
Universidade de Aveiro
2023

Anaísa
Lucena Silva

Abordagens Computacionais para Gerar e Completar
Receitas Culinárias

Computational Approaches for Food Recipe
Generation and Completion

Universidade de Aveiro
2023

Anaísa
Lucena Silva

Abordagens Computacionais para Gerar e Completar
Receitas Culinárias

Computational Approaches for Food Recipe
Generation and Completion

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Mestre em Engenharia Computacional, realizada
sob a orientação científica do Doutor António Luís Ferreira, Professor associado do
Departamento de Física da Universidade de Aveiro.

This research received funding from European Regional Development Fund
(ERDF), Centro2020 and Agência Nacional de Inovação through the projet
"Cook4Me", CENTRO-01-0247-FEDER-070247.

o júri / the jury

presidente / president Professor Doutor Eugénio Alexandre Miguel Rocha
Professor Associado da Universidade de Aveiro

vogais / examiners committee Professor Doutor Simão Pedro Mendes Cruz Reis Paredes
Professor Adjunto do Instituto Politécnico de Coimbra

Professor Doutor António Luís Campos de Sousa Ferreira
Professor Associado da Universidade de Aveiro

agradecimentos /
acknowledgements

First and foremost, I express my gratitude to my advisor, Professor António Luís
Ferreira, whose support, motivation, and guidance have been instrumental through-
out this journey.
I am also grateful for the support provided by Wish and Cook and the project
cook4me. Specially, I extend my sincere appreciation to Professor Fernão Abreu,
for his guidance, motivation, and willingness always help. Additionally, my thanks
to Ana Sofia Freitas and Professor Carlos Azevedo.
Finally, I want to thank my mother and grandmother for their support and en-
couragement. I am also thankful for Guilherme, whose presence and advice proved
invaluable throughout this process. At last, I want to express my gratitude to God,
for guiding me through this journey.

Palavras Chave receitas culinárias, ingredientes, cadeias não-Markovianas, RBM, NMF.

Resumo A indústria alimentar moderna depara-se com o aumento das alergias alimentares e
da obesidade, havendo necessidade de personalização, e com a luta global contra a
fome, sendo necessárias soluções inovadoras e que reduzam o desperdício. Este
estudo explora receitas melhoradas por inteligência artificial, com o potencial
para atender a estes desafios. Três métodos computacionais: uma cadeia não-
Markoviana, uma máquina de Boltzmann restrita (RBM) e uma factorização de
matriz não-negativa (NMF) foram utilizados para gerar e completar receitas. Estes
métodos foram avaliados usando duas bases de dados distintas: uma mais pequena,
que contém exclusivamente sopas, e uma maior e mais diversa, com receitas de
várias partes do mundo.
Em relação ao desempenho dos métodos, o algorítmo de Markov criou muitas
receitas repetidas, enquanto o RBM e o NMF geraram receitas diversas e únicas,
o que se deve à tendência do algorítmo de Markov de sugerir principalmente
os ingredientes mais comuns. Adicionalmente, o método de Markov oferece a
vantagem de não requerer afinação. Por outro lado, o NMF exige o ajuste de
um único parâmetro, e o RBM tem a desvantagem de necessitar o ajuste de
quatro parâmetros. O RBM também preservou melhor o coeficiente de correlação
de Pearson e a informação mútua originais entre pares de ingredientes que os
métodos Markov e NMF. Isto foi demonstrado através de testes que envolveram
o cálculo das distâncias euclidianas entre os valores calculados diretamente das
bases de dados e aqueles obtidos a partir das receitas geradas pelos métodos, assim
como a agregação hierárquica de ingredientes e a comparação entre as matrizes de
correlação dos 50 ingredientes mais comuns. É de salientar que os métodos Markov
e RBM evitaram com sucesso pares proibidos de ingredientes, enquanto o RBM e
o NMF evitaram eficazmente combinações raras de ingredientes populares. Além
disso, ao completar uma receita de teste, os três métodos forneceram sugestões
com sentido.
A exploração de relações mais complexas entre os ingredientes, incluindo
correlações que envolvam 3 ou 4 ingredientes, e a consideração de retorno dos
utilizadores, anteveem-se como trabalho futuro promissor. Além do mais, a longo
prazo, a integração das quantidades dos ingredientes e dos passos de preparação
das receitas poderia aumentar significativamente a profundidade e a aplicabilidade
destas receitas melhoradas por inteligência artificial.

Keywords food recipes, ingredients, non-Markovian chains, RBM, NMF.

Abstract The modern food industry is confronted with the rise of food allergies and obesity,
requiring personalization, and the global struggle against hunger, demanding
innovative, waste-reducing solutions. This study explores AI-enhanced recipes,
with the potential to address these challenges. Three computational methods:
a non-Markovian chain, a Restricted Boltzmann Machine (RBM), and Non-
negative Matrix Factorization (NMF) were employed to generate and complete
recipes. These methods were evaluated using two distinct databases: a smaller
one exclusively containing soups, and a larger, more diverse database, featuring
recipes from around the world.
Regarding the performance of the methods, the Markov algorithm exhibited
repetitive recipes, while the RBM and NMF generated diverse and unique recipes,
which happened due to the tendency of the Markov algorithm to mainly suggest the
most common ingredients. Furthermore, the Markov method offers the advantage
of requiring no tuning. On the other hand, the NMF necessitates the tuning
of a single parameter, and the RBM incurs in the disadvantage of requiring the
fine-tuning of four parameters. The RBM also preserved the original Pearson
correlation coefficient and mutual information between ingredient pairs better
than both the Markov and NMF methods. This was demonstrated through tests
involving the calculation of Euclidean distances between the values calculated from
the databases and those obtained from the recipes generated by the methods, as
well as performing hierarchical clustering and comparing the correlation matrices
of the 50 most common ingredients. Notably, the Markov and RBM successfully
avoided prohibited ingredient pairs, while the RBM and NMF effectively avoided
rare combinations of popular ingredients. Moreover, when completing a test recipe,
all three methods provided sound suggestions.
Looking forward, evaluating the methods by looking at more intricate ingredient
relationships, such as correlations involving 3 or 4 ingredients, and incorporating
user feedback, stand promising for future work. Moreover, in the long term,
integrating ingredient quantities and cooking steps could significantly enhance the
depth and applicability of these AI-enhanced recipes.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives of the Work . 3
1.3 Publications . 4

2 Computational Gastronomy: Concepts and State of the Art 5
2.1 Artificial Intelligence and Machine Learning 5
2.2 AI Applications in Culinary Science . 7

2.2.1 Food Recognition . 7
2.2.2 Recipe Recommendation Systems 8
2.2.3 Recipe Ideation and Food Pairing 9
2.2.4 Recipe Completion . 10

2.3 Prediction Models and Recommendation Systems 11
2.3.1 Stochastic Processes . 12
2.3.2 Restricted Boltzmann Machines 16
2.3.3 Non-Negative Matrix Factorization 18

3 Methods and Techniques to Test Performance 21
3.1 Stochastic Processes . 21

3.1.1 Markov Chains . 21
3.1.2 Non-Markovian Chains . 23

3.2 Restricted Boltzmann Machine . 24
3.3 Non-Negative Matrix Factorization . 28
3.4 Mutual Information and Correlation Coefficient 29
3.5 Hierarchical Clustering . 32

4 Results and Analysis 34
4.1 Characterization of the Databases . 34

4.1.1 Soup Database . 34
4.1.2 World Cuisine Database . 37
4.1.3 Hierarchical Clustering . 39

4.2 Computational Time Complexity . 41

i

4.3 Recipe Generation . 43
4.3.1 Recipe Diversity . 44
4.3.2 1-Dimensional Analysis: Frequency 45
4.3.3 2-Dimensional Analysis: Correlations 48

4.4 Qualitative Analysis . 52
4.4.1 Prohibited Combinations . 52
4.4.2 Uncommon Combinations . 54
4.4.3 Recipe Completion . 55

4.5 Advantages and Disadvantages of the Proposed Methods 56

5 Conclusion and Future Work 59

Bibliography 62

ii

List of Acronyms

AI Artificial Intelligence
AIV Amazon Instant Video
CF Collaborative Filtering
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
DGN Decomposition Generation Network
KL Kullback-Leibler
MAE Mean Absolute Error
MCMC Markov Chain Monte Carlo
ML Machine Learning
MLE Maximum Likelihood Estimation
NLP Natural Language Processing
NMF Non-negative Matrix Factorization
RBM Restricted Boltzmann Machine
RDE-GAN Recipe Disentangled Embedding Generative Adversial Network
RLS Regularized Least Squares
RNG Random Number Generator
RS Recommendation System
SDG Sustainable Development Goal
SVD Singular Value Decomposition
WWW World Wide Web

iii

List of Figures

1.1 Schematic of the interrelationships between smart food services and AI
recipes with accessibility, personalized nutrition and optimization of
ingredient utilization. 3

2.1 Schematic of various types of supervised and unsupervised learning. . . 7
2.2 Three examples of Markov chains and their respective transition matrices. 14
2.3 RBM with m visible units and n hidden units. Wij is the weight between

hi and vj and the terms b and c denote the bias for visible and hidden
unit, respectively. 17

2.4 Schematic representation of the NMF algorithm. 19

4.1 Histogram illustrating the distribution of the number of ingredients per
recipe in the soup database, along with its corresponding fitted gamma
distribution. 35

4.2 Probability of each ingredient being in a recipe, calculated based on the
frequency, sorted from most to least common (a), for the soup database,
and only for the 50 most common ingredients, featuring their respective
names (b). 36

4.3 Relationship between the mutual information and the correlation
coefficient of the pairs of the 50 most common ingredients (a) and the
pairs between all of the ingredients (b) for the soup database. It is also
represented the fitted parabola of the pairs of the 50 most common
ingredients on both images. 36

4.4 Histogram illustrating the distribution of the number of ingredients per
recipe in the world cuisine database, along with its corresponding fitted
gamma distribution. 37

4.5 Probability of each ingredient being in a recipe, calculated based on the
frequency, sorted from most to least common (a), for the world cuisine
database, and only for the 50 most common ingredients, featuring their
respective names (b). 38

iv

4.6 Relationship between the mutual information and the correlation
coefficient of the pairs of the 50 most common ingredients (a) and the
pairs between all of the ingredients (b) for the world cuisine database.
It is also represented the fitted parabola of the pairs of the 50 most
common ingredients on both images. 38

4.7 Dendrogram representing hierarchical clustering (a), ordered Pearson
correlation matrix with visual depiction of defined clusters (b), and the
corresponding nomenclature of these clusters (c) in the soup database. . 39

4.8 Dendrogram representing hierarchical clustering (a), ordered Pearson
correlation matrix with visual depiction of defined clusters (b), and the
corresponding nomenclature of these clusters (c) in the world cuisine
database. 40

4.9 Representation of the probability of each ingredient being in a recipe,
calculated based on the frequency, for the databases generated by the
Markov (a), RBM (b), NMF (c) and RNG (d) algorithms trained on the
soup database. The ingredients are sorted from the most to the least
common in the original database. 46

4.10 Representation of the probability of each ingredient being in a recipe,
calculated based on the frequency, for the databases generated by the
Markov (a), RBM (b), NMF (c) and RNG (d) algorithms trained on the
world cuisine database. The ingredients are sorted from the most to the
least common in the original database. 47

4.11 Correlation matrix of the 50 most common ingredients for the
databases generated by the Markov (a), RBM (b), NMF (c) and RNG
(d) algorithms trained on the soup database. The ingredients are
sorted according to the hierarchical clustering of the original database. 50

4.12 Correlation matrix of the 50 most common ingredients for the
databases generated by the Markov (a), RBM (b), NMF (c) and RNG
(d) algorithms trained on the world cuisine database. The ingredients
are sorted according to the hierarchical clustering of the original
database. 51

4.13 Comparison of the relative performance of the developed methods
(Markov, RBM and NMF) across a range of different parameters
(Left), with corresponding symbols legend (Right). 57

v

List of Tables

3.1 Conditional probability table for two random ingredients. 31

4.1 Time complexity comparison of the different methods during the training
phase and for single-ingredient suggestions. 42

4.2 Percentage of unique recipes among the total generated (in the first
row), and the percentage of these unique recipes that replicate existing
database entries (in the last row). 45

4.3 Euclidean distance between the probability of an ingredient being in a
recipe of the original database P d(i) and the simulated database P s(i)
for each method for both databases. 48

4.4 Euclidean distance between the weighted mutual information (I ′) and
the correlation coefficient r of every pair of ingredients, as well as the
correlation coefficient for the pairs of ingredients with positive (r > 0)
and negative (r < 0) correlations, for each method for the soup database. 48

4.5 Euclidean distance between the weighted mutual information (I ′) and
the correlation coefficient r of every pair of ingredients, as well as the
correlation coefficient for the pairs of ingredients with positive (r > 0)
and negative (r < 0) correlations, for each method for the world cuisine
database. 49

4.6 Occurrences of prohibited pairs in 10000 simulated recipes generated by
Markov, RBM, and NMF algorithms trained on the soup dataset. . . . 52

4.7 Occurrences of prohibited pairs in 10000 simulated recipes generated by
Markov, RBM, and NMF algorithms trained on the world cuisine dataset. 53

4.8 Percentage of recipes, for the three studied methods and the respective
training database, that contain chicken stock and water and onion and
vanilla, for the soup and world cuisine recipes, respectively. 54

4.9 Top 5 ingredients with the highest probability to be added to an
incomplete recipe featuring onion, tomato, parsley, beef, and potato.
Each column corresponds to the results obtained from the Markov,
RBM and NMF algorithms, respectively, trained using the soup dataset. 55

vi

4.10 Top 5 ingredients with the highest probability to be added to an
incomplete recipe featuring onion, tomato, parsley, beef, and potato.
Each column corresponds to the results obtained from the Markov,
RBM and NMF algorithms, respectively, trained using the world
cuisine dataset. 56

vii

Chapter 1

Introduction

The food industry is showing a rising interest towards personalized nutrition, an
approach to enhance health by tailoring dietary recommendations to individual needs,
promoting well-being and preventing diseases effectively [1].

1.1 Motivation

As food allergies, obesity, and other food-related diseases continue to rise, the need
for personalized nutrition grows ever more significant. Food allergies currently affect
up to 10% of the general population [2] and obesity rates have nearly tripled between
1975 and 2016. According to the World Health Organization, in 2016, 39% of the
world’s adult population could be classified as overweight and 13% as obese [3].

Furthermore, in today’s world a pressing issue of global concern is hunger. In 2022,
approximately 735 million individuals struggled with hunger, while 2.4 billion people
faced food insecurity [4]. Moreover, a substantial portion of the world’s food supply,
about 14%, is lost during production and distribution [5], with an additional 17%
wasted mainly at the retail and consumer levels [6]. The convergence of these issues
adds urgency to the search for innovative solutions that not only optimize global food
systems, thereby reducing food waste, but also address both dietary and health-related
challenges.

In the context of the Fourth Industrial Revolution, where advanced digital
technologies are reshaping various industries [7], the culinary domain is also
undergoing a significant transformation through, for example, the application of
artificial intelligence (AI), a broad term referring to the computer-based modeling of
intelligent behavior with minimal human intervention, to generate and enhance
recipes. This innovative integration of AI and gastronomy aligns with the principles
of Industry 4.0, emphasizing automation, data-driven insights, and collaborative
innovation [8, 9].

AI-enhanced recipes have the potential to optimize food production, reduce food

1

waste, and offer more nutritious and efficient meal choices, thereby contributing to the
global efforts aimed at eradicating hunger and enhancing food security (Sustainable
Development Goal 2 - Zero hunger) [10]. In addition to its direct alignment with
the Sustainable Development Goals (SDGs), the use of AI to generate or complete
recipes resonates with the concept of smart cities. As urban centers enhance efficiency
and quality of life, intelligent culinary systems allow the city to foster a varied and
sustainable food supply [11].

The utilization of AI-enhanced recipes can also assist in designing personalized
and healthier meal plans, taking into account dietary preferences, allergies, and
nutritional requirements, thereby promoting better eating habits and overall
well-being (SDG 3 - Good health and well-being). Moreover, they can encourage the
selection of sustainable food options and recipes incorporating locally sourced,
seasonal, and environmentally friendly ingredients, thereby promoting responsible
consumption and production patterns (SDG 12 - Responsible consumption and
production) [10].

Anticipating the advent of the Fifth Industrial Revolution, characterized by an
unprecedented level of automation, harmonious human–machine collaborations and
sustainable practices [12], the role of AI in the culinary sphere gains even greater
significance. As smart cities become a defining feature of the future, AI-enhanced
recipes can promote sustainable consumption by optimizing ingredient utilization,
minimizing food wastage, and providing tailored dietary suggestions (personalized
nutrition). This convergence of technology and gastronomy underlines the
transformative potential of AI in cultivating a more connected, efficient, and
conscious society [11, 13].

Moreover, specially when paired with smart food services, AI-enhanced recipes offer
economic benefits through cost-effective ingredient choices, as well as time efficiency,
due to the optimization of processes. This allows a level of customization that caters
to individual preferences and dietary needs, nutritional analysis for informed decision-
making, and guidance for portion control to support healthier eating habits without
having to cook or have a personal chef. By addressing these factors, AI-enhanced
recipes enhance accessibility to meal plans and personalized nutrition, bringing about
a more equitable and well-rounded approach to healthy eating. The benefits of AI-
enhanced recipes are illustrated in Fig.1.1.

However, the current state of AI-enhanced recipes exhibits limitations in achieving
the level of personalized nutrition found in human-prepared meals. This discrepancy
primarily arises from the intricate nature of food pairing and the multifaceted realm
of sensory perception that humans possess, where elements such as colors, texture,
temperature, and sound can all contribute to the way individuals experience food [14].

As such, one of the challenges of generating AI recipes lies in comprehending the
intricate interplay of flavors, textures, and aromas that unfold during the cooking

2

Figure 1.1: Schematic of the interrelationships between smart food services and AI
recipes with accessibility, personalized nutrition and optimization of ingredient

utilization.

process. While AI models have advanced in creating recipes and meal plans, they
often lack an intuitive understanding of ingredient compatibility in a culinary
context. Additionally, the data engineering aspect also presents challenges, such as
standardizing recipe formats, cleansing and normalizing recipe data, and extracting
ingredient and nutritional details. Moreover, scalability and performance are crucial
concerns, especially as the volume of recipes in a management system grows,
necessitating the system’s ability to efficiently handle expanding data loads while
ensuring rapid query responses [15].

Nevertheless, the future of AI-enhanced recipes holds promise. As ongoing
research advances the understanding of culinary science and human nutrition, AI
algorithms can continue to evolve, bridging the gap between convenience and
personalized nutrition. By leveraging data from diverse sources, such as nutritional
databases, sensory analyses, and individual dietary needs, AI-driven meal planning
and enhanced recipes could eventually offer efficient and widely accessible options
tailored to individual health goals.

By relying on objective data and scientific principles, AI-enhanced recipes could
provide an approach to meal planning with decreased human bias, ensuring that dietary
choices stem from accurate nutritional information rather than preconceived notions
or cultural biases.

1.2 Objectives of the Work

The focus of this study centered around several objectives, all of which played a
crucial role in achieving the primary aim of creating a reliable recipe generation and
recipe completion framework and gaining a comprehensive grasp of the underlying

3

patterns within culinary datasets.
Initially, the objective was to develop a versatile recipe generation and completion

framework integrating Non-negative Matrix Factorization (NMF), Restricted
Boltzmann Machines (RBM), and Markov chain based algorithms. This aimed at
creating a computational model capable of generating or completing diverse and
coherent recipes by learning from the underlying patterns within the training
databases.

The evaluation of the computational time complexity of the implemented algorithms
was the second objective, since ensuring swiftness in the recipe generation process is
essential to the practical usability of the developed framework.

Furthermore, the algorithms’ ability to capture intricate patterns within recipe
datasets was assessed by exploring the relationships and hidden connections between
ingredients, both within the datasets and the recipes generated by the algorithms.
This exploration was conducted through in-depth analysis of mutual information and
correlation coefficients, as well as performing hierarchical clustering.

These analyses provided valuable insights into the culinary domain, which was
fundamental for a qualitative assessment of the generated and completed recipes. This
qualitative assessment involved exploring a diversity of generated recipes to evaluate
their coherence and relevance, as well as the completion of a generic recipe, ensuring
both statistical accuracy and human appeal.

To accomplish these objectives, this study investigated the aforementioned
computational algorithms and their practical implementations in the fields of recipe
generation and completion. The following sections provide in-depth discussions on
the theoretical foundations and state of the art, methodologies employed, and the
results and analyses associated with each objective.

1.3 Publications
During the development of this study, a conference paper was published and

presented, as shown below.
A. Lucena, A. S. Freitas, A. L. Ferreira, and F. Abreu, “Inspiration from

systematic literature reviews to predict the future of food services in smart cities,” in
SMART 2023, The Twelfth International Conference on Smart Cities, Systems,
Devices and Technologies, ThinkMind, IARIA, 2023

This paper was recognized as one of the five "Best Papers" based on evaluations of
the original submission, the camera-ready version, and the presentation at the
conference. Consequently, it received an invitation to submit an extended article
version to the IARIA International Journal On Advances in Intelligent Systems,
scheduled for publication in volume 17, numbers 1&2 in 2024.

4

Chapter 2

Computational Gastronomy:
Concepts and State of the Art

Computational gastronomy is an emerging interdisciplinary field that combines
elements of computer science, artificial intelligence, data science, and culinary data to
explore and innovate in the realm of food and cooking [16]. In this chapter, the
concepts of artificial intelligence and machine learning will be introduced and
explained. This chapter delves into the recent significant advancements that have
been achieved in its subfields, including enhanced food recognition technologies for
ingredient and dish identification, the development of recipe recommendation systems
(RS), methods for generating and refining recipes through recipe ideation, the
exploration of food pairings, and the automation of recipe completion, as well as its
current state of the art.

Next, the chapter addresses prediction models and recommendation systems
relevant to this study, and found in the literature, encompassing Markov processes,
restricted Boltzmann machines, and matrix factorization.

2.1 Artificial Intelligence and Machine Learning

In 1956, the concept of artificial intelligence emerged as a pioneering academic
discipline. Coined by John McCarthy in 1955, AI was defined as the science and
engineering devoted to crafting intelligent machines. McCarthy, a significant figure in
AI’s early development, collaborated with colleagues to establish the field at a 1956
Dartmouth College conference on artificial intelligence. This conference marked the
official birth of AI as a scientific pursuit, setting the stage for its subsequent
advancements [17].

Furthermore, AI is a broad term referring to the computer-based modeling of
intelligent behavior with minimal human intervention. While it shares similarities
with the task of using computers to comprehend human intelligence, AI is not

5

restricted to biologically observable methods [17, 18]. In fact, AI goes beyond mere
understanding, aiming to actively create intelligent entities, marking its ambitious
pursuit within the sphere of technological intelligence advancement [19].

In 1959, IBM researcher Arthur Samuel introduced the term "machine learning"
(ML), a subset of AI focused on developing algorithms and models that enable
machines to autonomously improve their performance through learning from data
and their environment, without explicit programming. Samuel’s innovative work
included programming computers to learn tasks like playing checkers [20]. Machine
learning has since evolved into a versatile discipline with applications across diverse
fields, including pattern recognition [21], computer vision [22], e-commerce [23],
natural language processing [24], and medical applications [25].

At the core of ML is the utilization of data to train models. This data-driven
approach involves providing a vast dataset to the system, enabling it to uncover
underlying patterns and relationships. Through iterative adjustments of internal
parameters, the ML model optimizes its performance over time. The ML process
encompasses various techniques, including supervised, unsupervised, semi-supervised,
and reinforcement learning [26, 27].

In supervised learning, the model is trained on labeled data, where the correct
outcomes are provided, enabling the system to make predictions or classifications on
new, unseen data (e.g., classification and regression). Unsupervised learning, on the
other hand, deals with unlabeled data and focuses on finding inherent structures or
patterns within the dataset (e.g., clustering, dimensionality reduction and association
data mining) [26, 28]. Fig.2.1 shows various types of supervised and unsupervised
learning. Semi-supervised learning involves a combination of labeled and unlabeled
data (such as user product ratings). This type of ML harnesses the power of labeled
data to extract insights from the unlabeled portion, analogous to how humans develop
skills. Finally, reinforcement learning involves a feedback-driven process where the
model learns to make sequential decisions to maximize a reward, similar to teaching
animals through external cues [26, 27, 28].

In the field of using machine learning to create, improve, or complete recipes,
unsupervised learning is employed. This technique helps uncover patterns among
ingredients in a collection of recipes, enabling a better understanding of how they
relate to each other.

6

Figure 2.1: Schematic of various types of supervised and unsupervised learning.

2.2 AI Applications in Culinary Science

A recipe can be understood as an array of repeatable aspects of a dish, whose
replication would deliver a dish of the same sort. It serves as a comprehensive
blueprint for culinary creation, encompassing not only the list of ingredients and their
quantities but also the precise steps, techniques, and timing required to transform
those ingredients into the desired dish [29]. In this study, only the recipe’s essential
building blocks, its ingredients, were taken into account, meaning cooking
instructions and quantities were deliberately excluded from consideration.

Let I denote the set of all possible ingredients, where each ingredient is a distinct
object. A recipe can then be represented as a subset of I, i.e., a collection of specific
ingredients chosen from the set I, such that R ⊆ I.

2.2.1 Food Recognition

Food recognition is a critical task within the field of computer vision, with the
goal of automatically identifying and categorizing food items using visual cues
extracted from images. Recent advancements in deep learning, specifically
convolutional neural networks (CNNs), have significantly enhanced the accuracy of
food recognition systems. These models extract high-level features from food images,
enabling precise identification of dishes and ingredients.

In [30], Salvador et al. introduced an inverse cooking system that utilizes food
images to recreate cooking recipes. The system employs a series of steps, including
image feature extraction, ingredient prediction, and encoding into ingredient
embeddings. Subsequently, a cooking instruction decoder generates a recipe title and

7

a sequence of cooking steps by considering image embeddings, ingredient embeddings,
and previously predicted words. Through user studies, it was determined that the
model outperformed the human baseline. Additionally, Chen et al. present two
methods for ingredient recognition based on deep convolutional neural networks
(DCNNs) [31].

Nonaka et al. [32] utilized a multimodal coupled network to evaluate cooking
recipes by analyzing both images of cooked food and textual recipe descriptions. The
aim of the study is to propose user-friendly recipes for viewers of cooking websites.
The proposed method combines image and text data to estimate cooking recipes that
are easily accessible and provide optimal conditions for users seeking recipe references.

Sugiyama et al. [33] proposed a method called Recipe Disentangled Embedding
Generative Adversarial Network (RDE-GAN) to separate food image information into
a recipe image feature and a non-recipe shape feature for encoding recipe images.
Through the introduction of feature disentanglement, this model achieved superior
performance compared to existing baselines in image-to-recipe and recipe-to-image
retrieval tasks. Similarly, Xie et al. [34] employed a three-tier modality alignment
approach to learn a joint embedding of text and image data. The focus of this model
was to enhance the alignment between textual embeddings and the visual features of
images, leading to comparable results.

More recently, to generate coherent and diverse recipes, a Decomposition
Generation Network (DGN) with structure prediction is proposed by Wang et al.
[35]. This approach divides the recipe generation process into structure prediction
and content generation steps. By separating these processes, the model generates
diverse recipes while maintaining coherence. Training involves a large-scale recipe
dataset where food images and the corresponding ingredients are the model inputs.

2.2.2 Recipe Recommendation Systems

Most of the current models leveraging recipe data aim to recommend recipes to
users by utilizing previous ratings of recipes provided by other users. These models
consider a diverse range of users’ ratings and feedback, enabling them to capture the
intricate and personalized nature of culinary preferences. Advanced machine learning
and recommendation algorithms are employed to identify patterns and correlations
within the data, facilitating the generation of accurate and personalized recipe
recommendations for individual users. As artificial intelligence-based tools,
recommender systems have a primary objective of recommending recipes to users
based on previous ratings given by themselves and other users. These systems play a
crucial role in assisting online users by helping them navigate the overwhelming
search space of available options and providing personalized information that aligns
with their specific preferences and needs [36, 37].

The development of recommender systems has been driven by three main

8

paradigms: content-based recommendation, collaborative filtering based
recommendation, and hybrid recommendation. Content-based recommendations
revolve around user profiling, item profiling, and profile matching, focusing on
suggesting items that are similar to those previously consumed or preferred by the
same users. On the other hand, collaborative filtering concentrates on leveraging the
past preferences of similar users to generate recommendations for the active user.
Lastly, hybrid recommender systems combine both content-based and collaborative
filtering based recommendations [37].

In recent years, several research studies have proposed computational models for
personalized food recommendation that integrate nutritional knowledge and user
data. For instance, Toledo et al. [38] introduced a food recommender system capable
of generating daily personalized meal plans for users based on their nutritional
requirements and past food preferences. A study conducted by Chavan et al. [39]
developed three recommender systems, each representing a different paradigm,
incorporating individual calorie intake requirements. The hybrid recommender
system demonstrated the best performance among the models.

In a more recent work, Rostami et al. [40] presented a novel health-aware food
recommendation system that explicitly considers food ingredients, food categories, and
the temporal aspect. This system employs time-aware collaborative filtering and a food
ingredient content-based model to predict users’ preferences.

2.2.3 Recipe Ideation and Food Pairing

Recipe ideation encompasses the creative process of generating new and innovative
ideas for recipes. It serves as the foundation for culinary innovation, with food pairing,
which consists in identifying ingredients or food items that harmoniously combine
flavors and textures, being a fundamental aspect of this ideation process.

The study conducted by Ahn et al. [14] introduced the concept of food pairing
and explored the relationship between food ingredients and their flavor profiles.
Through an extensive analysis of a vast recipe database, the researchers discovered a
pattern wherein ingredients sharing flavor compounds exhibited a tendency to be
paired together, specially in western culinary traditions. This observation suggests
that the selection of ingredient combinations in different cuisines may be guided by
statistical co-occurrences or chemical similarities of ingredient pairs.

In Park et al. [41], KitcheNette, a model that utilizes Siamese neural networks, a
type of deep learning architecture, to model the intricate connections between
ingredients based on flavor profiles or other relevant characteristics, is introduced.
The primary objective of the study was to develop a reliable and accurate model
capable of predicting food ingredient pairing scores and offering valuable insights into
the most suitable ingredient pairings. By training the network on a large dataset of
food recipes, the researchers were able to recommend complementary food pairings

9

and discover novel ingredient pairings. Subsequently, the authors of the
aforementioned study introduced FlavorGraph, a comprehensive large-scale food
graph [42]. FlavorGraph serves the purpose of generating representations of food and
providing recommendations for food pairings. Furthermore, this extensive graph can
also be used to predict the relationships between compounds and foods.

The process of generating personalized recipes refers to the development and
creation of recipes tailored to individual preferences, dietary needs, and restrictions.
This concept has been studied in the field of food science, which focuses on
understanding the scientific aspects of food production, processing, and consumption.

In [43], Majumder et al. proposed a method to generate personalized recipes based
on incomplete input specifications and user histories. This model utilizes an encoder-
decoder framework, where the user provides input such as the dish name, a selection
of a few key ingredients, and a specified calorie level. By leveraging this information,
the model generates a recipe that is tailored to the user’s taste preferences. The model
demonstrated the ability to produce credible, customized, and logically coherent recipes
that were favorably received by human evaluators for potential consumption.

Recipe generation was also explored by Lee et al. [44], where RecipeGPT, an
online pre-trained transformer-based application, was presented. The research aimed
to achieve two primary objectives: generating the ingredient list based on the recipe
title and cooking instructions, and generating the cooking instructions given the recipe
title and the list of ingredients. To generate the recipes, the system architecture relied
on GPT-2, a generative pre-trained transformer model. The model incorporated an
evaluation system to identify overlapping ingredients and compare the generated recipes
to reference recipes. The performance of the system was evaluated using the F1 score,
which consistently yielded values between 0.7 and 0.8 for both the validation and test
sets, demonstrating the system’s reliability.

The recipe-generation model developed by Fujita et al. [45] used an
encoder-decoder framework. This model aimed to generate personalized recipes by
incorporating reinforcement learning and coverage loss techniques. By analyzing user
preferences and past recipe information, the model successfully matched generated
recipes to individual tastes. The encoder component extracted key representations
from input ingredients and names, guiding the decoder in recipe generation.
Comparative evaluation of four models revealed that the proposed model
outperformed the others.

2.2.4 Recipe Completion

Recipe completion is a task that can be executed by various methods, including
natural language processing (NLP) models, where the model generates complete
recipes based on partial or incomplete input. These models employ mostly machine
learning techniques to predict the missing components of a recipe when provided with

10

a partial description or list of ingredients by learning the patterns and structures
commonly found in recipes. Drawing upon the input and learned patterns, the model
generates the missing elements, which may include additional ingredients,
measurements, cooking times, or detailed step-by-step instructions. Recipe
completion models rely on statistical patterns to make predictions, leveraging the
acquired knowledge to generate coherent and plausible recipes.

RecipeBowl, developed by Gim et al. [46], is a model that consists of a set encoder
and a 2-way decoder, designed for predictive tasks in the culinary domain. By taking a
set of ingredients and cooking tags as input, RecipeBowl offers suggestions for possible
ingredient and recipe choices. The model predicts ingredients that were previously
removed from the original recipe, enabling its completion and/or augmentation.

Gim et al. [47] later introduced RecipeMind, a model that predicts food affinity
scores, which measure the suitability of including an ingredient in a set of other
ingredients. This model utilizes co-occurrence statistics to determine the affinity
scores. Furthermore, the paper proposes the use of a cascaded set transformer,
enabling the joint learning of features between the current ingredient set and its
additional ingredient.

Cueto et al. [48] investigates the utilization of item-based collaborative filtering
to suggest missing ingredients for incomplete or partial recipes. The study focuses on
addressing the challenges of sparse, high-dimensional data and aims to enhance the
recommendation accuracy by leveraging co-occurrence patterns between ingredients.

In [49], De Clercq et al. analyzed the ability of different models to complete
recipes with intentionally removed ingredients. The models evaluated were
non-negative matrix factorization (NMF) and two-step Regularized Least Squares
(RLS). NMF can only consider one dataset and requires a linear regression step for
predicting new recipes. The RLS performs two regressions and can suggest new
ingredients not yet present in any existing recipes, a capability that NMF lacks.
Among the evaluated methods, the adapted two-step recursive least squares exhibited
superior performance in terms of results.

This work, within the framework of recipe completion, leverages computational
methods, as explored in the following section, to optimize the synthesis and
refinement of recipes, integrating algorithmic strategies for enhanced and automated
recipe completion and generation.

2.3 Prediction Models and Recommendation
Systems

A recommendation system is an advanced software tool that utilizes data mining,
machine learning algorithms, and historical user preferences to deliver personalized

11

item suggestions, thereby facilitating users in their decision-making processes [50].
One of the key techniques employed in recommendation systems is Collaborative

Filtering (CF), which plays a pivotal role in enhancing the quality of recommendations.
This concept was initially introduced in 1992 by Goldberg et al. [51], who developed
Tapestry, an experimental mail system designed to address the issue of mail overload
and assist users in filtering documents relevant to their interests.

CF stands out as a recommendation technique that predicts a user’s item
preference by leveraging the historical behavior and choices of users who share similar
patterns. The fundamental concept behind CF-based algorithms is rooted in the
assumption that users who have agreed on certain items in the past are likely to agree
on other items in the future. As a result, collaborative filtering methods generate
personalized recommendations for users solely based on patterns of ratings or usage,
without requiring external information about the items or users. Essentially, these
algorithms offer item suggestions or predictions derived from the preferences of other
users who have similar tastes and opinions. This method is commonly used in
e-commerce websites, to propose personalized products, in streaming services, to
recommend movies or music, or in news websites [50, 52].

Mathematically, collaborative filtering involves constructing a user-item matrix
where each cell represents a user’s rating or preference for an item. By analyzing this
matrix, the CF algorithm used identifies similarities between users or items [50].

When it comes to measuring similarities in collaborative filtering, there are two
distinct approaches. First, user-based CF identifies users with similar preferences and
recommends items based on what those similar users have liked in the past. On the
other hand, item-based CF focuses on item similarity, suggesting items that are related
to the ones the target user has shown interest in. Both these approaches effectively
utilize historical behavior and preferences to generate personalized recommendations,
although they differ in the way they measure similarity and present item suggestions
to users [50, 53].

However, the majority of the current collaborative filtering methods are not capable
of effectively dealing with very large datasets. To overcome these challenges, one
can leverage deep learning models like the restricted Boltzmann machine, specifically
designed for collaborative filtering, since these have the ability to find hidden patterns
in an unsupervised manner [54, 55].

2.3.1 Stochastic Processes

A stochastic process is a mathematical model that describes the evolution of a
system over time in a probabilistic manner, i.e. a sequence X1, X2, ... of random
elements of some set is called a stochastic process [56]. Markov chains, named after
the mathematician Andrei Markov, are a specific class of stochastic processes. These
mathematical models, used to study systems that undergo transitions between

12

different states over discrete time steps, are based on Markov’s writings [57] in the
early 20th century [58].

Furthermore, a stochastic process can be considered a Markov chain if it exhibits a
distinctive property called the Markov property [59]. The Markov property states that
the future behavior of a system depends only on its current state and is independent of
its past history. This means that a sequence X1, X2, ... of random elements is a Markov
chain if the conditional distribution of Xn+1 depends on Xn only [56]. This simplifies
the analysis of the system by focusing on the current state and the probabilities of
transitioning to future states, without needing to consider the entire history of the
system. For a process with discrete time, the Markov property can be defined by
Eq.2.1 [59].

P (Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, ..., X1 = x1) = P (Xn+1 = xn+1|Xn = xn)
(2.1)

This property implies that the system’s behavior can be fully characterized by the
probabilities of transitioning between different states.

Let I be a countable set, where each i ∈ I is referred to as a state, and I itself
is known as the state space. In the context of Markov chains, the behavior of a
system is described by transitioning between these states over time. The transition
matrix, denoted as π, is a key component of Markov chains, and it characterizes the
probabilities of transitioning between different states [60].

A measure on I is defined as λ = (λi : i ∈ I), where 0 ≤ λi <∞. If the sum of all
elements in λ equals 1, i.e., ∑i∈I λi = 1, then λ is referred to as a distribution. This
distribution provides a probabilistic representation of the likelihood associated with
each state [60, 61].

In the context of Markov chains, the transition matrix π is considered stochastic if
each column (πij : i ∈ I) of π forms a distribution. These transition probabilities πij

represent the conditional probability of transitioning to state xj at time n + 1, given
that the current state is xi at time n (Eq.2.2).

P (Xn+1 = xi|Xn = xj) = πij (2.2)

where ∑j πij = 1.
Furthermore, the transition probabilities πij for each state i are equal to the

corresponding element λj of the distribution associated with that state, i.e. πij = λj.
The condition ∑

j∈I λj = 1 signifies that the elements of each row sum to 1, ensuring
that the system moves to a new state at each time step [60, 56]. In Fig.2.2 there are
represented three small Markov chains as an example, as well as their respective
transition matrices.

13

1/4 1/2 0 0 0
0 0 0 0 1/3

1/4 1/2 0 1/2 1/3
1/4 0 0 1/2 1/3
1/4 0 1 0 0

0 1/3 1/3 1/5 0 0
1/3 0 1/3 1/5 0 0
1/3 1/3 0 1/5 0 0
1/3 1/3 1/3 0 1/2 1/2
0 0 0 1/5 0 1/2
0 0 0 1/5 1/2 0

0 1/5 1/3 1/5 0

1/3 0 1/3 2/5 1/2
1/3 1/5 0 1/5 0
1/3 2/5 1/3 0 1/2
0 1/5 0 1/5 0

a) b) c)

Figure 2.2: Three examples of Markov chains and their respective transition matrices.

For example, Fig.2.2.b) and Fig.2.2.c) can be seen as Markov chains symbolizing
different sets of recipes. Fig.2.2.b) depicts a set comprising two recipes. The first
recipe encompasses ingredients 1, 2, 3 and 4, while the second recipe includes
ingredients 4, 5 and 6. In contrast, Fig.2.2.c) represents another recipe set consisting
of two recipes. The first recipe consists of ingredients 1, 2, 3 and 4, whereas the
second recipe encompasses ingredients 2, 4 and 5.

Concerning instances cited in literature, Google PageRank, a foundational
algorithm that has played a pivotal role in revolutionizing web search and ranking,
stands as one of the most renowned applications of Markov chains [62]. Introduced by
Larry Page and Sergey Brin, the founders of Google, in the late 1990s, PageRank
aimed to address the challenge of efficiently organizing and ranking web pages on the
internet [63, 64]. This algorithm laid the foundation for Google’s rapid rise to
dominance as a search engine and is still a crucial component of their search
methodology. The first version of Google’s search engine was introduced in 1998,
prominently featuring the PageRank algorithm as a core component [65].

Before its introduction, most search engines relied heavily on simplistic keyword
matching, which often resulted in less relevant search results [66]. In contrast,
PageRank sought to evaluate the quality and importance of web pages based on their
inbound and outbound links. Considering that the Word Wide Web (WWW) can be
perceived as a directed graph, each web page is a state, or node, in the Markov chain
and the transitions between nodes (web pages) are determined by the network of
hyperlinks interconnecting them [62, 67].

PageRank’s fundamental principles become evident through its operation. Initially,
each web page is granted an identical PageRank score, usually shared uniformly among
all pages (Eq.2.3).

14

Pr(p, t = 0) = 1
N

(2.3)

for every web page p, where Pr(p, t = 0) is the PageRank of page p in the initial step
and N is the total number of web pages.

The PageRank score of a web page is then distributed among its outbound links
(Eq.2.4). Web pages with more outbound links distribute their PageRank value more
thinly among them. Furthermore, a web page’s PageRank is influenced by the
PageRank scores of the pages that link to it. Pages with higher PageRank scores that
link to a particular page transfer a more substantial PageRank value. This iterative
refinement process continues until PageRank scores reach a state of equilibrium,
effectively capturing the relative importance of web pages [62, 67].

Pr(p, t + 1) =
∑

q∈M(p)

Pr(q, t)
N(q) (2.4)

where M(p) is the set of web pages that link to page p and N(q) is the number of
outbound links from page q.

Furthermore, Markov processes find application in predicting user choices within
recommendation systems. These models sequentially capture state changes, assuming
that future states depend on the present state rather than past ones [68]. Markov chain
models enable direct state observation, and in the context of recommendation systems,
they forecast users’ next selections by optimizing over sequential criteria. Such models
are referred to as sequence-aware or time-aware RS, utilizing ordered or timestamped
records of past interactions [69, 70].

Khorasani et al. [71] introduced a Markov-based collaborative filtering
methodology for recommending University courses, focusing on guiding students in
their course selections each semester based on their prior course history. Moreover,
student course sequences were treated as stochastic processes, enabling the estimation
of transition probabilities from empirical data. Two distinct estimation approaches
were employed: basic Maximum Likelihood Estimation (MLE) and an enhanced MLE
technique employing skip-gram modeling. Empirical evidence highlighted the
significant influence of course order on academic outcomes. Within this framework,
the skip Markov model demonstrated a Recall rate of 78% and a Precision of 23%
when tested on a dataset containing ten years of past enrollment information
(2001-2011) sourced from a Canadian research university.

Aghdam et al. [72] introduce an approach to context-aware recommender systems
using a hierarchical hidden Markov model. The method effectively captures changes
in user preferences over time by modeling latent user contexts. By incorporating the
current user context as a hidden variable, the proposed model leverages feedback
sequences to automatically learn user-specific latent contexts. Experimental results
on benchmark datasets demonstrate the superior performance of this model in

15

comparison to other methods. The paper addresses the challenge of adapting
recommendations to evolving user preferences and contextual changes, showcasing the
potential of utilizing predicted contexts to enhance recommendation diversity.

2.3.2 Restricted Boltzmann Machines

The restricted Boltzmann machine is a probabilistic model, first introduced by
Paul Smolensky in 1986 [73], as a two-layer probabilistic neural network capable of
learning a probability distribution over its input as a generative model. Even though it
was originally developed in the context of cognitive psychology, due to the increase in
computational power and the development of faster learning algorithms, the RBM was
later rediscovered in the machine learning field as an unsupervised learning algorithm
capable of extracting meaningful features from unlabeled data, such as images or text.
The popularity of RBMs grew significantly in the 2000s, especially in the field of deep
learning, where it was used as a building block for more complex neural networks, such
as deep belief networks and deep autoencoders [73, 74, 75, 76].

Currently, RBMs are used in a variety of applications, including problems with
high dimensional data, such as image recognition [77], collaborative filtering [55], and
speech recognition [78] and, due to its strong capability of representing dependency in
data, being used as a basic building block for other deep learning models [74, 75, 79].

The RBM is, therefore, a type of artificial neural network of stochastic units with
undirected connections between pairs of units in two layers: a visible layer v⃗ and a
hidden layer h⃗, which are usually binary. The visible layer represents the input data
and the hidden layer represents the learned features of the input data. The goal of an
RBM is to learn a probability distribution over the input data by adjusting the weights
between the visible and hidden layers [74, 75].

Moreover, the RBM is a generative stochastic network with m elements in the visible
unit v⃗ and n elements in the hidden unit h⃗, as represented in Fig.2.3. The graph of
an RBM depicts connections solely between the hidden and visible variables, while
no connections exist between two variables of the same layer. From a probabilistic
perspective, this indicates that given the visible variables’ state, the hidden variables
are independent, and vice versa [76].

The probability distribution of an RBM can be modeled using an energy function
when both the visible and hidden units are binary. The energy of a joint configuration
(v, h) of the visible and hidden units can be computed using Eq.2.5 [80].

E(v, h; θ) = −
m∑

i=1

n∑
j=1

viWijhj −
n∑

j=1
cjhj −

m∑
i=1

bivi (2.5)

where vi ∈ {0, 1} and hj ∈ {0, 1} are the binary states of the visible unit i and
the hidden unit j and θ = (W, b, c) are the parameters that need to be determined.
W = (Wij) ∈ Rn×m represents the weight connecting the ith visible unit and the jth

16

hidden unit and b = {bi}m
i=1 and c = {cj}n

j=1 are the bias terms of the visible and the
hidden layers, respectively. These parameters are determined through the process of
training, wherein techniques such as Contrastive Divergence are employed to iteratively
adjust the values of W , b, and c, as will be elaborated in Chapter 3 [76, 79, 80].

Figure 2.3: RBM with m visible units and n hidden units. Wij is the weight between
hi and vj and the terms b and c denote the bias for visible and hidden unit,

respectively.

Furthermore, the probability of a configuration (v, h) can be computed using the
energy function. The joint probability distribution of the RBM is given by the Gibbs
distribution, represented in Eq.2.6 [76].

P (v, h; θ) = 1
Z(θ)e−E(v,h;θ) (2.6)

where Z(θ) is the partition function, defined as the sum of the exponential of the energy
function over all possible configurations of (v, h) (Eq.2.7) [79].

Z(θ) =
∑

v

∑
h

e−E(v,h;θ) (2.7)

Moreover, from Eq.2.6, it is possible to calculate the probability that the network
assigns to a visible vector, v. This is the marginal distribution, which refers to the
probability distribution of a subset of variables. In this case, the marginal distribution
of the visible variables refers to the probability distribution of all possible configurations
of the visible units, without taking into account the values of the hidden units, and is
given by summing over all possible hidden vectors, as represented in Eq.2.8 [76, 80].

P (v; θ) = 1
Z(θ)

∑
h

e−E(v,h;θ) = 1
Z(θ)

m∏
j=1

ebjvj

n∏
i=1

(1 + eci+
∑m

j=1 Wijvj) (2.8)

17

The partition function ensures that Eq.2.8 is a valid probability distribution, i.e.
that the probabilities sum up to 1 over all possible states of the visible and hidden
units [75].

In the context of recommender systems, Salakhutdinov’s work [55], which was one
of the pioneering uses of RBMs for collaborative filtering, employed an RBM to model
user-item interactions and generate recommendations using a Netflix dataset containing
100 million user/movie ratings. The approach involved creating an RBM for each user,
with the input matrix V being a binary matrix of size k ×m, where m represents the
number of movies the user watched, and k represents the number of different possible
ratings. Each entry vi,j in the matrix is assigned a value of 1 if the user gave rating i

to movie j, and 0 otherwise. This method demonstrated remarkable performance as
a top-tier collaborative filtering model, surpassing Netflix’s own rating system by over
6%.

Behera et al. [81] introduced a recommendation model that utilizes the RBM to
predict users’ preferences for movies they have not watched. The RBM effectively
handled sparse datasets, enabling accurate estimation of missing user ratings and
providing personalized movie recommendations. Compared to traditional methods,
like Pearson correlation and average rating prediction, the RBM-based model
outperformed in terms of mean absolute error (MAE), calculated by subtracting the
recommendation score from the actual rating and divided by the number of movies
considered, showcasing its ability to generate more precise movie recommendations.

2.3.3 Non-Negative Matrix Factorization

Matrix factorization is a fundamental mathematical technique in the field of
machine learning and data analysis. Its primary objective is to decompose a given
matrix into two or more lower-dimensional matrices while preserving the matrix’s
essential properties. This process, by maintaining the matrix’s fundamental
characteristics, allows the model to discern hidden patterns or latent factors [82, 83].

One of the earliest matrix factorization models is the Singular Value
Decomposition (SVD), which decomposes a matrix into three constituent matrices:
U , Σ, and V T . Remarkably, SVD’s development dates back to the 19th century, with
several mathematicians independently contributing to its discovery [84].

While SVD laid the foundation for matrix factorization, another significant
advancement in matrix factorization models came in the form of non-negative matrix
factorization, introduced in 1994 [85]. NMF is an unsupervised mathematical
technique extensively employed in data analysis and machine learning. It plays a
pivotal role in decomposing complex data into simpler components while ensuring
that all values in the resulting matrices are non-negative. This property promotes
interpretability and enhances the extraction of meaningful data representations,
aligning with problems where only positive numbers are acceptable, such as situations

18

associated with probabilities, where negative numbers do not have mathematical
meaning [83, 86, 87].

NMF finds applications across various domains, including natural language
processing, image analysis, and recommendation systems. Its primary goal is to
automatically extract hidden patterns from high-dimensional data vectors. With its
interpretability and versatility, NMF remains a fundamental technique for uncovering
meaningful insights from complex datasets and it is commonly used for dimensional
reduction, unsupervised learning, and prediction [82, 87].

The NMF algorithm operates by starting with a matrix denoted as V , containing
only non-negative values, representing the original input data. The objective is to
discover two non-negative matrices, W and H, of significantly lower rank. These
matrices are chosen in such a way that their linear combination, represented by Eq.
2.9, closely approximates the original matrix V , as represented in Fig.2.4.

V(m×n) ≈ R(W, H) = W(m×k)H(k×n) (2.9)

where k << min(m, n).

Figure 2.4: Schematic representation of the NMF algorithm.

The core objective of NMF is to factorize matrix V into matrices W and H while
minimizing an objective function that quantifies the disparity between V and the
estimated rank matrix R. This objective function, also known as a divergence
measure, can take various forms, such as Euclidean distance or Kullback–Leibler
(KL) divergence. These divergence measures are used to assess how well the
factorization aligns with the original data [82, 83].

The Euclidean distance, also known as the Frobenius norm, was the objective
function used in this study. The objective is to minimize the sum of squared
differences between the original data matrix V and the product of the factorized
matrices WH. This is formally expressed by Eq.2.10.

min
W,H

f(W, H) = 1
2 ∥V −WH∥2

F , s.t. W, H ≥ 0 (2.10)

19

where ∥·∥F represents the Frobenius norm, measuring the element-wise difference
between matrices [82, 83, 88].

Matrix factorization algorithms, NMF and others, are commonly used in
recommendation systems for product recommendations. This is made by constructing
a user-item matrix, where each row is an user and each column represents an item.
Then, by reconstructing the original matrix, calculating WH, the model gives a
prediction of what the users would rate the items they have not interacted with
[82, 89].

Khan et al. [90] proposed a novel recommender system built upon a semantics-based
item content embedding model, enriched with contextual features extracted through
CNN. They incorporated NMF as a collaborative filtering technique, enhanced with
improvised embedding, and termed it Contx-NMF. This hybrid collaborative filtering
technique aims to predict ratings in situations with sparse user-to-item ratings. To
evaluate the performance of their model, the researchers conducted experiments using
three well-known public datasets: MovieLens 1M, MovieLens 10M, and Amazon Instant
Video (AIV), having achieved better precision, recall, accuracy and area under curve
than other state of the art techniques.

In the area of transfer learning, a technique in machine learning in which knowledge
learned from a task is re-used in order to boost performance on a related task, Ievgen
and Younés [91] proposed an unsupervised transfer learning approach that seeks to find
a partition of unlabeled data in a target domain by utilizing knowledge obtained from
clustering unlabeled data in a source domain. The methodology involves identifying
partitions in various feature subspaces of a source task to improve the accuracy of the
partition in the target domain. From the set of source partitions, the researchers select
k nearest neighbors based on a similarity measure. Finally, they apply multi-layer
non-negative matrix factorization to derive a partition of objects in the target domain.

20

Chapter 3

Methods and Techniques to Test
Performance

In this chapter, the methodology employed for both recipe completion and the
assessment of how effectively these methods encapsulate the underlying patterns within
a recipe database are presented. The subsequent sections contain a comprehensive
analysis of the techniques utilized in this study: Markov and non-Markovian chains,
restricted Boltzmann machines, and non-negative matrix factorization. These methods
are evaluated using mutual information and correlation coefficients between ingredient
pairs, and hierarchical clustering is used to find groups of ingredients commonly used
together, which will be explored in the last sections.

3.1 Stochastic Processes

In the culinary context, each stage of a recipe introduces stochastic elements,
variables influenced by ingredient choices. The resultant dish reflects a probabilistic
interplay of these factors, resembling the unpredictable state transitions observed in
stochastic processes.

3.1.1 Markov Chains

A recipe can be viewed through the lens of a Markov chain, where each state
corresponds to an ingredient. In this particular context, the interconnections between
states operate bidirectionally. Consequently, if the conditional probability P (i|j) is
not equal to zero, it follows that P (j|i) is also not equal to zero. Conversely, if P (i|j)
equals zero, then P (j|i) will also equal zero.

To establish the connections between ingredients, the sets representing recipes have
to be examined. If a given set contains both elements i and j, then these two states are
considered connected. The strength of this connection is determined by the number

21

of recipes that include both ingredients. Specifically, if there are n recipes containing
both ingredients i and j, then these states possess an n-tuple connection. Additionally,
Fig.2.2.b) and Fig.2.2.c) can be interpreted as Markov chains that represent distinct
recipe collections, as explained before.

Therefore, Markov chains can be a valuable tool for recipe completion. The process
involves creating a transition matrix based on an initial dataset of recipes, as explained
below. This matrix serves as the foundation for suggesting the subsequent ingredients
required to achieve a complete recipe.

Through the assessment of the co-occurrence of elements i and j, commonly known
as the support of the pair (i, j) and represented as s(i, j), it becomes possible to
construct a symmetric matrix denoted as π0. This matrix exhibits zeros on the diagonal,
while specific elements outside the diagonal may be zero as well. An estimation of the
conditional probability of element i being present given that element j was added, as
represented in Eq.3.1, defines a transition matrix π for a non-symmetric Markov chain.

P (j → i) = P (i|j) = s(i, j)∑
k s(k, j) (3.1)

The support of a pair s(i, j) = s(j, i) represents in how many of the initial systems,
used to construct π0, elements i and j are both present. This means that P (j → i),
which corresponds to the position πij in the transition matrix, is calculated by dividing
the number of initial systems where elements i and j co-occur by the sum of the jth

column of matrix π0. The transition from one state to another can be understood as
the introduction of an element into a system, where the same element may be added
multiple times.

This Markov chain can exhibit ergodicity (irreducibility) or non-ergodicity. In the
case of ergodicity, starting from any state, it is possible to construct a system with a
sufficiently large number of states that encompasses any of the possible elements [92].
If the Markov chain is not ergodic, the generated sets will be limited to a subset of the
possible states, depending on the initial one.

In the case of an ergodic Markov chain, a unique stationary distribution emerges,
which characterizes the likelihood of a specific element occurring within the generated
sets. Let πij denote P (j → i), the transition probability from element j to element i.
Consequently, the recursive relation Pt = πPt−1 holds, where Pt signifies the probability
distribution at time t (as described by Eq. 3.2).

Pt,i =
∑

k

πikPt−1,k (3.2)

where Pt,i represents the probability of adding element i to a system after t − 1 state
transitions. Eq.3.2 signifies that the probability of adding element i at time t is
determined by summing over all possible preceding states k, with πik denoting the
transition probability from state k to state i. By iteratively updating the probability

22

distribution over time, it is possible to gain insight into the long-term behavior of the
Markov chain.

In the long-term of the Markov chain, where the number of elements added to the
system increases (including repetitions), the limit as t approaches infinity, limt→∞Pt =
P∞ = limt→∞πtP0, becomes independent of the initial systems, P0, from which the
Markov chain starts [92].

To initiate the ingredient suggestion process, a random ingredient (i) is chosen
from the incomplete recipe, which needs n more ingredients. Then, another
ingredient (j) is randomly selected from the complete ingredient list, based on the
probabilities associated with the ith column of the transition matrix. Following this,
another ingredient (k) is chosen using probabilities from the jth column of the
transition matrix. This selection process continues until n ingredients are added. It is
important to note that these ingredients can be repeated, and in some cases, it might
not be possible to add n new ingredients, indicating a non-ergodic Markov chain.
Hence, it is crucial to repeat this process multiple times for reliable results.

By following this approach, Markov chains provide a systematic means to suggest
a sequence of a maximum of n ingredients that can be incorporated into an incomplete
recipe. This method leverages the information captured in the transition matrix and
offers a structured approach to recipe completion.

3.1.2 Non-Markovian Chains

Based on the Markov chain methodology described above to complete recipes, non-
Markovian chain approaches can be developed.

This can be done by introducing the restriction that if a set already contains a
certain element, this can not be added again, introducing non-Markovicity in the
stochastic process by having a memory effect in the addition of new elements to the
set. This can also be described as a "self-avoiding walk", which is a random walk that
does not auto-intersect [93]. The conditional probability is defined by Eq.3.3.

P (j → i) = P (i|j) = s(i, j)∑
k /∈R s(k, j) (3.3)

On another non-Markovian approach, the states are not added in a sequential
manner, based on the last one previously attached. In this case, the probability of
adding element i to a set R of different states, can be defined defined by Eq.3.4,
which can be useful to limit addition of elements not compatible with at least one of
the currently present ones, but can highly limit the addition of uncommon elements.

P (R→ i) =
∏

j∈R s(i, j)∑
k /∈R

∏
j∈R s(k, j) (3.4)

Another way to add the states in a non-sequential manner is represented in Eq.3.5.

23

This approach allows less common elements to more often have a non-zero probability
of being added to set R, being less likely to have P (R → i) = 0 for every i /∈ R.
However it does not limit as well the addition of elements that are not compatible with
just one or two elements in R.

P (R→ i) =
∑

j∈R s(i, j)∑
k /∈R

∑
j∈R s(k, j) (3.5)

This last approach was the one used in the present study. It is possible to
approximate P (R→ i) based on the transition matrix π, as following in Eq. 3.6.

P (R→ i) =
∑

j∈R πj,i∑
k /∈R

∑
j∈R πj,k

(3.6)

Algorithm 1 shows the process necessary to suggest new ingredients to an incomplete
recipe. However, it is important to mention that to assure a significant statistical
ensemble, the process needs to be repeated multiple times, as it is represented by the
number of samples.

Algorithm 1 Non-Markovian chain
1: P ← square transition matrix
2: C ← list initialized as 0 for every ingredient
3: n← maximum number of ingredients to add
4: R← list of ingredients of an incomplete recipe
5: ns← number of samples
6: for sample in ns do
7: ni← initialize as 0
8: while ni < n do
9: if ∑k /∈R

∑
j∈R Pj,k = 0 then

10: break
11: end if
12: Pn← ∑

j∈R Pj,i/
∑

k /∈R

∑
j∈R Pj,k, for every i /∈ R

13: r ← random ingredient selected according the probabilities of Pn

14: ni← add 1
15: C ← add 1 to the rth position of the list
16: end while
17: end for
18: R← add the n ingredients with highest value in C

3.2 Restricted Boltzmann Machine
The RBM can be viewed as a stochastic neural network, where the nodes and

edges correspond to neurons and synaptic connections, respectively. In this context,

24

the bipartite structure of the RBM implies that the visible and hidden units are
conditionally independent of each other. This means that the probability distribution
of the visible units depends only on the state of the hidden units, and vice versa, as
seen in Eq.3.7 and Eq.3.8. Furthermore, the conditional probability of a single
variable being one can be seen as the firing rate of a (stochastic) neuron with a
sigmoid activation function [74, 76].

P (vi = 1|h) = σ(
∑

j

Wijhj + ci) (3.7)

P (hj = 1|v) = σ(
∑

i

viWij + bj) (3.8)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function [79].
Computing P (v, h; θ) (Eq.2.6) or P (v; θ) (Eq.2.8) is usually unmanageable.

However, since there is independence between the variables in one layer, Gibbs
sampling can be used. Gibbs sampling is a Markov Chain Monte Carlo (MCMC)
algorithm commonly used for generating samples from probability distributions that
are difficult to sample directly. It iteratively samples each variable’s conditional
distribution while holding the other variables fixed. This process is repeated for all
variables in the model, generating the next state xs+1 from the current state xs, and
the resulting sequence of samples converges to the true distribution of interest
[74, 75, 94].

Moreover, all of the hidden units can be sampled jointly, since they are conditionally
independent given the visible units, and vice-versa for the visible units. This sampling
method, which is called block Gibbs sampling, updates many variables simultaneously
by allowing the Gibbs sampling to be performed in two steps: sampling a new state
v for the visible layer based on P (v|h) (Eq.3.7) and sampling a state h for the hidden
neurons based on P (h|v) (Eq.3.8) [74, 76].

To train an RBM, various algorithms can be used, but all common training
algorithms for RBMs are designed to approximate the log-likelihood gradient based
on some given data. The log-likelihood gradient is a mathematical way of measuring
the difference between the predicted output of the RBM and the actual output. By
approximating this gradient and performing gradient ascent on these approximations,
the RBM can learn to adjust its weights and biases to better fit the data [76].

For the model represented in Eq.2.8 with parameters θ, the log-likelihood given a
single training example v can be calculated by Eq.3.9. A standard way of estimating the
parameters of a statistical model is through maximum-likelihood estimation. Therefore,
RBM training corresponds to finding the parameters θ that maximize the likelihood
given the training data [76].

lnL(θ|v) = lnP (v|θ) = ln 1
Z(θ)

∑
h

e−E(v,h;θ) = ln
∑

h

e−E(v,h;θ) − ln
∑
v,h

e−E(v,h;θ) (3.9)

25

The gradient of Eq.3.9 represents the difference between two expectations, as seen
in Eq.3.10. Specifically, it is the difference between the expected values of the energy
function under the model distribution (⟨vihj⟩model) and the conditional distribution of
the hidden variables, given the training example (⟨vihj⟩data) [76, 80].

∂lnL(θ|v)
∂θ

= −
∑

h

P (h|v)∂E(v, h; θ)
∂θ

+
∑
v,h

P (v, h; θ)∂E(v, h; θ)
∂θ

(3.10)

where P (h|v) = P (v, h; θ)/P (v; θ), being P (v, h; θ) given by Eq.2.6 and P (v; θ) given
by Eq.2.8.

While it is possible to approximate these expectations by drawing samples from the
corresponding distributions using MCMC techniques, it usually necessitates numerous
sampling steps to obtain unbiased estimates of the log-likelihood gradient, making the
computational costs too large.

Therefore, the RBM is trained through contrastive divergence, which seeks to
optimize the weights and biases to maximize the log-likelihood of the training data.
This is accomplished by initializing the Markov chain with samples from the data
distribution and subsequently running it for a number of steps to generate samples
that approximate the model distribution. The estimated gradient of the
log-likelihood, obtained using these samples, is then used to update the model
parameters [76, 95].

The values of the hidden units in binary form are calculated simultaneously using
Eq.3.8. After determining the binary states for the hidden units, a reconstruction is
generated by setting each vi to 1 with a probability determined by Eq.3.7. The update
rule for the weight matrix is represented in Eq.3.11 [80].

∆Wij = α (⟨vihj⟩data − ⟨vihj⟩model) (3.11)

where ⟨vihj⟩data is the expected value of the product of the ith visible unit and the
jth hidden unit under the distribution of the training data, ⟨vihj⟩model is the expected
value of the product of the ith visible unit and the jth hidden unit under the model
distribution and α is the learning rate [80]. This hyper-parameter determines the step
size in parameter updates during training. A higher learning rate can lead to faster
convergence but may result in overshooting the optimal solution, while a lower learning
rate may lead to slower convergence but more stable training [96].

Moreover, the biases for the visible and hidden layers are updated using the rules
in Eq.3.12 and Eq.3.13.

∆bi = α (⟨vi⟩data − ⟨vi⟩model) (3.12)

∆cj = α (⟨hj⟩data − ⟨hj⟩model) (3.13)

26

where ⟨vi⟩data is the expected value of the ith visible unit under the distribution of the
training data, ⟨vi⟩model is the expected value of the ith visible unit under the model
distribution, ⟨hj⟩data is the expected value of the jth hidden unit under the distribution
of the training data, and ⟨hj⟩model is the expected value of the j [80].

After the RBM parameters have been learned, the model can be used to generate
new samples from the learned distribution. This is typically accomplished by
performing Gibbs sampling for a fixed number of steps, denoted by k. The value of k

determines the extent of mixing between the model distribution and the data
distribution, and it is usually set to a small value, such as 1, the value used in this
work, to ensure fast convergence. This process is known as k-step contrastive
divergence learning (CD-k) [74, 76].

Regarding this study, the training of RBM was made employing TensorFlow, an
open-source platform for machine learning and artificial intelligence. The RBM’s
computational process involves several essential steps, as seen in Algorithm 2.

First, the process starts with a dataset, which serves as the foundation for the
RBM model, where each data point corresponds to a recipe. The input to the model
consists of x neurons, also known as visible units. Here, x represents the total number
of ingredients present in the dataset, ni. Each neuron assumes a binary state, either
0 or 1, denoting the absence or presence of a specific ingredient in a given recipe,
respectively.

Then, during the training process, the dataset was divided into batches, with each
epoch processing a fixed number of batches, since this enhances computational
efficiency. In this case, there were used 10 batches, each containing 100 data points
per epoch and the learning rate (α) was set to 0.1.

The CD can be seen as a matrix of values used to adjust the weight matrix and is
updated incrementally over multiple training steps (epochs). The update equation for
the weight matrix is expressed in Eq. 3.11, such that CD = ⟨vihj⟩data − ⟨vihj⟩model.

Finally, to evaluate the recommendation system’s performance, the MAE metric is
used to quantify the dissimilarity between the data and its reconstruction, providing a
measure of the model’s accuracy.

Upon completing the model’s training, recommendations can be generated through
the process of passing the visible units through the RBM’s hidden layer. This step
signifies the activation of the hidden layer based on the current state of the visible layer.
Subsequently, the model undergoes a reconstruction phase where the probabilities of
the visible units activating are calculated based on the current state of the hidden
layer. This step aims to reconstruct the input data, utilizing the output derived from
the hidden layer.

To calculate the visible layer probabilities, Eq.3.8 is applied, resulting in a list of
probabilities that represent the likelihood of neuron activation. These probabilities are
then normalized, ensuring that their combined sum equals 1.

27

Algorithm 2 RBM training algorithm
1: Y ← Load binary input data
2: Initialize RBM parameters: W , visible bias b, and hidden bias c

3: epochs← Number of epochs
4: errors← Initialize error list
5: for epoch in epochs do
6: for each data point in batch do
7: Pass data point through network, calculating vi and hi

8: Calculate ⟨vihj⟩data and ⟨vihj⟩model

9: Update parameters: W (Eq.3.11), b (Eq.3.12), and c (Eq.3.13)
10: end for
11: errors← append MAE to the list.
12: end for

In this specific context, the initial state of visible units represents an incomplete
recipe. Accordingly, a new ingredient is selected for addition to the recipe. The choice
of this ingredient is contingent upon the probabilities emanating from the normalized
reconstructed visible layer.

3.3 Non-Negative Matrix Factorization
In the present study, the matrix denoted as V (see Eq.2.9) assumes the form of a

binary matrix, wherein each row corresponds to a recipe, and each column corresponds
to an ingredient.

Upon obtaining matrices W and H (such that V ≈ WH), the primary objective is
not the generation of novel ingredient recommendations for recipes within the existing
database. Instead, the goal is to offer ingredient suggestions for entirely new users or,
in this case, previously unseen recipes. This necessitates the computation of matrix X

such that it satisfies the equation V X = WH, a task accomplished through Eq.3.14.

X = V +WH (3.14)

being V + = (V T V)−1V T the pseudo-inverse of matrix V .
In conventional recommendation systems geared towards rating predictions, matrix

R = WH is employed. To predict the missing ratings assigned to a particular user,
u, one typically computes Ru. However, an analogous outcome can be achieved by
multiplying the row corresponding to user u by matrix X. This equivalence is expressed
as Ru = VuX.

Within the domain of recipe-based recommendations, the primary objective is to
propose novel ingredients for incomplete recipes that have never been encountered
previously. This is realized by performing a matrix-vector multiplication between the

28

recipe vector r and matrix X, thereby yielding rpredicted = rX. In scenarios where the
aim is to provide ingredient recommendations for multiple recipes concurrently, r may
manifest as a matrix encompassing numerous incomplete recipes.

Lastly, Algorithm 3 summarizes the NMF-based methodology for ingredient
recommendations to complete or enhance recipes.

Algorithm 3 NMF Algorithm
1: V ← Load binary input data
2: r ← list/matrix of ingredients of an incomplete recipe/recipes
3: Calculate optimized W and H based on the Frobenius norm
4: Calculate X according to Eq.3.14
5: rpredicted ← rX

3.4 Mutual Information and Correlation
Coefficient

Mutual information (I) is a fundamental concept in information theory that
measures the amount of information shared between two random variables. It
measures how much knowing the value of one variable reduces uncertainty about the
other. For two discrete random variables X and Y , the mutual information is
calculated using Eq.3.15 [97].

I(X; Y) =
∑
x∈X

∑
y∈Y

P (x, y) log
(

P (x, y)
P (x)P (y)

)
(3.15)

where I(X; Y) represents the mutual information between variables X and Y , X and
Y are the sets of possible values of variables X and Y , respectively, P (x, y) is the joint
probability mass function of X and Y and P (x) and P (y) are the marginal probability
mass functions of X and Y , respectively [97]. The logarithm is typically taken to base
2, resulting in mutual information being measured in bits [98].

Shannon entropy (H) is another important concept in information theory.
Considering a random variable X existing within a discrete space X , with x

representing an element from X , the entropy of the random variable X within the
discrete space X serves as an indicator of the uncertainty or randomness of a single
random variable and is calculated according to Eq.3.16. Since entropy quantifies the
average level of unpredictability associated with the outcomes of a random variable,
higher entropy indicates greater uncertainty [97].

H(X) = −
∑
x∈X

P (x) log P (x) (3.16)

where P (x) is the probability mass function of X.

29

The relationship between mutual information and entropy is captured by Eq.3.17.

I(X; Y) = H(X)−H(X|Y) = H(X) + H(Y)−H(X, Y) (3.17)

where H(X|Y) is the conditional entropy of X given Y and H(X, Y) is the joint entropy
of X and Y , calculated according to Eq.3.18. The joint entropy captures the overall
uncertainty associated with both variables considered together [97].

H(X, Y) = −
∑
x∈X

∑
y∈Y

P (x, y) log P (x, y) (3.18)

Furthermore, Eq.3.17 highlights that mutual information is the reduction in
uncertainty about X when Y is known, which is the difference between the initial
uncertainty of X and the remaining uncertainty after Y is revealed, and vice-versa,
since I(X; Y) = I(Y ; X).

Mutual information provides insight into how much knowing the value of one
variable reduces uncertainty about the other. When X and Y are independent, their
mutual information is zero, indicating that knowledge of one variable provides no
information about the other. On the other hand, when mutual information is high,
the variables are strongly dependent, and knowing the value of one variable
significantly helps predict the value of the other [98].

Mutual information provides a powerful tool to quantify the information shared
between random variables. Its relationship with entropy sheds light on how the
uncertainty in one variable is affected by the knowledge of another. This
understanding has broad applications in diverse domains, making mutual information
a cornerstone of information theory.

In the context of recipes, ingredients can be viewed as binary variables: they are
either present (1) or absent (0). Therefore, X = {0, 1} represents the set of possible
values for an ingredient’s presence. For two distinct ingredients, denoted as i and j,
the corresponding random binary variables are denoted as X and Y , taking values in
X . In this case, X = Y . Moreover, the probability that ingredient i is present in a
recipe is given by Eq.3.19 and the joint probability of both ingredients i and j (i ̸= j)
being present is given by Eq.3.20.

P (X = 1) = P (i) =
∑nr

r=1 Sr(i)
nr

(3.19)

where nr is the total number of recipes in the database and Sr(i) is a binary indicator
that equals 1 if recipe r contains ingredient i and 0 otherwise.

P (X = 1, Y = 1) = P (i, j) =
∑nr

r=1 Sr(i, j)
nr

(3.20)

where Sr(i, j) equals 1 if recipe r contains both ingredients i and j, and 0 otherwise.

30

With these foundational probabilities established (P (X = 1), P (Y = 1) and P (X =
1, Y = 1)), it is possible to derive the others, as outlined in Tab.3.1.

Table 3.1: Conditional probability table for two random ingredients.

P (Y = 1) P (Y = 0) Total
P (X = 1) P (i, j) P (i)− P (i, j) P (i)
P (X = 0) P (j)− P (i, j) 1− P (i)− P (j) + P (i, j) 1− P (i)

Total P (j) 1− P (j) 1

From these probabilities, the entropy and the joint entropy can be calculated, which
pave the way for calculating mutual information.

The Pearson correlation coefficient, r, named after British scientist Karl Pearson, is
a statistical measure used to evaluate the linear relationship between pairs of variables.
Its purpose is to help determine whether changes in one variable correspond to changes
in another variable. This coefficient ranges between −1 and 1, inclusively, and can be
calculated using Eq.3.21. The sign, either positive or negative, indicates the type of
relationship, and the absolute value reveals the strength of said relationship. A value
of −1 denotes a perfect negative correlation, 1 signifies a perfect positive correlation,
and 0 suggests no linear correlation between the variables [99].

r =
∑n

i=1(xi − ⟨x⟩)(yi − ⟨y⟩)√∑n
i=1(xi − ⟨x⟩)2∑n

i=1(yi − ⟨y⟩)2
(3.21)

where xi and yi are individual data points from the sets X and Y , respectively, ⟨x⟩
and ⟨y⟩ stand for the means of the sets X and Y and n signifies the number of data
points.

Since the arithmetic mean is given as ⟨x⟩ = 1
n

∑n
i=1 xi [100], the expression in

Eq.3.21 can be simplified , as shown in Eq.3.22.

r = ⟨xy⟩ − ⟨x⟩⟨y⟩√
(⟨x2⟩ − ⟨x⟩2)(⟨y2⟩ − ⟨y⟩2)

(3.22)

Furthermore, in the case of recipes, since x and y are binary variables, ⟨x2⟩ = ⟨x⟩
and ⟨y2⟩ = ⟨y⟩. Also, ⟨xy⟩ can be calculated according to Eq.3.20, and ⟨x⟩ and ⟨y⟩
can be calculated according to Eq.3.20. Therefore, in this case, the Pearson correlation
coefficient is calculated based on those probabilities, as represented by Eq.3.23.

r = P (i, j)− P (i)P (j)√
(P (i)− P (i)2)(P (j)− P (j)2)

(3.23)

31

3.5 Hierarchical Clustering
Hierarchical clustering is a widely used technique in data exploratory analysis and

machine learning that groups similar data points into clusters based on their
similarities. The primary idea behind hierarchical clustering is to create a tree-like
structure, known as a dendrogram, that illustrates the relationships between data
points or clusters [101].

The process involves a sequence of steps, beginning with the calculation of the
distance matrix, which represents the dissimilarity between two data points. In this
work, the objective is to perform hierarchical clustering based on the correlation matrix
C. However, this is not a valid distance metric, since it demonstrates similarity, instead
of dissimilarity, meaning that the correlation coefficient needs to be converted into a
distance measure, which can be done using the formula in Eq.3.24.

D = 1−C (3.24)

Here, D represents the distance matrix, where higher values signify greater
dissimilarity between data points [102].

The subsequent action entails selecting a linkage criterion, an important decision
that greatly influences the results. There exists a wide array of criteria, each defining
the distance between clusters in different ways. While there are numerous options
available, this discussion will focus on four of the most common. The first is the single
linkage, where the distance between two clusters is the shortest distance between any
two points in the two clusters. Another common criterion is the complete linkage, where
the distance is defined as the longest distance between any two points in the clusters.
The average linkage calculates the distance between clusters as the average distance
between all pairs of points in the two clusters. Lastly, there is the Ward linkage, chosen
in this context, which minimizes the within-cluster variance.

Ward linkage stands out by its ability to minimize the variance within clusters.
This is achieved by considering the increase in sum of squared distances when merging
clusters. For clusters Xi and Xj, the change in variance upon merging is expressed by
Eq.3.25.

∆(Xi, Xj) = ninj

ni + nj

· ∥c(Xi)− c(Xj)∥2 (3.25)

Where ni and nj denote the sizes of clusters Xi and Xj, and c(Xi) and c(Xj) are
their respective centroids [101].

Furthermore, the Ward linkage process unfolds through three steps: initialization,
agglomeration, and iteration, as seen in Algorithm 4. Initially, each data point is
treated as a separate cluster Xi = {xi}, i = (1, ..., n), meaning there are n different
clusters. Agglomeration involves merging the pair of clusters that minimize the increase
in variance, resulting in n − 1 different clusters. Finally, the iteration step involves

32

updating the distances between the newly formed cluster and the remaining clusters
and repeating the agglomeration step until there is only one cluster containing all the
elements. By pursuing variance reduction, Ward’s linkage tends to yield compact and
cohesive clusters [103].

Algorithm 4 Ward Linkage Process
1: n← number of data points
2: for i = 1 to n do
3: Xi ← {xi} ▷ Each data point as a separate cluster
4: end for
5: while |X| > 1 do
6: Find clusters Xi and Xj with minimal variance increase ▷ Based on Eq.3.25
7: Merge clusters Xi and Xj into a new cluster
8: Update X by removing Xi and Xj and adding the new cluster
9: end while

33

Chapter 4

Results and Analysis

In this chapter, a characterization of the databases employed will be presented,
followed by a thorough analysis of the methods examined in previous chapters. The
analysis will focus on evaluating their computational time complexity, assessing their
ability to generate recipes that accurately represent the structures of the databases
they were trained on, and subjecting them to diverse qualitative tests. The aim is to
provide a detailed scientific evaluation of these methods, considering their
computational efficiency, capability to capture database structures, and overall
performance in different testing scenarios.

For the purpose of analyzing and codifying a recipes’ dataset, a binary matrix M

with dimensions nr×ni was employed. In this context, nr is the total count of recipes in
the database, with each row of the matrix representing an individual recipe. Moreover,
ni represents the overall number of distinct ingredients within the database, with each
column of the matrix corresponding to one ingredient. In a succinct mathematical
representation, Mr,i assumes a binary state: 1 signifies the presence of ingredient i in
recipe r, while 0 denotes the absence of said ingredient within the same recipe.

4.1 Characterization of the Databases
Two distinct databases were employed for model testing. The first database

exclusively featured soup recipes, while the second encompassed a broader array of
recipes from various regions around the world. This approach allowed for
comprehensive evaluation across different recipe types and ensured a robust analysis.

4.1.1 Soup Database

Initially, it was used a database consisting of 688 soup recipes, 410 of which are
clear soups and 278 are thick soups, with a total of 564 different ingredients among
them. The recipe with fewer ingredients had 3, and the one with the most had 34.
However, most of those ingredients were very uncommon, appearing only a few times.

34

To consider only ingredients with statistical information, any ingredient appearing
less than 10 times was removed. By doing this, it was also necessary to eliminate
the recipes that lost significance, so only the recipes that still contained at least 3
different ingredients were considered. After this filtering, the database was reduced
to 678 recipes with 146 different ingredients. The average number of ingredients in a
recipe is 9.84 and the recipe with most ingredients has 28, leaving the database with
a distribution of the number of ingredients as shown in Fig.4.1. For this database, the
matrix M resulted in a sparse matrix with a fill percentage of 6.74%.

In order to later generate recipes with a realistic number of ingredients, a gamma
distribution was fitted, as also shown in Fig.4.1. This distribution starts at the origin
(s = 0) and is characterized by two parameters: shape (k) and scale (θ) (see Eq.4.1).

f(x) = 1
θk · Γ(k) · (x− s)k−1 · e− x−s

θ (4.1)

where x is the random variable, which in this case is the number of ingredients of each
recipe.

The parameter k determines the curve’s shape, allowing it to capture a wide range
of distributions, from exponential to normal-like shapes and θ influences the spread
or variability of the distribution [104]. The gamma distribution was chosen due to
its flexible shape, however, due to the fact that it starts at the origin, and that was
not desirable for this data, the curve is shifted by s, as shown in Eq.4.1. Thus, the
distribution parameters are the following: s = −4.27, k = 17.24 and θ = 0.818.

Figure 4.1: Histogram illustrating the distribution of the number of ingredients per
recipe in the soup database, along with its corresponding fitted gamma distribution.

Furthermore, in Fig.4.2.a) it is represented the probability of the ingredients being
present in a recipe (see Eq.3.19). As it is observable, even after removing the rarest
ingredients, the distribution of ingredients among the recipes still leans heavily towards
the most common and fundamental ingredients in soups. To improve the clarity in

35

illustrating the probability of the 50 most common ingredients, only those were shown
in Fig.4.2.b).

a) b)

Figure 4.2: Probability of each ingredient being in a recipe, calculated based on the
frequency, sorted from most to least common (a), for the soup database, and only for

the 50 most common ingredients, featuring their respective names (b).

Afterwords, it was aimed to understand how the mutual information and the
correlation coefficient related to one another. In Fig.4.3.a) each point represents one
out of the possible combinations, C50

2 = 1225, formed by the 50 most common
ingredients.

a) b)

Figure 4.3: Relationship between the mutual information and the correlation
coefficient of the pairs of the 50 most common ingredients (a) and the pairs between

all of the ingredients (b) for the soup database. It is also represented the fitted
parabola of the pairs of the 50 most common ingredients on both images.

36

It was observed that the relationship between them formed a parabolic shape, where
pairs with close to 0 values of r also had close to 0 values of I and pairs with high
values of I also had a strong positive or negative correlation. As such, a parabolic
fitting was performed, showing that I = 6.98 × 10−1r2 − 1.86 × 10−2r + 3.79 × 10−4.
However, analyzing Fig.4.3.b), where all the pairs are represented, and applying the
exact same fitting, following the equation mentioned, it is observed that some pairs
with less common ingredients had a relatively strong correlation, but due to their
lack of appearance, their mutual information was low when compared with pairs of
only common ingredients with the same correlation. This means that for less frequent
ingredients the mutual information can be misleading.

4.1.2 World Cuisine Database

Next, it was considered the extensive dataset of [14] consisting of 56498 recipes
of 11 different cuisines: 352 African, 2512 East Asian, 381 Eastern European, 2917
Latin American, 645 Middle Eastern, 41524 North American, 250 Northern European,
621 South Asian, 457 Southeast Asian, 4180 Southern European and 2659 Western
European. This database also had 381 distinct ingredients but, similarly to the other
database, the less common ingredients, in this case the ones appearing in less than 200
recipes, were excluded and, following that, the recipes with less than 3 ingredients were
also eliminated, leaving a database of 54604 recipes with 190 different ingredients. The
average number of ingredients per recipe is 8.25 and the recipe with most ingredients
has 30. For this database, M resulted in a sparse matrix with a fill percentage of 4.34%.

As detailed in the preceding section, a gamma distribution was fitted to the
distribution of the number of ingredients, as shown in Fig.4.4. The distribution
parameters are the following: s = 1.62, k = 3.66 and θ = 1.81.

Figure 4.4: Histogram illustrating the distribution of the number of ingredients per
recipe in the world cuisine database, along with its corresponding fitted gamma

distribution.

37

The probability of each ingredient being present in a recipe is shown in Fig.4.5.
Similarly to the soup database, the distribution of ingredients leans heavily towards
the most common ingredients.

a) b)

Figure 4.5: Probability of each ingredient being in a recipe, calculated based on the
frequency, sorted from most to least common (a), for the world cuisine database, and

only for the 50 most common ingredients, featuring their respective names (b).

Finally, regarding the mutual information and Pearson correlation coefficient, this
database had a very similar behavior to the other, where a parabolic shape can be seen
for the 50 most common ingredients (Fig.4.6). In this case I = 7.25× 10−1r2 − 2.43×
10−2r + 1.39× 10−4.

a) b)

Figure 4.6: Relationship between the mutual information and the correlation
coefficient of the pairs of the 50 most common ingredients (a) and the pairs between

all of the ingredients (b) for the world cuisine database. It is also represented the
fitted parabola of the pairs of the 50 most common ingredients on both images.

38

4.1.3 Hierarchical Clustering

After calculating the correlation matrix, it was performed hierarchical clustering
for the 50 most common ingredients based on the correlation matrix C, in order to
further understand the similarity relationships between groups of ingredients.

The information presented in Fig.4.7 (referring to the soup database) and Fig.4.8
(referring to the world cuisine database) showcase the outcomes of three analyses:
hierarchical clustering in (a), the respectively ordered correlation matrix in (b) and,
from the dendogram and the correlation matrix, the identification of well-defined
clusters for both databases, as shown in (c).

a)

Cluster Number Cluster Name
1 South European

1.1 Basics
1.2 Mediterranean base
1.3 Italian

2 Asian
3 Latin American
4 Beurre Manié
5 Liquids (negative)

b) c)

Figure 4.7: Dendrogram representing hierarchical clustering (a), ordered Pearson
correlation matrix with visual depiction of defined clusters (b), and the corresponding

nomenclature of these clusters (c) in the soup database.

39

a)

Cluster Number Cluster Name
1 Sweets

1.1 Base of sweets
2 Savory

2.1 Asian
2.2 South Western cuisine

2.2.1 Basics
2.2.2 Italian
2.2.3 Latin American

2.2.3.1 Pepper (negative)

b) c)

Figure 4.8: Dendrogram representing hierarchical clustering (a), ordered Pearson
correlation matrix with visual depiction of defined clusters (b), and the corresponding

nomenclature of these clusters (c) in the world cuisine database.

This hierarchical clustering analysis employs the correlation coefficient to examine
the relationships among the top 50 most frequently occurring ingredients within the
two original databases.

It is also important to mention that the Pearson correlation coefficient of an
ingredient with itself is always 1, as per Eq.3.22. Typically, correlation matrices are
displayed within a range of -1 to 1, as demonstrated in [105]. However, the objective
of this study is to identify clusters and in both databases the highest absolute value
was around 0.45. To enhance the visualization and focus on the correlations pertinent
to this research, the limits of the correlation matrix were adjusted from -0.45 to 0.45

40

instead of the conventional -1 to 1 range.
In light of this, and recognizing that self-correlations hold no significance in

cluster analysis, all self-correlation values were set to 0, rendering them as gray
squares in the visualization. Consequently, blue squares now exclusively represent
negative correlations, red squares represent positive correlations, and gray squares
denote a lack of correlation between ingredients.

4.2 Computational Time Complexity

In this subsection, the time complexity of the methods employed is studied and
analyzed, as seen in Tab.4.1. For each method, this process was divided into two
phases. First, there is the training phase, involving the derivation of the transition
matrix, matrix X (see Eq.3.14), and the weight and bias matrices for the Markov, NMF,
and RBM methods, respectively. This training step occurs only once. Subsequently,
there is the suggestion phase, which utilizes the aforementioned matrices to generate
suggestions. This operation is performed every time a new completion is generated.

For the non-Markovian chain, the training process starts with initializing the
transition matrix with 0 in every entry, requiring O(n2

i) time. Following this, all
possible combinations of two ingredients are generated, iterated through, and checked
against each recipe, resulting in a time complexity of O(Cni

2 × nr) = O(n2
i × nr).

Normalizing the matrix follows, taking O(n2
i) time. Thus, the overall time complexity

for this process is O(n2
i + n2

i × nr + n2
i), which can be simplified to O(n2

i × nr). In the
suggestion phase, the columns of the transition matrix corresponding to the
ingredients in the current recipe are added and normalized, taking O(np × ni) time,
where np is the number of ingredients that the recipe currently has. In the worst
case, this process requires O(n2

i) time. This is repeated until p ingredients are added,
making the total complexity O(n2

i × p× ns) for generating ns samples.
In the case of the RBM algorithm, the main computation of the training process

occurs within the epochs loop, requiring O(ne) time, where ne represents the number
of epochs. Within this loop, data is iterated over nr/b batches (b being the batch
size), taking O(nr/b) time. Furthermore, updating the weight matrix, visible bias,
and hidden bias respectively demand O(ni × nh), O(ni), and O(nh) time, with ni,
the number ingredients, being the number of visible units and nh being the number of
hidden units. Consequently, the total complexity becomes O(ne×nr/b×(ni×nh +ni +
nh)), which simplifies to O(ne×nr/b×ni×nh). In the suggestion process of this model,
the state of the hidden layer is calculated first. This is achieved by multiplying the
current visible layer with the weight matrix and adding the hidden bias. Subsequently,
the activation function (sigmoid) is applied. The time complexity for this operation in
recipe is O(ni × nh + nh), which can be simplified to O(ni × nh). Next, to calculate
the probabilities of activation of the visible units based on these state of the hidden

41

layer, the inverse process is employed: multiplying the hidden layer with the transpose
of the weight matrix, adding the visible bias, and applying the sigmoid function again.
This step also has a time complexity of O(ni × nh) for each recipe. Considering these
complexities, suggesting a single ingredient takes O(ni×nh) time. If p ingredients need
to be suggested for the recipe, the time complexity becomes O(p× ni × nh).

Regarding the NMF algorithm, the training process first involves calculating
matrices W and H. The time complexity of one iteration of this operation is
O(ninrk), where k represents the number of features. Overall, the time complexity, in
the worst case, can be expressed as O(ninrk × maxiter), with maxiter indicating the
maximum number of iterations until convergence. Additionally, matrix X needs to be
calculated. This process includes inverting matrix M (O(n2

rni)), multiplying it with
W (O(n2

rk)), and then further multiplying the result with H (O(nrkni)).
Consequently, the training process’s time complexity is
O(ninrk × maxiter + n2

rni + n2
rk + nrkni), which can be simplified to

O(ninrk × maxiter + n2
rni + n2

rk). Moving on to the suggestion phase, where
incomplete recipes r are multiplied with matrix X, each recipe r incurs a time
complexity of O(n2

i). This allows the suggestion of a single ingredient. To suggest p

ingredients for the recipe, the time complexity becomes O(p× n2
i).

Table 4.1: Time complexity comparison of the different methods during the training
phase and for single-ingredient suggestions.

Markov RBM NMF
Training O(n2

i × nr) O(ne × nr/b× ni × nh) O(ninrk ×maxiter + n2
rni + n2

rk)
Suggesting O(n2

i × ns) O(ni × nh) O(n2
i)

Regarding the training process, the Markov and RBM models demonstrate superior
efficiency in training compared to the NMF algorithm, especially for extensive recipe
databases. This disparity arises from the NMF algorithm’s time complexity, which
is proportional to n2

r, while for Markov and RBM models, it depends solely on nr.
Consequently, in scenarios involving large databases, NMF might not be the optimal
choice due to its higher computational demands.

When it comes to suggesting, RBM stands out as the most efficient method. This
efficiency is due to the relatively smaller number of hidden units (nh) compared to
visible units (ni), making ni × nh smaller than n2

i . Conversely, the Markov-based
model lags behind, requiring a substantial number of samples to establish a significant
statistical ensemble. This inefficiency can be a critical concern, especially in real-
time applications where quick responses are essential. Consequently, the Markov-based
model might not be the best choice for time-sensitive applications.

42

4.3 Recipe Generation
In order to generate recipes using the methods described, there is the need to first

select a starting ingredient. In this work, to determine such ingredient for each
simulation, the frequency distribution of the ingredients was consulted. Selecting the
initial ingredient based on frequencies ensures a higher probability of generating
coherent and realistic recipes, as it reflects the prevalence of ingredients in the
database. Then, the probability of selecting the initial ingredient was computed using
Eq.4.2.

P (initial ing) =
∑nr

r=1 Sr(initial ing)∑ni
j=1

∑nr
r=1 Sr(j) (4.2)

In this context, nr denotes the total number of recipes, ni stands for the count of
distinct ingredients, and Sr signifies the presence or absence of an ingredient in recipe
r.

To ensure a realistic range of ingredients within the simulated recipes, the gamma
distribution depicted previously (in Fig.4.1 and Fig.4.4) was employed. For each
simulated recipe, a random number was generated using said gamma distribution.
Nevertheless, only values between 3 and 25 were considered to maintain a plausible
ingredient count. Any numbers outside this range were disregarded, and a new
random number was generated instead.

In the context of recipe generation, the organized list of suggestions associated with
each method (Yr) was taken into consideration. This list of suggestions was normalized
and, subsequently, a random ingredient was selected to be included in the recipe based
on probabilities associated with normalized Yr. This sequence of steps was iteratively
applied to each subsequent ingredient incorporated into the recipe, continuing until the
recipe attained the predetermined number of ingredients previously defined.

Then, to evaluate the accuracy of the employed methods in capturing relationships
and correlations among different ingredients, a series of tests was conducted.

Initially, 1000 recipes were simulated using the NMF and RBM method trained for
the soup database, in order to choose the most appropriate parameters. This database
was chosen since its smaller size allowed for multiple repetitions in a reasonable time.
Then, for the world cuisine database, the same parameters were implemented. In order
to achieve this, the mutual information and the correlation coefficient were taken into
account. The database generated by each method had an average of 9.993 ingredients
per recipe, the shortest recipe had 3 ingredients and the longest one had 23.

To differentiate between the mutual information of pairs with a robust
interdependency, where the presence of one ingredient implies the presence of the
other, and pairs where the presence of one ingredient suggests the absence of the
other, an adjustment was made to the mutual information of pairs exhibiting a
negative correlation coefficient. This adjustment involved multiplying the mutual

43

information of negatively correlated pairs by −1, resulting in a weighted mutual
information denoted as I ′.

Finally, the Euclidean distance between the weighted mutual information and
correlation coefficient values of pairs in the initial database and those in the
simulated recipe database was calculated. The Euclidean distance, denoted as dE,
quantifies the similarity or dissimilarity between data points in a multi-dimensional
space [106]. The Euclidean distance is determined using Eq.4.3.

dE =

√√√√ ni∑
i=1

ni∑
j=i+1

(I ′d
ij − I

′s
ij)2 (4.3)

where I
′d
ij represents the weighted mutual information between the pair of ingredients

i and j in the original database and I
′s
ij representing the weighted mutual information

between the pair of ingredients i and j in the simulated recipe database.
In this case, the space possesses Cni

2 = ni!
2!(ni−2)! dimensions, where each dimension

corresponds to one of the combinations of two between the different ingredients, and
is represented by a pair of coordinates (I ′d

ij , I
′s
ij). The same principle can be applied for

the correlation coefficient.
This methodology permits the quantification of dissimilarity between the real

databases and the simulated ones. Thus, the parameters minimizing the Euclidean
distance of the weighted mutual information and the correlation coefficient were
selected.

For the NMF algorithm it was the parameter k = 2 and for the RBM, the
parameters that better optimized the generated recipes were: 40 hidden units,
learning rate α = 0.1 and 100 epochs with a batch size of 10.

After training the models, in order to have a big enough statistical ensemble, instead
of generating only 1000 recipes, 10000 recipes were generated for each of the models
based on both databases.

To ensure a fair comparison of results across different methods, consistent initial
ingredients and the same number of ingredients per recipe were maintained in the
datasets generated by each method. When training the methods with the soup
database, the average number of ingredients per recipe was 9.85. The recipes ranged
from a minimum of 3 ingredients to a maximum of 25. Similarly, in the case of
methods trained on the world cuisine database, the average number of ingredients per
recipe was 8.26, with recipes containing as few as 3 ingredients and as many as 25.

4.3.1 Recipe Diversity

Initially, the primary objective was to assess the uniqueness of the generated recipes
and identify any potential repetitions. Subsequently, the analysis aimed to discern
whether these unique recipes merely replicated existing ones in the database or if they

44

constituted entirely new combinations. The results of this analysis can be found in
Tab. 4.2.

Table 4.2: Percentage of unique recipes among the total generated (in the first row),
and the percentage of these unique recipes that replicate existing database entries (in

the last row).

Soup Database World Cuisine Database
Markov RBM NMF Markov RBM NMF

Unique recipes 29.33% 99.98% 99.99% 36.21% 99.02% 99.80%
Database entries 0.07% 0% 0.01% 5.27% 3.71% 1.06%

In Tab.4.2, it is evident that the RBM and NMF generated a wide variety of recipes,
incorporating diverse combinations of ingredients. In contrast, the non-Markovian
chain algorithm exhibits a notable pattern of repetition, utilizing the same ingredient
combinations repeatedly. This pattern aligns with the findings depicted in Fig.4.9.a)
and Fig.4.10.a), presented in the following section. The Markov algorithm tends to
rely heavily on suggesting common ingredients, resulting in duplicate recipes without
the creativity and variety found in RBM and NMF outputs.

When it comes to replicating existing recipes, all the methods consistently
displayed a higher propensity for reproducing recipes from the world cuisine
database. This particular database, in contrast to the soup database, contains a
significantly larger number of recipes, even though the number of ingredients remains
roughly similar. As a result, the potential for generating unique recipes is notably
reduced when training the methods with the larger database. Furthermore, the
Markov algorithm displayed a more pronounced tendency to duplicate recipes from
the databases, further corroborating that the Markov algorithm leans towards
repeating specific combinations of ingredients.

4.3.2 1-Dimensional Analysis: Frequency

For control purposes, a random suggestion based on the distribution of the
ingredients (Fig.4.2 and Fig.4.5), which is going to be referred to as the RNG
(Random Number Generator) or random method, was also implemented. For this
method, Yr was considered to be the number of recipes in which each ingredient is
present.

A 1-Dimensional analysis, referencing the probability of an ingredient being present
in a recipe (see Eq.3.19), was first conducted. For this, the plots of said probabilities
for each ingredient were made and the Euclidean distance between the probability of
the ingredients in the original databases and in the simulated databases was calculated

45

according to Eq.4.4. The graphical representations of these analyses are presented in
Fig.4.9 and Fig.4.10, providing visual insights into the probability distributions across
the datasets generated by each method.

dE =

√√√√ ni∑
i=1

(P d(i)− P s(i))2 (4.4)

where P d(i) represents the probability of ingredient i being present in a recipe of the
original dataset and P s(i) represents the probability of ingredient i being present in a
recipe of the simulated dataset.

a) b)

c) d)

Figure 4.9: Representation of the probability of each ingredient being in a recipe,
calculated based on the frequency, for the databases generated by the Markov (a),
RBM (b), NMF (c) and RNG (d) algorithms trained on the soup database. The

ingredients are sorted from the most to the least common in the original database.

46

a) b)

c) d)

Figure 4.10: Representation of the probability of each ingredient being in a recipe,
calculated based on the frequency, for the databases generated by the Markov (a),

RBM (b), NMF (c) and RNG (d) algorithms trained on the world cuisine database.
The ingredients are sorted from the most to the least common in the original

database.

Comparing Fig.4.9 with Fig.4.2.a) and Fig.4.10 with Fig.4.5.a), it is evident that
NMF closely matches the real ingredient distribution, maintaining the probability of
finding specific ingredients in recipes. On the other hand, the Markov method favors
common ingredients, which are present in almost every recipe. This explains the high
number of repeated recipes seen previously.

Regarding the RBM, the probability distribution does not follow an order similar to
the real one. In this method, some very common ingredients in the databases are rarely
observed, which is specially visible for the soup database. In the results corresponding
to this database, even some not so common ingredients can be seen multiple times
in the recipes. This indicates that RBM does not prioritize ingredient probabilities,
suggesting a preference for capturing other underlying patterns rather than mirroring
the actual ingredient frequencies. Finally, as expected, the RNG algorithm closely

47

mirrors the original distribution, given that it is exclusively derived from it.
The results from the Euclidean distance analysis further validate the observations

mentioned above, as demonstrated in Tab.4.3.

Table 4.3: Euclidean distance between the probability of an ingredient being in a
recipe of the original database P d(i) and the simulated database P s(i) for each

method for both databases.

Soup Database World Cuisine Database
Markov RBM NMF RNG Markov RBM NMF RNG

dE(P d(i), P s(i)) 1.40 0.79 0.22 0.18 1.22 0.46 0.19 0.09

4.3.3 2-Dimensional Analysis: Correlations

In this part of the work, a 2-Dimensional analysis is done, where the correlation
coefficient and weighted mutual information of pairs of ingredients are calculated and
compared. The correlation coefficient is also calculated separately for the ingredient
pairs with positive and negative correlations, in order to understand in which case the
methods perform better.

In Tab.4.4 and Tab.4.5 the results of the Euclidean distances calculated for the
different methods used in this study are displayed. These results reveal that the most
accurate outcomes were achieved with the RBM method, while the modified Markov
algorithm had the least accurate results.

Table 4.4: Euclidean distance between the weighted mutual information (I ′) and the
correlation coefficient r of every pair of ingredients, as well as the correlation

coefficient for the pairs of ingredients with positive (r > 0) and negative (r < 0)
correlations, for each method for the soup database.

dE(I ′d, I
′s) dE(rd, rs) dE(rd, rs), r > 0 dE(rd, rs), r < 0

Markov 0.91 5.76 4.88 3.05
RBM 0.38 4.06 3.19 2.51
NMF 0.52 5.83 4.78 3.33

Random 0.54 6.01 4.97 3.39

48

Table 4.5: Euclidean distance between the weighted mutual information (I ′) and the
correlation coefficient r of every pair of ingredients, as well as the correlation

coefficient for the pairs of ingredients with positive (r > 0) and negative (r < 0)
correlations, for each method for the world cuisine database.

dE(I ′d, I
′s) dE(rd, rs) dE(rd, rs), r > 0 dE(rd, rs), r < 0

Markov 1.04 4.74 4.14 2.31
RBM 0.51 4.25 3.79 2.04
NMF 0.49 4.71 4.14 2.25

Random 0.64 5.90 4.89 3.31

Importantly, all methods outperformed the RNG in terms of the correlation
coefficient. This indicates that these methods effectively capture the correlations
between ingredients, surpassing random chance.

However, the Markov algorithm had a higher Euclidean distance than the RNG
for the weighted mutual information for both databases. This discrepancy can be
attributed to the low values of mutual information in the databases. The Markov
algorithm tends to repeat the same ingredient combinations and recipes multiple times,
leading to artificially inflated mutual information values. The correlation coefficients,
although inflated, are closer to the actual values, since these have a higher absolute
value, compared to the mutual information results.

The heat map of the correlation matrix for the 50 most common ingredients, as
seen in Fig.4.7.b) and Fig.4.8.b) for the databases, was also made for these methods
keeping the order obtained in the hierarchical clustering of Fig.4.7.a) and Fig.4.8.a)
and the same limits of −0.45 and 0.45 for the heat scale.

When analyzing the soup database, a comparison between the graphs presented
in Fig.4.11 and the reference in Fig.4.7.b) clearly highlights the RBM as the method
generating the most similar results. Almost every cluster can be identified to some
degree, with both the heat map and the range of correlation values closely resembling
the reference, fluctuating between approximately −0.45 and 0.45.

Moreover, the Markov algorithm also exhibited a comparable shape, although
clusters 1.1 and 1.2 appeared somewhat merged. Notably, certain positive correlations
were excessively strong, surpassing a maximum value of 0.6, while crucial negative
correlations, such as those between ’chicken stock’ and ’water’, went undetected.

In contrast, the NMF heat map deviated significantly from the reference. Only
cluster 1.1 could be confidently identified, and the correlations among ingredients were
weaker than anticipated.

49

a) b)

c) d)

Figure 4.11: Correlation matrix of the 50 most common ingredients for the databases
generated by the Markov (a), RBM (b), NMF (c) and RNG (d) algorithms trained on
the soup database. The ingredients are sorted according to the hierarchical clustering

of the original database.

Examining the world cuisine database, by comparing the graphs in Fig.4.12 with
the reference in Fig.4.8.b), a similar result can be observed. The RBM exhibited
remarkable similarity with the reference, both in terms of shape and range, indicating
a robust alignment between the datasets. However, cluster 2.1 is not identifiable. On
the other hand, the Markov algorithm displayed a similar shape, but the correlations,
in absolute terms, were considerably stronger than those found within the world cuisine
database and the negative cluster 2.2.3.1 can not be identified.

Meanwhile, the NMF algorithm also showed similar clusters with the database, yet
it noticeably oversimplified the intricate patterns present. This observation suggests
that while the NMF algorithm approximated the basic structure, it failed to capture

50

the nuanced complexities inherent in the culinary dataset. However, in this case the
correlations had similar strength to the real one, but some clusters, such as 2.1 and
the distinct clusters inside 2.2 can not be detected.

It is also important to mention that the correlations of the recipes generated by
the RNG method for both databases, for every pair, were nearly zero. This
phenomenon stems from the approach’s focus being solely on individual ingredient
probabilities, neglecting the complete nature of recipes. This divergence highlights
the considered algorithms’ ability to capture specific aspects of recipe intricacies,
revealing their capacity to discern and reproduce culinary patterns.

a) b)

c) d)

Figure 4.12: Correlation matrix of the 50 most common ingredients for the databases
generated by the Markov (a), RBM (b), NMF (c) and RNG (d) algorithms trained on
the world cuisine database. The ingredients are sorted according to the hierarchical

clustering of the original database.

51

4.4 Qualitative Analysis

Lastly, a qualitative analysis was conducted, incorporating pertinent examples
drawn from the applied methods.

4.4.1 Prohibited Combinations

The analysis begins by examining a few pairs of common ingredients that never
appeared together in the databases. The number of times, out of the 10000 recipes
generated for each method, that these prohibited ingredient combinations appeared is
presented in Tab.4.6 for recipes generated using the soup database to train the models
and in Tab.4.7 for recipes generated using the world cuisine database.

Table 4.6: Occurrences of prohibited pairs in 10000 simulated recipes generated by
Markov, RBM, and NMF algorithms trained on the soup dataset.

Onion & Yellow
onion

Beef stock &
Vegetable stock

Canned corn
kernel & Celery

rib

Celery & Celery
rib

Markov 38 27 0 18
RBM 4 33 14 8
NMF 233 88 49 164

In the analysis presented in Tab.4.6, it is evident that the NMF method exhibited
the highest occurrence of prohibited ingredient combinations. For instance, consider a
recipe generated by NMF: [onion, water, carrot, celery, potato, beef stock, vegetable
stock, dried thyme, cabbage, ground white pepper, frozen split peas, sea salt]. This
recipe includes three different types of liquids—water, beef stock, and vegetable
stock—which is excessive for typical a soup recipe.

Similarly, an examination of a recipe generated by the Markov method: [onion, raw
garlic, chicken stock, salt, water, carrot, celery, olive oil, black peppercorns, tomato,
potato, butter, fresh parsley, bay leaf, ground black pepper, fresh thyme, celery rib]
reveals certain shortcomings. The Markov method tends to prioritize the most common
ingredients found in nearly every recipe (see Fig.4.9.a)). Given that celery is a highly
common ingredient, appearing in 7563 recipes, it would be unusual for the Markov
method not to pair celery and celery rib together. Moreover, the recipe includes all 15
of the most popular ingredients, from onion to ground black pepper (refer to Fig.4.2.b)),
without regard for their compatibility.

52

Table 4.7: Occurrences of prohibited pairs in 10000 simulated recipes generated by
Markov, RBM, and NMF algorithms trained on the world cuisine dataset.

Vanilla & Olive Cocoa & Ham Chicken broth
& Strawberry

Gelatin & Pea

Markov 0 0 0 0
RBM 1 0 1 2
NMF 19 27 5 1

In the analysis of the world cuisine database, presented in Tab.4.7, the Markov
algorithm did not utilize any of the prohibited ingredient combinations outlined. This
phenomenon likely arises because in each pair of ingredients, at least one element is
relatively uncommon, since among the 50 most common ingredients there were no
prohibited pairs, where two ingredients were never observed together.

Comparatively, when examining the results overall, fewer number of recipes featured
both ingredients when compared with the soup database. This disparity in occurrence
might be attributed to a few factors. Firstly, the chosen ingredients in this database
are less commonplace than those selected for the soup database. Furthermore, the
examples provided demonstrate a significant separation between clusters, where one
ingredient is conventionally used in sweet dishes and the other in savory ones.

In the soup database, three examples involving two types of onion, celery, and
stock were analyzed. These ingredients were not found together because they are
interchangeable. This implies that the ingredients that typically pair well with onion
also harmonize with yellow onion. In contrast, ingredients like cocoa and ham do not
usually complement each other, further facilitating the separation of such ingredients
by the algorithms.

Examining specific examples, the recipe where the RBM failed to keep chicken
broth and strawberry apart appears to be an attempt to create a savory dish,
hindered only by the inclusion of strawberry: [tomato, pepper, bell pepper, mustard,
chicken broth, cilantro, orange, seed, dill, strawberry, broccoli]. Conversely, the recipe
featuring vanilla and olive represents an incongruous fusion of sweet and savory
elements: [vanilla, lemon juice, honey, olive, lettuce, pear]. Similarly, the
NMF-generated recipe combining chicken broth and strawberry represents a
mismatched combination of sweet and savory elements: [egg, butter, wheat, milk,
cream, cane molasses, cinnamon, ginger, carrot, chicken broth, cream cheese, apple,
strawberry, feta cheese].

53

4.4.2 Uncommon Combinations

After conducting this analysis, the focus was on examining the methods’ behavior
concerning the infrequent interaction between two widely used ingredients. Fig.4.7.b)
and Fig.4.8.b) were consulted for this purpose. The analysis specifically focused on a
square colored deep blue, indicating a negative correlation between the selected
ingredient pairs.

For the soup database, the interaction between water and chicken stock was
studied, while in the context of the world cuisine database, attention was given to the
combination of onion and vanilla. These specific pairs were chosen due to their rare
occurrence in interactions, as illustrated in Tab. 4.8.

Table 4.8: Percentage of recipes, for the three studied methods and the respective
training database, that contain chicken stock and water and onion and vanilla, for the

soup and world cuisine recipes, respectively.

Soup database World cuisine database
Water & Chicken Stock Onion & Vanilla

Database 8.30% 0.59%
Markov 81.52% 28.16%
RBM 4.03% 0.04%
NMF 7.65% 1.64%

Examining Tab.4.8, it becomes evident that the Markov algorithm disregards these
negative correlations. Specifically, in the case of water and chicken stock, nearly every
recipe generated by this algorithm includes both ingredients. Contrarily, the RBM
actively avoids pairing these ingredients, demonstrating an even lower frequency of
occurrence than in the original databases. This highlights the method’s inclination to
steer clear of unconventional ingredient combinations.

Additionally, although the NMF method displays these pairs more frequently than
the RBM, it remains comparable to the original database, suggesting a deliberate effort
to maintain these correlations negative. These findings align with the patterns observed
in the heat maps presented in Fig.4.11 and Fig.4.12, reinforcing the consistency of the
results across different analytical perspectives.

54

4.4.3 Recipe Completion

Finally, an incomplete recipe composed of basic ingredients, which required
completion, was considered to assess the recommendations generated by each
method. The same recipe was utilized to analyze results across both databases,
featuring onion, tomato, parsley, beef, and potato. Detailed outcomes can be found in
Tab.4.9 and Tab.4.10.

Table 4.9: Top 5 ingredients with the highest probability to be added to an
incomplete recipe featuring onion, tomato, parsley, beef, and potato. Each column
corresponds to the results obtained from the Markov, RBM and NMF algorithms,

respectively, trained using the soup dataset.

Markov RBM NMF
Ingredient Prob. Ingredient Prob. Ingredient Prob.

salt 0.061 water 0.153 carrot 0.082
carrot 0.055 salt and pepper 0.086 water 0.079
water 0.051 canned corn kernel 0.041 celery 0.068

raw garlic 0.045 italian seasoning 0.041 salt 0.062
celery 0.044 olive oil 0.039 bay leaf 0.042

Regarding the soup database, it is evident that the considered recipe lacks essential
seasonings, particularly salt, and a liquid component. These elements were consistently
suggested as the top choices by all three methods. Additionally, the other ingredients
listed in the top 5 probabilities appear to be sensible additions to the recipe.

Notably, in the RBM method, the probabilities of suggesting the first two
ingredients are significantly higher compared to the probabilities of suggesting any
other ingredient. In contrast, the Markov method, and to some extent the NMF,
exhibit probabilities that are more evenly distributed among the top suggestions.
This discrepancy suggests that the RBM method provides suggestions with a higher
level of certainty, emphasizing specific ingredients with greater confidence.

55

Table 4.10: Top 5 ingredients with the highest probability to be added to an
incomplete recipe featuring onion, tomato, parsley, beef, and potato. Each column
corresponds to the results obtained from the Markov, RBM and NMF algorithms,

respectively, trained using the world cuisine dataset.

Markov RBM NMF
Ingredient Prob. Ingredient Prob. Ingredient Prob.

garlic 0.077 black pepper 0.134 garlic 0.086
pepper 0.045 carrot 0.101 olive oil 0.046

black pepper 0.040 garlic 0.080 black pepper 0.044
butter 0.035 bacon 0.058 cayenne 0.039

egg 0.033 pepper 0.041 pepper 0.038

In the context of the world cuisine database, determining the most suitable additions
to the recipe is a complex task due to the diverse range of cuisines and dishes considered.
However, one consistent observation is the need for seasoning. Since salt is not part
of this particular database, the top suggestions provided by the methods, including
garlic and various types of pepper, align with this requirement. Additionally, the
recommendation to incorporate some form of fat, such as butter, bacon, or olive oil,
align with culinary practices in various cuisines.

Similar to the observations in the soup database, the RBM method exhibits a higher
probability of suggesting the top ingredients, whereas the Markov method and, to some
extent, the NMF, present probabilities that are more evenly distributed among the
suggested components, which emphasizes the RBM’s confidence in proposing specific
ingredients.

It is worth noting that although most of the recommendations align with common
ingredients, as depicted in Fig.4.5.b), the methods actively avoided suggesting popular
ingredients typically associated with sweet dishes, such as wheat, milk, cream, vanilla,
and cane molasses, indicating a level of discernment in their recommendations.

4.5 Advantages and Disadvantages of the Proposed
Methods

Considering the developed recipe generation and completion methods utilizing
NMF, RBM, and Markov algorithms, it is of interest to conduct a comparative
analysis. This evaluation aims to assess the performance of these methods across
three different levels: very good, good and modest, encompassing a wide array of
parameters, as illustrated in Fig.4.13.

56

Figure 4.13: Comparison of the relative performance of the developed methods
(Markov, RBM and NMF) across a range of different parameters (Left), with

corresponding symbols legend (Right).

Among the algorithms analyzed in Fig.4.13, the RBM consistently exhibits superior
or comparable performance compared to both NMF and Markov algorithms across most
parameters.

In terms of computational time complexity, the efficiency of the Markov and RBM
algorithms in training stands out, particularly in extensive databases. Unlike the
NMF, where it increases with O(n2

r), both RBM and Markov algorithms have a time
complexity proportional only to nr. However, concerning recommendation efficiency,
both RBM and NMF algorithms surpass the Markov method, since the latter
necessitates iterating through a substantial number of samples.

Additionally, concerning method tuning, Markov stands out for its simplicity,
relying solely on ingredient pair frequencies without requiring parameter adjustments.
In contrast, RBM proves more challenging, demanding tuning of multiple parameters:
learning rate, number of hidden units and epochs, and batch size. The NMF falls in
between, with the only parameter to determine being the number of features.

Furthermore, both the RBM and the NMF algorithms yield a diverse array of
generated recipes, while the Markov method tends to repeatedly produce duplicated
recipes due to its reliance on suggesting common ingredients.

Overall, the performance of the various methods in preserving the correlations
and clusters within the databases was satisfactory, with the RBM notably
outperforming the other two. However, some significant challenges were observed.
The Markov algorithm exhibited remarkably strong correlations, while often failing to
identify negative correlations. Meanwhile, the NMF algorithm tended to oversimplify
the correlations, leading to the omission of smaller or weaker clusters.

Finally, when it came to handling prohibited ingredient pairs, the Markov algorithm
was effective. Still, it struggled with separating uncommon combinations of popular
ingredients, as these were prevalent in most generated recipes. On the other hand, the
NMF algorithm satisfactorily separated unusual combinations of popular ingredients,

57

but showed a higher number of recipes containing prohibited ingredient pairs compared
to the other two methods. Notably, only the RBM demonstrated a strong performance
in both aspects.

58

Chapter 5

Conclusion and Future Work

The rise of food allergies and obesity demands a transformation in the food industry,
addressing individual needs. Simultaneously, the global struggle with hunger and food
insecurity demands innovative solutions to enhance food systems and reduce waste. AI-
enhanced recipes have the potential to offer personalization and to optimize production.
Paired with smart food services, AI-enhanced recipes can provide cost-effective recipes
and tailored nutrition, promoting accessible and healthy eating.

For this reason, three computational methods were used to complete and generate
recipes: a non-Markovian chain, a restricted Boltzmann machine (RBM) and
non-negative matrix factorization (NMF). The Markov based algorithm used, as
transition matrix, the normalized frequencies of pairs of ingredients appearing
together. What makes this chain non-Markovian is the fact that repetitions were not
allowed, meaning that an ingredient could not be added twice to a recipe, and that
not only the transition probabilities of one ingredient were considered, but the
normalized sum of the transitions probabilities of all ingredients currently present in
the incomplete recipe. The RBM, trained with contrastive divergence, employed 40
hidden units. The suggestions were made by passing the visible units (the incomplete
recipes) through the RBM’s hidden layer and then reconstructing the input data by
passing the activations from the hidden layer back to the visible layer. Then, a new
ingredient was chosen based on the probabilities originating from the normalization of
the activations of the hidden layer. The NMF factorized the input matrix containing
the recipe data into two matrices with 2 features. Then, to reconstruct the
incomplete recipes, their corresponding vectors were multiplied by the pseudo-inverse
of the input matrix and the two factorized matrices obtained.

Two metrics were used to characterize the recipes produced by the methods
mentioned above and the databases employed, one comprising a collection of both
clear and thick soups, and the second being a world cuisine database, featuring a
wide array of recipes from diverse cultural backgrounds: mutual information and the
Pearson correlation coefficient. A hierarchical clustering analysis was conducted using

59

the Pearson correlation coefficient, considering the top 50 most common ingredients
from the two databases. The hierarchical clustering process revealed clusters of
ingredients that exhibited strong affinities with one another. Subsequently, 10000
recipes were generated for each algorithm trained on the respective databases.

In terms of computational time complexity, both the Markov and RBM methods
demonstrated superior efficiency in training, especially for large databases, and the
RBM and NMF methods outperformed Markov in providing faster suggestions.
However, concerning parameter tuning, the Markov method stands out as the
simplest, requiring no specific parameters. The NMF is relatively straightforward to
tune, demanding only the determination of the optimal number of features
representing the data. On the other hand, the RBM algorithm presents a greater
challenge as it necessitates the selection of multiple parameters: number of hidden
units, learning rate, number of epochs, and batch size.

The RBM and NMF algorithms produced highly diverse recipes, with the RBM
generating 99.98% and 99.02% unique recipes when trained on the soup database and
the world cuisine database, respectively, and the NMF generating 99.99% and 99.80%
unique recipes when trained on the same databases. In contrast, the Markov algorithm
displayed a tendency to generate repetitive recipes, generating only 29.33% and 36.21%
of unique recipes when trained on the same databases.

Furthermore, the RBM demonstrated superior performance in preserving the
original mutual information and ingredient correlations within the generated recipes
compared to the source databases. Specifically, the Euclidean distances between the
correlation coefficients were 4.06 and 4.25 for the soup and world cuisine databases,
respectively. Additionally, for the weighted mutual information, the RBM achieved
distances of 0.38 and 0.51 for the same databases. Additionally, both the Markov and
NMF methods exhibited similar Euclidean distances for the correlation coefficients:
5.76 and 5.83, respectively, for the soup database, and 4.74 and 4.71, respectively, for
the world cuisine database. However, NMF outperformed the Markov algorithm in
terms of weighted mutual information, achieving distances of 0.52 and 0.49 compared
to 0.91 and 1.04 obtained for the Markov algorithm.

When comparing the capabilities of the methods in avoiding prohibited pairs of
ingredients, the Markov and the RBM outperformed the NMF. The Markov algorithm
had a cumulative of 83 simulated recipes, out of the 20000, 10000 for each database,
with one of the 8 prohibited pairs analyzed, while the RBM had 63, and the NMF had
586. However, for avoiding rare ingredient combinations of popular ingredients, the
RBM and NMF outperformed the Markov. For example, in the soup database, while
8.30% of recipes contained chicken stock and water, the Markov method generated this
combination in 81.52% of cases, while RBM and NMF limited it to 4.03% and 7.65%,
respectively. Furthermore, in the world cuisine database, where 0.59% of recipes had
onion and vanilla, the Markov method generated recipes with this combinations in

60

28.16% of cases, while the RBM and NMF did so in only 0.04% and 1.64%, respectively.
In the example recipe featuring onion, tomato, parsley, beef, and potato, all three

methods trained on both databases performed well, consistently suggesting seasonings
and liquids in the top 5 recommendations for the soup database. They also suggested
seasonings and fats for the world cuisine database, while avoiding ingredients typically
found in sweet dishes in their top 5 suggestions, indicating their ability to recognize
ingredient categories. Furthermore, the RBM displayed higher confidence by having
higher probabilities of selecting the top ingredients.

While the present study offers valuable insights in the area of completing and
generating recipes, it is crucial to acknowledge its inherent limitations. One such
limitation is the potential for biases within the training datasets, which can influence
the discovered correlations. Additionally, the simplifications employed in representing
ingredient interactions, though necessary for computational feasibility, may have
resulted in the loss of certain subtleties.

About improvements and future work, focusing on correlations involving 3 or 4
ingredients holds the potential to deepen the understanding of how effectively the
proposed methods capture the intricate relationships within recipes. One way to
achieve this is through the Apriori algorithm, as it can identify frequent ingredient
combinations and correlations, having the potential to be used to study these
prevalent patterns and how other methods incorporate and respect them.

In addition, soliciting user feedback is crucial for assessing recipe satisfaction and
coherence, since analytically quantifying effectiveness remains challenging due to the
subjective nature of culinary experiences, making user input invaluable.

Addressing health concerns involves identifying allergens and suggesting healthier
ingredient options. Furthermore, incorporating local and sustainable options, as well
as catering to different culinary preferences, ensures inclusivity and sustainability.

Precise ingredient quantities, instead of binary options, would enhance the
usability of recipe enhancement systems. Moreover, examining food groups in
incomplete recipes presents an opportunity to offer more contextually relevant
suggestions. By understanding what is lacking in the recipes, AI systems can provide
targeted and meaningful enhancements.

Finally, integrating natural language processing techniques to comprehend and
modify cooking steps alongside ingredient alterations could substantially enhance the
adaptability and usability of AI-enhanced recipes. This integration would enable the
system to not only understand the ingredients but also the cooking processes.

61

Bibliography

[1] M. Verma, R. Hontecillas, N. Tubau-Juni, V. Abedi, and J. Bassaganya-Riera, “Challenges in
personalized nutrition and health,” Frontiers in Nutrition, p. 117, 2018.

[2] A. Fiocchi, “Food allergy.” https://www.worldallergy.org/education-and-programs/education/
allergic-disease-resource-center/professionals/food-allergy, World Allergy Organization,
2017. Accessed: 15/08/2023.

[3] World Health Organization, “Obesity and overweight [fact sheet].” https://www.who.int/news-room/
fact-sheets/detail/obesity-and-overweight, 2021. Accessed: 15/08/2023.

[4] FAO, IFAD, UNICEF, WFP and WHO, “The state of food security and nutrition in the world 2023.
urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum,”
2023.

[5] FAO, “The state of food and agriculture 2019. moving forward on food loss and waste reduction.,” 2019.
[6] United Nations Environment Programme, “Food waste index report 2021,” Nairobi, 2021.
[7] M. Xu, J. M. David, S. H. Kim, et al., “The fourth industrial revolution: Opportunities and challenges,”

International journal of financial research, vol. 9, no. 2, pp. 90–95, 2018.
[8] A. Hassoun, A. Aït-Kaddour, A. M. Abu-Mahfouz, N. B. Rathod, F. Bader, F. J. Barba, A. Biancolillo,

J. Cropotova, C. M. Galanakis, A. R. Jambrak, et al., “The fourth industrial revolution in the food
industry—part i: Industry 4.0 technologies,” Critical Reviews in Food Science and Nutrition, pp. 1–17,
2022.

[9] A. Hassoun, A. E.-D. Bekhit, A. R. Jambrak, J. M. Regenstein, F. Chemat, J. D. Morton,
M. Gudjónsdóttir, M. Carpena, M. A. Prieto, P. Varela, et al., “The fourth industrial revolution in
the food industry—part ii: Emerging food trends,” Critical Reviews in Food Science and Nutrition,
pp. 1–31, 2022.

[10] United Nations, “Sustainable development goals.” https://www.un.org/sustainabledevelopment,
2013. Accessed: 13/08/2023.

[11] A. Lucena, A. S. Freitas, A. L. Ferreira, and F. Abreu, “Inspiration from systematic literature reviews
to predict the future of food services in smart cities,” in SMART 2023, The Twelfth International
Conference on Smart Cities, Systems, Devices and Technologies, ThinkMind, IARIA, June 2023.

[12] S. M. Noble, M. Mende, D. Grewal, and A. Parasuraman, “The fifth industrial revolution: How
harmonious human–machine collaboration is triggering a retail and service [r] evolution,” Journal of
Retailing, vol. 98, no. 2, pp. 199–208, 2022.

[13] G. Y. Kim and J.-S. Seo, “A new paradigm for clinical nutrition services in the era of the fourth industrial
revolution,” Clinical Nutrition Research, vol. 10, no. 2, p. 95, 2021.

[14] Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A.-L. Barabási, “Flavor network and the principles of food
pairing,” Scientific reports, vol. 1, no. 1, p. 196, 2011.

[15] F. Andres, “Data engineering challenges in intelligent food and cooking recipes,” in 2023 IEEE 39th
International Conference on Data Engineering Workshops (ICDEW), pp. 214–217, IEEE, 2023.

[16] M. Goel and G. Bagler, “Computational gastronomy: A data science approach to food,” Journal of
Biosciences, vol. 47, no. 1, p. 12, 2022.

[17] P. Hamet and J. Tremblay, “Artificial intelligence in medicine,” Metabolism, vol. 69, pp. S36–S40, 2017.
[18] J. McCarthy et al., “What is artificial intelligence,” 2007.
[19] S. J. Russell, Artificial intelligence a modern approach. Pearson Education, Inc., 2010.

62

https://www.worldallergy.org/education-and-programs/education/allergic-disease-resource-center/professionals/food-allergy
https://www.worldallergy.org/education-and-programs/education/allergic-disease-resource-center/professionals/food-allergy
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.un.org/sustainabledevelopment

[20] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM Journal of research
and development, vol. 3, no. 3, pp. 210–229, 1959.

[21] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, vol. 4. Springer, 2006.
[22] N. Sebe, Machine learning in computer vision, vol. 29. Springer Science & Business Media, 2005.
[23] L. M. Policarpo, D. E. da Silveira, R. da Rosa Righi, R. A. Stoffel, C. A. da Costa, J. L. V. Barbosa,

R. Scorsatto, and T. Arcot, “Machine learning through the lens of e-commerce initiatives: An up-to-date
systematic literature review,” Computer Science Review, vol. 41, p. 100414, 2021.

[24] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learning for natural language
processing,” IEEE transactions on neural networks and learning systems, vol. 32, no. 2, pp. 604–624,
2020.

[25] A. Rajkomar, J. Dean, and I. Kohane, “Machine learning in medicine,” New England Journal of
Medicine, vol. 380, no. 14, pp. 1347–1358, 2019.

[26] I. El Naqa and M. J. Murphy, What is machine learning? Springer, 2015.
[27] S. G. Shaikh, B. Suresh Kumar, and G. Narang, “Recommender system for health care analysis using

machine learning technique: A review,” Theoretical Issues in Ergonomics Science, vol. 23, no. 5, pp. 613–
642, 2022.

[28] M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A. J. Aljaaf, “A systematic review on
supervised and unsupervised machine learning algorithms for data science,” Supervised and unsupervised
learning for data science, pp. 3–21, 2020.

[29] A. Borghini, “What is a recipe?,” Journal of Agricultural and Environmental Ethics, vol. 28, pp. 719–738,
2015.

[30] A. Salvador, M. Drozdzal, X. Giró-i Nieto, and A. Romero, “Inverse cooking: Recipe generation from
food images,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10453–10462, 2019.

[31] J. Chen, B. Zhu, C.-W. Ngo, T.-S. Chua, and Y.-G. Jiang, “A study of multi-task and region-wise deep
learning for food ingredient recognition,” IEEE Transactions on Image Processing, vol. 30, pp. 1514–
1526, 2020.

[32] M. Nonaka, K. Otake, and T. Namatame, “Evaluation of cooking recipes using their texts and images,”
in International Conference on Human-Computer Interaction, pp. 312–322, Springer, 2021.

[33] Y. Sugiyama and K. Yanai, “Cross-modal recipe embeddings by disentangling recipe contents and dish
styles,” in Proceedings of the 29th ACM International Conference on Multimedia, pp. 2501–2509, 2021.

[34] Z. Xie, L. Liu, L. Li, and L. Zhong, “Learning joint embedding with modality alignments for cross-
modal retrieval of recipes and food images,” in Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, pp. 2221–2230, 2021.

[35] H. Wang, G. Lin, S. C. Hoi, and C. Miao, “Decomposing generation networks with structure prediction
for recipe generation,” Pattern Recognition, vol. 126, p. 108578, 2022.

[36] C. Trattner and D. Elsweiler, “Food recommender systems: important contributions, challenges and
future research directions,” arXiv preprint arXiv:1711.02760, 2017.

[37] R. Yera, A. A. Alzahrani, L. Martínez, and R. M. Rodríguez, “A systematic review on food recommender
systems for diabetic patients,” International Journal of Environmental Research and Public Health,
vol. 20, no. 5, p. 4248, 2023.

[38] R. Y. Toledo, A. A. Alzahrani, and L. Martinez, “A food recommender system considering nutritional
information and user preferences,” IEEE Access, vol. 7, pp. 96695–96711, 2019.

[39] P. Chavan, B. Thoms, and J. Isaacs, “A recommender system for healthy food choices: building a
hybrid model for recipe recommendations using big data sets,” Hawaii International Conference on
System Sciences, 2021.

[40] M. Rostami, V. Farrahi, S. Ahmadian, S. M. J. Jalali, and M. Oussalah, “A novel healthy and time-aware
food recommender system using attributed community detection,” Expert Systems with Applications,
vol. 221, p. 119719, 2023.

[41] D. Park, K. Kim, Y. Park, J. Shin, and J. Kang, “Kitchenette: Predicting and recommending food
ingredient pairings using siamese neural networks,” arXiv preprint arXiv:1905.07261, 2019.

63

[42] D. Park, K. Kim, S. Kim, M. Spranger, and J. Kang, “Flavorgraph: a large-scale food-chemical graph
for generating food representations and recommending food pairings,” Scientific reports, vol. 11, no. 1,
p. 931, 2021.

[43] B. P. Majumder, S. Li, J. Ni, and J. McAuley, “Generating personalized recipes from historical user
preferences,” arXiv preprint arXiv:1909.00105, 2019.

[44] H. H. Lee, K. Shu, P. Achananuparp, P. K. Prasetyo, Y. Liu, E.-P. Lim, and L. R. Varshney,
“Recipegpt: Generative pre-training based cooking recipe generation and evaluation system,” in
Companion Proceedings of the Web Conference 2020, pp. 181–184, 2020.

[45] J. Fujita, M. Sato, and H. Nobuhara, “Model for cooking recipe generation using reinforcement learning,”
in 2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW), pp. 1–4, IEEE,
2021.

[46] M. Gim, D. Park, M. Spranger, K. Maruyama, and J. Kang, “Recipebowl: A cooking recommender for
ingredients and recipes using set transformer,” IEEE Access, vol. 9, pp. 143623–143633, 2021.

[47] M. Gim, D. Choi, K. Maruyama, J. Choi, H. Kim, D. Park, and J. Kang, “Recipemind: Guiding
ingredient choices from food pairing to recipe completion using cascaded set transformer,” in Proceedings
of the 31st ACM international conference on information & knowledge management, pp. 3092–3102,
2022.

[48] P. F. Cueto, M. Roet, and A. Słowik, “Completing partial recipes using item-based collaborative filtering
to recommend ingredients,” arXiv preprint arXiv:1907.12380, 2019.

[49] M. De Clercq, M. Stock, B. De Baets, and W. Waegeman, “Data-driven recipe completion using machine
learning methods,” Trends in Food Science & Technology, vol. 49, pp. 1–13, 2016.

[50] F. Ricci, L. Rokach, and B. Shapira, “Recommender systems: Techniques, applications, and challenges,”
Recommender Systems Handbook, pp. 1–35, 2021.

[51] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filtering to weave an information
tapestry,” Communications of the ACM, vol. 35, no. 12, pp. 61–70, 1992.

[52] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering recommendation
algorithms,” in Proceedings of the 10th international conference on World Wide Web, pp. 285–295, 2001.

[53] J. Wang, A. P. De Vries, and M. J. Reinders, “Unifying user-based and item-based collaborative filtering
approaches by similarity fusion,” in Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 501–508, 2006.

[54] R. R. Kumar, G. Apparao, and S. Anuradha, “Deep scalable and distributed restricted boltzmann
machine for recommendations,” International Journal of System Assurance Engineering and
Management, pp. 1–13, 2022.

[55] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann machines for collaborative filtering,”
in Proceedings of the 24th international conference on Machine learning, pp. 791–798, 2007.

[56] C. J. Geyer, “Introduction to markov chain monte carlo,” Handbook of markov chain monte carlo,
vol. 20116022, 2011.

[57] A. A. Markov, “Extension of the law of large numbers to dependent quantities,” Izv. Fiz.-Matem. Obsch.
Kazan Univ.(2nd Ser), vol. 15, no. 1, pp. 135–156, 1906.

[58] E. Seneta, “Markov and the creation of markov chains,” in Markov Anniversary Meeting, pp. 1–20,
Citeseer, 2006.

[59] N. G. Van Kampen, Stochastic processes in physics and chemistry, vol. 1. Elsevier, 1992.
[60] J. R. Norris, Markov chains. No. 2, Cambridge university press, 1998.
[61] G. Bhanot, “The metropolis algorithm,” Reports on Progress in Physics, vol. 51, no. 3, 1988.
[62] L. Pretto, “A theoretical analysis of google’s pagerank,” in String Processing and Information Retrieval:

9th International Symposium, SPIRE 2002 Lisbon, Portugal, September 11–13, 2002 Proceedings 9,
pp. 131–144, Springer, 2002.

[63] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” Computer networks
and ISDN systems, vol. 30, no. 1-7, pp. 107–117, 1998.

[64] S. Chakrabarti, Mining the Web: Discovering knowledge from hypertext data. Morgan Kaufmann, 2002.
[65] D. Vise, “The google story,” Strategic Direction, vol. 23, no. 10, 2007.
[66] T. Seymour, D. Frantsvog, S. Kumar, et al., “History of search engines,” International Journal of

Management & Information Systems (IJMIS), vol. 15, no. 4, pp. 47–58, 2011.

64

[67] T. L. Griffiths, M. Steyvers, and A. Firl, “Google and the mind: Predicting fluency with pagerank,”
Psychological science, vol. 18, no. 12, pp. 1069–1076, 2007.

[68] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Handbook of markov chain monte carlo. CRC press,
2011.

[69] M. Quadrana, P. Cremonesi, and D. Jannach, “Sequence-aware recommender systems,” ACM computing
surveys (CSUR), vol. 51, no. 4, pp. 1–36, 2018.

[70] S. Raza and C. Ding, “Progress in context-aware recommender systems—an overview,” Computer
Science Review, vol. 31, pp. 84–97, 2019.

[71] E. S. Khorasani, Z. Zhenge, and J. Champaign, “A markov chain collaborative filtering model for
course enrollment recommendations,” in 2016 IEEE International Conference on Big Data (Big Data),
pp. 3484–3490, IEEE, 2016.

[72] M. H. Aghdam, “Context-aware recommender systems using hierarchical hidden markov model,” Physica
A: Statistical Mechanics and Its Applications, vol. 518, pp. 89–98, 2019.

[73] P. Smolensky, “Information processing in dynamical systems: Foundations of harmony theory,” tech.
rep., Colorado Univ at Boulder Dept of Computer Science, 1986.

[74] V. Upadhya and P. Sastry, “An overview of restricted boltzmann machines,” Journal of the Indian
Institute of Science, vol. 99, no. 2, pp. 225–236, 2019.

[75] H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio, “Learning algorithms for the classification
restricted boltzmann machine,” The Journal of Machine Learning Research, vol. 13, pp. 643–669, 2012.

[76] A. Fischer and C. Igel, “An introduction to restricted boltzmann machines,” in Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications: 17th Iberoamerican Congress, CIARP
2012, Buenos Aires, Argentina, September 3-6, 2012. Proceedings 17, pp. 14–36, Springer, 2012.

[77] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural
networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[78] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. N. Sainath, et al., “Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups,” IEEE Signal processing magazine, vol. 29, no. 6, pp. 82–97, 2012.

[79] N. Zhang, S. Ding, J. Zhang, and Y. Xue, “An overview on restricted boltzmann machines,”
Neurocomputing, vol. 275, pp. 1186–1199, 2018.

[80] G. E. Hinton, “A practical guide to training restricted boltzmann machines,” Neural Networks: Tricks
of the Trade: Second Edition, pp. 599–619, 2012.

[81] D. K. Behera, M. Das, and S. Swetanisha, “Predicting users’ preferences for movie recommender system
using restricted boltzmann machine,” in Computational Intelligence in Data Mining: Proceedings of the
International Conference on CIDM 2017, pp. 759–769, Springer, 2019.

[82] X. Luo, M. Zhou, Y. Xia, and Q. Zhu, “An efficient non-negative matrix-factorization-based approach to
collaborative filtering for recommender systems,” IEEE Transactions on Industrial Informatics, vol. 10,
no. 2, pp. 1273–1284, 2014.

[83] S. Fathi Hafshejani and Z. Moaberfard, “Initialization for non-negative matrix factorization: a
comprehensive review,” International Journal of Data Science and Analytics, vol. 16, no. 1, pp. 119–134,
2023.

[84] G. W. Stewart, “On the early history of the singular value decomposition,” SIAM review, vol. 35, no. 4,
pp. 551–566, 1993.

[85] R. Agrawal, R. Srikant, et al., “Fast algorithms for mining association rules,” in Proc. 20th int. conf.
very large data bases, VLDB, vol. 1215, pp. 487–499, Santiago, Chile, 1994.

[86] P. Weiderer, A. M. Tomé, and E. W. Lang, “A nmf-based extraction of physically meaningful components
from sensory data of metal casting processes,” Journal of Manufacturing Systems, vol. 54, pp. 62–73,
2020.

[87] Z.-Y. Zhang, “Nonnegative matrix factorization: models, algorithms and applications,” Data Mining:
Foundations and Intelligent Paradigms: Volume 2: Statistical, Bayesian, Time Series and other
Theoretical Aspects, pp. 99–134, 2012.

[88] H. Gao, F. Nie, W. Cai, and H. Huang, “Robust capped norm nonnegative matrix factorization: Capped
norm nmf,” in Proceedings of the 24th ACM international on conference on information and knowledge
management, pp. 871–880, 2015.

65

[89] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,”
Computer, vol. 42, no. 8, pp. 30–37, 2009.

[90] Z. Khan, N. Iltaf, H. Afzal, and H. Abbas, “Enriching non-negative matrix factorization with contextual
embeddings for recommender systems,” Neurocomputing, vol. 380, pp. 246–258, 2020.

[91] R. Ievgen and B. Younés, “Random subspaces nmf for unsupervised transfer learning,” in 2014
International Joint Conference on Neural Networks (IJCNN), pp. 3901–3908, IEEE, 2014.

[92] C. Graham, Markov chains: analytic and Monte Carlo computations. John Wiley & Sons, 2014.
[93] N. Madras and G. Slade, The self-avoiding walk. Springer Science & Business Media, 2013.
[94] P. D. Hoff, A first course in Bayesian statistical methods, vol. 580. Springer, 2009.
[95] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural computation,

vol. 14, no. 8, pp. 1771–1800, 2002.
[96] M. A. Nielsen, Neural networks and deep learning, vol. 25. Determination press San Francisco, CA,

USA, 2015.
[97] L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.-X. Standaert, and N. Veyrat-Charvillon, “Mutual

information analysis: a comprehensive study,” Journal of Cryptology, vol. 24, no. 2, pp. 269–291, 2011.
[98] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information,” Physical review E,

vol. 69, no. 6, p. 066138, 2004.
[99] R. S. Witte and J. S. Witte, Statistics. John Wiley & Sons, 2017.

[100] B. L. Agarwal, Basic statistics. New Age International, 2006.
[101] F. Nielsen, Introduction to HPC with MPI for Data Science. Springer, 2016.
[102] X. Liu, X.-H. Zhu, P. Qiu, and W. Chen, “A correlation-matrix-based hierarchical clustering method

for functional connectivity analysis,” Journal of neuroscience methods, vol. 211, no. 1, pp. 94–102, 2012.
[103] S. Miyamoto, R. Abe, Y. Endo, and J.-I. Takeshita, “Ward method of hierarchical clustering for non-

euclidean similarity measures,” in 2015 7th International Conference of Soft Computing and Pattern
Recognition (SoCPaR), pp. 60–63, IEEE, 2015.

[104] C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical distributions. John Wiley & Sons, 2011.
[105] T. Mallick, M. Kiran, B. Mohammed, and P. Balaprakash, “Dynamic graph neural network for traffic

forecasting in wide area networks,” in 2020 IEEE International Conference on Big Data (Big Data),
pp. 1–10, IEEE, 2020.

[106] L. Wang, Y. Zhang, and J. Feng, “On the euclidean distance of images,” IEEE transactions on pattern
analysis and machine intelligence, vol. 27, no. 8, pp. 1334–1339, 2005.

66

	Contents
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives of the Work
	Publications

	Computational Gastronomy: Concepts and State of the Art
	Artificial Intelligence and Machine Learning
	AI Applications in Culinary Science
	Food Recognition
	Recipe Recommendation Systems
	Recipe Ideation and Food Pairing
	Recipe Completion

	Prediction Models and Recommendation Systems
	Stochastic Processes
	Restricted Boltzmann Machines
	Non-Negative Matrix Factorization

	Methods and Techniques to Test Performance
	Stochastic Processes
	Markov Chains
	Non-Markovian Chains

	Restricted Boltzmann Machine
	Non-Negative Matrix Factorization
	Mutual Information and Correlation Coefficient
	Hierarchical Clustering

	Results and Analysis
	Characterization of the Databases
	Soup Database
	World Cuisine Database
	Hierarchical Clustering

	Computational Time Complexity
	Recipe Generation
	Recipe Diversity
	1-Dimensional Analysis: Frequency
	2-Dimensional Analysis: Correlations

	Qualitative Analysis
	Prohibited Combinations
	Uncommon Combinations
	Recipe Completion

	Advantages and Disadvantages of the Proposed Methods

	Conclusion and Future Work
	Bibliography

