
Universidade de Aveiro
2023

MARIANA
PINTO

COMPUTAÇÃO CONTÍNUA EM AMBIENTE DE
REDE FEDERADA

COMPUTING CONTINUUM FOR A FEDERATED
NETWORK FABRIC

“It is the unknown we fear when we look upon death and darkness,
nothing more.”

— Albus Dumbledore

Universidade de Aveiro
2023

MARIANA
PINTO

COMPUTAÇÃO CONTÍNUA EM AMBIENTE DE
REDE FEDERADA

COMPUTING CONTINUUM FOR A FEDERATED
NETWORK FABRIC

Universidade de Aveiro
2023

MARIANA
PINTO

COMPUTAÇÃO CONTÍNUA EM AMBIENTE DE
REDE FEDERADA

COMPUTING CONTINUUM FOR A FEDERATED
NETWORK FABRIC

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à obtenção do grau de Mestre em Engenharia de Computadores e
Telemática, realizada sob a orientação científica do Doutor Diogo Gomes, Profes-
sor associado do Departamento de Eletrónica, Telecomunicações e Informática da
Universidade de Aveiro.

Dedico este trabalho à Mariana de 18 anos que não sabia o que lhe esperava.
Conseguimos!

o júri / the jury
presidente / president Professor Doutor António Manuel Duarte Nogueira

Professor Auxiliar da Universidade de Aveiro

vogais / examiners committee Professor Doutor Bruno Miguel de Oliveira e Sousa
Professor Auxiliar da Universidade de Coimbra - Faculdade de Ciências e Tecnologia

Professor Doutor Diogo Nuno Pereira Gomes
Professor Auxiliar, da Universidade de Aveiro

agradecimentos /
acknowledgements

Se há 7 anos atrás me tivessem dito que estaria aqui hoje, iria rir-me. Foram
dos anos mais duros, mas também mais desafiantes da minha vida, tanto a nível
pessoal, de saúde, monetário e até no trabalho. Cresci, chorei, ri, realizei sonhos,
perdi sonhos, mas hoje sinto-me muito feliz.
Aproveito este espaço para agradecer a toda a gente que me acompanhou nesta
jornada. Ao meu orientador, Professor Diogo Gomes, muito obrigada por ter aceite
o meu desafio. Obrigada por todas as reuniões, pela paciência, pela insistência e
não me deixar desistir. A sua ajuda e os seus ensinamentos irão comigo para a
vida, como orientador mas também como dos melhores professores do DETI.
À Ubiwhere, em especial ao André Duarte, agradeço toda a ajuda que me deram
e de todas as oportunidades que me foram surgindo e aparecendo, tanto neste
projeto, como trabalhadora a full-time. Aos meus colegas de trabalho, obrigada
por todos os sorrisos e encorajamento.
Aos meus colegas de faculdade e amigos por estarem sempre lá para mim, princi-
palmente o saxofone solos que nunca me deixou sozinha.
À minha família que me apoiou sempre todos estes anos e sem a qual isto não
seria possível. Pai, mãe, tia, tio, mana, cunhado, Bea, Tiago, Nanda, Toni, Simão,
Tweety, Diego, estão sempre no meu coração.
À família que eu escolhi, o meu Cacho por me distraírem sempre que eu precisava
e terem tido a paciência de me aturar estes últimos 13 anos. Obrigada por tudo.
Ao meu Snoopy, por toda a companhia que me fez e nunca me ter deixado sozinha
nas longas horas de escrita deste documento.
Finalmente, à pessoa mais importante da minha vida, por ter sido a minha âncora
durante todo o meu percurso, por nunca ter saído do meu lado mesmo quando eu
não merecia, por estar a construir uma vida comigo e por ter sido o único que sabe
de todas as dificuldades que passamos: Bruno, amo-te. Não mudaria uma vírgula
na minha vida, só para poder ter o privilégio de nos ver a conquistar tudo o que
estamos a conquistar.

Palavras Chave Nuvem, Borda, Internet das Coisas, Rede, Federada, Ambiente, Computação Con-
tínua, Latência, Compatibilidade a Multi Acesso de Computação de Borda

Resumo Esta dissertação explora no conceito de computação contínua para uma rede fede-
rada e embarca na investigação do seu papel fundamental na superação da divisão
digital que frequentemente separa diferentes ambientes computacionais, aprofun-
dando a integração dos recursos de computação na cloud, edge e em data centers.
Consegue oferecer uma perspetiva compreensiva de como estes elementos podem
coexistir e colaborar harmoniosamente. O principal objtivo desta pesquisa envolve
a avaliação de uma potencial rede federada para otimizar alocação de recursos,
aprimorar gestão de dados e aumentar a eficiencia geral de um sistema. Para além
disso, o estudo aprofunda as possibilidades da rede federada de permitir a distribui-
ção dinâmica de carga de trabalho e a orquestração em ambientes computacionais
heterogêneos. Através de análises meticulosas e casos de estudos ilustrativos, esta
dissertação elucida as vantagens e desafios relacionados ao Continuum Computa-
cional para uma Estrutura de Rede Federada. Ao abordar preocupações cruciais
relacionadas à escalabilidade, segurança e interoperabilidade, ela fornece insights
importantes sobre o futuro da computação em rede, com foco na conquista de uma
paisagem digital unificada, eficiente e abrangente.

Keywords Cloud , Edge, Internet of things, Network, Federated, Fabric, Computing Conti-
nuum, Latency, Multi Access Edge Computing Compatibility

Abstract This thesis delves into the concept of a "Computing Continuum for a Federated
Network Fabric" and embarks on an exploration of its pivotal role in bridging the
digital divide that often partitions distinct computational environments. It delves
deeply into the integration of edge, cloud and data center computing resources,
offering a perspective on how these elements can coexist and collaborate har-
moniously. The primary objectives of this research revolve around evaluating the
potential of federated network fabrics to optimize resource allocation, enhance data
management, and elevate overall system efficiency. Furthermore, the study delves
into the possibilities of federated network fabrics enabling dynamic workload distri-
bution and orchestration within heterogeneous computing environments. Through
analysis and illustrative case studies, this thesis aspires to elucidate the advantages
and challenges linked to the Computing Continuum for a Federated Network Fabric.
By addressing pivotal concerns pertaining to scalability, security, and interoperabil-
ity, it furnishes invaluable insights into the future of networked computing, with a
focal point on attaining a unified, efficient, and all-encompassing digital landscape.

Contents

Contents i

List of Figures iii

List of Tables v

Glossary vii

1 Introduction 1

1.1 Objectives . 3

1.2 Motivation . 4

2 State Of The Art 5

2.1 The industry perspective: Connectivity to increase availability 5

2.2 A cloud vs. edge approach . 6

2.3 MEC vs FOG . 10

2.4 Types of Messaging protocols . 13

2.5 Why we should save data? . 14

2.6 How can we distribute workload across resources? . 16

2.7 Architectures . 17

2.7.1 Edge Computing RA 2.0 . 18

2.7.2 Industrial Internet Consortium RA . 19

2.7.3 Far-Edge RA . 19

2.7.4 Global Edge Computing Architecture (GECA) 19

2.7.5 Intel Smart Edge Open (ISEO) . 20

2.7.6 Edge X Foundry . 20

2.8 Other architectures worth mention . 21

2.8.1 Summary of most used architectures . 21

3 Architecture and Implementation 23

3.1 Use Case . 23

i

3.2 Requirements . 24

3.2.1 Functional Requirements: . 24

3.2.2 Non-Functional Requirements: . 24

3.3 To MEC or not to MEC . 25

3.4 Edge X Foundry . 26

3.4.1 Service Layers . 28

3.4.2 System Services . 29

3.4.3 How Edge X works and collects data? . 29

3.5 Architecture of the solution . 32

3.5.1 Security . 32

3.5.2 Databases . 32

3.5.3 Message Queuing Telemetry Transport (MQTT) 33

3.5.4 Dashboards . 34

3.5.5 Load Balancer . 35

4 Results 37

4.1 Unlocking the Edge X: The First deploy . 37

4.1.1 Portainer . 39

4.1.2 Grafana . 39

4.2 UI with all the information . 41

4.2.1 Demo . 42

5 Discussion and Conclusion 43

5.1 Future work . 44

References 45

ii

List of Figures

1.1 Cloud Network . 3

2.1 Cloud Computing . 6

2.2 Edge Computing . 8

2.3 Single server distribution vs. CDN distribution . 9

2.4 European Telecommunications Standards Institute (ETSI) Multi-Access Edge Computing

(MEC) reference architecture [3] . 11

2.5 FOG Computing architecture [6] . 12

2.6 FOG vs MEC Architecture . 13

3.1 Use case . 23

3.2 Architecture of Edge X Foundry . 27

3.3 Edge X Foundry data flow . 30

3.4 Step 1 . 30

3.5 Architecture . 32

3.6 MQTT device simulator architecture . 34

3.7 Cloud load balancer . 35

4.1 Latency of the system using a Representational State Transfer (REST) communication vs

using a message Broker . 38

4.2 Portainer.io with all the containers running . 39

4.3 Grafana dashboard . 39

4.4 Humidity and Temperature values . 40

4.5 System metrics . 40

4.6 Cpu Usage (%) and Disk Usage (%) . 40

4.7 Security keys generated to ensure that all the devices are supposed to comunnicate with

Edge X . 41

4.8 Demo User Interface (UI) with all the Edge X available to analyze 42

4.9 Latency between both Edge X’s . 42

iii

List of Tables

2.1 Types of databases . 16

2.2 Most used architetures (part 1) . 21

2.3 Most used architetures (part 2) . 21

4.1 Number of bytes to store the messages from one device 38

v

Glossary

ACID Atomicity, Consistency, Isolation, and Durability
AI Artificial Inteligent
AMQP Advanced Message Queuing Protoco
API Application Programming Interface
CATR Chinese Academy of Telecommunications Research
CDN Content Delivery Network
CPU Central Processing Unit
EC-RA Edge Computing Reference Architecture
ECC Edge Computing Consortium
ETSI European Telecommunications Standards Institute
FTP File Transfer Protocol
GECA Global Edge Computing Architecture
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IIA Industrial Internet Alliance
IIC-RA Industrial Internet Consortium Reference Architecture
IMAP nternet Message Access Protoco
IoT Internet of Things
IP Internet Protocol
IPAM IP Address Management
ISEO Intel Smart Edge Open
IT Information Technology
MEC Multi-Access Edge Computing
MIIT Ministry of Industry and Information Technology
MQTT Message Queuing Telemetry Transport
NFV Network Functions Virtualization
POP3 Post Office Protocol version 3
QoS Quality of Service
REST Representational State Transfer
RTP Real-time Transport Protocol
SD-WAN Software-Defined Wide Area Network
SIP Session Initiation Protoco
SDN Software-Defined Networking
SLA Service Level Agreement
SMTP Simple Mail Transfer Protocol
SSH Secure Shell)
TCP Transmission Control Protoco
UDP User Datagram Protocol
UI User Interface

vii

CHAPTER 1
Introduction

The COVID -19 pandemic and associated lockdowns have led to fundamental changes in
the way we live and work, accelerating the need for people to become closer virtually and
giving rise to new models of communication. In a world of constant change, it is essential
that these mechanisms are responsive and (almost) always available, hence the need to study
new, robust and secure solutions for communication between machines, in order to make the
right decisions when analyzing the data coming into the system. The increasing prevalence of
Internet of Things (IoT) devices and the data collected by these devices and systems, have
led the industry to rethink how data is processed. Processing data in real-time at the edge of
the network allows companies to gain more immediate insights from connected devices and
systems. By being able to analyse data directly at the source, businesses can make decisions
and take actions based on the most current data at any given point in time, leading to more
efficient and assertive decisions.

As online networks started to grow and more new vulnerabilities in the broader Information
Technology (IT) architectures emerged, many companies started researching new ways of
being able to work remotely to increase the automation of operational and repetitive tasks,
in order to reduce production and infrastructure costs. The amount of data moving in (and
out) of an enterprise network today makes old data compute models obsolete: rather than
continuing to rely on a traditional data center compute model, the industry has embraced the
concept of a computing continuum - placing the right computing resources at the optimal
processing points in the system - from cloud data centers to edge systems and endpoint devices.
[1]

Due to the lack of standardised solutions comes the need and urgency to develop more
architectures that provide a secure and fast environment for data exchange between machines
and facilities. The impact of industrial IoT is quickly disrupting the balance between on-
premises and cloud data centres. Think of modern production facilities that require a high

1

concentration of computing power on site: A robotic arm should not wait a millisecond
longer than necessary to start the next operation, and if it fails, it must inform the system
as soon as possible. Thus the need for constant communication between machines, ideally
with as little delay as possible, in order not to jeopardise tasks and expected results, and to
manage applications in such a way that if one machine fails, no other fails and the system
can recover itself. In an ideal world, all machines communicate with each other without
latency, interruptions, data leakage, connection problems or intrusions, making 100% correct
decisions with the data they got. However, it is not always the case: security breaches, delays
in information exchange, network failures, power outages, and outdated systems - can put
physical infrastructure, health, and human safety at risk. The increase in hacker attacks
during the pandemic on factory networks, with ransomware and other attacks, is a reminder of
the security flaws present in many of these environments that need to be fixed and traditional
cloud computing is struggling to cater acceptable response times for devices operating at the
fringes of a network.

All of this brings important questions: Where to store all this information? How to
safely communicate between machines? Which information is safe to share? How to decrease
latency? How to manage all this?

In contemporary society, we witness a generation deeply engrossed in the pursuit of
productivity. A cursory glance at any bustling city street reveals the perpetual state of action:
a prime example is someone simultaneously answering emails from their phone while walking
home after work. This generation thrives on multitasking and achievement, which explains
why the workforce places a premium on effectiveness, productivity, and efficiency.

For any prudent employer, a fundamental question invariably arises: How can workloads be
executed with greater efficiency and heightened automation? As most seasoned professionals
in the business world recognize, the answer is straightforward: communication is the linchpin
of workplace productivity and efficiency, particularly within industrial settings. Whether
considering aspects of safety, transparency, execution, or accessibility, effective communication
within a factory or business is the cornerstone that empowers organizations to navigate the
ever-changing business landscape, amplify productivity, and sustain their competitive edge
in today’s digital economy. That is why is important to have all the assets networked and
available at all times.

So, what is a network? A network is a collection of interconnected devices, such as
computers, servers, and other devices that are connected together to share resources and
communicate with each other. It allows devices to share information, communicate with one
another and access shared different resources such as printers, storage devices, and applications.
They can be wired or wireless, physical or virtual, and used for various purposes such as file
sharing, remote access, telecommunication, and many more.

Imagine a global network of servers, each with a unique function. Not a physical identity
but instead is a vast network of remote servers around the globe which are hooked together
and meant to operate as a single ecosystem, communicating between and exchanging data to
allow fast and on demand information about the services that are used by a individual - that

2

is what a cloud is.

Figure 1.1: Cloud Network

To see the source of each information that arrives to our devices, it’s important within a
network that each device is unique. The use of IP Address Management (IPAM) - process of
planning, assigning, and managing IP addresses within a network - is a critical component of
network management, as it ensures that all devices within a network have unique IP addresses
and that these addresses are correctly assigned and configured. It can be implemented as
a standalone system or integrated with other network management tools such as network
monitoring, security, and automation tools. Additionally, IPAM can be integrated with cloud
infrastructure for provisioning and management of IP addresses across multiple locations and
clouds.

What are the different types of network configurations that are available? How can we
ensure seamless communication within an ecosystem? What methods will we employ to store
data, and how can we guarantee its immediate accessibility whenever required?

1.1 Objectives

This dissertation presents a framework for computing continuity and edge analytics within
a federated system. In the event that a sensor within the factory system identifies a potential
component failure, the cloud edge possesses the capability to autonomously deactivate the
machinery and issue an alert. Furthermore, this research is dedicated to ensuring scalability by
distributing tasks to network-connected sensors and devices, thereby relieving the processing
load on central systems while efficiently managing corporate data. Ultimately, all data,
whether for internal or external sharing, should be securely stored in the organization’s
federated data lake.

The following topics outline the tasks and objectives of this dissertation:
• Investigate and analyze various industry approaches to addressing vulnerabilities inherent

in the industry’s systems. This exploration will provide insights into potential solutions
and aid in the integration of a system that effectively mitigates these challenges.

3

• Define an architectural framework capable of meeting the industry’s constraints and
requirements.

• Optimize the chosen architectural framework to enhance its efficiency and effectiveness.
• Evaluate the impact of the optimization in real-world scenarios to ensure its practical

applicability.

1.2 Motivation

This project is driven by the necessity to enhance response times by minimizing latency in
machine decision-making, aimed at reducing the time it takes for machines to make critical
decisions. In manufacturing, delays in decision-making can result in inefficiencies, errors,
and downtime, by minimizing latency, it makes real-time decisions and responses possible,
enhancing the overall agility of the manufacturing process. It also focuses on elevating the
efficiency and reliability of these decisions. Efficiency means not only quick decisions but also
resource optimization and process streamlining. Reliable decisions are crucial for maintaining
product quality and reducing defects. By achieving both efficiency and reliability, the project
aims to make manufacturing processes smoother, more cost-effective, and less prone to errors.

In today’s world, environmental responsibility is one of the greatest flags to a company. The
project endeavors to make a significant contribution to this cause by reducing the ecological
impact of businesses. This involves initiatives like decreasing energy consumption, which is
not only cost-effective but also environmentally friendly. Lowering bandwidth requirements
also contributes to reduced energy consumption and, in turn, minimizes the carbon footprint.
Furthermore, the project focuses on streamlining operational and infrastructure expenses,
which not only saves costs but also reduces the overall environmental impact. Enhancing the
autonomy of machines signifies the ability to make more decisions without human intervention.
This can lead to increased operational efficiency and a reduced dependency on manual labor.

As machines become more autonomous and interconnected, the security of the system
is of paramount concern. Protecting against cyber threats, ensuring data integrity, and
safeguarding sensitive information are critical components. The project incorporates robust
security measures, including encryption, access control, and continuous monitoring to ensure
that the manufacturing system is resilient against data breaches.

In a manufacturing environment, there may be sensitive data that requires protection,
such as proprietary designs, intellectual property, and customer information. Maintaining
the privacy of this data is not only essential for compliance but also for building trust
with stakeholders. The project aims to implement privacy measures that secure sensitive
information while still allowing for efficient data sharing and decision-making within the
manufacturing system. [2]

In summary, this project is a comprehensive initiative aimed at enhancing every aspect of
machine decision-making within a manufacturing context. Moreover, it seeks to improve the
autonomy, security, and privacy of machines operating within a manufacturing system.

4

CHAPTER 2
State Of The Art

2.1 The industry perspective: Connectivity to increase availability

A network mesh is a type of network topology in which each node or device in the network
is connected to multiple other nodes, rather than just one, where each device acts as a relay,
forwarding data to other devices in the network. This allows for multiple paths for data to
travel, making the network more resilient and fault-tolerant. There are two main categories:
full mesh and partial mesh. In a full mesh network, each device is directly connected to every
other device in the network. This provides the highest level of fault tolerance, as data can
be routed around any failures in the network. In a partial mesh network, not all devices are
directly connected to every other device, but there are still multiple paths for data to travel.

Mesh networks are often used in wireless networks, where devices can move around and the
network topology can change dynamically. By using a mesh network, devices can automatically
find the best path to send data, even if one path becomes unavailable. They are also used in
IoT networks, where devices are spread out over a large area and may not be in range of a
central hub or gateway. In this case, the mesh network allows devices to communicate with
each other and pass data along to the central hub or gateway. 1

A federated data fabric is a network of interconnected data sources that can be accessed
and used by different departments and systems, without compromising data privacy or security.
It allows for standardisation, integration, and optimisation of data. A network fabric is "the
mesh of connections between network devices such as access points, switches, and routers that
transports data to its destination. "Fabric" can mean the physical wirings that make up these
connections, but usually it refers to a virtualized, automated lattice of overlay connections on
top of the physical topology". 2

1https://www.techtarget.com/iotagenda/definition/mesh-network-topology-mesh-network (accessed
11/05/2023)

2https://www.cisco.com/c/en/us/solutions/enterprise-networks/what-is-a-network-fabric.html (accessed
12/05/2023)

5

2.2 A cloud vs. edge approach

IoT data collection involves the use of sensors to track the performance of devices connected
to the IoT. The sensors track the status of the IoT network by collecting and transmitting
real-time data that can be stored and retrieved at any time. There are two solutions for
storing data: cloud computing and edge computing. It is important to understand that these
two concepts are distinct and cannot replace each other: one is used for processing data that
is not time-dependent, while the other is used for processing time-critical data.

Cloud computing is a computing technique where IT services are provided by massive
low-cost computing units connected by Internet Protocol (IP) networks. Today, the term
cloud computing describes the abstraction of web-based systems. Often these cloud-based
resources are viewed as virtual, meaning that if a system needs more resources, they can
simply be added on demand and usually transparently to the app that uses those resources.
Through their virtual nature, cloud-based solutions can be scaled up or down in size, and
the companies whose solutions reside in the clouds normally pay only for the resources they
consume. Thus, the companies that once relied on expensive data centres to house their
processing resources can now shift their costs and maintenance efforts to cheaper, scalable
alternatives. There are 5 major technical characteristics of cloud computing: large-scale
computing resources, high scalability and elasticity, shared resource pool (virtualized and
physical resource), dynamic resource scheduling and general purpose. 3

Traditional Cloud Computing follows a centralised scheme where computing and storage are
deployed in a remote data centre. However, this approach experiences significant limitations
when dealing with these emerging technologies that require a real-time response and reduced
latency.

Figure 2.1: Cloud Computing

The IoT services and cloud computing varies across industries, but in recent years, these
3https://cloud.google.com/learn/what-is-cloud-computing (accessed 15/05/2023)

6

technologies have become increasingly important in many sectors, such as:

• Manufacturing: In this sector, the integration of IoT enables the real-time monitoring
and optimization of manufacturing processes, including equipment health, quality control,
and supply chain management. Cloud computing complements this by providing a
robust platform for data storage and analysis.

• Healthcare: The healthcare industry leverages IoT for remote patient monitoring,
medical device management, and asset tracking. Cloud services play a pivotal role
by securely storing and processing sensitive patient data, ensuring compliance with
stringent regulations.

• Agriculture: Within agriculture, IoT technology is harnessed to maximize crop manage-
ment and livestock monitoring. Cloud computing processes data collected from various
sources, including sensors, weather stations, and satellite imagery, enhancing precision
agriculture practices.

• Transportation and Logistics: In the transportation and logistics domain, IoT devices are
instrumental in tracking vehicles and cargo, monitoring driver behavior, and streamlining
fleet management. Cloud computing empowers organizations to manage and analyze
data, facilitating route optimization, fuel efficiency, and real-time tracking.

• Smart Cities: IoT sensors and devices serve as the foundation for monitoring and
managing urban infrastructure in smart cities. Cloud computing plays a central role by
enabling centralized data processing, supporting functions like smart traffic lights, waste
management, and environmental monitoring, which benefit city planners and residents
alike.

• Energy and Utilities: IoT technology assists in the monitoring and control of energy in-
frastructure, encompassing smart grids and renewable energy systems. Cloud computing
enables the analysis of energy data, grid management, and predictive maintenance.

• Telecommunications: IoT seamlessly integrates with network infrastructure to facilitate
device management and monitoring in the telecommunications industry. Cloud comput-
ing plays a pivotal role in virtualization and network functions, enhancing scalability
and flexibility.

These use cases underscore the versatility and significance of cloud computing across a
myriad of industries, driving efficiency, innovation, and competitiveness. With the increase of
demand on all this systems several setbacks emerged such as 4:

• Downtime: Cloud service providers can experience outages or downtime, which may
disrupt business operations. Reliability depends on the provider’s infrastructure and
Service Level Agreement (SLA).

• Security Concerns: Storing data off-site in the cloud can raise security concerns. Data
breaches or unauthorized access are potential risks.

• Data Privacy: Data is stored on servers owned and managed by the cloud provider,
raising concerns about data privacy and compliance with industry-specific standards
regulations.

4https://www.investopedia.com/terms/c/cloud-computing.asp (accessed 16/05/2023)

7

• Bandwidth Limitations: Accessing and transferring large volumes of data to and from
the cloud can strain network bandwidth, leading to latency and performance issues.

• Cost Overruns: While cloud computing can be cost-effective, it’s essential to monitor
usage and costs carefully. If not managed properly, costs can escalate beyond budget.

• Limited Control: Users have limited control over the infrastructure and software,
which can be a disadvantage for organizations with specific customization or regulatory
requirements. Migrating data and applications from one cloud provider to another can
be challenging and costly

• Compliance Challenges: Industries with strict regulatory requirements may find it
challenging to ensure compliance with cloud providers’ policies and procedures.

In this regard, recent researches propose the use of the Edge Computing paradigm as a
means of improving Cloud Computing capabilities. Edge computing allows data from IoT
devices to be analysed at the edge of the network before being sent to a data centre or cloud.
It brings together the core capabilities of networks, computers, storage and applications to
provide intelligent services at the network edge - close to the source of objects or data - to
meet the critical needs for agile connectivity, real-time services, data optimisation, application
intelligence, security and privacy of the digitisation of industry. This solution is essential
to increase speed, lower latency, improve network performance and traffic management and
greater reliability when the cloud is down. 5

It is denominated as "Edge" computing because information processing no longer takes
place only in centralised or distributed nodes (core), but is performed also in the other extreme
(Edges), moving centralised computing processes away from the centre . All the information
produced by IoT devices is processed in the extreme, thus releasing computational load from
centralised servers, avoiding network traffic overload, and reducing the response time required
by new IoT applications. 6

Figure 2.2: Edge Computing

5https://ubuntu.com/blog/whats-the-deal-with-edge-computing (accessed 23/05/2023)
6https://www.hpe.com/us/en/what-is/edge-to-cloud.html (accessed 23/05/2023

8

By shifting the processing capacity to the nodes, Edge architectures offer the following
advantages:

• Save bandwidth and storage resources, as the rapid increase in IoT devices adoption
would choke the bandwidths of existing network infrastructures; to filter noise data
streams that come from different data sources are processed by the nodes before sending
the data to the Cloud. Proximity and low latency are achieved by processing information
close to its source of origin.

• Enhanced scalability is achieved through decentralised storage and processing.The nodes
of Edge architectures provide each node of the network with isolation and privacy.

There are different approaches in the edge computing solution:
• the Far-Edge approach where the edge computing infrastructure is deployed in a location

farthest from the cloud data centre and closest to the users. It’s used for apps that
require ultra-low latency, high scalability and high throughput;

• the Near-Edge approach is the edge computing infrastructure which is deployed in
a location between the far edge and the cloud data centres. It’s used for Content
Delivery Network (CDN) caches (globally distributed network of proxy servers deployed
in multiple data centers with the goal to serve content to end-users with high availability
and high performance) and Fog computing (decentralized computing infrastructure in
which data, compute, storage and applications are located somewhere between the data
source and the cloud).

Figure 2.3: Single server distribution vs. CDN distribution

While Far Edge computing infrastructure hosts applications specific to the location in
which it is deployed, Near Edge hosts generic services. There are a number of factors which
are evaluated to decide where to host a given application. Some of the criteria are scalability
(Number of users, number of devices), type of application (Gaming, Video streaming, web
content, social media), Latency requirement of the application, throughput requirement for the
application, entity that manages the application (Enterprise, Telco, Cloud Service provider)
and security constraints.7

7https://tech.ginkos.in/2019/06/far-edge-vs-near-edge-in-edge-computing.html (accessed 12/05/2023)

9

Software-Defined Wide Area Network (SD-WAN) is a technology that allows businesses to
use software to manage and optimize the network connections between their branch offices and
data centers. It allows for real-time monitoring and optimization of network traffic, improving
application performance and reducing costs by dynamically directing traffic over the best
available path. 8

By using SD-WAN, an organization can control the flow of data traffic and optimize
the use of available bandwidth, which can help to reduce the latency of edge computing
applications and improve their performance. Additionally, SD-WAN can improve security
and reduce costs by directing traffic over the best available path, which can be particularly
beneficial when using edge computing to process sensitive data.

Due to the rapid development of computing technologies, the amount of data collected by
edge terminals devices has increased 9. There are some important factors to consider when it
comes to protecting the information, such as the security of the data itself and unauthorised
access and use of the data. When it comes to protecting sensitive and private data, data
encryption is very important as it can help prevent unauthorised access to the data and ensure
that communication between servers and client applications is secure. Enhance the security is
one of the practices to secure IoT devices and the network that these devices use. Its primary
goals are to preserve user privacy and data confidentiality, ensure the security of devices and
other related infrastructure, and allow the smooth functioning of the IoT ecosystem.

Some possible attacks can be done by unauthorized access in entities influencing authenti-
cation, authorization and access control, by attacks in transmitted or stored data, influencing
data confidentiality and integrity, or even by attacks in communication channels, influencing
communication channel protection.

Network mesh and SD-WAN are related in the sense that they all aim to improve the
performance, reliability, and security of the network. A network mesh provides redundancy
and increased reliability by allowing multiple paths for data to travel, and SD-WAN optimizes
the use of available bandwidth and improves the security of the network by directing traffic
over the best available path.

2.3 MEC vs FOG

The ETSI has developed a new paradigm called Multi-Access Edge Computing MEC to
address the challenges posed by the complexity of rapidly evolving wireless and mobile com-
munications networks. To mitigate the inherent limitations of the current cloud infrastructure,
the fundamental idea of MEC is to extend the capabilities of cloud computing to the edge of
the mobile network.

MEC is an architecture that brings computing capabilities closer to the edge of the network,
allowing data to be processed and analyzed at the point of origin, rather than in a central
data center. This architecture is intended to provide low-latency, high-bandwidth services

8https://www.cisco.com/c/ptpt/solutions/enterprise − networks/sd − wan/what − is − sd −
wan(accessed12/05/2023)

9https://iot-analytics.com/number-connected-iot-devices/ (accessed 25/04/2023)

10

to applications that require real-time data processing, such as augmented reality, virtual
reality, autonomous vehicles and real-time analytics. MEC also enables the integration of
various technologies and services to support various use cases such as IoT, 5G, and Artificial
Inteligent (AI). It allows multiple service providers to coexist and provide their services on
the same infrastructure, through the use of open Application Programming Interface (API)’s
and standard interfaces.

Figure 2.4: ETSI MEC reference architecture [3]

The layers of this architecture can be divided into [4]:
• The User Plane: directly interacts with the end-users and devices. It provides low-

latency and high-bandwidth services such as content caching, data analytics, and device
management.

• The Control Plane: responsible for managing the resources and traffic of the User Plane.
It includes functions such as traffic management, mobility management, and service
orchestration.

• The Management Plane: responsible for configuring, monitoring, and maintaining
the MEC infrastructure. It includes functions such as network management, security
management, and performance management.

The MEC architecture is composed of several key components [5]:

• Edge servers: These are small, low-power servers that are deployed at the edge of the
network, close to the end-users. They are responsible for running the applications and
providing computing resources to the edge devices.

• Edge gateways: These are devices that act as a bridge between the edge servers and the
core network. They provide connectivity and routing capabilities, as well as security
features such as firewalls and intrusion detection systems.

• Edge applications: These are the applications that are designed to run on the edge
servers and take advantage of the low-latency and high-bandwidth capabilities of the
MEC architecture.

11

• Cloud-based services: The MEC architecture is often integrated with cloud-based
services, such as storage and analytics services, to provide additional functionality and
scalability to the edge applications.

• Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) tech-
nologies: These technologies are used to create a flexible and programmable infrastructure
that enables the deployment of new services and applications with minimal effort.

In contrast, Fog Computing uses local Fog Nodes to enable local computing. Fog computing
is "a system-level horizontal architecture that distributes resources and services of computation,
storage, control, and networking anywhere along the continuum from cloud to objects," 10

according to the OpenFog Consortium. Low latency and real-time analytics are advantages
that Fog Computing shares with other edge computing types (such as MEC), but storage
capacity is limited.

Figure 2.5: FOG Computing architecture [6]

Fog computing is a decentralized computing infrastructure in which data, compute, storage,
and applications are distributed in the most logical, efficient place between the data source
and the cloud. This can include devices such as routers, switches, and gateways. MEC, on
the other hand, is a standardized architecture for edge computing in networks. It involves
running applications and services on servers located at the edge of the network, closer to end
users. [7]

MEC is an industry-standard defined by the ETSI and is built on top of the existing
network infrastructure, being tightly integrated with the mobile network and can access
information such as user location, device type, and network status. Fog computing is not an
industry standard, and there are multiple vendors and open-source projects that provide fog
computing solutions. While fog computing can be integrated with any type of network, it
does not have the same level of integration as MEC. [8]

10https://www.iiconsortium.org/pdf/OpenFog-Reference-Architecture-Executive-Summary.pdf (accessed
23/05/2023)

12

11

Figure 2.6: FOG vs MEC Architecture

2.4 Types of Messaging protocols

Various types of connections are used in computer networking and the Internet to facilitate
communication between devices and systems. Each type of connection is designed for specific
use cases and has its own protocols and characteristics. [9] Here are some common types of
message protocols:

• Hypertext Transfer Protocol (HTTP): Used for transmitting data over the World
Wide Web, it is the foundation of data communication on the internet.

• Hypertext Transfer Protocol Secure (HTTPS): A secure version of HTTP that
uses encryption to protect data transmission, commonly used for secure web browsing.

• Simple Mail Transfer Protocol (SMTP): Used for sending email messages, and
it’s a fundamental protocol for email communication.

• Post Office Protocol version 3 (POP3): Used for retrieving email from a mail
server, often employed by email clients.

• nternet Message Access Protoco (IMAP): Another protocol for email retrieval
but allows for managing email on the server itself, widely used in modern email clients.

• Transmission Control Protoco (TCP): Part of the TCP/IP suite, it ensures reliable
data transmission across networks.

• User Datagram Protocol (UDP): Also part of the TCP/IP suite, it provides a
connectionless protocol for faster data transmission, often used for real-time applications.

• File Transfer Protocol (FTP): Used for transferring files between a client and a
server on a network.

• Secure Shell) (SSH): Provides secure remote access to a computer over a network,
often used for secure system administration.

11http://www.codingsoho.com/zh/blog/differences-between-cloud-fog-and-mec-removing-the-mist/ (ac-
cessed 18/05/2023)

13

• MQTT: A lightweight and efficient protocol for publish-subscribe communication,
commonly used in IoT.

• Advanced Message Queuing Protoco (AMQP): A messaging protocol for applica-
tions to communicate with each other, often used in enterprise environments.

• WebSockets: A communication protocol that enables bidirectional, real-time commu-
nication between clients and servers, commonly used in web applications.

• Real-time Transport Protocol (RTP): Primarily used in delivering audio and video
over IP networks, crucial for streaming and VoIP applications.

• Session Initiation Protoco (SIP): Used for initiating, maintaining, modifying,
and terminating real-time sessions that involve video, voice, messaging, and other
communications applications.

• Bluetooth: A wireless communication protocol commonly used for short-range connec-
tions between devices, such as smartphones, headphones, and IoT devices.

These are just a few examples of the types of connections used in networking and commu-
nication. The choice of connection type depends on the specific requirements of an application,
including factors like security, reliability, speed, and the nature of the data being transmitted.

2.5 Why we should save data?

Saving data in edge computing has several advantages, which make it a valuable approach
in various applications and scenarios. Edge computing refers to the practice of processing
and storing data closer to the source of data generation, typically at or near the "edge" of the
network, rather than sending all data to centralized data centers or the cloud.

Saving data in edge computing can improve performance, efficiency, and security in various
applications by processing and storing data closer to the source. This approach is particularly
valuable in scenarios where low latency, bandwidth efficiency, and real-time decision-making
are critical. [10]

So, why we should save data? [11]

• Data Organization: Databases provide a structured and organized way to store and
manage data, making it easier to maintain and retrieve information.

• Data Integrity: Relational databases, in particular, enforce data integrity through
constraints, ensuring the accuracy and consistency of data.

• Data Retrieval: Databases support efficient data retrieval and querying, allowing
users to find and access information quickly.

• Concurrency Control: Databases manage concurrent access to data, ensuring that
multiple users can work with the data simultaneously without conflicts.

• Scalability: Many databases offer scalability options, making it possible to handle
large volumes of data and high traffic loads.

• Data Security: Databases can enforce access control and provide security features to
protect sensitive data.

14

• Data Redundancy: Databases allow for data redundancy and replication for backup
and disaster recovery purposes.

• Atomicity, Consistency, Isolation, and Durability (ACID) Compliance: Re-
lational databases ensure transactions are Atomic, Consistent, Isolated, and Durable,
which is critical for applications that require strong data consistency.

• Real-time Analytics: Some databases, like NoSQL and column-family databases, are
well-suited for real-time analytics and big data processing.

There are several types of databases, each designed to handle specific data storage and
retrieval needs. Databases are essential for managing, organizing, and accessing data efficiently.
Here are some common types of databases and why we use them: 12

12https://www.geeksforgeeks.org/types-of-databases/ (accessed 25/05/2023)

15

Database
Type

Examples Characteristics Use Cases

Relational
Databases

MySQL, Post-
greSQL, Ora-
cle, SQL Server

Structured schema
with tables, rows, and
columns. Well-defined
relationships.

Financial sys-
tems, transac-
tional applica-
tions

NoSQL
Databases

MongoDB,
Cassandra,
Redis, Dy-
namoDB

Designed for unstruc-
tured or semi-structured
data. High read and
write scalability.

Big data, real-
time analytics

Document
Databases

MongoDB,
CouchDB,
RavenDB

Store data in JSON or
similar format within
documents. Flexible
schema and hierarchical
data structures.

Content man-
agement, cata-
logs

Key-
Value
Stores

Redis, Dy-
namoDB, Riak

Store data as key-value
pairs. Fast read and
write operations.

Caching,
session man-
agement,
real-time data
processing

Column-
family
Databases

Apache Cas-
sandra, HBase

For horizontal scalabil-
ity. High write through-
put and analytical work-
loads.

Applications
w/ high write
throughput,
analytics

Graph
Databases

Neo4j, Amazon
Neptune

Complex relationships. Social net-
works, rec-
ommendation
systems, net-
work analysis

Time-
Series
Databases

InfluxDB,
Prometheus

Storing and querying
time-stamped data.

Sensor data,
logs, monitor-
ing metrics

In-
Memory
Databases

Redis, Mem-
cached

Store data in RAM for
extremely fast data ac-
cess.

Caching,
session man-
agement,
real-time data
processing

Table 2.1: Types of databases

2.6 How can we distribute workload across resources?

Load balancing is a crucial technique used in computer networking and server management
to distribute network traffic or workload across multiple servers or resources. Its primary
purpose is to ensure that no single server or resource is overwhelmed with traffic, thus
improving the availability, reliability, and performance of a network or application. Here are
some key aspects of load balancing:

• Load balancing is typically achieved using a dedicated device or software known as a

16

load balancer. It sits between the clients (users or applications) and the servers, and it
directs incoming requests to the most appropriate server based on a set of predefined
algorithms.

• Use various distribution algorithms to decide how to route incoming requests. Some
common algorithms include:

– Round Robin: Requests are distributed in a cyclical manner to each server in the
pool.

– Least Connections: The load balancer routes requests to the server with the fewest
active connections.

– Weighted Round Robin Servers are assigned different weights, and the load balancer
sends more requests to servers with higher weights.

– IP Hash: Requests are distributed based on the source IP address, ensuring that
requests from the same client always go to the same server

• Load balancers continually monitor the health of the servers in the pool. If a server
becomes unresponsive or unhealthy, the load balancer can stop sending requests to it
until it recovers. This ensures that only healthy servers handle incoming requests.

• In some cases, it’s necessary to maintain session persistence. This means that subsequent
requests from a client are directed to the same server to maintain session state. Load
balancers can be configured to support session persistence when needed.

• Allows for easy scalability by adding more servers to the pool to handle increased traffic.
It also provides redundancy, as if one server fails, the load balancer can direct traffic to
other healthy servers.

• There are various types of load balancers, including hardware load balancers, software
load balancers, and cloud-based load balancers. Cloud providers often offer load balancing
services as part of their infrastructure offerings.

• Some organizations use global load balancers to distribute traffic across multiple data
centers or geographic regions, ensuring high availability and disaster recovery.

• CDNs are a specialized form of load balancing that cache and serve content (such as
images and videos) from edge servers distributed around the world. This reduces latency
and improves content delivery speed.

• Eessential for high-traffic websites, applications, and services to ensure they remain
responsive and available to users. It plays a critical role in maintaining system reliability
and optimizing resource utilization

2.7 Architectures

Scalability, performance, versatility, security and cost-cutting capabilities are all charac-
teristics of systems that are primarily determined by their architecture. An effective and clear
architecture is crucial because a software architect makes critical decisions about the software
that ultimately determine its overall integrity. While they are some architectures available that
meet some of the needs of the problem discussed, only a few cover most of them. A reference

17

architecture incorporates industry-accepted best practices, usually providing guidelines for
the method of delivery or specific optimal technologies. They help project managers, software
developers, enterprise designers, and IT managers to collaborate and communicate effectively
in the implementation of a project, giving answers to frequently asked questions and any
doubts that may arise. Consequently, it helps teams avoid the errors and delays that would
have occurred otherwise.

Recent research has focused on looking into the ability of the Edge Computing Paradigm
to lessen the limitations of Cloud-centric architectures. In this respect, Edge Computing
architectures are capable of shifting a portion of the computing capacity that is performed
from the Cloud to the nodes located at the Edge of the network. 13

This section provides an overview of reference architectures created for Edge Computing,
shedding light on how certain architectures serve as foundation for others.

The ISO/IEC/IEEE 42010:2011 standard is the principal guide to identifying conventions,
principles and best practices for consistent Internet of Things architectures or frameworks.
The ISO/IEC/IEEE 42010:2011 facilitates the development of evaluation, communication,
documentation and systematic or effective resolution in a reference architecture and it’s rather
used in most of the architectures of edge computing. 14 In 2022, this norm was updated to a
new version. 15

2.7.1 Edge Computing RA 2.0

In 2016, the Edge Computing Consortium (ECC) was created by several organisations,
meanwhile the Chinese Academy of Telecommunications Research (CATR) together with
the Ministry of Industry and Information Technology (MIIT) formed the Industrial Internet
Alliance (IIA) with the aim of boosting the development of industrial Internet in China.

The Edge Computing Reference Architecture (EC-RA) 2.0 was proposed from the joint
work between the ECC and the IIA, and it is based on a horizontal layers model with open
interfaces. Vertically, this architecture uses the following services: management, data life-cycle
and security, with the aim of providing intelligent services throughout the life cycle. The
development of this architecture was based on international standards such as ISO/IEC/IEEE
42010:2011 and it presents Edge solutions and frameworks to industries. The layers include:

• Smart Services: based on a model-driven service framework. Intelligent coordination
between service development and deployment is achieved through the Development
service framework and the Deployment and operation service framework. These frame-
works enable coherent software interface development and automatic implementation
and operations.

• Service Fabric : defines the tasks, technological processes, path plans, and control
parameters of the processing and assembly phases, implementing fast deployment of
service policies and fast processing of multiple types of products.

13https://iebmedia.com/technology/edge-cloud/edge-computing-set-to-revolutionize-manufacturing/ (ac-
cessed 13/05/2023)

14https://www.iso.org/standard/50508.html (accessed 20/05/2023)
15https://www.iso.org/standard/74393.html (accessed 20/05/2023)

18

• Connectivity and Computing Fabric : the Operation, Information and Communications
Technology infrastructure is responsible for deploying operations and coordinating
between the computational resource services and the needs of the organisation.

• Edge Computing Node: in this layer the intelligent Edge Computing Nodes have real
time processing and response capacities, are compatible with diverse heterogeneous
connections and the security is integrated into the hardware and software.

2.7.2 Industrial Internet Consortium RA

The Industrial Internet Consortium and the ECC have developed their reference architec-
ture using the ISO/IEC/IEEE 42010:2011. The Industrial Internet Consortium Reference
Architecture (IIC-RA) and its three principal tiers are: Edge, Platform and Enterprise and
are described as follows:

• Edge layer: collects data from the Edge nodes through a proximity network. The main
architectural features of this layer include: breadth of distribution, location, scope of
governance and nature of the proximity network. Each of the characteristics will change
according to the use case.

• Platform layer: responsible for processing and sending control commands from the third
layer (enterprise) to the Edge layer. Its function is to group the processes and analyse
the data flows from the Edge layer and the upper layers. It manages the active devices
in the Edge layer for data consultation and analysis through domain services.

• Enterprise layer: located in the cloud and runs specific applications such as decision
support systems, end-user interfaces, and operations management. This layer generates
control commands to be sent to the platform and Edge layers and also receives data
flows from those layers.

2.7.3 Far-Edge RA

The FAR-Edge RA has been developed as part of the H2020 FAR-Edge project, as a
means of overcoming the challenge that industries face in adopting decentralised automation
architectures. The FAR-EDGE RA is aligned to IIC-RA concepts and described from two
architectural viewpoints: the functional viewpoint and the structural viewpoint. It is a
reference architecture for most of the architectures available today.

2.7.4 GECA

This architecture [12] was designed to support the deployment of solutions that required
IoT, Edge and Cloud layers, and securing the information through a blockchain from the
moment the data was entered from the IoT nodes. This architecture offers a scalable and
secure environment for users to obtain their information in real-time, remotely accessing the
applications that are deployed in the Business solution layer, as it was based on the IIC-RA
solution. Nevertheless, the initial design did not consider the possibility of using software
defined networks or network function virtualization to optimize the use of resources in the
Edge-IoT networks.

19

2.7.5 ISEO

The Intel Smart Edge Open is a platform for Edge AI and IoT that was announced by
Intel in 2020. 16

At the core of its architecture is the Edge Compute Layer, which is responsible for running
and executing the applications. This layer is built on top of the Intel Architecture and
supports a wide range of edge devices, including IoT devices, robotics, and other embedded
systems.

The Edge Connectivity Layer is responsible for providing communication and networking
capabilities to the edge devices. It supports multiple communication protocols, including
WiFi, Zigbee, and cellular, and provides secure and reliable connectivity between the edge
devices and the cloud.

The Edge Management Layer is responsible for device management and provisioning, as
well as monitoring and diagnostics. It provides a set of tools and services that can be used to
manage, provision, and monitor the edge devices, including a device management service, a
cloud-based analytics service, and a software development kit.

Finally, the Edge Security Layer provides security features to the edge devices, including
secure boot, secure firmware updates, and data encryption. It ensures the authenticity and
integrity of the edge devices and the data they generate, protecting the devices and the data
from unauthorized access and tampering.

The fact that this architecture is not open source, brings a lot of disadvantages when
researching. Most of the key features are not presented on the developer kit and only on the
paid version.

2.7.6 Edge X Foundry

The EdgeX Foundry is an open-source project that provides a standardized and vendor-
neutral platform for building and deploying IoT edge computing solutions. Its architecture
is designed to be highly flexible and modular, allowing for interoperability and scalability
in diverse IoT environments. This architecture is based on the IIC-RA architecture and has
MEC compatibility. The key components are:

• Device Services: These components interface with IoT devices and sensors, facilitating
data collection and integration.

• Core Services: provide essential functionality such as data normalization, device man-
agement, and security.

• Supporting Services: offer extended capabilities, including data export, rules processing,
and security functions.

• Application Services: enable the development and deployment of custom applications
and analytics at the edge.

16https://www.intel.com/content/www/us/en/developer/tools/smart-edge-open/overview.html (accessed
12/05/2023)

20

2.8 Other architectures worth mention

Several other architectural solutions should be noted in the context of the summary
provided in 2.2. However, they are not deemed suitable for our solution for various reasons:

• Akraino17: Akraino, though noteworthy, is still in the developmental phase, with
limited work in the area of edge computing. This ongoing development phase makes it
less suitable for our current needs.

• Thingsboard18: While Thingsboard is an option, it does not adhere to industry
standards, potentially leading to interoperability and integration issues with existing
systems. Therefore, it may not align with our solution’s requirements.

• Intel-SAP 19 and Huawei Edge Gallery 20: Both Intel-SAP and Huawei Edge
Gallery lack support for robust data encryption. Given the sensitivity of data in edge
computing, the absence of data encryption features makes them less suitable for ensuring
the security and privacy of data in our solution.

In summary, while these architectural options have their merits, they present specific
limitations and challenges that make them less fitting for our particular use case.

2.8.1 Summary of most used architectures
SOLUTION EC-RA 2.0 IIC-RA GECA Akraino Thinsboard
Open-Source No No Yes Yes Yes
Standards Yes Yes Yes Yes no
Data Encription No No Yes Yes Yes
Containers/Kubernets Suport (VM support) Yes Yes Yes Yes Yes
Scalability Yes Yes Yes Yes Yes
Multi Access Edge Computing Compatibility Yes Yes Yes Yes No
Connectivity and communication Yes Yes Yes Yes Yes
Hardware Acceleration Yes Yes Yes Yes Yes
Telemetry and Monitoring Yes Yes Yes Yes Yes
Enhanced Security Yes Yes Yes Yes Yes
Device Management Yes Yes Yes Yes Yes

Table 2.2: Most used architetures (part 1)

SOLUTION Edge X Foundry ISEO Huawei Edge Gallery Far-Edge RA Intel-SAP
Open-Source Yes No Yes Yes No
Standards based on IIC-RA No based on IIC-RA No No
Data Encription Yes No No No No
Containers/Kubernets Suport (VM support) Yes Yes Yes Yes No
Scalability Yes Yes Yes Yes Yes
Multi Access Edge Computing Compatibility Yes No yes No Yes
Connectivity and communication Yes Yes Yes Yes Yes
Hardware Acceleration Yes No Yes No No
Telemetry and Monitoring Yes Yes Yes Yes Yes
Enhanced Security Yes Yes Yes Yes No
Device Management Yes Yes Yes Yes Yes

Table 2.3: Most used architetures (part 2)

17https://wiki.akraino.org/display/AK/Akraino+Edge+Stack+Goal+and+Key+Principles (accessed
12/05/2023)

18https://thingsboard.io/docs/ (accessed 12/05/2023)
19https://www.sap.com/products/erp/rise.html (accessed 12/05/2023)
20https://www.edgegallery.org/en/pc-edgegallery-overview/ (accessed 12/05/2023)

21

CHAPTER 3
Architecture and Implementation

3.1 Use Case

A manufacturing company has several factories located in different parts of the world.
Each factory has a large number of machines and equipment that generate vast amounts
of data, such as sensor readings, production statistics, and maintenance information. The
company wants to leverage this data to optimize its operations and improve efficiency, but it
faces several challenges. The data is generated in real-time and is highly distributed, which
makes it difficult to collect, process, and analyze it centrally. Moreover, some of the factories
may have limited connectivity, which can cause delays and disruptions in data transfer.

Figure 3.1: Use case

Sensors and devices at the edge of the network collect data from various sources, such
as machines, equipment, and environmental sensors. The data is processed at the edge
of the network and applications that leverage the data collected are processed by Edge X

23

Foundry. The data is visualized and analyzed using tools such as dashboards, reports, and
analytics platforms. Some factories may require more advanced analytics or machine learning
capabilities, which could be implemented using additional software components or integrations
with third-party platforms. Other factories may require more specialized data collection or
processing tools, such as those for high-speed data streams or industrial protocols. In such
cases, the basic flow would need to be customized to accommodate these requirements. [13]

3.2 Requirements

Based on the previous section, we can extract important requirements of the test case.
These requirements should serve as a foundation for the development and implementation
of the system that will help the manufacturing company leverage its data for optimizing
operations and improving efficiency.

3.2.1 Functional Requirements:

• The system should collect data from various sources, including machines, equipment,
and environmental sensors.

• Data collected from the sources should be processed in real time and available in the
most quickly possible way.

• The system should provide tools for visualizing the processed data, including dashboards,
reports, and analytic platforms.

• The system should support three user roles: workers, maintainers, and factory CEO’s.
Each role has specific access and functionality requirements.

• Workers should be able to check the status of each machine and monitor the product
manufacturing process, whenever needed.

• Maintainers should be able to check the vital status of each machine and make decisions
based on this information, whenever needed.

• Factory CEO’s should be able to access information about the current state of each
building, including machine status, production statistics, and more, whenever needed.

• The system should detect and respond to sensor failures as a trigger event.
• The system should detect and respond to missing stock as a trigger event.
• The system should detect and respond to the absence of workers in the building as a

trigger event in case some sensor triggers some emergency.

3.2.2 Non-Functional Requirements:

• The system should be capable of handling highly distributed data generated by machines
located in different parts of the world.

• The system should be able to handle limited connectivity situations at some factories to
prevent delays and disruptions in data transfer.

• The system should be customizable to accommodate the specific requirements of different
factories. This includes the ability to implement advanced analytics, machine learning
capabilities, and support for specialized data collection or processing tools.

24

• The system should ensure the security and integrity of the collected and processed data.
• The system should be scalable to handle a large number of machines and equipment

generating vast amounts of data.
• The system should perform efficiently to optimize manufacturing operations and improve

overall efficiency.
• The system should provide monitoring and alerting capabilities to notify relevant

stakeholders about trigger events and abnormal conditions.
• The system should be able to integrate with third-party platforms when advanced

analytics or machine learning capabilities are required.
• The system should be user-friendly and provide an intuitive interface for the three user

roles (workers, maintainers, and factory CEO’s).
• The system should be reliable to ensure uninterrupted data processing and analysis.

3.3 To MEC or not to MEC

MECand fog computing are both edge computing paradigms designed to bring computation
and data processing closer to the source of data and reduce latency. However, there are several
reasons to choose MEC over fog computing regarding this requirements:

• MEC is typically deployed closer to the mobile network infrastructure, making it an
ideal choice for applications that require low latency and high-speed data processing.
Fog computing, on the other hand, may have a more dispersed and variable network
topology.

• MEC is tightly integrated with 4G/5G networks, enabling seamless and efficient commu-
nication with mobile devices. This integration can provide superior support for mobile
applications, such as IoT devices.

• MEC benefits from standardized interfaces and API developed by organizations like
the ETSI. This standardization can simplify the development and deployment of MEC
applications, ensuring interoperability across different vendors.

• MEC can offer stringent Quality of Service (QoS) guarantees, which are crucial for
applications like autonomous vehicles, industrial automation, and critical healthcare
systems. The proximity to the mobile network infrastructure allows for better control
over QoS parameters.

• MEC can take advantage of network slicing, that allows the creation of virtual network
segments tailored to specific applications. This ensures that resources are allocated
efficiently for different use cases, optimizing performance.

• MEC can be more scalable when it comes to handling a large number of devices or
users in a densely populated area. This scalability is especially important for urban
environments and crowded events.

• MEC can be more centrally managed and orchestrated due to its close relationship with
the core network infrastructure. This centralized management can simplify resource
allocation, application deployment, and updates.

25

• MEC can benefit from the security features, such as network segmentation and encryption,
which can enhance the security of edge applications. The integration with the core
network provides more control over security measures.

• MEC allows service providers to have greater control over their edge infrastructure,
making it easier to customize and optimize the edge computing environment according
to their specific needs and use cases.

• MEC can provide quicker and more responsive services, making it well-suited for
applications that require rapid data processing and decision-making, such as real-time
analytics.

3.4 Edge X Foundry

A set of guiding principles shaped EdgeX Foundry’s architectural design and functionalities
from its inception. These guiding concepts are essential to ensuring that EdgeX Foundry
can provide a strong, flexible, and safe foundation for a variety of applications while also
meeting the changing needs of edge computing. We will examine the fundamental principles
of architecture that form the basis of EdgeX Foundry and select it as the architecture for this
dissertation 1:

• Platform-Agnostic Design: The primary principle of EdgeX Foundry is platform-
agnosticism. It is made to function flawlessly with a wide range of hardware, including
ARM and x86 architectures. It also is irrelevant which operating system, distribution, de-
ployment/orchestration techniques, or protocols are used. EdgeX Foundry’s widespread
usage is ensured by its adaptability, which makes it compatible with a wide range of
hardware and software settings.

• Flexibility and Extensibility: EdgeX Foundry’s extensibility and flexibility are
key components of its design. It makes it possible to update, swap out, or improve
any platform component with other microservices or software elements. The capacity
to adapt is crucial for meeting the dynamic needs of edge computing applications.
In addition, EdgeX Foundry facilitates dynamic service scaling according to device
capabilities and use case specifics, guaranteeing optimal resource use.

• Reference Implementations and Best-of-Breed Solutions: In addition to offering
flexibility, EdgeX Foundry provides developers with "reference implementation" services,
which act as a jumping off point. The purpose of these reference implementations is to
facilitate interoperability and direct the development process. On the other hand, EdgeX
Foundry promotes the use of best-of-breed solutions, giving customers the freedom to
select the parts that are most suited to their unique requirements.

• Store and Forward Capability : EdgeX Foundry has a "store and forward" feature
to help with the problems caused by remote and disconnected edge systems in addition
to sporadic connectivity. This feature makes it possible to gather, store, and transfer
data while connectivity fails and then regained. This guarantees data flow continuity
and integrity, which is essential in edge environments with erratic network connections.

1https://docs.edgexfoundry.org/2.0/edgex-foundry-architectural-tenets (accessed 15/08/2023)

26

• Facilitating Edge Intelligence: EdgeX Foundry is designed to enable "intelligence"
to move closer to the edge, addressing issues related to actuation latency, bandwidth
constraints, storage limitations, and remote operations. By empowering intelligent
decision-making at the edge, EdgeX Foundry optimizes the efficiency and responsiveness
of edge computing applications.

• Brown and Green Field Deployments: EdgeX Foundry acknowledges the diverse
deployment scenarios in the field, supporting both brownfield (existing) and greenfield
(new) deployments of devices and sensors. This accommodates legacy systems and
facilitates the integration of cutting-edge technologies into a wide range of environments.

• Security and Manageability: Finally, EdgeX Foundry places a strong emphasis on
security and ease of management. The framework incorporates robust security measures
at every level to protect data and devices, while also offering user-friendly management
tools for streamlined configuration, monitoring, and maintenance of edge computing
infrastructure.

Areas with poor connection present issues that Edge X Foundry helps to overcome. By
processing data at the network edge, it lowers the need for a centralized site to have continuous
high-bandwidth access, ensuring data analysis even in the event of network failures. It avoids
data loss during connectivity problems by allowing devices to cache data locally, maintaining
data retention until network access is restored. It has the ability to rank important data
first, guaranteeing that even in places with poor connectivity, vital information is transmitted.
With its support for offline operation, data processing and monitoring are made possible even
in the absence of a network connection, and data is synchronized upon reconnecting.

Figure 3.2: Architecture of Edge X Foundry

27

2

EdgeX Foundry is also lot of times called "a collection of open source micro services" 3.
These micro services are organized into 4 service layers and 2 system services.

3.4.1 Service Layers

Core Services Layer

They provide the intermediary between the north and south sides of EdgeX. They are
the core to EdgeX functionality, where most of the innate knowledge of what devices are
connected, what data is flowing through, and how EdgeX is configured. It consists of:

• Core data: a persistent repository for information gathered from devices, along with a
management service linked to it.

• Command: a service that facilitates and controls actuation requests from the north
side to the south side.

• Metadata: a repository and associated management service of metadata about the
objects that are connected to EdgeX and provides the capability to provision new devices
and pair them with their owning device services.

• Registry and Configuration: provides other micro services with information about
associated services within EdgeX and micro services configuration properties.

Supporting Services Layer

They incorporate a wide range of micro services to include edge analytics - known as
local analytics - like ormal software application duties such as scheduler, and data clean up.
These services often require some amount of core services in order to function. In all cases,
supporting service can be can be left out of an EdgeX deployment depending on use case
needs and system resources. They include:

• Rules Engine: the reference implementation edge analytics service that performs
if-then conditional actuation at the edge based on sensor data collected by the EdgeX
instance. This service may be replaced or augmented by use case specific analytics
capability.

• Scheduler: internal EdgeX “clock” that can kick off operations in any service. At a
configuration specified time, the service will call on any EdgeX service to trigger an
operation. For example, the scheduler service periodically calls on core data APIs to
clean up old sensed events that have been successfully exported out of EdgeX.

• Alerts and Notifications: central facility to send out an alert or notification. These
are notices sent to another system or to a person monitoring the instance.

Application Services Layer

Application services provide the tools to take sensed data from EdgeX, process it, and
send it to a desired endpoint or process. Nowadays, EdgeX includes examples of application

2https://docs.edgexfoundry.org/2.0/ (accessed 23/05/2023)
3https://docs.edgexfoundry.org/2.0/ (accessed 1-06-2023)

28

services to send data to HTTP(s) REST endpoints, MQTT(s) topics, and many of the major
cloud providers. They rely on the premise of a "functions pipeline" - a group of functions
that handle messages in an established sequence.The functions pipeline execution is started
by a trigger and the message is then acted upon by each function. Filtering, transformation,
compression, and encryption are examples of common functions. Once the message has passed
through every function and has been assigned, the function pipeline comes to an end.

Device Services Layer

Device services are the edge connectors interacting with the sensors and devices. They
may service one or a number of things or devices at one time and communicates through
protocols native to each device object. It converts the data produced and communicated by
the IoT object into a common EdgeX data structure, and sends that converted data into the
core services layer, and to other micro services in other layers of EdgeX Foundry.

3.4.2 System Services

Security

Security elements of EdgeX Foundry protect the data and control of IoT objects managed
by it. There are two major EdgeX security components:

• A security store, which is used to provide a safe place to keep the EdgeX secrets.
Examples of EdgeX secrets are the database access passwords used by the other services
and tokens to connect to cloud systems.

• An API gateway serves as the reverse proxy to restrict access to EdgeX REST resources
and perform access control related works.

System Management

System management provides the primary point of contact for external management
systems in order to start, stop, and restart EdgeX services, as well as obtain metrics about
the EdgeX services.

3.4.3 How Edge X works and collects data?

EdgeX’s primary job is to collect data from sensors and devices and make that data
available to north side applications and systems. Data is collected from a sensor by a device
service that speaks the protocol of that device. The device service translates the sensor data
into an EdgeX event object. The device service can then either:

• put the event object on a message bus (which may be implemented via Redis Streams
or MQTT).

• Send the event object to the core data service via REST communications.

29

Figure 3.3: Edge X Foundry data flow

4 When core data receives the event it persists the sensor data in the local edge database.
EdgeX uses Redis as our persistence store. Data is persisted in EdgeX at the edge for two
basics reasons:

• Edge nodes are not always connected. During periods of disconnected operations, the
sensor data must be saved so that it can be transmitted northbound when connectivity
is restored. This is referred to as store and forward capability.

• In some cases, analytics of sensor data needs to look back in history in order to understand
the trend and to make the right decision based on that history.

When core data receives event objects from the device service via REST / MQTT, it will
put sensor data events on a message bus destined for application services, then send the event
object to the core data service via REST communications. Finally, the core data will put
sensor data events on a message topic destined for application services.

Figure 3.4: Step 1

4https://docs.edgexfoundry.org/2.0/ (accessed 25/07/2023)

30

5

Merely gathering sensor data is only one aspect of an edge platform’s responsibility in
edge computing. The ability of an edge platform to locally analyze incoming sensor data and
take prompt action based on that analysis is another crucial function.

Local analytics hold significance because certain decisions cannot afford to wait for
responses from the cloud because the connectivity can be limited and not always connected,
so it allows systems to operate independently, at least for some time, and to respond swiftly
and in a low-latent manner when system operations are at stake. In other words, events can
be used to trigger action back down on a sensor/device with a rule engine - a software system
that examines various elements of the data and monitors the data, and then triggers some
action based on the results of the monitoring of the data.

The analytical package has the ability to examine sensor event data and determine when
to activate a device. For instance, it could verify that an engine’s temperature reading is
higher than 80ºC and instructs the core command service to "turn on the air conditioner",
when it is found that the rule in question is valid.

After receiving the actuation request, the core command service selects the device on
which to perform the actuation and calls the owning device service to carry out the action.
Developers can implement extra security measures or checks prior to activation with the help
of core command.

After receiving the request for actuation, the device service converts it into a request
specific to the protocol and sends it the request to the desired device.

5https://ackcio.atlassian.net/wiki/spaces/SNA2/pages/128253954/How+EdgeX+Works (accessed
25/07/2023)

31

3.5 Architecture of the solution

Figure 3.5: Architecture

3.5.1 Security

EdgeX Foundry micro services use a variety of secrets and make use of the secret store to
generate, save, and retrieve secrets related to those micro services. 6

Currently the EdgeX Foundry secret store is implemented with Vault (open source software
product)- a tool that securely accessing secrets, such as API keys, passwords or database
credentials. The Security Services must create a Secret Store for each Device Service instance
that is operating in secure mode, and must add the redisdb known secret to their SecretStore
in order for any Device Service to connect to the message bus.

3.5.2 Databases

The decision to use Redis inside the Edge X architecture and InfluxDB outside of it can
be attributed to the specific strengths and use cases of each database technology, and the
architectural requirements of the Edge X framework. Here’s why this configuration was picked:

• Redis Inside Edge X:7

– An in-memory data store, which means it excels at storing and retrieving data
quickly. In an edge computing environment, where low latency and high-speed data
processing are critical, Redis is an excellent choice for caching frequently accessed
data and for real-time data processing. It can store data in memory, ensuring rapid
access without disk I/O delays.

6https://docs.edgexfoundry.org/2.1/security/Ch-SecretStore/ (accessed 24/07/2023)
7https://redis.io/docs/management/sentinel/ (accessed 20/06/2023))

32

– Includes publish/subscribe messaging capabilities, making it well-suited for real-
time communication and event-driven architectures. This is beneficial in Edge X
for quickly disseminating data and events among edge devices and modules.

– Particularly efficient for tasks like data filtering, transformation, and quick decision-
making. It can help manage and process data at the edge without the need for
frequent disk writes or reads.

• InfluxDB Outside Edge X:8

– Designed specifically for handling time-series data, which is common in IoT and
edge computing scenarios. It is optimized for storing and querying data points
that have a timestamp associated with them. Keeping InfluxDB outside of Edge X
ensures that historical data is efficiently stored and can be accessed for analysis
and reporting.

– Scalable and can handle large volumes of time-series data. By placing it outside
the edge environment, you can ensure that historical data can be retained and
analyzed over extended periods. Storing this data within the edge environment
might be resource-intensive and less cost-effective.

– Can serve as a central repository for data from multiple edge nodes, making it
easier to manage and analyze data from across the edge network. This central-
ized approach simplifies data storage and retrieval for analytics and reporting
applications.

By utilizing Redis inside the Edge X framework and InfluxDB outside it, you strike a
balance between real-time, in-memory data processing and long-term, efficient storage and
analysis of time-series data. The connection between both is Telegraf - an open-source agent
for collecting and reporting metrics and data, and it can be configured to subscribe to messages
from message brokers like MQTT and then forward that data to InfluxDB for storage and
analysis.

3.5.3 MQTT

Optimizing communication between devices and EdgeX was essential to ensure a strategy
could be implemented in case of system failures and to safeguard valuable data. The next
step involved integrating a message broker into the system to enable a large number of devices
to communicate effectively. Instead of using real devices, we employed a script to simulate a
custom-defined MQTT device. This approach offers a convenient means to test device-MQTT
functionality through an MQTT broker and facilitates communication with other devices, as
illustrated in 3.3. This enhancement allows for values to be seamlessly transmitted to the
application service when needed, enabling faster decision-making and reducing latency.

8https://docs.influxdata.com/influxdb/v1/ (accessed 20/06/2023))

33

Figure 3.6: MQTT device simulator architecture

9

3.5.4 Dashboards

Utilizing Edge X in conjunction with Grafana, Portainer, and a Bootstrap dashboard on
the edge offers a comprehensive solution for monitoring and managing devices in an edge
computing environment.

Portainer.io : Container Management

Portainer simplifies the management of containers running on edge devices. This is
particularly valuable in an edge computing setup, where containers may be distributed across
multiple nodes. Its user-friendly interface makes it easier to deploy, monitor, and manage
containers without the need for complex command-line interfaces and can offer a centralized
view of containerized applications running across different edge nodes. This centralized control
simplifies updates, scaling, and troubleshooting tasks. 10

Grafana: Real-Time Monitoring

Grafana is an excellent tool for creating interactive and real-time data visualizations. It
allows you to create dashboards with customizable charts, graphs, and other visual elements
to display real-time data from Edge X devices.It provides alerting capabilities, enabling you to
set up notifications based on predefined conditions or thresholds. This is crucial for immediate
response to anomalies or critical events in the edge environment. 11

Bootstrap dashboard

A Bootstrap dashboard provides a user-friendly web interface for accessing information
about connected devices, as it offers a modern and visually appealing user interface for device

9https://docs.edgexfoundry.org/2.0/(accessed 23/07/2023)
10https://docs.portainer.io/start/architecture (accessed 23/07/2023)
11https://grafana.com/docs/grafana/latest/fundamentals/ (accessed 23/07/2023)

34

management. The dashboard can display vital information about connected devices, including
their status, configurations, and any relevant alerts or notifications. This helps operators and
administrators quickly assess the health of the edge environment.

Together, these components empower administrators and operators to efficiently monitor,
manage, and respond to the dynamic conditions and events that occur in an edge computing
environment, ensuring the reliability and performance of the connected devices.

3.5.5 Load Balancer

Cloud load balancing takes a software-based approach to distributing network traffic across
resources, as opposed to hardware-based load balancing, which is more common in enterprise
data centers. A cloud load balancer plays a vital role in optimizing the distribution of network
traffic between two systems, particularly when Edge X is involved.

Figure 3.7: Cloud load balancer

12

The primary responsibility of a cloud load balancer is to evenly distribute incoming network
traffic between multiple systems or servers. In the context of Edge X, this means balancing
the requests and data flows between different edge devices or nodes, ensuring that no single
device is overwhelmed with excessive traffic. They monitor the health and performance of the
connected systems and assess factors such as the system’s current workload, response times,
and resource utilization. These metrics helps it make intelligent decisions about where to
route incoming traffic, to provide redundancy and failover mechanisms: In the case of Edge
X, if one edge device or system becomes unavailable due to a failure or maintenance, the load
balancer can automatically redirect traffic to healthy devices. This ensures uninterrupted
service and high availability and scale the distribution of traffic based on the current demand.

As traffic increases or decreases, the load balancer can direct traffic to additional devices
or reduce the load on underutilized ones. They can act as a barrier between the external

12https://levelup.gitconnected.com/load-balancing-on-google-cloud-platform-gcp-why-and-how-
a8841d9b70c(accessed in 24/07/2023)

35

network and the internal edge devices, filtering out potentially harmful traffic. In some cases,
certain sessions need to be maintained on the same edge device to ensure data consistency, so
the load balancer can implement session persistence, ensuring that requests from a specific
client are consistently routed to the same device for the duration of the session.

Another important aspect is the monitoring and analytics tools that help administrators
gain insights into traffic patterns, system performance, and potential issues. This data is
valuable for optimizing the network and diagnosing problems.

36

CHAPTER 4
Results

The results were obtained using a Raspberry Pi 4 Model B, with the following specifications:
• Central Processing Unit (CPU): Quad-core ARM Cortex-A72 processor, running at 1.5

GHz.
• RAM: 4GB.
• ROM: 32 GB.
• Storage: MicroSD card slot for system storage.
• Operating System Support: Raspberry Pi OS.

4.1 Unlocking the Edge X: The First deploy

Prior to integrating all the interfaces, the performance of the Edge X system underwent
testing. The initial test involved evaluating how the system behaved with a single edge
communicating with IoT devices. This communication proceeded smoothly, and the system
demonstrated its ability to handle a substantial volume of IoT devices exchanging data
continuously for some minutes. Initially, REST communications were employed for making
HTTP requests. The containers consistently remained operational, and even when they went
down, they proved capable of self-regeneration. Portainer played a crucial role in identifying
the initial issues in this project by providing insight into which containers were encountering
deployment problems.

Subsequently, a series of 24-hour tests were conducted, gradually increasing the number
of messages sent by IoT devices each hour. As anticipated, the volume of generated data
grew in proportion to the number of messages exchanged with the Edge X. This led to a
gradual but not significant decrease in available memory. The system performed well during
the initial hours, but issues began to surface concerning the initial setup, which involved a
basic configuration of Edge X with no communication rules and constant data consumption.
Consequently, some containers started to experience issues.

One significant challenge in device communication was minimizing delays while enabling
Edge X to display and consume information effectively. The initial setup suffered from delays
as data volume increased because it lacked a queue for displaying information on the edge.

37

Following the optimization of the message bus and the utilization of MQTT to transmit
device information to the edge, there was a notable improvement in latency times.

Figure 4.1: Latency of the system using a REST communication vs using a message Broker

It was evident that as the number of IoT devices connected to Edge X increased, the
volume of messages grew over time, resulting in a significant increase in the number of received
messages and subsequently, a rise in latency. Another challenge surfaced concerning the
maximum capacity of the Edge X database: on average, each MQTT device was transmitting
27 messages per minute, with each message consisting of 200 bytes.

Time Number of bytes
1 minute 5400
1 hour 324000
1 day 7776000

Table 4.1: Number of bytes to store the messages from one device

For 20 devices, the daily storage requirement amounted to 155,520,000 bytes (1.25 gi-
gabytes), which proved to be both costly and memory-intensive for Edge X. The system’s
memory usage reached high levels after a few days, resulting in system slowdowns. This
prompted the realization that a new external database was necessary to store the information
before displaying it on the system’s dashboard.

Both write and read times were increasing, causing further system performance issues.
Implementing a rule to retain data on Edge X for a specific duration (in this case, one day)
proved to be an optimal solution. This approach didn’t slow down the system and allowed for
the deletion of old data, making room for new data. With a one-day retention period, even
with 20 devices continuously connected for 24 hours, the system operated more efficiently,
and memory usage remained below the initial 90% threshold. No data was lost because it had

38

been preserved in InfluxDB.

4.1.1 Portainer

Figure 4.2: Portainer.io with all the containers running

We also conducted an assessment of the EdgeX’s edge-core-metadata container, which
serves as the edge computing platform. During peak usage, it consumed 145.72 megabytes of
memory. Within an hour, there was a smooth exchange of 80,000 bytes of data transmitted
and 120,000 bytes received, with no transaction errors.

4.1.2 Grafana

The integration with Grafana was implemented as a means to visualize the logs, metrics,
and values received by the system from the devices and Edge X components.

Figure 4.3: Grafana dashboard

It is feasible to observe real-time data from both sensors and edge metrics.

39

Figure 4.4: Humidity and Temperature values

Figure 4.5: System metrics

The metrics analyzed where the CPU usage, Disk usage, swap usage, memory usage,
memory available, number of concurrent process, read time, write time, read bytes, write
bytes, number of reads of databases and number of writes on the databases.

Analysing the data, is possible to conclude that the CPU usage for each of these containers
remained remarkably low, even when handling a substantial volume of data transmission
in bytes per second. The data transmission process also proceeded without any reported
errors. These findings demonstrate that our application can efficiently operate on systems
with modest hardware specifications.

Figure 4.6: Cpu Usage (%) and Disk Usage (%)

40

To guarantee the security of transactions, all keys were securely stored using the Edge X
vault, as mentioned earlier. This approach, when implemented, did not lead to notable service
delays, as the keys were generated and stored when the containers started. While it did result
in a slight increase in CPU usage, it was not a cause for concern as is possible to see in 4.6.
The analysis indicates that the highest CPU and disk usage is observed during the system’s
reboot or startup phase, which is a predictable pattern. Subsequently, resource utilization
returns to a standard operational state.

Figure 4.7: Security keys generated to ensure that all the devices are supposed to comunnicate with
Edge X

Memory usage initially increases but eventually stabilizes and remains constant as new
values are deleted and news are written. Both the available memory and the bytes read and
written maintain a steady state.

Regarding data processing, the expected pattern holds true with the average read time
being shorter than the write time. It takes roughly 2 seconds to read all values, while writing
these values to the InfluxDB database requires approximately 13.2 seconds.

At times, the IoT devices would encounter issues and it was crucial to have a backup
device on standby when one became unavailable. This was achieved through the use of alerts
triggered when Edge X ceased receiving data from the source in the last 5 seconds (the time
it takes for the UI to refresh the UI dashboard). When this occurred, Edge X attempted to
send a signal to establish communication with the device. If this attempt failed, it would
activate the second IoT device according to a predefined rule, and this device would take over
until the original one became available again.

Both IoT devices were configured with identical rules, ensuring that the transition was
seamless and didn’t create the impression of data originating from different sources while the
primary device was temporarily unavailable, using the same tags on the Edge X.

4.2 UI with all the information

Ultimately, we achieved the capability to replicate another system and establish com-
munication between both using a cloud-based load balancer to distribute network traffic
when the dashboards experienced significant latency. This arrangement allowed access to the
dashboards of both systems, and Edge X could effectively communicate with both.

In the event that one Edge X instance became unavailable, the system would attempt to
locate another one based on a predefined rule (hierarchically). The IoT device would then
establish a connection with the available Edge X instance until the primary one, according to
the rule, became accessible once more.

41

4.2.1 Demo

Figure 4.8: Demo UI with all the Edge X available to analyze

The dashboard undergoes automatic refreshing at 5-second intervals, ensuring the most
real-time presentation of values. It’s worth noting that in the data list, the value at index 0
always corresponds to the most recent data point.

The system supports comprehensive analysis, enabling access to both raw data (the message
as received before any processing) and transformed data (the message after consumption and
processing). Moreover, the system offers the functionality to search and apply filters to the
data based on individual devices, facilitating precise data retrieval and examination.

When using both Edge X, the latency of the information that arrives at the dashboard
that are connected to the designed Edge don’t increase to much. The problem is when the
other Edge X tries to access the other devices to demonstrate in the other dashboard and the
workload is significant.

Figure 4.9: Latency between both Edge X’s

42

CHAPTER 5
Discussion and Conclusion

This dissertation sought to address the absence of a market-ready architecture by developing
an edge computing solution that expands its applicability across a wider range of scenarios.

In conclusion, the concept of a computing continuum within a federated network fabric
represents a promising and transformative approach to addressing the complex and evolving
needs of modern networked systems. This dissertation has explored the fundamental principles,
design considerations, and potential benefits of integrating computing resources seamlessly
across a distributed and edge federated network fabric. Through an examination of the key
components, challenges, and emerging technologies associated with this paradigm, several
important insights can be drawn.

First and foremost, it is evident that the demand for computing resources is expanding
rapidly, fueled by the proliferation of data-intensive applications, the IoT, and the advent
of edge computing. Traditional, centralized data centers are increasingly ill-suited to meet
the latency and bandwidth requirements of these applications. A federated network fabric,
which integrates computing resources at the network edge and seamlessly coordinates their
use, offers a compelling solution to these challenges.

Moreover, this dissertation has shed light on the vital role of SDN and NFV in enabling
the flexible allocation of resources within a federated network fabric. By decoupling network
functions from dedicated hardware and centralizing their management through software, these
technologies empower network operators to respond dynamically to changing demands and
optimize resource utilization.

The concept of a computing continuum has also been demonstrated as a powerful approach
for achieving enhanced user experiences, reduced latency, and improved fault tolerance. By
moving computing resources closer to the data source or user, applications can respond faster,
increasing overall system efficiency and reliability.

However, it is crucial to acknowledge the challenges and complexities associated with
implementing a federated network fabric and computing continuum. Security and privacy
concerns, interoperability issues, and the need for standardization remain significant hurdles

43

that must be addressed by industry stakeholders and policymakers.
As the world of networking continues to evolve, it is evident that the paradigm of a

computing continuum within a federated network fabric holds great potential for meeting the
growing demands of modern applications and services.

Initial testing with the Edge X highlighted the imperative to reduce the volume of
continuously stored data to align with the network system’s requirements. The introduction of
a new edge-independent database significantly enhanced system efficiency and bolstered data
security through redundancy measures. Incorporating various rules and alerts further enhanced
system redundancy, ensuring prolonged system uptime. Additionally, the implementation of a
new communication protocol not only bolstered security but also expedited response times,
mitigating issues related to failures and data gaps at the edge.

The results obtained from this work confirm that the implemented changes are not only
well-received but also seamlessly compatible with the system, contributing substantially to its
overall enhancement.

5.1 Future work

For future work in the project, several key areas of investment and development have
been identified to further enhance the Edge X architecture and its overall performance, such
as continue to improve and optimize the Edge X rules and architecture of the system to
reduce latency and become the system more robust and efficient, invest in the communication
between different systems and continue to investigate the results. It would be beneficial to
make a trace of the alerts triggered on the UI. Furthermore, significant efforts should be
dedicated to refining rules with the incorporation of AI for decision-making, going beyond
mere alerts - as an illustration, if the sensor registers an excessively high temperature, the
system should activate the air conditioner, and if the temperature does not subsequently
decrease, the system should initiate the shutdown of that device.

Incorporating these key focus areas into future work will not only bolster the capabilities of
the project but also position it to adapt and thrive in an increasingly dynamic and demanding
technological landscape. By striving for lower latency, improved communication, AI-driven
decision-making, and overall system robustness and efficiency, the project can deliver more
reliable, responsive, and intelligent solutions that meet the evolving needs of modern networked
environments.

44

References

[1] Z. Zhu, G. Han, G. Jia, and L. Shu, “Modified densenet for automatic fabric defect detection with edge
computing for minimizing latency,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9623–9636,
2020. doi: 10.1109/JIOT.2020.2983050.

[2] D. Balouek-Thomert, E. G. Renart, A. R. Zamani, A. Simonet, and M. Parashar, “Towards a computing
continuum: Enabling edge-to-cloud integration for data-driven workflows,” The International Journal
of High Performance Computing Applications, vol. 33, no. 6, pp. 1159–1174, 2019. doi: 10.1177/
1094342019877383. eprint: https://doi.org/10.1177/1094342019877383. [Online]. Available: https:
//doi.org/10.1177/1094342019877383.

[3] L. M. Contreras and C. J. Bernardos, “Overview of architectural alternatives for the integration of etsi
mec environments from different administrative domains,” Electronics, vol. 9, no. 9, 2020, issn: 2079-9292.
doi: 10.3390/electronics9091392. [Online]. Available: https://www.mdpi.com/2079-9292/9/9/1392.

[4] M. L. F. Sindjoung, M. Velempini, and A. B. Bomgni, “A mec architecture for a better quality of
service in an autonomous vehicular network,” Computer Networks, vol. 219, p. 109 454, 2022, issn:
1389-1286. doi: https://doi.org/10.1016/j.comnet.2022.109454. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1389128622004881.

[5] S. Ranganath, “Chapter three - industry initiatives across edge computing,” in Edge/Fog Computing
Paradigm: The Concept Platforms and Applications, ser. Advances in Computers, P. Raj, K. Saini, and
C. Surianarayanan, Eds., vol. 127, Elsevier, 2022, pp. 63–115. doi: https://doi.org/10.1016/bs.
adcom.2022.03.002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0065245822000468.

[6] C.-Y. Weng, C.-T. Li, C.-L. Chen, C.-C. Lee, and Y.-Y. Deng, “A lightweight anonymous authentication
and secure communication scheme for fog computing services,” IEEE Access, vol. 9, pp. 145 522–145 537,
2021. doi: 10.1109/access.2021.3123234. [Online]. Available: https://doi.org/10.1109/access.
2021.3123234.

[7] D. Rosendo, P. Silva, M. Simonin, A. Costan, and G. Antoniu, “E2Clab: Exploring the Computing
Continuum through Repeatable, Replicable and Reproducible Edge-to-Cloud Experiments,” in Cluster
2020 - IEEE International Conference on Cluster Computing, Kobe, Japan, Sep. 2020, pp. 1–11. doi:
10.1109/CLUSTER49012.2020.00028. [Online]. Available: https://hal.science/hal-02916032.

[8] N. Hassan, K.-L. A. Yau, and C. Wu, “Edge computing in 5g: A review,” IEEE Access, vol. 7, pp. 127 276–
127 289, 2019. doi: 10.1109/access.2019.2938534. [Online]. Available: https://doi.org/10.1109/
access.2019.2938534.

[9] Y. Cheng, H. Zhang, and Y. Huang, “Overview of communication protocols in internet of things:
Architecture, development and future trends,” in 2018 IEEE/WIC/ACM International Conference on
Web Intelligence (WI), 2018, pp. 627–630. doi: 10.1109/WI.2018.00-25.

[10] R. N. S. Jyothi, J. Sireesha, A. Mahitha, B. Ruchitha, and E. Deepthi, “Protection and saving of
delicate data by using cloud computing,” in 2022 International Conference on Electronics and Renewable
Systems (ICEARS), 2022, pp. 1660–1667. doi: 10.1109/ICEARS53579.2022.9752329.

[11] T. T. Huynh, T. D. Nguyen, T. Hoang, L. Tran, and D. Choi, “A reliability guaranteed solution for
data storing and sharing,” IEEE Access, vol. 9, pp. 108 318–108 328, 2021. doi: 10.1109/ACCESS.2021.
3100707.

45

https://doi.org/10.1109/JIOT.2020.2983050
https://doi.org/10.1177/1094342019877383
https://doi.org/10.1177/1094342019877383
https://doi.org/10.1177/1094342019877383
https://doi.org/10.1177/1094342019877383
https://doi.org/10.1177/1094342019877383
https://doi.org/10.3390/electronics9091392
https://www.mdpi.com/2079-9292/9/9/1392
https://doi.org/https://doi.org/10.1016/j.comnet.2022.109454
https://www.sciencedirect.com/science/article/pii/S1389128622004881
https://www.sciencedirect.com/science/article/pii/S1389128622004881
https://doi.org/https://doi.org/10.1016/bs.adcom.2022.03.002
https://doi.org/https://doi.org/10.1016/bs.adcom.2022.03.002
https://www.sciencedirect.com/science/article/pii/S0065245822000468
https://www.sciencedirect.com/science/article/pii/S0065245822000468
https://doi.org/10.1109/access.2021.3123234
https://doi.org/10.1109/access.2021.3123234
https://doi.org/10.1109/access.2021.3123234
https://doi.org/10.1109/CLUSTER49012.2020.00028
https://hal.science/hal-02916032
https://doi.org/10.1109/access.2019.2938534
https://doi.org/10.1109/access.2019.2938534
https://doi.org/10.1109/access.2019.2938534
https://doi.org/10.1109/WI.2018.00-25
https://doi.org/10.1109/ICEARS53579.2022.9752329
https://doi.org/10.1109/ACCESS.2021.3100707
https://doi.org/10.1109/ACCESS.2021.3100707

[12] I. Sittón-Candanedo, “GECA: A global edge computing architecture,” in The role of Artificial Intelligence
and distributed computing in IoT applications, Ediciones Universidad de Salmanca, Sep. 2020, pp. 85–96.
doi: 10.14201/0aq02878596. [Online]. Available: https://doi.org/10.14201/0aq02878596.

[13] M. Caprolu, R. Di Pietro, F. Lombardi, and S. Raponi, “Edge computing perspectives: Architectures,
technologies, and open security issues,” in 2019 IEEE International Conference on Edge Computing
(EDGE), 2019, pp. 116–123. doi: 10.1109/EDGE.2019.00035.

46

https://doi.org/10.14201/0aq02878596
https://doi.org/10.14201/0aq02878596
https://doi.org/10.1109/EDGE.2019.00035

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Objectives
	Motivation

	State Of The Art
	The industry perspective: Connectivity to increase availability
	A cloud vs. edge approach
	MEC vs FOG
	Types of Messaging protocols
	Why we should save data?
	How can we distribute workload across resources?
	Architectures
	Edge Computing RA 2.0
	Industrial Internet Consortium RA
	Far-Edge RA
	GECA
	ISEO
	Edge X Foundry

	Other architectures worth mention
	Summary of most used architectures

	Architecture and Implementation
	Use Case
	Requirements
	Functional Requirements:
	Non-Functional Requirements:

	To MEC or not to MEC
	Edge X Foundry
	Service Layers
	System Services
	How Edge X works and collects data?

	Architecture of the solution
	Security
	Databases
	MQTT
	Dashboards
	Load Balancer

	Results
	Unlocking the Edge X: The First deploy
	Portainer
	Grafana

	UI with all the information
	Demo

	Discussion and Conclusion
	Future work

	References

