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Palavras Chave solitões quárticos, modelo distribuído, relação energia-largura, solitões dissi-
pativos, lasers de modos bloqueados

Resumo Os solitões quárticos têm ganho bastante atenção nos últimos anos uma vez
que a sua energia depende inversamente da largura temporal ao cubo. Esta
relação é muito útil para aplicações onde são necessários impulsos curtos al-
tamente energéticos, como na geração de supercontínuo e de pentes óticos
de frequência. Apesar dos solitões quárticos terem sido bastante estudados
em modelos conservativos, ainda não é claro se a relação energia-largura
mencionada é universalmente válida em modelos dissipativos.
Nesta dissertação, visando um estudo mais aprofundado dessa relação e a
procura de métodos para maximizar a energia dos impulsos, um laser em fibra
com bloqueio de modos passivo foi simulado numericamente a partir de um
modelo distribuído que inclui um termo de dispersão de quarta ordem (D4O).
Encontraram-se soluções localizadas utilizando o método dos gradientes con-
jugados de Newton, a sua propagação foi simulada recorrendo a um método
pseudo-espetral e a estabilidade das soluções foi analisada através do cál-
culo dos valores próprios do operador linear de estabilidade.
Obtiveram-se soluções do tipo solitão quártico para D4O positiva e negativa,
na presença ou na ausência de dispersão de segunda ordem de qualquer
sinal. Sob uma filtragem espetral fraca, com D4O negativa as soluções são
do tipo impulso Gaussiano com oscilações nas caudas, tomando a forma de
secantes hiperbólicas sobre um pedestal mais largo cujas caudas decaem
exponencialmente com D4O positiva. Sob filtragem espetral forte, todas as
soluções tomaram a forma de secantes hiperbólicas. Em todos os casos, as
soluções tinham um perfil de fase não-uniforme e os impulsos têm, por isso,
trinado.
Os termos de ganho, potência de saturação e de filtragem espetral foram
variados para estudar a dependência da energia e da larguram com estes pa-
râmetros. Com D4O negativa, a energia aumenta com o inverso da largura ao
cubo, sob filtragem espetral fraca. Quando este último parâmetro ultrapassa
um valor limiar, a energia começa a crescer com a largura. Para D4O positiva,
a energia depende sempre inversamente da largura, mas não foi encontrada
nenhuma relação matemática que descrevesse claramente esta dependência
para os três varrimentos. De qualquer das formas, verificou-se que a energia
era superior e a largura inferior no regime de D4O negativa.
Finalmente, a análise de estabilidade mostrou que a energia dos impulsos
pode ser maximizada diminuindo o termo de filtragem espetral. Escolhendo
valores de ganho e de potência de saturação que garantam a estabilidade
das soluções, e considerando D4O negativa, obtiveram-se solitões quárticos
com larguras de 39 fs e energias de 391 nJ





Keywords quartic solitons, distributed model, energy-width scaling, dissipative solitons,
mode-locked lasers.

Abstract Quartic solitons have garnered much attention in recent years, due to their
energy scaling with the inverse of the third power of the width. This is of great
importance in applications such as supercontinuum and frequency comb gen-
eration, where highly energetic ultrashort pulses are required. Although quar-
tic solitons have been the subject of much study in conservative models, more
research is required to establish the universal validity of the aforementioned
energy-width scaling in dissipative models.
In this dissertation, aiming to study this energy-width relation further and
to find ways to maximize pulse energy, a passively mode-locked fiber laser
was numerically simulated using a distributed model including a fourth-order
dispersion (4OD) term. Localized solutions were found using the New-
ton conjugate-gradient method, their propagation was simulated through a
pseudo-spectral method and the stability of the solutions was analysed by
calculating the eigenvalues of the linear stability operator.
Quartic soliton solutions were found for positive and negative 4OD, in the pres-
ence or in the absence of second order dispersion, regardless of its sign. Un-
der weak spectral filtering, Gaussian pulses with oscillating tails were found
for negative 4OD, and hyperbolic secant pulses sitting upon a broad pedestal
with exponentially decaying tails were found for positive 4OD. Under strong
filtering, pulses take the shape of hyperbolic secant curves. In all cases, the
solutions have a non-uniform phase profile and are therefore chirped.
The gain, saturation power and spectral filtering parameters were swept to
study the energy and width dependence on these parameters. For negative
4OD, the energy scaled inversely with the third power of the width under weak
filtering. When the spectral filter parameter increases beyond a threshold, the
energy starts increasing with the width. For positive 4OD, the energy always
scaled inversely with the width, but no clear mathematical trend was found that
could describe the behaviour of the curves for each parameter sweep. Never-
theless, the energy was found to be greater and pulse widths to be shorter in
the negative 4OD regime.
Finally, the stability analysis showed that the pulse energy can be maximized
by lowering the spectral filtering term. Setting the gain and the saturation
power to values that ensure the stability of the solutions, and considering neg-
ative 4OD, yielded quartic solitons as short as 39 fs and with energies of 391
nJ.
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1

1. Introduction
The first chapter of this manuscript provides an introduction to this dissertation. Section

1.1 contains the motivation as well as the contextualizing framework. Section 1.2 presents
the main goals and outlines the present document. Section 1.3 lists the contributions made
from the development of this work.

1.1 Motivation and Framework
In 1834, in the Glasgow-Edinburgh union canal, J. S. Russel observed a wave that traveled

through the canal undisturbed. Russell followed its propagation on horseback for a few
kilometers until the wave eventually decayed. These kinds of waves were then referred to as
solitary waves [1]. The term soliton was first introduced by Zabusky and Kruskal in 1965 [2]
after numerically observing collisions of two solitary-wave pulses propagating in a nonlinear
dispersive medium. Upon the collision, the pulses overlapped and interacted nonlinearly. In
the moments succeeding the interaction, the pulses reappeared, with their shape and size
being kept intact. Following these observations, the authors concluded that these solitary
pulses - solitons - interact through a nonlinear physical process without scattering irreversibly.
Solitons, in conservative media where energy transfer mechanisms between the pulse and the
media are not present, can be defined as localized wave structures that arise from the balance
of dispersion/diffraction and nonlinearity, leading to waves that maintain their shape and
velocity during propagation [3–5]. It is important to stress that both spatial and temporal
solitons exist but in this work, the focus lies on temporal solitons. Therefore, by omission,
whenever solitons are referred to, it is implied that temporal solitons are being discussed.

Ever since their discovery, solitons have been the subject of study in many scientific
fields, such as hydrodynamics [6], biological [7] and atmospheric systems [8], plasma physics
[2], Bose-Einstein condensates [9] and astrophysics [10]. In the field of optics, solitons gar-
nered much attention since they were first theoretically demonstrated in optical fibers with
anomalous group velocity dispersion (GVD) by Hasegawa and Tappert in 1973 [11], being
first experimentally demonstrated in 1980 by Mollenauer et al. [12]. During the 1990s, optical
solitons were the subject of much interest in optical communications [13], but the need for
careful management of fiber nonlinearity, gain and loss [14] eventually overthrew the potential
advantages soliton communication systems could have, rendering them impractical [4].

In the field of mode-locked lasers, soliton effects have been exploited to generate ultrashort
pulses with widths well below 100 fs [15, 16]. The generation of such short pulses is important
in many fields such as chemistry [17], materials science [18], optical communications [19],
medicine and biology [20], among others. Since mode-locked lasers are non-conservative
media, solitons in these systems arise not only from the balance of dispersion with non
linearity but also between the balance of gain and loss mechanisms. These solitons are
therefore referred to as dissipative solitons [5].

Soliton based lasers have the advantage of the soliton energy, E, being inversely pro-
portional to the temporal width, w0 [3]. Therefore, they have the capability of generating
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ultrashort pulses with high energies [21], which are useful in the context of nonlinear biomed-
ical imaging [22] and material processing [4] as well as supercontinuum [23, 24] and frequency
comb generation [25].

Even though most work in this field, has been mainly focused on solitons, conservative
or otherwise, arising from the interplay between the Kerr effect and second order dispersion
(2OD) (generally known as conventional solitons), the effects of higher-orders of dispersion
on soliton formation have been historically studied. In 1988, Blow et al. [26] considered
third order dispersion (3OD) and fourth order dispersion (4OD) as perturbations to soliton
formation and propagation, with the former dispersion term leading to a loss in symmetry
and the latter to pulse breakup. In 1993, Haus et al. [27] theoretically studied the effect
of 3OD in the context of mode-locked lasers, finding that it leads to an increase in pulse
width and radiation losses while Höök and Karlsson [28] reported that in optical fibers, at
the minimum-dispersion wavelength, 4OD leads to dispersive radiation and to the decay of
solitons. In 1994, Kodama et al. [29] studied the impact of 3OD on soliton stability and thus,
up until this point, higher orders of dispersion were generally seen as detrimental. However,
in the same year, Karlsson and Höök [30] found a family of sech2 shaped solitons occurring
in media with negative 2OD and 4OD and in the absence of 3OD (later included by Kruglov
and Harvey [31]), defined as,

W (t, z) = 3
√

β2
2

5|β4|
sech2

(√
3β2
β4

t

)
exp

(
i

24β2
2

25|β4|
z

)
, (1.1)

where W is the slowly varying pulse envelope, t is the retarded time in the frame of reference
of the pulse, z is the propagation distance and β2 and β4 are the 2OD and 4OD parameters,
respectively. Moreover, Akhmediev et al. [32] reported soliton solutions with oscillating
tails in the presence of 4OD and Christov et al. [33] found stationary pulses in numerical
simulations of a Ti:sapphire mode-locked laser in the presence of 2OD and 4OD. In 1995,
Buryak and Akhmediev [34] investigated multisoliton bound states in optical fibers with 4OD,
and established that such states were stable if the second derivative of the Hamiltonian-energy
curve at the point of interest is positive, while in 1996, Piché et al. [35] found an analytical
expression for bright optical solitons in the presence of 4OD and that these solutions were
stable in the presence of 3OD as well, as long as the former parameter does not exceed a
threshold value. This collection of works opened the chapter of solitons in media with 4OD,
henceforth referred to as quartic solitons.

Research interest in quartic solitons has grown over the last decade. In 2013, Roy and
Biancalana [36] theoretically explored quartic solitons in silicon-based slot waveguides, in the
presence of negative 2OD and 4OD. In 2016, Blanco-Redondo et al. [37] coined the term pure-
quartic solitons (PQSs) when the authors theoretically and experimentally demonstrated a
class of solitons arising only from the interaction of negative 4OD and Kerr nonlinearities,
with small 2OD and 3OD terms. The authors also demonstrated that quartic solitons survive
even when β2 > 0, and that the energy of PQSs scales with w−3

0 , as compared to the w−1
0
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scaling found in conventional solitons. Following this work, in 2018, Lo et al. [38] developed
a numerical analysis to aid the design of microstructured optical fibers capable of supporting
PQSs. In 2019, Tam et al. [39] developed a numerical study that allowed the characterization
of the stationary and dynamical properties of PQSs, also finding an approximate relation
between the pulse energy and width, given by

E ≈ 2.87 |β4|
γw3

0
, (1.2)

where β4 is the 4OD coefficient and γ is the nonlinear parameter, while the relation for
conventional solitons is

E = 4arccosh(
√

2) |β2|
γw0

. (1.3)

This analysis was generalized in the following year [40] to include significant 2OD terms.
The authors found parameter regions where solutions with either exponentially decaying or
oscillating tails exist, as well as evidence that the combination of these two orders of dispersion
could improve soliton laser performance.

The previously mentioned works are all focused on conservative quartic solitons, but
works on dissipative quartic solitons were developed in the meantime. The effects of high-
order dispersion in Kerr frequency comb generation were first studied in 2017 by Bao et
al. [41], showing the formation of stable quartic solitons with Gaussian shape, which were
further explored in 2019 by Taheri and Matsko [42] in a comprehensive numerical analysis
on dissipative PQSs in optical Kerr cavities. In 2020, Runge et al. [43] experimentally
demonstrated the first mode-locked laser that emits PQSs, using a laser cavity dominated by
negative 4OD. In 2022, Zhang et al. [44] found pulsating PQSs in the numerical simulation
of a mode-locked fiber laser.

Contrary to the case of conservative quartic solitons, which only exist for negative 4OD,
dissipative quartic solitons have been shown to exist for positive 4OD as well. In 2020,
Runge et al. [45] theoretically and numerically demonstrated that a fiber laser with a cavity
dominated by positive 4OD emitted self-similar pulses, and in 2022, Qian et al. [46] modeled
a mode-locked fiber laser which generated dissipative solitons through the balance of positive
4OD, the Kerr nonlinearity, gain and loss.

When it comes to ultrashort laser applications, the E ∝ w−3
0 scaling [37, 39, 43] has

attracted attention since, when compared to the energy-width scaling of conventional solitons
(E ∝ w−1

0 ), quartic soliton lasers can generate ultrashort pulses with higher energies, which
is an attractive feature for many applications [21]. However, this energy-width scaling has
mostly been studied using conservative models [37, 39] with studies using dissipative models
for mode-locked lasers showing contradictory results. While Runge et al. [43] found the
aforementioned E ∝ w−3

0 relation for the case of negative 4OD by varying the laser pump
power, Qian et al. [46] reported a relation of E ∝ w3

0 using positive 4OD and varying the
gain saturation energy. These two different energy-width scalings for quartic solitons are
plotted and compared with the conventional soliton scaling in Fig. 1.1. It remains unclear if
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this difference comes from the different dispersion regimes, or from a different energy-width
dependence with the laser parameter that was varied, with the latter argument already being
referred in [46].

10−1 100100

101

102

103

104

105

Width (ps)

En
er

gy
(p

J)
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β4 = 0 [3]
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Figure 1.1: Energy-width scaling of PQSs following [39] with β4 = −0.08 ps4m−1 and γ =
0.005 W−1m−1 (blue line), conventional solitons [3] with β2 = −0.024 ps2m−1 and the same
γ (red dashed line) and of quartic solitons with positive 4OD, approximated from the results
in [46].

Therefore, it is necessary to develop further work on the dissipative quartic soliton laser,
to understand how the energy-width dependence is influenced by laser parameters and by
the dispersion regime. Moreover, and regardless of the universal validity, or lack thereof, of
the E ∝ w−3

0 relation in dissipative quartic solitons, there is potential interest in knowing
how the energy of ultrashort pulses governed by 4OD can be maximized, for applications
that require such short pulses with high energies [21]. The cubic quintic complex Ginzburg-
Landau equation (CGLE) has been extensively studied in connection with mode-locked lasers
[5, 47–49], but, despite having a relatively small number of parameters and allowing for semi-
analytical approaches, it is not always possible to establish a valid relation between the CGLE
and experimental parameters [50]. In [43, 46], a lumped model for the laser was used, which is
an approach where each individual laser component is modeled by its own equation. Despite
its high accuracy and the fact that it uses real experimental parameters, computations can
become cumbersome. In between these two approaches, there is a distributed model, proposed
in 2010 by Zaviyalov et al. [50] (in the absence of 4OD) which, through averaging procedures,
can reduce the lumped model into a single evolution equation which contains the full saturable
absorber term, unlike the CGLE. It was shown [50] that the results of the distributed model
can be good approximations to the lumped model, thus being of potential interest in the
numerical study of quartic solitons in mode-locked lasers.

1.2 Objectives and Outline
The main goals of this dissertation are to expand the distributed model presented in

[50] to include 4OD (following our recent work [51]) in order to numerically simulate the
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generation of quartic dissipative solitons in mode-locked lasers, to study the energy-width
behaviour in these lasers and to find ways to maximize the energy of ultrashort pulses. To
that end, a plethora of laser parameters were varied considering both positive and negative
4OD, stationary pulse solutions were characterized, and the influence of the parameters on
the pulse energy and width was analysed.

This dissertation is split into 5 chapters, with the current one providing an introduction,
presenting a brief historical overview on the study of conventional, quartic, conservative and
dissipative solitons in the field of optics, especially in the context of mode-locked lasers.

Chapter 2 addresses some key theoretical concepts related to dispersion, nonlinear optics,
soliton formation and propagation, nonlinear pulse propagation equations in conservative and
dissipative media as well as some background on passively mode-locked lasers and respective
mathematical models. The distributed model used to simulate the laser is presented here.

Chapter 3 presents a dimensionless version of the distributed model, contains the consid-
ered laser parameters and describes the methods employed in the solving and characterization
of solutions of the evolution equation.

Chapter 4 contains results from the numerical simulation of the mode-locked laser, shows
and characterizes quartic soliton solutions for different signs of 4OD and in different laser
parameter regions, and discusses the energy-width trends and ways to maximize the energy.

Chapter 5 summarizes the main results from the work, containing also the main conclu-
sions and providing a brief outlook into future work.

1.3 Contributions
• D. Malheiro, M. Facão, M. I. Carvalho, Quartic solitons of a mode-locked laser dis-

tributed model, Optics Letters 48, 5639-5642 (2023), DOI: 10.1364/OL.504202;

• D. Malheiro, M. Facão, M. I. Carvalho, Dissipative quartic solitons of a mode-locked
laser distributed model, poster presentation at Extreme Waves International Workshop,
Dresden, Germany, August 2023;

• M. Facão, D. Malheiro, M. I. Carvalho, Quartic dissipative solitons, presentation at
Extreme Waves International Workshop, Dresden, Germany, August 2023.

10.1364/OL.504202
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2. Conservative and Dissipative Solitons
This chapter focuses on the main theoretical background for optical pulse propagation

through conservative and dissipative nonlinear media. Section 2.1 introduces the concepts
of dispersion and nonlinear effects in optical waveguides. In Section 2.2, the nonlinear
Schrödinger equation (NLSE), a nonlinear propagation equation is presented and its conser-
vative soliton solutions are introduced. Dissipative solitons, in particular in the framework
of mode-locked fiber lasers, are addressed in Section 2.3, and models to describe them are
discussed.

2.1 Dispersion and Nonlinear Effects
When light propagates through dielectric waveguides (e.g. optical fibers), it is subject to

linear effects, namely loss and dispersion, as well as nonlinear effects such as the Kerr effect.
The latter two are particularly important in the field of optical solitons, since its from their
interplay that those waves are formed [3, 13].

2.1.1 Dispersion

Dispersion is the phenomenon that describes the frequency (ω) dependence of the refrac-
tive index (n) of a medium, i.e., n ≡ n(ω). In bulk media, the dispersion is originated by
the interaction of the propagating electromagnetic wave with the internal charge structure of
the medium, which will exhibit a response dependent on the frequency of the incident field.
Therefore, its susceptibility, χ ≡ χ(ω), electric permittivity and refractive index, will all be
frequency dependent. Consequently, the speed of light propagating in the medium, c/n(ω),
where c is the speed of light in vacuum, will also depend on the frequency and thus, different
spectral components of an incident optical pulse will travel at different speeds. In fact, the
pulse travels with a group velocity, vg, but each frequency experiences a different time delay
and the pulse broadens in time. This phenomenon is known as group velocity dispersion
(GVD) and is schematically represented in Fig. 2.1 [3, 52, 53].

Dispersive Medium

Initial Pulse

Broadened Pulse

R B

Figure 2.1: An optical pulse propagating through a dispersive medium, being broadened as
result of the frequency dependence of the group velocity. In the depicted case, the low (red,
denoted "R") frequency components travel faster than the high (blue, denoted "B") frequency
component. Adapted from [53]

In the most basic terms, optical waveguides are made up of a core with reffractive in-
dex, ncore, surrounded by a cladding with an inferior reffractive index, nclad. When light
propagates in guided modes, it will experience an effective refractive index, neff, such that
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nclad ≤ neff ≤ ncore. The effective reffractive index is defined by a propagation constant, β,
with β ≡ β(ω) = ωneff/c. The dispersion effects of each mode can be studied by expanding
its corresponding β in a Taylor series about a central frequency ω0:

β(ω) = n(ω)ω

c
= β0 + β1 (ω − ω0) + β2

2! (ω − ω0)2 + β3
3! (ω − ω0)3 + β4

4! (ω − ω0)4 + ... (2.1)

where the dispersion orders, βm are given by,

βm =
(

dmβ

dωm

)
ω=ω0

(m = 0, 1, 2, ...). (2.2)

The first order dispersion, β1, is the inverse group velocity (β1 = 1/vg), and in works where
higher orders (m > 2) of dispersion are absent, β2 is commonly referred to as the GVD
parameter. In this context, depending on the sign of β2, two dispersion regimes can be
defined. When β2 > 0, low-frequency (red-shifted) components of an optical pulse travel
at higher speed than the high-frequency components (blue-shifted). This is know as normal
dispersion. When β2 < 0, the opposite is true, and this is known as the anomalous dispersion
regime [3, 4].

When higher orders of dispersion are considered, it becomes innacurate to refer to β2 as
the GVD parameter, since all βm are, in fact, GVD parameters. Therefore, in the remainder of
the work β2 will be referred to as the second order dispersion (2OD) parameter. Even though
higher orders of dispersion are often considered negligible, they become quite important in
subpicosecond pulses [28, 40] and close to the frequency where β2 is zero [3]. If a pulse
propagates through a dispersive medium with pure dispersion βm at a frequency ω0, the
inverse group velocity for frequencies at the vicinity of ω0 is given by

1
vg

= 1
vg0

+ 1
(m − 1)!βm (ω − ω0)m−1 , (2.3)

where vg0 is the the group velocity at ω0 [54]. The effects of different orders of dispersion, be
them negative or positive, can be evaluated by solving Eq. (2.3). Fig. 2.2 plots the inverse
group velocity against the frequency shift under the effects of dispersion orders ranging from
m = 2 to m = 6. Fig. 2.2(a) shows that the effect for all high even-orders of dispersion,
is qualitatively the same as the m = 2 case. Therefore, in the case of negative βm, with
even m, the group velocity will monotonically increase with the frequency, with the opposite
being true for βm > 0. In contrast, the effect of odd orders of dispersion (Fig. 2.2(b)) leads
to a non-monotonous dependence with the frequency and, for example, in the presence of
β3, low and high frequency components of the pulse travel more slowly (β3 > 0) or more
rapidly (β3 < 0) than intermediate frequencies. This non-monotonic dependence of vg with
the frequency leads to pulse distortion, such that it becomes asymmetric with oscillations
near the trailing or leading edge of the pulse, for positive and negative third order dispersion
(3OD) respectively [3]. A qualitatively similar effect occurs for m = 5.
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Figure 2.2: Frequency dependence of the inverse group velocity for pulses traveling in disper-
sive media with pure (a) even-order or (b) odd-order dispersion.

2.1.2 Nonlinearity

When an electromagnetic field interacts with a dielectric medium, a separation of bound
charges occurs, resulting in induced electric dipole moments, which oscillate with the field
[55]. In linear dielectric media, the polarization P, induced by the electric dipoles, is directly
proportional to the electric field, E,

P = ε0χ(1)E, (2.4)

where ε0 is the vacuum permittivity and χ(1) is the linear susceptibility, with its effects
manifesting through the medium refractive index and attenuation [3, 53].

In nonlinear dielectric media, the interaction with the incident electromagnetic field leads
to the anharmonic motion of the bound charges, giving rise to a wide range of nonlinear op-
tical phenomena [3]. Furthermore, even media with small nonlinearities, such as silica-based
optical fibers, can show a nonlinear response when interacting with intense electromagnetic
fields (e.g. laser light) [56]. In these cases, polarization response to the incident E is described
by the general relation

P = ε0

(
χ(1) · E + χ(2) : EE + χ(3)... EEE + · · ·

)
, (2.5)

where χ(j) (j = 1, 2, ...) is the j-th order susceptibility, with χ(j) being a tensor of rank j + 1,
and the vertical dots denoting the tensor product. The second order susceptibility, χ(2), is
only nonzero for media without an inversion symmetry at a molecular level, vanishing for
silica fibers. Thus, the lowest order nonlinear effects originated in optical fibers are due to
the third order susceptibility, χ(3), responsible for the optical Kerr effect [3]. When a strong
electric field interacts with the medium, electron orbits are deformed, and thus, the effective
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refractive index becomes dependent on the field intensity [56], being then given by

neff(ω, |E|2) = cβ

ω
= n0(ω) + n2|E|2, (2.6)

where n0 denotes the linear part of the refractive index, |E|2 corresponds to the optical inten-
sity and n2 is the Kerr coefficient, which is directly related ot the third order susceptibility,

n2 = 3
8n

Re
(
χ(3)

xxxx

)
. (2.7)

Here, Re denotes the real part and the optical field was assumed to be linearly polarized
along x, and so χ

(3)
xxxx is the only component contributing to the refractive index [3].

Recalling that β = neffω/c, the intensity dependence of the refractive index in turn leads
to an intensity dependence of the propagation constant. As a consequence, over the length of
the waveguide, L, the pulse experiences a self-induced phase-shift, φ, during its propagation.
This phenomenon is known as self-phase modulation (SPM) and the phase-shift is given by

φ = βL =
(
n0 + n2|E|2

) 2π

λ0
L, (2.8)

where λ0 is the wavelength. Since the intensity of the optical field is time (t) dependent, Eq.
(2.8) implies that the phase shift is also time dependent and thus, the instantaneous optical
frequency will differ across the pulse from its central value. The SPM induced frequency-shift,
δω is then given by

δω(t) = −∂φ

∂t
∝ −∂|E|2

∂t
. (2.9)

This time dependent frequency shift is known as frequency chirping. When ∂|E|2/∂t > 0,
i.e., at the leading edge of the pulse, δω < 0 and therefore, the frequency decreases (red-
shift), whereas in the trailing edge (∂|E|2/∂t < 0), the frequency increases (blue-shift). In
other words, during propagation, new frequency components will be generated leading to an
SPM-induced spectral broadening [3, 56].

SPM is only one of the plethora of nonlinear effects that exist. Others include cross-phase
modulation and four-wave mixing, self-steepening and Raman scattering, among others [3],
with the latter two having been studied in the framework of optical solitons [57]. Nonetheless
the only conservative nonlinear effect considered in the remainder of the work is SPM.

2.2 The Nonlinear Schrödinger Equation
To study pulse propagation under the effects of GVD and SPM, the NLSE is often used.

This equation is derived from the Maxwell equations under some simplifying assumptions
and approximations. First, the medium is considered to be lossless (safeguarding energy
conservation) and nonmagnetic; it is assumed that the nonlinear changes in the refractive
index are small; the nonlinear response is considered instantaneous; the optical field is as-
sumed to maintain its polarization along the propagation, to ensure the validity of a scalar
approach; the optical field is considered to be quasi-monochromatic, which is valid for pulses
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as short as 0.1 ps. Finally, the slowly-varying pulse envelope approximation is considered, to
separate the rapidly varying part of the electric field. Taking W (z, t) as the slowly-varying
pulse envelope, and only considering dispersion up to the second order for now (higher order
generalizations will be discussed later), the NLSE can be written as [3, 58]

∂W

∂z
+ β1

∂W

∂t
+ i

β2
2

∂2W

∂t2 = iγ|W |2W. (2.10)

Here z is the propagation coordinate and γ is the nonlinear parameter and is defined as

γ = n2ω0
cAeff

, (2.11)

where Aeff is the effective mode area, related to the spatial distribution of the electric field.
The NLSE Eq. (2.10) can be further simplified by using a frame of reference moving at the
group velocity. Thus, defining t′ = t − z/vg = t − β1z as the retarded time, yields,

i
∂W

∂z
− β2

2
∂2W

∂t′2 + γ|W |2W = 0. (2.12)

Depending on the initial pulse width, T0, as well as the peak power, Ppeak, either dispersive
or nonlinear effects will dominate during pulse propagation. To better understand this, it
becomes useful to introduce two length scales: the 2OD length, L2OD and the nonlinear
length, LNL, which represent the lengths over which dispersive or nonlinear effects become
important for pulse evolution. They are given by

L2OD = T 2
0

|β2|
, LNL = 1

γPpeak
. (2.13)

When the waveguide length is such that L � LNL and L � L2OD, neither dispersive nor
nonlinear effects manifest significantly during pulse propagation. When L � LNL and L ∼
L2OD, the pulse evolution is governed by GVD with nonlinear effects having little impact on
pulse propagation. Likewise, if L � L2OD, and L ∼ LNL, dispersive effects are negligible
and pulse evolution is governed by SPM. However, when L is comparable to or greater than
both L2OD and LNL, the pulse propagation is affected by an interplay of both dispersion
and nonlinearity, which can lead to very interesting effects [3]. In the normal dispersion
regime, the group velocity at the leading edge of the pulse, which has been red shifted due
to SPM, increases, and the opposite occurs at the trailing edge, resulting in a much more
rapid broadening than the one that would occur in the absence of SPM. In the anomalous
dispersion regime, lower frequencies travel with lower values of vg and vice-versa. Therefore,
the group velocity will be lower in the leading edge of the pulse (red-shifted component) and
higher in the trailing edge (blue-shifted component). Thus, these edges will tend toward the
center of the pulse due to dispersion, leading to pulse compression. With a perfect balance of
the effects of negative GVD and SPM, the pulse will propagate while maintaining its shape,
i.e., an optical soliton is formed. Soliton formation through the interplay of GVD and SPM
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is illustrated in Fig. 2.3.
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Figure 2.3: Schematic representation of soliton formation from the interplay of SPM and
anomalous GVD. SPM induces a red-shift on the leading edge and a blue-shift on the trailing
edge of the pulse, both of which tend to the center of the pulse through the action of negative
even order dispersion. Adapted from [4].

Eq. (2.12) supports soliton solutions. To find them, stationary solutions of the form
W (z, t) = u(t)eiσz were considered, taking σ as a real propagation constant shift and u as
a real valued function. Note that here, t is referring to the retarded time. The t′ notation
is henceforth dropped for the sake of simplicity. Introducing this ansatz in Eq. (2.12), and
recalling that β2 has to be negative for solitons to be formed, yields

−σu + |β2|
2

d2u

dt2 + γu3 = 0. (2.14)

Eq. (2.14) supports the fundamental soliton solution, given by [4, 11]

u =
√

2σ

γ
sech

(√
2σ

|β2|
t

)
, (2.15)

with pulses thus taking the form of a hyperbolic secant curve. These solutions are referred
to as conventional solitons from now on. Since u is real, conventional stationary solitons
have a constant phase and are therefore unchirped, an effect that is directly related to the
perfect balance of GVD and SPM. Under Eq. (2.15), the peak power and the width, w0 of
the fundamental soliton are

Ppeak = 2σ

γ
, w0 =

√
2|β2|
2σ

arccosh(
√

2), (2.16)

with the energy, E, following Eq. (1.3):

E = 4arccosh(
√

2) |β2|
γw0

. (2.17)

Since σ can be chosen freely, Eq. (2.15) actually represents a family of soliton solutions with
constant

∫
udt = π

√
|β2|/γ, with solutions for small σ being wider but having lower peak

power than the narrow high peak power solutions for larger σ [4].
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As previously mentioned, there are generalizations of the NLSE that include higher orders
of dispersion [4],

i
∂W

∂z
+
∑

m=2
im βm

m!
∂mW

∂tm
+ γ|W |2W = 0. (2.18)

In soliton studies that include up to the fourth order, 3OD is usually undesirable, since it
leads to soliton instability and radiation losses [59], although stationary soliton solutions in
the presence of 2OD and fourth order dispersion (4OD) have been found when a weak 3OD
term was present [30, 35]. The consequences of the presence of 3OD can be generalized to
all odd-orders of dispersion, since they all have qualitatively the same effect on the group
velocity (recall Eq. (2.3) and Fig. 2.2) and thus usually, in the context of solitons, only even
orders of dispersion are considered. Truncating the expansion of β after the fourth order term
and neglecting 3OD yields a generalized NLSE which includes both 2OD and 4OD terms,

i
∂W

∂z
− β2

2
∂2W

∂t2 + β4
24

∂4W

∂t4 + γ|W |2W = 0. (2.19)

Eq. (2.19) supports soliton solutions (the discussion preceding Fig. 2.3 is also valid for even
m > 2), known as quartic solitons, with a family of them being described by the Karlsson-
Höök solution given by Eq. (1.1), valid when β2, β4 < 0 although quartic solitons with
β2 > 0, β4 < 0 [37, 40] have also been found. In 2021, Runge et al. [54] reported an infinite
hierarchy of solitons arising from pure negative high even orders of dispersion.

One important factor to take into consideration is that in the derivation of the NLSE,
it was considered that the medium through which the light was propagating in was both
lossless and gainless, ensuring energy conservation throughout the full propagation length.
Therefore, the soliton solutions of the NLSE and its generalizations are commonly referred
to as conservative solitons.

2.3 Dissipative Solitons in Mode-Locked Lasers
Although in conservative media solitons are formed from the balance between dispersion

and nonlinearity, in the 1990s, it was found that solitons arise in nonlinear dispersive dissipa-
tive media, where a balance between nonlinear gain and loss is also present, thus opening the
chapter of dissipative solitons [5, 60, 61]. Stationary dissipative solitons are originated when,
alongside a balance between dispersion and nonlinearity, there is also a continuous energy ex-
change with the medium as well as a redistribution of the energy within the soliton itself. In
effect, there are parts inside the pulse that generate energy and others which dissipate it [62].
This internal energy flow leads to a non-uniform phase profile and consequently to frequency
chirping, unlike conservative solitons which are unchirped, due to having a constant phase
profile [5]. Besides the more traditional stationary soliton behaviour, dissipative solitons can
also exhibit pulsating, creeping and even exploding behaviours, all of which are only made
possible due to the presence of the gain and loss mechanisms in the propagating medium [63,
64].

An interesting characteristic of dissipative solitons is that the equation parameters entirely
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define a fixed soliton solution, predetermining the profile, chirp and energy of the pulse,
instead of defining a family of solutions as is the case with conservative solitons. In the
latter case, the aforementioned quantities are determined by the initial conditions. This is a
direct consequence of the perfect balance between gain and loss which is required for soliton
formation. This stark contrast is illustrated in Fig. 2.4 [5].

Conservative System Dissipative System

Family of soliton 

solutionsNonlinearity

Dispersion

Nonlinearity

Dispersion

Loss

Gain

Fixed 

soliton 

solution 

Figure 2.4: Qualitative differences of the impact of equation parameters on soliton solutions of
conservative and dissipative systems. In the former case, dispersion and nonlinear parameters
define a family of solution while in the latter, the introduction of gain and loss parameters
yield a single solution. Adapted from [5].

Dissipative solitons are often studied in the framework of passively mode-locked fiber lasers
[5]. Mode-locking is a technique used in the generation of ultrashort laser pulses which consists
on locking the phases of the multiple laser modes to each other, forcing them to maintain the
same relative phase. Consequently, the modes behave like Fourier components of a periodic
function of time, leading to a periodic pulse train. This can be done by modulating the
loss of the laser cavity at a frequency equal to the intermode frequency separations through
either active or passive mode-locking methods. In active mode-locking, the loss modulation
is done by employing either a shutter or an electro-optic or acousto-optic modulator, while
in passive mode-locking, a saturable absorber (SA), a material whose absorption decreases
as the intensity of light passing through it increases, is used instead [53, 65]. One type of
SAs that is widely used is the semiconductor SA mirror, whose reflectivity increases with
the intensity of the light. Suitable for wavelengths from 800 to 1600 nm, this type of SA
allows the generation of pulses in the fs range, at powers that can go from a few mW to a
few hundreds of W [53].

A class of lasers that has gained particular interest in the field of ultra-short pulse gen-
eration is the fiber laser [21], which offers several advantages over solid state lasers, such
as higher optical powers, power-conversion efficiencies and beam quality (which persists to
high-power operation), as well as superior resistance to temperature fluctuations and vibra-
tion. A particularly interesting feature of these lasers is the ability to operate on low-gain
transitions, since the gain region can be arbitrarily long. In fiber lasers, rare-earth-doped
fiber amplifiers are used as the gain medium, commonly using dopant ions such as erbium,
neodymium, ytterbium and thulium. The energy pumping can be done using laser diode
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arrays or other fiber lasers [53].
This class of lasers can be mode-locked by the inclusion of a semiconductor SA mirror in

the laser configuration. Silica-glass is the most common host material for the dopant ions,
and its dispersion characteristics and nonlinearity which, combined with the gain mechanism
of the amplifier and the losses at the SA, make mode-locked fiber lasers a very suitable
environment for the generation and propagation of dissipative solitons. Multiple mode-locked
fiber laser configurations exist [53, 66, 67], the simplest of which being made up of a pump
diode laser, a doped fiber amplifier, an SA and an output coupler (OC), as illustrated in Fig.
2.5.

Output  

Coupler

Semiconductor 

Saturable 

Absorber

Doped Fiber

Output

Figure 2.5: A simple mode-locked fiber laser scheme made up of a doped fiber amplifier,
a semiconductor SA, and an OC. Not illustrated is the optical pumping required for laser
operation, achieved through either a diode laser array or another fiber laser. Adapted from
[68].

The study of dissipative soliton dynamics in mode-locked lasers was pioneered in the 1970s
by Haus [47], who derived a master-equation which models the main physical effects occurring
in these systems. This equation corresponds to the cubic complex Ginzburg-Landau equation
(CGLE), but in the 1990s, Moores [69] reported that the inclusion of a quintic nonlinear term
was fundamental for soliton stability in the presence of fast SAs. Thus, the cubic-quintic
CGLE, which has been extensively used in the context of nonlinear optical systems, reads

i
∂q

∂Z
− D2

2
∂2q

∂T 2 + |q|2q + ν|q|4q = iδq + iε|q|2 + iζ
∂2q

∂T 2 + iµ|q|4q. (2.20)

where, T , Z, q are the normalized retarded time, propagation coordinate and pulse envelope
respectively. The conservative terms of Eq. (2.20) are isolated on the left-hand side of the
equation, with D2 being the normalized 2OD parameter, and ν a parameter representing the
saturation of the Kerr effect (ν < 0). Likewise, the dissipative terms are isolated on the right
side of Eq. (2.20) and here δ represents the linear loss (δ < 0), ε the nonlinear gain (ε > 0), ζ

the spectral filtering and µ the saturation of the nonlinear gain (µ < 0). With the inclusion of
these terms, Eq. (2.20), encapsulates, the fundamental physical effects required to build and
operate a mode-locked laser, with the linear loss, nonlinear gain and its saturation accounting
for the behaviour of the SA [5, 49].
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Note that despite the fact that the form of the CGLE presented in Eq. (2.20) only includes
2OD, it can be generalized to include higher orders of dispersion, following the same logic
that was used to generalize the NLSE in the previous Section. For example, a form of the
CGLE that includes both 2OD and 4OD can be written as

i
∂q

∂Z
− D2

2
∂2q

∂T 2 + D4
24

∂4q

∂T 4 + |q|2q + ν|q|4q = iδq + iε|q|2 + iζ
∂2q

∂T 2 + iµ|q|4q, (2.21)

where D4 is the normalized 4OD parameter. The CGLE is in fact a distributed equation,
because its terms are obtained through an averaging of light propagation effects in the sys-
tem, in turn reducing the laser description into a single evolution equation. This approach
allows for an analytical or semi-analytical treatment of the laser system and facilitates the
search for stationary solutions and the analysis of their stability, as well as the discussion and
understanding of physical effects in the system. Regardless, distributed equations allow for
a generally good qualitative description of the laser system, and also good quantitative de-
scriptions if the pulse does not suffer very significant alterations inside each cavity roundtrip.
Despite its advantages and widespread use, even in the general context of distributed models,
the CGLE does not take effects such as gain saturation and a non-instantaneous SA response
into account. Moreover, a direct correspondence between the CGLE parameters as expressed
in Eq. (2.20) with realistic laser parameters does not necessarily exist [5, 50].

Lumped models are a more accurate method to study the mode-locked fiber laser, by
sequentially describing the propagation of light through each individual laser component,
using at least one equation for each one of them. This approach not only allows for the
consideration of the delayed effects the CGLE cannot account for, but also allows a direct
correspondence with real experimental parameters, being however too involved to allow for
analytical or semy-analytical analyses. Regardless, the lumped model is the starting point
for all other average models [50]. In fact, the quintic term in the CGLE arises from approx-
imations done in the reduction of the lumped model to a distributed one, with the actual
saturation of the Kerr effect not being reached in most common laser setups [5, 70].

The lumped model is discussed extensively in [50], but in the simplest terms it can be
reduced to three elements: a pulse propagation equation, an equation for the gain and finally
an equation describing the SA response. Following the work of Runge et al. on the quartic
soliton laser [43], the pulse propagation can be modeled by a modified NLSE which includes
a gain term:

∂W

∂z
+ iD

(
i

∂

∂t

)
W = g

2W + iγ|W |2W. (2.22)

The dispersion operator is defined as

D
(

i
∂

∂t

)
=
∑
m=2

βm

m!

(
i

∂

∂t

)m

, (2.23)
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and g is a saturated gain function such that

g = g0
1 +

∫
|W (z, t)|2dt/Esat

, (2.24)

where g0 is the small-signal gain, the integral represents the pulse energy and Esat is the
saturation energy. Finally, the SA is described by its transmittance, T , modeled by a power
transfer function,

T = 1 − M

1 + |W (z, t)|2/Psat
, (2.25)

where M is the SA modulation depth and Psat the saturation power, with |W (z, t)|2 corre-
sponding to the optical pulse power.

In 2010, Zaviyalov et al. [50] derived a distributed model that served as a bridge between
the two aforementioned approaches. Since it is a distributed model, it has all the advantages
of a model such as the CGLE, however, the authors developed it so that the SA term was not
approximated. Moreover, and like the lumped model, its parameters are directly related to
real experimental parameters. It is however, only valid under the assumption that the pulse
is not very significantly altered during the propagation. Neglecting gain saturation effects,
and assuming an instantaneous SA response, the description of the laser is given by

i
∂W

∂z
− 1

2
(
β2 + ig0T 2

2

) ∂2W

∂t2 = i

(
g0 − kOC/L

2

)
W − i

2
M/L

1 + |W |2/P̄sat
− γ̄|W |2W, (2.26)

where T2 is the inverse linewidth of the parabolic gain, kOC is the OC loss and L is the cavity
length. The parameters P̄sat and γ̄ are the average parameters of the distributed model,
associated with the SA saturation power, Psat, and the nonlinear parameter, γ, respectively,
and are given by:

P̄sat = Psat exp(−g0L), γ̄ = γ
exp(g0L) − 1

g0L
. (2.27)

Much like the previously discussed models, the distributed model described by Eq. (2.26)
can be expanded to include 4OD (following our recent work [51]), with the evolution equation
thus taking the form:

i
∂W

∂z
− 1

2
(
β2 + ig0T 2

2

) ∂2W

∂t2 + β4
24

∂4W

∂t4 = i

(
g0 − kOC/L

2

)
W − i

2
M/L

1 + |W |2/P̄sat
− γ̄|W |2W.

(2.28)
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3. Numerical Methods
The laser evolution equation as given by Eq. (2.28) does not support analytical solutions,

therefore requiring the employment of numerical methods to solve it. These methods can
either solve the partial differential equation (PDE) directly or they can take the indirect
approach of first reducting the PDE into an ordinary differential equation (ODE) which
can subsequently be numerically solved through the Newton conjugate-gradient (NCG), for
example, as discussed in Section 3.1. For direct integration of the PDE, a pseudo-spectral
method was used in Section 3.2. In Section 3.3 the stability of the solutions was studied
numerically through a linear stability analysis.

Before implementing these methods, it is convenient to derive a dimensionless form of Eq.
(2.28) in order to reduce the number of parameters. First, it is useful to recall Eq. (2.28)

i
∂W

∂z
− 1

2
(
β2 + ig0T 2

2

) ∂2W

∂t2 + β4
24

∂4W

∂t4 = i

(
g0 − kOC/L

2

)
W − i

2
M/L

1 + |W |2/P̄sat
− γ̄|W |2W,

where z is the propagation coordinate, t the retarded time, W the slowly-varying pulse
envelope, g0 the small-signal gain, T2 the inverse linewidth of the parabolic gain, Psat the
saturable absorber (SA) saturation power, β2 and β4 the second order dispersion (2OD) and
fourth order dispersion (4OD) parameters respectively, kOC the loss at the output coupler
(OC), M the SA modulation depth and L the laser cavity length. Also recall that P̄sat and γ̄

are the effective saturation power and nonlinear parameter respectively, given by Eq. (2.27).
Following the change of variables

q =
(

γ̄

a

)1/2
W, Z = az, T =

( 2a

g0T 2
2

)1/2
t, (3.1)

where a = −g0/2 + kOC/2L + M/2L, Eq. (2.28) thus becomes

i
∂q

∂Z
− D2

2
∂2q

∂T 2 + D4
24

∂4q

∂T 4 + |q|2q = iαq + i
∂2q

∂T 2 − i
α + 1

1 + τ |q|2
q, (3.2)

with the normalized parameters being given by

D2 = 2β2
g0T 2

2
, D4 = 4β4a

g2
0T 4

2
, α = 1

a

(
g0
2 − kOC

2L

)
, τ = a

P̄satγ̄
. (3.3)

One final aspect to take into consideration is the choice of parameter values. Throughout
the work, a varying range of g0, T2 and Psat parameter values was considered to find how
these different terms influenced the solutions, in terms of pulse profile, phase, chirp, spectral
profile, energy and width. These parameters were chosen carefully to ensure the existence
and stability of soliton solutions. Although different values of β4 were also tested, in most
of the work, |β4| = 0.080 ps4m−1 was considered, with only the sign of the parameter being
allowed to change. To isolate the contribution of the effect of 4OD, β2 was set to zero in most
cases and, whenever β2 6= 0, this parameter was only allowed to take a relatively small value
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of |β2| = 0.024 ps2m−1. The other laser parameters were kept constant in all of the work,
with the corresponding values being shown in Table 3.1. For realism, parameter values were
taken from previous works on mode-locked lasers [43, 50].

Table 3.1: Constant laser parameter values.
Parameter Value Unit

kOC − ln(0.3) −
L 1 m
M 0.3 −
γ 0.005 W−1m−1

3.1 Newton Conjugate Gradient Method
Eq. (3.2) supports stationary solutions of the form

q(Z, T ) = U(T )eiσz, (3.4)

where U is a complex function and σ is a real propagation constant shift. Introducing this
ansatz into Eq. (3.2) yields

UZ + iσU = G (3.5)

where
G =

[
i
D4
24 ∂4

T +
(

1 − i
D2
2

)
∂2

T + α + i|U |2 − α + 1
1 + τ |U |2

]
U. (3.6)

Note that Eq. (3.5) stands for the case where U is allowed to depend on the propagation
coordinate, Z. Since only stationary solutions are being considered, U is solely dependent on
time and therefore UZ = 0.

Both U and G can be separated into their real and imaginary parts,

U = Ur + iUi, G = Gr + iGi, (3.7)

with the subscripts r and i denoting, respectively, the real and imaginary parts of U and G.
Considering this separation, Eq. (3.2) can be converted into a system of coupled nonlinear
ODEs. Even though methods such as the shooting method [71] exist to solve such systems,
convergence using this approach was not achieved for Eq. (3.5). Therefore, to solve the
equation, the NCG method, as proposed in the works of Yang [72, 73], was used. Both these
works and the theoretical overview on conjugate-gradient (CG) methods by Shewchuk [74]
provide great details on the mathematical background and implementation of these methods.
Not all of them will be repeated here but a brief overview, based on [72–74], will be provided
to contextualize the implementation of the method in this work.

At first, σ is unknown but, as demonstrated in [73], it can be calculated from the real
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and imaginary parts of U and G, following,

σ = 〈Ui, Gi〉 − 〈Ur, Gr〉
2〈Ur, Ui〉

. (3.8)

with the inner product of two arbitrary functions of T , f and g, being defined as

〈f, g〉 =
∫

fgdT. (3.9)

Inserting Eq. (3.7) into Eq. (3.5), yields
[

0 −σ

σ 0

] [
Ur

Ui

]
=
[
Gr

Gi

]
(3.10)

which can be rewritten as

L0(u) ≡
[
−σUi − Gr

σUr − Gi

]
= 0 (3.11)

where L0(u) is a function representing the differential equation and u =
[

Ur
Ui

]
. Before pro-

ceeding, it is important to clarify the notation used in this work. Capitalized letters in bold
(e.g. A) will represent matrices and operators, lower case letters in bold (e.g. u) will denote
vectors with all other letters (e.g. f , α) referring to scalar quantities, either real or complex.

The goal is to solve L0(u) = 0 by first applying a Newton method and then the CG iter-
ations. Denoting un as the approximation of u at the n-th iteration, the next approximation
will be

un+1 = un + ∆un (3.12)

where the increment, ∆un, can be calculated through the linear Newton-correction [73, 75]

L1n∆un = −L0(un) (3.13)

and L1n is the linearization operator of function L0(un) obtained from the Taylor expansion
of such function to the first order evaluated at un:

L0 (un + ũn) = L0(u)n + L1ũn + O(ũ2
n), ũn � 1. (3.14)

This linearization operator, L1, is the counterpart of the Jacobian in systems of nonlinear
ODEs [73, 75], and can be defined analytically through,

L1u = Pu −

〈[
Ur

−Ui

]
, Pu

〉
2〈Ur, Ui〉

[
−Ui

Ur

]
, (3.15)

where

P =
[

0 −σ

σ 0

]
− G1, (3.16)
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and G1 is the linearization operator of the vector function g =
[

Gr
Gi

]
. The calculation of this

linearization operator will follow shortly.
The CG method is one of the most widely used iterative methods for solving large systems

of linear equations [72, 74]. This method takes the linear equation as a minimization problem
of a quadratic form, i.e., an arbitrary scalar function, f , of the form

f(x) = 1
2〈x, Ax〉 − 〈b, x〉 + c, (3.17)

where x, b, A and c are all arbitrary.
It can be shown [74] that the solution of the linear system of equations defined by Ax = b

corresponds to a minimum of the quadratic form defined in Eq. (3.17), as long as A is square,
self-adjoint and positive-definite, i.e., if for every nonzero vector u, 〈u, Au〉 > 0.

The basic principle of the CG method is the same as conjugate-directions method. In
this latter one, if in iteration n the minimum is searched for in direction dn, in the next
iteration the solution will be searched after in the conjugate direction, dn+1, which is A-
orthogonal to dn, i.e., 〈dn, Adn+1〉 = 0. In the CG method specifically, the search directions,
dn are constructed by the conjugation of the gradients which correspond to the residuals,
rn = −∇f (xn), according to

dn+1 = rn+1 + 〈rn+1, rn+1〉
〈rn, rn〉

dn, (3.18)

It is generally accepted that the use of a preconditioning matrix, which improves the
condition number of the matrix, is advantageous in the improvement of the efficiency of the
CG method. Thus, introducing a matrix M which is self-adjoint, positive-definite, and is
easy to invert, the system Ax = b can be indirectly solved by computing

M−1Ax = M−1b. (3.19)

If the condition number of M−1A is much smaller that the condition number of A alone,
the method will converge much faster for Eq. (3.19). The choice of the preconditioner M is
therefore very important but there are multiple possibilities that can be taken depending on
the problem.

Considering an initial guess x0, the method can be summarized by

r0 = b − Ax0, (3.20a)

d0 = M−1r0, (3.20b)

γn = 〈rn, M−1rn〉
〈dn, Adn〉

, (3.20c)

xn+1 = xn + γndn, (3.20d)

rn+1 = rn − γnAdn, (3.20e)
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δn+1 = 〈rn+1, M−1rn+1〉
〈rn, M−1rn〉

, (3.20f)

dn+1 = M−1rn+1 + δn+1dn. (3.20g)

This is the general CG method as specified in [74], and it was applied to solve the Newton-
correction equation defined by Eq. (3.13). To use the CG method here however, the operator
L1 has to be self-adjoint. Therefore it needs to be multiplied by its adjoint, LA

1 , and thus,
the Newton-correction equation takes the form,

LA
1nL1n∆un = −LA

1nL0 (un) , (3.21)

with the adjoint operator being given by

LA
1 u = PAu +

〈
u,

[
−Ui

Ur

]〉
2〈Ur, Ui〉

PA
[

Ur

−Ui

]
, (3.22)

and

PA =
[

0 σ

−σ 0

]
− GA

1 . (3.23)

Now, the linearization operator, G1 has to be defined. Splitting the real and imaginary
parts of G,

Gr = −D4
24 ∂4

T Ui + D2
2 ∂2

T Ui + ∂2
T Ur + αUr −

(
U2

r + U2
i

)
Ui − α + 1

1 + τ
(
U2

r + U2
i

)Ur, (3.24)

Gi = D4
24 ∂4

T Ur − D2
2 ∂2

T Ur + ∂2
T Ui + αUi +

(
U2

r + U2
i

)
Ur − α + 1

1 + τ
(
U2

r + U2
i

)Ui, (3.25)

G1 can then be calculated according to

G1 =


∂Gr

∂Ur

∂Gr

∂Ui

∂Gi

∂Ur

∂Gi

∂Ui

 =

 ∂2
T + G11 −D4

24 ∂4
T + D2

2 ∂2
T + G12

D4
24 ∂4

T − D2
2 ∂2

T + G21 ∂2
T + G22

 (3.26)

where

G11 = α − 2UrUi − (α + 1) τ
(
U2

r − U2
i

)
− 1[

1 + τ
(
U2

r + U2
i

)]2 (3.27a)

G12 = −U2
r − 3U2

i + 2τUi (α + 1)[
1 + τ

(
U2

r + U2
i

)]2 (3.27b)

G21 = 3U2
r + U2

i + 2τUr (α + 1)[
1 + τ

(
U2

r + U2
i

)]2 (3.27c)
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G22 = α + 2UrUi − (α + 1) τ
(
U2

i − U2
r

)
− 1[

1 + τ
(
U2

r + U2
i

)]2 . (3.27d)

Note that G1 is such that GA
1 = GT

1 [73], with the T superscript denoting the trans-
pose. Now, with all operators defined, the next step before the CG iterations is to choose a
preconditioning matrix, M. Following [73], M was chosen so that only the higher-derivative
terms of u in LA

1 L1u are retained. A positive constant, C is also added, to ensure that M is
positive definite and thus,

M =
[
C +

∣∣∣∣iD2
2 − 1

∣∣∣∣2 ∂4
T +

(
D4
24

)2
∂8

T

]
I2, (3.28)

where I2 is a 2 × 2 identity matrix and once again following [73], C = 8.
Using Eq. (3.20), the CG method applied to Eq. (3.21) thus becomes

∆u0 = 0, (3.29a)

r0 = −LA
1 L0 (u0) , (3.29b)

d0 = M−1r0, (3.29c)

γn =

〈
rn, M−1rn

〉
〈dn, L1dn〉

, (3.29d)

∆un+1 = ∆un + γndn, (3.29e)

rn+1 = rn − γnL1d1, (3.29f)

δn+1 = 〈rn+1, M−1rn+1〉
〈rn, M−1rn〉

, (3.29g)

dn+1 = M−1rn+1 + δn+1dn. (3.29h)

Here n = 0, 1, 2, . . . is the index of CG iterations, and the subscripts n were dropped from the
L1 operators to simplify the notation. During implementation of the method, all derivatives
were evaluated in the Fourier space, using the discrete Fourier transform (FT), with a time
grid going from −50 to 50 with 2048 points. This was done in Matlab with the fft routine. As
inputs, hyperbolic secant pulses were considered initially, but in further iterations the method
was implemented with soliton solutions from previous simulations. The CG iterations were
stopped once the Newton-correction solution, ∆un, dropped below a threshold of 10−4. The
Newton iterations were stopped once the overall error, given by max{|L0(un)|}, was smaller
than 10−4. Note however that if the amplitude of the solutions becomes too high, it might
be difficult to achieve this latter error threshold in efficient time. Therefore, in such cases, a
relative error limit of 0.025 was considered to break the cycle, with the relative error being
calculated as max{|L0(un)|}/ max{un}.

While this method has the advantage of very fast convergence, it has the drawback of
returning no information on the stability and the propagation of the solutions and so, other
methods are necessary to investigate that.
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3.2 Pseudo-spectral Method
To study the Z propagation and to verify the stability of solutions of the type given by

Eq. (3.4) obtained through the NCG method, they were perturbed and taken as inputs in
the integration of Eq. (3.2) through a pseudo-spectral method [76], evolving in Z with a
fourth-order Runge-Kutta (RK4) method.

To start, Eq. (3.2) was rearranged, by first multiplying all terms by −i and then by
isolating the nonlinear terms in the right-hand side of the equation, such that

∂q

∂Z
+
(

i
D2
2 − 1

)
∂2q

∂T 2 − i
D4
24

∂4q

∂T 4 − αq = V, (3.30)

where V = i|q|2q−[(α + 1) q] /
(
1 + τ |q|2

)
encompasses all the nonlinear terms from Eq. (3.2).

Applying the FT to both sides of the equation yields

∂q̃

∂Z
+ κq̃ = Ṽ , (3.31)

where the tilde denotes the FT, κ = ω2 − α − iω2D2/2 − iω4D4/24 and ω is the frequency.
Eq. (3.31) can be rewritten as

∂ [q̃ exp(κZ)]
∂Z

= Ṽ exp(κZ), (3.32)

which is an ODE that can be solved with an RK4 method [77–79].
Let us consider an arbitrary function y(x) such that f(x, y) = dy/dx. To numerically solve

this generic ODE, it is necessary to discretise the function domain so that two consecutive
steps, xn and xn+1 are evenly separated by a step size of h. In methods based on the
approximation of derivatives from Taylor series expansions, the value of the function after
n + 1 steps, yn+1, is approximated by

yn+1 = yn + hy′
n + h2

2 y′′
n + . . . . (3.33)

Therefore, to achieve higher accuracy, it is often necessary to consider higher-order deriva-
tives. Runge-Kutta methods however evaluate the function at intermediate points within a
single step thus guaranteeing higher accuracies even though only the first order derivative is
being considered. The RK4 method evaluates the function in 4 points within the interval
and has a global truncation error of O

(
h4). The solution at step xn+1 is given by

yn+1 = yn + 1
6 (r1 + 2r2 + 2r3 + r4) h, (3.34)

where ri are increment functions defined as

r1 = f (xn, yn) (3.35a)

r2 = f

(
xn + h

2 , yn + r1
h

2

)
(3.35b)
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r3 = f

(
xn + h

2 , yn + r2
h

2

)
(3.35c)

r4 = f (xn + h, yn + r3h) (3.35d)

To apply this for the numerical integration of Eq. (3.32), the time domain was once again
discretised from −50 to 50 using 2048 points and discrete FTs were calculated through the
fft Matlab routine. The variable Z varied depending on the considered equation parameters,
but was chosen so that the pulse was allowed to propagate until it was stationary. Depending
on the magnitude of Z, steps (dZ) between 10−4 and 10−5 were used to evenly discretise the
Z domain. It is important to note that it was found that the convergence of the method and
the amplitude of solutions was dependent on the step. If the step is too large (for the equation
here presented, typically dZ > 5 × 10−3) the temporal profiles are different for different Z

steps, but tend to converge for smaller steps. These results are illustrated in Fig. 3.1, where
the peak power versus dZ is plotted for one specific set of equation parameters. In the figure,
it is possible to observe that the peak power is converging to a fixed value as dZ is decreased.
However, in general, it was found that the convergence was achieved whenever dZ < 10−4.
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Figure 3.1: Dependence of the normalized peak power on dZ. As dZ decreases, the peak
power tends to a constant value, marked by the black dashed line. Parameters: β2 = 0,
β4 = −0.080 ps4m−1, g0 = 1.461 m−1, Psat = 83.3 W, T2 = 100 fs.

It was set that y ≡ q̃ exp(κZ), x ≡ Z and f(x, y) ≡ Ṽ exp(κZ). Note that Ṽ is dependent
on q̃ and therefore, it is necessary to evaluate its value in Zn, Zn + dZ/2 and Zn + dZ,
in each iteration of Eq. (3.35). Also note that the fact κ has a positive real part implies
that as Z increases, f(x, y) increases exponentially with it, greatly slowing down consecutive
computations. This problem can be circumvented by exploiting the fact that Eq. (3.32) has
translation symmetry in Z and, therefore, the equation can simply be solved in intervals of
[0, dZ]. The q̃ exp(κZ) solution from each RK4 iteration can then be taken as the input for
the next one using the same Z interval.

After the RK4 method has been completed, the exponential factor is divided to obtain q̃

and the inverse FT is applied to evaluate the dimensionless slowly-varying pulse envelope, q.
Using the change of variables defined in Eq. (3.1) it is possible to convert the dimensionless
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results back to physical form.

3.3 Linear Stability Analysis
The numerical integration of Eq. (3.2) through the pseudo-spectral method using per-

turbed localized solutions as inputs can classify them as stable or unstable. However, since
computation times can be rather long, it is not a very efficient approach to identify parame-
ter regions where stable solutions exist. Thus, for that purpose, the eigenvalues of the linear
stability operator for stationary solutions under Eq. (3.2) were calculated. This method can
provide information on the stability of the solutions much more rapidly, since it does not
require the integration of Eq. (3.2) in Z.

To obtain the linear stability operator, a small perturbation, be it η ≡ η(Z, T ), was added
to stationary solutions given by Eq. (3.4), yielding

q(Z, T ) = [U(T ) + η(Z, T )] eiσZ . (3.36)

Inserting Eq. (3.36) into Eq. (3.2), and considering only the first order terms in η, an
evolution equation for the perturbation is obtained,

iηZ + K11η + K12η∗ = 0 (3.37)

where the ∗ denotes the complex conjugate and the operators K11 and K12 are given by

K11 = D4
24 ∂4

T −
(

D2
2 + i

)
∂2

T − σ − iα + 2|U |2 + i
1 + α

(1 + τ |U |2)2 (3.38)

K12 = U2 − i
(1 + α) τU2

(1 + τ |U |2)2 . (3.39)

Applying the complex conjugate to Eq. (3.37) yields

−iη∗
Z + K∗

11η∗ + K∗
12η = 0. (3.40)

Assuming that the evolution of the perturbation in Z is exponential, η and η∗ can be
defined as,

η(Z, T ) = v(T )eiλZ + w∗(T )e−iλ∗Z , (3.41a)

η∗(Z, T ) = v∗(T )e−iλ∗Z + w(T )eiλZ . (3.41b)

Substituting Eq. (3.41) into Eq. (3.37) and separating the terms dependent on eiλZ and
e−iλ∗Z leads to

−λv + K11v + K12w = 0 (3.42a)

λ∗w∗ + K11w∗ + K12v∗ = 0 (3.42b)
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which, by rearranging the terms and applying the complex conjugate to Eq. (3.42b), can be
written in the matrix form,

K
[

v

w

]
≡
[

K11 K12

−K∗
12 −K∗

11

] [
v

w

]
= λ

[
v

w

]
. (3.43)

The spectrum of operator K has both a continuous part and a discrete one, which consists
of all the operator eigenvalues and will be the key to evaluate the stability of stationary
solutions of Eq. (3.2). The parameter λ can be separated into its real and imaginary parts,
i.e., λ = λr + iλi, and thus, η can be expressed as

η = veiλrZ−λiZ + w∗e−iλrZ−λiZ . (3.44)

It becomes apparent that the terms e±iλrZ lead to oscillations in Z, since these exponentials
are complex. The e−λiZ exponentials are real, and very important to determine whether
the perturbation will decay or destabilize the solution. If λi > 0, the perturbation decays
exponentially with Z but if λi < 0, the perturbation will grow exponentially, rendering the
solution unstable. Therefore, the solutions of Eq. (3.2) are unstable whenever the imaginary
parts of eigenvalues of the linear stability operator, K is negative. Note that it can be shown
that λ = 0 is always an eigenvalue present in the discrete spectrum.

The eigenvalues of K can be calculated numerically by approximating the second and
fourth-order derivatives using central finite differences for v and w, namely [79]

d2yn

dT 2 = yn−1 − 2yn + yn+1
dT 2 + O(dT 2), (3.45)

d4yn

dT 4 = yn−2 − 4yn−1 + 6yn − 4yn+1 + yn+2
dT 4 + O(dT 2), (3.46)

where yn is the y(T ) value at Tn, one generic point of the equally spaced mesh Tn = T0 +
ndT , with dT being the mesh element size and if N is the number of mesh elements, n =
0, 1, ..., N . Thus, using Eqs. (3.45) and (3.46), the matrix elements of K were calculated and
its eigenvalues, λ, were computed through the Matlab function, eig. Then, the sign of the
imaginary part of the eigenvalues was analyzed to determine whether the solution is stable
or not.

To calculate the continuous spectrum, the limit of K when T → ±∞, K∞ is first consid-
ered. In this case, UT →±∞ = 0, and so

K∞ =


D4
24 ∂4

T −
(

D2
2 + i

)
∂2

T − σ + i 0

0 −D4
24 ∂4

T +
(

D2
2 − i

)
∂2

T + σ − i.

 (3.47)

Then, assuming that v and w oscillate in time, i.e.,

v = v0eisT , w = w0eirT , (3.48)
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where both s and r are real, and introducing Eq. (3.48) into K∞[ v
w ] = λ[ v

w ], leads to the
system of equations


λr = D2

2 (λi − 1) + D4
24 (λi − 1)2 − σ, λr < −σ

λr = −D2
2 (λi − 1) − D4

24 (λi − 1)2 + σ, λr > σ

. (3.49)

These equations describe two branches of half parabolas which, when D2 = 0, have their axes
at λi = 1 and vertices at (−σ, 1) and (σ, 1), for the first and second equations, respectively.
An example of the linear stability operator spectrum for an unstable solution, highlighting
both the continuous and discrete parts, is shown in Fig. 3.2(a). This spectrum was obtained
for a solution with g0 = 1.50 m−1, T2 = 100 fs, Psat = 80 W, β2 = 0 and β4 = −0.080 ps4m−1.
To confirm the instability of this solution, it was perturbed by increasing its amplitude by
1% and used as an input for the integration in Z through the pseudo-spectral method. The
evolution of the peak power along Z is plotted in Fig. 3.2(b), showing that it increases
abruptly at the very start of the propagation. Subsequently, instead of evolving to a constant
value, the peak power oscillates uncontrolled.
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Figure 3.2: (a) Linear stability operator spectrum of the solution of Eq. (3.2) obtained with
β2 = 0, β4 = −0.080 ps4m−1, g0 = 1.50 m−1, T2 = 100 fs, Psat = 80 W. The eigenvalues with
negative imaginary parts are evidence that this particular solution is unstable, as shown by
the erratic oscillations in the peak power in (b).
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4. Results and Discussion
In this chapter, the results from the numerical simulation of pulse propagation on a mode-

locked laser with fourth order dispersion (4OD) using a distributed model are presented and
discussed. Section 4.1 shows and describes the different kinds of pulse solutions, as well as
the respective phase, chirp and spectra, discussing the main parameters that influence them.
In Section 4.2, the energy and width dependence with each parameter is analyzed, and the
energy-width scaling of dissipative quartic solitons is investigated. Section 4.3 concludes the
chapter with a search for a parameter region which maximizes pulse energy.

4.1 Quartic Soliton Solutions of the Distributed Model
Using the methods specified in Chapter 3 and the parameters on Table 3.1, stationary

quartic soliton solutions of the mode-locked laser distributed model (as per Eq. (2.28)) were
found. These solutions were obtained by considering a varying range of small-signal gain, g0,
inverse linewidth of the parabolic gain, T2 and saturation power, Psat, values for both positive
and negative 4OD either in the presence or in the absence of second order dispersion (2OD).

While the g0 and Psat parameters primarily impact the peak power of the pulse solutions,
the value of T2 and the sign of β4 are the parameters that mainly influence the pulse shape.
As an example, in Fig. 4.1, the quartic soliton amplitude profiles for β4 = ±0.08 ps4m−1

when β2 = −0.024 ps2m−1, g0 = 1.45 m−1, T2 = 100 fs and Psat = 80 W are represented.
For the sake of comparison with conventional solitons, the pulse profile for β4 = 0 is also
plotted, taking the approximate shape of a hyperbolic secant, as is typical in this type of
solitons. For β4 < 0, the pulses are Gaussian with symmetrically oscillating tails, which are
particularly noticeable in logarithmic scale, whereas for β4 > 0, the pulses come in the shape
of a hyperbolic secant atop a broader pedestal of exponentially decaying tails.
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Figure 4.1: Pulse profiles in (a) linear and (b) logarithmic scale for β4 = ±0.080 and 0 ps4m−1.
Note that in (a), the left-hand side axis refers to the pulse with β4 < 0 and the right-hand
side axis refers to the remaining ones. The inset highlights the oscillations in the tails of the
solution with β4 < 0. Parameters: β2 = −0.024 ps2m−1, g0 = 1.45 m−1, T2 = 100 fs and
Psat = 80 W.



CHAPTER 4. RESULTS AND DISCUSSION 29

Even though this work is mainly focused on quartic solitons and therefore on the effects of
4OD, before moving on to other solution characteristics and the influence of other equation
parameters, it is important to have an understanding on the effect of β2 on the solutions
of Eq. (2.28). Considering β4 = ±0.080 ps4m−1, Eq. (2.28) was solved considering β2 =
±0.024 ps2m−1 and β2 = 0, with the results being shown in Fig. 4.2. For both negative (Fig.
4.2(a)) and positive (Fig. 4.2(b)) 4OD, solutions exist for both signs of β2, as well as when
this dispersion parameter vanishes. When β4 < 0, it is evident that the difference in sign of
β2 did not significantly impact the pulse shape, just slightly altering the peak power, which is
highest for β2 < 0 and lowest for β2 > 0. The shape of the pulse profile in the β4 > 0 regime
is slightly different when β2 < 0 than in the other two cases, with the pedestal being narrower
in the former case, with only slight changes in the peak power distinguishing the latter cases.
It is important to note however that while in the case of β4 < 0, g0, T2 and Psat parameters
were found such that stable solutions exist for the three values of β2, in the case of β4 > 0, g0

had to be changed for a stationary solution with β2 > 0 to be found (solution stability will be
discussed later). In spite of this, these results still prove that soliton solutions can be found
for any sign of β2 with both negative and positive 4OD, and also that the main contribution
to the pulse shape comes from 4OD. Note however, that only a relatively small value of |β2|
when compared to |β4| was tested, and if |β2| were to be increased, these conclusions may not
hold true. Regardless, in the remainder of the work, whenever the effects of the dispersion
themselves are not being discussed, β2 will be set to zero.
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Figure 4.2: Pulse profiles for negative, zero and positive β2, for (a) β4 = −0.080 ps4m−1,
g0 = 1.40 m−1, T2 = 100 fs and Psat = 80 W; and (b) β4 = −0.080 ps4m−1, T2 = 110 fs,
Psat = 80 W and g0 = 1.45 m−1 when β2 ≤ 0 and g0 = 1.46 m−1 for β2 > 0. In all non-
vanishing cases, |β2| = 0.024 ps2m−1.

Since the distributed model contains dissipative terms, all the pulse solutions showed a
non-uniform phase profile, due to the existence of an intrapulse energy flow [62], which in
turn led to frequency chirping. Both the phase and the chirp were found to be dependent on
β4, as shown in Fig. 4.3. The phase profile for β4 < 0 (Fig. 4.3(a)) has a stair-like shape,
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with steps of approximately constant phase values separated by abrupt π jumps, caused by
the oscillations in the pulse tails. These π jumps also occur in conservative quartic solitons,
representing sign changes in the real envelope function. In this case however, the phase is
always alternating between 0 to π, instead of forming the stair like structure seen in Fig.
4.3(a), since energy transfer mechanisms are absent [39, 80]. In the dissipative case, the
π shifts result in chirp spikes (Fig. 4.3(d)), with the chirp itself being close to 0 in the
approximately constant phase sections. The phase and the chirp follow similar behaviours
for zero and positive 4OD, with phase profiles (Figs. 4.3(b) and 4.3(c) for β4 = 0 and β4 > 0
respectively) following an approximately triangular shape, as is typical in dissipative solitons.
This leads to the chirp shown in Figs. 4.3(e) and 4.3(f) (β4 = 0 and β4 > 0 respectively),
with the frequency chirp being constant and negative at the leading edge (t < 0) of the
pulse, increasing approximately linearly across the pulse center (with a slight overshoot when
β4 > 0), until it becomes positive and constant at the trailing (t > 0) edge of the pulse.
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Figure 4.3: Phase profiles (top row) and chirp (bottom row) of soliton solutions with (a) and
(d) β4 = −0.080 ps4m−1; (b) and (e) β4 = 0 and (c) and (f) β4 = 0.080 ps4m−1. Parameters:
β2 = −0.024 ps2m−1, g0 = 1.45 m−1, T2 = 100 fs and Psat = 80 W.

The spectral shape (Fig. 4.4) is also greatly influenced by the sign of β4. The spectral
profiles for negative and zero 4OD are, in general, somewhat similar with both spectra de-
caying exponentially (evidenced in logarithmic scale in Fig. 4.4(b)), with the main difference
being at the peak of the spectra, which is much flatter for β4 < 0 because of the amplitude
oscillations the pulse experiences [39]. The spectrum for positive 4OD is quite different from
the other two however, instead having two peaks at the edges, occurring at symmetrical
frequencies and with the same intensity. Much like when β4 ≤ 0, the spectrum for β4 > 0
decays exponentially, but as is noticeable in Fig. 4.4(b), this decay is much steeper than in
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the previous cases.
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Figure 4.4: Pulse spectra in (a) linear and (b) logarithmic scale for β4 = ±0.080 and 0 ps4m−1.
Parameters: β2 = −0.024 ps2m−1, g0 = 1.45 m−1, T2 = 100 fs and Psat = 80 W.

The other parameter that influences the pulse shape is T2, the inverse linewidth of the
parabolic gain, which is a parameter that is directly related to the spectral filtering term in
Eq. (2.28), i.e., − i

2g0T 2
2 ∂2W/∂t2. Fig. 4.5(a) shows the impact of increasing T2 in the shape

of pulses obtained with β4 = −0.080 ps4m−1. For T2 = 100 fs, the soliton profile takes the
same shape as the one presented for β4 < 0 in Fig. 4.1(a). However, as T2 increases to 150 fs,
and further so to 200 fs, the oscillations in the tails begin to flatten, until they are completely
absent for T2 = 250 fs. Moreover, for the latter T2 value and greater ones the soliton profile
is now hyperbolic secant shaped. The flattening of the oscillations and the transition in pulse
shape is further evidenced in logarithmic scale in Fig. 4.5(b). A similar behaviour exists
in the presence of positive 4OD. In Fig. 4.5(c), with β4 = 0.080 ps4m−1 and T2 = 115 fs,
the pulse has a similar shape to the pulse for positive 4OD in Fig. 4.1(a), i.e., a hyperbolic
secant sitting upon a pedestal with exponentially decaying tails. Changing T2 to 200 fs, the
pedestal contracts and the soliton profile becomes purely hyperbolic secant shaped. This is
more noticeable in logarithmic scale (Fig. 4.5(d)), where, for T2 = 200 fs, it can be seen
that the base of the pulse is much narrower and the tails are clearly defined by straight lines
converging near the peak, compared to the rapid broadening that occurs for T2 = 115 fs.

With the pulse shape varying with T2, it is expected that the phase and the chirp are also
influenced by this parameter. In fact, for β4 < 0, the phase profile (Fig. 4.6(a)) transitions
from the stair-like shape that occurs for T2 = 100 fs (blue solid curve) to a more triangular
shape when T2 = 250 fs (yellow dotted curve). As T2 increases to 150 fs (red dashed line)
and further so to 200 fs (green dash dotted line), the previously constant phase steps start
to acquire a negative (trailing edge) or positive (leading edge) slope and the π jumps in the
phase are also much less abrupt, having a finite slope. This evolution is translated in the
chirp, with the sharp peaks occurring for T2 = 100 fs, beginning to take the form of damped
oscillations for T2 values of 150 fs and 200 fs, until a chirp curve similar to the ones portrayed
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Figure 4.5: Pulse shapes for different values of T2 for (a), (b) β4 = −0.080 ps4m−1, Psat = 3 W
and g0 = 1.36 m−1, and (c), (d) β4 = 0.080 ps4m−1, Psat = 80 W and g0 = 1.48 m−1, in
linear and logarithmic scale, respectively. In both cases, β2 = 0.

in Figs. 4.3(e) and 4.3(f) (β4 ≥ 0) is obtained with T2 = 250 fs. In fact, as was previously
discussed, an increase in T2 leads to a flattening of the oscillations, which in turn makes the
phase jumps less steep and as the oscillations become flatter, the phase takes a linear profile
at each pulse edge. In direct contrast, for β4 > 0 (Figs. 4.6(c) and 4.6(d)), the differences in
phase profile and chirp with T2 are not particularly noticeable. In effect, the pulses obtained
with positive 4OD do not have oscillations, which are the cause of the sharp π jumps in the
phase when β4 < 0.
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Figure 4.6: (a), (c) Phase profiles and (b), (d) chirp of the pulses for different values of T2,
for β4 = −0.080 ps4m−1, Psat = 3 W and g0 = 1.36 m−1 (top row) and β4 = 0.080 ps4m−1,
Psat = 80 W and g0 = 1.48 m−1 (bottom row). In all cases, β2 = 0.

Likewise, the spectral shape is also influenced by T2. When 4OD is negative (Figs. 4.7(a)
and 4.7(b), in linear and logarithmic scale respectively), the T2 increase leads to a progressive
narrowing of the spectrum and the top becomes less and less flat, due to the absence of the
oscillations. As for positive 4OD (Figs. 4.7(c) and 4.7(d), linear and logarithmic scale
respectively), the differences are clearer. When T2 = 115 fs, the pulse takes a similar shape
as the one shown in Fig. 4.4 for β4 > 0, with two peaks at the edges of the spectrum. With
T2 = 200 fs, the spectrum becomes bell-shaped and the side peaks are no longer present.
Interestingly, the peak of the spectrum for T2 = 200 fs has a very similar shape to the middle
section of the spectrum for T2 = 115 fs. In fact, in logarithmic scale (Fig. 4.7(d)), the top of
both spectra only differs in the presence of the peaks at the edges.
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Figure 4.7: Pulse spectra for varying T2 in (a), (c) linear and (b), (d) logarithmic scale, for
negative (top row) and positive (bottom row) 4OD. Parameters: β2 = 0, β4 = ±0.080 ps4m−1,
g0 = 1.36 m−1, Psat = 3 W.

4.2 Energy-Width Scaling
To design a mode-locked fiber laser capable of emitting high energy ultrashort pulses, it

is essential to find how the different laser parameters impact the pulse energy and width.
Before studying the dependence with g0, Psat and T2, it is first important to understand how
the energy of the pulses varies with the 4OD parameter. To do so, g0, T2 and Psat were
kept constant, with values of 1.45 m−1, 100 fs and 80 W, respectively, and β4 was arbitrarily
varied from −0.12 ps4m−1 to 0.12 ps4m−1, using β2 = −0.024 ps2m−1 in order to allow the
zero 4OD transition. The pulse energy, E, given by,

E =
∫

|W |2dT, (4.1)

was calculated by evaluating the integral with a trapezoidal method, while the pulse width
was calculated as the full width at half maximum (FWHM) of |W |2.

The influence of β4 on the pulse width and energy is represented in Fig. 4.8. The energy
of pulses (Fig. 4.8(a)) grows linearly, with |β4|, with the growth rate being much greater for
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negative 4OD. In contrast, the pulse width (Fig. 4.8(b)) increases with β4, but the growth
rate is now much slower for negative β4. The inset in Fig. 4.8(b) shows that changing β4 from
−0.12 to 0 ps4m−1 resulted in a width increase of approximately 9%, whereas changing β4

from 0 to 0.12 ps4m−1 led to a width increase close to 350% . Therefore, these results evidence
that the pulses with the highest energies (in the nJ range) as well as the shortest widths (in
the range of a few 100 ns) are found for negative 4OD. This information is encompassed in
Fig. 4.8(c), where the dependence of the energy with the width is represented, showing a
very sharp decrease when β4 < 0 (blue solid curve), subsequently increasing when β4 > 0
(dashed red curve).
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Figure 4.8: Energy and width dependence on the 4OD parameter. (a) Energy dependence
with β4. (b) Width dependence with β4. The inset highlights the depencence of the width
with negative 4OD. (c) Energy-width curve when β4 is swept from negative to positive values.
Parameters: β2 = −0.024 ps2m−1, g0 = 1.45m−1, T2 = 100 fs and Psat = 80 W

To study the impact the g0, Psat and T2 parameters have on the energy and width of
pulses, the dispersion coefficients were kept constant, taking β2 = 0 and |β4| = 0.080 ps4m−1.
Only the sign of β4 was allowed to change to distinguish between the effects of positive and
negative 4OD. Fig. 4.9 thus shows the dependence of the energy with g0, Psat and T2, for
β4 < 0 (Figs. 4.9(a), 4.9(b), 4.9(c), respectively) and β4 > 0 (Figs. 4.9(d), 4.9(e) and 4.9(f),
respectively). Parameter regions were chosen so that localized solutions of Eq. (2.28) exist
and propagate stably. In fact if g0 is too low or either T2 or Psat are too high, stationary
soliton solutions of the evolution equation do not exist. In contrast, if g0 is too high, or if Psat

or T2 are too low, solutions are unstable. It immediately becomes apparent that the energy
is much larger for negative 4OD than for positive 4OD, further reinforcing the results from
Fig. 4.8. As an example, for g0 = 1.45 m−1, the energy for β4 < 0 is about 15 times greater
than the one calculated for the same g0 but with positive 4OD. More striking is the case
of the energy dependence with T2, where energy values are about two orders of magnitude
greater for β4 < 0 than for β4 > 0, for the same T2 value. In terms of the influence of the
parameters themselves on the energy, an increase in g0 leads to an increment in the energy,
while increasing Psat and T2 (in most cases) leads to an energy decrease, for either positive
or negative 4OD. In fact, higher g0 corresponds to higher gain and higher Psat to higher
losses, thus justifying the respective energy trends. The dependence with T2 however is not
as straightforward to interpret, because the E −T2 trend when β4 < 0 has some nuances that
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require further inspection. When higher saturation powers (80 W and 160 W for example)
are used, the energy strictly decreases with T2 but stable solutions only exist for a shorter
range of T2 values (see inset in Fig. 4.9(c)) than when a lower saturation power such as 3
W is used. In this case, for T2 & 250 fs, i.e., when pulse profiles become hyperbolic secant
shaped, the energy actually starts to increase slowly with T2.
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Figure 4.9: Energy dependence with g0 (left column), Psat (middle column) and T2 (right
column) for β4 = −0.080 ps4m−1 (top row) and β4 = 0.080 ps4m−1 (bottom row). When
kept constant, Psat = 80 W and T2 = 100 fs for either 4OD value, while g0 took values of
1.36 m−1 when β4 < 0 and of 1.45 m−1 when β4 > 0.

In terms of the soliton temporal width, its dependence on the g0, Psat and T2 parameters
is plotted for negative 4OD in Figs. 4.10(a), 4.10(b) and 4.10(c), respectively, and for positive
4OD in the same order in Figs. 4.10(d), 4.10(e) and 4.10(f). In the same way that the pulse
energy is greatest when β4 < 0, the pulse width is also the lowest in this dispersion regime,
once again reinforcing the idea that the highest energy ultrashort pulses are generated with
negative 4OD rather than positive. It is also apparent that the width decreases with g0 and
increases with Psat and T2. In the latter case, even for Psat = 3 W, the width increases in all
of the T2 range, and the width difference for the saturation powers of 3 W, 80 W and 160
W is emphasized in the inset in Fig. 4.10(c). The monotonous increase of the width with T2

is not surprising however, since this parameter is directly related to the spectral bandwidth.
An increase in T2 leads to a reduction in the spectral bandwidth and thus to greater pulse
widths.

Combining the results from Figs. 4.9 and 4.10, yields the energy-width trend of quartic
solitons of the distributed model, presented in Fig. 4.11. For negative 4OD (Fig. 4.11(a)), it
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Figure 4.10: Width dependence with g0 (left column), Psat (middle column) and T2 (right
column) for β4 = −0.080 ps4m−1 (top row) and β4 = 0.080 ps4m−1 (bottom row). When
kept constant, Psat = 80 W and T2 = 100 fs for either 4OD value, while g0 took values of
1.36 m−1 when β4 < 0 and of 1.45 m−1 when β4 > 0.

was found that, in most cases, the energy scales inversely with the width cubed, following the
trend already predicted for pure-quartic solitons (PQSs) in other models [37, 39, 43]. The
only exception is the E − w0 curve obtained in a T2 sweep for Psat = 3 W, where a non-
monotonic trend is found instead. Nevertheless, for w0 . 0.7 ps, i.e., T2 . 250 fs, the energy
does scale with w−3

0 , starting to increase linearly with the width after this point (fit in Fig.
4.11(a)). Interestingly, most of the energy-width points found for β4 < 0 fall approximately
in the same E ∝ w−3

0 curve. Through curve fittings (see gray dashed line), the curve was
found to be defined as E = 21.5w−3

0 . Recalling Eq. (1.2), Tam et al. [39] found that PQSs
follow the approximate relation,

E ≈ 2.87 |β4|
γw3

0
. (4.2)

In the case of the distributed model, the effective nonlinear parameter, γ̄, needs to be con-
sidered. Although according to Eq. (2.27), γ̄ varies with this parameter, in the considered
g0 range, for all simulations, it was found that γ̄ ≈ 0.010 W−1m−1, never deviating from this
value significantly. Using this constant value the calculated slope of 21.5, when β4 < 0 the
energy-width scaling of dissipative quartic solitons is approximately described by

E ≈ 2.69 |β4|
γ̄w3

0
. (4.3)

This relation is actually very close to Eq. (4.2), that refers to conservative quartic solitons.
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When it comes to positive 4OD however (Fig. 4.11(b)), it is immediately clear that the
E ∝ w3

0 relation reported in [46] is not followed, since the energy strictly decreases with the
width in all three parameter sweeps. To characterize the trends of these energy-width curves,
fits of the data to functions of the type awb

0 were attempted (see dashed lines in Fig. 4.11(b)),
where a and b are fitting coefficients, and it was concluded that the E ∝ w−3

0 relation is not
verified in any of the sweeps. Furthermore, it is also apparent that when β4 > 0, the energy-
width behavior is dependent on the parameter that was swept, since the data does not fit
over a single curve and, particularly for the sweeps of Psat and T2, awb

0 functions do not seem
to be the most accurate models for the data. This is not the case for the g0 sweep, where
the energy-width curve can be defined by a E ∝ w−10

0 trend. Even though, theoretically, this
scaling would be far more favorable than an energy scaling with the inverse third power of
the width, as has been stressed, pulse energies with positive 4OD are much lower than for
negative 4OD, and widths are also significantly greater, rendering this scaling impractical in
ultrashort pulse applications.
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Figure 4.11: Energy-width curves using log10 scale and associated fittings, obtained by sweep-
ing g0, Psat and T2 for (a) β4 = −0.080 ps4m−1 and (b). When kept constant, T2 = 100 fs,
g0 = 1.36 m−1 for β4 < 0 and 1.45 m−1 for β4 > 0 and when not specified, Psat = 80 W.

4.3 Energy Maximization
The results presented in the previous section indicate how a single parameter, g0, Psat

or T2 could be manipulated to maximize the energy of ultrashort quartic solitons, provided
that the others were kept constant. Moreover, those results provide some insights on how
changing specific parameters may yield a better outcome in the maximization of the energy.
For example, it was with the sweep of T2 (Fig. 4.9(c)) that the highest energies were found,
reaching values of a few nJ and even though the energy is lower for higher Psat values,
increasing this parameter from 3 W, to 80 W and further so to 160 W (see inset) did not lead
to a very significant energy reduction. Therefore, the generation of pulses with higher energies
will inevitably involve a compromise in the choice of parameters. As a thought experiment,
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a reduction of T2 in relation to the minimum value in Fig. 4.9(c), could lead to a further
increase in the energy. However, to find stable solutions in that T2 region, hypothetically,
an increase in Psat or even a reduction in g0 could be necessary, but the benefits to the
energy of decreasing T2 would ideally outweigh the drawbacks of increasing Psat or reducing
g0. Hence, the maximization of the energy must take into account the simultaneous variation
of all parameters.

The problem with varying g0, Psat and T2 simultaneously is that the existence and stability
of solutions of Eq. (2.28) is strongly dependent on the working parameter region. In fact, an
increase of Psat implies that the saturable absorber (SA) saturates for higher power, leading
to a decrease in the nonlinear gain. In turn, the other losses might be left unbalanced and
soliton solutions will not be found. This same effect also occurs when g0 is decreased which,
according to Eq. (2.27), results in greater effective saturation powers, P̄sat. For higher g0

values, the linear losses (−g0/2 + kOC/2L + M/2L) tend to zero, and the linear gain would
produce unstable background. On the other hand, lower values of Psat lead to a sharp,
unbalanced, increase in the nonlinear gain, also leading to unstable solitons

To have a better understanding on how highly energetic ultrashort pulses can be generated
through the combination of the aforementioned parameters, solutions were searched for on
a g0 − T2 region for saturation powers of 80 W and 160 W, considering β2 = 0 and β4 =
−0.080 ps4m−1. Negative 4OD was considered because, so far, all results stress that the
shortest pulses and also the most energetic ones are found in this dispersion regime. The
stability eigenvalues of these solutions were calculated using the method described in Section
3.3, since it is a much faster approach than the direct integration of the evolution equation
through the pseudo-spectral method.

Fig. 4.12 shows the stability border of the solutions in the g0 − T2 plane, for Psat = 80 W
(Figs. 4.12(a) and 4.12(b)) and Psat = 160 W (Fig. 4.12(c) and 4.12(d)) with the energy in
nJ in logarithmic scale (left column) and the width in fs (right column) being represented
as a contour plot. It is important to stress that in spite of the energy increasing with g0 for
constant T2 and Psat, lower values of g0 allow stable solutions to exist for lower values of T2,
thus causing a significant increase in the energy. Likewise, and although for constant T2 and
g0 a decrease in Psat represents an increase in the energy, if T2 and g0 are allowed to vary, the
contribution from these changes will compensate the negative contribution of a higher value
of Psat, yielding greater energies. In terms of the pulse widths, it has been shown in Fig.
4.10(c), and is further reinforced in Figs. 4.12(b) and 4.12(d), that as T2 decreases, the pulse
width also decreases, due to T2 being a parameter related to the spectral filtering, thus having
a direct impact in the pulse shape and width, which always changes in the same direction as
the referred parameter. As a result, the highest energy pulses are also the shortest ones. In
fact, setting T2 = 8 fs and g0 = 1.30 m−1, yielded quartic solitons with an energy of 391 nJ
and a width of 39 fs. These energy values far surpass the ones presented in previous works
on quartic solitons [39, 42, 43, 46].
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Figure 4.12: Region of existence of stable solitons in the g0 −T2 plane. In the colored regions,
solutions exist and propagate steadily. The base 10 logarithm of the energies in nJ ((a) and
(c)) and the widths in fs ((a) and (b)) are represented as contour plots, for Psat = 80 W
(top row) and Psat = 160 W (bottom row). For each saturation power, the insets show the
highest energy pulses found within the stability border, displaying the corresponding energy
and width values. Dispersion parameters: β2 = 0, β4 = −0.08 ps4m−1.
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For the sake of comparison, a similar procedure was followed but for β4 = 0.080 ps4m−1

and Psat = 80 W instead, with the resulting stability regions and contour plots of the energy
and width being represented in Figs. 4.13(a) and 4.13(b) respectively. Even through the
simultaneous variation of g0 and T2 for fixed Psat, solutions with energies higher than the
ones in Fig. 4.11(b) were not found. This is due to the fact that the parameter region where
stable soliton solutions exist for positive 4OD is far more limited than the one found with
negative 4OD. Moreover, by comparing the results in Figs. 4.12 and 4.13 it is noticeable
that the highest energy and shortest width pulses for negative 4OD are about 3 orders of
magnitude larger than the ones for positive 4OD. Therefore, mode-locked lasers with positive
4OD seem not to be the best option whenever the practical application requires very energetic
short pulses.

(a) (b)

Figure 4.13: Region of existence of stable solitons in the g0 − T2 plane. The energy in pJ
(a) and the width in ps (b) are represented above the curves as contour plots. Equation
parameters: β2 = 0, β4 = 0.08 ps4m−1 and Psat = 80 W.
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5. Conclusions and Future Work
In recent years, quartic solitons have gained interest in the fields of optical Kerr cavities

and mode-locked lasers, because the energy of such pulses scales inversely with the width
cubed. This is of particular importance in applications such as nonlinear medical imaging and
material processing as well as frequency comb and supercontinuum generation. Even though
conservative quartic solitons have been studied rather extensively, contradicting results on
dissipative quartic solitons may evidence that this energy-width scaling is not universally
valid. Thus, further investigation was needed to clarify the origin of these differing results
and to understand how different physical parameters could influence this trend.

In this dissertation, a distributed model for a passively mode-locked fiber laser was used to
further explore the energy-width scaling of quartic dissipative solitons, to verify the parameter
dependence of this trend and to find ways to maximize the energy of ultrashort pulses.
The model was carefully chosen to include second order dispersion (2OD) and fourth order
dispersion (4OD), to not approximate the saturable absorber (SA) term and finally to allow
for a direct correspondence between equation parameters and realistic laser data. Localized
solutions of the distributed equation were found using the Newton conjugate-gradient (NCG)
method. These were subsequently perturbed and taken as inputs in the integration of the
distributed equation using a pseudo-spectral method, to verify their stability and study their
evolution along the spatial coordinate. Finally, a linear stability analysis was undertaken to
map the parameter region where stable soliton solutions exists, and to aid in the search for
maximum energy solitons.

Quartic soliton solutions were found for both positive and negative 4OD, in the presence
or in the absence of positive and negative 2OD, in a range of 4OD dispersion (β4), gain
(g0) saturation power (Psat) and spectral filtering (T2) parameters. The pulse shape varied
with both β4 and T2. For T2 . 200 fs (weak filtering), negative 4OD resulted in Gaussian
pulses with oscillating tails, while hyperbolic secant pulses sitting upon a broad pedestal with
exponentially decaying tails were found for positive 4OD. When T2 & 200 fs (strong filtering),
hyperbolic secant pulses were obtained, for either sign of β4. In all of these cases, soliton
solutions had a non-uniform phase profile, leading to frequency chirping, which is directly
related to the energy inflow and outflow due to the presence of gain and loss mechanisms.
Under strong filtering, the pulse spectra were bell shaped curves for either sign of 4OD, but
with weak filering and β4 < 0, pulse oscillations led to a flatter spectral peak, while β4 > 0
resulted in spectra with two lateral peaks.

Pulse energies (E) were found to be greater and pulse widths (w0) shorter in the nega-
tive 4OD regime, with the energy increasing with |β4|. Pulse energy increased with g0 and
decreased with Psat, since these terms are related to energy gain and loss respectively. For
positive 4OD, the energy decreased with T2 and this same behaviour occured for negative
4OD but only for T2 . 200 fs. After this point the energy started to increase with T2, yielding
a non-monotonous trend. The width followed an opposite trend as the energy with both g0

and Psat, and it decreased monotonically for all values of T2, regardless of the sign of β4.



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 43

In the negative 4OD regime and under weak filtering, the energy scaled inversely with
the third power of the width, following a trend very similar to the one found in conservative
quartic solitons, for all parameter sweeps. When g0 and Psat were kept constant and T2 was
increased beyond 200 fs, the energy increased with the width instead, however. In contrast,
a trend that described the E − w0 curve when β4 > 0 for all the parameter sweeps was not
found, but the energy strictly decreased with the width in all cases. Therefore, the E ∝ w3

0
relation reported in [46] was not found, and the results present in this work evidence that in
the dissipative case, the E −w0 is indeed parameter dependent, at least in the case of β4 > 0.

With both the energy and stability of solutions being strongly parameter dependent, a
careful compromise in the choice of g0, Psat and T2 values (assuming fixed dispersion) is of
utmost importance to maximize the energy. Despite the energy being greater for higher g0

and lower Psat, as long as T2 is allowed to decrease, it was found that the resulting energy
increase from this reduction far outweighs the negative contribution of a g0 decrease or a Psat

increase. Through a linear stability analysis, quartic solitons with an energy of 391 nJ and
a width of 39 fs were found, considering g0 = 1.30 m−1, Psat = 160 W and T2 = 8 fs, with
β4 = −0.080 ps4m−1. It is thus possible to conclude that the manipulation of the spectral
filtering in a realistic laser setup will be the key to maximize the energy of generated pulses
while simultaneously decreasing the width, under the presence of negative 4OD. Energies
are orders of magnitude lower under positive 4OD so, in practice, it is advantageous to use
β4 < 0.

As future work, the internal energy flow of the quartic soliton solutions of the distributed
model can be quantified. Besides, solutions were found for different parameter values which
had the same energy and width, and differences between these solutions could be investigated.
Furthermore, the model itself can be improved by the addition of a gain saturation term.
It can be used also to study other interesting effects such as modulation instability [49]
and to search for oscillating solutions [44]. Moreover, it is also relevant to understand how
larger values of the 2OD parameter how the presence of a third order dispersion (3OD) term
could impact the results. Finally, this work can be expanded by transcribing it to a lumped
model, which will allow the evaluation of the accuracy of the distributed model through the
comparison of solutions obtained in both approaches.
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