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A B S T R A C T

Every year, the percentage of people affected by cardiovascular diseases increases drastically. Out of them,
a heart attack is the most prominent and painful disease. According to the World Health Organization,
approximately 17.5 million people lose their lives yearly due to this disease, which is alarming. The remarkable
advancement in wearable technology has opened doors to propose many effective smart solutions to tackle
this disease efficiently. Furthermore, early diagnosis of heart attack proliferates the compatibility of meditation
and expedites the diagnostic recommendation by clinical experts. Considering this problem’s sensitivity, we
proposed a wearable smart and early Heart Attack diagnosis system and adopted a decentralized computational
phenomenon using hybrid computing architecture. It reflects better response time and minimal latency to
detect a heart attack in its preliminary stage for homage patients. The proposed system can monitor and
trigger the patient current heart status classified on required heart diagnosis parametric sensors assembled on
the patient’s body with the help of an android application. In this study, three models are developed using
the Support Vector Machine (SVM), Adaptive Boosting (AdaBoost), and Random Forest (RF) algorithms for the
classification. Performance measures: accuracy, error rate, and response time are used to evaluate the proposed
system. Our research findings promise that it can be implemented on patients diagnosed with the risk of a heart
attack to monitor their heart health remotely and prevent sudden heart failure without impeding a person’s
everyday life.
1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death glob-
ally [1–3]. CVDs are disorders in blood vessels and the heart causing
coronary heart disease, rheumatic heart disease, cerebrovascular dis-
ease, congenital heart disease, and other conditions [4]. According to
a world health organization survey, 17.5 million people die due to
cardiovascular diseases, approximately 32% of all deaths worldwide.
Every year about 85% of all CVD deaths occur just because of heart
attacks and strokes [5]. Most CVD diseases can be prevented by ad-
dressing behavioral risk factors like physical inactivity, tobacco usage,
unhealthy diet, usage of alcohol, obesity, and many others. But it is
essential to monitor and detect CVD diseases at their early stage so
that proper medication and counseling can begin [6,7]. For this, it is
imperative to take protective measures for a person who is supposed to
be at high risk of disease [8].
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A heart attack and stroke are often the first signs of underlying
disease. Vital signs of heart attack and stroke are shortness of breath,
a cold sweat, nausea, faintness, numbness or pain of the left arm, face,
and leg, especially on one side of the body, back or jaw pain, discomfort
or pain in the center of the chest and severe headache [9]. This work
concentrates on monitoring and predicting heart attack, a leading cause
of global death. In addition, studies revealed that the life expectancy for
people with cardiac vascular diseases might get curtailed by as much
as 15 years.

Policy-makers and technology companies are enthusiastic about the
potential of digital technologies to transform healthcare and bring
expertise to the patient rather than the other way around. It allows
for earlier identification of de-compensation and better adherence to
lifestyle changes, medication, and interventions [10].

Monitoring health parameters using the Internet of Things (IoT) is a
trend for future well-being. Sensors are used to collect and monitor the
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real-time health parameters of individuals [11]. Collecting, processing,
and analyzing health parameters help to predict the risk factors and
tackle the diseases at an early stage [12,13]. In correlation to the
above, advancements in IoT wearable devices help patients monitor
and control their health metrics. Their availability aids the patients in
continually checking their health parameters. With the help of these
devices, patients can be notified about the reputation of their health
condition at any time. Wearable IoT technology is increasing day by
day. It provides many solutions in healthcare, decreases the disease
rate, and improves the quality of life [14].

Mobile health technologies collect real-time data of patients and
embed decision support systems with mobile devices to provide health
services remotely. Mobile health technologies improve the live moni-
toring of patients and prediction of diseases without visiting the health
centers [15–20]. Machine learning algorithms can benefit prospective
clinical trials to compare state-of-the-art procedures for risk strati-
fication, precision diagnostics, and personalized medicines [21–23].
Researchers proposed various machine learning models capable of
determining if a person has coronary heart disease (CVD), but still
implementation in some systems is missing, and higher accuracy can
be achieved [24–27].

This research aims to find early risk prediction of cardiac arrest
based on real-time data collected from an individual using sensors
and equipment. We designed and developed an Internet of Things
(IoT) based smart wearable system that can monitor the heart health
status of a person at low or high risk of cardiac arrest or stroke. The
proposed system enables a person to monitor, predict and control a
heart attack at its early level remotely. Furthermore, it can save them
from any unpleasant situation to occur. Our significant contributions
(key objectives) are summarized as follows:

1. To monitor and collect an individual’s vital signs of CVD in real-
time using wearable multisensory and Internet of Things (IoT)
based smart equipment.

2. Early predict cardiac arrest by applying relevant machine learn-
ing algorithms.

3. To classify any individual’s cardiac arrest risk among three
categories: less critical, more critical, and normal.

4. Designing and developing an Android application for remote
supervision, heart health monitoring, and observation purposes.

2. Literature review

This section discusses the existing approaches and systems to predict
and diagnose heart diseases using several techniques and datasets with
various features and classification techniques.

The expansion in commonness for wearable advancements has ex-
posed the hinged door for an Internet of Things (IoT) answer for medi-
cal administrations [28–31]. Perhaps one of the most transcendent con-
siderations that are clinical today could be the vulnerable perseverance
motion of out-of-crisis facility sudden cardiovascular breakdowns [32].
Authors in [33] present a multisensory framework, embedded product
structure, and a Low Energy (LE) Bluetooth correspondence module
to build up ECG and inward warmth level data employing wireless
within a familiar atmosphere. Their evaluations present using signs
working with AI techniques for sensor data examination for unex-
pected cardiovascular breakdown and scene prediction that can also
be coronary. The researchers explain the progression of a framework
subject to demand that is familiar with the heart dataset for the very
early study of heart-based afflictions. The different attributes related
to the explanation behind heart problems are via sexual direction, age,
chest torture kind, circulatory stress, glucose, etc., which can anticipate
early indications of disease that is coronary [34]. Authors designed an
intelligent and smart stethoscope to collect heart beat rate remotely
and predict common cardiac diseases with trained machine learning
models [35].
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In [36], authors developed a system to diagnose coronary heart
disease (CVD) by applying Adaboost, ANN, and Decision Tree. A hybrid
model was proposed to find the risk of cardiac events in hypertension
patients employed with a convolutional neural network (CNN) and a
long short-term network. The model took ECG signals as input [37].
Tama et al. [38] designed a model to diagnose heart disease using
random forest (RF), extreme gradient boosting, and gradient boosting.
Mienye et al. [39] designed a model to diagnose coronary heart disease
(CVD) by using an artificial neural network (ANN). Performance was
optimized using a sparse auto-encoder. Rani et al. [40] developed a
hybrid model for a decision support system to assist in the detection
of coronary heart disease (CVD) by using Support vector machine
(SVM), Naïve Bayes, Random forest (RF), logistic regression (LR) and
Adaboost. Genetic algorithm (GA) and recursive feature elimination
methods were used for feature extraction from the patient’s clinical
parameters dataset available at the UCI ML repository. Amit and Wil-
son [41] applied various machine learning methods: k-nearest neighbor
(KNN), Decision Tree (DT), random forest (RF), multilayer perceptron
(MLP), Naïve Bayes (NB), and Linear-Support vector machine (L-SVM)
to produce data. They designed IoT based framework to predict coro-
nary heart disease early. Zahra et al. [42] contributed by designing a
device to detect indicators or vital human signs for heart attack. The
system captured real-time parameters such as respiratory rate, ECG,
and body temperature. If an indication of a heart attack is detected
in the parameters, the system generates notifications and alerts. The
approach reflects higher performance.

‘‘PatientsLikeMe’’ [43] did introduce the very first community on-
line in 2018, and also, the absolute goal of the community was to
tune in to clients to recognize the measures of outcomes, treatments,
and symptoms. ‘‘DailyStrength’’ [44] is just a platform where social
clients discuss the battles and successes they face while working with
heart diseases. Limitations of ‘‘PatientsLikeMe’’ and ‘‘DailyStrength’’ are
that ‘‘DailyStrength’’ does not involve research institutes nor provides
a mobile application, and, in ‘‘PatientsLikeMe’’, clients share their
experiences only. In [45], authors highlighted a neuro-fuzzy system to
disappoint acknowledgment that is coronary. The neuro-feathery struc-
ture was arranged with eight data industries plus one yield industry.
The information and knowledge factors are beaten; exercise, circulatory
stress, age, cholesterol, chest torture type, glucose, and sex. The yield
acknowledges the number of risks of patients, which are requested into
four fields interesting low, low, high, and high.

Nausea is coronary functions as the fundamental wellspring of death
around the globe. The prosperity area contains covered information
that can be huge in selecting today. Data mining figures, for instance,
J48, Naïve Bayes, REPTREE, CART, and Bayes web, are applied in this
evaluation for predicting disappointments that can be coronary. The
evaluation outcome shows a precision of 99%. Data mining engages
the success zone to envision plans into the dataset [14]. The summary
of related research efforts shown in Table 1.

3. Proposed methodology

The dominance of the proposed system depends on portable devices
to design low-power modules with utmost liberty for users to provide
them ease. In our proposed system, we have used multiple lightweight
sensors, i.e., Electrocardiogram (ECG), Pulse oximeter, Galvanic skin
response (GSR), and Infrared (IR) Temperature sensor. By adopting the
architecture of the Internet of Things (IoT) domain, we developed a
sensory-embedded module to perform a large set of experiments to
evaluate and distinguish between normal and abnormal cardiac ar-
rest patterns. Testimonials wear the sensory-embedded module, which
continuously monitors the user’s ECG, Pulse oximeter, GSR, and IR
temperature sensor readings.

The proposed system is divided into three major layers, i.e., the
sensory input, connectivity, and processing platform layers, as shown
in Fig. 1.
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Table 1
Summary of related research efforts 1A.

Study Objective Algorithm Parameters Accuracy Dataset Limitations

[11] Measures ECG and
pulse rate to monitor
patients’ health

KNN, Naïve
Bayes

N/A 80% UCI repository
database

High power
consumption, High
latency, Not portable,
app not developed

[46] To early diagnose the
risk of cardiovascular
disease

KNN, Naïve
Bayes, AdaBoost,
RF, LR

Age, Weight, height,
gender, cholesterol level,
hypertension, alcohol,
diabetes, family history of
CVD, stress, exercise,
smoking, healthy diet

93.8% Collected dataset
from a tertiary
hospital in south
India

Did not implement any
system or app.

[42] To develop a device to
monitor and detect
early detection of heart
attack

If-then-else
manner

Heart Rate (BPM), Oxygen
Saturation (SpO2), Body
Temperature, Respiration
Rate-RR (BrPM)

N/A N/A System performance is
not evaluated.
Furthermore, the
system is not trained
on any dataset.

[14] Main idea is to monitor
the patient’s health
using IoT devices

Naïve Bayes,
SVM, KNN

N/A 78.5% Heart Disease UCI High power
consumption, not
portable, high latency,
app not developed

[47] Measures ECG and
pulse rate to monitor
patients’ health

SVM, Naïve
Bayes

N/A 72% UCI- ML repository High power
consumption, high
latency, Not portable,
System not developed

[48] To predict CVD quickly
and accurately

NB, DT, KNN,
XGB, RF, SVM,
Stacked
Ensemble

Age, Gender, Cholesterol,
Blood Pressure

88% Kaggle and UCI
Machine learning
Repository

Neither implemented
nor developed any
system

[49] To detect and recognize
cardiac arrest in
patients at early using
ML model.

ANN, RF,
XGBoost, SVM,
Naïve Bayes,
Decision Tree

Age, Gender, Weight,
Height, BMI, SBP, DBP,
Oxygen Level (SPO2%),
HR (beats per minute)

98% Real-time dataset by
using sensors

Only detect survival
probability with
gender-based and
age-based factors.

[22] To classify and compare
the performances of ML
methods for predictive
classification of
coronary heart disease

SVM, LR, RF Age, gender, chest pain
type, BP, serum
cholesterol, fasting blood
sugar, max heart rate,
resting ECG results,
exercise-induced angina,
ST slope

92% IEEEDataPort
database [50]

Neither implemented
nor developed any
system, hardware or
app

[51] To monitor a patient’s
heart status

SVM, LR, RF,
MLP, KNN, DT,
Naïve Bayes

ECG, EEG, EMG, BPv 96% Hungarian Heart
Disease Dataset [52]

Processing Delay

[53] To diagnose a person
has cardiac disease

Naïve Bayes, DT,
RF, AdaBoost

Age, Gender, FBS, Chol,
Exang, BP, Chest pain,
Slope, Ca, Max Heart Rate,
Defect Type, ECG

95.47% UCI Repository Not implemented any
system
3.1. Sensory input

In the sensory input layer, the sensory data is gathered from the sen-
sors like ECG, Pulse oximeter, IR temperature sensor, and GSR. More-
over, the IR temperature sensor provides two types of readings, i.e., am-
bient and object temperature values. The pulse oximeter provides the
heart rate and oxygen saturation (SPO2) parameters.

3.2. Connectivity layer

In this layer, the data collected from the embedded sensory module
is received as input to the controller, which will be sent to the IoT
analytics platform (ThingsSpeak) via the IEEE 802.11 WiFi connectivity
module. The Thing-Speak gathers the data in the form of ’.Jason’
or ’.csv’ file format. It further sent the dataset file to the processing
platform layer for the implementation of pre-processing and Artificial
Intelligence approaches.

3.3. Processing platform

The collected data set goes through multiple stages in the processing
platform layer, i.e., pre-processing, feature extraction, classification,
3

comparison with the trained model, and output platform.
3.3.1. Pre-processing
In this section, gathered data is pre-processed for the removal of

data anomalies like data redundancy, data cleaning, data transforming,
and data quality assessment.

3.3.2. Features extraction and classification
The processed data is further classified through multiple supervised

machine learning models, i.e., Support vector machine (SVM), Random
Forest tree, and AdaBoost. Out of them, our data set best performs with
the Random Forest classification model. Finally, Google colab platform
is used for the utilization of Free GPU and TPU.

3.3.3. Comparison with trained model
The test data is received from the sensors via ThingSpeak through a

real-time WiFi connectivity medium. It further compares the test data
with the trained model to get the appropriate cardiac arrest health,
whether it is a normal, less critical, or more critical stage. Finally, the
recommended output is shown on the Android application via IEEE
802.11 WiFi connectivity standard to alert the patient members.

The ultimate purpose of the proposed system is only to trigger an
alert if some irregular patterns in the heart rate occur, which affect

the temperature, pulse rate, and sweating level to reach a determined
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Fig. 1. Block diagram of SEHAD-HC.
Fig. 2. Dataset distribution in terms of instances.

threshold. The warning is transmitted to the doctor monitoring the
patients and the patient’s acquaintance as an alert message, as shown
in Fig. 1.

3.4. Dataset Acquisition (DAQ)

By random selection, anonymized medical records of heart patients
and healthy persons were collected from a tertiary hospital in East Pak-
istan. Personal details were not collected to ensure the data privacy of
participants. The dataset used in our research [54] spans 1000 instances
belonging to the participants between the ages of 22 to 87 years. In this
study, the ethnicity of the data is observed to be Asian. The dataset
spans three labels for the target class: less critical patient ‘1’, more
critical patient ‘2’, and healthy person ‘3’. The persons who visited the
hospital for medical checkups and were not diagnosed with any heart
disease but had diabetes and high blood pressure are referred to as less
critical patients. Out of 1000 records, 327 instances belong to class 1,
344 to class 2, and 329 records to class 3, shown in Fig. 2, ensuring
a balanced dataset and not skewed to the favor of any specific class.
The average age of less critical patients is 60 years, the average age of
4

more critical patients is 49, and the average age of healthy persons
is 40. The dataset’s attributes are Age, ECG, Pulse Rate, Peripheral
Capillary Oxygen Saturation (SpO2), Galvanic Skin Response (GSR),
Diabetic/Non-Diabetic, Body Temperature, and surrounding tempera-
ture. We split the dataset into two subsets, i.e., training subset and test
subset, as per the 80-20 rule, as shown in Table 2. Fig. 3 reflects the
sample distribution regarding attributes.

3.5. Algorithmic analysis

Algorithm 1, represents the pseudo-code of the proposed method-
ology for cardiac arrest monitoring in real time. Initially, all sensors
embedded in the cardiac monitoring belt acquire real-time patient
data. The sensory information is passed to Thing Speak for real-time
data storage and fetching if the sensory values are greater than ‘0’.
Afterward, the data is passed to the cloud processing platform for
implementation of artificial intelligence (AI) algorithms. Then, the most
appropriate ML classifier is trained on the acquired sensory data set,
i.e., in our Random Forest, to alert the patient acquaintances in real
time. We have used five sensors, i.e., ECG (ES), IR Temperature (IS),
Galvanic Skin Response (GS), Pulse Sensor (PS), and SPO2 (SP), for
patient heart health monitoring. Based on them, we have classified
Cardiac health into three classes, i.e., Less Critical, More Critical, and
Normal. It ultimately sent the patient’s heart health status to their
registered acquaintances through an Android application.

Moreover, each cardiac health status class computes based on five
sensor values. Each sensor has threshold values under specified stages,
as shown in Table 3. Furthermore ’Less Critical’ cardiac health stage
depicts the proposed system seeing some abnormalities in the patient’s
heart but still not on a serious note. Prompt action can cure a patient
from danger. Similarly, the ’More Critical’ stage requires a more rapid
response else the patient can lose their life. Finally, we do not have to
worry about the ‘Normal’ stage. In this stage, a person’s heart is healthy
without any anomalies.

3.6. Experimentation

The experimental setup shown in Fig. 4 consists of three major
components: Arduino, Thingspeak, and Google Cloud Platform, where
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Fig. 3. Dataset distribution concerning parameters.
Table 2
Details of training and test subsets.

Class Training subset Test subset Total records

Less critical
patients

261 66 327

More critical
patients

275 69 344

Normal persons 263 66 329
Total records 799 201 1000

Thingspeak is an aggregation and analytics platform that allows aggre-
gate analysis of the live data stream. At the same time, Google Cloud
is a cloud platform, and Arduino is an open-source major hardware
and software platform. These platforms complement a heart attack
prediction system. In this work, we have developed a method for testing
purposes. We have used 5 biomedical sensors ECG, Spo2, Pulse rate,
Galvanic skin response sensor, and IR temperature sensor, to monitor
heart status. The dataset was collected manually from the hospital pa-
tients. The functional details of these components are given in Table 3
with their normal and abnormal range. In the case of ECG, the normal
range should be between 55–75 ms, whereas the abnormal range should
be between 80–145 ms. The Spo2 normal range is between 90%–100%,
whereas the abnormal range is below 80%. In the case of pulse rate,
the normal range should be between 60–100 bpm, whereas abnormal
ranges from 100–180 bpm. The normal range of GSR is 980 μS, and the
abnormal range is above 240–350 micro-Siemens (μS).

3.6.1. Hardware components
Table 3 shows the sensors used in our system, and their ranges

show the condition of the patients. For example, in the table below,
the values range from less critical to more critical for patients and
normal persons. The dataset was collected manually by visiting the
hospital. The components used for experimentation include Arduino,
Thingspeak, and Google Cloud platform. We used 4 IoT sensors (ECG,
IR temperature sensor, heart rate sensor, GSR) placed in a wearable
jacket. The data from sensors is collected through an Arduino controller
and sent to Thingspeak for aggregation and analytics. The Google Cloud
platform is used for training, and the model is saved for prediction.
After the prediction is made, a push notification will be generated on
the Android application. The push notification will notify about the
5

Algorithm 1 Algorithmic View of the Proposed System
Input: ECG Sensor (ES), IR Temperature Sensor (IS), GSR Sensor (GS),

Pulse Sensor (PS), and SPO2 (SP)
Output: Alert message on Android Application
1: Initialize All sensors value set to zero
2: if 𝐶ℎ𝑒𝑐𝑘_𝑠𝑒𝑛𝑠𝑜𝑟𝑠_𝑣𝑎𝑙𝑢𝑒 > 0 then
3: Input passed to Real-Time IoT Thing-Speak Cloud Analytics

Platform
4: end if
5: repeat
6: Data passed from Thing-Speak to Google Cloud Processing

Platform for Artificial Intelligence (AI) implementation
7: Data passed to AI Platform through cloud functions
8: Classification Algorithm = Random Forest
9: Prediction forwarded to Android through the cloud via

Real-Time Database
10: if (𝐸𝑆 ≥ 80 ∧ 𝐸𝑆 ≤ 100) ∧ (𝐼𝑆 ≥ 99) ∧ (𝐺𝑆 ≥ 450 ∧ 𝐺𝑆 ≤

650) ∧ (𝑃𝑆 ≥ 100 ∧ 𝑃𝑆 ≤ 130) ∧ (𝑆𝑃 < 80) then
11: Less Critical
12: else if (𝐸𝑆 ≥ 100 ∧ 𝐸𝑆 ≤ 145) ∧ (𝐼𝑆 ≥ 99) ∧ (𝐺𝑆 ≥ 240 ∧ 𝐺𝑆 ≤

350) ∧ (𝑃𝑆 ≥ 130 ∧ 𝑃𝑆 ≤ 180) ∧ (𝑆𝑃 < 60) then
13: More Critical
14: else if (𝐸𝑆 ≥ 55 ∧ 𝐸𝑆 ≤ 75) ∧ (𝐼𝑆 ≥ 95 ∧ 𝐼𝑆 ≤ 98) ∧ (𝐺𝑆 >

980) ∧ (𝑃𝑆 ≥ 60 ∧ 𝑃𝑆 ≤ 100) ∧ (𝑆𝑃 ≥ 60 ∧ 𝑆𝑃 ≤ 100) then
15: Normal
16: else
17: Junk values
18: end if
19: Android receives Alert Message based on Prediction
20: until 𝐶𝑎𝑟𝑑𝑖𝑎𝑐_𝐻𝑒𝑎𝑙𝑡ℎ_𝑆𝑡𝑎𝑡𝑢𝑠 ≠ 𝑁𝑜𝑟𝑚𝑎𝑙

patient’s heart health status, whether the condition is less critical, more
critical, or normal, as shown in Fig. 5.

4. Performance metrics

Performance metrics are part of every machine learning pipeline.
Statistical validation of our proposed system and evaluation parameters
used for the proposed waste classification architecture are as follows:
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Fig. 4. Experimental setup.
Fig. 5. Patient’s heart health status.
Table 3
Sensors ranges.

Sensor Less critical More critical Normal Description

Electrocardiogram
(ECG)

80–100 ms 100–145 ms 55–75 ms ECG is used to generate an
electrocardiogram of heart
activity during a particular
time interval.

Pulse sensor
Max30100

100–130 bpm 130–180 bpm 60–100 bpm Pulse sensor calculates the
total number of heartbeats
per uni time.

Spo2 <80% <60% 80%–100% Spo2 measures the oxygen
saturation (SO2) in blood.

MLX 90614 99 ◦F and
above

99 ◦F and
above

95–98 ◦F This IR temperature sensor
measures the body and its
surrounding temperature.

Galvanic Skin
Response (GSR)

450–650 μS 240–350 μS Above 980
μS

GSR is used to check the
body sweating level.
4.1. Percentage system accuracy

The system’s performance can be measured by calculating the accu-
racy parameter of the system. The system accuracy (AC) is the ratio of
true positive predictions for the complete dataset. Mathematically it is
6

represented in Eq. (1)

𝐴𝐶 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃 )
∗ 100 (1)

Here TP is true positive, TN is true negative, FN is false negative,
and FP is false positive.
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Fig. 6. Accuracy comparison b/w machine learning classifiers.
Fig. 7. Average system response w.r.t no. of trained model iterations.
4.2. System response time

It is a sum of transmission time, propagation delay, and overhead
time. However, the overhead time is the overhead latency factor based
on the total number of attempts for prediction. Mathematically, it is
represented in Eq. (2):

𝑆𝑅𝑇 = 𝑇𝐷 + 𝑃𝐷 + 𝑂𝑇 (2)

Here TD is the transmission time, i.e., 1.5 s, PD is the propagation
delay, i.e., 2.5 s, and OT is overhead time, i.e., ‘X’ sec. However, ‘X’ is
2, 4, 6, 8, 10, . . . , sec.

4.3. Percentage system error rate

This evaluation parameter shows the percentage error rate in the
proposed system SEHAD-HC concerning multiple ML classification
models. It is calculated by taking a difference in the system accuracy
parameter from the maximum value, i.e., ‘1’. The resulting value
is multiplied by 100 to get the final result in the desired format.
Mathematically, it is represented in Eq. (3):

𝑆𝐸𝑅 = (1 − 𝐴𝐶) ∗ 100 (3)

4.4. Performance evaluation

The performance system analysis parameters are thoroughly ana-
lyzed and illustrated in this section.
7

4.4.1. Accuracy comparison
Fig. 6 depicted the accuracy of the proposed system concerning mul-

tiple ML classifiers. We have tested multiple ML classification models
on the proposed (SEHAD-HC) cardiac arrest monitoring system. On
the top of the three, we have Random Forest, SVM, and AdaBoost,
respectively, reporting the maximum accuracy with a Random For-
est classifier, i.e., 97.81%. Afterward, we have SVM and AdaBoost,
which are 91% and 85%, respectively. The overall accuracy results are
phenomenal as tested in a real-time environment.

4.5. System response time

The overall response time of the proposed system mainly depends on
the total no. of iterations used for the ML training model. However, it
ultimately affects the whole system’s performance. As shown in Fig. 7,
system response time increases with the increase in the no. of iterations
which ultimately enhances the proposed system accuracy. In the first
iteration, the overall system response time is 6̃ s, i.e., 1.5+2.5+2. Here,
the transmission delay is 1.5 s, propagation delay is 2.5 s, and overhead
is equal to 2 s, respectively. In the second iteration, the system response
time is 10 s, i.e., (1.5+2.5+4). As the number of iterations increases,
the overhead increases with the factor of 2 s It is the time required to
complete one iteration to train the ML model.

Similarly, the system’s accuracy increases as we increase the num-
ber of iterations. At iteration 1, system accuracy is 97.81%, system
accuracy is slightly at iteration 2, i.e., 98%, and the phenomenon
continues with the iterations increment unless iteration 8. At this point,
the system accuracy almost becomes static, i.e., 99%. Irrespective of
the benefit we got in system accuracy, we have to pay the overhead
response time price with the number of iterations increasing.
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Table 4
Tabular analysis of the proposed w.r.t existing approaches.

Ref. Objective Cloud Supp. APP. Supp. IoT Supp. Portable Accuracy Limitations

[11] Monitor Heart
status by ECG
and pulse rate

✗ ✗ ✗ ✗ 80% High power
consumption,
High latency

[14] Heart check
monitoring using
E shield

✗ ✓ ✓ ✓ 78.5% High power
consumption,
high latency

[51] Monitor Heart
health by ECG,
EMG BPv, EEG

✗ ✗ ✗ ✗ 96% High
Processing
Delay, High
resource
utilization

Proposed Monitor Cardiac
Arrest by ECG,
GSR, SPO2,
pulse rate,
and IR sensors

✓ ✓ ✓ ✓ 97% –
Fig. 8. Error rate in-accuracy w.r.t ML classifiers.

Moreover, our proposed smart system also tackles a time-critical
problem. We cannot afford the response time overhead penalty as it
drastically affects the overall system performance. So, considering the
real-time environmental fact, we trained the ML model in our proposed
(SEHAD-HC) system on a single iteration respectively.

4.6. Percentage system error rate

Fig. 8 shows the proposed system inaccuracy concerning multiple
ML classifiers. As discussed in Section 4.4.1, the minimal error rate
factor is achieved through the random forest classification model,
i.e., 2.19%. Afterward, we have an SVM classifier through which we
got an error rate of 9%, and the maximum error rate is calculated by
the AdaBoost classifier, i.e., 15%, respectively. So, the most realistic
and reliable classification model in our proposed smart cardiac arrest
monitoring system is considered a random forest.

5. Pareto analysis

Fig. 9 and Fig. 10 show the Pareto analysis done concerning sen-
sors used and dataset attributes, respectively. This statistical technique
shows which input factor has the most significant impact on an out-
come. Five sensors have been used as input. Among these sensors, ECG
has the highest impact on results generated, which is 29% as in Fig. 9.
The bar at ECG shows the frequency that 50 persons having abnormal
ECG have more chances of heart attack than other parameters. After
ECG, pulse rate reasonably impacts results, i.e., 26%. The percentages
of ECG and pulse rate collectively make a 55% impact on results.
Then Spo2 has an impact on the outcome in 21%. Then, the GSR
has an impact of 15%. Finally, according to an analysis done and the
8

Fig. 9. Pareto analysis concerning sensors.

Fig. 10. Pareto analysis concerning parameters.

graph shown below, it is seen that the IR temperature sensor has the
most negligible impact on results. All these sensor impact percentages
collectively make a 100% chance of heart attack.

Fig. 10 shows the impact on outcomes w.r.t attributes like Age
factor, diabetic and non-diabetic patients. The graph shows that Age
factor and diabetic attributes have the highest impact on an outcome,
i.e., 84%. The more the age, the more the chance of a heart attack, and
if the patient has diabetes, they are more likely to have the possibility of
a heart attack. At the same time, the non-diabetic attribute has the most
negligible impact on results, i.e., 16%. The bars show the frequency of
the attributes that what people think of and which attribute the highest
impact has on an outcome.
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6. Conclusion

In this study, we proposed and implemented IoT-based, portable,
wearable, and smart system for cardiac arrest monitoring using hybrid
computing. Moreover, the immediate response to cardiac arrest moni-
toring can save valuable lives and consult physicians before time. We
created an integrated IoT-based smart and cardiac arrest monitoring
system to monitor and continuously predict heart pattern abnormali-
ties. We developed a low-power communication channel between IoT
sensors and the Android Application. This research provides users with
a portable device they may carry anywhere and know about their
heart patterns continuously. The results from the data collected from
the hospital patients visited to create a dataset show the correctness
of the classification algorithm used in distinguishing between normal
and abnormal heart patterns. We also tested our system on different
persons to get the results. We have achieved 97% accuracy through
our proposed SEHAD-HC system, which highlights the effectiveness
and reliability of our system. Table 4, shows the analytical compari-
son of the proposed system concerning the existing approaches. Our
proposed system SEHAD outperforms resource utilization, transition
and propagation delay, portability, and accuracy. Moreover, we have
computed the major processing modules on the cloud platform, one of
our major objectives in implementing the IoT-based smart system in a
real-time environment. The system could contribute to excellent heart
health monitoring and improve alerting services to patients and their
emergency medical caregivers.
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