruses that infect extremophiles are more redundant and possess more IRs,
indicating the presence of an adaptation to stabilize the genome in these environ-
ments.

• In human herpesviruses, higher compressibility and abundance of inversions could

119

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

be linked with viral genome integration.

• It is possible to provide the structural description of the viral genome using minimal
bi-directional complexity profiles.

• Rich genomic features suffice to correctly identify viruses and archaea’s taxon.

In the artistic field, we found that:

• On average, paintings with low complexity are abstract and minimalist with simple
patterns. Paintings with a slightly higher average complexity possess different re-
gional complexities, specifically, a region with high complexity and detail surrounded
by a background of low complexity. This noticeable pattern begins to fade with more
complexity, and the most complex paintings are globally irregular, detailed, and con-
voluted.

• The low side of the complexity spectrum was characterized by Abstract Expres-
sionism, Minimalism, and Constructivism movements, with authors such as Mark
Rothko, Lucio Fontana, Piet Mondrian, and El Lissitzky. Also, artists from Ab-
stract Expressionism characterized the high complexity side of the spectrum, such
as Willem de Kooning, Jackson Pollock, and Jasper Johns, as well as other artists
with a more detailed and convoluted style, like Gustav Klimt and Vincent van Gogh.
Due to two different currents (Colour Field with authors with low average complex-
ity and Action Painting with authors with high complexity), Abstract Expressionism
was present at the polar ends of the spectrum. In all cases, Jackson Pollock had aver-
age complexity values that were completely different from other artists, the average
complexity of his paintings being close to random. Although he denied being a
creator of random paintings, this result and others indicate that Jackson Pollock’s
dripping paintings are not typical artworks, possibly related to the artist’s inclusion
of many symbolic layers and dispersion intentions over the canvas.

• When evaluating the artists’ average NC and the roughness exponent (𝛼) of the HDC
function in the label images of the dataset, we found that styles are well confined
into different regions, showing that the combination of these measures gives a robust
representation of artistic movements. Specifically, the NC adds to the brightness
and relative spatial position shown by the roughness exponent, the notion of average
information in each artist’s painting, consistent within the same style and historical
circumstances. We also detected that the NC is inversely correlated to 𝛼 in Abstract
Expressionism. Artists related to Colour Field painting presented a high 𝛼 and low
NC, whereas artists related to Action painting presented the exact polar results (low
𝛼 and high NC).

• The proposed complexity fingerprints give specific insights regarding each artist’s
way of painting, showing where, on average, artists paint with more detail and give

120

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

more emphasis while also providing insights into each artist’s range of complexity.
Furthermore, it provides critical information concerning how the work is perceived,
such as composition, unity, balance, movement, rhythm, focus, contrast, pattern,
and proportion of the painting and space.

• Cladograms built using the fingerprints aggregated authors of the same style close
to each other and artists’ influencing relationships, like Francis Bacon and Georges
de la Tour, and George Braque and Hieronymus Bosch. Furthermore, proximity
between artists is also caused by shared methods and techniques, which are not
correlated with the period or artistic movement. For example, Hans Holbein and
Vermeer are close but do not share styles. However, both used optics to achieve
precise positioning in their compositions.

As regards the statistical and algorithmic complexity analysis of TM tapes, we have
found that:

• Using the Normalized Compression, we showed that some TMsv have higher Nor-
malized Compression (and lower tape length) in two regions (shown up to six states).
Due to tape size, these regions correspond to probabilistically low complexity regions
and have a high NC. Using average rule complexity profiles, we localized these re-
gions and identified the cause as short cycles in the rules that output tapes with lower
amplitude. Since the probabilistic complexity of the Turing tapes was measured as-
suming a sequential generation order of the rules (changes in the rules sequential),
it groups these similar short cycles given their similar configurations.

• We analysed the behaviour of complex TM tapes using normal and dynamic com-
plexity profiles. In both the normal and the dynamic complexity profiles, with the
increase in #𝑄 and #𝜃, there is an increase in the number and size of spiky re-
gions (normal complexity profile) and the value of NC (dynamic complexity profiles).
These results imply that the number of rules influences the amount of information
on the tape. Notably, TMs with more rules have the potential to generate tapes that
are generally harder to compress.

Lastly, regarding the inversion problem chapter, we have found that:

• It is possible to perform an efficient search within a vast space to find programs that
represent a target string.

• The TMs found could be used to describe strings efficiently and thus be used to
compress them.

121

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.3 Future research directions and work limitations

During the Ph.D., many of the studies developed were produced as a proof of concept
or initial study to validate that analysis of complexity could be applied successfully to
various areas and types of data and have many possible applications. Consequently, there
were many aspects left to explore due to time constraints. Below, we offer some possible
research directions that can be investigated in the future.

Future research related to the complexity of genomic sequence analysis can take a wide
variety of directions, including:

• Increase the dataset size of the study to accommodate not only viruses and archaea
but also other realms of life, such as bacteria, fungi, plants, and animals.

• Perform genomic sequence translation to aminoacid sequences and study the im-
pact its NC has on classification, as well as evaluate its complexity across different
taxonomic levels.

• Augment the pool of features being used, such as persistent minimal sequences across
the genome species or automatic features that can be extracted using neural net-
works.

• Evaluate the impact of using different compressors in in-depth taxonomic classifica-
tion.

• Develop an easy-to-use and deployed pipeline for in-depth taxonomic classification
of metagenomic samples.

• Lastly, with the tools developed, a closer look could be taken at each genome species
regarding its complexity and create tools that can better explain the genomic mor-
phology.

Regarding future continuations in the analysis of artistic paintings, many possible lines of
work can be considered. Specifically:

• We analysed the images of paintings by converting them to monochrome. However,
it would be insightful to separate the colour channels and analyse them separately,
therefore studying the influence of colour in the paintings in terms of complexity and
how they would improve classification results.

• It could be helpful to explore how to separate different fingerprint characteristics
and detect unknown repeated patterns that appear multiple times in a painting by
creating and analysing their complexity surfaces [230] as well as the classification
results when using these metrics.

• Another interesting study would be to replicate the work in Chapter 4 using a com-
petitive compressor that would select the best compressor model for each painting

122

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

or region.

• Finally, the work regarding artistic classification is only a proof of concept. There-
fore, it would be interesting to create ties with specialists in the area from museums
and forensics. These connections would allow us to expand the dataset under anal-
ysis, have fake art copies, and provide other helpful technical features that could be
fed to the model and improve the classification and authentication of artworks.

Regarding the analysis of algorithmic and probabilistic complexity analysis of TM tapes,
future research includes:

• The implementation of an algorithm that, using a short program, outputs tapes with
a desired probabilistic complexity while retaining the same algorithmic complexity.
Implementing and providing this algorithm could be valuable in many fields, such
as genomics, metagenomics, and virology. For instance, it could be used as an in-
put to test and quantify the accuracy of genome assembly algorithms for different
complexities with non-stationary sources assuming the probabilistic line (high-speed
generation without the need to store any sequence besides the configurations). It
could also simulate progressive mutations in metagenomic communities or comple-
ment absent regions of genome viruses given sequencing incapabilities or DNA/RNA
degradation. Furthermore, a broader application is the benchmark of compression
algorithms used to localize complexity in the data given possible algorithmic sources.

• Use dynamic complexity profiles to localize temporal dynamics of probabilistic com-
plexity through the modification cycles of the tape. This information could poten-
tially improve the speed of approximation in the inversion problem (Chapter 6).

Lastly, regarding the inversion problem, much work is still ahead of us, namely:

• The search algorithms only function after providing the state and alphabet cardi-
nality and the number of iterations used. This limits the program’s utility as it has
to be the user who defines these parameters. Since we can infer the cardinality of
the alphabet that generated a given string, a possible solution could be to initially
perform a Monte Carlo search between different states and verify which space seems
more promising. This initial search should consider the target string’s size and the
bits required to represent the TM rule matrix. After deciding on the search space,
a standard guided search would follow. On the other hand, to solve the fixed iter-
ation problem, a solution could be to start the search with a predefined number of
iterations and modify within a range related to the loss value. The initial number
of iterations should be correlated with the size of the target string and its complex-
ity. After defining the initial number of iterations, a variable would be defined that
delimited the range of search. The range would be defined regarding the loss of a
current node, increasing when the loss decreases.

123

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

• Due to the vast search space, creating a fast and efficient search is essential. Many
optimizations may increase the search program’s speed, but these have yet to be
tested. For instance, improvement mechanisms can be made to penalize TMs that
create small cycles depending on the distribution dispersion. In the case of very
complex tapes, TMs that have been shown to have smaller cycles within a small
number of iterations could be penalized. Another improvement regarding speed is
to perform computations of the TMs using GPUs.

• Regarding the accuracy of the search, other mechanisms should be explored. For
example, the usage of reinforcement could improve node choice and facilitate nav-
igation within the space. Another option is to model the problem so that it can
use deep learning. However, this requires transposing this discrete problem into the
continuum space to apply the chain rule.

• Finally, we have yet to systematically test the searching mechanism in raw data,
which is highly heterogeneous, diverse, and noisy. Although our methodology can
deal with noise, testing is required. On the other hand, since strings of this nature
are usually large, a possible way to overcome performing so many iterations would
be to provide a highly complex tape to the Turing Machines before performing the
search.

As a final note regarding the global aspects of research, we have only scratched the sur-
face of possible applications and use cases where Kolmogorov complexity approximations
could be used. We hope that in the future, research will be carried out to make progress
in this field and its applications.

124

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

“When you want something, all the universe
conspires to help you achieve it.”
– Paulo Coelho, The Alchemist

125

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

た
と
え
私
の
体
が
壊
れ
て
も
、
誰
か
が
私
の
場
所
を
取
っ
て
、
こ
の
世
界
を
よ
り
良
い
場
所
に
し
ま
す
。

126

References

[1] David Sacks. Letter perfect: the marvelous history of our alphabet from A to Z.
Broadway Books, 2004, p. 395. ISBN: 9780767911733. (Cit. on pp. 2, 8).

[2] Johanna Drucker. The alphabetic labyrinth: the letters in history and imagination.
1995, p. 320. ISBN: 0500016089. (Cit. on pp. 2, 8).

[3] B Jack Copeland. “The modern history of computing.” In: (2000). (Cit. on p. 2).

[4] Maxwell Herman Alexander Newman. “General principles of the design of all-
purpose computing machines.” In: Proceedings of the Royal Society of London.
Series A. Mathematical and Physical Sciences 195.1042 (1948), pp. 271–274. (Cit.
on p. 2).

[5] A M Turing. “On Computable Numbers, with an Application to the Entschei-
dungsproblem.” In: Proceedings of the London Mathematical Society s2-42.1 (1936),
pp. 230–265. DOI: 10.1112/plms/s2-42.1.230. (Cit. on pp. 2, 80).

[6] Peter Wegner. “Research Paradigms in Computer Science.” In: Proceedings of the
2Nd International Conference on Software Engineering. ICSE ’76. San Francisco,
California, USA: IEEE Computer Society Press, 1976, pp. 322–330. (Cit. on p. 2).

[7] Computing Curricula. “Computer Science, Final Report, The Joint Task Force on
Computing Curricula.” In: IEEE Computer Society and Association for Computing
Machinery, IEEE Computer Society (2001). (Cit. on p. 2).

[8] Gordana Dodig-Crnkovic. “Scientific methods in computer science.” In: Proceedings
of the Conference for the Promotion of Research in IT at New Universities and at
University Colleges in Sweden, Skövde, Suecia. 2002, pp. 126–130. (Cit. on pp. 2,
3).

[9] Cristian S Calude. Information and randomness: an algorithmic perspective.
Springer Science & Business Media, 2002. (Cit. on p. 2).

[10] Gregory J Chaitin. “A theory of program size formally identical to information
theory.” In: J. Assoc. Comput. Mach. 22 (1975), pp. 329–340. ISSN: 0004-5411. DOI:
10.1145/321892.321894.
URL: https://doi.org/10.1145/321892.321894 (cit. on pp. 2, 10, 12, 13).

[11] Jorma Rissanen. “Modeling by shortest data description.” In: Automatica 14.5
(1978), pp. 465–471. (Cit. on pp. 3, 12, 104).

127

https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1145/321892.321894
https://doi.org/10.1145/321892.321894

REFERENCES

[12] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul Vitányi. “The similarity metric.” In:
IEEE transactions on Information Theory 50.12 (2004), pp. 3250–3264. (Cit. on
p. 3).

[13] Rudi Cilibrasi and Paul Vitányi. “Clustering by compression.” In: IEEE Transac-
tions on Information theory 51.4 (2005), pp. 1523–1545. (Cit. on p. 3).

[14] Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its
applications. Vol. 3. Springer, 2008. (Cit. on pp. 3, 12–14).

[15] J Amaral, Michael Buro, Renee Elio, Jim Hoover, Ioanis Nikolaidis, Mohammad
Salavatipour, Lorna Stewart, and Ken Wong. “About Computing Science Research
Methodology, 2011.” In: URL http://citeseerx. ist. psu. edu/viewdoc/summary ().
(Cit. on p. 3).

[16] National Research Council (U.S.). Committee on Academic Careers for Experimen-
tal Computer Scientists. Academic careers for experimental computer scientists and
engineers. National Academy Press, 1994, p. 139. ISBN: 0309049318. (Cit. on p. 3).

[17] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul Vitanyi. “The similarity metric.” In:
IEEE Transactions on Information Theory 50.12 (Dec. 2004), pp. 3250–3264. ISSN:
0018-9448. DOI: 10.1109/TIT.2004.838101. (Cit. on pp. 4, 14).

[18] Rómulo Antão, Alexandre Mota, and J A Tenreiro Machado. “Kolmogorov complex-
ity as a data similarity metric: application in mitochondrial DNA.” In: Nonlinear
Dynamics 93.3 (Aug. 2018), pp. 1059–1071. ISSN: 1573-269X. DOI: 10.1007/s1107
1-018-4245-7.
URL: https://doi.org/10.1007/s11071-018-4245-7 (cit. on p. 4).

[19] Harold A Innis and A John (Alexander John) Watson. Empire and communications.
Dundurn Press, 2007, p. 287. ISBN: 1550026623. (Cit. on p. 8).

[20] Nyquist H. “Certain Factors Affecting Telegraph Speed.” In: Bell System Technical
Journal 3.2 (1924), pp. 324–346. DOI: 10.1002/j.1538-7305.1924.tb01361.x.
(Cit. on p. 8).

[21] Hartley R. “Transmission of Information.” In: Bell System Technical Journal 7.3
(1928), pp. 535–563. DOI: 10.1002/j.1538-7305.1928.tb01236.x. (Cit. on p. 8).

[22] John B Anderson and Rolf Johnnesson. Understanding information transmission.
John Wiley & Sons, 2006. (Cit. on p. 9).

[23] Shannon C E. “A Mathematical Theory of Communication.” In: Bell System Tech-
nical Journal 27.3 (1948), pp. 379–423. DOI: 10.1002/j.1538-7305.1948.tb0133
8.x. (Cit. on p. 9).

[24] Peter D Grünwald and Paul Vitányi. “Kolmogorov complexity and information
theory. With an interpretation in terms of questions and answers.” In: Journal of
Logic, Language and Information 12.4 (2003), pp. 497–529. (Cit. on p. 9).

128

https://doi.org/10.1109/TIT.2004.838101
https://doi.org/10.1007/s11071-018-4245-7
https://doi.org/10.1007/s11071-018-4245-7
https://doi.org/10.1007/s11071-018-4245-7
https://doi.org/10.1002/j.1538-7305.1924.tb01361.x
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

REFERENCES

[25] Ray J Solomonoff. “A preliminary report on a general theory of inductive inference.”
In: Citeseer. 1960. (Cit. on p. 10).

[26] Ray J Solomonoff. “A formal theory of inductive inference. Part I.” In: Information
and control 7.1 (1964), pp. 1–22. (Cit. on p. 10).

[27] R J Solomonoff. “A formal theory of inductive inference. I.” In: Information and
Control 7 (1964), pp. 1–22. ISSN: 0019-9958. (Cit. on p. 10).

[28] Andrei N Kolmogorov. “Three approaches to the quantitative definition ofinfor-
mation’.” In: Problems of information transmission 1.1 (1965), pp. 1–7. (Cit. on
p. 10).

[29] Daniel Hammer, Andrei Romashchenko, Alexander Shen, and Nikolai Vereshchagin.
“Inequalities for Shannon Entropy and Kolmogorov Complexity.” In: Journal of
Computer and System Sciences 60.2 (2000), pp. 442–464. ISSN: 0022-0000. DOI:
https://doi.org/10.1006/jcss.1999.1677. (Cit. on p. 10).

[30] Teresa Henriques, Hernâni Gonçalves, Luıś Antunes, Mara Matias, João Bernardes,
and Cristina Costa-Santos. “Entropy and compression: two measures of complexity.”
In: Journal of evaluation in clinical practice 19.6 (2013), pp. 1101–1106. (Cit. on
p. 10).

[31] Gregory J Chaitin. “On the length of programs for computing finite binary se-
quences.” In: J. Assoc. Comput. Mach. 13 (1966), pp. 547–569. ISSN: 0004-5411.
DOI: 10.1145/321356.321363.
URL: https://doi.org/10.1145/321356.321363 (cit. on p. 10).

[32] Gregory Chaitin. “On the difficulty of computations.” In: IEEE Transactions on
Information Theory 16.1 (1970), pp. 5–9. (Cit. on p. 10).

[33] Gregory J Chaitin. “Incompleteness theorems for random reals.” In: Advances in
Applied Mathematics 8.2 (1987), pp. 119–146. (Cit. on p. 10).

[34] Gregory J Chaitin, Asat Arslanov, and Cristian Calude. Program-size complexity
computes the halting problem. Tech. rep. Department of Computer Science, The
University of Auckland, New Zealand, 1995. (Cit. on p. 10).

[35] Charles H Bennett. “On random and hard-to-describe numbers.” In: Randomness
and complexity. World Sci. Publ., Hackensack, NJ, 2007, pp. 3–12. DOI: 10.1142/9
789812770837_0001.
URL: https://doi.org/10.1142/9789812770837_0001 (cit. on p. 10).

[36] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer, 2008, p. 790. ISBN: 978-0-387-33998-6. DOI: 10.1007/978-
0-387-49820-1. arXiv: arXiv:1011.1669v3. (Cit. on pp. 11, 17).

[37] L A Levin. “Laws on the conservation (zero increase) of information, and questions
on the foundations of probability theory.” In: Problemy Peredači Informacii 10.3
(1974), pp. 30–35. ISSN: 0555-2923. (Cit. on pp. 12, 13).

129

https://doi.org/https://doi.org/10.1006/jcss.1999.1677
https://doi.org/10.1145/321356.321363
https://doi.org/10.1145/321356.321363
https://doi.org/10.1142/9789812770837_0001
https://doi.org/10.1142/9789812770837_0001
https://doi.org/10.1142/9789812770837_0001
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/978-0-387-49820-1
https://arxiv.org/abs/arXiv:1011.1669v3

REFERENCES

[38] P Gač. “The symmetry of algorithmic information.” In: Dokl. Akad. Nauk SSSR
218 (1974), pp. 1265–1267. ISSN: 0002-3264. (Cit. on pp. 12, 13).

[39] Manuel Blum. “A machine-independent theory of the complexity of recursive func-
tions.” In: J. Assoc. Comput. Mach. 14 (1967), pp. 322–336. ISSN: 0004-5411. DOI:
10.1145/321386.321395.
URL: https://doi.org/10.1145/321386.321395 (cit. on p. 12).

[40] M S Burgin. “Generalized Kolmogorov complexity and duality in computational
theory.” In: Dokl. Akad. Nauk SSSR 264.1 (1982), pp. 19–23. ISSN: 0002-3264. (Cit.
on p. 12).

[41] Chris S Wallace and David M Boulton. “An information measure for classification.”
In: The Computer Journal 11.2 (1968), pp. 185–194. (Cit. on p. 12).

[42] Paul Vitányi and Ming Li. “Minimum description length induction, Bayesianism,
and Kolmogorov complexity.” In: IEEE Transactions on information theory 46.2
(2000), pp. 446–464. (Cit. on p. 12).

[43] Charles H Bennett. Logical depth and physical complexity. Citeseer, 1988. (Cit. on
p. 12).

[44] Per Martin-Löf. “The definition of random sequences.” In: Information and control
9.6 (1966), pp. 602–619. (Cit. on pp. 12, 13).

[45] R v Mises. “Grundlagen der Wahrscheinlichkeitsrechnung.” In: Mathematische
Zeitschrift 5.1-2 (1919), pp. 52–99. (Cit. on p. 12).

[46] Claus-Peter Schnorr. “A unified approach to the definition of random sequences.”
In: Mathematical systems theory 5.3 (1971), pp. 246–258. (Cit. on p. 13).

[47] Hector Zenil, Narsis A Kiani, and Jesper Tegnér. “Low-algorithmic-complexity
entropy-deceiving graphs.” In: Phys. Rev. E 96.1 (2017), pp. 012308, 12. ISSN: 2470-
0045. DOI: 10.1103/physreve.96.012308.
URL: https://doi.org/10.1103/physreve.96.012308 (cit. on p. 13).

[48] Hector Zenil, Santiago Hernández-Orozco, Narsis A Kiani, Fernando Soler-Toscano,
Antonio Rueda-Toicen, and Jesper Tegnér. “A decomposition method for global
evaluation of Shannon entropy and local estimations of algorithmic complexity.”
In: Entropy 20.8 (2018), p. 605. (Cit. on pp. 13, 14, 32, 95, 105).

[49] Peter Bloem, Francisco Mota, Steven de Rooij, Luís Antunes, and Pieter Adriaans.
“A Safe Approximation for Kolmogorov Complexity BT - Algorithmic Learning
Theory.” In: International Conference on Algorithmic Learning Theory. Ed. by Peter
Auer, Alexander Clark, Thomas Zeugmann, and Sandra Zilles. Cham: Springer In-
ternational Publishing, 2014, pp. 336–350. ISBN: 978-3-319-11662-4. (Cit. on pp. 13,
16).

130

https://doi.org/10.1145/321386.321395
https://doi.org/10.1145/321386.321395
https://doi.org/10.1103/physreve.96.012308
https://doi.org/10.1103/physreve.96.012308

REFERENCES

[50] Hector Zenil, Liliana Badillo, Santiago Hernández-Orozco, and Francisco
Hernández-Quiroz. “Coding-theorem like behaviour and emergence of the univer-
sal distribution from resource-bounded algorithmic probability.” In: International
Journal of Parallel, Emergent and Distributed Systems 34.2 (2019), pp. 161–180.
(Cit. on p. 13).

[51] Milton Silva, Diogo Pratas, and Armando J Pinho. “Efficient DNA sequence com-
pression with neural networks.” In: GigaScience 9.11 (Nov. 2020). giaa119. ISSN:
2047-217X. DOI: 10.1093/gigascience/giaa119. eprint: https://academic.o
up.com/gigascience/article-pdf/9/11/giaa119/34251844/giaa119.pdf.
(Cit. on pp. 13, 26–28, 32–34, 103).

[52] Leonid A Levin. “Universal enumeration problems.” In: Problemy Peredači Infor-
macii 9.3 (1973), pp. 115–116. ISSN: 0555-2923. (Cit. on pp. 13, 104).

[53] Leonid A Levin. “Randomness conservation inequalities: information and indepen-
dence in mathematical theories.” In: Inform. and Control 61.1 (1984), pp. 15–37.
ISSN: 0019-9958. DOI: 10.1016/S0019-9958(84)80060-1.
URL: https://doi.org/10.1016/S0019-9958(84)80060-1 (cit. on pp. 13, 104).

[54] Marcus Hutter. “The fastest and shortest algorithm for all well-defined problems.”
In: Internat. J. Found. Comput. Sci. 13.3 (2002), pp. 431–443. ISSN: 0129-0541.
DOI: 10.1142/S0129054102001199.
URL: https://doi.org/10.1142/S0129054102001199 (cit. on pp. 14, 104).

[55] Marcus Hutter. Universal artificial intelligence: Sequential decisions based on al-
gorithmic probability. Springer Science & Business Media, 2004. (Cit. on pp. 14,
104).

[56] Fernando Soler-Toscano, Hector Zenil, Jean-Paul Delahaye, and Nicolas Gauvrit.
“Calculating Kolmogorov complexity from the output frequency distributions of
small Turing machines.” In: PloS one 9.5 (2014). (Cit. on pp. 14, 105).

[57] Charles H Bennett, Péter Gâcs, Ming Li, Paul Vitânyi, and Wojciech H Zurek.
“Information distance.” In: IEEE Transactions on Information Theory 44.4 (1998),
pp. 1407–1423. ISSN: 00189448. DOI: 10.1109/18.681318. arXiv: 1006.3520. (Cit.
on p. 14).

[58] Sebastiaan A Terwijn, Leen Torenvliet, and Paul Vitányi. “Nonapproximability of
the normalized information distance.” In: Journal of Computer and System Sciences
77.4 (2011), pp. 738–742. ISSN: 0022-0000. DOI: https://doi.org/10.1016/j.jc
ss.2010.06.018. (Cit. on p. 14).

[59] Gregory J Chaitin. “On the Length of Programs for Computing Finite Binary Se-
quences.” In: J. ACM 13.4 (Oct. 1966), pp. 547–569. ISSN: 0004-5411. DOI: 10.114
5/321356.321363. (Cit. on p. 14).

131

https://doi.org/10.1093/gigascience/giaa119
https://academic.oup.com/gigascience/article-pdf/9/11/giaa119/34251844/giaa119.pdf
https://academic.oup.com/gigascience/article-pdf/9/11/giaa119/34251844/giaa119.pdf
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1142/S0129054102001199
https://doi.org/10.1142/S0129054102001199
https://doi.org/10.1109/18.681318
https://arxiv.org/abs/1006.3520
https://doi.org/https://doi.org/10.1016/j.jcss.2010.06.018
https://doi.org/https://doi.org/10.1016/j.jcss.2010.06.018
https://doi.org/10.1145/321356.321363
https://doi.org/10.1145/321356.321363

REFERENCES

[60] Hector Zenil, Fernando Soler-Toscano, Kamaludin Dingle, and Ard A Louis. “Cor-
relation of automorphism group size and topological properties with program-size
complexity evaluations of graphs and complex networks.” In: Physica A: Statistical
Mechanics and its Applications 404 (2014), pp. 341–358. (Cit. on p. 15).

[61] Vera Kempe, Nicolas Gauvrit, and Douglas Forsyth. “Structure emerges faster dur-
ing cultural transmission in children than in adults.” In: Cognition 136 (2015),
pp. 247–254. (Cit. on p. 15).

[62] Hector Zenil, Fernando Soler-Toscano, Jean-Paul Delahaye, and Nicolas Gauvrit.
“Two-dimensional Kolmogorov complexity and an empirical validation of the Cod-
ing theorem method by compressibility.” In: PeerJ Computer Science 1 (2015), e23.
(Cit. on p. 15).

[63] Jorge Miguel Silva, Diogo Pratas, Rui Antunes, Sérgio Matos, and Armando J
Pinho. “Automatic analysis of artistic paintings using information-based measures.”
In: Pattern Recognition 114 (2021), p. 107864. (Cit. on p. 15).

[64] Diogo Pratas. “Compression and analysis of genomic data.” In: (2016). (Cit. on
pp. 16, 17).

[65] R Cilibrasi and Paul Vitanyi. “Clustering by compression.” In: IEEE Transactions
on Information Theory 51.4 (Apr. 2005), pp. 1523–1545. ISSN: 0018-9448. DOI:
10.1109/TIT.2005.844059. (Cit. on p. 17).

[66] Manuel Cebrián, Manuel Alfonseca, and Alfonso Ortega. “Common Pitfalls Using
the Normalized Compression Distance: What to Watch Out for in a Compressor.”
In: Commun. Inf. Syst. 5.4 (2005), pp. 367–384. (Cit. on p. 17).

[67] N Nikvand and Z Wang. “Generic image similarity based on Kolmogorov complex-
ity.” In: 2010 IEEE International Conference on Image Processing. Sept. 2010,
pp. 309–312. DOI: 10.1109/ICIP.2010.5653405. (Cit. on p. 17).

[68] Diogo Pratas and Armando J Pinho. “A Conditional Compression Distance that
Unveils Insights of the Genomic Evolution.” In: 2014 Data Compression Conference.
IEEE, Mar. 2014, pp. 421–421. ISBN: 978-1-4799-3882-7. DOI: 10.1109/DCC.2014
.58. (Cit. on p. 17).

[69] Manuel Cebrián, Manuel Alfonseca, and Alfonso Ortega. “The normalized compres-
sion distance is resistant to noise.” In: IEEE Transactions on Information Theory
53.5 (2007), pp. 1895–1900. (Cit. on p. 17).

[70] Diogo Pratas, Armando J Pinho, and Paulo Jorge S G Ferreira. “Pratas2016Effi-
cientCO of Genomic Sequences.” In: 2016 Data Compression Conference (DCC)
(2016), pp. 231–240. (Cit. on p. 17).

132

https://doi.org/10.1109/TIT.2005.844059
https://doi.org/10.1109/ICIP.2010.5653405
https://doi.org/10.1109/DCC.2014.58
https://doi.org/10.1109/DCC.2014.58

REFERENCES

[71] J Ziv and N Merhav. “A measure of relative entropy between individual sequences
with application to universal classification.” In: IEEE Transactions on Information
Theory 39.4 (July 1993), pp. 1270–1279. ISSN: 0018-9448. DOI: 10.1109/18.243444.
(Cit. on p. 17).

[72] David Pereira Coutinho and Mário A T Figueiredo. “Text Classification Using
Compression-Based Dissimilarity Measures.” In: International Journal of Pattern
Recognition and Artificial Intelligence 29.05 (2015), p. 1553004. DOI: 10.1142/S02
18001415530043. (Cit. on p. 17).

[73] David Pereira Coutinho and Mário A T Figueiredo. “An Information Theoretic
Approach to Text Sentiment Analysis.” In: ICPRAM. 2013. (Cit. on p. 17).

[74] Sebastiaan A Terwijn, Leen Torenvliet, and Paul Vitányi. “Nonapproximability of
the normalized information distance.” In: Journal of Computer and System Sciences
77.4 (2011). JCSS IEEE AINA 2009, pp. 738–742. ISSN: 0022-0000. DOI: https:
//doi.org/10.1016/j.jcss.2010.06.018. (Cit. on p. 18).

[75] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation Learning: A
Review and New Perspectives.” In: (). (Cit. on p. 18).

[76] Michael I Jordan and Tom M Mitchell. “Machine learning: Trends, perspectives,
and prospects.” In: Science 349.6245 (2015), pp. 255–260. (Cit. on p. 18).

[77] Carl R Woese, Otto Kandler, and Mark L Wheelis. “Towards a natural system of
organisms: proposal for the domains Archaea, Bacteria, and Eucarya.” In: Proceed-
ings of the National Academy of Sciences 87.12 (1990), pp. 4576–4579. (Cit. on
p. 21).

[78] Sam Griffiths-Jones, Russell J Grocock, Stijn Van Dongen, Alex Bateman, and
Anton J Enright. “miRBase: microRNA sequences, targets and gene nomenclature.”
In: Nucleic acids research 34.suppl_1 (2006), pp. D140–D144. (Cit. on p. 21).

[79] James L Bernat, Charles M Culver, and Bernard Gert. “On the definition and
criterion of death.” In: Annals of Internal Medicine 94.3 (1981), pp. 389–394. (Cit.
on p. 21).

[80] Laura A Hug, Brett J Baker, Karthik Anantharaman, Christopher T Brown,
Alexander J Probst, Cindy J Castelle, Cristina N Butterfield, Alex W Hernsdorf,
Yuki Amano, Kotaro Ise, et al. “A new view of the tree of life.” In: Nature micro-
biology 1.5 (2016), pp. 1–6. (Cit. on p. 22).

[81] James D Watson and Francis HC Crick. “Molecular structure of nucleic acids: a
structure for deoxyribose nucleic acid.” In: Nature 171.4356 (1953), pp. 737–738.
(Cit. on p. 23).

[82] Erwin Chargaff. “Chemical specificity of nucleic acids and mechanism of their en-
zymatic degradation.” In: Experientia 6.6 (1950), pp. 201–209. (Cit. on p. 23).

133

https://doi.org/10.1109/18.243444
https://doi.org/10.1142/S0218001415530043
https://doi.org/10.1142/S0218001415530043
https://doi.org/https://doi.org/10.1016/j.jcss.2010.06.018
https://doi.org/https://doi.org/10.1016/j.jcss.2010.06.018

REFERENCES

[83] Roger W Hendrix, Graham F Hatfull, Michael E Ford, Margaret CM Smith,
and R Neil Burns. “Evolutionary relationships among diverse bacteriophages and
prophages: all the world’s a phage.” In: Horizontal gene transfer. Elsevier, 2002,
pp. 133–VI. (Cit. on p. 23).

[84] Nuala A O’Leary, Mathew W Wright, J Rodney Brister, Stacy Ciufo, Diana Had-
dad, Rich McVeigh, Bhanu Rajput, Barbara Robbertse, Brian Smith-White, Danso
Ako-Adjei, et al. “Reference sequence (RefSeq) database at NCBI: current status,
taxonomic expansion, and functional annotation.” In: Nucleic acids research 44.D1
(2016), pp. D733–D745. (Cit. on p. 24).

[85] Robert A Edwards and Forest Rohwer. “Viral metagenomics.” In: Nature Reviews
Microbiology 3.6 (2005), pp. 504–510. (Cit. on p. 24).

[86] C Martin Lawrence, Smita Menon, Brian J Eilers, Brian Bothner, Reza Khayat,
Trevor Douglas, and Mark J Young. “Structural and functional studies of archaeal
viruses.” In: Journal of Biological Chemistry 284.19 (2009), pp. 12599–12603. (Cit.
on p. 24).

[87] Eugene V Koonin, Tatiana G Senkevich, and Valerian V Dolja. “The ancient Virus
World and evolution of cells.” In: Biology direct 1.1 (2006), p. 29. (Cit. on p. 24).

[88] Stephen Nayfach, Simon Roux, Rekha Seshadri, Daniel Udwary, Neha Varghese,
Frederik Schulz, Dongying Wu, David Paez-Espino, I-Min Chen, Marcel Hunte-
mann, et al. “A genomic catalog of Earth’s microbiomes.” In: Nature biotechnology
39.4 (2021), pp. 499–509. (Cit. on p. 24).

[89] Editorial. “Microbiology by numbers.” In: Nature Reviews Microbiology 9 (9 2011),
p. 628. ISSN: 1740-1534. DOI: 10.1038/nrmicro2644. (Cit. on p. 24).

[90] James H Strauss and Ellen G Strauss. “CHAPTER 1 - Overview of Viruses and
Virus Infection.” In: Viruses and Human Disease (Second Edition). Ed. by James
H Strauss and Ellen G Strauss. Second Edition. London: Academic Press, 2008,
pp. 1–33. ISBN: 978-0-12-373741-0. DOI: https://doi.org/10.1016/B978-0-12-3
73741-0.50004-0. (Cit. on p. 24).

[91] Jack Lidmar, Leonid Mirny, and David R Nelson. “Virus shapes and buckling tran-
sitions in spherical shells.” In: Physical Review E 68.5 (2003), p. 051910. (Cit. on
p. 24).

[92] Graziano Vernizzi and Monica Olvera de la Cruz. “Faceting ionic shells into icosahe-
dra via electrostatics.” In: Proceedings of the National Academy of Sciences 104.47
(2007), pp. 18382–18386. (Cit. on p. 24).

[93] Antoni Luque and David Reguera. “The structure of elongated viral capsids.” In:
Biophysical journal 98.12 (2010), pp. 2993–3003. (Cit. on p. 24).

134

https://doi.org/10.1038/nrmicro2644
https://doi.org/https://doi.org/10.1016/B978-0-12-373741-0.50004-0
https://doi.org/https://doi.org/10.1016/B978-0-12-373741-0.50004-0

REFERENCES

[94] Efthimia Mina Tsagris, Ángel Emilio Martıńez de Alba, Mariyana Gozmanova, and
Kriton Kalantidis. “Viroids.” In: Cellular microbiology 10.11 (2008), pp. 2168–2179.
(Cit. on p. 24).

[95] Mart Krupovic and Virginija Cvirkaite-Krupovic. “Virophages or satellite viruses?”
In: Nature Reviews Microbiology 9.11 (2011), pp. 762–763. (Cit. on p. 24).

[96] Nigel J Dimmock, Andrew J Easton, and Keith N Leppard. Introduction to modern
virology. John Wiley & Sons, 2016. ISBN: 9781405136457. (Cit. on p. 24).

[97] Selma Gago, Santiago F Elena, Ricardo Flores, and Rafael Sanjuán. “Extremely
high mutation rate of a hammerhead viroid.” In: Science 323.5919 (2009), pp. 1308–
1308. (Cit. on p. 24).

[98] Diego Simón, Juan Cristina, and Héctor Musto. “Nucleotide composition and codon
usage across viruses and their respective hosts.” In: Frontiers in Microbiology 12
(2021). (Cit. on p. 24).

[99] David Baltimore. “Expression of animal virus genomes.” In: Bacteriological reviews
35.3 (1971), pp. 235–241. (Cit. on p. 25).

[100] Kayla M Peck and Adam S Lauring. “Complexities of viral mutation rates.” In:
Journal of virology 92.14 (2018), e01031–17. (Cit. on p. 25).

[101] Jean-Michel Claverie, Hiroyuki Ogata, Stéphane Audic, Chantal Abergel, Karsten
Suhre, and Pierre-Edouard Fournier. “Mimivirus and the emerging concept of “gi-
ant” virus.” In: Virus research 117.1 (2006), pp. 133–144. (Cit. on p. 25).

[102] J-M Claverie, C Abergel, and H Ogata. “Mimivirus.” In: Lesser Known Large dsDNA
Viruses. Springer, 2009, pp. 89–121. (Cit. on p. 25).

[103] Jerome E Foster and Gustavo Fermin. “Chapter 4 - Origins and Evolution of
Viruses.” In: Viruses. Ed. by Paula Tennant, Gustavo Fermin, and Jerome E Foster.
Academic Press, 2018, pp. 83–100. ISBN: 978-0-12-811257-1. DOI: https://doi.or
g/10.1016/B978-0-12-811257-1.00004-8. (Cit. on p. 25).

[104] Antonio Amorim, Filipe Pereira, Cıńtia Alves, and Oscar Garcıá. “Species assign-
ment in forensics and the challenge of hybrids.” In: Forensic Science International:
Genetics 48 (2020), p. 102333. (Cit. on pp. 25, 44).

[105] William Martin and Eugene V Koonin. “Introns and the origin of nucleus–cytosol
compartmentalization.” In: Nature 440.7080 (2006), pp. 41–45. (Cit. on p. 25).

[106] Thomas Cavalier-Smith. “Origin of the cell nucleus, mitosis and sex: roles of intra-
cellular coevolution.” In: Biology direct 5.1 (2010), p. 7. (Cit. on p. 25).

[107] Masaharu Takemura. “Medusavirus Ancestor in a Proto-Eukaryotic Cell: Updating
the Hypothesis for the Viral Origin of the Nucleus.” In: Frontiers in Microbiology
11 (2020), p. 2169. ISSN: 1664-302X. DOI: 10.3389/fmicb.2020.571831. (Cit. on
p. 25).

135

https://doi.org/https://doi.org/10.1016/B978-0-12-811257-1.00004-8
https://doi.org/https://doi.org/10.1016/B978-0-12-811257-1.00004-8
https://doi.org/10.3389/fmicb.2020.571831

REFERENCES

[108] Mari Toppinen, Antti Sajantila, Diogo Pratas, Klaus Hedman, and Maria F Per-
domo. “The Human Bone Marrow Is Host to the DNAs of Several Viruses.” In:
Frontiers in Cellular and Infection Microbiology 11 (2021). ISSN: 2235-2988. DOI:
10.3389/fcimb.2021.657245. (Cit. on p. 25).

[109] Mari Toppinen, Diogo Pratas, Elina Väisänen, Maria Söderlund-Venermo, Klaus
Hedman, Maria F Perdomo, and Antti Sajantila. “The landscape of persistent hu-
man DNA viruses in femoral bone.” In: Forensic Science International: Genetics
48 (2020), p. 102353. (Cit. on p. 25).

[110] Hiroshi Ikegaya and Hirotaro Iwase. “Trial for the geographical identification using
JC viral genotyping in Japan.” In: Forensic science international 139.2-3 (2004),
pp. 169–172. (Cit. on p. 25).

[111] Hansjürgen T Agostini, Richard Yanagihara, Victor Davis, Caroline F Ryschke-
witsch, and Gerald L Stoner. “Asian genotypes of JC virus in Native Americans
and in a Pacific Island population: markers of viral evolution and human migra-
tion.” In: Proceedings of the National Academy of Sciences 94.26 (1997), pp. 14542–
14546. (Cit. on p. 25).

[112] Chie Sugimoto, Tadaichi Kitamura, Jing Guo, Mohammed N Al-Ahdal, Sergei N
Shchelkunov, Berta Otova, Paul Ondrejka, Jean-Yves Chollet, Sayda El-Safi, Mo-
hamed Ettayebi, et al. “Typing of urinary JC virus DNA offers a novel means of
tracing human migrations.” In: Proceedings of the National Academy of Sciences
94.17 (1997), pp. 9191–9196. (Cit. on p. 25).

[113] Chie Sugimoto, Masami Hasegawa, Huai-Ying Zheng, Vladimir Demenev, Yoshi-
haru Sekino, Kazuo Kojima, Takeo Honjo, Hiroshi Kida, Tapani Hovi, Timo
Vesikari, et al. “JC virus strains indigenous to northeastern Siberians and Canadian
Inuits are unique but evolutionally related to those distributed throughout Europe
and Mediterranean areas.” In: Journal of Molecular Evolution 55.3 (2002), pp. 322–
335. (Cit. on p. 25).

[114] Diego Forni, Rachele Cagliani, Mario Clerici, Uberto Pozzoli, and Manuela Sironi.
“You will never walk alone: codispersal of JC polyomavirus with human popula-
tions.” In: Molecular biology and evolution 37.2 (2020), pp. 442–454. (Cit. on p. 25).

[115] Morteza Hosseini, Diogo Pratas, and Armando J Pinho. “On the role of inverted
repeats in DNA sequence similarity.” In: International Conference on Practical
Applications of Computational Biology & Bioinformatics. Springer. 2017, pp. 228–
236. (Cit. on p. 25).

[116] Mari Toppinen. “Parvoviral genomes in human soft tissues and bones over decades.”
PhD thesis. Helsingin yliopisto, 2021. (Cit. on pp. 25, 26).

136

https://doi.org/10.3389/fcimb.2021.657245

REFERENCES

[117] Irina Voineagu, Vidhya Narayanan, Kirill S Lobachev, and Sergei M Mirkin. “Repli-
cation stalling at unstable inverted repeats: interplay between DNA hairpins and
fork stabilizing proteins.” In: Proceedings of the National Academy of Sciences
105.29 (2008), pp. 9936–9941. (Cit. on p. 25).

[118] J John Bissler. “DNA inverted repeats and human disease.” In: Front Biosci 3.4
(1998), pp. d408–d418. (Cit. on p. 26).

[119] Ching-Tai Lin, Wei-Hsin Lin, Yi Lisa Lyu, and Jacqueline Whang-Peng. “Inverted
repeats as genetic elements for promoting DNA inverted duplication: implications
in gene amplification.” In: Nucleic Acids Research 29.17 (2001), pp. 3529–3538.
(Cit. on p. 26).

[120] John F Atkins, Gary Loughran, Pramod R Bhatt, Andrew E Firth, and Pavel
V Baranov. “Ribosomal frameshifting and transcriptional slippage: From genetic
steganography and cryptography to adventitious use.” In: Nucleic acids research
44.15 (2016), pp. 7007–7078. (Cit. on p. 26).

[121] Olivier Namy, Stephen J Moran, David I Stuart, Robert JC Gilbert, and Ian Brier-
ley. “A mechanical explanation of RNA pseudoknot function in programmed ribo-
somal frameshifting.” In: Nature 441.7090 (2006), pp. 244–247. (Cit. on p. 26).

[122] Martin Mikl, Yitzhak Pilpel, and Eran Segal. “High-throughput interrogation of
programmed ribosomal frameshifting in human cells.” In: Nature communications
11.1 (2020), pp. 1–18. (Cit. on p. 26).

[123] Susan F Cotmore and Peter Tattersall. “Parvoviruses: small does not mean simple.”
In: Annual review of virology 1 (2014), pp. 517–537. (Cit. on p. 26).

[124] Ziying Yan, Roman Zak, Yulong Zhang, and John F Engelhardt. “Inverted terminal
repeat sequences are important for intermolecular recombination and circularization
of adeno-associated virus genomes.” In: Journal of virology 79.1 (2005), pp. 364–
379. (Cit. on p. 26).

[125] Deborah Byrne, Renata Grzela, Audrey Lartigue, Stéphane Audic, Sabine
Chenivesse, Stéphanie Encinas, Jean-Michel Claverie, and Chantal Abergel. “The
polyadenylation site of Mimivirus transcripts obeys a stringent ‘hairpin rule’.” In:
Genome research 19.7 (2009), pp. 1233–1242. (Cit. on p. 26).

[126] Jean-Michel Claverie and Chantal Abergel. “Mimivirus and its virophage.” In: An-
nual review of genetics 43 (2009), pp. 49–66. (Cit. on p. 26).

[127] Edward R Dougherty and Ilya Shmulevich.Genomic signal processing and statistics.
Vol. 2. Hindawi Publishing Corporation, 2005. (Cit. on p. 26).

[128] Jean Gailly and Mark Adler. The gzip home page. http://www.gzip.org/. accessed
May 16, 2020. (Cit. on pp. 26, 58).

[129] bzip2. http://www.bzip.org/. accessed May 16, 2020. (Cit. on pp. 26, 58).

137

http://www.gzip.org/
http://www.bzip.org/

REFERENCES

[130] Igor Pavlov. 7-Zip. https://www.7-zip.org/. accessed May 16, 2020. (Cit. on
pp. 26, 58).

[131] Stéphane Grumbach and Fariza Tahi. “Compression of DNA sequences.” In: [Pro-
ceedings] DCC93: Data Compression Conference. IEEE. 1993, pp. 340–350. (Cit. on
p. 26).

[132] Loren H Rieseberg. “Chromosomal rearrangements and speciation.” In: Trends in
ecology & evolution 16.7 (2001), pp. 351–358. (Cit. on p. 26).

[133] G Shirleen Roeder and Gerald R Fink. “DNA rearrangements associated with a
transposable element in yeast.” In: Cell 21.1 (1980), pp. 239–249. (Cit. on p. 26).

[134] Mikel Hernaez, Dmitri Pavlichin, Tsachy Weissman, and Idoia Ochoa. “Genomic
data compression.” In: Annual Review of Biomedical Data Science 2 (2019), pp. 19–
37. (Cit. on p. 26).

[135] Stéphane Grumbach and Fariza Tahi. “A new challenge for compression algorithms:
genetic sequences.” In: Information Processing & Management 30.6 (1994), pp. 875–
886. (Cit. on p. 26).

[136] Giovanni Manzini and Marcella Rastero. “A simple and fast DNA compressor.” In:
Software: Practice and Experience 34.14 (2004), pp. 1397–1411. (Cit. on p. 26).

[137] Neva Cherniavsky and Richard Ladner. “Grammar-based compression of DNA se-
quences.” In: DIMACS Working Group on The Burrows-Wheeler Transform 21
(2004). (Cit. on p. 26).

[138] Gergely Korodi and Ioan Tabus. “An efficient normalized maximum likelihood al-
gorithm for DNA sequence compression.” In: ACM Transactions on Information
Systems (TOIS) 23.1 (2005), pp. 3–34. (Cit. on p. 26).

[139] Gregory Vey. “Differential direct coding: a compression algorithm for nucleotide
sequence data.” In: Database 2009 (2009). (Cit. on p. 26).

[140] Kamta Nath Mishra, Anupam Aaggarwal, Edries Abdelhadi, and DPC Srivastava.
“An efficient horizontal and vertical method for online DNA sequence compression.”
In: International Journal of Computer Applications 3.1 (2010), pp. 39–46. (Cit. on
p. 26).

[141] P Raja Rajeswari and Allam Apparao. “GENBIT Compress-Algorithm for repet-
itive and non repetitive DNA sequences.” In: International Journal of Computer
Science and Information Technology 2 (2010), pp. 25–29. (Cit. on p. 26).

[142] Ashutosh Gupta and Suneeta Agarwal. “A novel approach for compressing DNA se-
quences using semi-statistical compressor.” In: International Journal of Computers
and Applications 33.3 (2011), pp. 245–251. (Cit. on p. 26).

138

https://www.7-zip.org/

REFERENCES

[143] Zexuan Zhu, Jiarui Zhou, Zhen Ji, and Yu-Hui Shi. “DNA sequence compression
using adaptive particle swarm optimization-based memetic algorithm.” In: IEEE
Transactions on Evolutionary Computation 15.5 (2011), pp. 643–658. (Cit. on
p. 26).

[144] Armando J Pinho, Paulo Jorge S G Ferreira, António JR Neves, and Carlos AC
Bastos. “On the representability of complete genomes by multiple competing finite-
context (Markov) models.” In: PloS one 6.6 (2011), e21588. (Cit. on pp. 26, 82).

[145] Diogo Pratas, Armando J Pinho, and Paulo Jorge S G Ferreira. “Efficient compres-
sion of genomic sequences.” In: 2016 Data Compression Conference (DCC). IEEE.
2016, pp. 231–240. (Cit. on p. 26).

[146] Kirill Kryukov, Mahoko Takahashi Ueda, So Nakagawa, and Tadashi Imanishi. “Nu-
cleotide Archival Format (NAF) enables efficient lossless reference-free compression
of DNA sequences.” In: Bioinformatics 35.19 (2019), pp. 3826–3828. (Cit. on p. 26).

[147] Kirill Kryukov. Kirillkryukov/NAF: Nucleotide archival format - compressed file
format for DNA/RNA/protein sequences. accessed May 5, 2022.
URL: https://github.com/KirillKryukov/naf (cit. on p. 26).

[148] Szymon Grabowski and Tomasz M Kowalski. “MBGC: Multiple Bacteria Genome
Compressor.” In: GigaScience 11 (2022). (Cit. on p. 26).

[149] Byron Knoll. Byronknoll/cmix: Cmix is a lossless data compression program aimed
at optimizing compression ratio at the cost of high CPU/memory usage.Byron Knoll.
accessed May 5, 2022.
URL: https://github.com/byronknoll/cmix (cit. on pp. 26, 32, 33).

[150] Minh Duc Cao, Trevor I Dix, Lloyd Allison, and Chris Mears. “A simple statis-
tical algorithm for biological sequence compression.” In: 2007 Data Compression
Conference (DCC’07). IEEE. 2007, pp. 43–52. (Cit. on pp. 26, 27).

[151] Diogo Pratas, Morteza Hosseini, Jorge M Silva, and Armando J Pinho. “A reference-
free lossless compression algorithm for DNA sequences using a competitive predic-
tion of two classes of weighted models.” In: Entropy 21.11 (2019), p. 1074. (Cit. on
pp. 26, 27).

[152] Kirill Kryukov, Mahoko Takahashi Ueda, So Nakagawa, and Tadashi Imanishi.
“Sequence Compression Benchmark (SCB) database—A comprehensive evaluation
of reference-free compressors for FASTA-formatted sequences.” In: GigaScience 9.7
(2020), giaa072. (Cit. on p. 26).

[153] Byron Knoll and Nando de Freitas. “A machine learning perspective on predictive
coding with PAQ8.” In: 2012 Data Compression Conference. IEEE. 2012, pp. 377–
386. (Cit. on pp. 27, 59, 103).

[154] Avatar Johannes Buchner. PAQ. https://github.com/JohannesBuchner/paq/.
accessed May 16, 2020. (Cit. on pp. 27, 59).

139

https://github.com/KirillKryukov/naf
https://github.com/byronknoll/cmix
https://github.com/JohannesBuchner/paq/

REFERENCES

[155] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In: Neural
computation 9.8 (1997), pp. 1735–1780. (Cit. on p. 27).

[156] Diogo Pratas, Morteza Hosseini, and Armando J Pinho. “GeCo2: An optimized
tool for lossless compression and analysis of DNA sequences.” In: International
Conference on Practical Applications of Computational Biology & Bioinformatics.
Springer. 2019, pp. 137–145. (Cit. on p. 27).

[157] Diogo Pratas and Armando J Pinho. “On the approximation of the Kolmogorov
complexity for DNA sequences.” In: Iberian Conference on Pattern Recognition and
Image Analysis. Springer. 2017, pp. 259–266. (Cit. on pp. 28, 31, 57).

[158] Armando J Pinho, Sara P Garcia, Diogo Pratas, and Paulo Jorge S G Ferreira.
“DNA sequences at a glance.” In: PloS one 8.11 (2013), e79922. (Cit. on p. 28).

[159] Armando J Pinho, Diogo Pratas, Paulo Jorge S G Ferreira, and Sara P Garcia.
“Symbolic to numerical conversion of DNA sequences using finite-context models.”
In: 2011 19th European Signal Processing Conference. IEEE. 2011, pp. 2024–2028.
(Cit. on p. 28).

[160] João R Almeida, Armando J Pinho, José L Oliveira, Olga Fajarda, and Diogo
Pratas. “GTO: a toolkit to unify pipelines in genomic and proteomic research.” In:
SoftwareX 12 (2020), p. 100535. (Cit. on pp. 28, 32).

[161] Jonathan Romiguier, Vincent Ranwez, Emmanuel JP Douzery, and Nicolas Galtier.
“Contrasting GC-content dynamics across 33 mammalian genomes: relationship
with life-history traits and chromosome sizes.” In: Genome research 20.8 (2010),
pp. 1001–1009. (Cit. on p. 29).

[162] Laurent Duret and Nicolas Galtier. “Biased gene conversion and the evolution of
mammalian genomic landscapes.” In: Annual review of genomics and human genet-
ics 10 (2009), pp. 285–311. (Cit. on p. 29).

[163] Peter Simmonds and M Azim Ansari. “Extensive C-> U transition biases in the
genomes of a wide range of mammalian RNA viruses; potential associations with
transcriptional mutations, damage-or host-mediated editing of viral RNA.” In: PLoS
pathogens 17.6 (2021), e1009596. (Cit. on pp. 29, 37).

[164] Peter Yakovchuk, Ekaterina Protozanova, and Maxim D Frank-Kamenetskii. “Base-
stacking and base-pairing contributions into thermal stability of the DNA double
helix.” In: Nucleic acids research 34.2 (2006), pp. 564–574. (Cit. on p. 29).

[165] Han Chen and Chris-Kriton Skylaris. “Analysis of DNA interactions and GC content
with energy decomposition in large-scale quantum mechanical calculations.” In:
Physical Chemistry Chemical Physics 23.14 (2021), pp. 8891–8899. (Cit. on p. 29).

[166] Geoffrey J McLachlan. Discriminant analysis and statistical pattern recognition.
Vol. 544. John Wiley & Sons, 2004. (Cit. on pp. 29, 45).

140

REFERENCES

[167] Irina Rish et al. “An empirical study of the naive Bayes classifier.” In: IJCAI 2001
workshop on empirical methods in artificial intelligence. Vol. 3. 2001, pp. 41–46.
(Cit. on pp. 29, 45).

[168] Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. “KNN Model-
Based Approach in Classification.” In: Springer Berlin Heidelberg (2003). Ed. by
Robert Meersman, Zahir Tari, and Douglas C Schmidt, pp. 986–996. DOI: 10.100
7/978-3-540-39964-3_62. (Cit. on pp. 29, 45).

[169] Nello Cristianini, John Shawe-Taylor, et al. An introduction to support vector ma-
chines and other kernel-based learning methods. Cambridge university press, 2000.
(Cit. on pp. 29, 30, 46).

[170] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System.”
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. San Francisco, California, USA: ACM, 2016,
pp. 785–794. ISBN: 978-1-4503-4232-2. DOI: 10.1145/2939672.2939785. (Cit. on
pp. 29, 30, 46, 74).

[171] Linda Stern, Lloyd Allison, Ross L Coppel, and Trevor I Dix. “Discovering pat-
terns in Plasmodium falciparum genomic DNA.” In: Molecular and Biochemical
Parasitology 118.2 (2001), pp. 175–186. (Cit. on p. 30).

[172] Minh Duc Cao, Trevor I Dix, and Lloyd Allison. “A genome alignment algorithm
based on compression.” In: BMC bioinformatics 11.1 (2010), pp. 1–16. (Cit. on
p. 30).

[173] Morihiro Hayashida and Tatsuya Akutsu. “Comparing biological networks via graph
compression.” In: BMC systems biology. Vol. 4. BioMed Central. 2010, pp. 1–11.
(Cit. on p. 31).

[174] Robert Paul Bywater. “Prediction of protein structural features from sequence data
based on Shannon entropy and Kolmogorov complexity.” In: PloS one 10.4 (2015),
e0119306. (Cit. on p. 31).

[175] Diogo Pratas and Armando J Pinho. “Metagenomic composition analysis of sed-
imentary ancient DNA from the Isle of Wight.” In: 2018 26th European Signal
Processing Conference (EUSIPCO). IEEE. 2018, pp. 1177–1181. (Cit. on p. 31).

[176] Morteza Hosseini, Diogo Pratas, Burkhard Morgenstern, and Armando J Pinho.
“Smash++: an alignment-free and memory-efficient tool to find genomic rearrange-
ments.” In: GigaScience 9.5 (2020), giaa048. (Cit. on p. 31).

[177] Jonathan Kans. Entrez direct: E-utilities on the UNIX command line. National
Center for Biotechnology Information (US), 2020. (Cit. on p. 32).

[178] Matt Mahoney. Data compression programs. Ed. by Florida Tech Department of
Computer Sciences. 2009. (Cit. on pp. 32, 33).

141

https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1145/2939672.2939785

REFERENCES

[179] Rafael Sanjuán and Pilar Domingo-Calap. “Mechanisms of viral mutation.” In: Cel-
lular and molecular life sciences 73.23 (2016), pp. 4433–4448. (Cit. on p. 36).

[180] Brian WJ Mahy. “The evolution and emergence of RNA viruses.” In: Emerging
infectious diseases 16.5 (2010), p. 899. (Cit. on p. 37).

[181] Peter Simmonds. “Rampant C→ U hypermutation in the genomes of SARS-CoV-
2 and other coronaviruses: causes and consequences for their short-and long-term
evolutionary trajectories.” In: Msphere 5.3 (2020), e00408–20. (Cit. on p. 37).

[182] David Prangishvili, Elena Rensen, Tomohiro Mochizuki, Mart Krupovic, et al.
“ICTV virus taxonomy profile: Tristromaviridae.” In: Journal of General Virology
100.2 (2019), pp. 135–136. (Cit. on p. 38).

[183] Mart Krupovic, Jens H Kuhn, Fengbin Wang, Diana P Baquero, Valerian V Dolja,
Edward H Egelman, David Prangishvili, and Eugene V Koonin. “Adnaviria: a new
realm for archaeal filamentous viruses with linear A-form double-stranded DNA
genomes.” In: Journal of Virology (2021), JVI–00673. (Cit. on p. 38).

[184] Mart Krupovic, Virginija Cvirkaite-Krupovic, Jaime Iranzo, David Prangishvili,
and Eugene V Koonin. “Viruses of archaea: structural, functional, environmental
and evolutionary genomics.” In: Virus research 244 (2018), pp. 181–193. (Cit. on
p. 39).

[185] Marıá A Ayllón, Massimo Turina, Jiatao Xie, Luca Nerva, Shin-Yi Lee Marzano,
Livia Donaire, Daohong Jiang, and ICTV Report Consortium. “ICTV virus taxon-
omy profile: Botourmiaviridae.” In: The Journal of general virology 101.5 (2020),
p. 454. (Cit. on p. 39).

[186] Keith W Savin, Benjamin G Cocks, Frank Wong, Tim Sawbridge, Noel Cogan,
David Savage, and Simone Warner. “A neurotropic herpesvirus infecting the gas-
tropod, abalone, shares ancestry with oyster herpesvirus and a herpesvirus associ-
ated with the amphioxus genome.” In: Virology journal 7.1 (2010), pp. 1–9. (Cit. on
p. 39).

[187] Andrew MQ King, Elliot Lefkowitz, Michael J Adams, and Eric B Carstens. Virus
taxonomy: ninth report of the International Committee on Taxonomy of Viruses.
Vol. 9. Elsevier, 2011. (Cit. on p. 39).

[188] Lari Pyöriä, Maija Jokinen, Mari Toppinen, Henri Salminen, Tytti Vuorinen, Veijo
Hukkanen, Constanze Schmotz, Endrit Elbasani, Päivi M Ojala, Klaus Hedman,
et al. “HERQ-9 is a new multiplex PCR for differentiation and quantification of all
nine human herpesviruses.” In: Msphere 5.3 (2020), e00265–20. (Cit. on p. 39).

[189] Joel D Baines and Philip E Pellett. “Genetic comparison of human alphaher-
pesvirus genomes.” In: Human herpesviruses: biology, therapy, and immunopro-
phylaxis (2007). (Cit. on p. 40).

142

REFERENCES

[190] Xiaoxi Liu, Shunichi Kosugi, Rie Koide, Yoshiki Kawamura, Jumpei Ito, Hiroki
Miura, Nana Matoba, Motomichi Matsuzaki, Masashi Fujita, Anselmo Jiro Ka-
mada, et al. “Endogenization and excision of human herpesvirus 6 in human
genomes.” In: PLoS Genetics 16.8 (2020), e1008915. (Cit. on p. 41).

[191] Ramesh Rajaby, Yi Zhou, Yifan Meng, Xi Zeng, Guoliang Li, Peng Wu, and Wing-
Kin Sung. “SurVirus: a repeat-aware virus integration caller.” In: Nucleic acids
research 49.6 (2021), e33–e33. (Cit. on p. 41).

[192] Giulia Aimola, Georg Beythien, Amr Aswad, and Benedikt B Kaufer. “Current
understanding of human herpesvirus 6 (HHV-6) chromosomal integration.” In: An-
tiviral research 176 (2020), p. 104720. (Cit. on p. 41).

[193] JK Choudhari, J Choubey, MK Verma, T Chatterjee, and BP Sahariah. “Metage-
nomics: the boon for microbial world knowledge and current challenges.” In: Bioin-
formatics. Elsevier, 2022, pp. 159–175. (Cit. on p. 44).

[194] Michael Vilsker, Yumma Moosa, Sam Nooij, Vagner Fonseca, Yoika Ghysens, Ko-
rneel Dumon, Raf Pauwels, Luiz Carlos Alcantara, Ewout Vanden Eynden, Anne-
Mieke Vandamme, Koen Deforche, and Tulio de Oliveira. “Genome Detective: an
automated system for virus identification from high-throughput sequencing data.”
In: Bioinformatics 35.5 (2019), pp. 871–873. DOI: 10.1093/bioinformatics/bty6
95. (Cit. on p. 44).

[195] Shifu Chen, Changshou He, Yingqiang Li, Zhicheng Li, and E Melancon III Charles.
“A Computational Toolset for Rapid Identification of SARS-CoV-2, other Viruses,
and Microorganisms from Sequencing Data.” In: Briefings in Bioinformatics 22.2
(2021), pp. 924–935. DOI: 10.1101/2020.05.12.092163. (Cit. on p. 44).

[196] Irina Abnizova, Steven Leonard, Tom Skelly, Andy Brown, David Jackson, Marina
Gourtovaia, Guoying Qi, Rene Te Boekhorst, Nadeem Faruque, Kevin Lewis, and
Tony Cox. “Analysis of context-dependent errors for illumina sequencing.” In: J
Bioinform Comput Biol 10.2 (2012). DOI: 10.1142/S0219720012410053. (Cit. on
p. 44).

[197] Rene Te Boekhorst, F M Naumenko, N G Orlova, Elvira Rasimovna Galieva, A M
Spitsina, Irina Chadaeva, Yuriy Orlov, and Irina Abnizova. “Computational prob-
lems of analysis of short next generation sequencing reads.” In: Vavilov Journal of
Genetics and Breeding 20.6 (2016), pp. 746–755. DOI: 10.18699/VJ16.191. (Cit. on
p. 44).

[198] Michał Karlicki, Stanisław Antonowicz, and Anna Karnkowska. “Tiara: deep
learning-based classification system for eukaryotic sequences.” In: Bioinformatics
38.2 (2022), pp. 344–350. (Cit. on p. 44).

143

https://doi.org/10.1093/bioinformatics/bty695
https://doi.org/10.1093/bioinformatics/bty695
https://doi.org/10.1101/2020.05.12.092163
https://doi.org/10.1142/S0219720012410053
https://doi.org/10.18699/VJ16.191

REFERENCES

[199] Qian Zhang, Se-Ran Jun, Michael Leuze, David Ussery, and Intawat Nookaew.
“Viral phylogenomics using an alignment-free method: A three-step approach to
determine optimal length of k-mer.” In: Scientific reports 7.1 (2017), pp. 1–13. (Cit.
on pp. 44, 45).

[200] Burkhard Morgenstern. “Sequence comparison without alignment: The SpaM ap-
proaches.” In: Multiple Sequence Alignment. Springer, 2021, pp. 121–134. (Cit. on
p. 45).

[201] Thomas Dencker, Chris-André Leimeister, Michael Gerth, Christoph Bleidorn, Sagi
Snir, and Burkhard Morgenstern. “‘Multi-SpaM’: a maximum-likelihood approach
to phylogeny reconstruction using multiple spaced-word matches and quartet trees.”
In: NAR Genomics and Bioinformatics 2.1 (Oct. 2019). lqz013. ISSN: 2631-9268.
DOI: 10.1093/nargab/lqz013. eprint: https://academic.oup.com/nargab/arti
cle-pdf/2/1/lqz013/34054190/lqz013.pdf. (Cit. on p. 45).

[202] Benjamin J Garcia, Ramanuja Simha, Michael Garvin, Anna Furches, Piet Jones,
Joao GFM Gazolla, P Doug Hyatt, Christopher W Schadt, Dale Pelletier, and
Daniel Jacobson. “A k-mer based approach for classifying viruses without taxonomy
identifies viral associations in human autism and plant microbiomes.” In: Compu-
tational and structural biotechnology journal 19 (2021), pp. 5911–5919. (Cit. on
p. 45).

[203] Lily He, Siyang Sun, Qianyue Zhang, Xiaona Bao, and Peter K Li. “Alignment-free
sequence comparison for virus genomes based on location correlation coefficient.”
In: Infection, Genetics and Evolution 96 (2021), p. 105106. (Cit. on p. 45).

[204] Gordon K Smyth. “Statistical applications in genetics and molecular biology.” In:
Linear models and empirical Bayes methods for assessing differential expression in
microarray experiments (2004). (Cit. on p. 45).

[205] Jennifer Lu and Steven L Salzberg. “Removing contaminants from databases of
draft genomes.” In: PLoS computational biology 14.6 (2018), e1006277. (Cit. on
p. 48).

[206] Robert W Weisberg. Creativity: Understanding innovation in problem solving, sci-
ence, invention, and the arts. John Wiley & Sons, 2006. (Cit. on p. 55).

[207] Aaron Hertzmann. “Can computers create art?” In: Arts. Vol. 7. 2. MDPI. 2018,
p. 18. (Cit. on p. 55).

[208] Fahad Shahbaz Khan, Shida Beigpour, Joost Van de Weijer, and Michael Felsberg.
“Painting-91: a large scale database for computational painting categorization.” In:
Machine vision and applications 25.6 (2014), pp. 1385–1397. (Cit. on pp. 55, 58,
60, 63).

[209] Siwei Lyu, Daniel Rockmore, and Hany Farid. “A digital technique for art au-
thentication.” In: Proceedings of the National Academy of Sciences 101.49 (2004),
pp. 17006–17010. (Cit. on p. 55).

144

https://doi.org/10.1093/nargab/lqz013
https://academic.oup.com/nargab/article-pdf/2/1/lqz013/34054190/lqz013.pdf
https://academic.oup.com/nargab/article-pdf/2/1/lqz013/34054190/lqz013.pdf

REFERENCES

[210] Daniel Kim, Seung-Woo Son, and Hawoong Jeong. “Large-scale quantitative anal-
ysis of painting arts.” In: Scientific reports 4.1 (2014), pp. 1–7. (Cit. on pp. 55, 56,
65, 67, 73).

[211] Hai Zhang, Stefano Sfarra, Karan Saluja, Jeroen Peeters, Julien Fleuret, Yuxia
Duan, Henrique Fernandes, Nicolas Avdelidis, Clemente Ibarra-Castanedo, and
Xavier Maldague. “Non-destructive investigation of paintings on canvas by continu-
ous wave terahertz imaging and flash thermography.” In: Journal of Nondestructive
Evaluation 36.2 (2017), pp. 1–12. (Cit. on p. 55).

[212] Richard P Taylor, Adam P Micolich, and David Jonas. “Fractal analysis of Pollock’s
drip paintings.” In: Nature 399.6735 (1999), pp. 422–422. (Cit. on p. 55).

[213] C Richard Johnson, Ella Hendriks, Igor J Berezhnoy, Eugene Brevdo, Shannon M
Hughes, Ingrid Daubechies, Jia Li, Eric Postma, and James Z Wang. “Image pro-
cessing for artist identification.” In: IEEE Signal Processing Magazine 25.4 (2008),
pp. 37–48. (Cit. on p. 56).

[214] Jia Li and James Ze Wang. “Studying digital imagery of ancient paintings by mix-
tures of stochastic models.” In: IEEE transactions on image processing 13.3 (2004),
pp. 340–353. (Cit. on p. 56).

[215] Marco Bressan, Claudio Cifarelli, and Florent Perronnin. “An analysis of the rela-
tionship between painters based on their work.” In: 2008 15th IEEE International
Conference on Image Processing. IEEE. 2008, pp. 113–116. (Cit. on p. 56).

[216] Bruno A Olshausen and Michael R DeWeese. “The statistics of style.” In: Nature
463.7284 (2010), pp. 1027–1028. (Cit. on p. 56).

[217] James M Hughes, Daniel J Graham, and Daniel N Rockmore. “Quantification of
artistic style through sparse coding analysis in the drawings of Pieter Bruegel the
Elder.” In: Proceedings of the National Academy of Sciences 107.4 (2010), pp. 1279–
1283. (Cit. on p. 56).

[218] David G Stork and Yasuo Furuichi. “Image analysis of paintings by computer graph-
ics synthesis: an investigation of the illumination in Georges de la Tour’s Christ in
the carpenter’s studio.” In: Computer image analysis in the study of art. Vol. 6810.
SPIE. 2008, pp. 176–187. (Cit. on p. 56).

[219] Martin Lettner and Robert Sablatnig. “Estimating the original drawing trace of
painted strokes.” In: Computer image analysis in the study of art. Vol. 6810. SPIE.
2008, pp. 113–122. (Cit. on p. 56).

[220] Morteza Shahram, David G Stork, and David Donoho. “Recovering layers of brush
strokes through statistical analysis of color and shape: an application to van Gogh’s”
Self portrait with grey felt hat”.” In: Computer image analysis in the study of art.
Vol. 6810. SPIE. 2008, pp. 123–130. (Cit. on p. 56).

145

REFERENCES

[221] S Blair Hedges. “Image analysis of Renaissance copperplate prints.” In: Computer
image analysis in the study of art. Vol. 6810. SPIE. 2008, pp. 82–101. (Cit. on
p. 56).

[222] Vladimir M Petrov. “Entropy and stability in painting: An information approach
to the mechanisms of artistic creativity.” In: Leonardo 35.2 (2002), pp. 197–202.
(Cit. on p. 56).

[223] António M Lopes and J A Tenreiro Machado. “Dynamics of the 𝑁-link pendulum:
a fractional perspective.” In: Internat. J. Control 90.6 (2017), pp. 1192–1200. ISSN:
0020-7179. DOI: 10.1080/00207179.2015.1126677.
URL: https://doi.org/10.1080/00207179.2015.1126677 (cit. on p. 56).

[224] Kuan-Chuan Peng and Tsuhan Chen. “Cross-layer features in convolutional neural
networks for generic classification tasks.” In: 2015 IEEE International Conference
on Image Processing (ICIP). IEEE. 2015, pp. 3057–3061. (Cit. on p. 56).

[225] Hui Mao, Ming Cheung, and James She. “Deepart: Learning joint representations
of visual arts.” In: Proceedings of the 25th ACM international conference on Mul-
timedia. 2017, pp. 1183–1191. (Cit. on pp. 56, 74).

[226] W Chu and Y Wu. “Image Style Classification Based on Learnt Deep Correlation
Features.” In: IEEE Transactions on Multimedia 20.9 (2018), pp. 2491–2502. (Cit.
on pp. 56, 74).

[227] Joost Smiers. Arts under pressure: promoting cultural diversity in the age of glob-
alization. Zed Books, 2003. (Cit. on p. 56).

[228] Paulo Jorge S G Ferreira and Armando J Pinho. “A method to detect repeated
unknown patterns in an image.” In: International Conference Image Analysis and
Recognition. Springer. 2014, pp. 12–19. (Cit. on p. 56).

[229] Armando J Pinho and Paulo Jorge S G Ferreira. “Finding unknown repeated pat-
terns in images.” In: 2011 19th European Signal Processing Conference. IEEE. 2011,
pp. 584–588. (Cit. on p. 56).

[230] Diogo Pratas and Armando J Pinho. “On the detection of unknown locally repeating
patterns in images.” In: International Conference Image Analysis and Recognition.
Springer. 2012, pp. 158–165. (Cit. on pp. 56, 122).

[231] Robert R Sokal. “A statistical method for evaluating systematic relationships.” In:
Univ. Kansas, Sci. Bull. 38 (1958), pp. 1409–1438. (Cit. on p. 57).

[232] Joseph B Kruskal. “On the shortest spanning subtree of a graph and the travel-
ing salesman problem.” In: Proceedings of the American Mathematical society 7.1
(1956), pp. 48–50. (Cit. on pp. 57, 71, 170).

[233] Stuart Lloyd. “Least squares quantization in PCM.” In: IEEE transactions on in-
formation theory 28.2 (1982), pp. 129–137. (Cit. on p. 58).

146

https://doi.org/10.1080/00207179.2015.1126677
https://doi.org/10.1080/00207179.2015.1126677

REFERENCES

[234] David S Taubman and Michael W Marcellin. “JPEG2000: Image compression fun-
damentals.” In: Standards and Practice 11.2 (2002). (Cit. on p. 58).

[235] Lasse Collin. XZ Utils. https://tukaani.org/xz/. accessed May 16, 2020. (Cit.
on p. 58).

[236] Morteza Hosseini, Diogo Pratas, and Armando J Pinho. “AC: A compression tool for
amino acid sequences.” In: Interdisciplinary Sciences: Computational Life Sciences
11.1 (2019), pp. 68–76. (Cit. on p. 58).

[237] John Cleary and Ian Witten. “Data compression using adaptive coding and partial
string matching.” In: IEEE transactions on Communications 32.4 (1984), pp. 396–
402. (Cit. on p. 58).

[238] Matt Mahoney. Data Compression Programs. http://mattmahoney.net/dc/.
accessed January 21, 2022. (Cit. on p. 58).

[239] Matthew VMahoney. Adaptive weighing of context models for lossless data compres-
sion. Tech. rep. Florida Institute of Technology CS Department of the W University
Blvd, 2005. (Cit. on pp. 59, 103).

[240] Jorma Rissanen and Glen G Langdon. “Arithmetic coding.” In: IBM Journal of
research and development 23.2 (1979), pp. 149–162. (Cit. on p. 59).

[241] Alistair Moffat, Radford M Neal, and Ian H Witten. “Arithmetic coding revisited.”
In: ACM Transactions on Information Systems (TOIS) 16.3 (1998), pp. 256–294.
(Cit. on p. 59).

[242] Best Artworks of All Time. https://www.kaggle.com/ikarus777/best-artwork
s-of-all-time/data. accessed May 18, 2020. (Cit. on p. 60).

[243] Diabetic Retinopathy Detection. https://www.kaggle.com/c/diabetic-retinop
athy-detection/overview. accessed May 18, 2020. (Cit. on p. 60).

[244] X Wang, Y Peng, L Lu, Z Lu, M Bagheri, and RM Summers. “ChestX-Ray8:
Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Clas-
sification and Localization of Common Thorax Diseases.” In: IEEE CVPR. 2017,
pp. 3462–3471. (Cit. on p. 60).

[245] COCO - Common Objects in Context. http://cocodataset.org/#download.
accessed May 18, 2020. (Cit. on p. 60).

[246] Cecile Shapiro et al. “Abstract Expressionism: The politics of apolitical painting.”
In: Prospects 3 (1978), pp. 175–214. (Cit. on p. 65).

[247] H Rosenberg. The Tradition Of The New. Hachette Books, 1994. ISBN:
9780306805967. (Cit. on p. 65).

[248] Laura Garrard. Colourfield painting: Minimal, Cool, Hard Edge, Serial and Post-
painterly Abstract Art from the Sixties to the present. Crescent Moon Publishing,
2007. (Cit. on p. 65).

147

https://tukaani.org/xz/
http://mattmahoney.net/dc/
https://www.kaggle.com/ikarus777/best-artworks-of-all-time/data
https://www.kaggle.com/ikarus777/best-artworks-of-all-time/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/overview
https://www.kaggle.com/c/diabetic-retinopathy-detection/overview
http://cocodataset.org/#download

REFERENCES

[249] David Hockney. Secret knowledge: Rediscovering the lost techniques of the old mas-
ters. Thames & Hudson London, 2001. (Cit. on p. 72).

[250] Saboya Yang, Gene Cheung, Patrick Le Callet, Jiaying Liu, and Zongming Guo.
“Computational modeling of artistic intention: Quantify lighting surprise for paint-
ing analysis.” In: 2016 Eighth International Conference on Quality of Multimedia
Experience (QoMEX). IEEE. 2016, pp. 1–6. (Cit. on p. 73).

[251] Lois Fichner-Rathus. Foundations of art and design: An enhanced media edition.
Cengage Learning, 2011. (Cit. on p. 73).

[252] Loris Nanni, Stefano Ghidoni, and Sheryl Brahnam. “Handcrafted vs. non-
handcrafted features for computer vision classification.” In: Pattern Recognition
71 (2017), pp. 158–172. ISSN: 0031-3203. DOI: https://doi.org/10.1016/j.patc
og.2017.05.025. (Cit. on p. 75).

[253] Dina Goldin and Peter Wegner. “The church-Turing thesis: breaking the myth.” In:
New computational paradigms. Vol. 3526. Lecture Notes in Comput. Sci. Springer,
Berlin, [2005] ©2005, pp. 152–168. (Cit. on p. 79).

[254] George S Boolos, John P Burgess, and Richard C Jeffrey. Computability and logic.
Fourth. Cambridge University Press, Cambridge, 2002, pp. xii+356. ISBN: 0-521-
80975-4; 0-521-00758-5. DOI: 10.1017/CBO9781139164931.
URL: https://doi.org/10.1017/CBO9781139164931 (cit. on p. 80).

[255] George S Boolos, John P Burgess, and Richard C Jeffrey. Computability and logic.
Cambridge university press, 2002. (Cit. on p. 80).

[256] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge
University Press, Cambridge, 1995, pp. xiv+476. ISBN: 0-521-47465-5. (Cit. on
pp. 81, 107).

[257] John Gill. “Computational complexity of probabilistic Turing machines.” In: SIAM
J. Comput. 6.4 (1977), pp. 675–695. ISSN: 0097-5397. (Cit. on pp. 81, 107).

[258] Hector Zenil, Narsis A Kiani, and Jesper Tegnér. “Algorithmic information dynam-
ics of emergent, persistent, and colliding particles in the game of life.” In: From
Parallel to Emergent Computing. CRC Press, 2019, pp. 367–384. (Cit. on p. 94).

[259] Tibor Rado. “On non-computable functions.” In: Bell System Technical Journal
41.3 (1962), pp. 877–884. (Cit. on p. 102).

[260] Kurt Gödel. “Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I.” In: Monatshefte für mathematik und physik 38.1 (1931),
pp. 173–198. (Cit. on p. 103).

[261] Gregory Landini. Russell. Routledge Philosophers. Routledge/Taylor & Francis
Group, London, 2011, pp. xvi+468. ISBN: 978-0-415-39626-4; 978-0-415-39627-1;
978-0-203-84649-0. (Cit. on p. 103).

148

https://doi.org/https://doi.org/10.1016/j.patcog.2017.05.025
https://doi.org/https://doi.org/10.1016/j.patcog.2017.05.025
https://doi.org/10.1017/CBO9781139164931
https://doi.org/10.1017/CBO9781139164931

REFERENCES

[262] Jorge M Silva, Diogo Pratas, Tânia Caetano, and Sérgio Matos. “Supporting data
for ”The complexity landscape of viral genomes”.” In: (2022). DOI: http://dx.doi
.org/10.5524/102241. (Cit. on p. 164).

149

https://doi.org/http://dx.doi.org/10.5524/102241
https://doi.org/http://dx.doi.org/10.5524/102241

Appendices

151

Appendix A

Appendix of Chapter 3

A.1 Content

Here, we depict the supplementary material of Chapter 3. The appendix is divided in
tree main sections:

• Additional information of Chapter 3;

• Website;

• Software and hardware recommendations;

• Reproducibility.

A.2 Additional information of chapter 3

A.2.1 Data compressors and level selection benchmark

Herein, it is depicted the supplementary material to the Data compressors and Level
selection benchmark.

Table A.1 describes the parameters used in the six custom build levels. The flag “tm”
is the template of a target context model, the flag “lr” defines the learning rate, and the
flag “hs” defines the number of hidden nodes for the neural network.

Table A.2 describes the parameters used in the template of a target context model.
The template has the flag “tm” and follows the model “[NB_C]:[NB_D]:[NB_I]:[NB_-
H]:[NB_G]/[NB_S]:[NB_E]:[NB_A]”.

A.2.2 Viral genome analysis

We present the supplementary material discussed in the viral genome analysis of Chap-
ter 3.

Table A.3 depicts the top NC values by taxonomic group. Three main groups separate
the Table. The first represents the highest 10 NC values using standard settings NC (best

153

APPENDIX A. APPENDIX OF CHAPTER 3

Table A.1: Depiction of the parameters used in the six custom levels.

Level Values

1 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/1:1:0.97
2 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/2:1:0.97
3 -tm 1:1:0:0:0.7/0:0:0 -tm 12:50:1:1:0.97/0:0:0.97
4 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/0:0:0.97 -lr 0.05 -hs 40
5 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/0:0:0.97 -lr 0.15 -hs 40
6 -tm 1:1:0:0:0.7/0:0:0 -tm 12:20:1:1:0.97/0:0:0.97 -lr 0.3 -hs 40

performing model); the second group shows the top 10 lowest NC values obtained using
the 𝐼𝑅2 subprogram. Finally, the third group shows the top 10 highest values of the
difference between NC using 𝐼𝑅0 and 𝐼𝑅1 subprograms.

Tables A.4, A.5,a nd A.6 organize the top taxa (by taxonomic group) regarding their
NC, normalized compression capacity (𝑁𝐶𝐶) and difference. The tables also shows the
genomes’ average Sequence Length and GC-Content.

154

APPENDIX A. APPENDIX OF CHAPTER 3

Table A.2: Depiction of the parameters used in the template of a target context model.

Parameter Values Description

[NB_C] integer [1;20] Order size of the regular context model. The higher the value of
the regular context model, the more RAM it uses but, usually,
are related to a better compression score.

[NB_D] integer [1;5000] Denominator to build alpha, which is a parameter estimator.
Alpha is given by 1/[NB_D]. Higher values are usually used
with higher [NB_C] and are related to sure bets. When [NB_-
D] is one, the probabilities assume a Laplacian distribution.

[NB_I] integer {0,1,2} Number to define if a sub-program that addresses the specific
properties of DNA sequences (inverted repeats) is used or not.
The number 2 turns ON this sub-program without the regular
context model (only inverted repeats). The number 1 turns ON
the sub-program using at the same time the regular context
model. The number 0 does not contemplate its use (inverted
repeats OFF). This sub-program increases the necessary time
to compress, but it does not affect the RAM.

[NB_H] integer [1;254] Size of the cache-hash for deeper context models, namely for
[NB_C] >14. When the [NB_C] <= 14 use, for example, 1 as
a default. The RAM is highly dependent of this value (higher
value stand for higher RAM).

[NB_G] real [0;1) Real number to define gamma. This value represents the de-
caying forgetting factor of the regular context model in the
definition.

[NB_S] integer [0;20] The maximum number of editions allowed to use a substitu-
tional tolerant model with the same memory model of the reg-
ular context model with an order size equal to [NB_C]. The
value 0 stands for turning the tolerant context model off. When
the model is on, it pauses when the number of editions is higher
than [NB_C]. When it is turned on when a full match of size
[NB_C] is seen again, this is a probabilistic-algorithmic model
advantageous to handle the high substitutional nature of ge-
nomic sequences. When [NB_S] >0, the compressor used more
processing time but used the same RAM and, usually, achieved
a substantial higher compression ratio. The impact of this
model is usually only noticed for [NB_C] >= 14.

[NB_E] integer [1;5000] Denominator to build alpha for substitutional tolerant context
model. It is analogous to [NB_D]. However, it is only used
in the probabilistic model for computing the statistics of the
substitutional tolerant context model.

[NB_A] real [0;1) Real number to define gamma. This value represents the de-
caying forgetting factor of the substitutional tolerant context
model in the definition. Its definition and use are analogous to
[NB_G].

155

A
PPENDIX

A
.
A
PPENDIX

OF
C
HAPTER

3

Table A.3: Depiction of the top NC values by viral taxonomic group. Three main groups separate the Table. The first represents the highest
10 NC values using standard settings NC (best performing model); the second group shows the top 10 lowest NC values obtained using the
𝐼𝑅2 subprogram. Finally, the third group shows the top 10 highest values of the difference between NC using 𝐼𝑅0 and 𝐼𝑅1 subprograms.

NC Top Realm Kingdom Phylum Class Order Family Genus

B
es
t
pe
rf
or
m
in
g
m
od
el

1 Ribozyviria Shotokuvirae Lenarviricota Miaviricetes Ourlivirales Botourmiaviridae Clostunsatellite

2 Monodnaviria Sangervirae Cressdnaviricota Arfiviricetes Cirlivirales Alphasatellitidae Milvetsatellite

3 Riboviria Orthornavirae Duplornaviricota Chunqiuviricetes Cremevirales Tolecusatellitidae Aumaivirus

4 Duplodnaviria Pararnavirae Phixviricota Magsaviricetes Muvirales Circoviridae Virtovirus

5 Varidnaviria Loebvirae Kitrinoviricota Amabiliviricetes Nodamuvirales Genomoviridae Mivedwarsatellite

6 Adnaviria Trapavirae Cossaviricota Duplopiviricetes Wolframvirales Nodaviridae Babusatellite

7 - Heunggongvirae Pisuviricota Allassoviricetes Durnavirales Kolmioviridae Fabenesatellite

8 - Bamfordvirae Negarnaviricota Repensiviricetes Levivirales Smacoviridae Ourmiavirus

9 - Helvetiavirae Artverviricota Yunchangviricetes Geplafuvirales Qinviridae Albetovirus

10 - Zilligvirae Hofneiviricota Insthoviricetes Goujianvirales Narnaviridae Geminialphasatellitinae

In
ve
rt
ed

re
pe
at
s

Su
bp
ro
gr
am

(𝑁
𝐶

𝐼𝑅
2
)

1 Adnaviria Loebvirae Peploviricota Pokkesviricetes Imitervirales Mimiviridae Betaentomopoxvirus

2 Varidnaviria Zilligvirae Nucleocytoviricota Herviviricetes Chitovirales Rudiviridae Oryzopoxvirus

3 Duplodnaviria Helvetiavirae Hofneiviricota Maveriviricetes Herpesvirales Poxviridae Vespertilionpoxvirus

4 Monodnaviria Bamfordvirae Taleaviricota Mouviricetes Priklausovirales Malacoherpesviridae Simplexvirus

5 Riboviria Heunggongvirae Dividoviricota Faserviricetes Polivirales Plectroviridae Cafeteriavirus

6 Ribozyviria Trapavirae Uroviricota Tokiviricetes Ligamenvirales Mononiviridae Mardivirus

7 - Shotokuvirae Saleviricota Laserviricetes Tubulavirales Herpesviridae Cervidpoxvirus

8 - Pararnavirae Preplasmiviricota Megaviricetes Halopanivirales Lavidaviridae Varicellovirus

9 - Orthornavirae Negarnaviricota Naldaviricetes Pimascovirales Bidnaviridae Ostreavirus

10 - Sangervirae Cossaviricota Milneviricetes Lefavirales Polydnaviridae Vespertiliovirus

156

A
PPENDIX

A
.
A
PPENDIX

OF
C
HAPTER

3

NC Top Realm Kingdom Phylum Class Order Family Genus
𝑁

𝐶
𝐼𝑅

0
−

𝑁
𝐶

𝐼𝑅
1

1 Adnaviria Zilligvirae Peploviricota Herviviricetes Herpesvirales Malacoherpesviridae Mardivirus

2 Varidnaviria Trapavirae Taleaviricota Mouviricetes Polivirales Herpesviridae Ostreavirus

3 Duplodnaviria Bamfordvirae Nucleocytoviricota Tokiviricetes Chitovirales Rudiviridae Iltovirus

4 Monodnaviria Heunggongvirae Saleviricota Pokkesviricetes Ligamenvirales Bidnaviridae Leporipoxvirus

5 Ribozyviria Shotokuvirae Cossaviricota Quintoviricetes Piccovirales Poxviridae Simplexvirus

6 Riboviria Helvetiavirae Dividoviricota Huolimaviricetes Haloruvirales Polydnaviridae Varicellovirus

7 - Loebvirae Hofneiviricota Megaviricetes Cirlivirales Ampullaviridae Aurivirus

8 - Sangervirae Cressdnaviricota Laserviricetes Pimascovirales Nudiviridae Oryzopoxvirus

9 - Orthornavirae Preplasmiviricota Arfiviricetes Algavirales Parvoviridae Vespertilionpoxvirus

10 - Pararnavirae Duplornaviricota Faserviricetes Kalamavirales Ascoviridae Entnonagintavirus

157

APPENDIX A. APPENDIX OF CHAPTER 3

Table A.4: Depiction of the viral taxonomic groups with the highest NC values. The Table
shows each group’s average NC, Sequence Length (SL) and GC-Content.

Taxonomic Group Taxonomic Name NC SL GC-Content

Super-Realm Viruses 1.007 36067 0.460

Realm

Ribozyviria 1.080 1682 0.588

Monodnaviria 1.046 4380 0.450

Riboviria 1.016 9332 0.438

Duplodnaviria 0.972 78102 0.500

Varidnaviria 0.957 109560 0.448

Adnaviria 0.948 33068 0.353

Kingdom

Shotokuvirae 1.049 4200 0.447

Sangervirae 1.026 5518 0.435

Orthornavirae 1.018 9472 0.438

Pararnavirae 0.995 7787 0.433

Loebvirae 0.994 7332 0.483

Trapavirae 0.993 10151 0.564

Heunggongvirae 0.972 78102 0.500

Bamfordvirae 0.957 112955 0.441

Helvetiavirae 0.949 24833 0.665

Zilligvirae 0.948 33068 0.353

Phylum

Lenarviricota 1.094 2654 0.476

Cressdnaviricota 1.067 3134 0.453

Duplornaviricota 1.045 9418 0.456

Phixviricota 1.026 5518 0.435

Kitrinoviricota 1.018 8548 0.474

Cossaviricota 1.013 6260 0.436

Pisuviricota 1.012 10580 0.442

Negarnaviricota 1.012 9620 0.397

Artverviricota 0.995 7787 0.433

Hofneiviricota 0.994 7332 0.483

Class

Miaviricetes 1.151 1792 0.514

Arfiviricetes 1.085 2557 0.464

Chunqiuviricetes 1.075 3870 0.503

Magsaviricetes 1.073 3730 0.513

Amabiliviricetes 1.072 2703 0.586

Duplopiviricetes 1.066 3298 0.467

Allassoviricetes 1.063 3753 0.493

Repensiviricetes 1.063 3281 0.451

Yunchangviricetes 1.061 3987 0.358

Insthoviricetes 1.054 5784 0.425

Order

Ourlivirales 1.151 1792 0.514

158

APPENDIX A. APPENDIX OF CHAPTER 3

Taxonomic Group Taxonomic Name NC SL GC-Content

Cirlivirales 1.103 1864 0.471

Cremevirales 1.078 2572 0.478

Muvirales 1.075 3870 0.503

Nodamuvirales 1.073 3730 0.513

Wolframvirales 1.072 2703 0.586

Durnavirales 1.066 3298 0.467

Levivirales 1.063 3753 0.493

Geplafuvirales 1.063 3281 0.451

Goujianvirales 1.061 3987 0.358

Family

Botourmiaviridae 1.151 1792 0.514

Alphasatellitidae 1.143 1296 0.418

Tolecusatellitidae 1.116 1347 0.389

Circoviridae 1.103 1864 0.471

Genomoviridae 1.096 2201 0.517

Nodaviridae 1.080 3368 0.514

Kolmioviridae 1.080 1682 0.588

Smacoviridae 1.078 2572 0.478

Qinviridae 1.075 3870 0.503

Narnaviridae 1.072 2703 0.586

Genus

Clostunsatellite 1.192 1008 0.423

Milvetsatellite 1.186 1022 0.402

Aumaivirus 1.185 1168 0.510

Virtovirus 1.180 1150 0.442

Mivedwarsatellite 1.179 1014 0.402

Babusatellite 1.178 1104 0.437

Fabenesatellite 1.176 1007 0.385

Ourmiavirus 1.167 1605 0.519

Albetovirus 1.167 1221 0.426

Geminialphasatellitinae 1.131 1370 0.418

159

APPENDIX A. APPENDIX OF CHAPTER 3

Table A.5: Depiction of the viral taxonomic groups with the highest normalized compres-
sion capacity (𝑁𝐶𝐶) using only the inverted repeats subprogram 𝐼𝑅2. The top results
were obtained by 𝑁𝐶𝐶 = 1 − 𝑁𝐶𝐼𝑅2

> 0. Besides the normalized compression capacity,
the Table shows each group’s average Sequence Length (SL) and GC-Content.

Group Taxonomic Group NCC = 1−NCIR2 > 0 SL GC-Content

Super-Realm Viruses 0.026 66796 0.462

Realm

Adnaviria 0.052 33068 0.353

Varidnaviria 0.038 110591 0.447

Duplodnaviria 0.028 82677 0.499

Monodnaviria 0.022 6958 0.399

Riboviria 0.015 13682 0.391

Kingdom

Loebvirae 0.053 7371 0.385

Zilligvirae 0.052 33068 0.353

Helvetiavirae 0.050 24833 0.665

Bamfordvirae 0.038 114079 0.440

Heunggongvirae 0.028 82677 0.499

Trapavirae 0.021 12225 0.577

Shotokuvirae 0.016 6184 0.378

Pararnavirae 0.016 9610 0.378

Orthornavirae 0.015 14012 0.393

Sangervirae 0.005 4421 0.321

Phylum

Peploviricota 0.068 168832 0.534

Nucleocytoviricota 0.063 210417 0.389

Hofneiviricota 0.053 7371 0.385

Taleaviricota 0.052 33068 0.353

Dividoviricota 0.050 24833 0.665

Uroviricota 0.026 79042 0.497

Saleviricota 0.021 12225 0.577

Preplasmiviricota 0.017 32147 0.483

Negarnaviricota 0.016 12180 0.376

Cossaviricota 0.016 6128 0.378

Class

Pokkesviricetes 0.072 190762 0.365

Herviviricetes 0.068 168832 0.534

Maveriviricetes 0.066 18227 0.290

Mouviricetes 0.066 8377 0.299

Faserviricetes 0.053 7371 0.385

Tokiviricetes 0.052 33068 0.353

Laserviricetes 0.050 24833 0.665

Megaviricetes 0.046 248459 0.436

Naldaviricetes 0.040 132022 0.410

Milneviricetes 0.029 11079 0.349

160

APPENDIX A. APPENDIX OF CHAPTER 3

Group Taxonomic Group NCC = 1−NCIR2 > 0 SL GC-Content

Order

Imitervirales 0.109 899501 0.256

Chitovirales 0.091 193551 0.356

Herpesvirales 0.068 168832 0.534

Priklausovirales 0.066 18227 0.290

Polivirales 0.066 8377 0.299

Ligamenvirales 0.055 34464 0.343

Tubulavirales 0.053 7371 0.385

Halopanivirales 0.050 24833 0.665

Pimascovirales 0.043 162587 0.456

Lefavirales 0.040 132022 0.410

Family

Mimiviridae 0.109 899501 0.256

Rudiviridae 0.103 30804 0.299

Poxviridae 0.091 193551 0.356

Malacoherpesviridae 0.091 209479 0.427

Plectroviridae 0.080 7045 0.248

Mononiviridae 0.077 41178 0.275

Herpesviridae 0.074 158421 0.539

Lavidaviridae 0.066 18227 0.290

Bidnaviridae 0.066 8377 0.299

Polydnaviridae 0.055 306235 0.377

Genus

Betaentomopoxvirus 0.174 247441 0.195

Oryzopoxvirus 0.164 185139 0.236

Vespertilionpoxvirus 0.156 176688 0.236

Simplexvirus 0.144 148626 0.694

Cafeteriavirus 0.127 617453 0.233

Mardivirus 0.121 177993 0.509

Cervidpoxvirus 0.115 166259 0.262

Varicellovirus 0.107 139331 0.560

Ostreavirus 0.107 207439 0.387

Vespertiliovirus 0.103 7970 0.228

161

APPENDIX A. APPENDIX OF CHAPTER 3

Table A.6: Depiction of the viral taxonomic groups with the highest difference of values
between 𝑁𝐶𝐼𝑅0

− 𝑁𝐶𝐼𝑅1
. The Table shows each group’s average 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑁𝐶𝐼𝑅0

−
𝑁𝐶𝐼𝑅1

, Sequence Length (SL) and GC-Content.

Taxonomic Group Taxonomic Name NCIR0 −NCIR1 > 0 SL GC-Content

Super-Realm Viruses 0.004 44293 0.451

Realm

Adnaviria 0.019 35299 0.322

Varidnaviria 0.007 111364 0.443

Duplodnaviria 0.007 78316 0.512

Monodnaviria 0.005 5359 0.436

Ribozyviria 0.002 1682 0.588

Riboviria 0.001 9847 0.431

Kingdom

Zilligvirae 0.019 35299 0.322

Trapavirae 0.009 16113 0.503

Bamfordvirae 0.007 114249 0.437

Heunggongvirae 0.007 78316 0.512

Shotokuvirae 0.005 5124 0.434

Helvetiavirae 0.004 27439 0.664

Loebvirae 0.002 8519 0.453

Sangervirae 0.001 4552 0.426

Orthornavirae 0.001 10049 0.430

Pararnavirae 0.001 8050 0.435

Phylum

Peploviricota 0.050 159507 0.557

Taleaviricota 0.019 35299 0.322

Nucleocytoviricota 0.013 210797 0.381

Saleviricota 0.009 16113 0.503

Cossaviricota 0.007 5450 0.433

Dividoviricota 0.004 27439 0.664

Hofneiviricota 0.002 8519 0.453

Cressdnaviricota 0.002 4539 0.438

Preplasmiviricota 0.002 32788 0.483

Duplornaviricota 0.001 8140 0.389

Class

Herviviricetes 0.050 159507 0.557

Mouviricetes 0.029 8377 0.299

Tokiviricetes 0.019 35299 0.322

Pokkesviricetes 0.017 193309 0.354

Quintoviricetes 0.011 5164 0.446

Huolimaviricetes 0.009 16113 0.503

Megaviricetes 0.005 247791 0.441

Laserviricetes 0.004 27439 0.664

Arfiviricetes 0.004 5459 0.432

Faserviricetes 0.002 8519 0.453

162

APPENDIX A. APPENDIX OF CHAPTER 3

Taxonomic Group Taxonomic Name NCIR0 −NCIR1 > 0 SL GC-Content

Order

Herpesvirales 0.050 159507 0.557

Polivirales 0.029 8377 0.299

Chitovirales 0.022 196072 0.341

Ligamenvirales 0.019 35299 0.322

Piccovirales 0.011 5164 0.446

Haloruvirales 0.009 16113 0.503

Cirlivirales 0.008 2114 0.476

Pimascovirales 0.005 169619 0.458

Algavirales 0.005 339710 0.413

Kalamavirales 0.004 15181 0.459

Family

Malacoherpesviridae 0.062 209479 0.427

Herpesviridae 0.050 155406 0.564

Rudiviridae 0.035 30804 0.299

Bidnaviridae 0.029 8377 0.299

Poxviridae 0.022 196072 0.341

Polydnaviridae 0.019 306235 0.377

Ampullaviridae 0.012 23814 0.346

Nudiviridae 0.012 127615 0.416

Parvoviridae 0.011 5164 0.446

Ascoviridae 0.010 172411 0.453

Genus

Mardivirus 0.103 177993 0.509

Ostreavirus 0.072 207439 0.387

Iltovirus 0.070 155856 0.546

Leporipoxvirus 0.066 160815 0.415

Simplexvirus 0.061 148626 0.694

Varicellovirus 0.061 139331 0.560

Aurivirus 0.052 211518 0.468

Oryzopoxvirus 0.050 185139 0.236

Vespertilionpoxvirus 0.046 176688 0.236

Entnonagintavirus 0.036 29564 0.558

163

APPENDIX A. APPENDIX OF CHAPTER 3

A.3 Website

The website of this chapter is available at https://asilab.github.io/canvas/. This site
showcases, among other things, the pipeline of this study, the compressor’s model selec-
tion, the detection of inverted repeats in synthetic genomic sequences, the viral genome
characterization with regards to genome and type of taxonomic group, and the computed
cladograms with a magnifier to allow a better observation of the normalized complexity
results with illustrative examples of viruses. Snapshots of our code and other data further
supporting this work are openly available in GigaDB[262].

A.4 Software and hardware recommendations

The experiences of Chapter 3 can be replicated using a laptop, desktop, or server
computer running Arch linux or Linux Ubuntu (for example, 18.04 LTS or higher) with
GCC (https://gcc.gnu.org), git and git LFS, Conda (https://docs.conda.io) and
python version 3.6. The hardware must contain at least 16 GB of RAM and a 100 GB
disk.

A.5 Reproducibility

A.5.1 Viral analysis and taxonomic classification

Creating and installing the project

The descriptions of how to replicate the experiments of Chapter 3 are depicted bellow,
for more detail see https://github.com/jorgeMFS/canvas.

Install Git LFS:

1 mkdir -p gitLFS
2 cd gitLFS/
3 wget https://github.com/git-lfs/git-lfs/releases/download/v2.9.0/git-lfs-linux-

amd64-v2.9.0.tar.gz
4 tar -xf git-lfs-linux-amd64-v2.9.0.tar.gz
5 chmod 755 install.sh
6 sudo ./install.sh

Get CANVAS project, create the docker and run it:

1 git clone https://github.com/jorgeMFS/canvas.git
2 cd canvas
3 docker-compose build
4 docker-compose up -d && docker exec -it canvas bash && docker-compose down

Inside the docker, give run permissions to the files and install tools using :

1 chmod +x *.sh
2 bash Make.sh;

164

https://asilab.github.io/canvas/
https://gcc.gnu.org
https://docs.conda.io
https://github.com/jorgeMFS/canvas

APPENDIX A. APPENDIX OF CHAPTER 3

Replication of the results

The code was created in order to allow independent replication and reproduction of
each step, this was done due to the extensive processing time required to filter and rear-
range viral DB and extract the features and taxonomic information of each viral sequence.
If you wish to rebuild database and feature reports extracted, see the Database recon-
struction subsection.

To obtain the Human Herpesvirus, plot run:

1 cd python || exit;
2 python compare_cmix_hhv.py

To obtain the Compression Benchmark plots, run:

1 cd python || exit;
2 python select_best_nc_model.py;

To perform the synthetic sequence test, run:

1 cd scripts || exit;
2 bash Stx_seq_test.sh;

To perform classification, run the following code:

1 cd python || exit;
2 python prepare_classification.py; #recreate classification dataset
3 python classifier.py; #perform classifications

To perform the complete IR analysis and create:

• boxplots;

• 2d scatter plots;

• 3d scatter plots;

• top taxonomic group lists;

• Occurrence of each Genus.

Execute this code:

1 cd python || exit;
2 python ir_analysis.py; # Performs complete IR analysis

To perform the Human Herpesvirus analysis and obtain the plots, run:

1 cd scripts || exit;
2 bash Herpesvirales.sh;

Database reconstruction

To run the pipeline and obtain all the Reports in the folder reports, use the following
commands. Note that if you wish to recreate the features reports, you must perform the
database reconstruction task first.

165

APPENDIX A. APPENDIX OF CHAPTER 3

If you wish to reconstruct the viral database, run the following script:

1 cd scripts || exit;
2 bash Build_DB.sh;

To create the features for analysis and classification (very time consuming, can take
several days), run:

1 cd scripts || exit;
2 bash Process_features.sh;

To recreate the compression reports used for benchmark (very time consuming, can
take several hours), run:

1 cd scripts || exit;
2 bash Compress.sh;

Cladograms

The Cladograms require GUI application. As such, the reproduction of the cladograms
has to be performed outside of the docker on the Ubuntu system on the /canvas folder:

1 chmod +x *.sh
2 bash so_dependencies.sh #install Ubuntu system dependencies required for the

script to run and Anaconda
3 conda create -n canvas python=3.6
4 conda activate canvas
5 bash Make.sh #install python libs
6 bash Install_programs.sh #install tools using conda

Afterwards, to obtain the Cladogram plots, run:

1 cd python || exit;
2 python phylo_tree.py;

A.5.2 Archaea taxonomic classification

The descriptions of reproducion is depicted bellow, for more detail see
https://github.com/jorgeMFS/Archaea2.

Installation

To perform the installation, get Archaea2 project, create the docker and run it:

1 git clone https://github.com/jorgeMFS/Archaea2.git
2 cd Archaea2
3 docker-compose build
4 docker-compose up -d && docker exec -it archaea2 bash && docker-compose down

Get Archaea project using:

1 chmod +x run.sh
2 bash run.sh

166

https://github.com/jorgeMFS/Archaea2

APPENDIX A. APPENDIX OF CHAPTER 3

Dataset Download

To obtain the dataset, run:

1 cd scripts || exit
2 bash download_dataset.sh

Preprocess Dataset

To prepare the data for classification, run:

1 cd scripts || exit
2 bash prepare_and_classify_dataset.sh

Classification

Finally, to perform classification, run:

1 cd "../python_src/" || exit
2 python3 create_classification_dataset.py
3 python3 classification.py

167

Appendix B

Appendix of Chapter 4

B.1 Content

Here, we depict the supplementary material of Chapter 4. The appendix is divided in
tree main sections:

• Additional information of chapter 4;

• Website;

• Software and hardware recommendations;

• Reproducibility.

B.2 Additional information of chapter 4

B.2.1 Comparison towards normalized images

The images provided by the dataset were not normalized. This section evaluates the
effects and possible impact of the 8-bit images’ normalization on the measures used. The
images were normalized by forcing the brightest pixels to white (255), the darkest pixels to
black (0), and spreading the ones in between. We computed each measure’s average values
per author for the normalized images, and then we measured the average difference and
its standard deviation between them and the previously obtained results. Furthermore,
we also computed the mean percentage difference (MPD) and standard deviation as

𝑀𝑃𝐷 =
𝑛

∑
𝑖=0

|𝑎𝑖 − 𝑏𝑖|
𝑎𝑖+𝑏𝑖

2

× 100, (B.1)

𝑎 and 𝑏 are the average value of the measure for a given author for the normalized and
non-normalized images, respectively, and 𝑖 is the author.

Table B.1 describes the average variation between the measures taken directly from
the dataset and those taken after normalization.

169

APPENDIX B. APPENDIX OF CHAPTER 4

Table B.1: Author’s Average difference and the percentage difference between normalized
and non-normalized images for the NBDM1,NBDM2, NC, and 𝛼.

Measure Average ± Standard Deviation Percentage Difference (%)

NBDM1 0.031 ± 0.001 3.978
NBDM2 0.015 ± 0.001 3.977
NC 0.017 ± 0.002 2.531
𝛼 0.001 ± 0.000 0.545

The results show that measures have low average variation and percentage differences,
being the most affected the NBDM and the least affected the roughness exponent 𝛼.
Therefore, we can conclude that they are resistant and that the normalization has no
significant impact on the measures utilized.

To assess the impact of the image normalization on the Regional complexity, we per-
formed the Mantel test and computed the average difference between the normalized and
non-normalized images’ distances. The results are shown in Table 4.1.

The Mantel test measures the correlation between two distance matrices. The results
show a high correlation of 0.955 with a p-value of 0.001 and a low average difference of
distance between authors of 3.2622 ± 2.820. Since the only difference between the two
distances is that one was computed from normalized images and the other from non-
normalized images, we conclude with the results obtained that this measure is also robust
to normalization. Consequently, image normalization has a minimal impact and does not
significantly influence the measure.

B.2.2 Kruskal minimum spanning tree

To verify the congruence of the UPGMA tree, we constructed another tree from the
distance tree using the Kruskal minimum spanning tree algorithm [232]. This algorithm
uses the connected graph created by the distance between authors and removes the edges’
subset that forms a tree that includes every vertex, where the sum of the weights of all
the edges in the tree is minimized. The resulting tree is shown in Figure B.1 and can also
be viewed in more detail on the website described in Section B.3.

Despite being organized in a different and more sparse manner, the same connections
are observed in the UPGMA tree. The tree Kruskal minimum spanning tree retains the
relationships of influence between authors of different artistic movements (Titian and Diego
Velazquez; Caravaggio and Francisco de Zurbarán; Frida Kahlo and Amedeo Modigliani;
Sandro Botticelli and William Blake; Claude Lorrain and Joseph Mallord William Turner;
and Peter Paul Rubens and Jean-Antoine Watteau), as well as shows the fingerprint’s
capacity of grouping some artists from the same artistic movements mutually. We can
conclude from this that qualitatively the fingerprints are useful description tools of the
artist’s way of painting despite the algorithm used to represent the tree.

170

APPENDIX B. APPENDIX OF CHAPTER 4

B.3 Website

A support website to this site can be accessed at http://panther.web.ua.pt/. This
site showcases among other things, the pipeline of this study, the author’s average NC
and NBDM variation for different quantization levels, the results of combining the NC
with the roughness exponent of HDC function (𝛼), a complete catalogue of each author’s
fingerprints as well as several examples of each author’s paintings, and the computed
cladograms with a magnifier to allow a better observation of the results.

B.4 Software and hardware recommendations

The experiences of Chapter 4 can be replicated using a laptop, desktop, or server
computer running Arch linux or Linux Ubuntu (for example, 18.04 LTS or higher) with
GCC (https://gcc.gnu.org), git, Conda (https://docs.conda.io) and python version
3.6. The hardware must contain at least 16 GB of RAM and a 100 GB disk.

Figure B.1: Artists’ cladogram computed recurring to Kruskal minimum spanning tree.
Each artist has a painting and a color of a style (chosen based on nearest leaves) assigned
to him, as well as a description of some styles usually associated with the author. To
obtain an improved view of the tree, please see the website described in Section B.3.

171

http://panther.web.ua.pt/
https://gcc.gnu.org
https://docs.conda.io

APPENDIX B. APPENDIX OF CHAPTER 4

B.5 Reproducibility

All the results presented in this chapter can be fully replicated, under a Linux machine,
using the scripts provided at the repository https://github.com/asilab/panther.

These include the automatic installation of the tools, download the dataset, assessment,
benchmarking, measurement, and visualization of the results.

B.5.1 Installation

First, there is the need to give execution access to the scripts using:

1 chmod +x *.sh

To perform automatic installation of the tools using

1 bash make.sh
2 pip3 install -r requirements.txt

Information-based Measures Assessment

To download and prepare the dataset, use script:

1 bash Dataset.sh

To reproduce the compression benchmark, use script:

1 bash Benchmark.sh

To perform all comparisons between NC, NBDM1 and NBDM2 use:

1 bash Compare.sh

To replicate the impact of increasing pseudo-random substitutions of pixels for the NC
and different types of BDM normalizations (NBDM1 and NBDM2), use script:

1 bash Pixel_Edition.sh

To test the different values of the NC and NBDM in different datasets use:

1 bash Diverse_Images.sh

If you desire to replicate the cellular automata objects run:

1 bash ca.sh

To replicate the super-sampling experience and the results of underestimation of BDM,
run:

1 bash Side_Information_Test.sh

172

https://github.com/asilab/panther

APPENDIX B. APPENDIX OF CHAPTER 4

Information-based measures applied to artistic paintings

To perform all the pipeline execute:

1 bash Run.sh

To quantitize images run:

1 bash Quantize.sh

To trim and binarize use:

1 bash Trimm_and_Binarization.sh

To compute the average NC, NBDM1, and NBDM2 for each author use script:

1 bash Average_Complexity.sh

To compute the NC with the HDC results use scripts:

1 bash NC_HDC.sh

To recreate the reports of Regional complexity, use the following command:

1 bash Region_Complexity.sh

To recreate the reports of author’s Fingerprints, use the following command:

1 bash Average_Regional_Complexity.sh

To recreate the authors’ fingerprints heat maps run:

1 bash Fingerprints.sh

To assess the author average variation and percentage difference between normalized
and non-normalized measures, use the following command:

1 bash norm_vs_non_norm.sh

To perform the Mantel test and view the average variance between different distance
matrices, use the following command:

1 bash Mantel_test_and_variation.sh

To recreate the cladogram, run:

1 bash Tree.sh

To make the feature file for author and style classification, run:

1 bash Create_classification_data.sh

To perform author classification, run the jupyter file:

1 Painting91_author_classification.ipynb

To perform style classification, run the jupyter file:

1 Painting91_style_classification.ipynb

173

Appendix C

Appendix of Chapter 5

C.1 Content

Here, we depict the supplementary material of Chapter 5. The appendix is divided in
tree main sections:

• Additional information of chapter 5;

• Software and hardware recommendations;

• Reproducibility.

C.2 Additional Information of chapter 5

C.2.1 Probabilistic complexity patterns of Turing Machines

Figure C.1 shows the complete average rule complexity profiles of sampled TMs, inside
and outside the regions identified.

C.2.2 Comparison between BDM and NC

Figure C.2 describes the overall behavior of the NC and BDM with different algorithmic
generated tapes. Notice that, in Figure C.2, the results are presented after applying a low-
pass filter. Furthermore, tape length was normalized by the maximum size obtained for
its pair (#𝑄, #𝜃), and to observe BDM comparatively to NC, BDM results were scaled by
a 102 factor. An example with non-scaled BDM is also presented in the image’s bottom-
right.

C.3 Software and hardware recommendations

The experiences of Chapter 5 can be replicated using a server computer running Arch
linux or Linux Ubuntu (for example, 18.04 LTS or higher) with GCC (https://gcc.gn
u.org) and git. The hardware must contain at least 64 GB of RAM and a 100 GB disk.

175

https://gcc.gnu.org
https://gcc.gnu.org

APPENDIX C. APPENDIX OF CHAPTER 5

Figure C.1: Average rule complexity profiles obtained from pseudo-randomly selected TMs
with #𝑄 ∈ {2, .., 6} and #𝜃 = {2, 3} up to 1000 iterations.

C.4 Reproducibility

The descriptions of reproducion is depicted bellow, for more detail see
https://github.com/asilab/TMCompression.git.

C.4.1 Creating Project and intalling tools

1 git clone https://github.com/jorgeMFS/TMCompression.git;
2 cd TMCompression;
3 make;
4 make ioStNormalize;
5 make ioAverage2;
6 make ioGrowthAverage;

176

https://github.com/asilab/TMCompression.git

APPENDIX C. APPENDIX OF CHAPTER 5

Figure C.2: Comparison between the NC and BDM for 10,000 TM that have run over
50,000 iterations. (top-left) TMs with #𝑄 = 6, #𝜃 = 2; (top-right) TMs with #𝑄 =
8, #𝜃 = 2; (bottom-left) TMs with #𝑄 = 10, #𝜃 = 2; and (bottom-right) an example
with non-scaled BDM results.

7 make bdmAvg;
8 make TMsimulator;

C.4.2 Recreate plots of Chapter 5

To recreate the plots shown in Chapter 5, start by running the script:

1 chmod +x run.sh;
2 ./run.sh;

Virus and string edition and permutation plots

To recreate edition and permutation plots, run the script:

1 # Command to create list:
2 echo "./resultText/Parvovirus_virus_genome.txt" | ./tm --mutateVirus;
3 # Recreate Edition and permutation plots...";
4 bash reprArticlePlot.sh 0 0 1 1 1 1;

TMs Plots

To recreate plots of cardinality growth and TMs, run the script:

177

APPENDIX C. APPENDIX OF CHAPTER 5

1 # Recreating plots of Cardinality Growth and TMs...;
2 bash processResults.sh 0 1 1 1 1 1 1 1;

Profile Plots

To recreate plots of Normal and Dynamic Profiles, run the script:

1 bash reprArticlePlot.sh 1 1 0 0 0 0;

Inside and outside region plots

To recreate the inside and outside region plots, run the script:

1 # Recreating Plot of Inside vs Outside region of TM Tapes...;
2 bash getRegionTapeValues.sh;
3 # Recreating Plot of Inside vs Outside region of TM Rules...
4 bash getRegionRuleValues.sh 1 0 1 1;

Average rule complexity profiles plots

To recreate the average rule complexity profiles plots, run the script:

1 # Obtain Average Rule Profiles...
2 bash avg_rule_profile.sh 1 1;

Block Decomposition Method comparation with Normalized Compression
plots

To recreate the BDM comparation with NC plots, run the script:

1 #Compare BDM with NC for #Q={6,8,10}...
2 bash bdm_NC_comparisson.sh 1 0 1 1;

Method I and II plots

To recreate the method I and II plots, run the script:

1 # Command to create list:
2 ./tm --MethodI;
3 ./tm --MethodII;
4 # Recreate Plots of Method I and II.
5 bash evolve_tm_plot.sh Method_I_200;
6 bash evolve_tm_plot.sh Method_II_2000;

Method II 3d plots

1 # Command to create list:
2 ./tm --3DgraphMethodII;
3 # Recreate 3D Plot of Method II...
4 bash 3d_evolve_graph.sh;

178

APPENDIX C. APPENDIX OF CHAPTER 5

Note: The previous commands, download the files containing the results from running
all TMs for a givens state and alphabet cardinality, since this can take from several minutes
to several days. If you wish to recreate the results use TM program. Example:

1 ./tm --brief -s 2 -a 4 -i 50000 -k 2:10 -N 30000000 -j 20 -S monte_carlo >
2sts4alp.txt;

2

C.4.3 Run TMCompression

There are many ways to run this program see help for clarification:

1 ./tm --help;
2

3 #Program that creates Turing Machines and Measures its Probabilistic
complexity.

4

5

6 #Arguments to set flags:
7

8 --verbose #Indicates programs that will receive inputs in a verbose
form.

9

10 --brief #Indicates programs that will receive inputs in a brief
form.

11

12 --tmverbose #Indicates programs that tm output will be send to the user
.

13

14 --tmgrowth #Indicates programs that output a list of Turing Machines
with an increase in the number of states and a alphabet size of 2

15

16 --replicate #Indicates programs that will replicate experiment to
determine the best k and it for a given number of states and alphabet size.

17

18 --profile #Indicates programs that will receive through the tm number
through the flag tm and will create a profile of that turing

19

20 --dynprofile #Indicates programs that will receive through the tm number
through the flag tm and will create a dynamical temporal profile of that

turing
21

22 --ruleProfile #Indicates programs to create a Compression profile of the
rules for a given Turing Machine

23

24 --ruleMetrics #Indicates programs to compute the rule metrics of a given
TMs

25

26 --StMatrix #Indicates programs to print the StateMatrix of a given TMs
27

179

APPENDIX C. APPENDIX OF CHAPTER 5

28 --mutate #Indicates programs to print the nc of the mutation of a
string (starting with all zeros and ending with all ones) and performing
mutations until its 100% mutated

29

30 --mutateVirus #Indicates programs perform the edition and permutation of
a virus DNA sequence and print NC results

31

32 --MethodI #Indicates programs to recreate similar list of results
used in plots of the Chapter 5 using MethodI

33

34 --MethodII #Indicates programs to recreate similar list of results
used in plots of the Chapter 5 using MethodII

35

36 --3DgraphMethodII #Indicates programs to recreate similar list of
results used in 3D plots of Chapter 5 using MethodII

37

38 #Mandatory Arguments:
39

40 -s, --number_states #Number of States the Turing Machine has.
41

42 -a, --alphabet_size #Alphabet size the Turing Machine considers.
43

44 -i, --iterations #Number of iterations the Turing Machine makes in
the tape.

45

46 -k, --context #k indexes to consider as a context to fill the Markov
Table.

47

48 -t, --tm #Speciffy turing to obtain results, can only be activated
with --profile flag.

49

50 #Other Optional Arguments:
51

52 -S, --strategy #Turing Machine traversal strategy (default: sequential)
53

54 -N, #Number of Turing Machines to traverse
55

56 -v, --version #Outputs the version of the program.
57

58 -h, --help #Describes program.
59

60

61 #Examples:
62

63 #Run all tms
64 ./tm -s 2 -a 2 -i 10 -k 1
65 ./tm --brief -s 2 -a 2 -i 10 -k 1
66 ./tm --verbose --number_states=2 --alphabet_size=2 --iterations=20 --

context=2
67 #----------------

180

APPENDIX C. APPENDIX OF CHAPTER 5

68 #Run all tms with multithreads
69 ./tm -s 2 -a 2 -i 10 -k 1 -j 7
70 ./tm --brief -s 2 -a 2 -i 10 -k 1 -j 7
71 #----------------
72 #Strategies of running TM Machines
73 #By default strategy is Sequential:
74 ./tm --brief -s 2 -a 2 -i 10 -k 1 -j 7
75 ./tm --brief -s 2 -a 2 -i 10 -k 1 -N 10 -j 4 -S sequential
76 #Monte Carlo:
77 ./tm --brief -s 2 -a 2 -i 10 -k 1 -N 10 -j 4 -S monte_carlo
78 #----------------
79 #Run specific TM and obtain profile:
80 ./tm --brief --profile -s 2 -a 2 -i 100 -k 2 -t 5
81 #----------------
82 #Run a specific TM and obtain their rules normal complexity profile
83 ./tm --brief --ruleProfile -s 2 -a 2 -i 100 -k 2 -t 5
84 #----------------
85 #Run specific tm and obtain dynamical temporal profile:
86 ./tm --brief --dynprofile -s 2 -a 2 -i 100 -k 2 -t 5
87 #----------------
88 # Run specific tm and obtain their Rule Compression Profile:
89 #----------------
90 ./tm --brief --ruleMetrics -s 2 -a 2 -i 100 -t 5
91 # ----------------
92 #Replicate k and it determination:
93 ./tm --brief --replicate -s 2 -a 2 -j 10
94 #----------------
95 #Turing machine growth with alphabet size of 2 and increase in state

cardinality:
96 ./tm --tmgrowth
97 #----------------
98 #Run specific tm and print tape
99 ./tm --brief --printTape -s 2 -a 2 -i 100 -t 1

100 #----------------
101 #Run StMatrix of the tm
102 ./tm --brief --StMatrix -s 2 -a 2 -t 1
103 #----------------
104 #Obtain nc of the substitutions and permutations of a string
105 ./tm --mutate
106 #----------------
107 #Obtain nc of Virus genome sequence with substitutions and permutations
108 echo "./resultText/Parvovirus_virus_genome.txt" | ./tm --mutateVirus
109 #----------------
110 #Obtain list of graph of Method I
111 ./tm --MethodI
112 #----------------
113 #Obtain list of graph of Method II
114 ./tm --MethodII
115 #----------------
116 #Obtain list of 3d graphs of Method II

181

APPENDIX C. APPENDIX OF CHAPTER 5

117 ./tm --3DgraphMethodII
118 #----------------

182

	Table of contents
	List of figures
	List of tables
	List of abbreviations
	Introduction
	Overview
	Motivation
	Methodology
	Objectives
	Thesis Outline
	Contributions

	Background
	Contextualization
	Information theory and compression
	Information theory
	Information distances and approximations
	Normalized Relative Compression

	Summary

	Complexity analysis of natural sequences
	Contextualization
	Research questions and contributions
	Biological background
	Life
	Genome and proteome
	Viruses
	Inverted Repeats

	Data compression in genomic data
	Methods
	Information-based measures
	Other measures
	Classification

	Complexity analysis of viral genomes
	Data description
	Determining the optimal way to quantify probabilistic-algorithmic information in viral sequences
	Viral genome analysis and its visualization

	Taxonomic classification
	Viral classification
	Archea classification

	Summary

	Complexity analysis of artistic paintings
	Contextualization
	Research questions and contributions
	Introduction
	Methods
	Information-based measures
	Two-point height difference correlation function
	Dataset
	Assessment pipeline

	Kolmogorov approximations in images
	Finding an effective data compressor
	Comparison of NC and BDM
	Insights

	Artist painting analysis
	Global measures analysis
	Combining the NC with the roughness exponent of HDC function
	Local complexity of paintings
	Insights

	Artist painting classification
	Evaluation of measures for classification purposes
	Insights

	Summary

	Complexity analysis of Turing Machines
	Contextualization
	Research questions and contributions
	Turing Machines
	Methods
	Turing Machines configuration
	Search approaches
	Probabilistic complexity
	Normal and dynamic complexity profiles
	Increasing the probabilistic complexity of TM's tape

	Viability assessment of the nc
	Assessment
	Insights

	Global analysis of Turing Machine tapes
	Probabilistic complexity patterns of Turing Machines
	Insights

	Analysis of probabilistically complex Turing Machine tapes
	Analysis using normal and dynamic complexity profiles
	Insights

	NC and bdm comparison
	Comparison analysis between nc and bdm
	Insights

	Increasing the probabilistic complexity of Turing Machine tapes
	Applying methods I and II
	Insights

	Summary

	On solving the inverse problem through approximation
	Contextualization
	Research questions and contributions
	Considerations regarding the inverse problem
	Global aspects
	Inverse problem in case of study

	Methods
	General configuration
	Loss function
	Search approaches
	Guided search optimizations
	Data representation

	Performance evaluation using synthetic data
	Results
	Insights
	Conclusions

	Conclusions and Future Work
	Contextualization
	Relevant findings
	Future research directions and work limitations

	References
	Appendices
	Appendix of Chapter 3
	Content
	Additional information of chapter 3
	Data compressors and level selection benchmark
	Viral genome analysis

	Website
	Software and hardware recommendations
	Reproducibility
	Viral analysis and taxonomic classification
	Archaea taxonomic classification

	Appendix of Chapter 4
	Content
	Additional information of chapter 4
	Comparison towards normalized images
	Kruskal minimum spanning tree

	Website
	Software and hardware recommendations
	Reproducibility
	Installation

	Appendix of Chapter 5
	Content
	Additional Information of chapter 5
	Probabilistic complexity patterns of Turing Machines
	Comparison between BDM and NC

	Software and hardware recommendations
	Reproducibility
	Creating Project and intalling tools
	Recreate plots of c5
	Run TMCompression

