
Engineering Science and Technology, an International Journal 53 (2024) 101681

2
(

Contents lists available at ScienceDirect

Engineering Science and Technology, an International Journal

journal homepage: www.elsevier.com/locate/jestch

Full length article

Fabric surface defect classification and systematic analysis using a cuckoo
search optimized deep residual network
Hiren Mewada a,∗, Ivan Miguel Pires b,∗, Pinalkumar Engineer c, Amit V. Patel d

a Electrical Engineering Department, Prince Mohammad bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi Arabia
b Instituto de Telecomunicações, Escola Superior de Tecnologia e Gestão de Agueda, Universidade de Aveiro, Águeda, Portugal
c Department of Electronics Engineering, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, Gujarat, India
d Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, LE11 3TU, United Kingdom

A R T I C L E I N F O

Keywords:
Fabric defect
Deep Learning
Industrial Growth
Sustainability labeling
Optimization
Decision-making

A B S T R A C T

Fabric defects can significantly impact the quality of a textile product. By analyzing the types and frequencies of
defects, manufacturers can identify process inefficiencies, equipment malfunctions, or operator errors. Although
deep learning networks are accurate in classification applications, some defects may be subtle and difficult to
detect, while others may have complex patterns or occlusions. CNNs may struggle to capture a wide range of
defect variations and generalize well to unseen defects. Discriminating between genuine defects and benign
variations requires sophisticated feature extraction and modeling techniques. This paper proposes a residual
network-based CNN model to enhance the classification of fabric defects. A pretrained residual network,
ResNet50, is fine-tuned to classify fabric defects into four categories: holes, objects, oil spots, and thread
errors on the fabric surface. The fine-tuned network is further optimized via cuckoo search optimization using
classification error as a fitness function. The network is systematically analyzed at different layers, and the
investigation of classification results are reported using a confusion matrix and classification accuracy for each
class. The experimental results confirm that the proposed model achieved superior performance with 95.36%
accuracy and a 95.35% F1 score for multiclass classification. In addition, the proposed model achieved higher
accuracy with similar or fewer trainable parameters than traditional deep CNN networks.
1. Introduction

The textile industry has large-scale production with complicated
processes. A fault on the surface of a manufactured cloth is referred
to as a fabric defect. There are many fabric flaws, most of which result
from manufacturing or equipment errors. In addition, defective yarns or
machine spoilage might result in flaws. Each aspect has a unique impact
and significantly decreases the fabrics’ sales and usability. Fabric defect
classification is crucial for maintaining product quality, reducing costs,
ensuring consumer safety, improving driving processes, meeting reg-
ulatory requirements, and facilitating effective supplier management.
Fabric defects can significantly impact the quality of a textile product.
Defective fabrics can result in waste and increased production costs.
The faults in the earlier stage of the fabric production process hurt
the later stage. Fabric defect classification provides valuable insights
into the manufacturing process. Manufacturers can identify root causes
by accurately classifying defects and taking appropriate corrective ac-
tions. This can lead to reduced material waste, improved production
efficiency, and cost savings. Identifying the defects can ensure that
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only high-quality fabrics are used in the products. Therefore, early
investigation of fabrication faults could reduce the losses suffered by
businesses.

The impact of deep learning has considerably exceeded the expec-
tations in industrial automation [1]. Deep learning works on images
and signals to reduce industry difficulties and improve the manufactur-
ing process. Fabric flaw identification has historically been performed
manually through ineffective and expensive visual inspection. When a
flaw is found, the manufacturing process stops, and the specifics of
the defect’s occurrence and its position are recorded [2]. However,
manual processing has adverse effects. This may reduce production
efficiency. The operator may miss smaller defects or need extensive
effort to localize the defect in the fabric. Currently, deep learning plays
an essential role in fabric defect segmentation [3] and classification [4].

The learning rate, regularization parameter, network depth, number
of filters, and filter size are among the hyper-parameters commonly
used in deep learning networks. These parameters are typically ob-
tained through experience and are defined relative to broad terms;
215-0986/© 2024 The Authors. Published by Elsevier B.V. on behalf of Karabu
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however, they significantly affect the effectiveness of classification.
Finding an optimum value of these hyperparameters is a significant and
challenging task. These hyperparameters can be categorized as integer,
continuous, or mixed according to their value type assignments. The
gradient algorithm is primarily used for continuous-type hyperparame-
ter optimization. Most researchers use evolutionary algorithms based
on particle swam [5] and genetic algorithms [6] for hyperparame-
ter optimization. However, nearly no analogous techniques for mixed
hyperparameter optimization problems exist, except for Optuna [7],
a built-in hyperparameter optimization algorithm in Python that has
just begun to be utilized to address deep learning hyperparameter
optimization issues. Given that the CS algorithm has demonstrated
superior performance to other intelligent evolutionary algorithms and
has proven helpful in solving a wide range of optimization issues [8],
this research utilizes the cuckoo search method for hyperparameter
optimization.

This paper presents a new approach using a deep convolution
network. Texture patterns can exhibit intricate and subtle details that
are crucial for accurate classification. ResNets excels at capturing fine-
grained information due to its deep architecture. By stacking multiple
residual blocks, ResNet can learn hierarchical representations of tex-
ture patterns, progressively capturing low-level and high-level features.
It helps the network understand and discriminate between different
texture patterns, even those with subtle variations. Therefore, a new
approach using the ResNet architecture is presented in this paper.
The ResNet architecture is pretrained using the ImageNet dataset.
Thus, the network’s learning rate, number of filters, and size are fixed
according to the training experience from ImageNet feature sets. The
learning rate and drop factors are optimized using the cuckoo search
algorithm to fit this network well for our defect classification problem.
The proposed network is analyzed in depth, examining the results at
different layers. A well-established comparison with various literature
demonstrating the strength of the proposed network is presented. The
proposed network is analyzed in detail, and the results at different
layers are examined. A well-established comparison with various lit-
erature reports demonstrating the strength of the proposed network is
presented. The contributions of the paper are as follows:

• A high diversity in size, shape, texture, and appearance of defects
in the fabric makes it challenging to classify. We presented a deep
CNN, ResNet, to classify defects in these challenging environ-
ments. A ResNet network providing intricate features and textures
to discriminate defects well is presented to classify defects in
fabrics with texture patterns.

• A limited data size creates a risk of overfitting, and the network
fails to be generalized well. Therefore, we augmented the datasets
by presenting autoorientation and flipping images horizontally
and vertically. The fabric could be skewed in either direction
during the data collection process. Thus, random autoorientation
along with vertical and horizontal flipping increases the variation
in the position and orientation of the defect over the surface. It
combats the overfitting problem of the network.

• A transfer-learning approach is used instead of training a network
from scratch. A pretrained ResNet model has learned to extract
general features and patterns from useful images across various
tasks. Using a pretrained model, one can leverage the knowledge
and representations learned from a large dataset and transfer it
to fabric defect classification. This approach can save significant
computational resources and training time.

• The learning rate, a tuning hyperparameter, determines the step
size at each iteration and provides fast convergence if used cor-
rectly. Therefore, a cuckoo search optimization is used to opti-
mize the learning rate and decay factor.

• A systematic analysis of the network’s outcomes is presented.
Initially, the network’s performance for each defect is individ-
2

ually presented, and later, the model’s overall performance is
presented. The study also shows where the model finds ambi-
guity in the classification. It provides insights into the specific
patterns or instances that lead to misclassifications. By examining
the misclassified samples, common characteristics, challenging
scenarios, or classes that are prone to confusion can be identified.
This analysis helps in understanding the model’s limitations and
weaknesses and guides improvements.

• Finally, a comprehensive comparative analysis with state-of-the-
art networks is presented using the accuracy, F1-score, top-10
ambiguity score, and learnable parameters of the network.

Overall, the structure of the paper is as follows: The relevant works
are presented in Section 2, and the suggested model is presented in
Section 3. The analytical findings are presented in Section 4. Finally,
Section 5 summarizes them with feature scopes.

2. Literature review

Most literature findings are focused on whether fabric is defective
or not. Therefore, most dataset developed by the researchers was
categorized into two classes e.g. defective and non-defective and its
annotation by localizing the defect was provided. A limited dataset pro-
vides a classification of defect types. The study of these private datasets
was presented well in [9]. Table 1 summarizes the dataset avail-
able publicly with its characteristics. This study uses optical images
presented in [10,11].

The rapid growth in computer vision and image processing algo-
rithms and advancements in machine learning techniques have re-
placed manual defect detection and classification with autonomous
approaches. Upon fabric inspection, numerous faults are discovered,
including drop stitches and color shading variance [16,17]. The de-
fect detection techniques can be classified into statistical, structural,
model-based, and learning-based techniques [18]. Statistical methods
extract features that determine similarity and regularity using the mean
and variance from an image plane [19]. The sparse approximation
using image patches and its dictionary formation can minimize the
features in image classification [20]. A similar approach to fabric flaw
detection was presented in [21]. These approaches are ineffective for
low-contrast and patterned fabric images. The spectral methods used
frequency domain approaches, i.e., Fourier transform, wavelet trans-
form [22,23], local binary pattern [24], and gray-level co-occurrence
matrix [25], to obtain spectral features from textured regions. Model-
based algorithms, i.e., Gaussian mixture model [26], are not robust and
depend primarily on data. Therefore, this paper focuses on machine
learning-based algorithms.

An active contour can segment the desired region, and if the edges
of the regions are enhanced well, the active contour can provide
accurately segmented regions [27]. Bumrungkun [28] extracted edge
features using active contour, and subsequently, a support vector ma-
chine (SVM) was used to classify five defect types. This method fails for
images with poor brightness and contrast. In Ref. [29], an Inception
v3 model was used to extract features from texture fabric images.
Later, a machine learning model was optimized and trained using these
features for the classification and presented an improvement of 6%
in classification compared to traditional CNNs. A binary classification
approach, i.e., defective vs nondefective fabric, was presented in [30].
They segregated the feature extraction and classification models using
convolution features from CNN and SVM as a classifier. They observed
that ResNet18 with SVM performed better, with a 94.66% classification
rate. Meeradevi et al. [31] presented a review study of 79 research
papers on detecting fabric defects and shade variation. They found
that the deep learning model performed best among all traditional and
machine learning models.

A convolution model is adopted using a separable convolution pro-
cess in the CNN network; the fabric defect location is identified in [32],
and their model achieved 98.01% segmentation accuracy. However, the
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Table 1
Publicly available dataset.

Ref Proprietor Characteristics

[12]
Intellisense Lab, Department of
Computer Science and Engineering,
University of Moratuwa

Three classes of defective images i.e. horizontal, and
vertical lines and holes with texture background.
Prepared for Defect localization
Mask provided without annotation of defect types.
Images are categorized as defective or non-defective.

[13] AFID: A Public Fabric Image Database
for Defect Detection

247 RGB images with 117 labeled objects belonging to
12 different classes.
106 defective images for 12 different classes.
Prepared for Defect localization.
59% of images are without annotation of defect type.
A small set of images for each defect type.
Images are categorized as defective or non-defective.

[14] AITEX Fabric Image Database

245 RGB images of 7 different fabrics
140 defect-free images (20 images for each class) and
105 defective images.
Labeled images with defects are available.
A small set of images for each defect type.
Images are categorized as defective or non-defective

[15] TILDA Textile Texture-Database

61 defects covering images having a uniform texture and
complex background texture.
50 images for each defect.
RGB images of each defect.
A large set of images with annotation of the defect.
Primary application is to segment defects on fabric
surfaces.

[10] Roboflow dataset
Images of four defects including holes, oil spots, object
and thread errors.
Optical images of each defect.
A large set of images with appropriate labeling and the
same resolution.

[11] DAGM 2007 competition dataset

a synthetic dataset for defect detection on textured
surfaces
A weakly labeled dataset
Ten types of texture-pattered images with defects and
without defects.
Binary Labeling is provided for each class without
annotation.
type of defect is not classified in their model. Furthermore, a binary
classification model using a depthwise separable convolution network
was presented by Chen et al. [33]. An Xception network was adopted
and tested on their dataset containing defective and nondefective fab-
rics. However, their model accuracy was limited to 93.57% for binary
classification.

Zhao et al. [34] adopted the VGG16 network by adding a squeeze-
and-excitation and SSD module. The course features were obtained
using the squeeze operation on convolutional features, and later, the
weights of layers were determined using the excitation operation.
A comparison with MobileNetV3 and EfficientNet was presented for
multiclass classification with an average accuracy of 81.7%. Using the
transfer learning method, a pre-trained VGG16 network was tuned and
features were extracted from fabric surfaces. They reduced the future
size using principle component analysis. A CNN network adopted re-
placing the softmax layer with a moth flame-optimized parallel chaotic
search (PCS) algorithm. The author showed that this model detected
defective fabric accurately for regular patterned fabrics, unpatterned
fabrics and irregularly patterned fabrics [35]. Guo et al. [36] presented
a YOLOv5 network with 95% accuracy to detect defects of lines and
holes in fabric surfaces using their dataset. Their model performs well if
the image of the fabric is clear. Otherwise, it fails to detect and classify
the defect. A tiny YOLO network was presented in [37] to use on-
edge devices for binary classification, and the model achieved superior
results of 99%.

The Cascade R-CNN technique is the foundation of a fabric defect
detection dataset in [38], and three tricks are presented to improve the
precision of the detection algorithm. Initially, they used a multiscale
approach for training the network. Then, dimension clustering was
3

applied to the dataset, and the model was trained. The defect size
(i.e., a box of width and height) from the images was adjusted before
training in dimension clustering mode. Finally, a nonmaximum method
was used to preprocess the dataset, and the model was trained using
these new datasets. They performed binary classification, i.e., defective
and nondefective fabric classification. The results were evaluated using
the intersection of union parameters. Another cascaded approach in-
tegrating a faster R-CNN network with a feature pyramid network was
presented in [39]. The feature pyramid network allows shallow features
with deep features of R-CNN, improving the semantic segmentation
of defect location with 95% precision. In addition, the type of defect
was also retrieved from the segmented region, but the classification
accuracy was not investigated.

A lightweight CNN can easily fit to mobile platforms and allows its
use in resource-constrained devices [40]. A lightweight CNN requiring
fewer learnable parameters was presented and compared with VGG16,
MobileNetV2, and EfficientNet to classify fabric surface images as either
defective or not [41]. They validated the model with their datasets
and presented a 99% F1-score. State-of-the-art comparisons are limited
to standard CNNs. A similar fabric defect detection model using the
CNN network was presented by Huang and Xiang [42], where the CNN
model was used to obtain features of repetitive patterns of the fabric,
and later semantic segmentation was used using the Ghost network.
An IoU measurement of 77% was presented for detecting fabric defects
using the Tilda dataset. Liu et al. [43] also proposed a binary classifi-
cation approach by optimizing the VGG16 neural network. However,
the network is manually optimized by visualizing the features. Lin
et al. [44] focused on defect classification for multicolor fabric. They
preprocessed images using various filtering methods, a CNN transfer-

learning approach was used, and the model was trained to detect
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Fig. 1. Structure of residual layer in the ResNet architecture.

defects. However, they validated the model with limited raw data and
without external data.

In Ref. [45], the authors checked the performances of seven feature
sets and three machine learning-based classifiers, namely, KNN, SVM,
and decision tree on the Tilda dataset. A total of six defects were
classified using these models. Overall, KNN performed better, with an
average accuracy of 90.2%. A defect detection and classification model
using two stages was presented in [46]. Initially, the U-Net network
was used to determine whether defects existed in the images of the
AITEX dataset. Later, the VGG16 network and random forest algorithm
were used to classify defects in the defective fabric. Although the model
detection accuracy is high, the classification rate is relatively low, and
the model fails to classify nep and cut salvage defects.

The study showed that deep CNNs are widely used in fabric defect
identification, and most studies have detected the presence of fabric
defects and their location, irrespective of the type of defect. Among all
networks, the YOLO network achieved superior accuracy in detecting
defective fabrics. A limited number of studies have presented classifica-
tions among the types of defects. However, the lack of detailed results
analysis of these models is a common weakness for these models.

3. Methods

3.1. Overall structure of the proposed model

Deep learning-based models are frequently used for image classifi-
cation tasks and have exhibited their efficacy by producing outstanding
results in many varied use cases. The main challenge in fabric de-
fect classification is its background. In the presence of a textured
background, global as well as, local features also participate in the clas-
sification. But traditional CNNs use global features only and therefore,
they might underperform in fabric defect classification. This section
develops a deep CNN model that can automatically identify subtle
defects in fabric from fabric surface images. A defect in the fabric
can be treated as a violation of patterns on the surface. Detecting
violations in texture patterns can be effectively achieved by leveraging
fine-grained details. Texture patterns often exhibit specific regularities
and structures. Any deviation or violation from these patterns can
indicate a defect or anomaly. Fine-grained details enable the detection
of subtle variations, irregularities, or inconsistencies within the texture
pattern. By analyzing intricate elements and small-scale features, such
as texture gradients, local textures, or pixel-level variations, it becomes
possible to identify deviations that may not be apparent at a coarser
level of analysis. Fine-grained details provide a level of granularity
that allows for the precise localization and characterization of texture
pattern violations, facilitating the detection of defects or abnormalities
on the fabric surface.

The proposed model uses a residual network for subtle defect clas-
sification from the fabric surface. ResNet’s key innovation lies in intro-
ducing residual connections, which allow the network to learn residual
mappings. By incorporating skip connections that bypass specific lay-
ers, ResNet enables the direct flow of gradients to earlier layers during
training, effectively addressing the vanishing gradient problem. Fig. 1
shows the residual layer connection where the lower branch processes
the features from the previous layer and the upper branch passes the
features without any processing. The subtraction of the lower and upper
4

branch features provides the residual features, i.e., fine-grained details.
A function 𝐹 () can be expressed using the input features 𝑥 and
weights 𝑊 in layers. Therefore, the output of the ResNet structure is
expressed as

𝑦 = 𝐹 (𝑥,𝑊𝑖) + 𝑥 (1)

In this equation,

• 𝑥 represents input to the residual layer,
• 𝐹 (𝑥,𝑊𝑖) denotes the residual mapping, which is a sequence of

convolutional layers with weights 𝑊𝑖.
• The output of the residual block is represented by 𝑦.
• The ‘‘+’’ operation indicates elementwise addition.

The residual mapping 𝐹 (𝑥,𝑊𝑖) can be further decomposed as follows:

𝐹 (𝑥,𝑊𝑖) = 𝑊2 ∗ 𝜎(𝑊1 ∗ 𝑥) (2)

In this decomposition:

• 𝜎 denotes a nonlinear activation function, such as ReLU.
• 𝑊1 and 𝑊2 are learnable weights associated with the convolu-

tional layers.

Overall, the ResNet architecture consists of stacking multiple resid-
ual blocks together. Each residual block performs a residual mapping
𝐹 (𝑥,𝑊𝑖) and adds the input 𝑥 to the mapping output, resulting in the
transformed output 𝑦. This formulation allows the network to learn the
residual information effectively and facilitates the training of deeper
neural networks.

This architectural design empowers ResNet to capture intricate and
subtle details in the data, making it particularly well-suited for tasks
that require fine-grained analysis, such as texture classification and
object detection. The residual connections enable the network to focus
on learning the incremental changes or deviations from the input
data, leading to more efficient parameter optimization and improved
performance in capturing fine details. The depth of ResNet, achieved
through stacking multiple residual blocks, allows for the hierarchical
learning of features, enabling the network to extract and exploit both
low-level and high-level information progressively. The depth of ResNet
plays a crucial role in its ability to extract both low-level and high-
level information. By stacking multiple residual blocks, ResNet creates
a deep architecture that captures increasingly complex patterns and
features. As information flows through the layers of a deep ResNet,
each layer learns to extract and represent specific features at different
levels of abstraction. The initial layers capture low-level details such
as edges, corners, and textures, while the subsequent layers build upon
these representations to capture more abstract and high-level features.
This hierarchical learning enables the network to understand the data
at multiple scales and levels of complexity.

ResNet’s skip or residual connections facilitate the smooth prop-
agation of gradients throughout the network, allowing for adequate
information flow and gradient updates during training. It enables deep
ResNet models to be trained successfully and prevents the degradation
problem that can occur with very deep networks. By leveraging the
depth of ResNet, the network can capture and combine features from
different layers, allowing for the integration of low-level and high-
level information. This ability to extract and combine features from
various depths enables ResNet to capture fine-grained details while
also capturing global context and semantic information. The deep
architecture of ResNet thus contributes to its capacity to learn and
represent a wide range of features, making it highly effective in tasks
that require extracting both low-level and high-level information, such
as image recognition, object detection, and semantic segmentation.

Fig. 2 shows the flowchart of the proposed system. ResNet50 has
deeper layers, requires less training time than does the ResNet34
architecture, and has significantly fewer trainable parameters than
do the ResNet101 and ResNet152 networks. Therefore, a pretrained
ReseNet50 architecture, which is trained using the ImageNet dataset,

is used, and this network is retrained using the fabric defect dataset.



Engineering Science and Technology, an International Journal 53 (2024) 101681H. Mewada et al.
Fig. 2. Flowchart of the use of the pretrained ResNet50 network for defect
classification.

Initially, the weight parameters of the pretrained ResNet50 network
are obtained to release the original fully-connected layer. Then, the
fully connected layer is replaced with a layer designed for four-class
classification. Once the model is compiled successfully, the model is re-
trained using a fabric dataset to tune the model for defect classification.
A data augmentation and k-fold classification approach is used, which
suppresses the overfitting problem of the network. The experimental
results obtained using this network are discussed in the next section.

3.2. Hyperparameter optimization using the cuckoo search algorithm

Hyperparameters and parameters significantly impact the perfor-
mance of a CNN. Backpropagation algorithms are mostly used to op-
timize weights and biases of CNN networks with an objective function
of minimizing a loss function. They may suffer from issues like getting
stuck in local optima or the curse of dimensionality. In such cases,
metaheuristic algorithms like Cuckoo Search provide an alternative
by exploring the search space in a non-gradient-based manner, po-
tentially overcoming these limitations. The cuckoo search efficiently
explores large search space and therefore, it can find optimal or near-
optimal combinations of hyperparameters in comparison to gradient-
based methods. By applying cuckoo search (CS), we can discover novel
ResNet architecture that may have superior performance or efficiency
compared to manually designed architectures.

The CS algorithm emulates the search behavior of cuckoos in nature
as they seek the best nest for incubating their eggs. The cuckoo in the
algorithm selects nests of better quality to nurture its eggs and enhances
nests of lower quality. The key feature of this optimization process is
that the cuckoo employs the Levy flying mode and continuously refers
to the optimum nests discovered thus far to create a very efficient
optimization strategy. We used the cuckoo search algorithm to find the
optimum value of the learning rate and its drop factor.

The learning rate determines the step size at which the optimization
algorithm updates the neural network weights during training. A high
learning rate can cause the optimization process to converge quickly
but may overshoot the optimal solution. On the other hand, a low
learning rate can help the optimization process converge more accu-
rately but may take a more time. The learning rate schedule adjusts
the learning rate over time to strike a balance between convergence
speed and accuracy. The learning rate typically decreases gradually as
training progresses. The code implements the learning rate schedule
5

using a piecewise function. Let 𝛼 represent the initial learning rate. It
determines the starting point of the learning rate schedule. 𝛽 represents
the learning rate drop factor. It determines how the learning rate is
reduced during the training process. The learning rate is multiplied by
beta every LearnRateDrop Period epoch. We can find the best values
that minimize the classification error on the test set by optimizing
these 𝛼 and 𝛽 parameters during the cuckoo search optimization. The
pseudocode to optimize 𝛼 and 𝛽 of the network using the cuckoo search
algorithm is presented in Algorithm-1.

Algorithm 1 Cuckoo search based hyperparameter optimization of
ResNet
1: Define range of 𝛼 and 𝛽
2: Initialize fitness function 𝐹𝑖 = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑒𝑟𝑟𝑜𝑟(𝑖𝑚𝑎𝑔𝑒𝑠, 𝑐𝑙𝑎𝑠𝑠𝑒𝑠,

𝛼, 𝛽)
3: Generate initial 𝑛 host nests
4: Evaluate fitness function 𝐹𝑖
5: Find the best nest and best fitness function 𝐹𝑖
6: while 𝑡 < 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
7: Generate new host nests using Levy flight
8: Evaluate fitness function 𝐹𝑗 using new nests
9: if 𝐹𝑗 > 𝐹𝑖 then

10: Update best nests and best fitness function 𝐹𝑖
11: end if
12: Randomly replace some nests with new random solutions
13: end while
14: Post process the results

3.3. Feature extraction

The ResNet-50 network comprises an input layer, five stages of 49
convolutional layers, and an output layer. The five stages contain one
convolutional layer and four residual layers, as shown in Fig. 3. As seen
in Fig. 3, each stage comprises multiple residual blocks of varying sizes
and widths. Stage 1 extracts a feature map from the input image using
a 7 × 7 convolutional filter, and this stage employs 64 convolutional
filters, each of which executes a convolutional computation on the
input image. The stride value is set to 2, the interval between which the
convolution filters are applied to the input image without overlapping.
Thus, the filter moves by two pixels, and the size of the output feature
map is calculated by dividing the size of the input picture by the stride
value. This stage generates 64 feature maps.

Stage 2 has a residual block with the size shown in Fig. 3. The
downsampling of the image by 4 in this stage generates 256 feature
maps. This downsampling process allows large-size filters in subsequent
stages, improving the network’s performance by allowing it to process
more data. The first layer in this segment has a convolutional layer of
size 1 × 1 that increases the number of channels of the feature map
size from 64 to 256. To maintain a constant channel number, a 3 × 3
convolutional layer is employed. Furthermore, the 1 × 1 convolutional
layer expands the size of the feature map to 256. The presence of the
residual layer in this stage extracts the fine-grained information using
skip connections and features from the previous layer.

Stage 3 reduces the size by 1/8. Thus, a 1 × 1 convolution is
employed initially to limit the number of channels of the input data
to 128. The feature map is then processed with a 3 × 3 convolution,
reducing the number of output channels back to 128. The output
channels are then increased to 512 using a 1 × 1 convolution. It reduces
the size of the input data by 1/8, resulting in a total of 128 feature
maps. Stage 3 shrinks the input data while expanding the feature map
size. As a result, the model can extract more diverse and complex
information from the input image.

Stage 4 has three residual layers. The first layer of the 1 × 1 convo-
lutional operator reduces the number of channels in the input feature
maps. Again, the channel numbers increase using the remaining 3 × 3
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Fig. 3. ResNet50 for feature extraction.
Fig. 4. Sample images of fabric defects dataset (a) hole, (b) object, (c) oil spot, and
(d) thread error in fabric.

Fig. 5. Sample images of three defects from DGAM dataset.

and 1 × 1 convolution operations. The final output is obtained using a
residual connection, which adds the output feature map to the input
feature map. Various features are taken from the input feature map
throughout this procedure, resulting in a more sophisticated feature
map. The feature map created in stage 4 is 14 × 14 in size and has 1024
channels. Downsampling converts the 14 × 14 feature map created
in stage 4 to a 7 × 7 feature map. Using two convolution layers and
max pooling, the size of the feature map is halved with a stride of
2 × 2. The generated 2048-channel feature map is then used to create
a one-dimensional vector by calculating the average value for each
channel via average pooling. Pooling is used to decrease the number of
optimization parameters. Similarly, the feature map is processed using
the convolution operation in stage 5. Finally, feature maps are passed
through average pooling, dense layers, and fully connected layers,
generating the probability of class prediction.

4. Experiment results and analysis

The Resenet model is used and retrained for the two datasets. The
first fabric dataset from Roboflow [10] is used to test the proposed
model. This dataset includes 2441 images for all types of defects,
including holes, objects, oil spots, and thread errors. Fig. 4 shows a
sample image of surface defects from the dataset. The second dataset
DAGM 2007 [11] providing ten defects each with a different textured
background is used. The dataset-2 contains 1950 images with 150
images for 8 classes and 300 images for remaining two classes. The
sample images of three classes are shown in Fig. 5.

From the total images, 70% of the images are used to train the
model, and 30% of the images are reserved for testing the model.
Figs. 6–9 visualize the images used to train and validate the models
during the experiments.

A considerable discrepancy in the dataset’s image size and total
number of images will result in a data imbalance problem, leading
6

Fig. 6. Training images (70%) used in the experiment from dataset-1.

Fig. 7. Validation images (30%) used in the experiment from dataset-1.

Fig. 8. Training images (70%) used in the experiment from dataset-2.

to model overfitting. Simultaneously, if it is used to train hardware
constraints, the initial image resolution will increase, and the com-
putational burden during training will increase. As a result, before
model training, the training data must be preprocessed. Therefore, the
following preprocessing is applied to each image:

• Auto-orientation of the pixel data (with EXIF-orientation strip-
ping)

• Resize to 640 × 640

Furthermore, to increase the size of the images during the training
process, the following augmentation was applied to create 3 versions
of each source image:

• 50% probability of horizontal flip
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Fig. 9. Validation images (30%) used in the experiment from dataset-2.

Fig. 10. Accuracy and loss variation over the epochs for the train and validation
subsets from dataset-1.

• 50% probability of vertical flip
• Random rotation between −15 and +15 degrees

It is necessary to adjust the network’s hyperparameters to prevent
overfitting during training to improve the model’s classification rate. In
a convolutional network, the top layers extract more general features,
such as outlines or shapes, while the bottom layers extract more specific
features, such as edges, textures, and colors. In this study, the top
layers of the network were kept and retrained to retain course features
relevant to defect features. The training and validation accuracy and
loss were monitored for each epoch to prevent overfitting problems. A
decrease in the accuracy of the validation data indicates the occurrence
of overfitting. Therefore, an early stop and data augmentation are
adopted to prevent this issue. The network training will be stopped if
the validation accuracy is not optimized after 15 epochs of training.

To optimize the two hyperparameters, the learning rate and its
drop factors were initialized to [0.001, 0.9], and the intervals for these
parameters were 𝛼 = [0.0001, 0.01] and 𝛽 = [0.1, 0.99]. The number
of filters and filter size are kept constant from the pretrained model.
Figs. 10 and 11 shows the accuracy and loss over the epoch for both
the training and validation sets. The model achieved 100% accuracy
for the train subset and 95.36% accuracy for the validation subset for
dataset-1. For dataset-2, model received 100% accuracy.

Fig. 12 displays confusion matrices that validates the model’s per-
formance. It provides insights into which classes were predicted suc-
cessfully and flags any potential faults with the classifier. The results
show that the model effectively predicted the defects, with the lowest
7

Fig. 11. Accuracy and loss variation over the epochs for train and validation subsets
from dataset-2.

Table 2
Top 10 classes with the most ambiguity.

Image Ambiguity Likeliest Second True Class

331 0.996526 ‘objects’ ‘oil spot’ ‘objects’
249 0.994408 ‘thread error’ ‘objects’ ’objects’
527 0.981387 ‘oil spot’ ‘objects’ ‘oil spot’
477 0.966847 ‘oil spot’ ‘objects’ ‘oil spot’
474 0.96532 ‘oil spot’ ‘objects’ ‘oil spot’
529 0.960491 ‘oil spot’ ‘objects’ ‘oil spot’
368 0.953623 ‘oil spot’ ‘objects’ ’objects’
281 0.937232 ‘objects’ ‘oil spot’ ‘objects’
87 0.935936 ‘thread error’ ‘hole’ ‘hole’
550 0.932402 ‘objects’ ‘oil spot’ ’oil spot’

classification rate for fabric defects compared to that for other defects
for dataset-1. However, 12 images were misclassified as another defect
type. Fig. 13 showcases a few sample images that were classified
negatively by the network. These images are complex to classify, and
even manual classification can lead to errors in prediction. The receiver
operating characteristic (RoC) plot displayed in Fig. 14 helps analyze
the model’s overall response. The RoC curve illustrates the trade-off
between the true positive rate (sensitivity) and the false positive rate
(1 - specificity) at various classification thresholds. The RoC plot covers
a 96% area under the curve, indicating that the model’s performance
is better.

For dataset-2, model received 100% accuracy. The dataset-2 has
variation in the textured background and therefore, it identifies the
pattern well. The main limitation of this dataset is that it does not
contain defect variation with a similar textured background which
makes it challenging for classification.

The model is analyzed in detail for dataset-1, observing the ten
classes those are most difficult for the model to classify accurately.
These classes represent the areas where the model exhibited the highest
level of uncertainty or confusion. Table 2 shows the model’s ambiguity,
in which it observed the oil spot defect but likely with a defect of
the object type. The model predicted well, but the thread error defect
was misclassified as an object. The quantitative analysis of the model
was performed by calculating its classification accuracy, precision,
specificity, and F1 score for each defect, as well as overall. Tables 3
and 4 present the detailed results of this analysis.

To understand more about network prediction for dataset-1 and to
check that the proposed network focuses on the right region within im-
age to identify the type of defect, a gradient-weighted class activation
mapping (Grad-CAM) map of images was plotted. Grad-CAM provides
a heatmap-like visualization that highlights the important regions in
the input image. Fig. 15 plots the result over the original image with
transparency to see which areas of the image contribute most to the
classification score.
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Fig. 12. Confusion matrix for dataset-1 and dataset-2.

Fig. 13. Sample images where the model fails to predict.

Accuracy is a widely used measure that evaluates the overall cor-
rectness of a classifier’s predictions. It computes the proportion of
accurate predictions (true positives (TP) and true negatives (TN)) to the
total number of instances (N) in the dataset. The accuracy is expressed
as a percentage, where higher values indicate better performance.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑁

(3)

Precision is calculated by dividing the total number of true positives
by the total number of instances predicted as positive (including both
true and false positives). In simpler terms, precision provides insights
into how effectively the classifier can avoid false positive errors.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

When evaluating a classifier’s performance, specificity measures
its ability to identify negative instances correctly. It is calculated by
8

Fig. 14. ROC curve .

Fig. 15. Grad-CAM for sample images (left) original image (right) Grad-CAM of image
showing important region.

dividing the number of true negatives by the total number of instances
predicted as negative (true negatives plus false positives). Specificity
complements precision by focusing on the true negative rate. A higher
specificity indicates a lower rate of false negatives, meaning that the
classifier can accurately identify negative instances. In simpler terms,
the specificity metric tells us how well a classifier can identify instances
that do not belong to a specific class, helping us to ensure that negative
cases are not falsely labeled as positive.

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(5)

The F1 score is a harmonic mean of precision and recall (also
known as the sensitivity or true positive rate). It provides a balanced
measure of the classifier’s performance, considering false positives and
negatives.

𝐹1 = 2𝑋𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑋𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(6)
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Table 3
Prediction results analysis for each defect individually from dataset-1.

Parameter Accuracy Specificity Precision F1 Score

Hole 94.9 98.74 96.02 95.48
Object 93.9 99.25 97.89 95.88
Oil spot 96.0 97.67 92.86 94.41
Thread error 96.7 98.19 94.59 95.63

Table 4
Overall model prediction results in analysis from the confusion matrix for dataset-1.

Accuracy Error Sensitivity Specificity Precision F1_score

95.36 4.64 95.40 98.46 95.34 95.35

Table 5
Comparison of the deep networks.

Method VGG16 Xception Proposed ResNet

Weights parameters
(in Million)

138 22 23.5

Validation Accuracy 88.76 93.10 95.36

Table 3 shows that the model is well-balanced and classifies each
efect well. The specificity score is larger than the precision score,
ndicating that negative defects were classified well compared to false
redictions. The overall model achieved 95.36% classification accuracy
or all defects with a 4.64% error rate as shown in Table 4.

The proposed model results are validated by comparison with those
f traditional CNN models, including the VGG16, ResNet50, and Xcep-
ion networks in Table 5. The comparison shows that the proposed
esNet model performed better among all networks.

Finally, a comparison with state-of-the-art methods using deep net-
orks is presented in Table 6.

A two-stage model using Inception 3 and a back propagation neural
etwork (BPNN) was presented in [47]. In the first stage, an inception
odel was used for feature extraction, and in the second stage, the
PNN network was optimized using the Moath Flame optimization
echnique and used for classification. This method was tested on a
ataset containing two types of defects, including holes and lines
horizontal and vertical) in fabric. However, the algorithm testing was
imited to horizontal and vertical lines only.

Zhan et al. [48] approached the issue of imbalanced image distribu-
ion in a dataset by splitting the training set into support and query sets.
he model was first trained using the support set and then fine-tuned
sing the query set. This technique resulted in the highest classification
ccuracy of 96.04% among the GoogleNet, ResNet, ResNetPreAct, and
enseNet networks. In [49], pretrained GoogleNet was proposed to
lassify woven fabric defects into six categories: holes, dark threads,
pots, thread defects, switches off, and floods. The authors extracted
eatures using GoogleNet, preprocessed images by histogram equaliza-
ion and Gaussian filtering, and detected the fault location using the
ourier spectrum. Deep features from GoogleNet were then used to
lassify the flaws, achieving 94.46% accuracy.

In [50], a GoogleNet network was used to classify the defects from
abric surface images. They used a subset of Tilda Dataset i.e. woven
abric dataset in their experiment. The preprocessed images using
aussian filter and Fourier transform. Later edge features are used

o train GoogleNet for classification. In [51], the author created a
ataset with images having regular texture regions. They categorized
mages into five defect types. They filtered noise from images using a
aussian filter and pseudo-CNN. Later modified VGG network was used

o classify defects. Their network has 62 Million learnable parameters
nd its classification rate was 93.92%. In [52], the five types of defects
9

Table 6
Comparison with state-of-art fabric defect classification models.

Model Accuracy (%)

Few-shot learning [48] 96.04
Fourier Spectrum + GoogleNet [49] 94.46
GoogleNet [50] 93.60
Pseudo-CNN + Weight Initialized Adaptive Window [51] 93.92
Alexnet [52] 92.60
ResNet50 + KNN [53] (Binary classification) 95.88
Ensemble approach of CNN [54] 97.84
Proposed ResNet 95.36

including cuts, colors, holes, threads, and metal contamination from
the MVTec Anomaly Detection dataset were used to train the Alexnet
network and the model received 92.60% accuracy. In a study [53], a
comparison of four CNN networks was presented to detect if the surface
is defective or not. Among CNN, VGG16, ResNet50 and Inception
network, ResNet50 performed well with 95.88% classification. Zhao
et al. [54] used an ensemble approach to improve the classification
rate of fabric defects. A subset of the Tilda dataset i.e. Germal Tilda
dataset was used to validate the network and it received 97% and
96% precision and recall rate respectively and the cost of computation
is large due to integration of the Densenet, Inception and Xception
networks. The accuracy of the network and individual classification
rate were not presented in the work.

The proposed model covers four different types of defects from
dataset 1 that resemble the presence of objects and threads and ten
defects from dataset 2. These defects are challenging to classify, but
the model uses coarse features from the convolutional layer and fine-
grained features from the residual layers to distinguish between them.
As a result, the proposed model achieves higher or similar accuracy
without requiring any preprocessing or additional feature extraction
process. The weakness of dataset 2 is that each defect has unique
texture background therefore model showed 100% accuracy.

5. Conclusions

This article presents an automated approach for classifying challeng-
ing fabric defects. The method involves using a deep neural network
to classify defects from dataset-1 (roboflow-based fabric dataset con-
taining four defect types) and dataset-2 (10 defects). One of the most
ambiguous defects is oil spots, which can appear similar to other flaws
on the fabric surface. Thus, the dataset is augmented with image pro-
cessing techniques to provide more images. The augmentation allows a
pre-trained ResNet network to be tuned effectively to differentiate be-
tween these challenging defect types. The residual layer of the network
provides fine-grained details of texture patterns, allowing the network
to identify subtle variations, irregularities, or inconsistencies within the
texture pattern more precisely.

The proposed model has exhibited the following capabilities: (a)
It can accurately classify with high specificity, resulting in low false
recognition compared to state-of-the-art models. (b) Based on experi-
mental results, the proposed network achieved an average accuracy of
95.36% and 95.35% F1-score for complex patterned cloths of dataset-1
and 100% accuracy for dataset-2. (c) The proposed method is more re-
sistant to various sorts of printed materials. (d) The convolution neural
network can distinguish between four types of defects. In the future, we
plan to adopt a hybrid approach using a CNN to further improve the
accuracy and validate the model with various datasets. Dataset 2 can be
modified by generating synthetic images of various defects with similar
textured backgrounds and further testing of the network is expected.
Additionally, the model requires further optimization to meet the needs

of the fabric industry.
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Fig. 16. Sample images of defect types from dataset-2.
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Appendix

Sample images of ten defects from dataset-2 are shown in Fig. 16.
Dataset-2 provides labeling of defects but its location is not anno-
tated. In Fig. 16, the location of the defect is annotated manually for
demonstration only.
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