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ABSTRACT
Social media has become an essential source of news for everyday users. However,
the rise of fake news on social media has made it more difficult for users to trust
the information on these platforms. Most research studies focus on fake news
detection in the English language, and only a limited number of studies deal with
fake news in resource-poor languages such as Urdu. This article proposes a globally
weighted term selection approach named normalized effect size (NES) to select highly
discriminative features for Urdu fake news classification. The proposed model is based
on the traditional inverse document frequency (TF-IDF) weighting measure. TF-IDF
transforms the textual data into a weighted term-document matrix and is usually
prone to the curse of dimensionality. Our novel statistical model filters the most
discriminative terms to reduce the data’s dimensionality and improve classification
accuracy. We compare the proposed approach with the seven well-known feature
selection and ranking techniques, namely normalized difference measure (NDM), bi-
normal separation (BNS), odds ratio (OR), GINI, distinguished feature selector (DFS),
information gain (IG), and Chi square (Chi). Our ensemble-based approach achieves
high performance on two benchmark datasets, BET and UFN, achieving an accuracy
of 88% and 90%, respectively.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Data Science
Keywords Urdu fake news, Feature selection, Feature engineering, Style-based classification,
Textual data, Natural language processing (NLP), Social media content, Machine learning, Urdu
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INTRODUCTION
The term ‘‘fake news’’ represents the stories that are intentionally and undeniably bogus
and intended to control individuals’ views of genuine realities, events, explanations, and
occasions (Miro-Llinares & Aguerri, 2023; Choudhury & Acharjee, 2023). Fake news covers
deception and false data or disinformation deliberately spread to delude individuals (Ruffo
et al., 2023). It is all about the information projected as news being misleading as it is
based on demonstrably incorrect facts and events that never occurred (Monsees, 2023;
Cantarella, Fraccaroli & Volpe, 2023). The internet, social media, and news media provide
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a platform for millions of users to access up-to-date information and perform social
interactions (Cheng, Ge & Cosco, 2023; Longo, 2023; Lytos et al., 2019; Rodríguez-Ferrándiz,
2023). The data significantly impacts their opinions and choices for different aspects of their
lives (Xing et al., 2022; Kozitsin, 2023; Vuong et al., 2019). Studies have shown that a viral
story has an echo chamber effect, and the user is more inclined to have a favorable opinion
about it (Robertson et al., 2023; Scheibenzuber et al., 2023; González-Bailón & Lelkes, 2023).
Manually differentiating between a real and fake viral story is becoming challenging with
the ever-increasing amount of online data (Khan, Michalas & Akhunzada, 2021). There
are a lot of examples of fake news that we can see throughout history impacting societal
values and norms, changing opinions on critical issues, and redefining truths, facts, and
beliefs (Farago, Kreko & Orosz, 2023; Olan et al., 2022). As unreliable and fake information
has significant social and economic consequences for society (Aïmeur, Amri & Brassard,
2023), it is essential to automatically distinguish between real and fake news (Buzea,
Trausan-Matu & Rebedea, 2022).

There has been significant research on fake news classification for the English language
in the past few years (Lillie & Middelboe, 2019; Shu et al., 2017; de Souza et al., 2020; Rohera
et al., 2022). However, the work for fake news classification in the Urdu language remains
minimal (Amjad et al., 2020b; Amjad, Sidorov & Zhila, 2020; Khiljia et al., 2020) due to
the unavailability of a sufficient annotated corpus. Therefore, many challenges must be
addressed to solve this problem for the Urdu language. Urdu belongs to the Indo-Aryan
group, is written in Arabic Person script, and is the official language of Pakistan. Urdu
is spoken by more than 100 million speakers worldwide, but it remains a resource-poor
language (Nazir et al., 2021; Ullah et al., 2022). The datasets for the Urdu language are also
small, and deep learning approaches do not perform well on downstream natural language
processing tasks such as sentiment analysis and fake news classification (Rana et al., 2021).
In this regard, one of the foremost concerns is understanding the basis on which an Urdu
fake news piece can be classified accurately. It includes extracting appropriate features and
ranking discriminative features for Urdu fake news classification.

There are three different paradigms for fake news classification, as shown in Fig. 1:
style-based, context-based, and knowledge-based (Raza & Ding, 2022). Style-based
approaches mainly classify fake news based on deception detection and text categorization
(Kasseropoulos & Tjortjis, 2021; Hangloo & Arora, 2021). Such methods use the news
content and extract lexical features to discriminate between real and fake news. Such
approaches also require effective feature selection techniques to classify fake news. The
context-based paradigm exploits social network analysis to classify fake news (Donabauer
& Kruschwitz, 2023; Sivasankari & Vadivu, 2021). Such approaches use the user’s social
engagement with the news content and the network of users to identify fake news
content. Finally, knowledge-based classification (fact-checking) uses information retrieval
techniques, or the semantic web, to detect fake news (Seddari et al., 2022; Pathak & Srihari,
2019; Ceron, de Lima-Santos & Quiles, 2021).

Style-based approaches for fake news classification are based on machine learning and
deep learning models. Deep learning models do not perform well on small datasets, and
becauseUrdu is a resource-poor language, no pre-trainedmodels can be fine-tuned for such
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Figure 1 Different paradigms for fake news classification (Potthast et al., 2017).
Full-size DOI: 10.7717/peerjcs.1612/fig-1

small datasets. Machine learning models are more suitable for resource-poor languages.
These models rely on selecting the most relevant features to discriminate between fake and
real news (Rafique et al., 2022; Pal, Pranav & Pradhan, 2023). The first step is to extract the
features from the raw text. Secondly, the terms present in the corpus are weighted based
on weighting schemes such as the binary vectorizer or TFIDF vectorizer. Finally, different
statistical approaches are used for feature vectors and their class labels. After assigning
weights to each term, some feature selection measure is used to find and rank the most
discriminating terms. In recent studies, ensemble learning approaches outperformed for
fake news detection (Akhter et al., 2021; Mahabub, 2020; Hakak et al., 2021; Fayaz et al.,
2022; Al-Ash et al., 2019). Ensemble learning aims to exploit the diversity of base models
to increase overall performance by handling multiple error types.

This article proposes a novel feature weighting model named normalized effect size
(NES) that is based on a global weighting scheme (TFIDF). We extracted three features
from the Urdu news articles: word n-grams, character n-grams, and function n-grams.
The top k terms ranked by NES are used to train an ensemble model. The performance
of the proposed approach is compared with seven feature selection measures, namely
Normalized Difference Measure (NDM), Bi-normal Separation (BNS), Odds Ratio (OR),
GINI, Distinguished Feature Selector (DFS), Information Gain (IG) and Chi Square (Chi).
Our significant contributions to this research are as follows:
1. Proposal of a robust feature selection approach to discriminate between fake and real

news;
2. Comparison of the performance of the proposed feature metric with seven well-known

feature selection methods, showing the high performance of our feature metric;
3. Analysis of the performance of the proposed feature selectionmetric on two benchmark

Urdu fake news datasets.
All example articles in the benchmark datasets have two classes assigned to them, i.e.,

real or fake news. Therefore, our problem is a binary classification problem compared to
the multi-class classification problem, in which more than two classes are used for labeling
a dataset’s examples. The following section briefly reviews the literature on fake news
classification.
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LITERATURE REVIEW
Previously, researchers have used feature selection for machine learning on different genres
of textual data (Katakis, Tsoumakas & Vlahavas, 2005; Rehman, Javed & Babri, 2017; Khan,
Alam & Lee, 2021; Ramasamy & Meena Kowshalya, 2022). In this section, we shall focus on
feature selection for fake news classification, specifically for Urdu fake news classification.
We shall review the feature selection techniques that have been used previously for the
same or related tasks and summarize their findings.

Urdu is the national language of Pakistan and the 8th most spoken language globally,
with more than 100 million speakers (Akhter et al., 2020). It is a South Asian language
with limited resources (Nazir et al., 2021). A few annotated corpora in a few domains are
available for research purposes, compared to English, which is a resource-rich language
(D’Ulizia et al., 2021). The availability of insufficient linguistic resources like stemmers and
annotated corpora makes the research on Urdu fake news classification more challenging
and inspiring. Labeling a news article as ‘‘fake’’ or ‘‘legitimate’’ requires experts’ opinions
and is time-consuming. Also, hiring experts for each related domain is costly. In Amjad et
al. (2020b), Amjad, Sidorov & Zhila (2020), Amjad et al. (2020a) and Amjad et al. (2022),
the authors proposed an annotated fake news corpus with a few hundred news articles.
Their experimental results reveal the poor performance of machine learning models. Deep
Learning models perform poorly due to the small corpus available for Urdu fake news.

Ensemble learning techniques boost the efficiency of individual machine learning
models by aggregating the predictions in a way, also called base learners, base models, and
base predictors (Sagi & Rokach, 2018). Mahabub (2020) applied eleven machine learning
classifiers on a fake news corpus, including neural network-based models. Three of eleven
machine learning models were selected to ensemble a voting model. Ensemble soft voting
results reflect better performance than other models. To detect fake reviews, two ensemble
learning approaches, bagging and boosting, were applied with SVM and MLP-based
learners, and their research findings reflect that boosting with MLP outperforms the others
(Singh & Selva, 2023b; Singh & Selva, 2023a; Gutierrez-Espinoza et al., 2020). Numerous
ways are used to achieve this, such as re-sampling the corpus, heterogeneous models,
homogeneous models with diverse parameters, and using various methods to combine the
predictions of base models (Kunapuli, 2023).

Machine learning models are applied for fake news detection and classification tasks
for languages such as English, Portuguese, Urdu, Arabic, Spanish, and Slavic (Lahby et
al., 2022; Nirav Shah & Ganatra, 2022; Ahmed et al., 2021). Less effort has been made to
explore ensemble learning techniques to fake news classification compared to machine
learning methods (Capuano et al., 2023; Chiche & Yitagesu, 2022).

Posadas-Durán et al. (2019) defined three categories to detect fake news: knowledge-
based, context-based, and style-based. They used bag-of-words (BOW), POS tags, and
n-gram features. In normalization, they removed tags such as the editor’s emails or phone
numbers. Their experiments showed that the random forest outperformed with the highest
accuracy of 76.94% using BOW, POS, and n-grams. Their work was primarily focused on
the Spanish language.
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Reis et al. (2019) used PolitiFact, Channel 4, and Snoops to gather fake news articles.
They used linguistic inquiry word count (LIWC) and could attain an accuracy of 60%.
Similarly, in another similar study (Ahmed, Traore & Saad, 2018), the authors used two
feature weighting techniques, TF and TF-IDF, along with N-gram features. Their extracted
features with the linear SVM classification model outperformed the baseline with an
accuracy of 90% by using Bigram and 10,000 features.

Krešňáková, Sarnovskỳ & Butka (2019) used preprocessing techniques such as stopwords,
punctuation removal, and word2vec word embedding to represent the features. They
conducted experiments with four classification models: feedforward neural networks,
CNNs with one convolutional layer, CNNs with more convolutional layers, and LSTMs.
They used only textual data to train the model and achieved the highest F1 score of 97.52%
by using CNN mode. Using the CNN model, they also used the title and text to train the
model and achieved an F1-score of 93.32%.

Bajaj (2017) collected a fake news dataset from Kaggle. They used different classification
models: logistic regression (LR), feedforward neural networks, recurrent neural networks
(RNN), long short-term memory (LSTM), gated recurrent units (GRU), bidirectional
RNN with LSTM, a convolutional neural network with max-pooling, and an attention-
augmented convolutional neural network (CNN). In thismodel comparison,GRUachieved
the highest F1-score of 84%, and the performance of CNN was deficient (6%). Similarly,
Saikh et al. (2020) collected the dataset in six domains and analyzed it. They used hand-
crafted linguistic features and support vector machines. They achieved accuracies of
74% and 76% in the AMT and Celebrity News datasets, respectively. Also, they solved
this problem using deep learning approaches. The first model was Bi-directional Gated
Recurrent Unit (BiGRU), and the second was embedded from the language model (ELMo)
and got accuracies of 54% and 68%, respectively.

Granik & Mesyura (2017) worked on unsolicited messages (spam) and fake news. Both
types of messages have grammatical mistakes and false content. Fake news and spam
both have some similarities. The set of words in one spam article is also in fake news and
other spam articles. In this paper, the source dataset was BuzzFeed News. This dataset
was contained in Facebook news posts. They collected data from three news pages (ABC
News, Politico, and CNN). The dataset contained 2,282 posts. After cleaning the data, they
obtained 1,771 articles. This data was classified into three subsets (training, validation,
and testing). For true probability, the threshold value was [0.5; 0.9]. The unconditional
probability of the news article was 59%, and the true probability of the threshold was 80%.
A total number of fake news articles in the dataset contained 46 news articles, and 333 news
articles were successfully classified with 71.73% accuracy. From a total of 927 articles, 699
were successfully classified. The accuracy of true news articles was slightly better than that
of fake news articles. They used 2,000 articles, and this dataset was minimal to improve
performance. The performance would also improve by using stemming and removing stop
words. The total number of true news articles in the dataset contained 881 and 666 news
articles successfully classified with 75.99% accuracy.

Liu & Wu (2018) collected three datasets (Weibo, Twitter15, and Twitter16) from
Chinese and US social media sites. In the Weibo dataset, stories have binary labels, i.e., fake
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and true. On the other hand, in the Twitter15 and Twitter16 datasets, stories contained
four labels (fake, true, unverified, and debunked). The fake news detection modal had four
components: propagation path construction and transformation, RNN-based propagation
path representation, CNN-based propagation path representation, and propagation path
classification. They used 75% of the collected dataset for training and 25% of the dataset for
testing. They gathered user information from their profiles. Furthermore, they found eight
common characteristics between Weibo and Twitter and used stochastic gradient descent
to train the model over 200 epochs. They used three proposed models: propagation path
classification (PPC) (PPC_RNN, PPC_CNN, PPC_RNN+CNN). They compared their
model with the baseline comparison model (DTC, SVM-RBF, SVM-TS, DTR, GRU, RFC,
and PTK). The performance of the PPC_RNN+CNN model was the best among all. The
accuracy of Twitter15 was 84.2%, Twitter16 was 86.3%, and Weibo was 92.1%.

Vogel & Meghana (2020) worked in two languages (English and Spanish). They used the
n-gram feature and support vector machine (SVM) for English and logistic regression for
Spanish. They used the PAN 2020 dataset, which has 300 English and 300 Spanish Twitter
accounts, and each user had 100 tweets. Likewise, they removed stop words by using the
NLTK library. They used 70% of the data for training and 30% for testing. The accuracy
using SVM and the TF-IDF char n-gram feature in English was 73%. Also, the accuracy
using logistic regression and the TF-IDF char n-gram feature in Spanish was 79%.

Ahmed, Traore & Saad (2018) used n-gram and machine learning techniques. They
used two feature extraction techniques (term frequency-inverted document (TF-IDF) and
n-gram) and six classification techniques (Stochastic Gradient Descent (SGD), Decision
Tree (DT), Linear Support Vector Machine (LSVM), Logistic Regression (LR), Support
Vector Machine (SVM) and K-nearest neighbor (KNN)). The TF-IDF feature and LSVM
classifier achieved the highest accuracy of 92%. The dataset contained 25,200 articles, with
an equal number of real and fake documents. They used n-gram features ranging from 1
to 4. In all the non-linear classifiers, DT achieved the highest accuracy of 89%. The linear
base classifiers (LR, LSVM, and SDG) performed better than the non-linear classifiers.
The performance of the model decreased as the number of n-grams increased. KNN and
SVM achieved the lowest accuracy of 47.2%. The performance of SVM with a linear kernel
attained an accuracy of 71%.

Monti et al. (2019) used deep geometric learning for fake news detection. The author
collected datasets from Snopes, Politifact, and BuzzFeed. They extracted features into
four categories: user profile, activity, network and spreading, and content. They used
four layers of CNN graphs and two convolutional layers to predict the probability of fake
and real articles. Furthermore, they used scaled exponential linear units (SELU) in their
network. The dataset was split into training (677), testing (226), and validation (226) for
URL classification. They used the same pattern to split data, like URL classification for
cascade classification. The ROC AUC was 92.70 ± 1.80% URL-wise classification and
88.30 ± 2.74% cascade-wise classification. For URL settings, they split the data into 80%
of URLs for training and 20% for testing. In the ablation experiment for both settings,
two features (user profile and network spreading) had high importance, with nearly 90%
ROC AUC. There was a time t for the first tweet, and t was 0 to 24 h. Each value of the
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t model was trained separately. They also used five cross-validations to reduce bias. The
method improved performance with cascade duration. There was different behavior due to
different characteristics of cascades and URLs. The highest performance was 92.7% ROC
AUC.

Only a handful of researchers have worked on fake news in the Urdu language. Amjad
et al. (2020b)manually collected and verified the datasets. Their dataset contained 500 real
and 400 fake news articles. They used raw frequency, a binary weighting scheme, normalized
frequency, log entropy, and TF-IDF. They got a good performance with the combinations
of character-word 2-grams and 1-grams, reporting a F1-score of 87% for fake news and a
F1-score of 90% for legit news using the AdaBoost classifier. In a different study by Amjad,
Sidorov & Zhila (2020), the researchers developed a new dataset using machine translation
(MT). The model’s performance on the new dataset was not satisfactory compared to the
original. Binary weighting schemes were used for feature normalization (TF-IDF) and
log-entropy (decrease classification performance). They used Support Vector Machines
(SVM) and AdaBoost classifiers. Then they used the dataset of Amjad et al. (2020b), using
the Original Urdu dataset combination of character and word Unigrams, and achieved
excellent results with an F1-score of 84% for fake and a ROC-AUC score of 94%.

Khiljia et al. (2020) utilized generalized autoregressive-based model techniques on a
dataset of 350 real and 288 fake articles. The data was preprocessed using the UrduHack
library, removing mobile numbers, email IDs, URLs, and extra spaces. The XLNet pre-
trainedmodel was used for training, but BERTwas used for fine-tuning. The study achieved
a F1 macro score of 83.70%.

The CharCNN-RoBETa model was proposed by Lina, Fua & Jianga (2020), using a
dataset of 500 real and 400 fake articles. The model represented sentences as word and
character embeddings by concatenating vectors and applying softmax for prediction. Five-
fold cross-validation was used to achieve high accuracy. The model achieved a F1-score
of 99.99% with the RoBERTa+pretrain model, 91.18% with the RoBERTa+pretrain+label
smoothing model, 91.25% with the RoBERTa+charcnn+pretrain model, and 91.41% with
the RoBERTa+charcnn+pretrain model.

Table 1 presents a summary of the comparison of previous work and the features used
for Fake News Classification, where it is verified that the word n-gram.

PROPOSED METHODOLOGY
Our proposed methodology for Urdu fake news classification follows four steps, where the
first step involves feature extraction from the documents. Next, we apply different feature
weighting schemes to the feature vectors. Once weights are assigned, we use state-of-the-art
feature selection techniques to select highly discriminative features and compare them with
our proposed feature selection metric. Finally, the classification model (AdaBoost) is
trained based on these features. This methodology was implemented inWasim (2023), and
Fig. 2 shows the complete process with the details of each component in the following
subsections.
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Table 1 Comparison of previous work and the features used for fake news classification.

No. Paper Features Models Performance

1 Amjad et al. (2020b) TF-IDF, log-entropy, character n-
grams, word n-grams

AdaBoost 84% F1 Fake, 94% ROC-AUC
scores, lower ROC-AUC of 93%.

2 Amjad, Sidorov & Zhila (2020) Word n-gram, char n-grams, and
functional n-grams

AdaBoost Classifier’s Accuracy 87%, F1 Fake 91%

3 Monti et al. (2019) User profile, User activity, Network
and spreading, Content

Convolutional Neural Network
(CNN)

92.7% ROC AUC

4 Humayoun (2022) Word n-gram, character n-gram Support Vector Machine, CNN
Embeddings

F1 macro 66%, Accuracy 72%

5 Rafique et al. (2022) TF-IDF, BoW, Character N-gram,
word N-gram

NF, LR, SVC, GB, PA, Multinomial
NB

Accuracy 95%

6 Amjad et al. (2020a) Character bi-gram, MUCS, BoW,
Random

BERT 4EVER, Logistic Regression Accuracy 90%

7 Amjad et al. (2022) TF-IDF, count-based BoW, word
vector embeddings

SVM, BERT, RoBERta F1-macro 67%, Accuracy 75%

8 Kalra et al. (2022) N/A Ensemble Learning, ROBERTA,
ALBERT, Multilingual Bert, xlm-
RoBERTa

Accuracy 59%

9 Salahuddin & Wasim (2022) TF-IDF Logistic Regression F1 Score 72%
10 Akhter et al. (2021) BoW, IG SVM, Decision Tree, Naive Bayes BA 81.6%, AUC 81.5%, MAE

23.5%
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Figure 2 Proposed methodology with different feature selection techniques for Urdu fake news classi-
fication.

Full-size DOI: 10.7717/peerjcs.1612/fig-2

Feature extraction
We extracted three types of features from our datasets: word n-grams, character n-grams,
and functional n-grams.

Word n-grams: The first feature we extracted from the document is word unigrams.
We use the unigram feature, as we observed that these features have superior performance
and low sparsity compared to higher-order n-grams for fake news classification.

Character n-grams: The second feature extracted from the document is character n-
grams. The purpose of this feature is to capture the syntactic and morphological elements
present in the document. We extracted 2-gram sequences of characters for the character
n-gram feature.

Functional word n-grams: The third feature is functional word n-grams. We extract
these features as previous studies on fake news classification have shown improved
performance using functional words. The functional words include determiners,
prepositions, articles, and auxiliary verbs. The functional word n-grams is a sequence
of these words, omitting the content words, and we use a sequence of 2-gram functional
words.
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Term weighting schemes
Term weighting for the extracted features is vital to improving the performance of fake
news classification. We perform experiments with two different types of term weighting
schemes:

Binary weighting: In this weighting scheme, we use binary feature values. If a feature
is present one or more times in the document, it is assigned a value of 1. Otherwise, it is
assigned the value of zero.

TFIDF weighting: TFIDF is a well-known weighting measure used in information
retrieval and classification. It is calculated as:

TFIDF =TF(t ,d)× log (
N
dfi

) (1)

where TF is the value of a term t’s presence in document d, dfi is the document frequency
of term ti, and N is the total number of documents in the corpus.

Feature selection (FS) methods
Feature selection methods play a vital role in machine classification tasks. We provide
the necessary details of the state-of-the-art feature selection methods for comparison.
We start by defining the true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) of a term that forms the basis of all the feature selection measures,
where TP is the number of documents in the positive class with the term in them, TN is
the number of documents that are not in the positive class and have no term, FP is the
number of documents in the negative class with the term in them, and FN is the number
of documents that are not in the negative class and have no term.

Normalized difference measure (NDM)
Normalized difference measure (NDM) is a new feature selection technique proposed by
Rehman, Javed & Babri (2017). This is based on tpr and fpr where:

tpr =
TP
Npos

(2)

fpr =
FP
Nneg

(3)

where Npos is the number of positive documents and Nneg is the number of negative
documents in the corpus. NDM is based on the following principles:

• An important term should have high |tpr− fpr | value.
• One of the tpr or fpr values should be closer to zero.
• If two terms have equal |tpr− fpr | values, then the term having a lower min (tpr, fpr)
value should be assigned a higher rank where min is the function to find a minimum of
the two values.

Mathematically, NDM is defined as:

NDM =
|tpr− fpr |

min(tpr,fpr)
(4)

Note that if the min of tpr and fpr is zero, a smaller value like 0.01 is used.

Wasim et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1612 10/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1612


Bi-normal separation (BNS)
Forman (2003) proposed bi-normal separation and is defined as:

BNS= |F−1(tpr)−F−1(fpr)| (5)

where F−1 is the standard Normal distribution’s inverse cumulative probability function
or z-score. To avoid the undefined value F−1(0), zero is substituted by 0.0005.

Odds ratio (OR)
The odds ratio depends on the probability of a term’s occurrence or whether that term is
not present in a document. This feature extraction technique only relies on the probability
of the occurrence of terms.

OddsRatio=
TPR(1−FPR)
(1−TPR)FPR

=
TP×TN
FP×FN

. (6)

If fp or fn is zero, the denominator will be zero values (fp∗ fn= 0), which is replaced
with a small value.

Gini
The Gini index was initially used to estimate income distribution across a population. It
is also used as a feature ranking metric, where it is used to estimate the distribution of an
attribute over different classes.

GINI = tpr2×
(

tp
tp× fp

)2

+ fpr2×
(

fp
tp× fp

)2

(7)

Distinguished feature selector (DFS)
Uysal & Gunal (2012) proposed a distinguished feature selector based on the idea that the
terms present in one class only play an important role in discriminating between the two
classes.

DFS(t )=
m∑
i=1

P(ci|t )
P(t̄ |ci)+P(t |c̄i)+1

(8)

where P(ci) is probability of ith class and P(t̄ |ci) is probability of absence of term t when
class ci is given.

Information Gain (IG)
Information gain is widely used to assess the usefulness of features for machine learning. It
measures the decrease in entropy when the feature is given vs. when the feature is absent.
It is defined as:

IG(t )=−
m∑
i=1

P(ci)logP(ci)−

(
P(t )

m∑
i=1

P(ci|t )logP(ci|t )+P(t̄ )
m∑
i=1

P(ci|t̄ )logP(ci|t̄ )

)
(9)

where ci is set of classes in the dataset, P(ci) is probability of ith class and P(ci|t ) is
probability of ith class when term t is present and P(ci|t̄ ) is probability of class ci when
term t is absent.
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Chi square (Chi)
Chi-square (Chi) measures the divergence from the expected distribution, assuming that
the presence or absence of a term is independent of the class label (Forman, 2003). It is
defined as:

CHI = t (tp,(tp+ fp)Ppos)+ t (fn,(fn+ tn)Ppos)+ t (fp,(tp+ fp)Pneg )+ t (tn,(fn+ tn)Pneg )(10)

where t (count ,expect )= (count − expect )2/expect , Ppos is the probability of the positive
class and Pneg is the probability of the negative class.

Propose feature selection measure: normalized effect size (NES)
According to Sullivan & Feinn (2012), the effect size is used in medical research to
determine the magnitude of the difference between two groups. Inspired by their idea,
we define normalized effect size (NES) as the absolute mean difference between a term’s
TF-IDF score distribution in positive and negative classes normalized by the sum of their
standard deviation. NES is a global weighting technique for discriminative feature selection,
mathematically defined as:

NES=
|µ+−µ−|

σ++σ−
(11)

where:

• µ+ is the mean of the TFIDF score of a term across all the documents labeled as positive
• µ− is the mean of the TFIDF score of a term across all the documents labeled as negative
• σ+ is the standard deviation of the TFIDF score of a term across all documents labeled
as positive
• σ− is the standard deviation of a TFIDF score of a term across all documents labeled as
negative

Classification model
Previous studies show that ensemble learning approaches, such as bagging and boosting,
outperform the other algorithms for Urdu fake news classification. Therefore, we use
the adaptive boosting technique, which boosts multiple serial estimators, to improve
the classification performance. We experimentally set the hyperparameter values for alpha
(learning rate) and the number of estimators. The value of the learning rate hyperparameter
was set to 0.1, and the number of estimators for AdaBoost was set to 300.

EXPERIMENTAL EVALUATION
This section discusses the corpus used to evaluate the proposed methodology for evaluating
different feature selection metrics. We use a well-known accuracy measure to analyze and
compare feature selection measures. The results and comparison are presented in the last
subsection.

Evaluation corpus
Weuse two datasets to evaluate the performance of our proposed feature selectionmeasure,
namely the Bend the Truth (BET) dataset (Amjad et al., 2023) and the Urdu Fake News
(UFN) dataset (Akhter, 2023).
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Table 2 The number of real and fake news documents present in each category for the BET dataset.

Category Real Fake

Business 100 50
Health 100 100
Showbiz 100 100
Sports 100 50
Technology 100 100
Total 500 400

Table 3 Classification performance on feature ranking metrics with varying number of terms on UFN
dataset.

Feature selection measures

No. of terms NDM BNS OR Gini DFS IG CS NES

100 0.78 0.77 0.63 0.55 0.85 0.84 0.84 0.88
200 0.78 0.8 0.65 0.63 0.87 0.86 0.85 0.89
300 0.8 0.83 0.64 0.72 0.87 0.87 0.86 0.90
400 0.8 0.84 0.67 0.76 0.86 0.86 0.87 0.89
500 0.81 0.85 0.67 0.81 0.88 0.87 0.87 0.89
1,000 0.85 0.86 0.73 0.84 0.89 0.89 0.88 0.89
1,500 0.86 0.87 0.74 0.87 0.89 0.88 0.89 0.89
2,000 0.85 0.88 0.75 0.88 0.88 0.88 0.88 0.89

The BET dataset comprises five categories: business, health, showbiz, sports, and
technology. The corpus contains 900 documents (500 real and 400 fake new documents).
The statistics of each category with the number of real and fake news are shown in Table 2.

The Urdu Fake News (UFN) dataset contains 1,032 real and 968 fake news stories,
representing 2,000 stories. The dataset does not provide any categories and is just a
translation of the fake news English corpus. We use 65% of the data for training and 35%
for testing purposes for both datasets.

Results and comparison
This section presents the performance of different feature selection metrics on the BET and
UFN datasets. We compare the proposed method with seven well-known feature selection
measures. These feature selection measures are evaluated on different numbers of terms
selected, from 50 to 2,000 top terms. The section also compares the results of the proposed
method with previous results on the same datasets.

Table 3 shows the results of the performance of the AdaBoost classifier for a different
number of terms selected by the feature selection measures in our study compared with
the proposed feature selection measure. The proposed measure performs better than all
other feature metrics over all the different numbers of terms. The results are also depicted
in Fig. 3.

Surprisingly, both binary and TF-IDF scores perform similarly on the UFN dataset, as
shown in Fig. 3, attaining an accuracy of 89%. The odds ratio (OR) performance is worst
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Figure 3 Feature selection measure applied to the UFN dataset.
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Table 4 Classification performance on feature ranking metrics with varying number of terms on BET
dataset.

Feature selection measures

No. of terms NDM BNS OR Gini DFS IG CS NES

100 0.69 0.85 0.74 0.51 0.88 0.88 0.88 0.87
200 0.81 0.78 0.8 0.8 0.86 0.84 0.85 0.88
300 0.82 0.76 0.76 0.81 0.85 0.85 0.85 0.86
400 0.83 0.73 0.78 0.84 0.87 0.83 0.86 0.86
500 0.85 0.77 0.79 0.86 0.87 0.87 0.87 0.87
1,000 0.84 0.85 0.82 0.86 0.87 0.87 0.87 0.85
1,500 0.85 0.85 0.83 0.87 0.85 0.87 0.86 0.85
2,000 0.84 0.84 0.84 0.85 0.85 0.87 0.87 0.85

across all different numbers of terms. All the other measures could not perform well in
selecting discriminative terms for fake news classification.

Table 4 shows the feature selection metrics results compared with the proposed
methodology. It shows that our proposed method performs well for 100, 200, and 300
features, achieving the highest accuracy of 88% with 200 top features. Similar to our
observation for the UFN dataset, the binary and TF-IDF weightings achieved identical
results, as shown in Fig. 4.

We compare the performance of feature weighting techniques without any feature
selection metric and compare their performance when our proposed method is used,
as shown in Fig. 5. It shows that performance significantly improves when our proposed
feature selection metric is used for the classification task on both datasets. The performance
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Figure 5 Comparison on BET and UFN dataset for simple weighting compared with the proposed fea-
ture selection metric (NES).

Full-size DOI: 10.7717/peerjcs.1612/fig-5

on the BET dataset is low for all weighting measures and the proposed feature selection
measure. The reason for this is the small dataset size.

We also compare the performance of the proposed method and the final results with
previous state-of-the-art results on the same dataset. Table 5 compares the achieved
results to those of prior studies. The results show that the feature selection metric-based
methodology performs better on both datasets.
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Table 5 Comparison of the proposed method with the previous studies.

Study BET dataset UFN dataset

Salahuddin & Wasim (2022) 72% NA
Amjad et al. (2020b) 83% NA
Akhter et al. (2020) 83% 89%
Proposed approach (NES) 88% 90%

CONCLUSION
The findings of this study demonstrate the critical need for effective feature selection
techniques for low-resource languages such as Urdu. The scarcity of language resources
requires effective feature engineering and selection techniques, and machine learning
approaches can be effectively applied to Urdu fake news classification. The study presented
a novel feature selection measure (NES) to select discriminative features for the Urdu fake
news classification. Our proposed method ranked the discriminating terms for filtering,
decreasing the data dimensionality and improving the classification performance, as
evident from the experimental results. The binary and TF-IDFweightingmetrics performed
similarly, and we used them as our baseline. To compare and analyze the performance
of our feature selection model, we compared it with seven well-known feature selection
methods.

Moreover, we evaluated the performance of our proposed model on the BET and UFN
datasets. Our analysis of both datasets showed that our proposed approach works well in
finding highly discriminative features to classify the Urdu news. Our proposed approach
achieved an accuracy of 88% and 90% on the BET and UFN datasets, respectively. In the
future, the proposed feature selection model can also be used for other text classification
problems. Moreover, we plan to work on language resources to facilitate downstream tasks
for the Urdu language.
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