
Universidade de Aveiro
2022

Roshan Poudel Explorando transformadores para análise de
sentimento baseada em aspecto

Exploring Transformers for Aspect Based
Sentiment Analysis

Universidade de Aveiro
2022

Roshan Poudel Explorando transformadores para análise de
sentimento baseada em aspecto

Exploring Transformers for Aspect Based
Sentiment Analysis

Dissertação apresentada à Universidade de Aveiro para cumprimento
dos requisitos necessários à obtenção do grau de Mestre em Ciên-
cia de Dados, realizada sob a orientação científica de Doutor Sér-
gio Guilherme Aleixo de Matos, Professor auxiliar do Departamento
de Eletrónica, Telecomunicações e Informática da Universidade de
Aveiro e do Doutor Rui Pedro Lopes, Professor Coordenador do Insti-
tuto Politécnico de Bragança (IPB).

Este trabalho foi apoiado pela FCT – Fundação para a Ciência e Tec-
nologia no âmbito do projeto DSAIPA/AI/0088/2020.

o júri / the jury

presidente / president Professora Doutora Pétia Georgieva Georgieva
Professor Associado C/ Agregação, Universidade de Aveiro

vogais / examiners committee Professor Doutor Ricardo Nuno Taborda Campos
Professor Adjunto, Instituto Politécnico de Tomar

Professor Doutor Sérgio Guilherme Aleixo de Matos
Professor Auxiliar em Regime Laboral, Universidade de Aveiro (orientador)

agradecimentos/
acknowledgments

I would like to express my deepest gratitude to my friends and fam-
ily who have supported me throughout the journey. Special thanks to
my advisors, Doctor Sérgio Matos and Doctor Rui Lopes for motivation,
encouraging words and putting up with delays. Furthermore, I am im-
mensly grateful to my closest friends in IEETA for keeping me motivated
and providing continuous support. Their encouragement, insights, and
assistance have been invaluable. Finally I want to thank Pandia project
and LCA Coimbra for providing access to computational resource.

Palavras-chave Análise de sentimento, análise de sentimento baseada em aspectos
(ABSA), Transformers, redes neuronais profundas, processamento de
linguagem natural (NLP)

Resumo Nos últimos anos, a análise de sentimentos ganhou atenção significa-
tiva por sua ampla gama de aplicações em vários domínios. A análise
de sentimentos baseada em aspectos (ABSA) é uma tarefa desafiadora
dentro da análise de sentimentos que visa identificar a polaridade do
sentimento em relação a aspectos ou atributos específicos de uma en-
tidade alvo em um determinado texto. Os transformadores, um tipo de
arquitetura de rede neural profunda, mostraram resultados promissores
em muitas tarefas de processamento de linguagem natural (NLP), in-
cluindo análise de sentimento.
Esta dissertação explora a eficácia de um modelo BERT+BiLSTM+CRF
para ABSA e investiga o impacto dos tamanhos dos modelos e congela-
mento de camadas. Foram realizadas várias experiências usando difer-
entes conjuntos de dados ABSA, comparando os resultados com mod-
elos de última geração existentes. Os resultados indicam que aumentar
o tamanho do modelo não é necessariamente a melhor abordagem para
melhorar o desempenho, e congelar um subconjunto de camadas pode
levar a resultados comparáveis com requisitos computacionais reduzi-
dos. O estudo também destaca o impacto dos métodos de pré-treino e
conjuntos de dados em tarefas posteriores. O sistema end-to-end de-
senvolvido é modular, permitindo a substituição do modelo BERT por
qualquer outro modelo baseado em transformador baseado no caso de
uso. A pesquisa contribui para a compreensão de modelos baseados
em transformadores para ABSA e fornece indicadores para estudos fu-
turos neste campo.

Keywords Sentiment analysis, Aspect-based sentiment analysis (ABSA), Trans-
formers, Deep learning, Natural language processing (NLP)

Abstract In recent years, sentiment analysis has gained significant attention for
its wide range of applications in various domains. Aspect-based sen-
timent analysis (ABSA) is a challenging task within sentiment analysis
that aims to identify the sentiment polarity towards specific aspects or
attributes of a target entity in a given text. Transformers, a type of deep
neural network architecture, have shown promising results in many nat-
ural language processing (NLP) tasks, including sentiment analysis.
This dissertation explores the effectiveness of a BERT+BiLSTM+CRF
model for ABSA and investigates the impact of model sizes and layer
freezing. Several experiments are performed using different ABSA
datasets, comparing the results with existing state-of-the-art models.
The findings indicate that increasing model size is not necessarily the
best approach to improve performance, and freezing a subset of lay-
ers can lead to comparable results with reduced computational require-
ments. The study also highlights the impact of pretraining methods
and datasets in downstream tasks. The developed end-to-end sys-
tem is modular, allowing for the replacement of BERT with any other
transformer-based model based on the use case. The research con-
tributes to the understanding of transformer-based models for ABSA and
provides insights for future studies in this field.

Table of contents

Table of contents i

List of figures iii

List of tables v

List of abbreviations vii

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 2
1.3 Document Structure . 3

2 Background 5
2.1 Natural Language Processing . 6
2.2 Recurrent Neural Network . 6
2.3 Attention mechanism . 7

2.3.1 Global and Local attention . 9
2.3.2 Soft and Hard attention . 10
2.3.3 Self-attention . 10
2.3.4 Multi-head attention . 10

2.4 Transformers . 12
2.5 Bidirectional Encoder Representations from Transformers 14
2.6 Conditional Random Field . 15
2.7 Sentiment Analysis . 16
2.8 Aspect Based Sentiment Analysis . 17

2.8.1 Aspect, Category and Sentiment . 18
2.8.2 Issues and Challenges . 18
2.8.3 Approaches . 18

2.9 State of the Art . 20
2.9.1 Pipeline Architecture . 20
2.9.2 Single Step Approaches . 22
2.9.3 Other Architectures . 23

i

TABLE OF CONTENTS

3 Methodology 25
3.1 Datasets . 25

3.1.1 SemEval-14 . 26
3.1.2 MAMS . 27
3.1.3 PandIA . 28
3.1.4 Combined Dataset . 29

3.2 Preprocessing . 29
3.3 Tokenizer . 32
3.4 Model . 33
3.5 Training . 35
3.6 Hyperparameter Optimization . 37
3.7 Metrics . 38

3.7.1 Token Position Quality . 38
3.7.2 Multilabel Classification . 38

3.8 Experiments . 39
3.8.1 Freezing Transformer Layers . 39
3.8.2 Model Sizes . 39
3.8.3 Cross Domain . 40

3.9 Category classification . 40

4 Results 43
4.1 Baseline . 43
4.2 Freezing of layers . 46
4.3 Model Sizes . 48
4.4 Cross domain . 51
4.5 Comparison with existing work . 52
4.6 Categorical classification . 53
4.7 Inference on PandIA dataset . 54

5 Conclusion 55

References 57

ii

List of figures

1.1 Daily installs of Transformers package from PyPI 1

2.1 A simple neural network architecture . 5
2.2 Input gate, Forget gate, and Output gate in an LSTM cell 7
2.3 Intuitive example of attention in a simple sentence 7
2.4 Global and Local attention mechanism . 9
2.5 Relation between word using self attention 11
2.6 Multi head attention cell . 11
2.7 Transformer model architecture . 13
2.8 BERT training and fine-tuning procedures 14
2.9 Example of decoded path of CRF and masked CRF 16
2.10 Granularity levels of Sentiment Analysis . 16
2.11 Overview of SPAN Multi-target extractor and Polarity classifier architecture 21
2.12 Overview of BERT-E2E model architecture 23
2.13 Formulation of InstructABSA for ATSC task 24

3.1 Example of XML Parsing and conversion to BIO 32
3.2 BERT wordpiece tokenization example . 33
3.3 A summary of base model architecture . 34
3.4 Transitions for Masked CRF . 35
3.5 User Interface for classification . 42

4.1 Importance of different hyperparameters on determining f1 score during
hyperparameter search . 44

4.2 Coordinate plot showing different hyperparameter runs 45
4.3 Relative runtime ratio of different freezing experiment runs 48
4.4 Barplot showing relative train runtime and f1 score 50

iii

List of tables

2.1 Different alignment functions used in attention mechanism 8
2.2 Different BERT variations proposed in original paper 15
2.3 Different terminologies used to describe Aspect Based Sentiment Analysis

(ABSA) . 17
2.4 Example of a Joint and Collapsed labelling scheme 19

3.1 Number of sentences and aspects in each class in SemEval-14 Dataset . . . 26
3.2 Number of sentences and aspects in each class in MAMS Dataset 28
3.3 Summary of Pandia Tweet Dataset . 29
3.4 Number of each token label in combined dataset 29
3.5 Base Hyperparameters used for training the model 36
3.6 Search space used for hyperparameter optimization 37
3.7 Size of different transformer models used in this work 40

4.1 Results of our first run . 43
4.2 Optimal hyperparameters as obtained by Optuna study 46
4.3 Results of model training with optimal parameters 46
4.4 Token Quality results of experiments related with freezing of layer 47
4.5 Complete result of best performing run among layer freezing experiments . 47
4.6 Token Quality results of runs with models of different size 49
4.7 Complete result of best performing run among model size experiments . . . 49
4.8 Relative size and f1. The values represent a ratio of model size and f1 score

between Run A to Run B. This means 25.00S, 1.17F between bert-base
(Run A) and bert-tiny (Run B) means bert-base is 25 times larger but only
achieves 1.17 times the f1 score. The matrix is inversely flipped along main
diagonal. 50

4.9 Token quality metrics of testing models trained on restaurant domain on
laptop domain . 51

4.10 Multilabel classification results of testing models trained on restaurant do-
main on laptop domain . 52

4.11 Comparison of our work with existing works 53

v

LIST OF TABLES

4.12 Number of Reviews with Food and Service categories in semEval restaurant
and MAMS test datasets . 53

4.13 Result of performing categorization on Pandia dataset aspect terms 54

vi

List of abbreviations

ABSA Aspect Based Sentiment Analysis
ANN Artificial Neural Network

BERT Bidirectional Encoder Representations from Transformers

CNN Convolutional Neural Network
CRF Conditional Random Fields

LSTM Long Short Term Memory

ML Machine Learning

NLP Natural Language Processing

RNN Recurrent Neural Network

SVM Support Vector Machine

TPE Tree-structured Parzen Estimator

vii

Chapter 1

Introduction

This chapter provides a very short introduction to the work followed by the motivation behind the
work. It also highlights the objectives and contributions of this work.

In recent years, sentiment analysis has gained significant attention due to its potential
applications in various domains such as customer feedback analysis, political opinions,
and social media monitoring [1]. Aspect based sentiment analysis (ABSA) is a subtask
of sentiment analysis that aims to identify the sentiment polarity of specific aspects or
attributes of a target entity in a given text [2]. ABSA is a challenging task as it requires
the model to not only identify the relevant aspects but also understand the sentiment
expressed towards them.

20
20

 Ja
nu

ar
y 0

5

20
20

 M
ar

ch
 15

20
20

 M
ay

 24
20

20
 A

ug
us

t 0
2

20
20

 O
cto

be
r 1

1
20

20
 D

ec
em

be
r 2

0
20

21
 Fe

br
ua

ry
 28

20
21

 M
ay

 09

20
21

 Ju
ly

18
20

21
 Se

pt
em

be
r 2

6
20

21
 D

ec
em

be
r 0

5
20

22
 Fe

br
ua

ry
 13

20
22

 A
pr

il 2
4

20
22

 Ju
ly

03
20

22
 Se

pt
em

be
r 1

1
20

22
 N

ov
em

be
r 2

0
20

23
 Ja

nu
ar

y 2
9

20
23

 A
pr

il 0
9

Date

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f d
ow

nl
oa

ds

1e6

Figure 1.1: Daily installs of Transformers package from PyPI, Created by parsing public
BigQuery entries of PyPi

Transformers, a type of deep neural network architecture, have shown promising re-
sults in various natural language processing (NLP) tasks including sentiment analysis. In
particular, the Bidirectional Encoder Representations from Transformers (BERT) model
has achieved state-of-the-art results in many NLP benchmarks. The success of BERT
has also led to the development of other transformer-based models such as GPT-2, T5,
and GShard. These models have pushed the limits of NLP and achieved human-level
performance on several benchmarks. Figure 1.1 shows the number of daily downloads of

1

CHAPTER 1. INTRODUCTION

transformers package from Python Package Index (PyPI) and we can clearly see the boom
it has gotten in recent years. There have been works that use Transformers for ABSA,
but there is still a lot of experiments to be performed.

In this dissertation, the effectiveness of a BERT+BiLSTM+CRF model for ABSA is
explored. Several experiments are performed during the work to observe the impact of
freezing layers and model sizes. This work also investigates the performance of this model
on several ABSA datasets and compares it with existing state-of-the-art models. The use
of LSTM and CRF layers in conjunction with BERT allows to capture the contextual
information and improve the model’s ability to handle long sequences. Additionally, the
impact of fine-tuning BERT on different ABSA datasets and analyze the results to gain
insights into the effectiveness of the approach is also explored. The complete end to end
system is developed in a modular way, so one can replace BERT with any other transformer
based model based on the use case.

In this work, PyTorch is used as main development framework. Other than PyTorch,
some additional python packages like spacy and metrics are also used. PyTorch was chosen
as huggingface transformers work best with it and is also comparable in performance with
other python packages.

1.1 Objectives

The main goal of this dissertation is to experiment the usage of transformer based
models for ABSA and answer some important questions relating to freezing of layers and
model sizes. We aim to answer the question “Is increasing model size the best way to
improve performance of a model?”. To see the effectiveness of experiments, the results
would be compared with other experiments and current state-of-the-art models as part of
evaluation.

1.2 Contributions

This dissertation includes the following contributions in ABSA and Transformers re-
search:

• A modular end to end system that can be used with any transformer based model
for ABSA or any other token classification task.

• Experimentation and insights into the impact of model sizes and layer freezing in
Transformers.

• Highlights the impact of pretraining method and dataset in downstream tasks.

• This work also contributed to MedProcNER challenge where the model used in this
dissertation was used to identify medical procedures.

2

CHAPTER 1. INTRODUCTION

1.3 Document Structure

This dissertation uses the template provided by University of Aveiro and maintained
by Rui Atunes1. The document is divided into five chapters. The chapters are organized
as follows:

• Chapter 2 provides background knowledge and contextual information related with
the work. Introduction to different aspects of Transformers and ABSA is also pro-
vided in the chapter.

• Chapter 3 presents how the overall pipeline was developed and explains the workings
of each module. It also explains different datasets used and the metrics that are used
to compare our experiments.

• Chapter 4 discusses the results of the experiments. After that the results are also
compared to existing state-of-the-art methods.

• Chapter 5 concludes the work and provides the findings in brief. This chapter also
proposes some future work and use cases of the system.

1 https://github.com/ruiantunes/ua-thesis-template

3

https://github.com/ruiantunes/ua-thesis-template

Chapter 2

Background

This chapter aims to explain the background topics and concepts relating to Machine Learning
and Natural Language Processing methods used in this dissertation.

With the advent of new digital data age, humans are finding new ways of using data and
creating systems around it. Taking inspiration from human brain and neurons Artificial
Neural Network (ANN) were created to make sense of this new available data. An ANN is
composed of layers of interconnected nodes, or neurons that are designed to process and
analyze data. In an ANN, data is fed into the input layer, and then it passes through
one or more hidden layers, where the neurons process the input and make predictions.
Finally, the output layer produces the final output of the model. During training, the
neural network adjusts the weights of the connections between the neurons to minimize
the error between the predicted output and the actual output and over time the neural
network is able to learn from the data and improve its performance. Deep learning then
can be simply explained as a neural network with multiple hidden layers [3]. Figure 2.1
shows a simple representation of a deep neural network architecture.

Figure 2.1: A simple neural network architecture with Input layer (6 nodes), 5 hidden
layers and Output layer (2 nodes)

5

CHAPTER 2. BACKGROUND

2.1 Natural Language Processing

Natural language can be described as the natural way humans communicate with each
other (for example text and speech) and Natural Language Processing (NLP) is an area
of research and application exploring how computer systems can be used to understand
and process the natural language [4]. With the vast availability of data NLP has a wide
range of applications including language translation, text summarization, text generation,
sentiment analysis and a lot more. In recent years, NLP has boomed a lot due to ad-
vancements in Deep Learning and Machine Learning (ML) in general. In recent years the
early approaches for named entity recognition with ML (which were based on Support
Vector Machine (SVM)s and Conditional Random Fields (CRF)s) are being replaced and
outperformed by recurrent architectures and deep learning models [5]. Similarly, some
recent models have even outperformed humans in some tasks such as Question Answering
or Spam detection [5].

Traditionally NLP tasks were performed with dictionary matching, rules and
SVMs/CRFs. Then there were early deep learning approaches that used static word
embeddings (Word2Vec and GloVe) which represent word as vectors in a high dimensional
space. These methods captured the semantic and syntactic relationships between words
based on co-occurrence statistics. But with deep learning models such as transformer-
based language models, embeddings are contextual and are generated based on input
sentence or sequence of words. The contextual information captured by these embeddings
can help improve the performance of NLP tasks, such as sentiment analysis, named entity
recognition, and machine translation. With contextual embeddings, same word can have
a different embedding vector based on the input sequence.

2.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is a type of artificial neural network that is designed
to process sequences of data, such as text, speech, or time series data. Originally intro-
duced as Hopfield Networks, RNN perform the same task for every element of a sequence,
with the output being dependent on the previous computations [6]. The main idea behind
RNN is to maintain a hidden state that captures the context of the past inputs and al-
lows the network to make predictions based on that context. RNN are particularly useful
for tasks that involve sequential data, such as language translation or speech recognition.
They have also been applied to other types of data, such as video and music, where they
can be used to model temporal dependencies in the data.

However, the standard RNN suffers from the problem of vanishing gradients, which
means that the gradient signal becomes very small as it propagates back in time, making
it difficult for the network to learn long-term dependencies [8]. To overcome this problem
Long Short Term Memory (LSTM) architecture was introduced, it introduces a memory
cell that allows the network to selectively forget or remember information over time. The

6

CHAPTER 2. BACKGROUND

Figure 2.2: Input gate, Forget gate, and Output gate in an LSTM cell. Input gate
controls what information must be stored in the cell state and also takes current input
data and previous hidden state as input. Forget gate decides which information from
the previous cell state should be discarded, and Output gate determines the amount of
information to be output from the current cell state. (Source [7])

cell is controlled by three gates that determine how much of the previous cell state and in-
put should be remembered, forgotten, or used to update the current cell state (Figure 2.2).
LSTM uses input gate controls the flow of information from the input to the cell state,
forget gate controls the flow of information from the previous cell state to the current
cell state and output gate controls the flow of information from the current cell state to
the output. By selectively forgetting or remembering information, the LSTM is able to
maintain long-term dependencies while avoiding the problem of vanishing gradients [9].
Since its introduction LSTM has become a popular choice for many sequential processing
tasks, such as speech recognition, machine translation, and sentiment analysis.

2.3 Attention mechanism

Attention in ML is a technique created to mimic human cognitive attention. In simple
terms, similarly to how human brain pays attention to certain parts of images or sentence
attention in deep learning also works by having a vector of importance weights that allows
the network to enhance some parts of the input data while diminishing other parts [10].

Figure 2.3: Intuitive example of attention in a simple sentence. The word eating and
green would have a higher attention towards apple but the attention between eating and
green is weak as they do not have meaning to each other. (Source [10])

7

CHAPTER 2. BACKGROUND

Attention mechanism was introduced for a task of Neural Machine Translation in 2015
to solve the issue of traditional neural network not being able to handle long sequences [11].
Before the introduction of attention mechanism, the performance of encode-decoder de-
teriorates with the increase in the length of input sentences [12]. This is caused as an
encoder-decoder based neural network must be able to compress all the necessary infor-
mation of a source into a fixed length vector which created difficulty for the network to
cope with longer sentences. The intuition behind attention is rather than compressing
the input sequences, the decoder revisits the input sequence at every step but rather than
always seeing the same representation of the input, the decoder selectively focuses on parts
of the input sequence at particular decoding steps [11]. It can be summarized as Pooling
which involves creating a summary representation of the input sequence based on which
the attention scores will be calculated and Scoring involves calculating the attention scores,
which indicate the relevance or similarity between the query vector and different parts of
the input sequence.

Considering 𝒟={(k1,v1), … (k𝑚,v𝑚)} a database of 𝑚 tuples of keys and values.
Moreover, denote by 𝑞 a query. Then attention over 𝐷 can be defined as:

Attention(q, 𝒟)=
𝑚

∑
𝑖=1

𝛼(q,k𝑖)v𝑖,

where 𝛼(q,k𝑖) ∈ ℝ are scalar attention weights. This is also called as Attention pooling.

Originally introduced for the task of Neural Machine Translation but since then at-
tention mechanism has been applied to various other tasks in different forms and with
different alignment score functions. Table 2.1 shows a summary of different alignment
functions (scoring) used in different attention mechanism implementations.

Table 2.1: Different alignment functions used in attention mechanism. Based on the task
and data on hand one or other scoring function might be optimal. Scaled dot product
attention function is used as a key component of the Transformer architecture.

Name Alignment score function Paper
Content-base
attention score(𝑠𝑡, ℎ𝑖) = cosine[𝑠𝑡, ℎ𝑖] Graves2014 [13]

Additive score(𝑠𝑡, ℎ𝑖) = v⊤
𝑎 tanh(W𝑎[𝑠𝑡−1; ℎ𝑖])

Bah-
danau2015 [11]

Location-Base 𝛼𝑡,𝑖 = softmax(W𝑎𝑠𝑡) Luong2015 [14]
General score(𝑠𝑡, ℎ𝑖) = 𝑠⊤

𝑡 W𝑎ℎ𝑖 Luong2015 [14]
Dot-Product score(𝑠𝑡, ℎ𝑖) = 𝑠⊤

𝑡 ℎ𝑖 Luong2015 [14]
Scaled Dot-Product score(𝑠𝑡, ℎ𝑖) = 𝑠⊤

𝑡 ℎ𝑖√
𝑛 Vaswani2017 [15]

8

CHAPTER 2. BACKGROUND

2.3.1 Global and Local attention

Based in whether the attention is applied on all the source positions or on selective
few, attention mechanism can be classified as Global and Local [14] and depending on the
task, either could be beneficial.

Global align weights

Attention Layer

Context vector

(a) Global attention, at each time step 𝑡 model
infers an alignment vector 𝑎𝑡 based on the cur-
rent target state ℎ𝑡 and all source states ̄ℎ𝑠 and
a global context vector 𝑐𝑡 is computed as the
weighted average, according to 𝑎𝑡 over all the
source states.

Attention Layer

Context vector

Local weights

Aligned position

(b) Local attention, a single aligned position
𝑝𝑡 for the current word at time step 𝑡 is pre-
dicted, then a context vector 𝑐𝑡 is computed
which is a weighted average of the source hid-
den states in a window centered around posi-
tion 𝑝𝑡. Then the weights are inferred from the
current target state ℎ𝑡 and source states ̄ℎ𝑠 in
the window.

Figure 2.4: Global and Local attention mechanism (Source: Figure 2 and 3 in [14])

Global attention mechanism, also known as soft attention, is a method in which each
output of the decoder is based on the entire input sequence. In this mechanism, the
model learns to assign a weight to each input element, indicating its relevance to the
current output. The sum of the weighted inputs is then used to compute the output of
the decoder. This allows the model to attend to all input elements at each decoding step,
but it can also be computationally expensive.

Local attention mechanism, on the other hand, only attends to a subset of the input
sequence at each decoding step. This mechanism is used to improve efficiency, as it only
considers a limited window of the input sequence, rather than the entire sequence. In
this mechanism, the model learns to align the input and output sequences, and then uses
a fixed-size window to attend to the relevant parts of the input sequence. Figure 2.4a
and 2.4b shows how the alignment weights are inferred at each time step in global and
local attention mechanism.

9

CHAPTER 2. BACKGROUND

2.3.2 Soft and Hard attention

In [16] attention mechanism is applied to images to generate captions. The authors
used a Convolutional Neural Network (CNN) to encoded to extract features from the image
and then a LSTM decoder to generate captions word by word. The weights are learned
through attention. The decoder generates a probability distribution over the vocabulary
of possible words, conditioned on the previously generated words and the visual features.
The attention mechanism is used to compute a weighted sum of the visual features, where
the weights are learned by the model and depend on the previously generated words. This
allows the model to dynamically focus on different parts of the image as it generates the
caption. The mechanism used by the authors is soft attention, which simply means the
model attends to multiple parts of the image simultaneously and provides more flexibility
in selecting the relevant visual features for generating each word of the caption.

Hard attention is type of attention mechanism where the model chooses a single lo-
cation in the image to attend to in each time step. The attention weights are 1 for the
chosen location and 0 for the other parts in the image.

2.3.3 Self-attention

Originally introduced as intra-attention [17], self attention is an attention mechanism
relating different positions of a single sequence in order to compute a representation of the
sequence. This means that each word/token can have a different weight or importance,
depending on how relevant it is to the other tokens in the sequence. The key advantage of
self-attention mechanism is that it allows the model to selectively focus on different parts
of the input sequence, rather than treating all tokens equally. This can be especially useful
in situations where the relevant information for the task at hand is spread out across the
sequence, rather than concentrated in one particular location.

In Figure 2.5a, bold lines between words means higher attention weights and arrow
denotes the word in focus when attention is computed (not the direction of relation). The
model should eventually learn the semantically important tokens for a particular token
and pay more attention to those. Figure 2.5b shows how the word ‘food’ attends to other
words in the sequence, the image was visualized with BertViz 1 with bert-base-uncased
model.

2.3.4 Multi-head attention

Multi-head attention is a variant of the self-attention mechanism used in transformers,
which allows the model to jointly attend to different representation subspaces at different
positions. Instead of performing a single attention function with 𝑑𝑚𝑜𝑑𝑒𝑙-dimensional keys,
values and queries, the input vectors (i.e., the queries, keys, and values) are linearly
projected multiple times to create multiple “heads” [15]. Then each head learns a different

1 BertViz: Visualize Attention in NLP Models

10

https://github.com/jessevig/bertviz/tree/master

CHAPTER 2. BACKGROUND

(a) Intra attention, Bold lines indi-
cate higher attention and arrows de-
note which word is being attended to
and not direction of relation (Source:
Figure 4 in [17])

(b) What words does ‘food’ attend to. Darker color
means higher attention, food has the highest attention
to spicy and then to tasty. It shows the attention of
transformer layer 2 of BERT model using Bertviz library.
Visualized using BertViz library.

Figure 2.5: Relation between word using self attention

representation of the input vectors by using different learned projection matrices. The
outputs of these heads are then concatenated and linearly transformed to produce the
final output.

Figure 2.6: Multi head attention cell. Queries, Keys and Values are linear projected ℎ
times, multiple attention heads are run in parallel, each with its own set of learned weights.
The outputs of the attention heads are then concatenated and linearly transformed to
produce the final output of the multi-head attention cell. (Source: Figure 2 in [15])

11

CHAPTER 2. BACKGROUND

Mathematically multi-head attention can be represented as:

MultiHead(Q,K,V) = [ℎ𝑒𝑎𝑑1; … ; ℎ𝑒𝑎𝑑ℎ]W𝑂

where, ℎ𝑒𝑎𝑑𝑖 = Attention(QW𝑄
𝑖 ,KW𝐾

𝑖 ,VW𝑉
𝑖)

(2.1)

Note: W𝑄
𝑖 ,W𝑄

𝑖 andW𝑄
𝑖 are parameter matrices to be learned.

The aim of multi-head attention is to enable the model to attend different aspects
of the input vectors in parallel. By using multiple heads, the model can learn to focus
on different information in the input vectors, which can lead to improved performance
on a variety of natural language processing tasks. This mechanism is a key component
of transformer models and has been shown to be very effective in a variety of natural
language processing tasks, such as machine translation, language modeling, and question
answering.

2.4 Transformers

Transformers introduced in the paper “Attention is All you need” presents a deep
learning architecture that leverages the power self-attention mechanism [15]. It has quickly
established as the leading architecture for most NLP applications. It presented a lot of
improvements to the soft attention and made it possible to do seq2seq modeling without
recurrent network units. The proposed “transformer” model is entirely built on the self-
attention mechanisms without using sequence-aligned recurrent architecture.

In transformers, the attention mechanism is a key component that enables the model
to selectively focus on different parts of the input sequence when making predictions. The
transformer views the encoded representation of the input as a set of key K value V pairs,
both of which are of same dimension as input sequence length (𝑑𝑘). In the decoder, the
previous output is compressed into a query Q of dimension 𝑚. Then, the next output
sequence is produced by mapping this query to the set of keys and values.

The attention mechanism can be defined as follows:

Attention(Q,K,V) = softmax(QK
𝑇

√𝑑𝑘
)V (2.2)

where, Q is the query matrix with dimension 𝑚, K is the key matrix with dimension 𝑛
and V is the value matrix with dimension 𝑑𝑘.

The dot product of Q and K𝑇 contains the pairwise dot products between each query
vector and each key vector. This matrix is then divided by √𝑑𝑘, where 𝑛 is the dimension
of the key vectors. The resulting matrix is passed through a softmax function row-wise,
which produces a matrix of attention weights.

Finally, the attention weights are used to weight the value vectors in V, producing
a weighted sum of the value vectors for each query vector. This results in a matrix
of attended values which can be further processed by the transformer layers to make

12

CHAPTER 2. BACKGROUND

predictions or generate output sequences.

Figure 2.7: Transformer model architecture. It follows stacked self-attention and point-
wise, fully connected layers for both the encoder and decoder. Left half is the encoder
layer and Right half shows the decoder. (Source: Figure 1 in [15])

The full model architecture of transformers is shown in Figure 2.7. In the original
transformers architecture, there are six identical encoder layers and six identical decoder
layers which both have multi head attention cells. Each multi head attention cell consists
of ℎ(ℎ = 8, in case of original architecture) parallel attention layers.

• Each encoder layer has a multi-head self-attention layer and a simple Point-wise fully
connected feed-forward network.

• In an encoder, all the keys, values and queries come from the output of the previous
layer in the encoder. This allows the encoder to attend to all the positions in the
previous layers.

• Each decoder layer has two sub-layers of multi-head attention mechanisms and one
sub-layer of fully-connected feed-forward network.

• In the decoder the first multi-head attention sublayer is a Masked which prevents it
from attending to subsequent positions which disallows the model to look into the
future of the target sequence when predicting the current position.

13

CHAPTER 2. BACKGROUND

2.5 Bidirectional Encoder Representations from Trans-
formers

Bidirectional Encoder Representations from Transformers (BERT) is a neural network
architecture with multi-layer bidirectional Transformer encoder which was introduced by
researchers at Google in 2018 [18]. BERT uses a transformer-based architecture, which
allows it to take into account both the context of a given word and the words that come
before and after it. This is in contrast to traditional language models that rely on unidi-
rectional processing and can only consider the preceding words.

BERT is pre-trained on large amounts of unlabeled textual data2 using masked lan-
guage modelling and next sentence prediction approaches and due to its architecture it
develops an understanding of the language. The resulting model can then be fine-tuned
on a small labelled dataset for a specific NLP task, such as question answering or senti-
ment analysis. As shown in Figure 2.8, The architecture used in both pre-training and
fine-tuning is same except for the output layer. This allows to reuse the parameters ini-
tialized during the pre-training to be reused for down-stream tasks. During fine-tuning
some special tokens are introduced to identify the beginning, ending and padding in the
input.

BERT BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

Figure 2.8: BERT training and fine-tuning procedures. Other than the output layers,
same architecture are used in both procedures. Same pre-trained model parameters are
used to initialize models for different down-stream tasks. (Source: Figure 1 in [18])

• [CLS] is a special token added in front of every input example.

• [SEP] is a separator token, used to signify end of one input sequence and start of
another.

• [MASK] is used to mask the words that the model is expected to predict.

As shown in Table 2.2, originally four different variations of BERT were proposed.
BERT BASE and LARGE varieties differ in size and the uncased and cased differ in the

2 Large corpus of unannotated text from Wikipedia (2.5 billion words) and BookCorpus (800 million words)

14

CHAPTER 2. BACKGROUND

Table 2.2: Different BERT variations proposed in original paper [18]. Pretrained models
of these variants are available to download on Google’s GitHub repository.

Model Type L H A Total Parameters
TINY uncased 2 128 12 4.4M
MINI uncased 4 256 12 11.3M
BASE uncased 12 768 12 110M
LARGE uncased 24 1024 16 340M

BASE cased 12 768 12 110M
LARGE cased 24 1024 16 340M

Note: L is the number of layers (Transformer blocks), H is the hidden size and A is the number of
self-attention heads.

way they handle casing of text. Cased model takes input as both uppercase and lowercase
but Uncased converts everything to lowercase. BERT uncased is better than BERT cased
in most applications except in applications where case information of text is important. In
recent years, smaller models (Tiny, Mini, Small and Medium) were also introduced with
Tiny being smallest (at 4% the size of base model). Some of them are also available as
multilingual models3. There are other models like Roberta, minilm, etc. which take BERT
architecture as base and apply different pre-training methods usually to obtain better or
smaller models.

2.6 Conditional Random Field

CRF are a type of discriminative model often applied to pattern recognition and se-
quence labelling tasks. Unlike other classifiers CRF takes neighbors and context into
account while making the classification. The original paper defines CRF as a sequence
modelling framework that has all the advantages of Maximum Entropy Markov models but
also solves the label bias problem (the transition probabilities of leaving a given state is
normalized for only that state) [19]. They also define CRF on observations 𝑋 and random
variables 𝑌 as follows:

Let 𝐺 = (𝑉 , 𝐸) be a graph such that 𝑌 = (𝑌𝑣) 𝑣 ∈ 𝑉, so that 𝑌 is indexed by the vertices
of 𝐺. Then (𝑋, 𝑌) is a conditional random field in case, when conditioned on 𝑋, the
random variables 𝑌𝑣 obey the Markov property with respect to the graph: 𝑝(𝑌𝑣|𝑋, 𝑌𝑤 ≠
𝑣) = 𝑝 (𝑌𝑣|𝑋, 𝑌𝑤, 𝑤 ∼ 𝑣), where 𝑤 ∼ 𝑣 means that 𝑤 and 𝑣 are neighbors in 𝐺.

For sequence labelling tasks like POS and NER, using masked CRF with large negative
weights for illegal transitions brings significant improvement without adding computational
requirements [20]. As shown on 2.9, CRF predicted a case where B-ORG is followed by
I-ORG (which is an illegal transition) but with negative weights on masked CRF, the case
is handled correctly.

3 https://github.com/google-research/bert

15

https://github.com/google-research/bert

CHAPTER 2. BACKGROUND

O

B-ORG

I-ORG

B-MISC

I-MISC

CRF prediction: O B-MISC O O O B-MISC I-ORG I-ORG O ...

MCRF prediction:
(Ground Truth) O B-MISC O O O B-MISC I-MISC I-MISC O ...

Input Tokens: The Briton who lost his World Boxing Council title ...

Figure 2.9: Example of decoded path of CRF and masked CRF. Black arrow lines
represent the transitions that are predicted by both, black dashed represent ones predicted
differently by base CRF and red arrow represent ones predicted differently by masked CRF.
As seen in tokens prediction of ‘World’ and ‘Boxing’, base CRF predicts B-MISC then I-
ORG which should never occur as I-Y cannot follow B-X but with Masked CRF it is less
likely occur as the transition is masked. (Source: Figure 1 in [20])

2.7 Sentiment Analysis

Sentiment analysis or also commonly referred as opinion mining is a NLP technique
used to extract subjective information such as opinion and attitudes from some form of
natural language. It generally focuses on identifying the polarity which is usually classified
into Positive, Neutral and Negative. Although most commonly performed on textual data,
several authors have performed sentiment analysis on expression and audiovisual data [21]
and so on.

Figure 2.10: Different granularity levels of Sentiment Analysis, same sentence is analyzed
at different levels in the example above.

Sentiment analysis can be classified into Document level, Sentence level and Aspect
level based on granularity level [22]. Figure 2.10 shows the sentiment analysis of a sample
review with different granularity levels. Document level sentiment analysis simply refers
to having only one sentiment for the entire document. For example in case of movie
reviews the sentiment value obtained will only show the overall sentiment towards the
movie rather than to different aspects of the movie. Sentence level sentiment analysis goes
a step further, and we analyze each sentence as an entity. This gives a better sentiment

16

CHAPTER 2. BACKGROUND

analysis as generally different sentences tend to talk about different ideas or parts of an
entity. But both the document level and sentence level sentiment analysis fail to identify
exactly what people liked and didn’t like. ABSA goes to a much finer level and provides
sentiment to each aspect that are present in the sentence.

2.8 Aspect Based Sentiment Analysis

ABSA (also referred as Feature based Sentiment Analysis [23]) is a granular level of
sentiment analysis. ABSA allows performing sentiment analysis in a deeper manner as a
sentiment is assigned to individual topics or aspects present in the document. This allows
us to know the users’ opinion towards something particular aspect of an entity or product.
But the term itself is very broad and incorporates several subtasks like Aspect Based Term
Extraction, Aspect Based Opinion Extraction, etc.

One of the major problem encountered during research for the dissertation was the
inconsistency of terms in literature being used in relation with ABSA. Each entry presented
in Table 2.3 uses the term ABSA to describe a specific aspect or subtask within the broader
domain of sentiment analysis.

Table 2.3: Different terminologies used to describe ABSA

Terminology used to describe Introduced by
Aspect Based Sentiment Analysis (ABSA) He et al. [24]
Aspect Based Sentiment Classification (ABSC) Zhang et al. [25]
Aspect Level Sentiment Classification (ALSC) Zhang et al. [25]
Aspect Sentiment Classification (ASC) Luo et al. [26]
Aspect Target Sentiment Classification (ATSC) Rietzler et al. [27]
Aspect Term Sentiment Analysis (ATSA) Xue and Li [28]
Aspect Term Sentiment Classification (ATSC) Park et al. [29]
Target Based Sentiment Analysis (TBSA) Li et al. [30]
Targeted (Dependent) Sentiment Analysis (TSA) Deng and Liu [31]
Targeted Sentiment Classification (TSC) Bai et al. [32]
Aspect Sentiment Triplet Extraction (ASTE) Peng et al. [33]

ABSA is usually used to refer to the overall concept of analyzing sentiment at a granular
level by assigning sentiment to individual aspects or topics present in a document. ABSC
is used to describe the task of classifying the sentiment polarity of individual aspects or
topics. ALSC refers to the same task but with a focus on the aspect level rather than the
document level. ASC and ATSC is usually used to denote process of only classification
of sentiment polarity specifically for aspects or aspect terms present in the text. Authors
use ATSC in works which focuses on classifying the sentiment polarity of a target aspect
within an entity or product. ATSA is to describe the task of extracting aspect terms from

17

CHAPTER 2. BACKGROUND

the text and assigning sentiment polarity to them. TBSA, TSA and TSC both generally
refer to works that focus on sentiment analysis towards a specific targets or aspects within
the text. ASTE is more unique approach where a triple consisting of an aspect term, its
corresponding sentiment, and its target entity or product is extracted from the text.

These terminologies demonstrate the diversity and specificity within the field of ABSA,
highlighting different aspects and subtasks researchers have explored in their work. In this
work, ABSA terminology is used as a task of joint extraction of aspects and classification
of sentiment.

2.8.1 Aspect, Category and Sentiment

In the literature relating to this dissertation, the actual words present in the input
sentence will be used as aspect terms. Then a category based on user fed dictionary and
wordnet4 is also applied on top of the aspect terms during inference. The model uses
opinion terms to identify and label sentiment of the terms, but the opinion terms are
not labelled in any way. In cases where a single aspect term is longer than one word
appropriate labels are used and marked as a single term of multiple words.

2.8.2 Issues and Challenges

Different steps of ABSA come with their own set if issues and challenges. Nazir et al.
did a comprehensive review of issues and challenges with ABSA [25]. The first issue related
with ABSA appears in the aspect extraction phase, without explicit mention of ambiguity
it is very hard for ML models to identify and extract relevant aspects or features from a
given text. Even if the model identifies the aspects, the meaning and sentiment can be
influenced by the context and tone, this creates a problem for sentiment classification.

ABSA is usually trained on a single language and on a single domain and context,
this creates a challenge for domain adaptation such as using a single model for different
products, services, and industries is a huge challenge. ABSA models also face a challenge
of contextual ambiguity as same word could mean multiple things. Then there comes the
challenge of being able to handle multiple languages as different languages have different
syntax, grammar and sentiment expression across languages.

2.8.3 Approaches

The task of ABSA can be split into three parts: Term extraction as considered in
SemEval-2014 Task 4 Subtask 1, Sentiment analysis as considered in SemEval-2014 Task
4 Subtask 2 and Sentiment evolution. Term extraction means identifying the aspects or
features of the product or service that are being discussed in the text, Sentiment analysis
is simply classifying the opinion terms related to the aspect term as Positive, Negative
or Neutral and finally sentiment evolution means continuing to monitor the evolution of

4 https://wordnet.princeton.edu/

18

https://wordnet.princeton.edu/

CHAPTER 2. BACKGROUND

sentiment towards an aspect over time. The work and literature of this dissertation is
limited to the first two steps.

The task of term extraction and sentiment analysis can be performed in a Pipeline,
Joint or Collapsed manner. Depending on the approach different labelling scheme is
needed. In a pipeline architecture the model first performs an Aspect Term Extract
and then follows up with Sentiment Analysis. For each task a different system could be
used. For example the task of extracting term could be done manually by human or by
an algorithm and then the sentiment analysis could be performed using any ML model.

Table 2.4: Example of a Joint and Collapsed labelling on a simple sentence following
BIO labelling scheme.

The food and place was good .
Joint: Aspect O B O B O O O

Joint: Sentiment O POS O POS O O O
Collapsed O B-POS O B-POS O O O

More recently, Joint and Collapsed models have become more popular. The models use
a joint or collapsed labelling scheme to annotate the data (See Table 2.4 to see difference).
Joint models handle both Aspect extraction and Sentiment classification simultaneously
but uses separate labels for them and on the other hand collapsed models use single label
with information about both Aspect and Sentiment. The model developed during this
work is also able to extract both the terms and their corresponding sentiments for a given
sentence using a collapsed scheme.

BIO scheme

‘B’ is used to represent beginning of aspect term, ‘I’ is used to represent inside and
end on a multi-word aspect term and ‘O’ represents everything else that is not an aspect
term.

BIOES scheme

Similar to BIO scheme but with additional letters, E represents the end on a multi-word
aspect term and S represents single word aspect terms.

XML scheme

Some datasets are represented as XML tree and usually need to be converted to one of
the other labelling schemes before feeding into the model. As seen in the example below,
usually each sentence is put inside a sentence tag with aspect terms and position being
specified in nested tags inside sentence.

<?xml version="1.0" encoding="utf-8"?>

19

CHAPTER 2. BACKGROUND

<sentences>
<sentence>
<text>The food was pretty good, but a little flavorless and the portions

↪ very small, including dessert.</text>
<aspectTerms>
<aspectTerm term="food" polarity="conflict" from="4" to="8"/>
<aspectTerm term="dessert" polarity="negative" from="89" to="96"/>
<aspectTerm term="portions" polarity="negative" from="58" to="66"/>

</aspectTerms>
</sentence>
</sentences>
<!--An example taken from SemEval-2014 Task 4 Subtask 1+2 dataset-->

2.9 State of the Art

In recent years, with the growth in user generated contents like reviews and tweets,
newer and newer models for ABSA are being introduced. ABSA is being used to better
understand the customer/product reviews or even to automate the customer service re-
quests. Jang et al. used topic modelling combined with aspect based sentiment analysis
to understand people’s reaction to COVID-19 in North America [34]. BERT based ABSA
model was used by Chen et al. to investigate the change in the image of China during the
COVID-19 pandemic [35]. They used a manually labeled dataset with ABSA annotations
and then used a BERT based model to explore image of China. They discovered overall
change of sentiment from non-negative to negative in the public but different patterns
were discovered while researching different groups of U.S. Congress members, English me-
dia, and social bots. Similar kind of analysis can be also done on other scenarios like
monitoring the image of political parties during elections. Zhang et al. used aspect based
sentiment analysis to find weakness in products by using Chinese reviews [36] and later on
Mubarok et al. Naive Bayes to perform ABSA on product reviews. As it is not possible
for any manufacturer or business to comb through every review, this kind of automated
analysis helps manufactures to identify flaws in their products and resolve them. Tun
Thura Thet et al. proposed and evaluated a method for clause level sentiment analysis of
movie reviews on discussion boards [37]. They discuss that using a finer sentiment analysis
with sentiment orientation and sentiment strength of the reviewer towards various aspects
of a movie helps identify the flaws present in a particular movie or even identify what the
audience feels about different aspects of the movie.

2.9.1 Pipeline Architecture

This kind of approaches perform the task of aspect extraction and classification as
two-step tasks. Most of the approaches are developed as a pipeline allowing different parts
to be changed based on the data available.

20

CHAPTER 2. BACKGROUND

SPAN

SPAN is a model for ABSA proposed by Hu et al. that follows the idea of labeling word
spans (marking their beginning and ending) rather than tagging words [38]. A pipeline
model is applied on the spans which first extracts the aspect terms and then classifies
their polarities based on the span information. The usage of span allows to process all
the target words before predicting sentiment which would avoid label inconsistency of
multi-word aspect terms.

SPAN uses pre-trained BERT as the backbone network. The specialized architecture
is placed on top of the BERT model with L layers. Then [CLS] and [SEP] tokens are
placed after wordpiece tokenization to create spans of aspect terms.

ps

love Windows 7

0

1h 0

2h 0

3h 0

4h

4

Lh3

Lh2

Lh
1

Lh

0.1 0.1

0.6
0.2

0.1 0.1
0.3

0.5

I

decoding

start: 3

end: 4

pe

(a) Multi-target extractor which proposes one
or multiple candidate targets based on the prob-
abilities of the start and end positions

4

Lh3

Lh

0

1h 0

2h 0

3h 0

4h

2

Lh
1

Lh

+

v

love Windows 7I

start: 3

end: 4
Extractor

(b) Polarity classifier which predicts the senti-
ment polarity using the span representation of
the given target

Figure 2.11: Overview of SPANMulti-target extractor and Polarity classifier architecture
(Source: Figure 3 in [38])

Instead of finding aspect terms using sequence tagging methods, SPAN finds candidate
terms by predicting the start and end positions of the target in the sentence. Multi-target
extractor shown in proposes multiple candidate opinion terms. The target representation
from contextual vector Figure 2.11a are summarized according to its span boundary and
a feed-forward neural networks to predict the sentiment polarity (polarity classifier shown
in Figure 2.11b).

GRACE

Luo et al. introduced a pipeline structure model called Gradient Harmonized and
Cascaded Labeling model (GRACE). The aspect term label set is 𝑇𝑒 = {𝐵, 𝐼, 𝑂} and the
sentiment label set 𝑇𝑐 consists of positive, negative, neutral, conflict and other. The work
was mainly focused on the impact of imbalanced dataset for ABSA. To solve the imbalance
issue, they extended the gradient harmonized mechanism used in object detection to the
ABSA by adjusting the weight of each label dynamically. GRACE also used BERT as its

21

CHAPTER 2. BACKGROUND

backbone and showed consistent improvements over existing methods.

2.9.2 Single Step Approaches

Rather than performing ABSA in two steps, in recent years research seems to be
moving forward to more single step approaches. By using some form of joint or collapsed
labelling scheme, ABSA can be performed in one step. As discussed earlier in the chapter,
Joint labelling means providing two or more separate labels jointly and Collapsed labelling
means using a single label that has all the information needed.

DOER

An architecture called Dual crOss-sharEd RNN framework (DOER) was proposed
by Luo et al. which treated the task of ABSA as two sequence labeling problems [39]
(Joint Labeling Scheme). The model generated all aspect term and sentiment pairs of
the input sentence simultaneously. For each word of the input an aspect term tag out of
{𝐵, 𝐼, 𝑂} (Begin, Inside, Outside) and a sentiment tag from the set {𝑁𝐺, 𝑃𝑂, 𝑁𝑇 , 𝐶𝐹 , 𝑂}
(Negative, Positive, Neutral, Conflict, Other) were assigned. The main architecture of
DOER has a dual stacked RNN, one stacked RNN for term extraction and other for
sentiment classification. Even though the tasks are treated as two different, both the labels
have information to imply boundary of each aspect term and also have strong correlation.
To determine this interaction the architecture has a Cross Shared Unit.

BERT E2E

Li et al. proposed a framework that used contextualized embeddings from pre-trained
language models like BERT and a classification head over it [40]. The overall model
architecture is shown on Figure 2.12. It uses collapsed labeling scheme and predicts the
tokens in single step.

BERT-E2E treats ABSA as a sequence labelling task. It used collapsed labelling
scheme to represent the term and polarity of each token. For a Given input sequence 𝑥 =
{𝑥1, … 𝑥𝑇} of length 𝑇, 𝐿 transformer layers of BERT is used to calculate the corresponding
contextualized vector representations 𝐻𝐿 = {ℎ1 … ℎ𝐿

𝑇 } ∈ ℝ𝑇 ×𝑑𝑖𝑚ℎ where 𝑑𝑖𝑚ℎ denotes the
dimension of the representation vector. The contextualized vectors are the inputs for the
task specific classification layers that predict the tag sequence as 𝑦 = {𝑦1, … 𝑦𝑇}. The
authors experiment with BERT+Linear, BERT+GRU, BERT+SAN, BERT+TFM and
BERT+CRF. They were able to achieve best results with GRU(Gated recurrent unit) and
SAN(Self attention Network) layers. This work was also inspired by this work and follows
a similar framework.

22

CHAPTER 2. BACKGROUND

The AMD Turin Processor seems to perform better than Intel

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Ex1
Ex2

Ex3
Ex4

Ex5
Ex6

Ex7
Ex8

Ex9
Ex10

EA EA EA EA EA EA EA EA EA EA

Position
Embedding

Segment
Embedding

Token
Embedding

1-st Transformer Layer

L-th Transformer Layer

⋯

hL

1
hL

2
hL

3
hL

4
hL

5
hL

6
hL

7
hL

8
hL

9
hL

10

BERT

E2E-ABSA Layer

O B-POS I-POS E-POS O O O O O S-NEG

X

y

Figure 2.12: Overview of BERT-E2E model architecture. At first input tokens are fed
into BERT component to create contextualized representations. The representations are
fed to task specific layers to predict the tag sequence. (Source: Figure 1 in [40])

2.9.3 Other Architectures

In recent years, there have been new ways of performing ABSA. Triplet extraction and
approaches that use prompt based instructions are one of the newer approaches.

ASTE

Aspect Sentiment Triple Extraction (ASTE) is the process of extracting three impor-
tant pieces of information from a given text: the target aspect, the sentiment polarity,
and the reason behind the sentiment. This way solves Peng et al. propose a two-stage
framework for ATSE in the paper “Knowing What, How, and Why: A Near Complete
Solution for Aspect-based Sentiment Analysis” [33]. They propose a deep neural network
model that jointly performs ATSE by considering the interdependencies between the three
aspects. In the first stage, the model predicts what, how and why in a unified model,
and then the second stage pairs up the predicted what, how and why from the first stage
to output triplets. The model takes a sentence as input and outputs the target aspect,
sentiment polarity, and reason for each aspect in the sentence. The model is evaluated on
four benchmark datasets and achieves state-of-the-art performance on all of them. The
paper suggests that considering all three aspects of ABSA is crucial for accurate and
comprehensive sentiment analysis.

23

CHAPTER 2. BACKGROUND

InstructABSA

In the recent months, with the advent of chatGPT, prompt or instruction based lan-
guage models have been on the rise. Scaria et al. presented InstructABSA which used
prompt based training for ABSA [33]. They use a fine-tuned Tk-Instruct-base-def-pos5

which is an encoder-decoder Transformer model built upon pre-trained T5 trained to solve
NLP tasks following in-context instructions. An example of the training prompt is shown
in Figure 2.13.

Figure 2.13: Formulation of InstructABSA for ATSC task. The input consists of instruc-
tion prompt and an input prompt and outputs the sentiment class. Instruction prompt
consists of prompt definition and examples of positive, neutral and negative sentences.
The input prompt consists of the sentence and aspect that is to be predicted. (Source:
Figure 2 in [41])

With this approach the authors were able to achieve better results than prior state-of-
the-art models with 1.5B parameters, InstructABSA only has 200M parameters.

5 https://huggingface.co/allenai/tk-instruct-base-def-pos

24

https://huggingface.co/allenai/tk-instruct-base-def-pos

Chapter 3

Methodology

This chapter explains the workings of different parts of the model and also goes over how the
experiments are conducted and compared. It also goes over the datasets and metrics used as part
of this work.

In this chapter, we describe the methodology used to develop and train our ABSA
models. We used transformers library using PyTorch and Huggingface Trainer API as
our foundations. The structure and code is inspired from the PyABSA1 repository. Our
goal was to build a modular model and training pipeline where any transformer based
model would work. We begin by discussing the dataset used for our experiments and
the preprocessing steps we took to clean and prepare the data for training. We then
present the transformer based model architecture and also the training hardware and
techniques used. Likewise, we also describe the hyperparameter tuning process used to
optimize the model’s performance. Next, we discuss the training process, including the
use of pre-trained models and fine-tuning techniques to improve the model’s performance.
Next we discuss the experiments that we perform with the model, like freezing layers,
Finally, we discuss the challenges we encountered during the development process and the
solutions we used to overcome them. This chapter provides a comprehensive overview
of our methodology and serves as a foundation for the experimental results and analysis
presented in Chapter 4.

3.1 Datasets

We used a combination of different datasets to train and test our models. We used
a combination of training dataset from SemEval-14 Restaurant and MAMS Restaurant
datasets. Furthermore, we also performed inference on a self created tweet dataset (PandIA
dataset) to get some real world use cases of the methodology. Detailed descriptions and
the uses in our work is defined in following subsections.

1 https://github.com/yangheng95/PyABSA

25

https://github.com/yangheng95/PyABSA

CHAPTER 3. METHODOLOGY

3.1.1 SemEval-14

SemEval(Sentiment Evaluation) is the most popular dataset used in ABSA task. It was
introduced as part of SemEval-2014 Task 4 which consisted four different subtasks(Subtask
1: Aspect term extraction, Subtask 2: Aspect term polarity, Subtask 3: Aspect category
detection, Subtask 4: Aspect category polarity). The dataset consists of manually an-
notated customer reviews of restaurants and laptops, as well as a common evaluation
procedure [42]. This dataset is usually used as one of the primary benchmark dataset for
ABSA models. We used the V2 of Restaurant training data as part of training data for
this work and Restaurant test set to compare with other works. We also tested the model
on laptop test set to see its performance in cross domain situations.

<sentence id="3161">
<text>The Bagels have an outstanding taste with a terrific texture, both
chewy yet not gummy.</text>
<aspectTerms>
<aspectTerm term="Bagels" polarity="positive" from="4" to="10"/>

</aspectTerms>
<aspectCategories>
<aspectCategory category="food" polarity="positive"/>

</aspectCategories>
</sentence>

The example above is taken from restaurant training set. This example contains one single
aspect which is the case for majority of reviews in this dataset. Restaurant version of the
dataset also has aspectCategory which is only used later on to create an aspect to category
dictionary.

Table 3.1: Number of sentences and aspects in each class in SemEval-14 Dataset. Most
of the reviews have single aspect or no aspects at only and only few contain multi aspect.
Aspects which have both positive and negative sentiment associated are labeled as conflict
and if they have neither they are labelled as neutral.

Type Set
Total Aspects Polarity

Sentence None Single Multi Positive Negative Neutral Conflict

Restaurant
Train 3041 1020 1666 355 1303 (2164) 549 (805) 464 (633) 84 (91)

Test 800 194 521 85 411 (728) 142 (196) 128 (196) 14 (14)

Laptop
Train 3045 1557 1306 182 664 (987) 659 (866) 311 (460) 43 (45)

Test 800 378 382 40 233 (341) 106 (128) 112 (169) 14 (16)

Note: In columns related to polarity, the values in brackets represent the number of aspects. Other values
represent the number of sentences.

There were a lot of reviews without any sentiment aspects in semEval dataset (1020
sentences in Restaurant train set in and 1557 in Laptop train set). The remaining 2021

26

CHAPTER 3. METHODOLOGY

(3041 − 1020) sentences with 3693 in the Restaurant train set and 1488 (3045 − 1557)
sentences with 2358 in the Laptop train set. There are more aspects than sentences as
some reviews also have multiple aspect terms. SemEval annotation guide also defines a
“conflict” class which is supposed to be used when an aspect has both positive and negative
sentiment. There were 91 different aspects in 84 sentences which were marked as conflict
in Restaurant train set and 43 Aspects (45S). Table 3.1 presents an overall summary of
number of reviews and terms for each set.

3.1.2 MAMS

Multi-Aspect Multi-Sentiment (MAMS) was introduced as a more realistic and chal-
lenging dataset [43]. Unlike other ABSA datasets that only annotate a single aspect and
sentiment for each sentence or review, MAMS annotates multiple aspects and their corre-
sponding sentiments for each review, making it a more challenging and realistic dataset for
ABSA tasks. The dataset was created by annotating Citysearch New York dataset2 and
was introduced with two different versions, one for aspect-term sentiment analysis (ATSA)
and one for aspect-category sentiment analysis (ACSA). As part of our work we will only
be using ATSA version of the dataset. Introduced to mainly address the limitations of
semEval dataset, authors have structured the dataset in the same XML tree format as
semEval dataset.

<sentence>
<text>The decor is not special at all but their food and amazing prices
make up for it.</text>
<aspectTerms>
<aspectTerm from="4" polarity="negative" term="decor" to="9"/>

<aspectTerm from="42" polarity="positive" term="food" to="46"/>
<aspectTerm from="59" polarity="positive" term="prices" to="65"/>

</aspectTerms>
</sentence>

The example is taken from MAMS training set and as seen it contains multiple aspects
which is a defining characteristic of the dataset.

In the training set there are 4297 sentences with 11186 aspects. Most of the sentences
(4173) in train set contains two aspect terms and only 124 contain more than two aspects.
The distribution of different polarities is mostly balanced with bit more of aspects being
marked as Neutral. Both Test set and Validation set contain 500 sentences with 1336 (Test)
and 1332 (Valid) aspects. An overall summary of the dataset can be seen in Table 3.2.

2 https://people.dbmi.columbia.edu/noemie/ursa/

27

https://people.dbmi.columbia.edu/noemie/ursa/

CHAPTER 3. METHODOLOGY

Table 3.2: Number of sentences and aspects in each class in MAMS Dataset. All the
reviews in MAMS contain at least two datasets and a few also contain more than two
aspects. MAMS also does not have a conflict class label.

Set
Total Aspects Polarity

Sentence Two More than Two Positive Negative Neutral

Train 4297 4173 124 2660 (3380) 2343 (2764) 3715 (5042)

Test 500 486 14 293 (400) 279 (329) 442 (607)

Valid 500 480 20 302 (403) 286 (325) 432 (604)

Note: In columns related to polarity, the values in brackets represent the number of aspects. Other values
represent the number of sentences.

3.1.3 PandIA

A real world use case of these models might be to track the image towards a particular
aspect, for example, monitoring the sentiment towards a country or political figure during a
pandemic. To try and see how the model would perform for such cases without any further
fine-tuning we used a small tweet dataset which was created by us as part of PandIA3

project [44]. This dataset was created by hand labelling a small subset (about 2000) of
Portuguese tweets during Covid pandemic4. The tweets were hand labelled tweets with
multi labelling scheme (Symptom, Covid Positive, Covid Negative, Past, Close Contact,
Third Person and Undetermined) based on what the tweet is talking about. Table 3.3
shows the number of tweets in each class. A lot of the tweets in the dataset were about
being positive and symptomatic, there is a large overlap (946 tweets) between those two
classes. We will mainly analyze these two classes of tweets as well as part of our work. An
example of an original, translated tweet and its classification can be seen below:

Original: Testei Positivo para COVID 19! Até o momento um pouco de
mal estar, um pouco de dor e febre baixa, como se fosse uma
gripe comum! Mas é isso aí, como eu digo por onde passo, isso
é inevitável, uma hora ou outra todos vão testar positivo!

Translated:
Tested Positive for COVID 19! So far a little unwell, a little
pain and a low fever, as if it were a common flu! But that's it,
as I say wherever I go, this is inevitable, at one time or
another everyone will test positive!

Classification: Symptomatic, Covid Positive

We will only be analyzing the output of model to figure out what sort of aspects
people were tweeting about in different categories of tweets and no training or comparative

3 DSAIPA/AI/0088/2020
4 https://github.com/bioinformatics-ua/Portuguese-Covid19-Dataset

28

https://github.com/bioinformatics-ua/Portuguese-Covid19-Dataset

CHAPTER 3. METHODOLOGY

Table 3.3: Summary of Pandia Tweet Dataset. Tweets are all Portuguese tweets related
with COVID-19 and were hand labelled as part of PANDIA project.

Class Number of Tweets
Close Contact 213
Covid Positive 1290
Covid Negative 69

In Past 79
Third Person 754
Symptomatic 1237
Undetermined 248

Total 1945

analysis is done on this dataset. As the original tweets were in Portuguese and all of our
models were only trained on English datasets, we used DeepL API5 to translate the tweets
to English before performing any analysis.

3.1.4 Combined Dataset

As mentioned previously, we used a combination of SemEval and MAMS dataset to
train our models. As seen on Table 3.4 ‘O’ tag is present in a large number in comparison
to other labels and ‘I-sentiment’ tags are rare. We will be using micro averaged f1 and also
ignore the ‘O’ tag in most cases, this unbalance should not affect our metrics. Excluding
the ‘O’ labelled tokens training set contains a total of 36244 tokens and validation set
is much smaller with just 1278 tokens. We did perform minor experiments with larger
validation sets, but it did not really make an impact on performance.

Table 3.4: Number of each token label in combined dataset. Dataset was created by
combining semEval restaurant and MAMS dataset together and is the dataset used for
training in this work.

Set O B-NEG I-NEG B-NEU I-NEU B-POS I-POS
Train 259910 6598 1144 10596 3298 10228 4380
Valid 9290 234 41 359 92 385 167

3.2 Preprocessing

The original datasets (except PandIA dataset) were all available in XML format, and
we wrote an XML parser to parse and convert the data into PyTorch dataset with BIO
labelling scheme.

The original dataset was published as XML file which is very difficult to process and
feed into a ML model. We decided to convert the XML tree to a format where every

5 https://www.deepl.com/docs-api

29

https://www.deepl.com/docs-api

CHAPTER 3. METHODOLOGY

Input: XML file
Output: Parsed XML where data is represented as a list of dictionaries
𝑟𝑒𝑚𝑜𝑣𝑒_𝑙𝑖𝑠𝑡 ← [‘conflict’];
𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 ← XML tree root;
𝑑𝑎𝑡𝑎 ← [];
foreach sentence in sentences do

if sentence has ‘text’ then
if lower is True then

𝑡𝑒𝑥𝑡 ← 𝑡𝑒𝑥𝑡.𝑙𝑜𝑤𝑒𝑟();
end
𝑎𝑠𝑝𝑒𝑐𝑡𝑠 ← 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒.𝑓𝑖𝑛𝑑𝑎𝑙𝑙(‘aspectTerms’);
𝑡𝑒𝑟𝑚𝑠 ← [];
if aspects is not None then

foreach aspect in aspects do
𝑡𝑒𝑟𝑚 ← individual aspect term in lower case;
𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 ← polarity of term;
𝑓𝑟𝑜𝑚 ← starting index of term in text;
𝑡𝑜 ← ending index of term in text;
if polarity not in remove_list then

𝑡𝑒𝑟𝑚𝑠.𝑎𝑝𝑝𝑒𝑛𝑑({‘term’: text,
‘polarity’: polarity,
‘from’: from,
‘to’: to});

end
end

end
data.append({‘text’: text, ‘aspects’: terms})

end
end

Algorithm 1: XML parsing algorithm

sentence is represented as a dictionary which would give us a big flexibility while processing
the data at later stages. As shown in Algorithm 1, parsing starts with loading entire XML
tree. Text and aspect both are converted to lowercase if needed. The aspect terms are
listed as “aspectTerm” in “aspectTerms” branch in XML tree with “term”, “polarity”, “from”
and “to” attributes. If there are any aspects in the sentence then the terms are extracted
and stored as a list of dictionary. It is later appended to a dictionary with text.

Once we have the data as a list of dictionaries with text and aspects, we wrote converted
the data to BIO labelling scheme using Algorithm 2. We start by tokenizing each aspect
term text to tokens using spacy6 as there could be multi token aspects and BIO labelling
scheme needs each token to have a label. We convert the existing dictionary to a format
which has a tuple with (token, start, end) as key and “B-polarity” for first token and “I-
polarity” for the rest in multi token aspects. Once we had a label for each token in aspect

6 https://spacy.io/api/tokenizer

30

https://spacy.io/api/tokenizer

CHAPTER 3. METHODOLOGY

term, we then go through the text with the same tokenizer and check if the tokens tuples
(token, start, end). If they exist we add the “B-polarity” or “I-polarity” for the token to
labels list and “O” if it doesn’t. This would result in a list of tokens and a list of labels
which is then fed into the model. Figure 3.1 shows an example of the full parsing and
conversion pipeline for a sample sentence with two aspects.

Input: data ← Parsed XML where data is represented as a list of dictionaries
Output: Data in BIO labelling format
𝑑𝑎𝑡𝑎_𝑏𝑖𝑜 ← []
foreach item in data do

𝑏𝑖𝑜_𝑡𝑒𝑟𝑚𝑠 ← 𝑑𝑖𝑐𝑡();
foreach aspect in item.aspects do

𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 ← 𝑎𝑠𝑝𝑒𝑐𝑡.𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦;
foreach token in aspect_term_tokens_with_idx do

/* Tokens are generated with spacy */
if first token then

𝑏𝑖𝑜_𝑡𝑒𝑟𝑚𝑠[(𝑡𝑜𝑘𝑒𝑛, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)] ← 𝐵 − 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦;
/*Polarity is replaced with actual polarity short form (POS, NEG
and NEU)*/

else
𝑏𝑖𝑜_𝑡𝑒𝑟𝑚𝑠[(𝑡𝑜𝑘𝑒𝑛, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)] ← 𝐼 − 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦;

end
end

end
/*Now converting to two lists, a list of tokens and a list of polarity tags*/
𝑙𝑎𝑏𝑒𝑙𝑠 ← [];
𝑡𝑜𝑘𝑒𝑛𝑠 ← [];
𝑡𝑒𝑥𝑡_𝑡𝑜𝑘𝑒𝑛𝑠 ← 𝑡𝑜𝑘𝑒𝑛𝑠_𝑤𝑖𝑡ℎ_𝑖𝑑𝑥(𝑖𝑡𝑒𝑚.𝑡𝑒𝑥𝑡);
/*Contains in format (token, start, end), same as term token keys*/
foreach token in text_tokens do

tokens.append(token [0]); if token in bio_terms.keys() then
labels.append(bio_term.get(token))

else
labels.append(“O”)

end
end
data.append({‘tokens’: tokens, ‘labels’: labels})

end

Algorithm 2: Algorithm to convert parsed XML to JSON format with BIO la-
belling scheme

31

CHAPTER 3. METHODOLOGY

<sentence>
 <text>PS- I just went for brunch on Saturday and the eggs served with onions and rosemary were amazing.</text>
 <aspectTerms>
 <aspectTerm from="20" polarity="neutral" term="brunch" to="26"/>
 <aspectTerm from="47" polarity="positive" term="eggs served with onions" to="70"/>
 </aspectTerms>
</sentence>

Parse XML

{
'text': 'ps- i just went for brunch on saturday and the eggs served with onions and rosemary were amazing.',
'aspects': [{'term': 'brunch', 'polarity': 'neutral', 'from': '20', 'to': '26'},
 {'term': 'eggs served with onions', 'polarity': 'positive', 'from': '47', 'to': '70'}
 ​ ​ ​ ​ ​ ​ ​ ​]
}

Conversion to BIO labels

{
'tokens': ['ps-', 'i', 'just', 'went', 'for', 'brunch', 'on', 'saturday', 'and', 'the', 'eggs', 'served',
 'with', 'onions', 'and', 'rosemary', 'were', 'amazing', '.'],
'labels': ['O', 'O', 'O', 'O', 'O', 'B-​NEU', 'O', 'O', 'O', 'O', 'B-​POS', 'I-​POS',
 'I-​POS', 'I-​POS', 'O', 'O', 'O', 'O', 'O']
}

During processing each term is
represented with following format :
(brunch, 20, 26) : B-​POS
(eggs, 47, 51) : B-​POS
...
(onions, 64, 70) : I-​POS

Figure 3.1: Example of XML Parsing and conversion to BIO. The pipeline starts with
converting XML tagged data to a more friendly JSON format which had all the information
about the text and aspect terms. Text is then tokenized and aspect terms (and their
sentiment) are represented as a list with BIO labels.

3.3 Tokenizer

To break down the text into smaller units called tokens, a tokenizer is needed. We used
a pre-trained BertTokenizer7 from Transformers library [45]. BertTokenizer used BERT
model to create tokens which are then mapped to their corresponding IDs in the BERT
vocabulary. It also adds special tokens to the beginning and end of each input sequence,
which are used to denote the start and end of the sequence or any padding that might be
needed. Our model also supports any other transformer based tokenizer that can return
input_ids, token_type_ids, attention_mask and label_ids as its output.

BERT uses a special kind of tokenization called wordpiece8 tokenization which uses
subwords as tokens. This is done in order to handle words that are not present in the
tokenizer’s vocabulary and to improve the generalization of the model. Traditional tok-
enizers simply mark out of vocabulary words as “unknown” but as wordpiece breaks words
into smaller parts and subwords that make up a word are more likely to be present in the
tokenizer’s vocabulary than the whole word itself, it can easily handle those words even
with a small dictionary.

As shown on Figure 3.2, tokenization starts by splitting sentence into tokens. The
tokenizer also converts the tokens into their input ids and also adds special tokens. BERT
uses [CLS] token to mark the start of the sequence, [SEP] to mark end of sequence or

7 https://huggingface.co/docs/transformers/v4.27.2/en/model_doc/bert#transformers.BertTo
kenizer

8 https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html

32

https://huggingface.co/docs/transformers/v4.27.2/en/model_doc/bert#transformers.BertTokenizer
https://huggingface.co/docs/transformers/v4.27.2/en/model_doc/bert#transformers.BertTokenizer
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html

CHAPTER 3. METHODOLOGY

'The food was decent for lunch but mediocre service.'

['the', 'food', 'was', 'decent', 'for', 'lunch',
 'but', 'med', '##io', '##cre', 'service', '.']

{'input_ids': [101, 1996 ... 2326, 1012, 102, 0, ... 0],
 'token_type_ids': [0, 0 ... 0, 0, 0, 0 ... 0],
 'attention_mask': [1, 1 ... 1, 1, 0, 0 ... 0]}

'[CLS] the food ... mediocre service. [SEP] [PAD] ... [PAD]'

Decoding

Conversion to IDs with Padding/Truncation

Tokenization

Figure 3.2: BERT wordpiece tokenization example. Text is tokenized using bert tok-
enizer which tokenizes using wordpiece algorithm. Special tokens and padding are also
added, it returns a dictionary with input_ids, token_type_ids and attention_mask. La-
bels from previous steps are also mapped accordingly to tokens.

separation between two different sequences and [PAD] to add padding if the sentences
do not produce enough tokens. We used “longest” padding strategy which pads all the
sentences in a batch to the longest sequence length in the batch. The tokenizer also adds
𝑡𝑜𝑘𝑒𝑛_𝑡𝑦𝑝𝑒_𝑖𝑑𝑠 and 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 to the data which is also fed into the model. Some
words like mediocre in Figure 3.2 are split into multiple tokens (wordpiece tokenization
algorithm). In our example, mediocre ⟶ [med, ##io, ##cre], ## symbolizes that
the token is an intermediate token.

3.4 Model

Inspired by the performance of BERT based models in Named Entity Recognition
tasks, we decided to try a model architecture based on Transformers with a decoder and
classification head on top. We decided to use a pretrained transformer model (bert-base-
uncased for most experiments) because of the performance of transformer models shown in
NLP tasks. As shown in Figure 3.3, our model consists of three parts; pre-trained BERT
model, Bi-LSTM and a masked CRF.

The pre-trained BERT models consists of an embedding layer, followed by a stack
of twelve transformers encoder layers. Each encoder layer has a multi-head self-attention
mechanism and a feedforward neural network. These encoder layers are designed to capture
the contextual relationships between words in a sentence. We use pre-trained models from
Huggingface9 hub which has a lot of variants of pre-trained models openly available. Some

9 https://huggingface.co

33

https://huggingface.co

CHAPTER 3. METHODOLOGY

models are optimized for larger sequences, some reduce memory consumption and some
compute attention mechanism in different ways. There are also variations based on the
data the models were trained on or the task they are trained for. This modular approach
allows us to use a different model based on the input data and our aim. In section 3.8.2,
we describe how we experiment with different pre-trained models with different parameter
sizes to see the impact they have on performance.

We decided to use LSTM module from torch.nn package as it has a robust implemen-
tation and also allows us to use it as a bidirectional LSTM. The LSTM layer expects same
number of features as the hidden size of the BERT layer (input_size = config.hidden_-
size) and has half number of features as hidden size. Then, the next Linear classifier layer
reduces it down to number of classes.

BERT

dropout

BiLSTM

classifier

masked CRF

Output: BIO label for each word
(Label identifies if the word is a Aspect

and also the sentiment towards aspect)

Bert Embedding

Bert Encoder

0: Bert Layer

11: Bert Layer

Bert Self-​Attention

Bert Self-​Output

Bert Intermediate

Bert Output

Input: Output of tokenizer
(Input Ids, Attention mask,

 Token Type Ids and Label Ids)

Figure 3.3: A summary of base model architecture. Arrows represent the flow of data
and dashed lines indicated the composition of a particular cell. Pre-trained bert-base-
uncased is used on the base model. Other parts of the model are kept constant in all the
experiments.

Our implementation was inspired from PyTorch-crf10 and allenlp CRF module11. As
we use BIO labelling scheme to label our data. Under this labelling scheme the model
should only predict an I-polarity tag after a B-polarity tag. Furthermore, a start token
of a sequence can only be B-polarity. There have been implementations where I-polarity

10 https://github.com/kmkurn/pytorch-crf
11 https://github.com/allenai/allennlp/blob/master/allennlp/modules/conditional_random_fi

eld.py

34

https://github.com/kmkurn/pytorch-crf
https://github.com/allenai/allennlp/blob/master/allennlp/modules/conditional_random_field.py
https://github.com/allenai/allennlp/blob/master/allennlp/modules/conditional_random_field.py

CHAPTER 3. METHODOLOGY

is simply replaced with B-polarity if a preceding O tag is present. Rather than using this
naive approach, We decide to use large negative number as masks inspired by the work of
Almeida et al. [46].

B-​NEU

I-​POS

B-​POS

O

I-​NEG

B-​NEG

I-​NEU
B-
​NE
U

I-
​PO
S

B-
​PO
S

O

I-
​NE
G

B-
​NE
G

I-
​NE
U

Transitions To
Tr

an
si

tio
ns

Fr

om

Figure 3.4: Transitions for Masked CRF. Red dot means the transition from the label
on corresponding row to label on corresponding column is not possible and green means it
is allowed. For impossible transitions are set to large negative number and so the change
of such transitions occurring is low but non-zero.

To implement masked transitions in CRF, we introduce a transition mask matrix that
defines the allowed and forbidden transitions between different labels. The transition mask
matrix is a square matrix of size n x n, where n is the number of labels. The weights of the
transition mask matrix are first initialized randomly from a uniform distribution between
-0.1 and 0.1. Then the (𝑖, 𝑗)𝑡ℎ entry of the matrix is set to −1𝑒9 if the transition from
label i to label j is not allowed, and otherwise is left at the initialized value. Figure 3.4
shows a 7 × 7 matrix where red dots represent illegal transitions whose weights are set to
the large negative number (−1𝑒9). For the start transitions we set the weights of ‘I-POS’,
‘I-NEG’ and ‘I-NEU’ to the same large negative number. With this large transition in
place the of these transitions occurring is very low but not impossible.

3.5 Training

Once we had the model architecture as defined in section 3.4, we created our trainer
taking Huggingface trainer as a basis. Using Huggingface Trainer allowed us to easily im-
plement distributed training on multiple GPUs, and to integrate multiple different services
into our training pipeline.

Before conducting any experiments with the model, we needed a baseline run to com-

35

CHAPTER 3. METHODOLOGY

pare to. We used a lot of defaults from transformer and some values based on our intuition
for the base runs. We trained the run for 10 epochs with training batch size of 32. A
summary of hyperparameters used are described in 3.5. We will discuss the results and
how the base runs compares with other runs in chapter 4.

Table 3.5: Base Hyperparameters used for training the model. Hyperparameters are
optimized later on and updated accordingly.

Parameter Value
Optimizer AdamW with 𝛽1 = 0.9 and 𝛽2 = 0.999
Number of frozen layer 0
Seed 109806
Learning rate 1e−5
Number of Training epochs 6
Training Batch size 16
Weight decay 0.1
Warmup ratio 0.1

Then, using Optuna we performed hyperparameter optimization which is described in
detail in next section. Once we had optimized parameters we conducted several experi-
mental runs which are described in section 3.8. In order to track all of our experiments,
we used Weights & Biases12 which is a machine learning experiment tracking and manage-
ment tool that allows to log, track and share machine learning experiments. It also allows
us to visualize and compare different runs. We used trainer callback to integrate W&B to
our project.

All the configurations were run on a single GPU node with two Nvidia A40s which
were provided by High Performance Cluster from University of Coimbra through PandIA
project. In order to run the models in the HPC, we allocated the required hardware and
then used a script to submit the batch job to the node. The basic hardware configuration
of the instance was chosen as following:

Nodes : 1
Number of CPUs : 8
Memory per CPU : 8G
Gres Configuration : GPU:a40:1 (One Nvidia a40 GPU)

The configuration of an a40 GPU allowed for faster training of models used in the
experiments. Most of the CPUs were used as Dataloaders, and they provided ample
processing power to support the GPU computation. Overall, the hardware configuration
provided a powerful and efficient platform for training our ABSA models and allowed us
to run multiple experiments in short amount of time.

12 https://wandb.ai

36

https://wandb.ai

CHAPTER 3. METHODOLOGY

3.6 Hyperparameter Optimization

Once our base model was trained we used optuna to tune the hyperparameters of the
model. Optuna is a hyperparameter optimization tool that allows us to define search space
in a pythonic way and also allows us to use several algorithms for searching and pruning
the runs [47]. As part of this work, taking into consideration the recommendations made
in optuna documentation13, we decided to use Tree-structured Parzen Estimator (TPE)
algorithm as sampler and Hyperband algorithm as pruner.

TPE sampler works by creating two Gaussian Mixture Model on each trial, first model
𝑙(𝑥) is fitted to set of parameter values associated with the best objective values and second
model 𝑔(𝑥) to the remaining parameter values. By iteratively refining the understanding of
the best parameters and maximizing the ratio of 𝑙(𝑥)/𝑔(𝑥), the TPE algorithm converges
on a set of values that produce good results. Once a parameter for a trial are selected by
the sampler, the model is trained for number of steps with the parameters. We introduce
early stopping with Hyperband algorithm to speed up the optimization process. Hyper-
band pruner uses multiple Successive Halving Pruner, and they require a fixed number
of configuration 𝑛 as input. For a finite budget14 𝐵, 𝐵/𝑛 resources are allocated to each
run, larger number of 𝑛 would result in low amount of resources to each run which might
not be enough to train a particular configuration of run and low 𝑛 would result in not all
possible configurations being run. Hyperband handles this trade-off between 𝐵 and 𝐵/𝑛
by trying different values of 𝑛 for a fixed budget [48]. Once 𝑛 runs consume the given
resources, the worst-performing half of the models are then discarded, and the remaining
models are trained with additional resources. This process is repeated several times, with
the amount of resources increasing at each iteration for the remaining models. This al-
lows Hyperband pruning to allocate more computational resources to the most promising
models while discarding the less promising ones early. In our work, we ran a total of 500
optuna runs, the results of which are described on Section 4.1.

Table 3.6: Search space used for hyperparameter optimization. Optuna searches for
optimal hyperparameters by creating different combinations within the search space.

Parameter Search Space
Learning rate Log uniform distribution; [1e-6, 1e-3]
Number of Training epochs Uniform distribution; [1, 10]
Training Batch size [4, 8, 16, 32, 64, 128]
Weight decay Uniform distribution with 0.01 step; [0.0, 0.20]
Warmup ratio Uniform distribution with 0.01 step; [0.0, 0.20]

Following our intuition and the work of Sun et al. [49], we tried to optimize Learning

13 https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimiz
ation_algorithms.html

14 Budget can be any resource like Time, Number of Epochs, etc.

37

https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html
https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html

CHAPTER 3. METHODOLOGY

rate, Number of Training epochs, Training Batch size, Weight decay and Warmup ratio.
A summary of the search space used is shown in table 3.6. For each run, optuna selects
a random value from the defined search for each hyperparameter. In our work, we ran
a total of 500 optuna runs, the results of which are described on Section 4.1. We also
tried using different optimizer with the base configuration and found AdamW had better
performance, and so we decided to use if for all the other runs as well. Other factors like
model sizes and freezing of layers are further explored in section 3.8.

3.7 Metrics

The performance evaluation of our models is crucial to understand their effectiveness
in ABSA. One way to assess the model’s performance is by measuring how accurately it
predicts the token positions in the given text. Another metric is multilabel classification,
where the model predicts the sentiment polarity in the sentence even if it fails to predict the
exact token position. To measure these metrics, various evaluation packages and libraries
are available. This section introduces some evaluation metrics and tools used as part of
this work.

3.7.1 Token Position Quality

One way to measure performance of the model is to see how accurately model is predict-
ing the token positions. Huggingface metrics has seqeval15 package for sequence labeling
evaluation. Seqeval provides us with accuracy, precision, recall and f1 for each class (Pos-
itive, Negative and Neutral) and also overall scores. We use these scores (primarily f1) to
measure the token position quality of our predictions.

3.7.2 Multilabel Classification

In some cases, the model might not successfully predict the exact token position but
successfully predict the sentiment polarity present in the sentence. To measure these cases,
we use the model to also compare the multilabel classification performance. As part of
this work, we used f1 score (micro and per class) and exact match Accuracy to compare
the results of different experiment. Using micro f1 lets us compare the results even in cases
where the classes are imbalanced and individual f1 score helps us understand which classes
the model is struggling on. For some experiments we will be using some more metrics like
hamming accuracy, overlap accuracy and confusion matrix to get some more insights into
the model. We used torchmetrics16 library which had implementations all these metrics.

15 https://huggingface.co/spaces/evaluate-metric/seqeval
16 https://torchmetrics.readthedocs.io/en/stable/all-metrics.html

38

https://huggingface.co/spaces/evaluate-metric/seqeval
https://torchmetrics.readthedocs.io/en/stable/all-metrics.html

CHAPTER 3. METHODOLOGY

3.8 Experiments

To test the performance of out model architecture, we decided to conduct several ex-
periments. The experiments are designed to observe any improvement in the performance
of models in terms of score, time or storage space. We use the optimized hyperparameters
we found from our tuning and then use different models and datasets to perform these
experimental runs. All of our experiments can be browsed in wandb project report17.

3.8.1 Freezing Transformer Layers

Transformers have grown in size in recent years. Starting from the original transformer
architecture introduced in 2017, subsequent models based on BERT, GPT, and T5 have
increased in size, with hundreds of millions or even billions of parameters. While these
models have achieved impressive performance on a wide range of NLP tasks, their large size
can make them challenging to train and deploy in real-world applications. One technique
for addressing this challenge is to freeze layers in the model during fine-tuning.

Freezing layers disables gradient computation and backpropagation for the weights of
these layers. It is a common technique used in NLP and Computer Vision when working
with small datasets. It usually reduces the chances of your model to overfit and also allows
for faster convergence. Not having to compute gradients for some layers also means we
gain a speed boost and reduced memory usage during training process. Freezing layers in
a neural network model is often done from bottom to top because the lower layers of the
model tend to learn more general and abstract features that are applicable across different
tasks, while the higher layers learn more task-specific features. By freezing the lower layers
and fine-tuning the higher layers, we can adapt the pre-trained model to a downstream
NLP task while preserving the more general features learned during pre-training.

In our case, we start with pre-trained weights and by freezing layers we expect to gain
more space and time efficiency. We experimented with just freezing the embedding layer
of BERT, freezing 1, 2, 4, 8, 10, 12 BERT encoder layers. We use two different flags in our
YAML config file, freeze to control overall freezing and freezing of embedding layers and
num_frozen_layers controls the number of encoder layers to freeze.

3.8.2 Model Sizes

We wanted to see if we could achieve similar results as BERT base with smaller model
or could we improve our accuracy using a larger model. Using a smaller model leads to
less computation resulting in faster training times and sometimes also can lead to better
performance on simpler tasks but typical have lower overall performance on complex tasks.
For such complex tasks using larger model might be beneficial. The main advantage of
larger models is their ability to capture more complex patterns and relationships in the
data, which can lead to state-of-the-art performance on a wide range of tasks. Larger

17 https://api.wandb.ai/links/gundruke/xpy5fckj

39

https://api.wandb.ai/links/gundruke/xpy5fckj

CHAPTER 3. METHODOLOGY

models can also learn more nuanced and subtle features that may be missed by smaller
models, which can be particularly important for tasks such as image captioning, machine
translation, or sentiment analysis. But they need large amount of data and computational
resources which can make them difficult and expensive to train.

Table 3.7: Size of different transformer models used in this work. #Layers represent the
number of layers in the model, #Hidden is the hidden size and #Parameters is the total
learnable parameters of the model. In theory, a larger model should be able to better
capture the contextual information as it has more learnable parameters.

Model name #Layers #Hidden #Parameters
bert-tiny-uncased 2 128 4.4M
bert-mini-uncased 4 256 11.3
bert-base-uncased 12 768 110M
bert-large-uncased 24 1024 336M

miniLM-L12 12 384 21M
roberta-base 12 768 125M

As we have chosen bert-base-uncased as our base model, we have selected smaller
models (smaller BERT variants and minilm18) and larger models (bert-large-uncased19

and Roberta20) to experiment with. Table 3.7 shows the size of different models used as
part of our experiments.

3.8.3 Cross Domain

Even though we only trained the model on Restaurant version of the datasets we
wanted to see how it would perform on other domains. We decided to use laptop version
of the same semEval dataset which was annotated with same rules. Testing the model on
Laptop dataset would give us idea about how well the model generalizes to other domains
and can help identify any weaknesses in the model’s ability to handle new and different
language patterns.

We also performed a simple inference test on the PandIA dataset to see how it would
perform on a completely different setting (tweets about Covid). As we did not have a
gold standard test set available on hand, we couldn’t calculate any form of scores, but we
perform an analysis on the aspects and their sentiments captured by the model.

3.9 Category classification

From a real world perspective, ABSA is much more useful if it can be generalized into
simpler categories. So, we wanted to add some form of categorization of aspects as part

18 https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384
19 https://huggingface.co/bert-large-uncased
20 https://huggingface.co/roberta-base

40

https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384
https://huggingface.co/bert-large-uncased
https://huggingface.co/roberta-base

CHAPTER 3. METHODOLOGY

of inference process as it helps to get better idea about sentiment of public towards a
particular category. We decided to use very simple approach with a predefined dictionary
and NLTK wordnet21. The predefined dictionary was created by using the aspect category
available in the semEval 14 restaurant dataset and also manual intuition. For restaurant
dataset, we chose to limit out categorization to Food, Drinks, Service, Atmosphere and
Others. Others category is meant to be a general category capturing all the aspects that
were not classified. The dictionary contains about 800 words and categories. A sample of
dictionary for restaurant dataset is as follows:

{
"asian": "food",
"asparagus": "food",
"attitude": "service",
"back": "other",
"bar": "atmosphere",
"bartender": "service",
"beef": "food",
"beer": "drinks",
"big": "other",
"bill": "price",
...
}

Another simpler dictionary was created for PandIA dataset which had about 100 words.
This dictionary had to be created just using intuition as there was no predefined catego-
rization provided.

If the word is present in the dictionary, its corresponding value is used else it uses
WordNet’s synsets and hypernyms to find a more general term for a given word. If the
general term is in our scope, it is used and if neither condition is met, the word is classified
as “other”. Once the model identifies aspect terms and associated sentiment, it is fed into
the categorization system. One problem with this approach to categorization is one word
could belong to multiple different categories depending on the context and this approach
does not have any contextual information. Also, a lot of times hypernyms are not generic
enough, so the aspect just gets categorized as others.

One of the major plus points of using Huggingface models is the ability to easily
deploy them on Huggingface hub for inference. We created a simple gradio interface on a
Huggingface space that creates a model with all the provided parameters and then loads
the trained model weights. It then performs inference on the input sentence. The space
can be browsed at gundruke/ua-thesis-absa22. An Example of gradio UI can be seen in
Figure 3.5.

21 https://www.nltk.org/howto/wordnet.html
22 https://huggingface.co/spaces/gundruke/ua-thesis-absa

41

https://huggingface.co/spaces/gundruke/ua-thesis-absa
https://www.nltk.org/howto/wordnet.html
https://huggingface.co/spaces/gundruke/ua-thesis-absa

CHAPTER 3. METHODOLOGY

Figure 3.5: User Interface for classification. Once a text is input, first tokenizer is loaded
and text is tokenized. Then the model is loaded from huggingface hub and tokenized text
is passed to generate token labels and multilabel classes. Finally, category labels are added
where necessary. In the token labels, no label means token is labelled as ‘O’.

One other advantage of having model on Huggingface hub is, for future use cases the
model can be simply loaded by importing transformers library and then fetching the pre-
trained file from gundruke/bert-lstm-crf-absa. It also allows for hosted inference on the
hub or through API.

42

Chapter 4

Results

This chapter describes the different results obtained. It also compares the results of one
experiment with other to see the effectiveness of different approaches.

We will describe in detail the results of different datasets and also discuss some reasons
behind the performance impacts. We will mainly be using performance metrics but also
use training time and computational resource requirements where relevant.

4.1 Baseline

For our baseline run, we ran our model with the hyperparameters discussed in Table 3.5.
The model performed really well in terms of multilabel classification but wasn’t as good
in terms of token quality metrics.

Table 4.1: Results of our first run. The hyperparameters described before as base params
are used for this run and are not optimal. The results of this run are expected to improve
with more optimal parameters.

Token Quality Multilabel
f1

(NEG)
f1

(POS)
f1

(NEU)
f1

(micro)
accuracy
(overall)

f1
(NEG)

f1
(POS)

f1
(NEU)

f1
(micro)

accuracy
(overlap)

accuracy
(exact)

semeval test
(Restaurant) 0.6842 0.7966 0.5024 0.7224 0.9839 0.7609 0.9192 0.6383 0.8306 0.8893 0.7850

MAMS test 0.6829 0.6000 0.6214 0.6303 0.9659 0.8545 0.8662 0.8905 0.8731 0.9900 0.6240

val set 0.6992 0.6391 0.5913 0.6353 0.9758 0.8601 0.8511 0.8351 0.8474 0.9200 0.6700

In terms of token quality metrics, the model performed best on semEval restaurant test
set with a micro averaged f1 score of 0.7224, but it shows but worse performance (micro f1
of 0.6303) even though MAMS test set is also in of the same domain (restaurant) reviews.
The accuracy scores are much higher as it also takes into account predictions of all the
tokens. Looking at individual classes, the model performed excellently on positive and
negative aspects but struggles with neutral aspects with a difference of 0.2942 in f1 score
between neutral and positive aspects in semEval test set. In case of validation set the
performance on all three types of aspects is comparable.

43

CHAPTER 4. RESULTS

The scores in multilabel classification are higher which is expected as the number and
exact position of tokens do not matter. In terms of f1 score per class, neutral class on
semeval test set has a lower score compared to positive and negative class (0.6383 compared
to 0.9192 and 0.1609). But in MAMS dataset similar to token quality metrics, multilabel
f1 scores for all class are comparable with a range of 0.036. Multilabel overlap accuracy
shows the amount of predictions with at least one correct label predicted. MAMS dataset
had 99.0% accuracy in terms of overlap but only 62.40% in terms of exact which suggests
model usually misses (or predicts wrong) some aspects whenever multiple are present.
This difference in overlap and exact accuracy is lower in semeval dataset as more than
half of the dataset contains only one aspect per review. As you can see in example below
the model predicts the tokens in such way, it’s fully correct for multilabel classification
(both exact and overlap) but is not for token quality metrics as it predicts multiple B-
NEU tokens as O. All the results of base run are summarized in Table 4.1. Even tough
we observed that the model performs poorly on certain cases, base runs provide a useful
benchmark for evaluating the performance of other experimental runs.

tokens breakfast , lunch or dinner ... each and every time .
true O O O O B-NEU ... O B-POS O O O
pred B-NEU O B-NEU O B-NEU ... O B-POS O O O

Even though we have a baseline established, some additional performance can be gained
by using more optimal parameters. In practice, the optimal parameters for a Transformer
based model depends on various factors, such as the size of the model, the size of the
dataset, and the available hardware resources. It is often necessary to experiment with
different batch sizes to find the optimal value for a particular task and hardware setup.
To find the optimal parameters for our use case, we performed an optuna study with 500
runs to find optimal hyperparameters for our case using methodology previously discussed
(see section 3.6) with micro f1 score of val set as objective value.

Figure 4.1: Importance of different hyperparameters on determining f1 score (token
quality f1 score on semeval restaurant test set) during hyperparameter search. The plot
was generated using the data from optuna study.

Different hyperparameters play different role and have different importance in deter-
mining the objective value. As we can see in Figure 4.1, number of training epochs has

44

CHAPTER 4. RESULTS

the biggest importance followed by learning rate and train batch size. Number of training
epochs having the biggest impact makes sense as it directly affects how much the model
learns from the training data, and too few or too many epochs can result in underfitting
or overfitting, respectively. The second most important hyperparameter is learning rate
which determines the step size for the optimizer during training and can greatly affect
the speed and quality of the model’s convergence. Our study suggests train batch size is
relatively less important than the previous two hyperparameters. However, this parameter
can still significantly affect the model’s training performance by determining how many
training examples are processed at once on each device. The weight decay and warmup
ratio parameters have relatively lower importance scores of 0.04 and 0.02, respectively.
Weight decay is used to prevent overfitting by adding a penalty term to the loss function,
while warmup ratio controls how much of the training time is used for learning the model
versus warming up the optimizer. These parameters are still important but have a smaller
impact on the model’s performance compared to the other hyperparameters.

Figure 4.2: Coordinate plot showing different hyperparameter runs. Each line represents
a combination of hyperparameters used. Darker shades represent higher f1 score. Token
quality f1 score on semeval restaurant test set is used.

The coordinate plot of our study shown in Figure 4.2 displays the performance of our
model on the validation dataset for various combination of our hyperparameters. Most of
the runs that have high f1 score start with small learning rate as a learning rate higher
than 0.001 leads to unstable convergence, but too small of a learning rate would need too
many iterations to converge to the best values. Almost all the runs with training epochs
higher than 8 have achieved f1 score higher than 0.60. Increasing number of epoch does
not always help as the f1 score begins to decrease due to overfitting with very large number
of epochs.

We found that the hyperparameters presented in Table 4.2 results in the highest f1
score. For all the experiments, this set of hyperparameters would be used. We updated
our hyperparameters the ones found from our optimization study and re-ran the model
training on same dataset and hardware configuration, the results of which are summarized
in Table 4.3. In further experiments, the results will be compared to this run (referred as

45

CHAPTER 4. RESULTS

Table 4.2: Optimal hyperparameters as obtained by Optuna study. These are the pa-
rameters that are used in all the runs unless specified otherwise.

Parameter Value
Seed 109806
Learning rate 1e−4
Number of Training epochs 10
Training Batch size 32
Weight decay 0.1
Warmup ratio 0.2

baseline run).

Table 4.3: Results of model training with optimal parameters. Only change made in this
run is that optimal hyperparameters used and architecture of the model is not altered in
any way. Results are only slightly better than previous run and this run results are used
as Baseline.

Token Quality Multilabel
f1

(NEG)
f1

(POS)
f1

(NEU)
f1

(micro)
accuracy
(overall)

f1
(NEG)

f1
(POS)

f1
(NEU)

f1
(micro)

accuracy
(overlap)

accuracy
(exact)

semeval test
(Restaurant) 0.6851 0.8033 0.4588 0.7225 0.9849 0.7475 0.8962 0.5825 0.8028 0.8690 0.7532

MAMS test 0.7198 0.6210 0.6143 0.6430 0.9667 0.8854 0.9147 0.8965 0.8987 0.9980 0.6900

val set 0.7073 0.6791 0.6276 0.6676 0.9776 0.8578 0.8801 0.8370 0.8581 0.9220 0.6900

When comparing the results to the base run, there is some amount in terms of token
quality but in some cases there is minor loss in performance when it comes to multilabel
metrics. Since the model parameters were tuned for token quality f1 score, it makes sense
that the model has aligned more in gaining performance in that regard. The biggest dif-
ference in terms of f1 score (token quality) is 0.0369, seen in negative class. Overall f1
score of validation set has only increased by 0.0323 (token quality) and 0.0107 (multil-
abel). There might be a bit more performance that could be achieved by performing a
more extensive study but the results we have sets a reasonable baseline for comparison
with other experiments. If we wanted to find a combination of parameters that achieves
better multilabel metrics, we can perform a study setting it as objective value or even a
combination of both metrics can be used if needed.

4.2 Freezing of layers

Transformer based models require a huge amount of data and computational require-
ments for full training. For most of the tasks, using a pretrained model with some encoder
layers frozen is beneficial. As the number of layers that needs to be frozen depends on
the task and the dataset being used, we experimented with a various number of layers
frozen. We expect some gain in performance as our dataset is not very large and maybe

46

CHAPTER 4. RESULTS

not enough to train the full model.

Table 4.4: Token Quality results of experiments related with freezing of layer. Only token
quality metrics on semEval restaurant dataset are shown as multilabel metrics follow the
similar trends to token quality and also only differ marginally on these experiments.

Frozen layers Token Quality

embedding encoder
layers

f1
(NEG)

f1
(POS)

f1
(NEU)

f1
(micro)

accuracy
(overall)

True 00 0.6885 0.7830 0.3484 0.7108 0.9838

True 01 0.6905 0.7934 0.4409 0.7254 0.9848

True 04 0.6835 0.8035 0.4566 0.7331 0.9848

True 06 0.6804 0.7914 0.4354 0.7232 0.9841

True 08 0.6733 0.7783 0.4155 0.7105 0.9830

True 12 0.6611 0.7573 0.5279 0.6984 0.9816

False 00 0.6851 0.8033 0.4588 0.7225 0.9849

We will be using the SemEval Restaurant test set (see Table 4.4) to compare the results
with baseline. Freezing just the embedding layer actually had a counter impact on the
metric and the overall micro f1 score for token quality dropped by 0.0223. The overall
accuracy also dropped slightly by 0.001. With just embedding layer being frozen, we did
not see any improvement in any metrics in terms of token quality. The results for runs
with frozen embedding layer and 2 or 4 or 6 encoder layers frozen were slightly better
than baseline. The best results were shown by having 4 encoder layers frozen in terms
of overall f1 and accuracy score. The results start to deteriorate when we start freezing
more than 6 layers. The run where the entire BERT model was frozen (embedding + 12
encoder layers) and only the classifier head was trained showed the worse performance in
these group of runs. But even the worse run had a micro f1 score of 0.6984 which might
be acceptable considering the lower computational requirements.

Table 4.5: Complete result of best performing run among layer freezing experiments. The
optimal result was obtained by run with frozen embedding layer and 04 encoder layers.
This run is also used as representative run for freezing experiment when comparing with
other experiment types.

Token Quality Multilabel
f1

(NEG)
f1

(POS)
f1

(NEU)
f1

(micro)
accuracy
(overall)

f1
(NEG)

f1
(POS)

f1
(NEU)

f1
(micro)

accuracy
(overlap)

accuracy
(exact)

semeval test
(Restaurant) 0.6835 0.8035 0.4566 0.7331 0.9848 0.7762 0.9036 0.5815 0.8239 0.8830 0.7888

MAMS test 0.6988 0.6000 0.6169 0.6330 0.9659 0.8991 0.8963 0.8513 0.8791 0.9900 0.6240

val set 0.7061 0.6714 0.5967 0.6562 0.9778 0.8750 0.8963 0.7928 0.8544 0.9460 0.6860

The results of run with embedding + 4 encoder layers frozen also shows comparable

47

CHAPTER 4. RESULTS

results on other datasets as well. Table 4.5 shows the summary of results of the run on all
the dataset. On both MAMS and validation set, micro f1 score for token quality increased
slightly in comparison to baseline. The only loss in performance was seen in multilabel
accuracy (overlap) of semEval restaurant dataset and even in that case the loss was very
minor (0.0063). Overall it seems like in most cases freezing some layers is beneficial as
comparable results could be achieved with lower computational requirements.

A B C D E F G
Run names

0.0

0.2

0.4

0.6

0.8

1.0

R
un

tim
e

fa
ct

or
 (r

un
tim

e/
ba

se
lin

e)

1.0
0.945 0.9426

0.9007
0.8501

0.7951
0.7446

* baseline train took 8min 20sec on a HPC
 cluster with A40 GPU. On a more general
 consumer hardware with a GTX 1650M GPU,
 it took 3hr 32min 09sec. Time for other
 runs can be calculated using this.

A: baseline
B: embedding frozen
C: embedding + 01 encoder frozen
D: embedding + 04 encoder frozen
E: embedding + 06 encoder frozen
F: embedding + 08 encoder frozen
G: embedding + 12 encoder frozen

Figure 4.3: Relative runtime ratio of different freezing experiment runs. Each bar rep-
resents the ratio of runtime of a particular run to baseline run. On run B 0.945 on means
it took 0.945 times the training time of baseline training time.

Sometimes even lower performance are acceptable if there are significant savings to be
had in terms of time. Figure 4.3 shows the runtime factor of all six runs which was
calculated by dividing experiment runtime by baseline runtime. As expected we can
see that the runtime decrease with increase in number of frozen layers. Our best run
(embedding + 4 encoder layers frozen) is ∼11% faster than the baseline run, which is
a very small gain but it might be useful in cases with limited time and computational
resources. For the extreme case of freezing the entire BERT model, training runtime was
∼34% faster but as previously discussed it comes at a cost of loss in metrics.

4.3 Model Sizes

Using a larger model generally results in better performance as having more parameter
allows the model to capture and represent more complex patterns and relationships in
the data they are trained on. But it also comes with certain trade-offs, such as increased
computational requirements, longer training times, and higher costs. So, depending on the
task, resources available and performance needed different model sizes might be suitable.

If we compare the models based on purely on metrics, BERT large uncased obtained
similar f1 score (1.01 times) as BERT base (baseline) which was 1.19 times higher than
BERT tiny (smallest model). But the model is 3.09 times larger than the BERT base and
77.27 times larger than the BERT tiny. Overall accuracy of the models is more or less
similar for all the models and BERT base achieved accuracy of 98.49% which was the best
result and 0.08% higher than BERT large. Bert mini which has 6.9M more parameters

48

CHAPTER 4. RESULTS

Table 4.6: Token Quality results of runs with models of different size. These results
should be used carefully as using purely metrics like f1 and accuracy for models with
different size is not optimal as they do not factor in the computational resources used.

Model Token Quality

name number of
parameters

f1
(NEG)

f1
(POS)

f1
(NEU)

f1
(micro)

accuracy
(overall)

bert-base-uncased
(baseline) 110M 0.6851 0.8033 0.4588 0.7225 0.9849

bert-tiny-uncased 4.4M 0.5030 0.7060 0.4077 0.6165 0.9795
bert-mini-uncased 11.3M 0.6273 0.7525 0.5139 0.6819 0.9824
bert-large-uncased 340M 0.6825 0.8103 0.4281 0.7320 0.9841

miniLM-L12 33M 0.6771 0.7882 0.5219 0.7145 0.9829
roberta-base 125M 0.6718 0.7919 0.5085 0.7227 0.9814

(2.57 times) than BERT small improved the results a lot and achieved f1 score of 0.6819.
The mini model was able to achieve 0.94 times the f1 score of base model with 90% smaller
size. This result suggests that models could be reduced in size a lot with just minimal loss
in terms of metrics. All the models still struggle mainly in neutral class which is expected
as it is usually the gray area even for humans.

Table 4.7: Complete result of best performing run among model size experiments. The
optimal result was obtained by bert-large-uncased. Even though bert-large performs best
in terms of metrics, it takes longer to train, so it might not be an optimal model to use in
most cases.

Token Quality Multilabel
f1

(NEG)
f1

(POS)
f1

(NEU)
f1

(micro)
accuracy
(overall)

f1
(NEG)

f1
(POS)

f1
(NEU)

f1
(micro)

accuracy
(overlap)

accuracy
(exact)

semeval test
(Restaurant) 0.6825 0.8103 0.4281 0.7320 0.9841 0.7778 0.8902 0.5394 0.8063 0.8690 0.7621

MAMS test 0.7016 0.6138 0.6322 0.6437 0.9672 0.8783 0.9122 0.8586 0.8807 0.9920 0.6360

val set 0.6929 0.6486 0.5939 0.6412 0.9769 0.8529 0.8743 0.7954 0.8406 0.9180 0.6620

We expected the larger BERT large uncased model to perform much better as it should
be better at learning the contextual information with the more parameters available.
Contrary to the expectation the model achieved a f1 score of 0.6437 in MAMS test set
which is slightly higher than the score achieved by baseline. In multilabel metrics both
models (BERT base and BERT large) show similar performance and in the validation set
BERT large performs slightly worse. The lower performance in validation set could be
because the hyperparameters used were optimized for BERT base. This result suggests
the size of our datasets is too small for a larger model to be beneficial.

Another approach to reduce the model size without losing performance is to alter the
pretraining dataset or the model training method. MiniLM uses knowledge distillation to
achieve a model that is ∼70% smaller but achieves comparable f1 score. Roberta base

49

CHAPTER 4. RESULTS

Table 4.8: Relative size and f1. The values represent a ratio of model size and f1 score
between Run A to Run B. This means 25.00S, 1.17F between bert-base (Run A) and
bert-tiny (Run B) means bert-base is 25 times larger but only achieves 1.17 times the f1
score. The matrix is inversely flipped along main diagonal.

Run B

R
un

A

bert-base bert-tiny bert-mini bert-large miniLM-L12 roberta-base

bert-base 1.00 S
1.00 F

25.00 S
1.17 F

9.73 S
1.06 F

0.32 S
0.99 F

3.33 S
1.01 F

0.88 S
1.00 F

bert-tiny 0.04 S
0.85 F

1.00 S
1.00 F

0.39 S
0.90 F

0.01 S
0.84 F

0.13 S
0.86 F

0.04 S
0.85 F

bert-mini 0.10 S
0.94 F

2.57 S
1.11 F

1.00 S
1.00 F

0.03 S
0.93 F

0.34 S
0.95 F

0.09 S
0.94 F

bert-large 3.09 S
1.01 F

77.27 S
1.19 F

30.09 S
1.07 F

1.00 S
1.00 F

10.30 S
1.02 F

2.72 S
1.01 F

miniLM-L12 0.30 S
0.99 F

7.50 S
1.16 F

2.92 S
1.05 F

0.10 S
0.98 F

1.00 S
1.00 F

0.26 S
0.99 F

roberta-base 1.14 S
1.00 F

28.41 S
1.17 F

11.06 S
1.06 F

0.37 S
0.99 F

3.79 S
1.01 F

1.00 S
1.00 F

Note: S refers to model size
Note: F refers to overall token quality f1 score on semeval restaurant test set

which differs in terms of their training strategies and model variants is slightly larger
than BERT base (15M more parameters) achieved similar result in f1 score. The different
training strategies used in roberta do not seem to be beneficial for our task. But depending
on the task and available dataset, variants of roberta could show better performance.

A B C D E F G H
Model or Experiment name

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ra
ti

o

1.00

0.85

1.01 0.99 0.98 1.01 0.98 0.971.00

0.67

1.67

0.83

0.95
0.90

0.80
0.74

A: bert-base-uncased (baseline)
B: bert-tiny-uncased
C: bert-large-uncased
D: miniLM-L12

E: embedding layer frozen
F: embedding + 04 encoder layer frozen
G: embedding + 08 encoder layer frozen
H: embedding + 12 encoder layer frozen

* The ratio represents the ratio of
 runtime or f1 score of a particular
 run to runtime or f1 score of bert
 base uncased(baseline)

micro f1 (semEval test)
train runtime

Figure 4.4: Barplot showing relative train runtime and f1 score. Different model runs
from model size and layer freezing experiments are used.

Depending on the available resources using different model size or freezing layers might
be beneficial. Figure 4.4 shows the runtime and performance ration of different model sizes
and layer freezing runs to baseline run. Both BERT large and BERT base with embedding
+ 4 encoder layers frozen were able to achieve better result than the baseline, but the larger
model took 67% more time to train while frozen model achieved similar result taking 10%
less train time than baseline. Other than these two, miniLM-L12 was the closest to the

50

CHAPTER 4. RESULTS

baseline in terms of training time, but it only took 17% less training time. This suggests
that rather than increasing the size of model, trying out alternative model training schemes
or freezing some layers of pretrained model might improve performance while also saving
model train runtime.

4.4 Cross domain

All our models were trained on a combined dataset of semEval Restaurant and MAMS,
both of the datasets are related to restaurant review domain. To access the performance
of our model across different domain and to get insights into its generalization capabilities,
we will be using semEval Laptop dataset. The performance of relevant experiments on
semEval Laptop test set are summarized in Table 4.9(Token Quality) and 4.10(multilabel).

Table 4.9: Token quality metrics of testing models trained on restaurant domain on
laptop domain. Evaluation was done using semEval Laptop test set. Runs that performed
best previously on domain same as training set do not necessarily perform the best on
cross domain. This could be because of different pre-training methodologies and datasets
used during pre-training.

Token Quality
f1

(NEG)
f1

(POS)
f1

(NEU)
f1

(micro)
accuracy
(overall)

optimized-run-02 0.2870 0.3390 0.1317 0.2764 0.9819
freezing-04-layer-05 0.3574 0.3369 0.0112 0.2825 0.9819
freezing-12-layer-07 0.3535 0.3625 0.0230 0.2941 0.9830
bert-tiny-08 0.0994 0.2056 0.0268 0.1407 0.9814
miniLM-L12 0.4089 0.4780 0.2950 0.4160 0.9849
bert-large-uncased 0.3982 0.3939 0.0683 0.3294 0.9824
roberta-base 0.3220 0.4339 0.0226 0.3262 0.9825

None of our runs were able to achieve best results which is expected as we are using
models trained on a different domain. The baseline run falls behind all the freezing ex-
perimental runs and larger models. It only achieved an overall micro f1 score of 0.2764.
Bert tiny showed the worse performance with only achieving f1 score of 0.1407 which could
be because of smaller model size which means smaller domain knowledge. Especially in
cases of neutral classes where models have struggled in restaurant domain as well, f1 score
ranges from 0.0112(embedding + 4 encoder layers frozen) to 0.2950(miniLM). The best
performing model was miniLM in all classes and achieved an overall f1 score of 0.4160.
This might be because of wider variety of datasets used to pretrain miniLM. The accuracy
score is higher than 0.98 for all runs, which might be skewed because of large number of
‘O’ tokens present in the dataset. Performing some sort of additional fine-tuning for a few

51

CHAPTER 4. RESULTS

epochs on semEval laptop dataset could improve the performance further.

Table 4.10: Multilabel classification results of testing models trained on restaurant do-
main on laptop domain. Evaluation was done using semEval Laptop test set. On both
token quality and multilabel cross domain test, Microsoft minilm shows the best perfor-
mance.

Multilabel
f1

(NEG)
f1

(POS)
f1

(NEU)
f1

(micro)
accuracy
(overlap)

accuracy
(exact)

optimized-run-02 0.4362 0.4924 0.2123 0.4126 0.5496 0.5204
freezing-04-layer-05 0.4800 0.5140 0.0656 0.4320 0.5725 0.5496
freezing-12-layer-07 0.4681 0.5147 0.0339 0.4183 0.5878 0.5700
bert-tiny-08 0.1926 0.3925 0.1697 0.2976 0.5178 0.5025
miniLM-L12 0.5436 0.6158 0.4390 0.5543 0.6603 0.6107
bert-large-uncased 0.4821 0.5422 0.1633 0.4571 0.5509 0.5267
roberta-base 0.4972 0.6000 0.1000 0.4828 0.6590 0.6361

The performance in terms of multilabel metrics is a bit better. Other than BERT
mini, all models have achieved scores higher than 0.4. Once again miniLM outperforms
other runs in terms of multilabel metrics as well achieving an overall f1 score of 0.5543 and
overlap accuracy of 0.6603. All models achieved exact accuracy of higher than 0.50 which
means the model exactly predicts the multi class for at least half the cases. Best exact
accuracy achieved by roberta base with a score of 0.6361 and miniLM achieved 0.6107. It’s
worth noting that while MiniLM outperforms BERT on this cross-domain tests, BERT
remains a highly effective language model with strong performance across a wide range of
tasks and domains.

4.5 Comparison with existing work

To validate our work and see how it compares to existing state-of-the-art models, we
will be comparing out results with some of the models that have been previously discussed
in Section 2.9. The results of other models were taken from their associated published
papers and were not reproduced by us. They are all summarized in Table 4.11.

Our work shows similar performance to existing state-of-the-art models. Our model
obtains similar results as just using BERT for an end to end system or using only CRF
with BERT. In the experiments performed by Li et al. BERT end to end achieved f1 score
of 0.6710 and adding CRF on top increased the score to 0.7317. Triple extraction method
by Peng et al. used a very different approach and achieved f1 score of 0.7195 in joint tasks,
they have reported higher scores in individual Aspect extraction and Aspect classification
tasks. The other two models SPAN and InstructABSA have reported better results than
our model. Hu et al. reported their SPAN model has achieved f1 score of 0.7492.

52

CHAPTER 4. RESULTS

Table 4.11: Comparison of our work with existing works. Results of other works were
taken from the original paper or their official GitHub repository (whichever is latest).

Model name micro f1
(semEval 14 restaurant test) Paper

BERT + LSTM + CRF
(embed + 4 encoder layers frozen) 0.7331 OURS

BERT E2E 0.6710 [40]
ATSE

(Knowing What, How, and Why) 0.7195 [33]

BERT + CRF 0.7317 [40]
SPAN 0.7492 [38]

Instruct ABSA 0.7947 [41]

Out of the models we researched, Instruct et al. by Scaria et al. has reported the best
result. It uses Tk-Instruct and a chat style training as its backbone. It is also the newest
model introduced for ABSA. On semEval 14 restaurant dataset, they report a f1 score of
0.7947 which is 0.0626 (∼8.5%) higher than our model. Using newer GPT based models
and different training methodologies could further improve the performance.

4.6 Categorical classification

As a gold standard for classification into categories is not provided with any datasets,
we won’t be discussing the results in terms of metrics rather we will only be doing general
analysis. We used Food, Drinks, Service, Price, Atmosphere and Others as our categories
and each aspect is classified into one of the categories.

Table 4.12: Number of Reviews with Food and Service categories in semEval restaurant
and MAMS test datasets. Only food and services were chosen as other categories have
very small number of reviews.

Dataset
Food Service

Negative Neutral Positive Negative Neutral Positive
SemEval 92 144 612 40 30 90
MAMS 81 362 369 130 31 56

As expected most of the aspects in both datasets are related to food (50.87% in semeval
and 46.720% in MAMS) followed by service and atmosphere categories (excluding others
category as includes everything unknown). Table 4.12 presents a summary of sentiments
in semeval and MAMS dataset for Food and Service categories. Food category has mostly
received positive reviews but in case of other categories neutral sentiment is more prevalent.
Especially in MAMS dataset, Negative reviews of Service appear more often and looking
closely we found that most of it is related to restaurant staff (waiters and managers).

53

CHAPTER 4. RESULTS

We found that even the reviews with bad sentiment towards staff had positive sentiment
towards food. This suggests that people are more harsh and sensitive towards staff when
writing reviews. If we look closer at the other category, we can see that our approach of
using dictionary and wordnet mostly fails in cases of words written in different grammatical
forms and words relating to the establishment. Even tough wordnet classifies the words
to similar hypernyms (dish and food) as our categories, our approach fails to catch them.
This categorization could be further improved by using a more sophisticated classifier.

4.7 Inference on PandIA dataset

Our models do not perform very well in cross domain scenarios, and we also lack any
datasets in form of tweets, so the classification is suboptimal. We used Microsoft MiniLM
as it performed the best in our cross domain testing. Due to lack of gold standard, we
will only discuss the results in terms of sentiments towards specific categories and not in
terms of metrics. Since this data is related to Covid tweets, we will be using Symptoms,
Medication and Vaccination, Personal experience, Politics and Other as categories. A lot
of the aspect terms detected seemed incorrect, but it was expected as dataset was very
different from the training data.

Table 4.13: Result of performing categorization on Pandia dataset aspect terms. As
pandia dataset is too different from the training dataset, results are suboptimal.

Category Neutral Positive Negative
Symptoms 93 39 5

Medication & Vaccination 5 84 3
Personal experience 8 2 15

Politics 9 4 3
Other 508 673 93

As expected most of the terms were categorized as Others and were mostly Negative
as the data was relating to Covid in general. Out of 1534 aspects extracted by the model,
137 aspects were categorized as Symptom with 93 classified as Negative, 39 as Neutral and
5 as Positive. Medication and Vaccination was mainly Neutral and personal experience
was present in very low amount, but they were almost always negative which shows the
personal struggles people had during Covid. We expected to detect a lot more Politics and
Country, they were only present in very low numbers which might be due to shortcomings
of our categorization methods and poor performance of model on cross domain. On a
closer look at other category, we observed that our model had detected a lot of pronouns,
location and travel related words as aspect. By using some additional tweet data as part
of training process and also using a better categorization methods, much better results
could be achieved, but our work shows that this approach is possible to obtain general
categories.

54

Chapter 5

Conclusion

Over the years, research in the field of NLP has grown immensely with the advent of
transformers. This dissertation aimed to create a transformer based model for ABSA and
test its performance on different settings. It also aimed to answer some questions related
to the impact of model size and freezing of layers on ABSA tasks. The findings found in
this work could also be applied towards other NLP tasks.

The document started by providing a general idea of problems and research questions
that we aimed to answer with this work. Then, a summary of background research and
literature review was provided with the aim of showcasing current state-of-the-art and also
highlight why a transformer based model is useful for this task.

In Chapter 3 details about the implemented model and system around it was provided.
In brief, we implemented a BERT+BiLSTM+Masked CRF model leveraging the power of
huggingface trainer and transformers package. The model was implemented in PyTorch
and is also publicly available on huggingface hub. Pre-trained BERT (or similar trans-
former) was used as tokenizer and encoder in our model which allowed it to use strong
contextual information and also handle out of vocab words with wordpiece tokenization.
As this work used collapsed labelling system and handled ABSA task as a token classifica-
tion problem, LSTM was used as a decoder. Using a LSTM as a decoder in combination
with a pre-trained BERT encoder can effectively model the sequential nature of token
classification tasks, handle variable-length outputs, capture dependencies between tokens,
and provide training efficiency. Then as final classifier a masked CRF was used. Masked
CRF allowed us to set negative transitions so that probabilities of transitions like B-X to
I-Y were less likely to occur. Once a base model was developed, several experiments were
performed to see impact of different factors on the model.

Our baseline model achieved promising results in terms of multilabel classification but
showed room for improvement in token quality metrics. Through an optimization study,
we identified a set of optimal hyperparameters that improved the token quality metrics
while maintaining comparable performance in multilabel classification. The token quality
f1 score on validation set only increased by 0.0323 using optimal hyperparameters. Some
more increment could have been achieved by a deeper hyperparameters search but due to

55

CHAPTER 5. CONCLUSION

computational resource constraints we were only able to search on a small search space. In
the hyperparameter search we saw that number of training epochs and learning rate had
the biggest impact. We also saw that our model struggles mainly with neutral cases which
was expected as neutral cases are usually gray area for humans as well. This optimized
model served as a baseline benchmark for further experiments.

We also investigated the impact of freezing layers in the model and found that freez-
ing a subset of layers can lead to comparable performance with reduced computational
requirements. In our case freezing embedding and 4 encoder layers gave us 1% better
results with 10% reduction in training time. Additionally, we explored the effect of model
size on performance. We observed that using a larger model does not necessarily increase
performance as miniLM (a model with similar size as bert-base) outperformed bert-large.
On cross domain tests as well miniLM, a model which uses different pre-training approach
to bert-base obtained best results which highlight the importance of proper pre-training
approach.

As future work, we would like to continue experimenting with Transformer and ABSA
(and NLP in general).

• Use our model for some other NLP tasks to see if the results can be generalized.

• Perform a deeper and run wise hyperparameter search as optimal parameters might
differ from configuration to configuration.

• Combine model size and layer freezing experiments to see if larger models also show
better performance with frozen layers.

• Computer Assisted Annotation, Create a system that allows the creation of new
ABSA dataset while continuously fine-tuning existing model to make predictions
better as it continues and create a PandIA ABSA dataset using this system.

• Use a multilingual model trained on Portuguese tweets to find sentiments towards
Portuguese political parties during COVID-19.

Overall, our findings highlight the effectiveness of transformers in ABSA tasks. The
combination of optimal hyperparameters, layer freezing, and model size selection can lead
to improved performance while considering computational constraints. Our research con-
tributes to the understanding of transformer-based models for ABSA and provides insights
for future studies in this field. Using the results from this dissertation, it can be confi-
dently said that there are better ways (like different pre-training approaches and freezing
of encoder layers) to achieve better performing model than increasing model size. Also, as
a plus points, alternatives to increasing model size usually reduce the computational re-
source and time requirements as well. Transformers have shown great potential in ABSA,
and further advancements and fine-tuning of models can enhance their performance and
applicability in real-world sentiment analysis tasks across diverse domains.

56

References

[1] Carlos A. Iglesias and Antonio Moreno. “Sentiment Analysis for Social Media.” In:
Applied Sciences 9.23 (Nov. 2019), p. 5037. ISSN: 2076-3417. DOI: 10.3390/app923
5037.
URL: https://www.mdpi.com/2076-3417/9/23/5037 (cit. on p. 1).

[2] Wenxuan Zhang, Xin Li, Yang Deng, Lidong Bing, and Wai Lam. “A Survey on
Aspect-Based Sentiment Analysis: Tasks, Methods, and Challenges.” In: (2022). DOI:
10.48550/ARXIV.2203.01054.
URL: https://arxiv.org/abs/2203.01054 (cit. on p. 1).

[3] What Are Neural Networks? | IBM.
URL: https://www.ibm.com/topics/neural-networks (cit. on p. 5).

[4] What Is Natural Language Processing? | IBM.
URL: https://www.ibm.com/topics/natural-language-processing (cit. on
p. 6).

[5] Ivano Lauriola, Alberto Lavelli, and Fabio Aiolli. “An Introduction to Deep Learning
in Natural Language Processing: Models, Techniques, and Tools.” In: Neurocomput-
ing 470 (Jan. 2022), pp. 443–456. ISSN: 0925-2312. DOI: 10.1016/j.neucom.2021.0
5.103.
URL: https://www.sciencedirect.com/science/article/pii/S0925231221010
997 (cit. on p. 6).

[6] J J Hopfield. “Neural Networks and Physical Systems with Emergent Collective
Computational Abilities.” In: Proceedings of the National Academy of Sciences 79.8
(Apr. 1982), pp. 2554–2558. ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.79.8
.2554.
URL: https://pnas.org/doi/full/10.1073/pnas.79.8.2554 (cit. on p. 6).

[7] 10.1. Long Short-Term Memory (LSTM) — Dive into Deep Learning 1.0.0-Beta0
Documentation.
URL: https://d2l.ai/chapter_recurrent-modern/lstm.html (cit. on p. 7).

[8] Alex Sherstinsky. “Fundamentals of Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) Network.” In: Physica D: Nonlinear Phenomena 404
(Mar. 2020), p. 132306. ISSN: 0167-2789. DOI: 10.1016/j.physd.2019.132306.

57

https://doi.org/10.3390/app9235037
https://doi.org/10.3390/app9235037
https://www.mdpi.com/2076-3417/9/23/5037
https://doi.org/10.48550/ARXIV.2203.01054
https://arxiv.org/abs/2203.01054
https://www.ibm.com/topics/neural-networks
https://www.ibm.com/topics/natural-language-processing
https://doi.org/10.1016/j.neucom.2021.05.103
https://doi.org/10.1016/j.neucom.2021.05.103
https://www.sciencedirect.com/science/article/pii/S0925231221010997
https://www.sciencedirect.com/science/article/pii/S0925231221010997
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://pnas.org/doi/full/10.1073/pnas.79.8.2554
https://d2l.ai/chapter_recurrent-modern/lstm.html
https://doi.org/10.1016/j.physd.2019.132306

REFERENCES

URL: https://www.sciencedirect.com/science/article/pii/S0167278919305
974 (cit. on p. 6).

[9] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory.” In: Neural
Computation 9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-7667, 1530-888X. DOI: 10
.1162/neco.1997.9.8.1735.
URL: https://direct.mit.edu/neco/article/9/8/1735-1780/6109 (cit. on
p. 7).

[10] Lilian Weng. Attention? Attention! June 2018.
URL: https://lilianweng.github.io/posts/2018-06-24-attention/ (cit. on
p. 7).

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. May 2016. DOI: 10.48550/arXiv
.1409.0473. arXiv: 1409.0473 [cs, stat].
URL: http://arxiv.org/abs/1409.0473 (cit. on p. 8).

[12] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches.
Oct. 2014. DOI: 10.48550/arXiv.1409.1259. arXiv: 1409.1259 [cs, stat].
URL: http://arxiv.org/abs/1409.1259 (cit. on p. 8).

[13] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. Dec. 2014.
DOI: 10.48550/arXiv.1410.5401. arXiv: 1410.5401 [cs].
URL: http://arxiv.org/abs/1410.5401 (cit. on p. 8).

[14] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Approaches
to Attention-based Neural Machine Translation. Sept. 2015. DOI: 10.48550/arXiv
.1508.04025. arXiv: 1508.04025 [cs].
URL: http://arxiv.org/abs/1508.04025 (cit. on pp. 8, 9).

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. Dec.
2017. DOI: 10.48550/arXiv.1706.03762. arXiv: 1706.03762 [cs].
URL: http://arxiv.org/abs/1706.03762 (cit. on pp. 8, 10–13).

[16] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhutdinov, Richard Zemel, and Yoshua Bengio. Show, Attend and Tell: Neu-
ral Image Caption Generation with Visual Attention. Apr. 2016. DOI: 10.48550/ar
Xiv.1502.03044. arXiv: 1502.03044 [cs].
URL: http://arxiv.org/abs/1502.03044 (cit. on p. 10).

[17] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long Short-Term Memory-Networks
for Machine Reading. Sept. 2016. DOI: 10.48550/arXiv.1601.06733. arXiv: 1601
.06733 [cs].
URL: http://arxiv.org/abs/1601.06733 (cit. on pp. 10, 11).

58

https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://lilianweng.github.io/posts/2018-06-24-attention/
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.48550/arXiv.1409.0473
https://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.48550/arXiv.1409.1259
https://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
https://doi.org/10.48550/arXiv.1410.5401
https://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1410.5401
https://doi.org/10.48550/arXiv.1508.04025
https://doi.org/10.48550/arXiv.1508.04025
https://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.1502.03044
https://doi.org/10.48550/arXiv.1502.03044
https://arxiv.org/abs/1502.03044
http://arxiv.org/abs/1502.03044
https://doi.org/10.48550/arXiv.1601.06733
https://arxiv.org/abs/1601.06733
https://arxiv.org/abs/1601.06733
http://arxiv.org/abs/1601.06733

REFERENCES

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding. May 2019.
DOI: 10.48550/arXiv.1810.04805. arXiv: 1810.04805 [cs].
URL: http://arxiv.org/abs/1810.04805 (cit. on pp. 14, 15).

[19] J. Lafferty, A. McCallum, and Fernando Pereira. “Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Sequence Data.” In: International Con-
ference on Machine Learning. June 2001.
URL: https://www.semanticscholar.org/paper/Conditional-Random-Fields
%3A-Probabilistic-Models-for-Lafferty-McCallum/f4ba954b0412773d047dc4
1231c733de0c1f4926 (cit. on p. 15).

[20] Tianwen Wei, Jianwei Qi, Shenghuan He, and Songtao Sun. “Masked Conditional
Random Fields for Sequence Labeling.” In: Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Online: Association for Computational Linguistics,
June 2021, pp. 2024–2035. DOI: 10.18653/v1/2021.naacl-main.163.
URL: https://aclanthology.org/2021.naacl-main.163 (cit. on pp. 15, 16).

[21] J Jayalekshmi and Tessy Mathew. “Facial Expression Recognition and Emotion Clas-
sification System for Sentiment Analysis.” In: 2017 International Conference on Net-
works & Advances in Computational Technologies (NetACT). July 2017, pp. 1–8.
DOI: 10.1109/NETACT.2017.8076732. (Cit. on p. 16).

[22] Bing Liu. Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human
Language Technologies. Cham: Springer International Publishing, 2012. ISBN: 978-
3-031-01017-0 978-3-031-02145-9. DOI: 10.1007/978-3-031-02145-9.
URL: https://link.springer.com/10.1007/978-3-031-02145-9 (cit. on p. 16).

[23] Minqing Hu and Bing Liu. “Mining and Summarizing Customer Reviews.” In: Pro-
ceedings of the Tenth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. KDD ’04. New York, NY, USA: Association for Computing
Machinery, Aug. 2004, pp. 168–177. ISBN: 978-1-58113-888-7. DOI: 10.1145/101405
2.1014073.
URL: https://doi.org/10.1145/1014052.1014073 (cit. on p. 17).

[24] Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel Dahlmeier. An Interactive Multi-
Task Learning Network for End-to-End Aspect-Based Sentiment Analysis. June 2019.
DOI: 10.48550/arXiv.1906.06906. arXiv: 1906.06906 [cs].
URL: http://arxiv.org/abs/1906.06906 (cit. on p. 17).

[25] Chen Zhang, Qiuchi Li, and Dawei Song. Aspect-Based Sentiment Classification with
Aspect-specific Graph Convolutional Networks. Oct. 2019. DOI: 10.48550/arXiv.19
09.03477. arXiv: 1909.03477 [cs].
URL: http://arxiv.org/abs/1909.03477 (cit. on pp. 17, 18).

59

https://doi.org/10.48550/arXiv.1810.04805
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.semanticscholar.org/paper/Conditional-Random-Fields%3A-Probabilistic-Models-for-Lafferty-McCallum/f4ba954b0412773d047dc41231c733de0c1f4926
https://www.semanticscholar.org/paper/Conditional-Random-Fields%3A-Probabilistic-Models-for-Lafferty-McCallum/f4ba954b0412773d047dc41231c733de0c1f4926
https://www.semanticscholar.org/paper/Conditional-Random-Fields%3A-Probabilistic-Models-for-Lafferty-McCallum/f4ba954b0412773d047dc41231c733de0c1f4926
https://doi.org/10.18653/v1/2021.naacl-main.163
https://aclanthology.org/2021.naacl-main.163
https://doi.org/10.1109/NETACT.2017.8076732
https://doi.org/10.1007/978-3-031-02145-9
https://link.springer.com/10.1007/978-3-031-02145-9
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.48550/arXiv.1906.06906
https://arxiv.org/abs/1906.06906
http://arxiv.org/abs/1906.06906
https://doi.org/10.48550/arXiv.1909.03477
https://doi.org/10.48550/arXiv.1909.03477
https://arxiv.org/abs/1909.03477
http://arxiv.org/abs/1909.03477

REFERENCES

[26] Huaishao Luo, Lei Ji, Tianrui Li, Nan Duan, and Daxin Jiang. GRACE: Gradient
Harmonized and Cascaded Labeling for Aspect-based Sentiment Analysis. Sept. 2020.
DOI: 10.48550/arXiv.2009.10557. arXiv: 2009.10557 [cs].
URL: http://arxiv.org/abs/2009.10557 (cit. on p. 17).

[27] Alexander Rietzler, Sebastian Stabinger, Paul Opitz, and Stefan Engl. Adapt or Get
Left Behind: Domain Adaptation through BERT Language Model Finetuning for
Aspect-Target Sentiment Classification. Nov. 2019. DOI: 10.48550/arXiv.1908.11
860. arXiv: 1908.11860 [cs].
URL: http://arxiv.org/abs/1908.11860 (cit. on p. 17).

[28] Wei Xue and Tao Li. Aspect Based Sentiment Analysis with Gated Convolutional
Networks. May 2018. DOI: 10.48550/arXiv.1805.07043. arXiv: 1805.07043 [cs].
URL: http://arxiv.org/abs/1805.07043 (cit. on p. 17).

[29] Hyun-jung Park, Minchae Song, and Kyung-Shik Shin. “Deep Learning Models and
Datasets for Aspect Term Sentiment Classification: Implementing Holistic Recurrent
Attention on Target-Dependent Memories.” In: Knowledge-Based Systems 187 (Jan.
2020), p. 104825. ISSN: 0950-7051. DOI: 10.1016/j.knosys.2019.06.033.
URL: https://www.sciencedirect.com/science/article/pii/S0950705119303
004 (cit. on p. 17).

[30] Xin Li, Lidong Bing, Piji Li, and Wai Lam. A Unified Model for Opinion Target
Extraction and Target Sentiment Prediction. Feb. 2019. DOI: 10.48550/arXiv.181
1.05082. arXiv: 1811.05082 [cs].
URL: http://arxiv.org/abs/1811.05082 (cit. on p. 17).

[31] Li Deng and Yang Liu, eds. Deep Learning in Natural Language Processing. Singa-
pore: Springer, 2018. ISBN: 978-981-10-5208-8 978-981-10-5209-5. DOI: 10.1007/978
-981-10-5209-5.
URL: http://link.springer.com/10.1007/978-981-10-5209-5 (cit. on p. 17).

[32] Xuefeng Bai, Pengbo Liu, and Yue Zhang. “Investigating Typed Syntactic Dependen-
cies for Targeted Sentiment Classification Using Graph Attention Neural Network.”
In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 29 (2021),
pp. 503–514. ISSN: 2329-9304. DOI: 10.1109/TASLP.2020.3042009. (Cit. on p. 17).

[33] Haiyun Peng, Lu Xu, Lidong Bing, Fei Huang, Wei Lu, and Luo Si. Knowing What,
How and Why: A Near Complete Solution for Aspect-based Sentiment Analysis. Nov.
2019. DOI: 10.48550/arXiv.1911.01616. arXiv: 1911.01616 [cs].
URL: http://arxiv.org/abs/1911.01616 (cit. on pp. 17, 23, 24, 53).

[34] Hyeju Jang, Emily Rempel, David Roth, Giuseppe Carenini, and Naveed Zafar Jan-
jua. “Tracking COVID-19 Discourse on Twitter in North America: Infodemiology
Study Using Topic Modeling and Aspect-Based Sentiment Analysis.” In: Journal of
Medical Internet Research 23.2 (Feb. 2021), e25431. DOI: 10.2196/25431.
URL: https://www.jmir.org/2021/2/e25431 (cit. on p. 20).

60

https://doi.org/10.48550/arXiv.2009.10557
https://arxiv.org/abs/2009.10557
http://arxiv.org/abs/2009.10557
https://doi.org/10.48550/arXiv.1908.11860
https://doi.org/10.48550/arXiv.1908.11860
https://arxiv.org/abs/1908.11860
http://arxiv.org/abs/1908.11860
https://doi.org/10.48550/arXiv.1805.07043
https://arxiv.org/abs/1805.07043
http://arxiv.org/abs/1805.07043
https://doi.org/10.1016/j.knosys.2019.06.033
https://www.sciencedirect.com/science/article/pii/S0950705119303004
https://www.sciencedirect.com/science/article/pii/S0950705119303004
https://doi.org/10.48550/arXiv.1811.05082
https://doi.org/10.48550/arXiv.1811.05082
https://arxiv.org/abs/1811.05082
http://arxiv.org/abs/1811.05082
https://doi.org/10.1007/978-981-10-5209-5
https://doi.org/10.1007/978-981-10-5209-5
http://link.springer.com/10.1007/978-981-10-5209-5
https://doi.org/10.1109/TASLP.2020.3042009
https://doi.org/10.48550/arXiv.1911.01616
https://arxiv.org/abs/1911.01616
http://arxiv.org/abs/1911.01616
https://doi.org/10.2196/25431
https://www.jmir.org/2021/2/e25431

REFERENCES

[35] Huimin Chen, Zeyu Zhu, Fanchao Qi, Yining Ye, Zhiyuan Liu, Maosong Sun, and
Jianbin Jin. “Country Image in COVID-19 Pandemic: A Case Study of China.” In:
IEEE Transactions on Big Data 7.1 (Mar. 2021), pp. 81–92. ISSN: 2332-7790. DOI:
10.1109/TBDATA.2020.3023459. (Cit. on p. 20).

[36] Wenhao Zhang, Hua Xu, and Wei Wan. “Weakness Finder: Find Product Weakness
from Chinese Reviews by Using Aspects Based Sentiment Analysis.” In: Expert Sys-
tems with Applications 39.11 (Sept. 2012), pp. 10283–10291. ISSN: 0957-4174. DOI:
10.1016/j.eswa.2012.02.166.
URL: https://www.sciencedirect.com/science/article/pii/S0957417412004
290 (cit. on p. 20).

[37] Tun Thura Thet, Jin-Cheon Na, and Christopher S.G. Khoo. “Aspect-Based Senti-
ment Analysis of Movie Reviews on Discussion Boards.” In: Journal of Information
Science 36.6 (Dec. 2010), pp. 823–848. ISSN: 0165-5515, 1741-6485. DOI: 10.1177/0
165551510388123.
URL: http://journals.sagepub.com/doi/10.1177/0165551510388123 (cit. on
p. 20).

[38] Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng Li, and Yiwei Lv. Open-Domain
Targeted Sentiment Analysis via Span-Based Extraction and Classification. June
2019.
URL: https://arxiv.org/abs/1906.03820v1 (cit. on pp. 21, 53).

[39] Huaishao Luo, Tianrui Li, Bing Liu, and Junbo Zhang. DOER: Dual Cross-Shared
RNN for Aspect Term-Polarity Co-Extraction. June 2019. DOI: 10.48550/arXiv.1
906.01794. arXiv: 1906.01794 [cs].
URL: http://arxiv.org/abs/1906.01794 (cit. on p. 22).

[40] Xin Li, Lidong Bing, Wenxuan Zhang, and Wai Lam. Exploiting BERT for End-to-
End Aspect-based Sentiment Analysis. Oct. 2019. DOI: 10.48550/arXiv.1910.0088
3. arXiv: 1910.00883 [cs].
URL: http://arxiv.org/abs/1910.00883 (cit. on pp. 22, 23, 53).

[41] Kevin Scaria, Himanshu Gupta, Siddharth Goyal, Saurabh Arjun Sawant, Swaroop
Mishra, and Chitta Baral. InstructABSA: Instruction Learning for Aspect Based
Sentiment Analysis. Apr. 2023. DOI: 10.48550/arXiv.2302.08624. arXiv: 2302.0
8624 [cs].
URL: http://arxiv.org/abs/2302.08624 (cit. on pp. 24, 53).

[42] Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion An-
droutsopoulos, and Suresh Manandhar. “SemEval-2014 Task 4: Aspect Based Sen-
timent Analysis.” In: Proceedings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014). Dublin, Ireland: Association for Computational Lin-
guistics, 2014, pp. 27–35. DOI: 10.3115/v1/S14-2004.
URL: http://aclweb.org/anthology/S14-2004 (cit. on p. 26).

61

https://doi.org/10.1109/TBDATA.2020.3023459
https://doi.org/10.1016/j.eswa.2012.02.166
https://www.sciencedirect.com/science/article/pii/S0957417412004290
https://www.sciencedirect.com/science/article/pii/S0957417412004290
https://doi.org/10.1177/0165551510388123
https://doi.org/10.1177/0165551510388123
http://journals.sagepub.com/doi/10.1177/0165551510388123
https://arxiv.org/abs/1906.03820v1
https://doi.org/10.48550/arXiv.1906.01794
https://doi.org/10.48550/arXiv.1906.01794
https://arxiv.org/abs/1906.01794
http://arxiv.org/abs/1906.01794
https://doi.org/10.48550/arXiv.1910.00883
https://doi.org/10.48550/arXiv.1910.00883
https://arxiv.org/abs/1910.00883
http://arxiv.org/abs/1910.00883
https://doi.org/10.48550/arXiv.2302.08624
https://arxiv.org/abs/2302.08624
https://arxiv.org/abs/2302.08624
http://arxiv.org/abs/2302.08624
https://doi.org/10.3115/v1/S14-2004
http://aclweb.org/anthology/S14-2004

REFERENCES

[43] Qingnan Jiang, Lei Chen, Ruifeng Xu, Xiang Ao, and Min Yang. “A Challenge
Dataset and Effective Models for Aspect-Based Sentiment Analysis.” In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Hong Kong, China: Association for Computational Linguistics, Nov. 2019,
pp. 6280–6285. DOI: 10.18653/v1/D19-1654.
URL: https://aclanthology.org/D19-1654 (cit. on p. 27).

[44] Richard Adolph Aires Jonker, Roshan Poudel, Olga Fajarda, Sérgio Matos, José Luís
Oliveira, and Rui Pedro Lopes. “Portuguese Twitter Dataset on COVID-19.” In: 2022
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM). Istanbul, Turkey: IEEE, Nov. 2022, pp. 332–338. ISBN: 978-1-
66545-661-6. DOI: 10.1109/ASONAM55673.2022.10068592.
URL: https://ieeexplore.ieee.org/document/10068592/ (cit. on p. 28).

[45] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davi-
son, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander Rush. “Transformers: State-of-the-Art Natural Language Processing.” In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations. Online: Association for Computational Linguistics,
Oct. 2020, pp. 38–45. DOI: 10.18653/v1/2020.emnlp-demos.6.
URL: https://aclanthology.org/2020.emnlp-demos.6 (cit. on p. 32).

[46] Tiago Almeida, Rui Antunes, João F. Silva, João R Almeida, and Sérgio Matos.
“Chemical Identification and Indexing in PubMed Full-Text Articles Using Deep
Learning and Heuristics.” In: Database 2022 (July 2022), baac047. ISSN: 1758-0463.
DOI: 10.1093/database/baac047.
URL: https://academic.oup.com/database/article/doi/10.1093/database/b
aac047/6625810 (cit. on p. 35).

[47] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. “Optuna: A Next-generation Hyperparameter Optimization Framework.”
In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. Anchorage AK USA: ACM, July 2019, pp. 2623–2631.
ISBN: 978-1-4503-6201-6. DOI: 10.1145/3292500.3330701.
URL: https://dl.acm.org/doi/10.1145/3292500.3330701 (cit. on p. 37).

[48] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimiza-
tion. June 2018. DOI: 10.48550/arXiv.1603.06560. arXiv: 1603.06560 [cs,
stat].
URL: http://arxiv.org/abs/1603.06560 (cit. on p. 37).

62

https://doi.org/10.18653/v1/D19-1654
https://aclanthology.org/D19-1654
https://doi.org/10.1109/ASONAM55673.2022.10068592
https://ieeexplore.ieee.org/document/10068592/
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://doi.org/10.1093/database/baac047
https://academic.oup.com/database/article/doi/10.1093/database/baac047/6625810
https://academic.oup.com/database/article/doi/10.1093/database/baac047/6625810
https://doi.org/10.1145/3292500.3330701
https://dl.acm.org/doi/10.1145/3292500.3330701
https://doi.org/10.48550/arXiv.1603.06560
https://arxiv.org/abs/1603.06560
https://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1603.06560

REFERENCES

[49] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to Fine-Tune BERT for
Text Classification? Feb. 2020. DOI: 10.48550/arXiv.1905.05583. arXiv: 1905.05
583 [cs].
URL: http://arxiv.org/abs/1905.05583 (cit. on p. 37).

63

https://doi.org/10.48550/arXiv.1905.05583
https://arxiv.org/abs/1905.05583
https://arxiv.org/abs/1905.05583
http://arxiv.org/abs/1905.05583

	Table of contents
	List of figures
	List of tables
	List of abbreviations
	Introduction
	Objectives
	Contributions
	Document Structure

	Background
	Natural Language Processing
	Recurrent Neural Network
	Attention mechanism
	Global and Local attention
	Soft and Hard attention
	Self-attention
	Multi-head attention

	Transformers
	Bidirectional Encoder Representations from Transformers
	Conditional Random Field
	Sentiment Analysis
	Aspect Based Sentiment Analysis
	Aspect, Category and Sentiment
	Issues and Challenges
	Approaches

	State of the Art
	Pipeline Architecture
	Single Step Approaches
	Other Architectures

	Methodology
	Datasets
	SemEval-14
	MAMS
	PandIA
	Combined Dataset

	Preprocessing
	Tokenizer
	Model
	Training
	Hyperparameter Optimization
	Metrics
	Token Position Quality
	Multilabel Classification

	Experiments
	Freezing Transformer Layers
	Model Sizes
	Cross Domain

	Category classification

	Results
	Baseline
	Freezing of layers
	Model Sizes
	Cross domain
	Comparison with existing work
	Categorical classification
	Inference on PandIA dataset

	Conclusion
	References

