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Abstract
In this paper, we study the smallest constant α in the anisotropic Sobolev inequality
of the form

‖u‖pp ≤ α‖u‖
2(2N–1)+(3–2N)p

2
2 ‖ux‖

N(p–2)
2

2

N–1∏

k=1

∥∥D–1
x ∂yku

∥∥ p–2
2

2

and the smallest constant β in the inequality

‖u‖p∗
p∗ ≤ β‖ux‖

2N
2N–3
2

N–1∏

k=1

∥∥D–1
x ∂yku

∥∥ 2
2N–3
2 ,

where V := (x, y1, . . . , yN–1) ∈R
N with N ≥ 3 and 2 < p < p∗ = 2(2N–1)

2N–3 . These constants
are characterized by variational methods and scaling techniques. The techniques
used here seem to have independent interests.
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1 Introduction
Let N ≥ 2 and 2 < p ≤ p∗ := 2(2N–1)

2N–3 . A classical inequality [1, p. 323] states: there is a posi-
tive constant C > 0 such that, for any f ∈ C∞

0 (RN ),

∫

RN
|fx|p dV ≤ C

(∫

RN
|fx|2 dV

) 2(2N–1)+(3–2N)p
4

(∫

RN
|fxx|2 dV

) N(p–2)
4

×
N–1∏

k=1

(∫

RN
|∂yk f |2 dV

) p–2
4

, (1.1)

where V := (x, y) ∈ R
N and y = (y1, y2, . . . , yN–1) ∈ R

N–1. The purpose of the present paper
is to characterize the smallest (sharp) positive constant C of (1.1) (see Theorem 2.8 and
Theorem 3.8) and the related equations (see (2.1) and (3.2)).
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Two special cases of (1.1) have been used to study the solitary waves of the generalized
Kadomtsev–Petviashvili equation. For example, when N = 2 (at this moment, V := (x, y1) ∈
R

2 ) and 2 < p < 6, (1.1) in the form

∫

R2
|u|p dV ≤ C

(∫

R2
u2

x dV
) p–2

2
(∫

R2

(
D–1

x ∂y1 u
)2 dV

) p–2
4

(∫

R2
u2 dV

) 6–p
4

(1.2)

has been used to study the following generalized Kadomtsev–Petviashvili I equation:

ϕt + ϕxxx + ϕp–2ϕx = D–1
x ϕy1y1 , (x, y1) ∈R

2, t > 0. (1.3)

de Bouard et al. [6, 7] proved that (1.3) had a solitary wave solution for 2 < p < 6 and (1.3)
did not possess any solitary waves if p ≥ 6. Stability of solitary wave of (1.3) has been
studied in [9] in which (1.2) has played an important role. Chen et al. [4] also used (1.2)
to study the Cauchy problem of solutions to the 2-dimensional generalized Kadomtsev–
Petviashvili I equation, generalized rotation-modified Kadomtsev–Petviashvili equation
and generalized Kadomtsev–Petviashvili coupled with Benjamin–Ono equation.

When N = 3 (at this moment, V := (x, y1, y2) ∈ R
3), de Bouard et al. [6, 7] used (1.1) to

prove that if p ≥ 10
3 then the following equation:

–u + uxx + up–1 = D–2
x uy1y1 + D–2

x uy2y2 , u �= 0, (1.4)

had no solutions in Y (3), where Y (3) is the closure of ∂x(C∞
0 (R3)) under the norm

‖u‖2
Y (3) =

∫

R3

(
u2

x +
∣∣D–1

x ∂y1 u
∣∣2 +

∣∣D–1
x ∂y2 u

∣∣2 + |u|2)dV .

Here we define D–1
x , D–2

x by

D–1
x h(x, y) =

∫ x

–∞
h(s, y) ds, D–2

x h = D–1
x

(
D–1

x h
)
.

While for 2 < p < 10
3 , (1.4) had at least one nonzero solution in Y (3). Observing this pre-

vious work, p∗ = 6 (when N = 2) and p∗ = 10
3 (when N = 3) seem to be a critical non-

linear exponent, which shares some properties similar to the critical Sobolev exponent
2∗ = 2N/(N – 2) ( N ≥ 3) in the study of semilinear elliptic equations. Recall that the best
constant CS in the Sobolev inequality ‖u‖2

L2∗ ≤ CS‖∇u‖2
L2 is well-known and has been

used extensively. But for the smallest constant C in (1.1), few results are known. When
N = 2 and 2 < p < 6, the smallest constant C of (1.2) and its applications has been studied
in [4]. When N = 2 and p = 6, the characterization of the smallest constant C of (1.2) and
its related properties were studied in [5].

In the present paper, we are interested in the characterization of the smallest constant
C of (1.1) in the case of N ≥ 3. According to the value of 2 < p < p∗ and p = p∗ = 2(2N –
1)/(2N – 3), the studies were divided into two parts. In the first part, we study (1.1) in the
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case of 2 < p < p∗. At this time, (1.1) is written as the following form:

∫

RN
|u|p dV ≤ α

(∫

RN
|u|2 dV

) 2(2N–1)+(3–2N)p
4

(∫

RN
|ux|2 dV

) N(p–2)
4

×
N–1∏

k=1

(∫

RN

∣∣D–1
x ∂yk u

∣∣2 dV
) p–2

4
, (1.5)

where u ∈ Y1 and Y1 is the closure of ∂x(C∞
0 (RN )) under the norm

‖u‖2
Y1 :=

∫

RN

(
u2

x +
∣∣D–1

x ∇yu
∣∣2 + |u|2)dV .

As before and from now on, y = (y1, . . . , yN–1),

∇y =
(

∂

∂y1
, . . . ,

∂

∂yN–1

)
,

∣∣D–1
x ∇yu

∣∣2 =
N–1∑

k=1

∣∣D–1
x ∂yk u

∣∣2 and 
y =
N–1∑

k=1

∂2

∂yk
.

The main result of this part is to prove that the smallest constant α can be represented by
N , p and a minimal action solution of

–u + uxx + |u|p–2u = D–2
x 
yu, u �= 0, u ∈ Y1.

For details, see Theorem 2.5 and Theorem 2.8.
In the second part, we treat (1.1) in the case of p = p∗. In this case, (1.1) is written as

∫

RN
|u|p∗ dV ≤ β

(∫

RN
|ux|2 dV

) N
2N–3 N–1∏

k=1

(∫

RN

∣∣D–1
x ∂yk u

∣∣2 dV
) 1

2N–3
, (1.6)

where u ∈ Y0 and Y0 is the closure of ∂x(C∞
0 (RN )) under the norm

‖u‖2
Y0 :=

∫

RN

(
u2

x +
∣∣D–1

x ∇yu
∣∣2)dV .

The main results of this part are Theorem 3.5 and Theorem 3.8.
The estimate of the smallest constants α and β is based on variational methods and

scaling techniques. Recall that Weinstein [10] used variational methods to estimate the
constant CG in the Gagliardo–Nirenberg interpolation inequality [3],

∫

RN
|u|q+1 dz ≤ CG

(∫

RN
|∇u|2 dz

) N(q–1)
4

(∫

RN
|u|2 dz

) 2(q+1)–N(q–1)
4

, u ∈ W 1,2(
R

N)
.

This CG was estimated directly by studying the following minimization problem:

C–1
G = inf

{ (
∫
RN |∇u|2 dz)

N(q–1)
4 (

∫
RN |u|2 dz)

2(q+1)–N(q–1)
4

∫
RN |u|q+1 dz

: u ∈ W 1,2(
R

N)\{0}
}

,

due to the compactness embedding of

W 1,2
radial

(
R

N)
↪→ Lq+1(

R
N)

for 1 < q < 2∗ – 1,
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where

W 1,2
radial

(
R

N)
=

{
u ∈ W 1,2(

R
N)

: u(x) = u
(|x|)},

2∗ = 2N/(N – 2) for N ≥ 3 and 2∗ = +∞ for N = 2. Weinstein [10] managed to prove the
best constant CG for N ≥ 2 because the above compactness embedding holds only for
N ≥ 2. However, in the process of studying the best constant α (respectively, β), we cannot
use the methods of Weinstein [10] because we are facing anisotropic Sobolev spaces Y1

(respectively, Y0). In the present paper, we introduce a new method. The detailed strategy
contains three steps, which are given in the next section; and it may have independent
interest. In fact, we believe that it can be used to study the smallest constant of other kind
of inequalities.

This paper is organized as follows. In Sect. 2, we study the constant α, meanwhile we
explain the strategy in detail. In Sect. 3, we use this method to study the smallest constant
β under some additional analytic techniques.

Notations Throughout this paper, all integrals are taken over RN unless stated otherwise.
A function u defined on R

N is always real-valued. ‖ · ‖q denotes the Lq norm in Lq(RN ).

2 The smallest constant α

In this section, we always assume that 2 < p < p∗ := 2(2N–1)
2N–3 . We introduce a new strategy

to estimate α in (1.5). It contains three steps and hence we divide this section into three
subsections.

2.1 Minimal action solutions
In this subsection, we prove the existence of the minimal action solutions of the following
equation:

–u + uxx + |u|p–2u = D–2
x 
yu, u �= 0, u ∈ Y1. (2.1)

Define on Y1 the following functionals:

L1(u) =
∫ (

1
2

u2
x +

1
2
∣∣D–1

x ∇yu
∣∣2 +

1
2
|u|2 –

1
p
|u|p

)
dV and

I1(u) =
∫ (

u2
x +

∣∣D–1
x ∇yu

∣∣2 + |u|2 – |u|p)dV .

Set

�1 =
{

u ∈ Y1 : u �= 0, I1(u) = 0
}

and d1 = inf
u∈�1

L1(u).

Then according to the inequality (1.5), both L1 and I1 are well defined and C1 on Y1. The
following definition is by now standard.

Definition 2.1 An element v ∈ Y1 is said to be a solution of (2.1) if and only if v is a critical
point of L1, i.e., L′

1(v) = 0. Moreover, v ∈ Y1 is said to be a minimal action solution of (2.1)
if v �= 0, L′

1(v) = 0 and L1(v) ≤ L1(u) for any u ∈ �1.
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The following lemmas will play important roles in what follows.

Lemma 2.2 For any u ∈ Y1 and u �= 0, there is a unique su > 0 such that suu ∈ �1. Moreover,
if I1(u) < 0 then 0 < su < 1.

Proof For u �= 0 and s > 0, we have

I1(su) =
∫ (

s2u2
x + s2∣∣D–1

x ∇yu
∣∣2 + s2|u|2 – sp|u|p)dV .

Hence from direct computations, we get

su =
(‖u‖2

Y1

) 1
p–2

(∫
|u|p dV

)– 1
p–2

.

Clearly from the expression of I1(u), we know that if I1(u) < 0, then ‖u‖2
Y1

<
∫ |u|p dV and

therefore 0 < su < 1. �

Lemma 2.3 The set �1 is a manifold and there exists ρ > 0 such that, for any u ∈ �1,
‖u‖Y1 ≥ ρ > 0.

Proof Firstly, it is observed from Lemma 2.2 that �1 �= ∅. For any u ∈ �1,

〈
I ′

1(u), u
〉
Y1

= 2‖u‖2
Y1 – p

∫
|u|p dV = (2 – p)

∫
|u|p dV < 0.

Hence �1 is a manifold. Secondly, for any u ∈ �1, using inequality (1.5) and Young inequal-
ity, we know that there is a positive constant C such that

‖u‖2
Y1 =

∫
|u|p dV ≤ C‖u‖p

Y1
.

It is deduced that ‖u‖Y1 ≥ C– 1
p–2 := ρ > 0. The proof is complete. �

Lemma 2.4 If v ∈ �1 and L1(v) = d1, then v is a critical point of L1 on Y1, i.e. L′
1(v) = 0.

Proof By Lagrangian multiplier rule, there is θ ∈ R such that L′
1(v) = θ I ′

1(v). Note that
〈L′

1(v), v〉Y1 = I1(v) = 0 and

〈
I ′

1(v), v
〉
Y1

= (2 – p)
∫

|u|p dV < 0.

One easily obtains θ = 0. Therefore L′
1(v) = 0. �

Theorem 2.5 We see that d1 > 0 and there is a φ ∈ �1 such that d1 = L1(φ). Moreover, φ is
a minimal action solution of (2.1).

Proof It is easy to see from Lemma 2.3 that d1 > 0. According to Definition 2.1 and Lemma
2.4, we only need to prove that there is φ ∈ �1 such that d1 = L1(φ).
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Let {un}n∈N ⊂ �1 be a minimizing sequence of d1, i.e. un �= 0, I1(un) = 0 and d1 + o(1) =
L1(un). By I1(un) = 0 and the anisotropic Sobolev inequality (1.5), we know that ‖un‖Y1 is
bounded. Moreover, Lemma 2.3 implies that ‖un‖Y1 is uniformly bounded away from zero
and we see that

lim inf
n→∞

∫
|un|p dV = lim inf

n→∞ ‖un‖2
Y1 > 0.

Note that, for any V ≡ (x, y) ∈R
N ,

L1
(
u(· + x, · + y1, . . . , · + yN–1)

)
= L1

(
u(·)) and

I1
(
u(· + x, · + y1, . . . , · + yN–1)

)
= I1

(
u(·)).

We see from the concentration compactness lemma of Lions [8] that there are V n ≡
(xn, yn) ∈R

N , where yn = (yn
1, . . . , yn

N–1), such that

ϕn(x, y) := un
(
x + xn, y1 + yn

1, . . . , yN–1 + yn
N–1

)

satisfies

L1(ϕn) = L1(un) and I1(ϕn) = I1(un) = 0.

Moreover, there is φ ∈ Y1 and φ �= 0 such that φn ⇀ φ weakly in Y1 and ϕn → φ a.e. in R
N .

If I1(φ) < 0, then by Lemma 2.2 there is a 0 < sφ < 1 such that sφφ ∈ �1. Therefore using
the Fatou lemma and the fact that I1(ϕn) = 0, we obtain

d1 + o(1) = L1(ϕn) =
(

1
2

–
1
p

)∫
|ϕn|p dV ≥

(
1
2

–
1
p

)∫
|φ|p dV + o(1)

=
(

1
2

–
1
p

)
s–p
φ

∫
|sφφ|p dV + o(1) = s–p

φ L1(sφφ) + o(1)

as n large enough. It is deduced from 0 < sφ < 1 that d1 > L1(sφφ) which is a contradiction
because of sφφ ∈ �1.

If I1(φ) > 0, then using Brezis–Lieb lemma [2] one has

0 = I1(ϕn) = I1(φ) + I1(vn) + o(1),

where ϕn – φ := vn in the remaining part of this section. I1(φ) > 0 implies that

lim sup
n→∞

I1(vn) < 0. (2.2)

From Lemma 2.2 we know that there are sn := svn such that snvn ∈ �1. Moreover, we claim
that lim supn→∞ sn ∈ (0, 1). Indeed if lim supn→∞ sn = 1, then there is a subsequence {snk }
such that limk→∞ snk = 1. Therefore from snk vnk ∈ �1, one has

I1(vnk ) = I1(snk vnk ) + o(1) = o(1).
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This contradicts (2.2). Hence lim supn→∞ sn ∈ (0, 1). Since, for n large enough,

d1 + o(1) =
(

1
2

–
1
p

)∫
|ϕn|p dV ≥

(
1
2

–
1
p

)∫
|vn|p dV + o(1)

≥
(

1
2

–
1
p

)
s–p

n

∫
|snvn|p dV + o(1) = s–p

n L1(snvn) + o(1),

one has d1 > L1(snvn), which is a contradiction because snvn ∈ �1.
Thus I1(φ) = 0. Next we claim that ‖vn‖Y1 → 0 as n → ∞. We prove this claim by a

contradiction. If ‖vn‖Y1 �→ 0 as n → ∞, then there is a subsequence {vnk }k∈N ⊂ {vn}n∈N,
such that ‖vnk ‖Y1 → C > 0 as k → ∞. Using Brezis–Lieb lemma [2], one has

0 = I1(ϕnk ) = I1(vnk ) + I1(φ) + o(1).

Hence I1(vnk ) = o(1). According to Lemma 2.2, there are ρnk > 0 such that I1(ρnk vnk ) = 0.
Moreover, ρnk → 1 as k → ∞. Using Brezis–Lieb lemma [2] again, we see that, as n grows
large enough,

d1 + o(1) = L1(ϕnk ) = L1(vnk ) + L1(φ) + o(1)

= L1(ρnk vnk ) + L1(φ) + o(1)

≥ d1 + d1 + o(1),

which is impossible because of d1 > 0. Hence we have proven that ‖vnk ‖Y1 → 0 as k → ∞.
Therefore L1(ϕnk ) → L1(φ) and d1 = L1(φ). �

Next, we give some properties of the minimal action solution φ obtained above. These
properties seem to be of independent interests and will be very useful in what follows.

Lemma 2.6 Let φ be a minimal action solution of (2.1). Then I1(φ) = 0,

Q1(φ) :=
∫ (

φ2
x +

∣∣D–1
x ∇yφ

∣∣2 –
(2N – 1)(p – 2)

2p
|φ|p

)
dV = 0 and

R1(φ) :=
∫ (

φ2
x –

N(p – 2)
2p

|φ|p
)

dV = 0.

Moreover, we see that
∫ ∣∣D–1

x ∇yφ
∣∣2 dV =

N – 1
N

∫
φ2

x dV ,
∫

|φ|p dV =
2p

N(p – 2)

∫
φ2

x dV and

∫
|φ|2 dV =

(3 – 2N)p + 2(2N – 1)
N(p – 2)

∫
φ2

x dV .

(2.3)

Proof Since φ is a minimal action solution of (2.1), L′
1(φ) = 0. First, we define

φδ(x, y) = δ
N
2 φ(δx, δy), y = (y1, . . . , yN–1) ∈R

N–1.
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Then, by direct computation, we see that

∫
(∂xφδ)2 dV = δ2

∫
φ2

x dV ;
∫

|φδ|p dV = δ
N(p–2)

2

∫
|φ|p dV ;

∫ ∣∣D–1
x ∇yφδ

∣∣2 dV =
∫ ∣∣D–1

x ∇yφ
∣∣2 dV and

∫
|φδ|2 dV =

∫
|φ|2 dV .

Hence

L1(φδ) =
δ2

2

∫
φ2

x dV +
1
2

∫ ∣∣D–1
x ∇yφ

∣∣2 dV +
1
2

∫
|φ|2 dV –

δ
N(p–2)

2

p

∫
|φ|p dV .

Therefore

R1(φ) =
∂L1(φδ)

∂δ

∣∣∣∣
δ=1

=
〈
L′

1(φ),
∂φδ

∂δ

∣∣∣∣
δ=1

〉

Y1

= 0.

Next, we define

φδ(x, y) = δ
2N–1

2 φ
(
δx, δ2y

)
, y = (y1, . . . , yN–1) ∈R

N–1.

Then, by direct computation, we obtain

∫ (
∂xφ

δ
)2 dV = δ2

∫
φ2

x dV ;
∫ ∣∣φδ

∣∣p dV = δ
(2N–1)(p–2)

2

∫
|φ|p dV ;

∫ ∣∣D–1
x ∇yφ

δ
∣∣2 dV = δ2

∫ ∣∣D–1
x ∇yφ

∣∣2 dV and
∫ ∣∣φδ

∣∣2 dV =
∫

|φ|2 dV .

Hence

L1
(
φδ

)
=

δ2

2

∫ (
φ2

x +
∣∣D–1

x ∇yφ
∣∣2)dV +

1
2

∫
|φ|2 dV –

δ
(2N–1)(p–2)

2

p

∫
|φ|p dV .

Therefore

Q1(φ) =
∂L1(φδ)

∂δ

∣∣∣∣
δ=1

=
〈
L′

1(φ),
∂φδ

∂δ

∣∣∣∣
δ=1

〉

Y1

= 0.

The proof is complete. �

Remark From Lemma 2.6, one also obtains

∫ ∣∣D–1
x ∇yφ

∣∣2 dV =
(N – 1)(p – 2)

(3 – 2N)p + 2(2N – 1)

∫
φ2 dV ,

∫
|φ|p dV =

2p
(3 – 2N)p + 2(2N – 1)

∫
φ2 dV and

∫
φ2

x dV =
N(p – 2)

(3 – 2N)p + 2(2N – 1)

∫
φ2 dV .

(2.4)
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2.2 Another characterization of the minimal action solutions
In this subsection, we give another characterization of the minimal action solution φ of
(2.1) obtained in the previous subsection. We emphasize that this characterization will
play a key role in the process of estimating α. Define

F(u) =
∫

RN

(
u2

x +
∣∣D–1

x ∇yu
∣∣2 + u2)dV , u ∈ Y1

and for r > 0 set

Fr = inf

{
F(u) : u ∈ Y1 and

∫
|u|p dV = r

}
.

Then we have the following proposition.

Proposition 2.7 Let φ be a minimal action solution of (2.1). Then φ is a minimizer of Fr

with r =
∫ |φ|p dV .

Proof Since φ is a minimal action solution of (2.1), we know that L1(φ) ≤ L1(u) for any
u ∈ Y1 with u �= 0 and I1(u) = 0. Denote

Fr0 = inf

{
F(u) : u ∈ Y1 and

∫
|u|p dV =

∫
|φ|p dV

}
.

One immediately has F(φ) ≥ Fr0 .
Next, we will prove that, for any u ∈ Y1 with

∫ |u|p dV =
∫ |φ|p dV ,

F(φ) ≤ F(u).

For any μ > 0, I1(μu) = μ2F(u) – μp ∫ |u|p dV . Hence

μ0 =
(
F(u)

) 1
p–2

(∫
|u|p dV

)– 1
p–2

is such that I1(μ0u) = 0. The fact that μ0u �= 0 implies that

L1(φ) ≤ L1(μ0u) =
1
2
μ2

0F(u) –
1
p
μ

p
0

∫
|u|p dV

=
(

1
2

–
1
p

)(
F(u)

) p
p–2

(∫
|u|p dV

)– 2
p–2

=
(

1
2

–
1
p

)(
F(u)

) p
p–2

(∫
|φ|p dV

)– 2
p–2

.

Since
∫ |φ|p dV = F(φ) and L1(φ) = ( 1

2 – 1
p )F(φ), one deduces that

(
F(φ)

) p
p–2 ≤ (

F(u)
) p

p–2 ,

which implies that F(φ) ≤ F(u). Since u is chosen arbitrarily, one has F(φ) ≤ Fr0 . Com-
bining this with F(φ) ≥ Fr0 , one has F(φ) = Fr0 and hence φ is a minimizer of Fr with
r =

∫ |φ|p dV . �
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2.3 Estimate of the smallest constant α

In this subsection, we estimate the constant α of (1.5). To simplify the notation, we denote
T = (3 – 2N)p + 2(2N – 1). Consider the following minimization problem:

α–1 = inf
u�=0,u∈Y1

J1(u), (2.5)

where

J1(u) =
(∫

|u|2 dV
) T

4
(∫

u2
x dV

) N(p–2)
4 N–1∏

k=1

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
) p–2

4
(∫

|u|p dV
)–1

.

We have the following theorem.

Theorem 2.8 Let 2 < p < p∗ and T = (3 – 2N)p + 2(2N – 1). Then

α–1 =
(

T
2p

) T
4
(

NN (p – 2)2N–1

(2p)2N–3T2

) p–2
4

(∫
|φ|2 dV

) p–2
2

=
(

T
2p

) T
4
(

NN (p – 2)2N–1

(2p)2N–3T2

) p–2
4

(
T

p – 2
d1

) p–2
2

, (B)

where φ is the minimal action solution of (2.1) obtained in the above and d1 = L1(φ).

Remark From Theorem 2.8, we know that α–1 can be exactly expressed by N , p and the
minimal action solution φ of (2.1). Even though we do not know if the minimal action
solution of (2.1) is unique or not, the second equality of (B) implies that α–1 is independent
of the choice of the minimal action solution φ.

Proof of Theorem 2.8 The proof is divided into three steps. In the first two steps, we prove
the first equality of (B). In the third step, we prove the second equality of (B).

Step 1. In this step, we prove that

α–1 ≥
(

T
2p

) T
4
(

NN (p – 2)2N–1

(2p)2N–3T2

) p–2
4

(∫
|φ|2 dV

) p–2
2

.

For any u ∈ Y1 and u �= 0, denote u ≡ u(x, y1, . . . , yN–1). We define

w(x, y) = λu(μx, ξ1y1, . . . , ξN–1yN–1),
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where λ, μ, ξ1, . . . , ξN–1 are N + 1 positive parameters which will be determined later. From
direct computation, one obtains

∫ ∣∣D–1
x ∂yk w

∣∣2 dV = λ2μ–3
(∏

j �=k

ξ–1
j

)
ξk

∫ ∣∣D–1
x ∂yk u

∣∣2 dV , k = 1, . . . , N – 1;

∫
|w|p dV = λpμ–1

(N–1∏

k=1

ξ–1
k

)∫
|u|p dV ;

∫
w2

x dV = λ2μ

(N–1∏

k=1

ξ–1
k

)∫
u2

x dV ;

∫
w2 dV = λ2μ–1

(N–1∏

k=1

ξ–1
k

)∫
u2 dV .

(2.6)

Here λ, μ, ξ1, . . . , ξN–1 are determined by the following N + 1 equations:

λ2μ–3
(∏

j �=k

ξ–1
j

)
ξk

∫ ∣∣D–1
x ∂yk u

∣∣2 dV

=
p – 2

(3 – 2N)p + 2(2N – 1)

∫
φ2 dV , (2.7)

where for k = 1, . . . , N – 1, (2.7) is denoted by (2.7)k ;

λpμ–1

(N–1∏

k=1

ξ–1
k

)∫
|u|p dV =

2p
(3 – 2N)p + 2(2N – 1)

∫
φ2 dV , (2.8)

λ2μ

(N–1∏

k=1

ξ–1
k

)∫
u2

x dV =
N(p – 2)

(3 – 2N)p + 2(2N – 1)

∫
φ2 dV . (2.9)

Next, we solve λ, μ, ξ1, . . . , ξN–1 from (2.7)k , where k = 1, . . . , N – 1, (2.8) and (2.9). Firstly,
(2.8) and (2.9) imply that

μ2 =
N(p – 2)

2p
λp–2

∫
|u|p dV

(∫
u2

x dV
)–1

. (2.10)

Using (2.8) and (2.7)k , one gets

λp–2μ2ξ–2
k

∫
|u|p dV =

2p
p – 2

∫ ∣∣D–1
x ∂yk u

∣∣2 dV , k = 1, . . . , N – 1. (2.11)

It is now deduced from (2.10) and (2.11) that

λ2(p–2)
(∫

|u|p dV
)2(∫

u2
x dV

)–1(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
)–1

ξ–2
k

=
1
N

(
2p

p – 2

)2

. (2.12)
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Using (2.9), (2.10) and (2.12), we obtain

λ4μ2
N–1∏

k=1

ξ–2
k

(∫
u2

x dV
)2

=
(

N(p – 2)
(3 – 2N)p + 2(2N – 1)

∫
φ2 dV

)2

.

Hence

λ4+(p–2)(3–2N)
(∫

u2
x dV

)N(∫
|u|p dV

)3–2N N–1∏

k=1

∫ ∣∣D–1
x ∂yk u

∣∣2 dV

=
NN (p – 2)2

((3 – 2N)p + 2(2N – 1))2

(
p – 2

2p

)2N–3(∫
φ2 dV

)2

.

Secondly, remember the notation T = (3 – 2N)p + 2(2N – 1), the above equality can be
written as

λT
(∫

u2
x dV

)N(∫
|u|p dV

)3–2N N–1∏

k=1

∫ ∣∣D–1
x ∂yk u

∣∣2 dV

=
NN (p – 2)2N–1

(2p)2N–3T2

(∫
φ2 dV

)2

.

Therefore

λ =
(

NN (p – 2)2N–1

(2p)2N–3T2

) 1
T
(∫

φ2 dV
) 2

T
(∫

u2
x dV

) –N
T

×
(∫

|u|p dV
) 2N–3

T N–1∏

k=1

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
) –1

T
. (2.13)

It is deduced from (2.6), (2.8) and (2.13) that

∫
w2 dV =

2p
T

λ2
∫

u2 dV
(

λp
∫

|u|p dV
)–1 ∫

|φ|2 dV

=
2p
T

∫
|φ|2 dV

∫
u2 dV

(∫
|u|p dV

)–1

λ2–p

=
2p
T

(
NN (p – 2)2N–1

(2p)2N–3T2

) 2–p
T

(∫
|φ|2 dV

) 2(2N–1)–(2N–1)p
T

×
(∫

u2
x dV

) –N(2–p)
T

∫
u2 dV

(∫
|u|p dV

) –4
T N–1∏

k=1

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
) p–2

T
.

According to Proposition 2.7, φ is a minimizer of Fr0 with r0 =
∫ |φ|p dV . Hence we obtain

from
∫ |w|p dV =

∫ |φ|p dV F(w) ≥ F(φ). Using the definition of w and (2.4), one immedi-
ately has

∫
w2 dV ≥

∫
φ2 dV .
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It is deduced that

(∫
u2

x dV
) –N(2–p)

T
∫

u2 dV
(∫

|u|p dV
) –4

T N–1∏

k=1

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
) p–2

T

≥ T
2p

(
NN (p – 2)2N–1

(2p)2N–3T2

) p–2
T

(∫
|φ|2 dV

)1– 2(2N–1)–(2N–1)p
T

.

Therefore

J1(u) ≥
(

T
2p

) T
4
(

NN (p – 2)2N–1

(2p)2N–3T2

) p–2
4

(∫
|φ|2 dV

) p–2
2

.

Since u is arbitrary, we deduce that

α–1 ≥
(

T
2p

) T
4
(

NN (p – 2)2N–1

(2p)2N–3T2

) p–2
4

(∫
|φ|2 dV

) p–2
2

.

Step 2. We prove that

α–1 ≤
(

T
2p

) T
4
(

NN (p – 2)2N–1

(2p)2N–3T2

) p–2
4

(∫
|φ|2 dV

) p–2
2

.

In the first place, using mean value inequality, one has

N–1∏

k=1

(∫ ∣∣D–1
x ∂yk φ

∣∣2 dV
) p–2

4
=

(N–1∏

k=1

∫ ∣∣D–1
x ∂yk φ

∣∣2 dV

) p–2
4

≤
[(

1
N – 1

N–1∑

k=1

∫ ∣∣D–1
x ∂yk φ

∣∣2 dV

)N–1] p–2
4

=
(

p – 2
T

∫
φ2 dV

) (N–1)(p–2)
4

.

In the second place, using the fact that φ �= 0, φ ∈ Y1 and (2.4), one obtains immediately

J1(φ) =
(∫

φ2 dV
) T

4
(∫

φ2
x dV

) N(p–2)
4

×
(∫

|φ|p dV
)–1 N–1∏

k=1

(∫ ∣∣D–1
x ∂yk φ

∣∣2 dV
) p–2

4

≤
(∫

φ2 dV
) T

4
(

N(p – 2)
T

∫
φ2 dV

) N(p–2)
4

×
(

2p
T

∫
|φ|2 dV

)–1(p – 2
T

∫
φ2 dV

) (N–1)(p–2)
4

=
(

T
2p

) T
4
(

NN (p – 2)2N–1

(2p)2N–3T2

) p–2
4

(∫
|φ|2 dV

) p–2
2

.
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From Step 1. and Step 2., we get the first equality of (B).
Step 3. Now we prove the second equality of (B). Since d1 = L1(φ), we obtain from (2.4)

that

d1 =
∫ (

1
2
φ2

x +
1
2
φ2 +

1
2
∣∣D–1

x ∇yk φ
∣∣2 –

1
p
|φ|p

)
dV

=
1
2

(
N(p – 2)

T
+

(N – 1)(p – 2)
T

+
1
2

)∫
|φ|2 dV –

1
p

· 2p
T

∫
|φ|2 dV

=
p – 2

T

∫
|φ|2 dV .

Combining this with the first equality of (B), one gets the second equality of (B). �

3 Estimate of the smallest constant β

In this section, we study the smallest constant β in (1.6). We use variational methods and
the ideas from the previous section. Observing the proofs in the previous section, we find
that it is very important to do the scaling and solve λ, μ and ξk , where k = 1, 2, . . . , N – 1,
from N + 1 equations; see (2.7)k , (2.8) and (2.9). However, as we will see below, in the
process of estimating β , we still need to solve N + 1 positive parameters, but we only have
N equations; see (3.7) and (3.6)k , where k = 1, 2, . . . , N – 1. Hence we need to do the scaling
and investigate the parameters carefully. Keeping the notation p∗ in mind, we consider the
following minimization problem:

β–1 = inf
u�=0,u∈Y0

J0(u), (3.1)

where

J0(u) =
(∫

u2
x dV

) N
2N–3 N–1∏

k=1

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
) 1

2N–3
(∫

|u|p∗ dV
)–1

and Y0 is the closure of ∂x(C∞
0 (RN )) under the norm

‖u‖2
Y0 :=

∫

RN

(
u2

x +
∣∣D–1

x ∇yu
∣∣2)dV .

The following related equation is useful in what follows:

uxx + |u|p∗–2u = D–2
x 
yu, u �= 0, u ∈ Y0. (3.2)

Define on Y0 the functionals

L0(u) =
∫ (

1
2

u2
x +

1
2
∣∣D–1

x ∇yu
∣∣2 –

1
p∗

|u|p∗
)

dV and

I0(u) =
∫ (

u2
x +

∣∣D–1
x ∇yu

∣∣2 – |u|p∗)dV .

Set

�0 =
{

u ∈ Y0 : u �= 0, I0(u) = 0
}

and d0 = inf
u∈�0

L0(u).
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Then according to inequality (1.6), both L0 and I0 are well defined and C1 on Y0.

Definition 3.1 An element v ∈ Y0 is said to be a solution of (3.2) if and only if v is a critical
point of L0, i.e., L′

0(v) = 0. Moreover, v ∈ Y0 is said to be a minimal action solution of (3.2)
if v �= 0, L′

0(v) = 0 and L0(v) ≤ L0(u) for any u ∈ �0.

Lemma 3.2 For any u ∈ Y0 and u �= 0, there is a unique su > 0 such that suu ∈ �0. Moreover,
if I0(u) < 0 then 0 < su < 1.

Lemma 3.3 The set �0 is a manifold and there exists ρ > 0 such that, for any u ∈ �0,
‖u‖Y0 ≥ ρ > 0.

Lemma 3.4 If v ∈ �0 and L0(v) = d0, then v is a critical point of L0 on Y0, i.e. L′
0(v) = 0.

Remark The proofs of Lemma 3.2, Lemma 3.3 and Lemma 3.4 are similar to the proofs of
Lemma 2.2, Lemma 2.3 and Lemma 2.4. We omit the details here.

Theorem 3.5 We see that d0 > 0 and there is a ψ ∈ �0 such that d0 = L0(ψ). Moreover, ψ

is a minimal action solution of (3.2).

Remark The proof of Theorem 3.5 follows lines similar to the proof of Theorem 2.5. We
emphasize that in the proof of Theorem 2.5, the functionals L1 and I1 only have invariance
under translations, i.e., for any V ∈ R

N , L1(u(· + V )) = L1(u(·)) and I1(u(· + V )) = I1(u(·)).
But, in the case p = p∗, the functionals L0 and I0 not only have invariance under transla-
tion, but also have invariance under dilation; see below (IUD) for details. Hence, we give
a detailed proof of Theorem 3.5.

Proof of Theorem 3.5 By Lemma 3.3 we know that d0 > 0. According to Definition 3.1 and
Lemma 3.4, we only need to prove that there is ψ ∈ �0 such that d0 = L0(ψ).

Let {un}n∈N ⊂ �0 be a minimizing sequence of d0, i.e., un �= 0, I0(un) = 0 and d0 + o(1) =
L0(un) for n large enough. Then it is easy to see from I0(un) = 0 that ‖un‖Y0 is uni-
formly bounded with respect to n. Moreover, Lemma 3.3 implies that ‖un‖Y0 is uniformly
bounded away from zero and we see that

lim inf
n→∞

∫
|un|p∗ dV = lim inf

n→∞ ‖un‖2
Y0 > 0.

Note that, for any V ≡ (x, y1, . . . , yN–1) ∈R
N ,

L0
(
u(· + x, · + y1, . . . , · + yN–1)

)
= L0

(
u(·)) and

I0
(
u(· + x, · + y1, . . . , · + yN–1)

)
= I0

(
u(·)).

Moreover, for any λ > 0, denoting

uλ(x, y) := λu
(
λ

2
2N–3 x,λ

4
2N–3 y1, . . . ,λ

4
2N–3 yN–1

)
,

we have

L0
(
uλ

)
= L0(u) and I0

(
uλ

)
= I0(u). (IUD)
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We obtain from the concentration compactness lemma of Lions [8] that there are γn

and V n ≡ (xn, yn
1, . . . , yn

N–1) ∈ R
N such that ψn(x, y) := γnun(γ

2
2N–3

n (x + xn),γ
4

2N–3
n (y1 +

yn
1), . . . ,γ

4
2N–3

n (yN–1 + yn
N–1)) satisfies

L0(ψn) = L0(un) and I0(ψn) = I0(un).

Additionally, there is ψ ∈ Y0 such that ψn ⇀ ψ weakly in Y0, ψn → ψ a.e. in R
N and ψ �= 0.

If I0(ψ) < 0, then by Lemma 3.2 there is a sψ such that 0 < sψ < 1 and sψψ ∈ �0. Therefore
using the Fatou lemma and I0(ψn) = I0(un) = 0, we obtain

d0 + o(1) = L0(ϕn) =
(

1
2

–
1
p∗

)∫
|ψn|p∗ dV ≥ 1

2N – 1

∫
|ψ |p∗ dV + o(1)

=
1

2N – 1
s–p∗
ψ

∫
|sψψ |p∗ dV + o(1) = s–p∗

ψ L0(sψψ) + o(1).

It is now deduced from 0 < sψ < 1 that d0 > L0(sψψ), which is a contradiction because of
sψψ ∈ �0.

If I0(ψ) > 0, then using the Brezis–Lieb lemma [2] one has

0 = I0(ψn) = I0(ψ) + I0(vn) + o(1),

where we denote ψn – ψ by vn in the rest of this section. This and I0(ψ) > 0 imply that

lim sup
n→∞

I0(vn) < 0. (3.3)

From Lemma 3.2 we know that there are sn := svn such that snvn ∈ �0. Moreover, we claim
that lim supn→∞ sn ∈ (0, 1). Indeed if lim supn→∞ sn = 1, then there is a subsequence {snk }
such that limk→∞ snk = 1. Therefore from snk vnk ∈ �0 one has

I0(vnk ) = I0(snk vnk ) + o(1) = o(1).

This contradicts (3.3). Hence lim supn→∞ sn ∈ (0, 1). Since

d0 + o(1) =
(

1
2

–
1
p∗

)∫
|ψn|p∗ dV

≥ 1
2N – 1

∫
|vn|p∗ dV + o(1)

=
1

2N – 1
s–p∗

n

∫
|snvn|p∗ dV + o(1)

= s–p∗
n L0(snvn) + o(1),

one deduces that d0 > L0(snvn), which is a contradiction because of snvn ∈ �0.
Thus I0(φ) = 0. Now similar to the proof of Theorem 2.5, we obtain ‖vnk ‖Y0 → 0 as

k → ∞. Therefore L0(ψnk ) → L0(ψ) and d0 = L0(ψ). �

Next we give some properties of the minimal action solution ψ of (3.2).
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Lemma 3.6 Let ψ be a minimal action solution of (3.2). Then I0(φ) = 0 and

R0(φ) :=
∫ (

ψ2
x –

N
2N – 1

|ψ |p∗
)

dV = 0.

Moreover, we see that
∫ ∣∣D–1

x ∇yφ
∣∣2 dV =

N – 1
N

∫
φ2

x dV and
∫

|φ|p∗ dV =
2N – 1

N

∫
φ2

x dV .
(3.4)

Proof The proof is similar to Lemma 2.6. We omit the details here. �

Next, we give another characterization of the minimal action solutions ψ of (3.2). For
u ∈ Y0, define

K(u) =
∫ (

u2
x +

∣∣D–1
x ∇yu

∣∣2)dV

and for r > 0 set

Kr = inf

{
K(u) : u ∈ Y0 and

∫
|u|p∗ dV = r

}
.

Then we have the following proposition.

Proposition 3.7 Let ψ be a minimal action solution of (3.2). Then ψ is a minimizer of Kr

with r =
∫ |ψ |p∗ dV .

Proof The proof is similar to Proposition 2.7. We omit the details. �

Now we are in a position to study the smallest constant β in (1.6).

Theorem 3.8 Let ψ be the minimal action solution of (3.2) obtained in Theorem 3.5 and
d0 = L0(ψ). The smallest constant β in (1.6) is

β–1 = (2N – 1)–1N
N–2

2N–3

(∫
ψ2

x dV
) 2

2N–3

= (2N – 1)–1N
N

2N–3 d
2

2N–3
0 .

Remark From Theorem 3.8, β is unique, since the minimum d0 is unique. We point out
that β–1 is independent of the choice of the minimal action solution ψ of (3.2), although
we do not know the uniqueness of the minimal action solution. In fact the uniqueness of
the minimal action solution of (3.2) was an open problem.

Proof of Theorem 3.8 The proof is divided into three steps.
Step 1. In this step, we prove that

β–1 ≥ (2N – 1)–1N
N–2

2N–3

(∫
ψ2

x dV
) 2

2N–3
.



Huang and Rocha Journal of Inequalities and Applications  (2018) 2018:163 Page 18 of 22

For any u ∈ Y0 and u �= 0, denote u ≡ u(x, y) with y = (y1, . . . , yN–1). Define

w(x, y) = λu(μx, ξ1y1, . . . , ξN–1yN–1),

where λ, μ, ξ1, . . . , ξN–1 are positive parameters which will be determined later. Then, by
direct computations, we see that

∫ ∣∣D–1
x ∂yk w

∣∣2 dV = λ2μ–3
(∏

j �=k

ξ–1
j

)
ξk

∫ ∣∣D–1
x ∂yk u

∣∣2 dV , k = 1, . . . , N – 1;

∫
|w|p∗ dV = λp∗μ–1

(N–1∏

k=1

ξ–1
k

)∫
|u|p∗ dV ;

∫
w2

x dV = λ2μ

(N–1∏

k=1

ξ–1
k

)∫
u2

x dV .

(3.5)

In here λ, μ, ξ1, . . . , ξN–1 are determined by the following N equations:

λ2μ–3
(∏

j �=k

ξ–1
j

)
ξk

∫ ∣∣D–1
x ∂yk u

∣∣2 dV =
1
N

∫
ψ2

x dV , (3.6)

where for k = 1, . . . , N – 1, (3.6) is denoted by (3.6)k ;

λp∗μ–1

(N–1∏

k=1

ξ–1
k

)∫
|u|p∗ dV =

2N – 1
N

∫
ψ2

x dV . (3.7)

(Note: we need to solve N + 1 variables only from N equations.)
In the first place, from (3.6)1 and (3.7), one gets

λ2–p∗μ–2ξ 2
1

∫ ∣∣D–1
x ∂y1 u

∣∣2 dV =
1

2N – 1

∫
|u|p∗ dV . (3.8)

In the second place, from (3.6)k , one gets

ξ–1
k =

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
) 1

2
(∫ ∣∣D–1

x ∂y1 u
∣∣2 dV

)– 1
2
ξ–1

1 , k = 2, . . . , N – 1.

It is now deduced from (3.6)1 and the expression of ξ–1
k ( k = 2, . . . , N – 1) that

λ2μ–3ξ 3–N
1

(∫ ∣∣D–1
x ∂y1 u

∣∣2 dV
)2– N

2 N–1∏

k=2

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
) 1

2
=

1
N

∫
φ2

x dV . (3.9)

Equations (3.8) and (3.9) imply that

λ3(2–p∗)–4ξ
6–2(3–N)
1

(∫ ∣∣D–1
x ∂y1 u

∣∣2 dV
)3–(4–N) N–1∏

k=2

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
)–1

= N2
(

1
2N – 1

)3(∫
|u|p∗ dV

)3(∫
ψ2

x dV
)–2

. (3.10)
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Combining this with the fact of p∗ = 2(2N – 1)/(2N – 3), one obtains

λ
–8N

2N–3 ξ 2N
1

(∫ ∣∣D–1
x ∂y1 u

∣∣2 dV
)N–1 N–1∏

k=2

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
)–1

=
N2

(2N – 1)3

(∫
|u|p∗ dV

)3(∫
ψ2

x dV
)–2

. (3.11)

Note that (3.8) can be written as

λ– 8N
2N–3 μ–4Nξ 4N

1

(∫ ∣∣D–1
x ∂y1 u

∣∣2 dV
)2N

=
1

(2N – 1)2N

(∫
|u|p∗ dV

)2N

. (3.12)

We obtain from (3.11) and (3.12)

μ4Nξ–2N
1

(∫ ∣∣D–1
x ∂y1 u

∣∣2 dV
)–N–1 N–1∏

k=2

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
)–1

= N2(2N – 1)2N–3
(∫

|u|p∗ dV
)3–2N(∫

ψ2
x dV

)–2

. (3.13)

Therefore

μ4ξ–2
1 = N

2
N (2N – 1)

2N–3
N

(∫
|u|p∗ dV

) 3–2N
N

(∫
ψ2

x dV
) –2

N

×
(∫ ∣∣D–1

x ∂y1 u
∣∣2 dV

) N+1
N N–1∏

k=2

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
) 1

N
. (3.14)

Writing (3.12) as

λ– 4
2N–3 =

1
(2N – 1)

μ2ξ–2
1

∫
|u|p∗ dV

(∫ ∣∣D–1
x ∂y1 u

∣∣2 dV
)–1

,

we deduce from (3.7) and (3.5) that

∫
w2

x dV = λ2μ

N–1∏

k=1

ξ–1
k

∫
u2

x dV

= λ2μ

∫
u2

x dV
[

2N – 1
N

∫
ψ2

x dVλ–p∗μ

(∫
|u|p∗ dV

)–1]

= λ2–p∗μ2
∫

u2
x dV

(∫
|u|p∗ dV

)–1 2N – 1
N

∫
ψ2

x dV
(
using (3.8)

)

= μ4ξ–2
1

1
N

∫
ψ2

x dV
∫

u2
x dV

(∫ ∣∣D–1
x ∂y1 u

∣∣2 dV
)–1

=
1
N

∫
ψ2

x dV
∫

u2
x dV

(∫ ∣∣D–1
x ∂y1 u

∣∣2 dV
)–1

× N
2
N (2N – 1)

2N–3
N

(∫
|u|p∗ dV

) 3–2N
N

(∫
ψ2

x dV
) –2

N
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×
(∫ ∣∣D–1

x ∂y1 u
∣∣2 dV

) N+1
N N–1∏

k=2

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
) 1

N

= N
2
N –1(2N – 1)

2N–3
N

(∫
ψ2

x dV
)1– 2

N
∫

u2
x dV

×
N–1∏

k=1

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
) 1

N
(∫

|u|p∗ dV
) 3–2N

N
.

From the definition of w and the fact that ψ is a minimizer of Kr with r =
∫ |ψ |p∗ dV , we

get

∫
w2

x dV ≥
∫

ψ2
x dV ,

which implies that

∫
u2

x dV
(∫

|u|p dV
) 3–2N

N N–1∏

k=1

(∫ ∣∣D–1
x ∂yk u

∣∣2 dV
) 1

N

≥ N1– 2
N (2N – 1)

2N–3
N

(∫
ψ2

x dV
) 2

N
.

Therefore

J0(u) ≥ N
N–2

2N–3 (2N – 1)–1
(∫

ψ2
x dV

) 2
2N–3

.

Since u �= 0 and u ∈ Y0 is chosen arbitrarily, we get

β–1 ≥ (2N – 1)–1N
N–2

2N–3

(∫
ψ2

x dV
) 2

2N–3
.

Step 2. In this step, we prove that

β–1 ≤ (2N – 1)–1N
N–2

2N–3

(∫
ψ2

x dV
) 2

2N–3
.

Since ψ �= 0 and ψ ∈ Y0, we obtain from Lemma 3.6 and the mean value inequality that

J0(ψ) =
(∫

ψ2
x dV

) N
2N–3

(∫
|ψ |p∗ dV

)–1 N–1∏

k=1

(∫ ∣∣D–1
x ∂yk ψ

∣∣2 dV
) 1

2N–3

≤
(∫

ψ2
x dV

) N
2N–3

(
2N – 1

N

∫
ψ2

x dV
)–1

(
1

N – 1

N–1∑

k=1

∫ ∣∣D–1
x ∂yk ψ

∣∣2 dV

) N–1
2N–3

=
(∫

ψ2
x dV

) N
2N–3

(
2N – 1

N

∫
ψ2

x dV
)–1( 1

N

∫
ψ2

x dV
) N–1

2N–3

= (2N – 1)–1N
N–2

2N–3

(∫
ψ2

x dV
) 2

2N–3
.
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Therefore

β–1 ≤ (2N – 1)–1N
N–2

2N–3

(∫
ψ2

x dV
) 2

2N–3
.

Combining Step 1. and Step 2., we get β–1 as stated in the theorem.
Step 3. We prove that

β–1 = (2N – 1)–1N
N

2N–3 d
2

2N–3
0 .

Indeed, since d0 = L0(ψ), we obtain from Lemma 3.6 that

d0 =
∫ (

1
2
ψ2

x dV +
1
2
∣∣D–1

x ∇yk ψ
∣∣2 –

1
p∗

|φ|p∗
)

dV

=
(

1
2

–
1
p∗

· 2N – 1
N

+
1
2

· N – 1
N

)∫
ψ2

x dV

=
1
N

∫
ψ2

x dV .

Combining this with the first equality of β–1 in the statement of Theorem 3.8, we get the
second equality of β–1 in Theorem 3.8. �

4 Conclusions
In this paper, we not only estimated the smallest constant in a general N-dimensional
anisotropic Sobolev inequality in the subcritical case; we also gave an estimate of the small-
est constant for N-dimensional anisotropic Sobolev inequality in the critical case.
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