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1 Introduction
LetN>2and2<p <p,:= 2213’31
tive constant C > 0 such that, for any f € C°(RY),

A classical inequality [1, p. 323] states: there is a posi-

2(2N- 1>+<3 2N)p N(p —2)

IR Wduc(/w WdV) (/ [ul? dV)

N-1 g2
9 2dv> ) 1.1
x H( /R I (L1)

where V := (x,y) € R¥ and y = (y1,¥2,...,¥n-1) € RN7L. The purpose of the present paper
is to characterize the smallest (sharp) positive constant C of (1.1) (see Theorem 2.8 and
Theorem 3.8) and the related equations (see (2.1) and (3.2)).
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Two special cases of (1.1) have been used to study the solitary waves of the generalized
Kadomtsev—Petviashvili equation. For example, when N = 2 (at this moment, V := (x,y,) €
R?)and 2 < p <6, (1.1) in the form

p-2 6-p

p-2
2 4 4
|u|"dV§C(/ u;ﬁdv> (/ (D;laylu)zdv) (/ u2d\/> (1.2)
R2 R2 R2 R2

has been used to study the following generalized Kadomtsev—Petviashvili I equation:
Ot + Prae + O 20 = Dy, (Ry1) €RZESO. (1.3)

de Bouard et al. [6, 7] proved that (1.3) had a solitary wave solution for 2 < p < 6 and (1.3)
did not possess any solitary waves if p > 6. Stability of solitary wave of (1.3) has been
studied in [9] in which (1.2) has played an important role. Chen et al. [4] also used (1.2)
to study the Cauchy problem of solutions to the 2-dimensional generalized Kadomtsev—
Petviashvili I equation, generalized rotation-modified Kadomtsev—Petviashvili equation
and generalized Kadomtsev—Petviashvili coupled with Benjamin—Ono equation.

When N = 3 (at this moment, V := (x,y1,y2) € R®), de Bouard et al. [6, 7] used (1.1) to

prove that if p > 1—;’ then the following equation:
~U + U + U = DUy + Dy, U 70, (1.4)
had no solutions in Y(3), where Y(3) is the closure of 8,(C°(R?)) under the norm
_ 2 _ 2
||u||§(3) = /3(M§ +|D; oy, u|” + | Doy, ul” + [ul?)dV.
R

Here we define D!, D;? by

x
D' h(x,y) = / h(s,y)ds, D;*h =D, (D;'h).

—00

While for 2 < p < 13—0, (1.4) had at least one nonzero solution in Y(3). Observing this pre-
vious work, p, = 6 (when N = 2) and p, = 1—30 (when N = 3) seem to be a critical non-
linear exponent, which shares some properties similar to the critical Sobolev exponent
2* = 2N/(N - 2) (N > 3) in the study of semilinear elliptic equations. Recall that the best

constant Cs in the Sobolev inequality ||u||i2* < Cs||Vu||i2 is well-known and has been

used extensively. But for the smallest constant C in (1.1), few results are known. When
N =2 and 2 < p < 6, the smallest constant C of (1.2) and its applications has been studied
in [4]. When N = 2 and p = 6, the characterization of the smallest constant C of (1.2) and
its related properties were studied in [5].

In the present paper, we are interested in the characterization of the smallest constant
C of (1.1) in the case of N > 3. According to the value of 2 < p < p, and p = p, = 2(2N -

1)/(2N - 3), the studies were divided into two parts. In the first part, we study (1.1) in the
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case of 2 < p < p,. At this time, (1.1) is written as the following form:

2(2N-1)+(3-2N)p N(p-2)

- 4 )
/ |u|”dV§a(/ |u|2d\/) (f |ux|2d\/)
RN RN RN

p-2

N-1 ) &
D'd dv) , 1.5
<T1( [ o0 1s)

where u € Y; and Y; is the closure of 3,(C5°(RY)) under the norm
_ 2
||u||§1 = /N(ufc + |Dx1Vyu| + |u|2)dv.
R

As before and from now on, y = (y1,...,¥n-1),

P 3 , Mt , N-1 9
v, = (ayl,..., 3)’N—1)’ |D;' Vyu| kEZI |D;'0, u|” and A, 2 o

The main result of this part is to prove that the smallest constant « can be represented by

N, p and a minimal action solution of
p-2., _ D2
—U+ Uy + Ul u=D"Ayu, u#0,uel.

For details, see Theorem 2.5 and Theorem 2.8.
In the second part, we treat (1.1) in the case of p = p,. In this case, (1.1) is written as

N N-1 L
2N-3 2N-3
/]RN P dV < ﬁ(A;N |ux|2d\/) 1_[</RN|D;18yku|2dV> : (1.6)
k=1

where u € Yy and Yj is the closure of 3,(C5°(RY)) under the norm

||u||§,0 = /]RN(M?C + ‘D;lvyu‘2) dv.

The main results of this part are Theorem 3.5 and Theorem 3.8.

The estimate of the smallest constants « and f is based on variational methods and
scaling techniques. Recall that Weinstein [10] used variational methods to estimate the
constant Cg in the Gagliardo—Nirenberg interpolation inequality [3],

N(z—l) 2(q+1):lN(q—1)

/ |u|q+1dzgcc(/ |Vu|2dz> (/ |u|2dz> , ue WH(RN).
RN RN RN

This Cg was estimated directly by studying the following minimization problem:

N(g 1)-N(g-1)
7

-1) 2(q+
(fon IVt d2) 5 (o lu)>dz) ™"
fRN |u|q+l dZ

Cg' = inf{ ‘ue WI’Z(RN)\{O}},

due to the compactness embedding of

w2 (RN) s L‘”l(]RN) forl<g<2*-1,

radial
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where
Wrﬁial(RN) = {u € Wl’Z(RN) cu(x) = u(|x|)},

2* =2N/(N - 2) for N > 3 and 2* = +oo for N = 2. Weinstein [10] managed to prove the
best constant Cg for N > 2 because the above compactness embedding holds only for
N > 2. However, in the process of studying the best constant « (respectively, 8), we cannot
use the methods of Weinstein [10] because we are facing anisotropic Sobolev spaces Y;
(respectively, Yy). In the present paper, we introduce a new method. The detailed strategy
contains three steps, which are given in the next section; and it may have independent
interest. In fact, we believe that it can be used to study the smallest constant of other kind
of inequalities.

This paper is organized as follows. In Sect. 2, we study the constant «, meanwhile we
explain the strategy in detail. In Sect. 3, we use this method to study the smallest constant
B under some additional analytic techniques.

Notations Throughout this paper, all integrals are taken over RV unless stated otherwise.
A function u defined on RY is always real-valued. | - ||, denotes the L7 norm in L4(R").

2 The smallest constant «

In this section, we always assume that 2 < p < p, := % We introduce a new strategy

to estimate « in (1.5). It contains three steps and hence we divide this section into three
subsections.

2.1 Minimal action solutions
In this subsection, we prove the existence of the minimal action solutions of the following
equation:

—U+ Uy + P 2u = D;szu, u#0,ucl. (2.1)

Define on Y7 the following functionals:

= [ 2+ D51V« ) .
Set

= {u eY1:u#0,I(u) :O} and d; = inl_f Li(u).
uel’y

Then according to the inequality (1.5), both L; and I; are well defined and C' on Y;. The
following definition is by now standard.

Definition 2.1 An element v € Y is said to be a solution of (2.1) if and only if v is a critical
point of Ly, i.e., L (v) = 0. Moreover, v € Y1 is said to be a minimal action solution of (2.1)
ifv#0,L}(v)=0and L;(v) < L;(u) for any u € I';.

Page 4 of 22
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The following lemmas will play important roles in what follows.

Lemma 2.2 Foranyu € Yy and u # 0, there is a unique s, > 0 such that s,u € I'y. Moreover,
if1(u) <O then0<s, <1.

Proof For u #0 and s > 0, we have
I (su) = /(szui +32|D;1Vyu|2 + 8 ul? - s |ul’) dv.

Hence from direct computations, we get

1
“p2
su=(||ullil)ﬁ</lulpdv) .

Clearly from the expression of 1 (u), we know that if I (&) < 0, then ||u||§,1 < [|ul? dV and
therefore 0 <s, < 1. O

Lemma 2.3 The set I'y is a manifold and there exists p > 0 such that, for any u € I'y,

lully, = p>0.

Proof Firstly, it is observed from Lemma 2.2 that I'; #@. For any u € I'y,

(160, =20, ~p [P av = 2-p) [y av <o

Hence I'; is a manifold. Secondly, for any u € I';, using inequality (1.5) and Young inequal-

ity, we know that there is a positive constant C such that

Julf, = [ 1 dv < Clulf,.

1
It is deduced that ||u|y, > C 72 := p > 0. The proof is complete. a

Lemma 2.4 Ifv el and L1(v) = di, then v is a critical point of L, on Y1, i.e. L} (v) = 0.

Proof By Lagrangian multiplier rule, there is 8 € R such that L} (v) = 0I;(v). Note that
(L1(v),v)y, =L (v) =0 and

(Ii(v),V)Y1 :(2—p)/|u|pd\/<0.

One easily obtains 6 = 0. Therefore L} (v) = 0. O

Theorem 2.5 We see that d, > 0 and there is a ¢ € 'y such that dy = L,(¢). Moreover, ¢ is

a minimal action solution of (2.1).

Proof Itis easy to see from Lemma 2.3 that d; > 0. According to Definition 2.1 and Lemma
2.4, we only need to prove that there is ¢ € I'; such that d; = L;(¢).
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Let {#}ueny C I'1 be a minimizing sequence of dy, i.e. u,, #0, I; (u,) =0 and d; + o(1) =
Li(uy). By I1(u,) = 0 and the anisotropic Sobolev inequality (1.5), we know that ||u,||y, is
bounded. Moreover, Lemma 2.3 implies that |||y, is uniformly bounded away from zero
and we see that

liminf/ |tnl? dV = liminf ||, |3, > 0.
n—0oQ

n—00
Note that, for any V = (x,y) € RV,
Ly(u(-+%-+y1,...,- +yn-1)) = L1 (u(-))  and
L(u(-+%, + Y1, +yn-1)) = L (u()).

We see from the concentration compactness lemma of Lions [8] that there are V" =
(x",9") € RN, where y" = (¥},...,%_,), such that

@n(%,) 1= (2 + 5" 91 + Y] L INC +N)

satisfies

Li(gy) =Li1(u,) and Ii(g,) =Li(u,) = 0.

Moreover, there is ¢ € Y; and ¢ # 0 such that ¢, — ¢ weakly in Y; and ¢, — ¢ a.e. in RN,
If I;(¢) < 0, then by Lemma 2.2 there is a 0 < s, < 1 such that s,¢ € I';. Therefore using
the Fatou lemma and the fact that 7;(¢,) = 0, we obtain

dy +o(1) = Li(gn) - (%—;)/wpm (%—i)/wmﬂo(n

1 1)\ _ -
- (5 — ;>s¢p/ Iss@lP dV + o(1) = S¢pL1(S¢¢) +o(1)

as # large enough. It is deduced from 0 < s4 < 1 that d; > L;(s¢¢) which is a contradiction
because of s4¢ € T'y.
If I;(¢) > 0, then using Brezis—Lieb lemma [2] one has

0= I1(pn) = 11($) + [ (vy) + 0(2),
where ¢, — ¢ := v, in the remaining part of this section. /;(¢) > 0 implies that

limsup ;(v,) < 0. (2.2)

n—00

From Lemma 2.2 we know that there are s,, := s,, such that s,v, € I'1. Moreover, we claim
that limsup,,_, ., s, € (0,1). Indeed if limsup,,_, ., s, = 1, then there is a subsequence {s,, }
such that limy_, . s, = 1. Therefore from s,, v, € I'1, one has

Li(viy) = L(smvm) + 0(1) = o(1).
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This contradicts (2.2). Hence limsup,,_, . s, € (0, 1). Since, for n large enough,

d +o(1) = (%—;)/wpd\/z G—;)/Ivnl”d\/w(l)

1 1
> (5 - —)snp/ I$uval? AV + o(1) = s,P L1 (s,vy) + 0(1),
p

one has d; > Li(s,v,), which is a contradiction because s,,v, € I';.

Thus I;(¢) = 0. Next we claim that |v,|ly, — 0 as n — co. We prove this claim by a
contradiction. If ||v,|y, 7 0 as n — o0, then there is a subsequence {v,,; }xen C {Vi}nen,
such that ||v,, [ly, = C >0 as k — oo. Using Brezis—Lieb lemma [2], one has

0 = I)(pn) = Li(v) + Ii(@) + o(1).

Hence I1(vy,) = 0(1). According to Lemma 2.2, there are p,, > 0 such that I;(0,,v,,) = 0.
Moreover, p,, — 1as k — 00. Using Brezis—Lieb lemma [2] again, we see that, as # grows

large enough,

dy +0(1) = Li(@n,) = L1(vy,) + L1(¢) + 0(1)
=L1(pn, Vi) + L1(9) + 0(1)

>dy +dy +o0(1),

which is impossible because of d; > 0. Hence we have proven that ||v,, ||y, — 0 as k — oo.
Therefore L1(¢,,) — L1(¢) and d; = L1(¢). (

Next, we give some properties of the minimal action solution ¢ obtained above. These
properties seem to be of independent interests and will be very useful in what follows.

Lemma 2.6 Let ¢ be a minimal action solution of (2.1). Then I,(¢) = 0,

Qup):= [ (42 D1 wy0f - 0=

N(p—
Ri(¢) :=/<¢§-$|¢|ﬁ) dv =0.

Moreover, we see that

|¢|p) dv =0 and

/|D;1vy¢|2dvz A%f(])ﬁdv,

% 2
/|¢|PdV_N7(p_2)/¢de and (2.3)
9 B (3-2N)p+2(2N -1) 9
[ 1orav- o [ezav.

Proof Since ¢ is a minimal action solution of (2.1), L} (¢) = 0. First, we define

N
¢5(x:y) =57¢(59C;5y), J/=(y1,~»,yN—1)€]RN71'
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Then, by direct computation, we see that

/ Oy dV = 52 / P2 av; / 165

/\D;lvy%]de:/]D;lvy¢>|2dv and /|¢5|2dV=/|¢|2dV.

Hence

N B R B Y o
L1(¢5):5/¢de+§/|Dx v,9| dV+§/|¢| dv—7f|¢|1”dv.

Therefore
OL1 (%) Lo
Ri(g) = L) | <L1(¢>), 09 > -0,
a8 5=1 98 |51l
Next, we define
s 2N-1 2 N-1
P’y =8"7 ¢(8%,8%), y=01....yn-1) €R

Then, by direct computation, we obtain

[Gopav=s [oravi  [lopav-s" [iprav,

/|D;1vy¢5|2dvz52/|D;1vy¢|2dv and /|¢5|2d\/:/|¢|2dv.

Hence

2N l)p -2)

8 1
Li(®) =5 f (@5 +1D5' V8 ) v + 5 / pPav - — f 617 dV.

Therefore

6

88

ALy (4°)
26

Qi(¢) =

<L’ (@), ——

> ~o.
s=1lv;

The proof is complete. O

8=1

Remark From Lemma 2.6, one also obtains

1 2 _ (N 1)(p 2) 2
/'D" Vil av = (3-2N)p +2(2N - 1)/¢ v,

2p
/|¢|pd (B _2N)p + 20N - 1)/¢ dV and (2.4)

N(p-2) 5
/ oidv T B- 2N)p + 2(2N - 1) ¢ av.
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2.2 Another characterization of the minimal action solutions

In this subsection, we give another characterization of the minimal action solution ¢ of
(2.1) obtained in the previous subsection. We emphasize that this characterization will
play a key role in the process of estimating «. Define

F(u):/ (2 + |D;' Vol +u?)dV, uey,
RN
and for r > 0 set

F,:inf{F(u):ue Y; and / |u|1”dV=r}.

Then we have the following proposition.

Proposition 2.7 Let ¢ be a minimal action solution of (2.1). Then ¢ is a minimizer of F,
withr= [ |p|FdV.

Proof Since ¢ is a minimal action solution of (2.1), we know that L;(¢) < L;(u«) for any
u € Y1 with 4 #0 and I; (u) = 0. Denote

F,O:inf{F(u):ueYl and/lulpdV:/|¢|pdV}.

One immediately has F(¢) > F,,.
Next, we will prove that, for any u € Y; with [ [ulf dV = [ |¢|P dV,

F(¢) < F(u).

For any u > 0, Iy (uu) = w*F(u) — u? [ |ul’ dV. Hence

o = (F(w)) LZ(fmv’d\/) "

is such that I (uou) = 0. The fact that pou # 0 implies that

1 1
L) = Laaon) = 318350~ ~ f up dv

_ G - _) (F(u)) L2</ |u|pdV)L2

(S D) e (frar)

Since [|¢PdV = F(¢) and L;(¢) = (— - —)F(qb) one deduces that

_P_ _p_
-2 2

(F(¢))7? = (Fw)?

which implies that F(¢) < F(u). Since u is chosen arbitrarily, one has F(¢) < F,,. Com-
bining this with F(¢) > F,,, one has F(¢) = F,, and hence ¢ is a minimizer of F, with
r=[lpFrdv. O
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2.3 Estimate of the smallest constant «
In this subsection, we estimate the constant « of (1.5). To simplify the notation, we denote

T =(3-2N)p + 2(2N - 1). Consider the following minimization problem:

ol= inf Ji(w), (2.5)
u#0,ucY

where

z M2 N1 g2
Ju(u) = (/mﬁdv) (/ uidv> H(/|Dx18yku|2d\/) (/de)
k=1

We have the following theorem.

Theorem 2.8 Let2<p<p, and T =(3-2N)p + 22N - 1). Then

L (TN (N2 T o
ol = (E) < 2p)N-3T? ) </ [t d\/>
T NN(p - 2)2N-1 g2 T 2
() ()

where ¢ is the minimal action solution of (2.1) obtained in the above and dy = L1(¢).

Remark From Theorem 2.8, we know that ™! can be exactly expressed by N, p and the
minimal action solution ¢ of (2.1). Even though we do not know if the minimal action
solution of (2.1) is unique or not, the second equality of (B) implies that ! is independent

of the choice of the minimal action solution ¢.

Proof of Theorem 2.8 The proof is divided into three steps. In the first two steps, we prove
the first equality of (B). In the third step, we prove the second equality of (B).
Step 1. In this step, we prove that
p=2 p2
4

T NN 2 2N-1 =
ol > Np-27" /|¢>| av) .
) T
For any u € Y7 and u #0, denote u = u(x, y1,...,yn-1). We define

wix,y) = Au(px, E191, - .., EN—1YN-1)5
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where A, u, &,...,&x_1 are N + 1 positive parameters which will be determined later. From

direct computation, one obtains

/|D ow|” dv =22 -3(]_[5 )gk/u)l Lu2dv, k=1,..,N-1;

Jj7k

N-1
/ |w|PdV=M’u1<]_[skl) / jul? dv;
k=1
N-1
/wfcd\/:)»zu<l_[£k_l)/uﬁd\/;
k=1

1

N—
/w2dV:k2/fl<H$k_l) /quV.
k=1

Here X, , &1,...,&n-1 are determined by the following N + 1 equations:

(2.6)

22 -3<]_[5 >§k/|D ayku| av

J#k

T (3- 2N)p+2(2N / o av, 27)

where for k=1,...,N -1, (2.7) is denoted by (2.7);

N-1
-1 1 ~ 217 ,
o (Eék )/Iulpdv_ (3—2N)p+2(2N—1)/¢ v, (2.8)

'N-1
2 -1 2 _
M(Egk )[”"dv B- 2N)p+2(2N 1)/¢ dv. (2.9)

Next, we solve A, i, &1,...,En-1 from (2.7), where k = 1,...,N -1, (2.8) and (2.9). Firstly,
(2.8) and (2.9) imply that

-1
MZZA%,\H/WW(/ uﬁdv) . (2.10)

Using (2.8) and (2.7)x, one gets
P2, 262 » 2p -1 2
W2pPE? | |ul deITZ |D;'oyul"dV, k=1,..,N-1 (2.11)

It is now deduced from (2.10) and (2.11) that

2 -1 -1
A2@-2)(/|u|1ﬂdv> </ uidv) (/|D;]8yku|2d\/) £

2
_ %(1%) . (2.12)
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Using (2.9), (2.10) and (2.12), we obtain
N-1 2 N(p-2)
4.2 2 2 _
A Egﬁk (/”xdv) ‘((3 2N)p + 2(2N — f¢ dv)
Hence
N 3-2N N-1
A“*(P—Z)(B—ZN)( / ugdv> < / Iul”dV) I f D ayul* dv
k=1
) NN(p—2)2 p_2 2N-3 ) 2
B ((3—2N)p+2(2N—1))2< 2p ) (f ¢ dv) ’

Secondly, remember the notation T = (3 — 2N)p + 2(2N — 1), the above equality can be

written as

N 3-2N N-1
AT(/uﬁdv) (/|u|Pdv> H/|D 1ol dv
NN(p 22N—
- (2p 2N 372 (/¢ dV)
Therefore
NN (p - 2)2N-1 N
() ([o) ([ o)
2N_ N- 1
(/|u|pdV) ]‘[(/]D Loy, ul’ dv) . (2.13)
k=1
It is deduced from (2.6), (2.8) and (2.13) that
2p !
/W2dv= ?A2/u2dv<kp/|u|pdv> /|¢>|2dv
2p -1
= ?/|¢>|2d\//u2dv(/|u|l’dv) 2P
2(2N-1)-(2N-1)p
zp NN(p 2)2]\] 1 e —
-3 (e ) (f orav)

N@-p) 4 N-1
X (/ ude>

[av(frar) Ti( flozsatar)”.

According to Proposition 2.7, ¢ is a minimizer of F,, with rg = [ |$|” dV. Hence we obtain
from [ |wPdV = [ |¢|P dV F(w) > F(¢). Using the deﬁnltlon of w and (2.4), one immedi-
ately has

/wzd\/z/qbzdv.



Huang and Rocha Journal of Inequalities and Applications (2018) 2018:163 Page 13 of 22

It is deduced that

()™ feo o) (s

-2 2(2N-1)-(2N-1)p
NN(p 2)2N— T I —
=) ([ W) |

-N(2-p)

Therefore

T NN(p 22N1 TZ ‘1%2
]1(”)‘(219) ( T ) (/'¢' dv) |

Since u is arbitrary, we deduce that

. NN(p - 2)2N-1 22
« 12(2;9) ( T ) (/"’” dV)

Step 2. We prove that

_ T NN(p 22N1 1%2
’ 15(@) < (2p)N-3T2 ) (/I¢| dV) .

In the first place, using mean value inequality, one has

‘ 9

-2
N-1

g2 N-1 7
[1(f108,07av) " < (TT [0z, av)
k=1 k=1

N-1 N-1
1 B 9
= [(ﬁZ/u)x 39| dV) }
k=1
2 (N—IA)‘@—Z)
(P~ 2
‘( T / ¢ dv)

In the second place, using the fact that ¢ #0, ¢ € Y7 and (2.4), one obtains immediately

p-2
4

N(p-2)

@)= (/¢2dV>4(f¢§dv> '
—1N— e
X (/ |¢|Pdv) </|D laykcp} d\/)
L Np-2) X2
2 B 2
<(forr) (B forar)
% = P2 (N—li(p—n
(7 forav) (T/ o)
T NN(p 2 2N-1 [%2
:(5) ( T ) (/ 4 dv) |
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From Step 1. and Step 2., we get the first equality of (B).
Step 3. Now we prove the second equality of (B). Since d; = L;(¢), we obtain from (2.4)
that

1, 1, 1 1
dy = /(—qs,% + ¢+ 5|D,;1vykq>|2 - ;|¢|P> dv

2 2
1/Np-2 N-1)p-2 1 1 2
- (P )+( )(P )+_ /|¢|2dV———p/|¢|2dV
2 T T 2 p T
p—2 2
= dav.
T / o]
Combining this with the first equality of (B), one gets the second equality of (B). d

3 Estimate of the smallest constant 8

In this section, we study the smallest constant § in (1.6). We use variational methods and
the ideas from the previous section. Observing the proofs in the previous section, we find
that it is very important to do the scaling and solve A, i and &, where k = 1,2,...,N -1,
from N + 1 equations; see (2.7), (2.8) and (2.9). However, as we will see below, in the
process of estimating 8, we still need to solve N + 1 positive parameters, but we only have
N equations; see (3.7) and (3.6)x, where k = 1,2,...,N — 1. Hence we need to do the scaling
and investigate the parameters carefully. Keeping the notation p, in mind, we consider the

following minimization problem:

= inf_ Jou), (3.1)
u#0,ueYy

where

e N-1 o -1
k=1

and Yj is the closure of 3,(C5°(RY)) under the norm

_ 2
leel3, += / (w7 + D Vo) AV
RN
The following related equation is useful in what follows:

Uy + |0lP* 20 = D;ZAyu, u#0,uc. (3.2)

Define on Y, the functionals
1 1 2 1
Lo(u) = —u?+ =|DAVul”" = —|ulP* |dV and
o) /(2 D7V, p*||)

Io(u) = /(ui + |D;1Vyu|2 - |u|”*) av.

Set

g = {u €Yo:u#0,l)(u) = 0} and dj= inrf Lo(u).
uely
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Then according to inequality (1.6), both Ly and I, are well defined and C! on Y.

Definition 3.1 An element v € Y} is said to be a solution of (3.2) if and only if v is a critical
point of Ly, i.e., Ly (v) = 0. Moreover, v € Yj is said to be a minimal action solution of (3.2)
ifv#0, Lj(v) =0 and Lo(v) < Lo(u) for any u € I'y.

Lemma 3.2 Foranyu € Yyandu #0, there is a unique s, > 0 such that s,u € T'y. Moreover,
if Iy(u) <O then 0<s, < 1.

Lemma 3.3 The set I’y is a manifold and there exists p > 0 such that, for any u € Ty,
llully, = p > 0.

Lemma 3.4 Ifv ey and Ly(v) = dy, then v is a critical point of Ly on Yy, i.e. Ly(v) = 0.

Remark The proofs of Lemma 3.2, Lemma 3.3 and Lemma 3.4 are similar to the proofs of
Lemma 2.2, Lemma 2.3 and Lemma 2.4. We omit the details here.

Theorem 3.5 We see that dy > 0 and there is a r € Ty such that dy = Lo(r). Moreover,
is a minimal action solution of (3.2).

Remark The proof of Theorem 3.5 follows lines similar to the proof of Theorem 2.5. We
emphasize that in the proof of Theorem 2.5, the functionals L, and I; only have invariance
under translations, i.e., for any V € RN, Li(u(- + V)) = L1 (u(-)) and I; (u(- + V)) = I; (u(-)).
But, in the case p = p,, the functionals L, and I, not only have invariance under transla-
tion, but also have invariance under dilation; see below (IUD) for details. Hence, we give
a detailed proof of Theorem 3.5.

Proof of Theorem 3.5 By Lemma 3.3 we know that d > 0. According to Definition 3.1 and
Lemma 3.4, we only need to prove that there is ¢ € I'g such that dy = Lo(v).

Let {#,}yen C T'o be a minimizing sequence of dy, i.e., u, #0, Io(u,) =0 and dy + o(1) =
Lo(u,) for n large enough. Then it is easy to see from Iy(u,) = O that |lu,]|y, is uni-
formly bounded with respect to #. Moreover, Lemma 3.3 implies that ||u,]|y, is uniformly
bounded away from zero and we see that

liminf/ lu,|P*dV = liminfllunH?/O >0.
n— 00 n— 00
Note that, for any V = (x,y1,...,¥n-1) € RN,

Lo(u(-+ %, +y1,...,- +¥n-1)) = Lo(u(-)) and
Io(u(- FX A Y +yN_1)) = Io(u(-)).

Moreover, for any X > 0, denoting
A 2 4 _4
u(x%,9) 1= Au(A N30, A N3y, . AN yn_ ),
we have

Lo(u*) =Lo(w) and Io(u") = Io(w). (IUD)
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We obtain from the concentration compactness lemma of Llons [8] that there are y,

and V" = (&",y%,...,9%_1) € RN such that ¥, (x,y) := Vuttn(ys w3 S(x + ™), vy w3 S+
4

Yo Vi 2 (Un-1 + Y1) satisfies

Lo(Yn) = Lo(u,) and  Io(v,) = Io(uy).

Additionally, there is ¥ € Y, such that v, — ¥ weakly in Yy, ¥, — ¥ a.e.in RN and ¢ #0.
If Io(¥) < 0, then by Lemma 3.2 there isa sy, such that 0 < sy < 1and sy € I'g. Therefore
using the Fatou lemma and Io(y,,) = Ip(¢,,) = 0, we obtain

do +0(1) = Lo(g) = G - i) / Wl dV >

S /|¢|P*dv+o(1)

= SN IS‘” /|sv,1/f|p*dV+0(1)—sp*Lo(sl/,l/f)+o(1).

It is now deduced from 0 < sy, < 1 that dy > Lo(sy ), which is a contradiction because of

S,/,lﬁ ely.
If Iy(y) > 0, then using the Brezis—Lieb lemma [2] one has

0 =1Io(Yn) = Io(¥) + Io(vs) + o(1),
where we denote V¥, — ¥ by v, in the rest of this section. This and Ip(¢/) > 0 imply that

limsup Ip(v,) < 0. (3.3)

n—0oQ

From Lemma 3.2 we know that there are s, :=s,,, such that s,v, € I'g. Moreover, we claim
that limsup,,_, ., sx € (0,1). Indeed if limsup,,_, ., s, = 1, then there is a subsequence {s,, }
such that limy_, » s, = 1. Therefore from s, v,,, € I'o one has

[O(Vnk) = IO(S}'lkVnk) + 0(1) = 0(1)

This contradicts (3.3). Hence limsup,,_, . s, € (0,1). Since

do +o(1) = <§——)/|1//nlp*d‘/

/ [ValP* dV + 0(1)

>
T2N-1

= N1 s, /|s,,v,,|p*dV+o( )

=5, Lo(syvy) + o(1),

one deduces that dy > Ly(s,v,,), which is a contradiction because of s,v,, € T'y.
Thus Ip(¢) = 0. Now similar to the proof of Theorem 2.5, we obtain [|v,|ly, — O as
k — oo. Therefore Lo(v/,,) = Lo(¥) and do = Lo(V). O

Next we give some properties of the minimal action solution ¥ of (3.2).
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Lemma 3.6 Let  be a minimal action solution of (3.2). Then Io(¢) = 0 and

o 2 _ N o —
Rol@) = [ (w2 - 50w ) v =o.

Moreover, we see that

N-1

f|D;1Vy¢|2dV: T/d’ﬁdv and
IN-1

[1or-av =222 [ gzav.

Proof The proof is similar to Lemma 2.6. We omit the details here. O

(3.4)

Next, we give another characterization of the minimal action solutions ¥ of (3.2). For
u € Yy, define

K(u) = / (2 + |D;'V,ul*)dv
and for r > 0 set
K, = inf{K(u) :u €Yy and / |ulP*dVv = r}.

Then we have the following proposition.

Proposition 3.7 Let v be a minimal action solution of (3.2). Then v is a minimizer of K,
withr= [ |y |PxdV.

Proof The proof is similar to Proposition 2.7. We omit the details. d
Now we are in a position to study the smallest constant § in (1.6).

Theorem 3.8 Let  be the minimal action solution of (3.2) obtained in Theorem 3.5 and
do = Lo(yr). The smallest constant 8 in (1.6) is

-1 172 2 s
Bl=N-1)'NIS( [ y2av
- 2N - 1) 'NRE AR

Remark From Theorem 3.8, B is unique, since the minimum d is unique. We point out
that 87! is independent of the choice of the minimal action solution ¥ of (3.2), although
we do not know the uniqueness of the minimal action solution. In fact the uniqueness of
the minimal action solution of (3.2) was an open problem.

Proof of Theorem 3.8 The proof is divided into three steps.
Step 1. In this step, we prove that

2

Bl> (N -1) N3 (/ 2 dV) .
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For any u € Y; and u #0, denote u = u(x,y) with y = (y1,...,yn-1). Define

wx,y) = Au(x, E1915 . En1YN-1)s

where A, , &,...,&n-1 are positive parameters which will be determined later. Then, by

direct computations, we see that

/|D Lo, | dv =22 -3(]_[5 )Ek/|D Y,u*dv, k=1,...,N-1;

j#k

'N-1
/ |wiP* dV=M’m-l(1"[s;1> / |ul?* dV; (3.5)
k=1
N-1
fwidV:A%(]‘[éﬁ) /uﬁdv.
k=1

In here X, w, &,...,&n-1 are determined by the following N equations:

22 -3(]_[5 )gkﬂD 1o,ul*dV = = /w av, (3.6)

Jj7k

where for k= 1,...,N — 1, (3.6) is denoted by (3.6)x;

'N-1
kp*u—l(l_[?’:]:l)/mw*d\/: ZNAZ_I/I/Ide. (3.7)
k=1

(Note: we need to solve N + 1 variables only from N equations.)

In the first place, from (3.6); and (3.7), one gets

AP 22 f D0, ul’dv = 5 av. (3.8)

In the second place, from (3.6)x, one gets

1 1
£l = (/{Dxlayku|2dv)2 (f’Dx18y1u|2dV> el k-2, N-L

It is now deduced from (3.6); and the expression of Ek‘l (k=2,...,N—1) that

2_17VN 1
1
et ([l av) Tl ) L [aav. o)

Equations (3.8) and (3.9) imply that

3-(4-N) N-1
3(2—11*)—4;:16‘2(3‘1\’) </‘D;18y1u’2dv> H(/‘D u‘ dV)

k=2

) ([ ) ()

-
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Combining this with the fact of p, = 2(2N — 1)/(2N — 3), one obtains

N-1N-1

-1
it ([ita,ufav) TI( [ 1ol av)
k=2

N2 3 -2
:m</|u|p* dv) (/ wfw) . (3.11)

Note that (3.8) can be written as

— AN AN g4N -1 2 N 1 P o
AT N |D; oy, ul"dV - GN_TF luP=dv ) . (3.12)

We obtain from (3.11) and (3.12)

-N-1N-1

-1
M4N§52N(/|D;13y,u|2dv> H(/|D;18yku|2d\/>
k=2

3-2N -2
=N2(2N—1)2N‘3( / |u|1’*dv> ( [ wﬁdv) ) (3.13)

Therefore
3-2N =2
4s-2 2 2N-3 N 2 N
w2 = NNEN - 1) ( [ |uPrdv Y2dV
% N-1 %
x (/\D;layluyzdv> ]‘[(/yp;laykuyzdv> : (3.14)
k=2

Writing (3.12) as

1 _ ) . 2\
(zN_1)”2§12/|”|p dV(/|Dx18ylu| dv) ,

we deduce from (3.7) and (3.5) that

4
AT2N-3 =

N-1

/WﬁdV:AZMHE,:I/uﬁdV

k=1

-1
:xzufuidv[zNN_l /I/ffdvxpm(/w* dV> }

2— 2 2 B 2N -1 2 .
=2t [ uidvy | |l dv N y;dV  (using (3.8))

1 -1
=;ﬁslzﬁfwde/uidV(lexlaﬂulde
1 2 2 -1 2 -
=5 | VeV [ madv |D;dy,ul"dV

3-2N

x NN¥ (2N - 1)*% (/ P alv>T </ w,fw)

=2
N
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Nt N %
x (f|Dx18y1u}2dV) (/]Dxlaykufzdv)

k=2

1_,

=NF QN -1)°% (/de) /u dv
N-1 ) N %
x D', u dv) ( |u|1”*dv) .
([ 1exaav) ([

From the definition of w and the fact that ¥ is a minimizer of K, with r = [ |y [P+ dV, we

get
/wﬁdvz/wfdv,

which implies that

—2N

N N
/uidV(/WV’dV) H</|D;layku|2dv>
k=1
2
le-%(zN-l)”’%U wfd\/)N

Therefore

2

]o(u)>N2Ns(2N 1)~ (/w dv)ﬂ.

Since u #0 and u € Y} is chosen arbitrarily, we get

2

N-2 2N-3
pl=(@N-1) 1N2N3</1//2d\/) .

Step 2. In this step, we prove that

2
Bl < (2N -1)INN3 (/ 2 dv) -

Since ¥ # 0 and ¢ € Yj, we obtain from Lemma 3.6 and the mean value inequality that

o= (fvzar ) (Jrorav) (oo ar)™
(o) (5 o) (o)
([ (5
s

N-1
2N-3

N-1

ehb 1/1&de) 1(%/w3dv>ﬁ

=(2N -1)"INw3 wzdv)
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Therefore
W3
Bl < (2N - 1) NS ( f vy dV) :

Combining Step 1. and Step 2., we get B! as stated in the theorem.
Step 3. We prove that

2
,B_l — (2N _ 1)_1N% dozN—S .
Indeed, since dy = Lo(y), we obtain from Lemma 3.6 that
1 1 2 1
do= [ =v2dV +=|D'V - —|pPr ) dV
o= [ (Guiave 3wl - ior)

1 1 2N-1 1 N-1 )
={=-=-—" + = YedV
2 p. N 2 N

1 2
=— av.
v/
Combining this with the first equality of 87! in the statement of Theorem 3.8, we get the
second equality of 871 in Theorem 3.8. O

4 Conclusions
In this paper, we not only estimated the smallest constant in a general N-dimensional
anisotropic Sobolev inequality in the subcritical case; we also gave an estimate of the small-

est constant for N-dimensional anisotropic Sobolev inequality in the critical case.
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