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Palavras-chave Modelação numérica, CROCO, plataforma continental do Noroeste Ibérico, trans-
port sedimentar, BBL, variabilidade sazonal, afloramento costeiro, rios.

Resumo O transporte de sedimentos na plataforma continental influencia muitas áreas inter-
disciplinares, incluindo problemas ecológicos e sociais. Compreender os processos
subjacentes que controlam o transporte de sedimentos é essencial para a gestão
costeira, a distribuição de nutrientes, de poluentes e da abundância da fauna e flora
bentónica, que podem impactar toda a cadeia alimentar no ecossistema marinho.
O presente trabalho visa melhorar a compreensão da variabilidade espacial e tem-
poral do transporte de sedimentos, na plataforma continental do Noroeste Ibérico.
Utilizando ferramentas numéricas, este estudo procura melhorar a compreensão dos
processos físicos que afetam o transporte de sedimentos nesta região. Um modelo
oceânico 3D CROCO (v1.0), que inclui um módulo integrado de transporte de
sedimentos, foi implementado e configurado para este estudo. Este sistema foi
acoplado com um modelo de ondas e com um modelo atmosférico durante um
ciclo anual completo, de nov. de 2008 até dez. de 2009. Um conjunto de dados in
situ foram utilizados para validar, com sucesso, os resultados do modelo. A análise
estatística e quantitativa do sistema de modelação demonstrou uma concordância
relativamente boa com os dados observados. Os padrões de transporte de sedimen-
tos, foram influenciados pela sazonalidade da dinâmica da plataforma continental
e pela atividade das ondas. Embora se tenha observado um transporte em geral
fraco durante a primavera, o verão e o outono, observou-se um transporte consid-
erável durante o inverno, associado a tempestades. A circulação da plataforma,
em resposta aos forçamentos atmosféricos, determinou a direção do transporte,
enquanto a energia das ondas regulou a re-suspensão dos sedimentos. Os even-
tos de afloramento e afundamento induzidos pelas tempestades, promoveram o
transporte de sedimentos para Sul e para Norte respetivamente, principalmente
na camada limite de fundo. As características morfológicas da plataforma e a
dinâmica frontal de interação entre as águas oceânicas e as águas mais doces,
limitaram o transporte transversal de sedimentos em suspensão. Na região norte
da zona de estudo, foi ainda possível observar a formação de vôrtices junto ao
fundo, criando vias de transporte de sedimentos para o oceano aberto. O fluxo de
matéria em suspensão de origem fluvial foi modelado com sucesso.





Keywords Numerical modelling, CROCO, NW Iberian Continental Shelf, sediment transport,
BBL, seasonal variability, coastal upwelling system, rivers.

Abstract Sediment transport in the continental shelf regions affects many interdisciplinary
areas, including ecological and social problems. Understanding the underlying pro-
cesses influencing sediment transport is essential for coastal management, distribu-
tion of nutrients, pollutants and abundance of benthic fauna and flora, which can
impact the entire food chain in the marine ecosystem. The present work aims to
enhance our understanding of spatial and temporal variability of sediment transport
in the NW Iberian Continental Shelf. By using numerical tools, this study seeks
to provide new insights into physical processes affecting sediment transport at dif-
ferent time scales. State-of-the-art 3D oceanic numerical model CROCO (v1.0),
which includes an integrated sediment transport module, was implemented and
configured for this application. The modelling system was coupled offline with 2D
spectral wave and atmospheric models. The model simulation covered an entire
annual cycle from November 2008 to December 2009, and available in situ data
was used to validate the results. The statistical and quantitative analysis of the
modelling system demonstrated a relatively good agreement with the observational
data sets. The sediment transport patterns were influenced by the seasonality of
the shelf dynamics and wave activity. While low sediment movement was observed
during spring, summer and autumn, considerable transport could be seen during
winter, associated with storms. The shelf circulation, driven in response to atmo-
spheric forcing, determined the transport direction, while wave energy regulated the
re-suspended sediment mass. The storm-driven upwelling and downwelling events
promoted the Southward and Northward transport of sediments mostly through the
Bottom Boundary Layer. The morphological features of the shelf and the frontal
dynamics between the oceanic and fresh water in the mid-and inner shelf limited
the cross-shore transport of suspended sediments. In the Northern region of the
study area, a formation of shelf-scale near-bottom eddies was modelled, creating
sediment transport pathways to the open ocean. River inflow of suspended matter
was also successfully simulated.
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Chapter 1

Introduction

1.1 State of the art and motivation
Coastal regions are an important part of the global carbon cycle despite their relatively

small surface area in the oceans. Characterized by high primary production and downward
flux of POC (Particulate Organic Carbon), creating a potentially large sink for CO2 burial
(Karakaş et al., 2006). Likely, the unburied part is transported from the continental margin
to the open ocean in dissolved and suspended particulate form (Wollast , 1998; Bauer and
Druffel , 1998; Muller-Karger et al., 2005; Liu et al., 2010) through the surface, intermediate
and bottom nepheloid layers, in which the lateral transport is highly affected by the bottom
boundary layer dynamics (Thomsen, 2002; Hwang et al., 2010).

The mid-shelf mud depocenters are one of the major sinks for material coming from the
land, formed through the near-bottom sediment dispersal and accumulation on the shelf
(Hanebuth et al., 2015). These mud belts contain valuable information about the global
source-to-sink system and environmental variability (Sommerfield and Wheatcroft , 2007;
Hanebuth and Lantzsch, 2008). In addition, due to the relatively calm hydrodynamic
conditions, these areas serve as cradles of life (Rosenberg , 2001). In general, the soft-
bottomed sediment hosts some of the ocean’s highest benthic biodiversity, which in return
greatly influences the higher trophic levels (Gray et al., 1997; Thrush and Dayton, 2002).
The Northwest (NW) Iberian shelf is known as one of Europe’s most important fishing
areas, therefore the understanding of spatial and temporal variability of the seafloor is
vital for effective marine governance.

Various studies have been performed on the NW Iberian shelf, addressing the patterns
of sediment transport and the spatial distribution, along with the bottom nepheloid layer
behaviour (Dias et al., 2002b; Huthnance et al., 2002; Oliveira et al., 2002a; Thomsen et al.,
2002; Vitorino et al., 2002a; Van Weering et al., 2002; Villacieros-Robineau et al., 2013;
Oberle et al., 2014; Zhang et al., 2016; Villacieros-Robineau, 2017; Villacieros-Robineau
et al., 2019). Several studies have demonstrated the advantages of numerical models while
covering different temporal and spatial scales. Among others, to investigate the continen-
tal shelf circulation (Oliveira et al., 2009), characterize wave climate (Rusu and Guedes
Soares , 2009; Semedo et al., 2011) and atmospheric conditions in morphodynamic studies
(Gonçalves et al., 2014), reproducing quite realistically the actual processes (Rusu and
Soares , 2013; Carvalho et al., 2014; Cordeiro et al., 2015). Nevertheless, until now, only
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a handful of numerical modelling studies have been performed to represent the sediment
transport in the NW Iberian shelf. Davies et al. (2002) studied the sediment transport
at the Iberian margin using idealized winds in the simulations. Xing and Davies (2003a)
investigated suspended sediment transport due to tides and the influence of wind direction,
waves and density stratification (Xing and Davies , 2002) focusing on the shelf edge areas.
The three studies referenced above (Davies et al., 2002; Xing and Davies , 2003a, 2002)
used a 2D model consisting of a cross-shelf section, leaving aside the alongshore variability
of the coastal circulation. Oberle et al. (2014) simulated the wave-driven changes on the
seabed using only a wave model, neglecting the influence of other forces. They considered
the seasonal and storm-specific wave conditions, showing a strong influence of medium to
severe storm events on the overall seabed mobilisation. Zhang et al. (2016) studied the
storm-driven bottom sediment transport for one month in September 2014, considering
currents and waves.

All the numerical modelling that has been done so far, in the area of fine-grained
sediment transport in the NW Iberian shelf, still has left some unanswered questions and
does not provide information about the long-term spatial and temporal variability. There
is a need for a better understanding of these mechanisms and the assessment of longer-
period sediment budgets. This information would be valuable for several interdisciplinary
areas, where sediment transport is a key factor, for instance, studies of benthic habitats
(Snelgrove, 1999), coastal management (dredging and beach nourishment), resuspension of
contaminants associated with the sediments resuspension, detection of oil-spill deposition,
effects of sediments in fisheries (aquaculture, trawling) and development of coastal and
seafloor structures (platforms, pipelines, cables), among others.

The present PhD thesis aims to provide a new insight into the underlying processes
affecting the spatial and temporal variability of sediment transport in the NW Iberian
continental shelf. For this purpose various numerical models were implemented, simu-
lating hydrodynamics, waves and suspended sediment transport. Chapter 2 presents a
detailed description of the models, set-up and configuration applied to study the sediment
movement on the shelf. An application of the spectral wave model used to include the wave
forcing is shown in Chapter 3. The published chapter evaluates the influence of wind data
from various sources on wave modelling in the area of interest. Next, Chapter 4, concen-
trates on the assessment of the developed modelling system to study the sediment transport
processes. An extensive comparison with the observational data sets is performed, demon-
strating the capabilities and shortcomings of this application. The successful validation
of the models, allowed us to gain knowledge about the importance of different phonemes
controlling the sediment transport and their interrelationship, from which the fifth chapter,
5, arose. The results of the previous chapter were the motivation to create an even more
sophisticated simulation. The sediment input from the rivers was added, permitting to
study the fate of sediments coming from the river systems in Chapter 6.
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1.2 Objectives
The fundamental objectives of the present study are the implementation and configu-

ration of a modelling system, followed by the analysis of the results. This is to understand
the dynamical mechanisms of transport of fine-grained sediments on the continental shelf
and to better comprehend the underlying physical processes in the NW Iberian shelf. To
fulfil these objectives, this work is based on recent and current international project results,
like the ones obtained under the scope of the RAIA, RAIA.co and MarRisk, involving this
region’s scientific community, and supported by collaboration with researchers from inter-
nationally referenced institutions (Centro de Estudos do Ambiente e do Mar, University of
Aveiro – CESAM-UA, Aveiro, Portugal and Instituto de Investigaciones Marinas – CSIC,
Vigo, Spain). The scientific development objectives are:

• Development of a modelling system including high resolution 3D oceanic model with
a sediment transport module, coupled offline with a spectral 2D wave model and an
atmospheric model. The sediment transport module allows to solve the re-suspension,
transport and suspension processes of sediments (coarse and fine sands).

• Validation of the modelling system, with the available historic observational data.

• Study the physical processes affecting sediment transport at different time scales,
from short-term processes (storm events) to inter-annual variability.

The three main research questions to answer are:

1. What is the role of the driving forces (waves, shelf circulation, river and estuarine out-
flows, meso- and submesoscale circulation, among others) on the sediment transport
and sediment patterns in the NW Iberian Peninsula continental shelf?

2. What happens to the re-suspended sediments and what quantity is exported to the
adjacent ocean?

3. What is the fate of the sediment input from the river systems of the study area?

To sum up, we are looking to give a quantitative comprehension of the transport pro-
cesses that carry material from source to sink to explain the existence of different geologic
signatures (for example, mud patches, etc.).

1.3 Characterization of the Western Iberian Margin
The study site, NW Iberian continental margin (Rey et al., 2014), includes the Galician

Continental shelf and the northern part of the Portuguese Continental shelf. Hundreds of
kilometres long coastline is configured by the presence of rivers, rocky outcrops and sandy
dunes. The shelf is narrow, about 30 km, off from the Galician Rías and slightly broader
elsewhere, around 50 km (Maestro et al., 2013). The continental slope in the North is
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steep and a wide re-entrance arc is formed in the outer shelf. Whereas, in the South,
the continental shelf is gentle and a barrier is formed in front of the shelf break by rock
plateaux (Dias et al., 2002a).

The two most important rivers providing fresh water and particulate matter to the
shelf, are Minho in the North and the Douro in the South. It has been estimated that the
Douro River introduces approximately 87 % of the fluvial sediments to the shelf (Dias ,
1987). In addition, along the NW Iberian continental margin, there are several smaller
estuaries like Ave, Cávado, Lima and Galician Rías, which also contribute, but likely to a
smaller extent. In the last decades, the intensive construction of dams in the rivers has
drastically reduced the sediment input to the shelf (Jouanneau et al., 2002).

Several authors have found that the inner and mid-shelf in the study area are greatly
decoupled from the large-scale ocean circulations which prevail off the shelf edge along the
Iberian margin and the hydrodynamic system is mainly driven by tides and wind-forced
currents on the shelf (Csanady and Shaw , 1983; Relvas et al., 2007; Zhang et al., 2016).

Two atmospheric systems, the Azores high-pressure area and Iceland’s low-pressure
area, are influencing the shelf dynamics in the study area (Wooster et al., 1976). Seasonal
variations in these systems create two mean circulation patterns: downwelling from October
to March, caused by predominant southerly winds and upwelling from April to September
due to the north-easterly winds. Over the slope density-driven Iberian Poleward Current
(IPC) flows Northward, carrying warm and saline waters from the Southern regions to
the NW Iberian continental margin (Frouin et al., 1990; Haynes and Barton, 1990; Peliz
et al., 2003a,b). The current intensifies during the winter period due to the prevalent
downwelling conditions (Teles-Machado et al., 2016). Downwelling promotes the onshore
advection of surface waters, creating a thermohaline front between the saline oceanic waters
and freshwater exported from the rivers, generating buoyant plumes over the shelf, named
generically as the WIBP (West Iberian Buoyant Plume) (Peliz et al., 2002; Mendes et al.,
2016). The location and extent of the plume are determined by the prevalent wind forcing.
Under Southerly wind the plume is constrained against the coast, constricting the coastal
waters to the shelf and impeding the cross-shelf exchange between the shelf waters and the
ocean (Castro et al., 1997; Álvarez-Salgado et al., 2003). When forced by Northerly winds
the plume can dislocate more across the shelf, mainly in the surface layers.

The wave regime of the study area is strongly seasonal and highly energetic, especially
during the winter and transition periods. Typical winter conditions are dominated mostly
by NW swells while occasionally turning to SW, characterized by a significant wave height
of about 3-4 m and a mean period of 8-9 s (Vitorino et al., 2002b). During storm events,
wave height exceeds 5 m and periods over 10 s occur (Lorente et al., 2017). Although waves
more than 7 m in height with periods around 13 s or higher are not uncommon (Pita and
Santos , 1989; PO-Waves Group, 1994). The summer wave regime is mild, with significant
wave heights < 3 m and mean period < 8 s (Vitorino et al., 2002b,a).
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Chapter 2

Modelling system

2.1 Introduction
The advances in the computational capabilities of computers have opened a way for

the development of more complex numerical model configurations. This has allowed a
multidisciplinary approach for representing various processes in different spatial- and time
scales (Li et al., 2017; Pinto et al., 2012; Sykes and Barciela, 2012; Warner et al., 2008).
Improved measurement equipment and new techniques have made it possible to gather
more data and given access to areas with difficult environmental conditions (e.g. stormy
continental platform, deep sea, interactions between ocean-atmosphere, sediment compo-
sition) (Bosnic, 2017; Zhang et al., 2016; Villacieros-Robineau et al., 2019). This new
insight and information about different aspects of regional oceanography have been also
exploited in numerical models. The continuous improvement of numerical description of
physical processes, and assimilation of measurement data into the systems, has remarkably
improved the quality and reliability of modelling results (Kari et al., 2017; Miles et al.,
2015).

Numerical models are successfully representing atmospheric dynamics (e.g WRF - Ska-
marock et al. (2019)), hydrodynamics (e.g ROMS - Shchepetkin and McWilliams (2005),
CROCO - Debreu et al. (2012), POM - Blumberg and Mellor (1987), GETM - Burchard and
Bolding (2002)), wave propagation (SWAN - Booij et al. (1999), WWIII - Tolman (1989),
WAM - WAMDIG (1988)) and sediment-transport (CSTMS - Warner et al. (2008), MUS-
TANG - Le Hir et al. (2011), USGS - Sherwood et al. (2005)). Taking advantage of each
of these model abilities and their coupling capabilities, numerous modelling systems have
been developed to study coastal morphology and sediment transport. These systems gen-
erally interconnect hydrodynamics, turbulence and wave models, providing information
about the dynamical forcing to estimate the shear stresses in the bottom layers for ex-
ample through parameterizations or using Bottom Boundary Layer models (BBL). These
various approaches implemented in modelling systems, distinguish them, giving each one
its advantages and disadvantages.

The choice of a numerical model and its assessment, is one of the fundamental compo-
nents, determining the success of a modelling study. Amoudry and Souza (2011), presents
a detailed synopsis of five widely used modelling systems: ROMS, Delft3D, ECOMSED,
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TELEMAC and MIKE. These systems present distinct strengths and shortcomings, re-
garding coastal zone modelling, both physical and numerical. Moreover, they are facing
more general issues related to the empirical nature of the characterisation of sediment
transport, turbulence closure schemes and parametrization. Challenges also arise from the
representation of large- and small-scale processes, where one is governed by simple and
well-understood principles (e.g. conservation of mass) and the other includes complex and
still poorly understood processes (e.g shear stress estimates, re-suspension of sediments
in the bottom boundary layer, formation of bedforms, etc). The different time scales as-
sociated with these processes make the problems even more elaborate. The uncertainties
in models are also increased, by neglecting mixed beds, cohesive sediments and biological
effects, among other things.

In the present study, an off-line modelling system was developed using the new CROCO
v1.0 based on the ROMS-AGRIF hydrodynamic model (Shchepetkin and McWilliams ,
1998, 2003, 2005; Penven et al., 2006), with sediment-transport capabilities (CSTM, Blaas
et al. (2007) ), coupled offline with spectral wave model SWAN (Booij et al., 1999) and
atmospheric model WRF (Skamarock et al., 2019). The hydrodynamic model ROMS-
AGRIF was chosen due to the extensive experience of the investigation group with this
model, which has led to a successful implementation and fine-tuned configuration of the
model for the study area e.g. Nolasco et al. (2013); Cordeiro (2018); Cordeiro et al. (2021).
The sediment model applied in this thesis is integrated into the CROCO system, making its
use very accessible and effective. The wave model SWAN was selected due to the previous
experience and knowledge of the doctorate student (Viitak et al., 2016, 2020).

2.2 SWAN
SWAN is a third-generation spectral wave model developed at the Delft University of

Technology, Netherlands. Wave generation and propagation over a realistic bathymetry
are described with a two-dimensional wave action density spectrum N (Booij et al., 1999).

N(σ, θ) =
E(σ, θ)

σ
(2.1)

where E(σ, θ) is the wave energy density, σ relative frequency as observed in a frame
of reference moving with current velocity and θ the wave propagation direction. An action
balance equation is solved to describe the evolution of the action density N , without any
a priori restrictions on the spectrum, which reads

∂N

∂t
+∇−→x · [(−→cg +

−→
U )N ] +

∂cσN

∂σ
+

∂cθN

∂θ
=

Stot

σ
(2.2)

where the second term represents the propagation of wave energy in two-dimensional
geographical −→x -space, with wave group velocity −→cg and the ambient current

−→
U . The third

term stands for the effect of shifting of the relative frequency due to variations in depth and
mean currents. Finally, the fourth term designates depth- and current-induced refraction.
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cσ and cθ terms symbolize the wave propagation velocities in spectral space (σ, θ). So, the
left-hand side of the equation represents the kinematics, and on the right-hand side all
the physical processes that generate, dissipate or redistribute the wave energy. The Stot

contains the source/sink terms

Stot = Sin + Snl3 + Snl4 + Sds,w + Sds,b + Sds,br (2.3)

These terms represent wave growth by the wind, nonlinear transfer of wave energy
through three- and four-wave interactions, and dissipation of wave energy due to white-
capping, bottom friction and depth-induced wave breaking, respectively. For more detailed
information about different formulations in the wave model, the Scientific and Technical
Documentation of SWAN should be consulted (SWAN , 2013).

2.3 CROCO
CROCO is a free-surface split-explicit oceanic model using terrain-following curvilinear

coordinates (Shchepetkin and McWilliams , 2003, 2005).
The free-surface ζ of the ocean is represented as a function of space (x, y) and time (t)

ζ = ζ(x, y, t). This approach is more realistic, allowing the ocean surface to continuously
change.

A split-explicit time-stepping scheme divides the solution into a barotropic (i.e. depth
independent) and baroclinic mode. This makes it possible to advance the surface elevation
and barotropic momentum, using a short time step and a much larger one, for 3-dimensional
variables like salinity, temperature and baroclinic momentum.

The vertical S-coordinate system enables the model to adapt to the irregularities of
the bathymetry, maintaining the number of levels, consequently, the resolution is higher in
shallower areas and smaller in deeper regions. To reduce the error in the pressure gradient
calculations, when using the S-coordinate, an advection scheme based on the work done by
Marchesiello et al. (2009) is adopted. Arakawa C-grid is used for horizontal discretization,
where velocity vectors are defined in the grid faces and the rest of the variables inside the
grid cells.

The incompressible primitive equation can describe the ocean state to a good approxi-
mation (2.4, 2.5, 2.6). So, CROCO solves the simplified Navier-Stokes equation, using the
Boussinesq and hydrostatic approximations (2.7), along with the advective-diffusive equa-
tion (2.8) and a nonlinear equation of state (2.9). The following equations are in Cartesian
coordinates, where u, v, w are the x, y, z (longitude, latitude, depth) components of vector
velocity −→v , f(y) Coriolis parameter 2Ω sinϕ, Φ(x, y, z, t) the dynamic pressure Φ = P/ρ0,
with P the total pressure and ρ = ρ0 + ρ

′ the water density (ρ0 the average density and
ρ

′ the perturbation), Fu,Fv,FC denote the forcing terms, Du,Dv,DC represent the diffu-
sive terms. For a more thorough description, consult Shchepetkin and McWilliams (2003,
2005).
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The momentum balance in the x and y directions is expressed in terms of grid-scale
and subgrid-scale velocity components. The vertical fluxes of the latter are parametrized
using turbulent closure schemes.

∂u

∂t
+
−→
∇.(−→v u)− fv = −∂Φ

∂x
+ Fu +Du (2.4)

∂v

∂t
+
−→
∇.(−→v v) + fu = −∂Φ

∂y
+ Fv +Dv (2.5)

The continuity equation for an incompressible fluid is expressed as,

−→
∇.(−→v ) =

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2.6)

The hydrostatic approximation assumes that there is a balance between the vertical
pressure gradient and the buoyancy force. All the non-hydrostatic processes must be
parametrized.

ρ0
∂Φ

∂z
= −ρg (2.7)

where g is the acceleration of gravity.
The advective-diffusive equation expresses the time evolution of a scalar concentration

field C(x, y, z, t) such as salinity, temperature and sediment concentration.

∂C

∂t
+
−→
∇.(−→vC) = FC +DC (2.8)

The equation of state,

ρ = ρ(T, S, P ) (2.9)

2.4 Sediment transport
The USGS sediment model, derived from the UCLA/USGS ROMS community, is used

in this application (Blaas et al., 2007; Warner et al., 2008; Shafiei et al., 2022). It is
embedded as a module in CROCO.

This study concentrates only on the suspended sediment movement in the continental
shelf, considering that it is the dominant mode of transport for fine sands (Bosnic, 2017).
Moreover the formation of individual morphologic features, for example, sandbanks or
sediment exchange with subaerial beach exceeds the scope of the present application.

2.4.1 Surface sediment distribution

The sediment bed is represented by three-dimensional arrays with a constant number
of layers beneath each horizontal model cell. Each cell of the bed is initialized assigning the
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following properties: thickness, sediment-class distribution, porosity, and age. Using these
values and the grain density, the mass of each sediment class in each cell can be determined
(Warner et al., 2008). In addition, the evolving properties of the seabed, including bulk
properties of the surface layer, like active-layer thickness, mean grain diameter, mean
density, mean settling velocity and mean critical stress for erosion and descriptions of the
subgrid-scale morphology (ripples) are stored in two-dimensional arrays (see Appendix
A). Based on these properties, estimates of bed roughness are obtained using the BBL
formulations, described in more detail in the subgrid-scale processes section 2.4.3 and fed
into the bottom stress calculations. The sediment routines use the bottom stresses to
determine the resuspension and transport of sediments.

Active layer za represents the average vertical dimension of the transport system, inter-
preted physically as the thickness of the mobile layer, which is estimated at the beginning
of each time step (Harris and Wiberg , 1997).

za = k1ρ0(τsf − τce) + k2D50 (2.10)

where τsf (Pa) is the total skin-friction bottom stress caused by the combined maximum
wave-current activity, τce (Pa) is the critical stress for erosion averaged over all sediment
classes, ρ0 = 1025 (kg/m3) Boussinesq approximation mean density, D50 (mm) is the
median grain diameter and empirical constants k1 = 0.007, k2 = 6 (Jullien et al., 2022).
When sediments are re-suspended or transported and the thickness of the top layer is
less than the za, sediment mass from the deeper layers is entrained until the top layer
thickness equals za. If more than two layers are mixed, then the bottom layer is split, to
keep the constant number of layers and conserve the sediment mass. If through deposition
processes the top layer thickness exceeds the user-defined threshold, the bottom two layers
are combined and a new layer is provided to begin the accumulation of depositing mass.
The mass of each sediment class available for transport is limited to the mass available
in the active layer. When erosion and deposition have been calculated the active-layer
thickness is recalculated and bed layers are readjusted. So, any newly deposited material,
with a thickness less than the za is lost. In the end, the sediment bed characters, such
as D50, ripple geometry etc., are updated, to be used in the bottom stress calculations
(Warner et al., 2008).

2.4.2 Suspended sediment transport

Sediments suspended in the water column are transported by solving an advection-
diffusion equation:

∂(HzC)

∂t
+

∂(uHzC)

∂x
+

∂(vHzC)

∂y
+

∂(ΩHzC)

∂s
= − ∂

∂s
(c′w′ − νθ

Hz

∂C

∂s
) + Csource (2.11)
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where Hz is grid-cell thickness, C tracer quantity, u,v and Ω are the mean components
of velocity in the horizontal (x-longitude and y-latitude) and vertical (s) directions re-
spectively, time-averaged fluctuating c′ turbulent concentration and w′ turbulent velocity
s-direction; νθ tracer kinematic diffusivity (Warner et al., 2008). The first term, on the
left-hand side, in equation 2.11 represents the changes in time of the sediment concentra-
tion rate of a particular size class, the second, third and fourth terms are the horizontal
and vertical advection, respectively. On the right-hand side, the first term detonates the
mixing processes (Jullien et al., 2022). Csource is the tracer source/sink term added for the
vertical settling and exchange with the bed, for suspended sediments.

Csource,m = −∂ws,mCm

∂s
+ Es,m (2.12)

where ws,m is the sediment settling velocity, Es,m erosion source and m is the sediment
size class index. Each size class of sediments is treated separately, calculating the net
upward flux of eroded material and the deposition flux. The settling velocity ws,m is a
user input parameter that does not take into account the flow conditions and hindered
settling, depending only on the sediment grain size. The vertical settling of suspended
sediments is computed via a semi-Lagrangian advective flux algorithm, using a parabolic
vertical reconstruction of suspended sediment in the water column with piece-wise parabolic
method (Colella and Woodward , 1984) for high-order interpolation and WENO scheme
constraints to avoid oscillations (Liu et al., 1994).

Erosion flux is computed following Ariathurai and Arulanandan (1978) as,

Es,m = E0,m(1− ϕ)
τsf − τce,m

τce,m
(2.13)

when the total skin-friction bottom stress (τsf ) is higher than the critical shear stress
(τce,m), τsf > τce,m. Es is the surface erosion mass flux, E0 is the empirical erosion rate, ϕ
porosity of the top layer and m is an index for each sediment class. The erosion flux Es

on the sea bed, is limited by the availability of each sediment class in the top layer of the
sediment bed.

2.4.3 The Bottom Boundary Layer processes

A regional-scale application does not have the vertical resolution necessary to resolve
the wave boundary layer, suspended sediment matter (SPM) and gradients in the velocity
field near the bed, which vary significantly over a short vertical distance. These subgrid-
scale processes are parameterized in the BBL and currently, two different approaches are
implemented. Simple drag-coefficient methods or more complex expressions taking into
account the influence of waves and currents over moveable bed (Jullien et al., 2022) to
estimate shear stresses at the bottom.

In the current application, the more elaborated approach was used, also applied by
Blaas et al. (2007), based on the Soulsby (1995) formulations for the wave-current activity
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and combined with the bottom roughness estimates of Li and Amos (2001), Grant and
Madsen (1982) and Nielsen (1986).

The bottom roughness length incorporates three terms,

Z0 = ks + kt + kf (2.14)

in which the first is associated with the grain, so-called skin roughness ks, the second
is the sediment transport term kt and the third is related to bedforms kf (ripples).

The skin roughness caused by the sediment grains on the bed considers the Nikuradse
roughness height, which is related to the roughness length (Nikuradse, 1933) as

Z0 =
ks
30

(2.15)

Depending only on the grain size as ks = 2.5D50, giving a practical conventional measure
(Nielsen, 1992). The transport roughness kt is usually the smallest in comparison with the
rest of the terms and depends on the thickness of the bedload layer (Li and Amos , 2001).
The presence of ripples causes a form drag, causing the shear stress to increase from ripple
trough to crest (Grant and Madsen, 1982; Nielsen, 1986).

The maximum wave-current shear stress at the bottom within a wave cycle is obtained
by combining the wave-induced shear stress τw and current-only bed shear-stress τc (Equa-
tion 2.20). In the present application, there are no feedback mechanisms between the waves
and currents. The maximum wave-current shear stress is then used to determine whether
or not the sediments are re-suspended from the seabed (Jullien et al., 2022).

The current shear stress

The current induced bottom shear stress is calculated as,

τc =
κ2

ln2(z/z0)
| u |2 (2.16)

where κ = 0.41 is von Kármán constant, z is the elevation above the bed, z0 is the
empirical bottom roughness length defined by the user and | u |=

√
u2 + v2, where u

and v are the current cross- and along-shore velocity components near the bottom. The
von Kármán law formulation assumes that the flow in the BBL has a logarithmic profile,
defined by the shear velocity of the current and the bottom roughness.

The wave shear stress

The wave shear stress calculations are based on the following formula,

τw = 0.5ρfwu
2
b (2.17)

where ρ is the water density, fw is the wave-friction factor and ub is the wave orbital
velocity. The wave-friction factor fw is calculated according to Soulsby (1995) as,
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fw = 1.39(ub/ωpz0)
−0.52 (2.18)

where the ub is determined from significant wave height Hs and wave peak frequency
ωp, using the Airy wave theory:

ub = ωp
Hs

2sinh(kh)
(2.19)

with h the local depth and k the local wavenumber from the dispersion relation.

The maximum wave-current shear stress

The maximum combined bottom shear stress within a wave cycle is obtained as

τwc = ((τ̄wc + τw cosφ)2 + (τw sinφ)2)1/2 (2.20)

where ϕ is the angle between currents and waves. The wave-averaged, combined wave-
current bottom stress τ̄wc according to Soulsby (1995), is found as,

τ̄wc = τc(1 + 1.2(
τw

τw + τc
)3.2) (2.21)

Only when the wave orbital velocity ub > 0.01 m/s, the combined effect of waves and
currents are taken into account, otherwise only current conditions apply.

2.5 Configuration and set-up
A High-Performance Computing system ARGUS, provided by CESAM, University of

Aveiro, was used to run the simulations. Using 48 nodes and 49 gigabytes of memory, a
simulation of 14 months with one nested grid took approximately 10 days to complete.
Model output was requested every 12 hours and occupied close to 680 GB of space.

A nested grid system with a 1-way configuration was set up to produce a high-resolution
simulation for the study area (Figure 2.1). Although initially the hydrodynamic model was
tested in a 2-way configuration, the sediment module demonstrated various problems in
this mode. The regional grid covered an area between 39◦N 44.5◦N of longitude and
−12◦W −8◦W of latitude, with resolution approximately 1/60◦ (∼ 1.38 km). By down-
scaling using a factor of 3, the local grid was centred between 41◦N 43◦N and −9.9278◦W
−8.5389◦W , with resolution approximately 1/180◦ (∼ 0.459 km). The bathymetry grids
(Figure 2.1, local grid), were created using data obtained through RAIA observatory1. The
original data was based on ETOPO1 (Amante and Eakins , 2009) with corrections made
by the Portuguese and French Hydrographic Offices (HIDROGRAFICO and SHOM). The
shoreline was manually adjusted and the minimum depth was set to 5 m.

1http://www.marnaraia.org
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Figure 2.1: A nested grid system setup. Black continuous lines represent the
CROCO model areas of regional and local grids, respectively. The biggest domain
represents the wave model SWAN regional grid area with black squares indicating
the location of the inserted wave boundary. The discontinuous black line demon-

strates the local grid.

The atmosphere-ocean fluxes were obtained from a WRF simulation of the Iberian
region provided by the Meteorology and Climatology Group of the University of Aveiro
2. The atmospheric model covered a period between 1 June 2008 and 31 December 2009,
containing 3 nested domains with resolutions of 27 km, 9 km and 3 km. More information
about the performance of WRF simulation on hindcasting the winds and ocean-atmosphere
fluxes over this region can be found in Carvalho et al. (2012). In the present study, the
data from the smallest domain with the highest resolution was used, with a temporal time
step of 4 hours.

To use the bulk sub-model, the atmospheric model provided the oceanographic model
with net shortwave and downward longwave fluxes, relative humidity, precipitation rate,
air temperature and wind velocity.

The climatological-oceanic data was obtained from the Iberia Biscay Ireland - Monitor-
ing and Forecasting Center reanalysis with resolution 1/12◦, within the Copernicus Marine
Environment Monitoring Service (Levier et al., 2014), to initialize the model and provide
information at the boundaries. Daily mean values of temperature, salinity, sea surface

2http://climetua.fis.ua.pt
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height and current velocities, with a temporal resolution of 2 days, were imposed on the
outer boundary of the regional grid.

Measured river discharge and temperature information were provided when available.
Rivers introduced to the model, located in the Spanish territory were Eume, Mandeo,
Xallas, Tambre, Ulla, Umia, Lérez, Verdugo, and Miñor. River Minho crosses a border
between Spain and Portugal and rivers Lima, Cavado, Douro, Vouga, and Mondego in
Portuguese territory (Figure 2.2, only the rivers in the local grid are shown). River runoff
on the Spanish side was obtained from Sistema de Información del Anuario de Aforos
MAPAMA. Information for the Portuguese rivers originates from the SNIRH database 3.
Missing data points were replaced with the model SWAT output from MeteoGalicia 4 or
available flow data of neighbouring rivers. For rivers, Eume, Verdugo, Cavado, Vouga and
Mondego monthly climatologies values were used, while for the rest of the rivers, daily
values were used. Inside the estuaries of the rivers mixing between the salty and fresh
waters occurs. So, a constant salinity was applied at the mouths of each river in the model
surface cell. The values varied depending on the size and configuration of the river estuary.

The wave forcing was obtained from the wave model SWAN, which was run previously,
using the same topography grid and atmospheric forcing as described above. The wave
model domain was extended out 1◦ from the western border and 0.5◦ from the North and
South borders for the regional grid and approximately 0.15◦ for the local grid. This was to
guarantee that possible errors generated close to wave model boundaries would not affect
the area of interest. The boundary conditions for the largest domain were acquired from
ERA5 reanalysis wave data set (Hersbach et al., 2020), with resolution 0.2815◦. Black
squares in the external rectangle on figure 2.1 represent the 15 points inserted onto the
boundary, spaced approximately every 1.5◦, except for some corner points. Waves were
characterized using five variables varying in space and time: significant wave height of
combined wind waves and swell, peak wave period, mean direction of total swell and
wave spectral directional width. The initial spectra were computed from the local wind
velocities, using the deep-water growth curve of Kahma and Calkoen (1992), cut off at
values of significant wave height and peak frequency from (Pierson and Moskowitz , 1964).
The average (over the model area) spatial step size was used as fetch with the local wind.
The shape of the spectrum was preserved as the default option of JONSWAP with a cos2-
directional distribution. Timestep of 15 min, directional resolution of 5◦ and 25 spectral
frequency bins logarithmically spaced between 0.0418 Hz and 0.8 Hz were chosen. The first-
order upwind scheme BSBT was applied to guarantee numerical stability (SWAN , 2013)
and Westhuysen whitecapping formulation (van der Westhuysen et al., 2007). Nonlinear
wave-wave interactions (triad and quadruplet), wave friction and breaking were also taken
into account. The wave model provided information about the amplitude of significant
wave height, peak wave period and direction to the hydrodynamic model.

The sediment module has some specific requirements for the hydrodynamic model, to
resolve the transport processes. The time steps for the CROCO regional and local grid in

3www.snirh.pt
4www.meteogalicia.gal
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baroclinic mode were set to 150 / 50 s and 3.75 / 1.25 s in barotropic mode, respectively.
The model uses Arakawa C-grid terrain-following stretched vertical coordinates, which
allows for increased vertical resolution at the surface and bottom, together with uniform
grid spacing in between (Shchepetkin and McWilliams , 2005). In the current application
the number of vertical levels was set to N = 45, stretching factor at the surface θs = 5 and
θb = 0.6 to enhance the resolution at the surface and bottom layers. A turbulent closure
model K-profile planetary (KPP) boundary layer scheme (Large et al., 1994) parameterizes
the unresolved subgrid-scale processes, like mixing in the bottom boundary layer.

The CROCO configuration and set-up are similar to the simulations in Cordeiro (2018);
Cordeiro et al. (2021), which were extensively validated and successfully reproduced the
NW Iberian margin dynamics.

2.5.1 Surface sediment distribution

Figure 2.2: The seafloor surface sediment map representing the mean grain size
on the highest resolution grid for the study area, based on the work of Dias et al.

(2002b), with additional information inside the Rías from Vilas et al. (2005).
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The seafloor surface sediment grid for the study area (Figure 2.2), was created based on
the median grain size distribution map by Dias et al. (2002b). The grid was completed with
additional sediment data inside the Rías (Ría de Vigo, Pontevedra and Arousa) derived
from Vilas et al. (2005). For the regional grid, the surface sediment spatial distribution
maps from López-Jamar et al. (1992) (figures 2 and 4) and IH (2010) were used close to
the Northern and Southern boundaries of the study area. All the data was digitized and
mapped onto a regular grid with a resolution of 1 km.

The sediments were divided into 8 size classes, each with specific properties (Table 2.1).
The total thickness of the sediment bed was set to 6 m and divided into 8 layers, to have
an unlimited supply of sediments. The first 5 layers from the top were considered relatively
fine, with a thickness of 0.01 m and the rest of the layers were 0.95, 2 and 3 m, respectively.

The critical stress τce,m was calculated as

τce,m = 6.4× 10−7ρ0w
2
s,m (2.22)

where ρ0 density and ws,m is the settling velocity. This stress was modified for silt
and very fine sand classes according to van Rijn (2007) methodology to incorporate the
cohesive effects of fine particles into the model. This was done because with smaller τce,m
the finer fraction of sediments was widely dispersed all over the continental shelf. These two
sediment size classes represent the fractions of sand in the model, located in areas where in
reality sand-silt-clay mixtures can be found according to the Shepard (1954) classification
of sediments. It is expected that these mixtures also have cohesive properties, therefore
altering the characteristics of the sediments. This also explains the wide disperse of the
fine fraction sediments in the model with the initial settings and justifies increasing τce,m,
as it was done by (Oberle et al., 2014) and Zhang et al. (2016).

Appendices A presents a detailed overview of the formulations used and coefficients
assigned as input, to characterize the seafloor sediments.

Table 2.1: Mean grain size classes, represented by the sediment size intervals and
corresponding D50. ws,m - settling velocity, E0 - erosion rate and τce - critical shear

stress for sediment motion for suspended load.

interval D50 ws,m E0 τce
(mm) (mm) (mm/s) (kg/m2s) (N/m2)

1) Silt < 0.063 0.063 2.487 6.6 10−05 0.1
2) Very fine sand 0.063-0.125 0.0940 5.464 1.4 10−04 0.125
3) Fine sand 0.125-0.250 0.1875 19.506 5.2 10−04 0.24352
4) Medium sand 0.250-0.500 0.3750 51.580 1.4 10−03 1.7027
5) Coarse sand 0.500-1 0.750 96.294 2.6 10−03 5.9344
6) Very coarse sand 1-2 1.5000 150.841 4.0 10−03 14.562
7) Gravel > 2 3 221.218 5.9 10−03 31.32
8) Rock - fictive
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2.5.2 Limitations of the model

Ocean dynamics and the interaction with the atmosphere, lithosphere and biosphere
are extremely complex and sophisticated. Therefore, using numerical models to study
different aspects of its dynamics, demands simplifications and parameterizations, as it is
nearly impossible to describe all the processes at once. To better understand and interpret
the numerical outcome, it is useful to know all the limitations and physical processes that
the modelling system represents.

The CROCO v1.0 regional ocean model is the first stable release, which was launched
on 26 June 2018, and is built upon the ROMS AGRIF ocean model (Shchepetkin and
McWilliams , 2005). During the implementation process, various bugs were encountered
and fixed. In addition, some of the applications used in the scope of the present thesis, like
realistic wavefield from an offline source and reading sediment bed data from the initial
netCDF file, were not fully implemented. Therefore, several improvements were made and
the source code of the model had to be modified. The complete list of the modifications
in the source code can be seen in the Appendices B. The work done with the code in this
thesis consumed a lot of time. At the same time, it allowed a better understanding of the
very complex code and interaction with the code developers.

Coupling of models

The coupling between the atmosphere, wave and ocean models is done offline. So, all
the models are run separately and the information from each is fed into the hydrodynamic
model. Alves et al. (2018) concluded that 2-way coupled WRF-ROMS model performance
in Iberian summer upwelling conditions has a moderate impact on the model statistics and
in many applications, there is no need for fully coupled models.

Warner et al. (2010) tested a fully coupled ocean-atmosphere-wave-sediment transport
modelling system and evaluated its performance. They demonstrated how adding waves
to the ocean model increased the bottom stress at the sea bed, but on the other hand, also
increased the surface roughness and surface mixing of the ocean. This led to cooler SST
(Sea Surface Temperature) that reduced wind speed. While the coupled system presented
the best results for waves, that were obtained with reduced winds, indicating that the wind-
wave growth formulations overestimate the wave growth in strong wind applications. On
the other hand, studies where the wave model is coupled offline with an atmospheric model,
demonstrate an underestimation of the wave field in high wind conditions (Silva et al., 2015;
Soares et al., 2014). Therefore, it is expected that with the current configuration, during
storm events, the wave-induced bottom stress is underestimated.

While 2-way coupling improves to some extent the model performances, the know-how
and computation time of a fully coupled system come at a cost that does not always justify
its use.
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Ocean model physics

Wave-current interactions are not taken into account. However, several studies have
shown how wave-current interactions can increase the wave height and current speed, de-
pending on the travelling direction of waves and currents (Bever and Harris , 2014; Bene-
tazzo et al., 2013; Warner et al., 2010; Dietrich et al., 2010). A preliminary test, with
the embedded WKB wave model for monochromatic waves (Uchiyama et al., 2010), in-
dicated the existence of several issues while considering these interactions. Additionally,
in CROCO version 1.0, a realistic wavefield from an offline source was not entirely imple-
mented and was completed in the framework of this study. So, the wave-current interaction
module together with the waves from an offline source, at this point, is not prepared to
work together in this version of CROCO (1.0).

The influence of tides was neglected, as the present application focuses on the shelf area,
where the residual currents are weak (Quaresma and Pichon, 2013) and not sufficiently
strong to resuspend sediments alone (Oberle et al., 2014; Zhang et al., 2016). In application
to estuarine systems, the tides should be considered (Villacieros-Robineau et al., 2013).

In the current model implementation, a one-way nesting procedure is considered. This
means that the information from the regional grid is passed on to the local one, but not
vice verse. During the testing period, it was confirmed that there might be some bugs
in the model with two-way nesting while the sediment module is activated. On the other
hand, the one-way nesting module demonstrated reasonably good results and it was also
computationally less time-consuming, reducing the overall model running time.

Sediment transport model

Within the scope of this thesis, all the sediment classes represented were considered non-
cohesive. However, the real behaviour of shelf sediments of the finest fractions, located for
the most part in the outer shelf areas, is more similar to the combination of silt and clay
than to sand. The silt-clay mixture needs more energy to be re-suspended than sand for
the same particle size. At the same time, the settling of sand is faster than for silt-clay of
the same size. Therefore, as the model considers all the particles as non-cohesive, it would
be expected that the re-suspension events started and ended before it was expected in the
real scenario with silt-clay characteristics. Nevertheless, the critical shear stresses for the
two finest sand classes were altered according to van Rijn (2007) methodology to reduce
these differences.

Very high sediment concentration in the water column can reduce the settling velocity
(Soulsby , 1997). This was not taken into account while calculating the settling velocity of
each sediment class.

The morphological bed changes and the biogenic contribution in estimating the bedform
roughness are not considered. Moreover, the biological activity in the water column was not
simulated and the littoral sediment input from rivers was not taken into account initially.
However it was considered in Chapter 6, when studying the fate of sediments from the
river systems.
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Chapter 3

Evaluating wind datasets for wave
hindcasting in the NWCIP

This chapter has been published in the Journal of Operational Oceanography in 2020
with the following reference:

Viitak, M., P. Avilez-Valente, A. Bio, L. Bastos, and I. Iglesias (2020), Evaluating wind
datasets for wave hindcasting in the NW Iberian peninsula coast,Journal of Operational
Oceanography, Online, 1–14.

3.1 Introduction
The wave action in coastal zones can generate strong erosion. During extreme events,

the combination of wave setup and hazardous wave conditions may result in significant risks
to coastal navigation, structures, ecosystems and population. To minimize the risks on a
vulnerable coastline, it is necessary to anticipate the storm’s impacts and increase coastal
resilience. The Intergovernmental Panel on Climate Change (IPCC) depicts a future with
an increase in the frequency and strength of the extreme events and larger waves, associated
with sea-level rise (IPCC , 2014). Monitoring the ocean condition is needed to describe the
coastal dynamics. However, they are vast, and thus, the observational data is scattered
over large areas (Bastos et al., 2016). Numerical models can fill this gap, being able to
represent the complex patterns of coastal dynamics and allowing to set up of an early
warning tool to predict the potential effects of storms on coastal environments.

The growing importance of accurate prediction of wave conditions and wave climate
requires continuous improvements of the modelling systems. The model’s performance
depends both on a correct physical formulation and on the quality of the forcing wind data.
The accuracy of the wind products can change from one region to another and should be
taken into account when choosing the best dataset to force a wave model. Alvarez et al.
(2014) evaluated different wind products for the Bay of Biscay through comparisons with
real data. Carvalho et al. (2013) tested QuikSCAT and Cross-Calibrated Multi-Platform
(CCMP) project wind datasets for the Iberian Peninsula. QuikSCAT products were also
validated for the Ligurian Sea by Pensieri et al. (2010), while Sharp et al. (2015) assessed
the UK CFSR hourly wind speed product using onshore and offshore wind measurements.
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Regarding the dataset’s efficiency in ocean modelling, Stopa and Cheung (2014) car-
ried out a long-term (1980–2010) inter-comparison of wind speed and wave height from
ERA-Interim and CFSR in the NE Pacific and NW Atlantic. Both products have good
spatial homogeneity, with a consistent level of errors, and show that ERA-Interim gen-
erally underestimates and CFSR tends to over-predict the wind speed and wave heights.
Appendini et al. (2013) assessed the wave modelling performance in the Gulf of Mexico and
the Western Caribbean Sea, analysing NCEP/National Centre for Atmospheric Research
(NCAR), ERA-Interim and NCEP’s North American Regional Reanalysis (NARR) wind
products. They found that NCEP/NCAR and ERA-Interim data sets outperform NARR.
NARR is more suitable for simulating extreme cyclonic events due to its higher resolution
in time and space. However, the capabilities of different wind datasets for wave modelling
forecasting in the Iberian Peninsula have so far received little attention.

For this study, the numerical wave model SWAN was selected. It has been successfully
applied to several oceans and seas (Lalbeharry and Ritchie, 2009; van der Westhuysen,
2012; Alari , 2013; Viitak et al., 2016), and also to the Iberian Peninsula coast, assessing
the performance of its numerical and physical formulations (Faria, 2009; Rusu and Soares ,
2013; Rusu et al., 2015; Silva et al., 2015)

The goal of this work is to implement and validate SWAN v41.10 (SWAN , 2016), using
six wind data products and applying them to the NW Coast of the Iberian Peninsula.
The following questions will be addressed. Which wind dataset leads to the most accurate
simulation of wave propagation? How do the spatial and temporal properties of wind data
influence wave modelling? How accurate is the SWAN wave model?

3.2 Methods and data

3.2.1 Characterization of the study area

The NWCIP is a complex region in terms of meteo-oceanic conditions (Bastos et al.,
2016). It is characterised by a relatively narrow continental shelf (<40 km-wide) and a
steep continental slope (>20°). The ocean becomes deeper than 1000 m in just a few tens
of kilometres away from the coast (Gómez-Gesteira et al., 2011). The coastal bathymetry
presents prominent capes, submarine canyons and promontories that induce hydrodynamic
features such as filaments and eddies (Pinheiro et al., 1996; Peliz et al., 2003b; Lávin et al.,
2006; Mason et al., 2005; Relvas et al., 2007; Rossi et al., 2013).

The North Atlantic Oscillation mainly mediates the weather conditions in the NWCIP.
The Azores High induces northerly and north-westerly (NW) winds over the area that is
prevalent throughout the year, with the highest magnitudes in the summer season (Ramos
et al., 2011). As a result, dominant NW waves are produced with a mean significant
wave height of 2 m and a peak period between 9 and 13 s (Costa and Esteves , 2009).
During winter, low-pressure systems generated over the Atlantic can cross the NWCIP with
associated south-westerly (SW) and south (S) winds, producing extremely high energetic
conditions on the continental shelf (Vitorino et al., 2002b). Hs between 3 and 6 m are not
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uncommon, reaching between 9 and 12 m during strong storm events (Dias et al., 2002a;
Vitorino et al., 2002b,a; Costa and Esteves , 2009).

3.2.2 Case study: winter storm events

The time window between 12/2013 and 01/2014 was selected, because, during this
period, several storms hit the NWCIP causing extensive damage to infrastructures, such
as roads and harbours (Rusu et al., 2015). Between 5-7/01/2014, the passage of the low-
pressure system Hercules caused floods in coastal areas, washed away sand dunes and
dragged away breakwater concrete armour units, leaving behind considerable damage in
harbours, beach structures, roads, sidewalks and promenades. Deposits of sand, mud
and debris were moved inland (Santos et al., 2014). During this event, strong SW winds
blew over the entire region, producing long-period waves with measured maximum wave
heights between 7 and 12 m (Figure 3.1). During the entire analysis period, the mean wave
direction was from the N–W sector, with mean Hs between 4 and 5 m, and mean wave
period from 7 to 9 s.

Figure 3.1: Hs evolution observed for the 6 buoys during the study period
(01/12/2013–31/01/2014).

3.2.3 Wind data products

Surface wind fields were obtained from six databases (Table 3.1), with a reference height
of 10 m above the sea level. They were applied in different stages depending on their spatial
coverage.
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From the ECMWF, the two most recent reanalyses were selected: ERA-Interim (Dee
et al., 2011) and ERA5 (C3S , 2017) (Copernicus Climate Change Service 2017). ERA-
Interim is a global atmosphere reanalysis, continuously updated in real-time with data
available since 1979. ERA5 is a recent reanalysis of the EU-funded Copernicus Climate
Change Service (C3S) operated by ECMWF. The first segment (2010–2016) provides data
at higher spatial and temporal resolution than ERA-Interim.

MERRA-2 (GMAO , 2015), the second version of NASA atmospheric reanalysis was
constructed using the Goddard Earth Observing System Model V5 with Atmospheric Data
Assimilation System.

From the NCEP products, the 6-hourly forecast sur- face winds products from CFSv2
ds094.0 and the hourly time-series from CFSv2 ds094.1 were selected (Saha et al., 2011a,b,
2014).

Finally, historical forecasts from the regional Weather Research and Forecasting model,
implemented by MeteoGalicia1 for local forecast, were considered. This model runs oper-
ationally twice a day with three available domains and spatial resolutions. The highest
spatial resolution product was selected.

Table 3.1: Wind datasets characteristics.

Dataset ∆x×∆y (◦) ∆y (h) Availability
ECMWF Era-Interim 0.75 × 0.75 6 1979–2019
ECMWF ERA5 0.2815 × 0.2815 1 2010–present
NASA MERRA-2 0.5 × 0.625 1 1980–present
NCEP CFSv2 (ds094.0) 0.5 × 0.5 1 2011–present
NCEP CFSv2 (ds094.1) 0.5 × 0.5 1 2011–present
WRF-MeteoGalicia 0.1079 × 0.1079 1 2008–present

3.2.4 Observational data

Model results were validated against data from six wave buoys at various depths (Fig-
ure 3.2 b)). Leixões (P1) is maintained by the Instituto Hidrográfico2. The directional
Waverider Datawell is moored in shallow waters (83 m), and records data in a 3-hour in-
terval, increasing the frequency during energetic events (Hs > 5 m). Cabo Silleiro (P2),
Villano-Sisargas (P3), Estaca de Bares (P4), Cabo de Peñas (P5) and Bilbao-Vizcaya (P6)
are maintained by Puertos del Estado3, gathering data in a 1-hour interval. They are
equipped with a directional Met-Oce sensor and located in relatively deep waters close to
the continental shelf border or areas of complex bathymetry and strong depth gradients.

1http://www.meteogalicia.gal/
2https://www.hidrografico.pt/boias
3http://www.puertos. es/
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Figure 3.2: a) Nesting set-up and computational grids G1, G2 and G3 placements
and b) bathymetry of the G2 computational area. The two sectors of the study area
are, Atlantic (West) and Cantabrian (North), marked with black intermediate lines
and the red isoline indicates the border of the continental shelf. Additionally, the

locations of wave buoys are shown with yellow squares.

Due to the resolution of the available bathymetric data and the discrete nature of the
computational grids, there is a difference between the computed depth and the real depth
at the buoy locations (Table 3.2), especially evident for the coarser grid.

Table 3.2: Buoys location and depth (real and interpolated at the numerical
grids).

Location Depth (m)
Buoy Name Latitude Longitude Real G1 G2 G3
P1 Leixões 41.32 ◦N 8.98 ◦W 83 84 82 86
P2 Cabo Silleiro 42.12 ◦N 9.43 ◦W 600 2564 702 700
P3 Villano-Sisargas 43.50 ◦N 9.21 ◦W 386 Inland 422 482
P4 Estaca de Bares 44.12 ◦N 7.67 ◦W 1800 751 1514 1586
P5 Cabo de Peñas 43.75 ◦N 6.16 ◦W 615 2393 350 497
P6 Bilbao-Vizcaya 43.64 ◦N 3.09 ◦W 870 1789 894 Outside

3.2.5 Numerical model setup

SWAN is a third-generation wave model developed at the Delft University of Technol-
ogy. Short-crested wind-wave generation and propagation over realistic bathymetry are



24 Chapter 3. Evaluating wind datasets for wave hindcasting in the NWCIP

described by means of a two-dimensional wave action density spectrum. A spectral wave
action balance equation is solved without any a priori restrictions on the spectrum for wave
growth evolution (Booij et al., 1999).

A grid nesting procedure was implemented to guarantee proper simulation of nearshore
processes. Three computational grids with different spatial extent and resolution were de-
fined (Figure 3.2 a)). The first and coarser grid, G1 (1°x1°), covered the whole North At-
lantic to provide swell information for inner computational grids (G2, G3). It lacks detailed
information on depth over the continental slope and shelf, thus significantly altering the
nearshore wave processes and leading to inaccurate readings at buoy locations. Neverthe-
less, G1 resolution was enough to accurately represent the long-wavelength low-frequency
waves travelling across the ocean. The first nested level or second grid G2 (7.5’×7.5’),
covered most of the oceanic area around the Iberian Peninsula. Finally, the second nested
level G3 (28.125”×28.125”) covered the NW coastal seas of the Iberian Peninsula. The
increase in the resolution along with the reduction of the observed area (Figure 3.2 a))
allowed a better agreement between the buoy’s real depth and depth on the grid (Table
3.2).

Bathymetric information for G1 was extracted from the GEBCO 30” global grid (Becker
et al., 2009). G2 and G3, used information extracted from the West Iberian bathymetry
model WIBM2009 (Quaresma and Pichon, 2013), which has 1’ resolution.

G1 results were compared with observational data from five wave buoys (P1, P2, P4,
P5, P6) out of six. P3 was considered a land cell on this grid due to the low resolution, as
each cell covered an area of, approximately, 112 × 112 km, causing some inaccuracies in
the coastal line representation. G3 covered also five buoys out of six (P1, P2, P3, P4, P5),
leaving out the most eastward wave buoy (P6) (cf. Figure 3.2 b)).

In the G1 level all the wind datasets except MeteoGalicia, due to its limited spatial
coverage, were used for the wave hindcast. For the next nesting level G2, MeteoGalicia data
plus the three G1 best-performing wind data- sets were applied. The boundary conditions
for the simulation with MeteoGalicia winds were obtained from the G1 grid run with ERA5
wind data. In the second nesting level G3, the three best-performing wind datasets in G2
were tested.

A spin-up time of 1 week was considered to avoid model inconsistencies. After several
tests, spectral directional resolution of 5° and 25 spectral frequency bins logarithmically
spaced between 0.0418 and 0.8 Hz were chosen. For G1 and G2, the higher-order numerical
S& L scheme and Janssen whitecapping formulation (Janssen, 1991) were selected. At G3,
the first-order upwind scheme BSBT was applied to guarantee numerical stability (SWAN ,
2013) and Westhuysen whitecapping (van der Westhuysen et al., 2007) was chosen.

3.2.6 Validation method

To assess the quality of the results, a statistical analysis was performed for three wave
parameters: significant wave height (Hs) and the spectrum mean zero-up-crossing wave
period (Tm02), calculated from the density spectrum as:
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Hs = 4
√

E(ω, θ)dωdθ (3.1)

Tm02 = 2π

(
ω2E(ω, θ)dωdθ

E(ω, θ)dωdθ

)−
1

2
= 2π

(
ω2E(σ, θ)dσdθ

E(σ, θ)dσdθ

)−
1

2 (3.2)

and, the spectrum peak wave direction (Pdir), which is the peak direction in E(θ) =∫
E(ω, θ)dω, where E is the variance density spectrum, ω the absolute circular frequency

determined by the Doppler shifted dispersion and θ the wave propagations direction. Note
that Pdir, correspond to the absolute maximum bin of the corresponding discrete wave
spectra E(θ) and hence might not be the real Pdir.

Four statistical parameters, the Root Mean Square Error (RMSE), the Scatter Index
(SI), the mean error (BIAS), and the correlation coefficient (Cor) were considered:

RMSE =

√∑n
n=1(ai − bi)

2

n
(3.3)

SI =
RMSE
1
n

∑n
n=1 bi

× 100 (3.4)

BIAS = ai − bi (3.5)

Cor(a, b) =
cov(a, b)

σaσb

(3.6)

where a represents the model results, b the observed measurements, n the number
of observations, cov(a,b) the covariance between a and b, and σa and σb the standard
deviation of a and b, respectively.

Regarding Pdir, to eliminate any discontinuity between 0◦ and 360◦, the difference
between observations θobs and model results θmod was obtained (Pensieri et al., 2010). The
corrected values were calculated as:

θmod = θmod − 360◦ when θobs − θmod > 180◦ (3.7)

θmod = θmod + 360◦ when θobs − θmod ≦ −180◦ (3.8)

However, due to the proper definition of the statistical parameters, SI was not calculated
for Pdir, and the results of this variable were validated using only RMSE.
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3.3 Results

3.3.1 Wind datasets performance

Significant wave height (Hs)

The results show a good performance for all the considered wind datasets, with a
satisfactory reproduction of the Hs evolution over time. Nevertheless, some differences
arise in terms of Hs magnitude. ECMWF products and MERRA-2 were underestimating
the highest Hs peaks, while the NOAA-NCEP datasets were largely overestimating them.
Both ECMWF products gave similar results, but some improvements can be seen with
ERA5 (Figure 3.3a).

The best wind dataset for Hs at G1 was ERA5 (Table 3.3), giving the best results
for three considered buoys (P1, P4, P5). In these locations, ERA5, RMSE varies from
0.43–0.71 m, SI from 9.30–17.52%, BIAS from -0.12–0.17 m and Cor from 0.92–0.95. For
P2 and P6, the best results are obtained with MERRA-2 and ERA-Interim, respectively.

G2 was forced with the MeteoGalicia WRF dataset and the three best-performing wind
datasets in grid G1 ERA-Interim, ERA5 and NCEP CFSv6 (ds094.0). As expected, some
improvements can be seen when compared with G1 (Table 3.3). For ERA-Interim, RMSE
reduced between 0.02 and 0.03 m at P1 and P4, but presents higher values, up to 0.26 m, for
the rest of the buoy’s locations. For ERA5, Hs RMSE improves a few centimetres in P1 and
P2, but the error increases up to 0.17 m in the rest of the buoys. NCEP CFSv6 (ds094.0)
demonstrates better results compared to the G1 level. The Cor coefficient maintains the
same values or improves a bit for the G2 domain.

G3 did not show almost any improvement over the previous grid. Comparing the statis-
tical metrics for the three considered domains (G1, G2, G3), G3 outputs present the worst
results, even when the MeteoGalicia highest resolution wind dataset was implemented.

Minimal differences between G1 and G2 results were depicted in the estimated values for
P2 (Figure 3.3b). Furthermore, the G3 results seem to lead to a higher Hs underestimation.
This is further confirmed by the P5 results, where this underestimation was even larger.

The best results for Hs at G1 and G2 were produced using ERA5, for G3 MeteoGalicia.
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(a) Comparison of measurements and G1 computational grid.

(b) Measured and modelled results with ERA5 wind data, representing all three
computational grids in buoy locations P2 and P5.

Figure 3.3: Measured and modelled Hs for the period between 01.12.13–31.01.14.
Red dots represent buoys measurement, dotted lines are SWAN results for each

wind dataset considered. The bold line indicates the best fit for each buoy.
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Table 3.3: RMSE, SI, BIAS and Cor for each computational domain (G1, G2 and
G3) at buoys location for significant wave height. The most optimal dataset for

each domain is marked in bold.

Mean (m) RMSE (m) SI (%) BIAS Cor
Hs G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3
P1 4.62
ERA-Int. 4.17 4.24 4.04 0.47 0.44 4.48 10.12 9.46 10.47 -1.18 -0.15 -0.22 0.92 0.92 0.94
ERA5 4.30 4.36 4.12 0.43 0.40 0.45 9.30 8.74 9.76 -0.12 -0.10 -0.19 0.92 0.92 0.94
Merra-2 4.09 0.55 11.98 -0.21 0.89
ds094.0 5.10 5.13 0.62 0.62 13.52 13.45 0.18 0.20 0.89 0.89
ds094.1 5.08 0.64 13.84 0.18 0.80
MetGalic 4.50 4.12 0.44 0.46 9.57 9.98 -0.05 -0.19 0.90 0.93
P2 4.30
ERA-Int. 4.21 4.02 3.71 0.68 0.71 0.82 15.84 16.39 19.16 -0.10 -0.29 -0.59 0.94 0.95 0.96
ERA5 4.28 4.08 3.76 0.67 0.66 0.81 15.49 15.26 18.72 -0.02 -0.22 -0.55 0.94 0.95 0.96
Merra-2 4.29 0.64 14.85 -0.01 0.95
ds094.0 5.22 4.91 1.27 1.03 29.55 24.04 0.92 0.61 0.93 0.94
ds094.1 5.18 1.33 30.96 0.88 0.90
MetGalic 4.21 3.77 0.72 0.78 16.67 18.21 -0.09 -0.53 0.94 0.96
P3 4.52
ERA-Int. 4.53 4.06 0.63 0.67 13.97 14.82 0.00 -0.36 0.94 0.96
ERA5 4.41 3.99 0.55 0.71 12.25 15.67 -0.08 -0.41 0.95 0.96
ds094.0 5.36 1.08 23.77 0.64 0.94
MetGalic 4.66 4.07 0.76 0.67 16.73 14.77 0.11 -0.35 0.93 0.96
P4 4.57
ERA-Int. 4.30 4.32 3.82 0.77 0.75 0.99 16.77 16.43 21.65 -0.27 -0.25 -0.75 0.94 0.94 0.96
ERA5 4.31 4.31 3.82 0.71 0.72 1.01 15.57 15.77 22.14 -0.26 -0.26 -0.75 0.95 0.95 0.95
Merra-2 4.31 0.86 18.82 -0.25 0.92
ds094.0 5.31 5.24 1.14 1.09 24.85 23.96 0.74 0.67 0.94 0.94
ds094.1 5.29 1.20 26.15 0.72 0.93
MetGalic 4.60 3.95 0.90 0.91 19.66 19.82 0.03 -0.62 0.92 0.95
P5 3.79
ERA-Int. 3.77 3.10 2.94 0.71 0.93 1.07 18.68 24.57 28.17 -0.03 -0.70 -0.86 0.92 0.95 0.95
ERA5 3.96 3.24 3.02 0.66 0.83 1.01 17.52 22.00 26.60 0.17 -0.56 -0.77 0.94 0.94 0.95
Merra-2 3.95 0.74 19.38 0.15 0.93
ds094.0 4.86 3.86 1.43 0.64 37.60 16.86 1.07 0.06 0.93 0.94
ds094.1 4.89 1.51 39.72 1.09 0.91
MetGalic 3.72 3.22 0.83 0.81 21.88 21.40 -0.07 -0.57 0.91 0.95
P6 3.46
ERA-Int. 3.32 2.83 0.64 0.90 18.39 26.04 -0.14 -0.63 0.94 0.95
ERA5 3.58 3.17 0.72 0.77 20.74 22.33 0.12 -0.29 0.92 0.92
Merra-2 3.63 0.72 20.92 0.17 0.92
ds094.0 4.41 3.79 1.33 0.78 38.49 22.45 0.96 0.33 0.91 0.92
ds094.1 4.45 1.43 41.46 1.00 0.88
MetGalic 3.35 0.81 23.38 -0.11 0.89

Mean wave period (Tm02)

Tm02 was reasonably well represented whatever the wind dataset used at the G1 grid.
Nevertheless, ERA-Interim, ERA5 and MERRA-2 lead to an underestimation of the Tm02
at all the buoy locations, whereas it was overestimated at some locations for both NOAA
datasets.

For the first two weeks (01/12–13/12), the mean period was largely underestimated for
all the datasets with the exception of buoy P4, where SWAN results were closer to measured
values than at any other considered buoy (Figure 3.4a). The correlation results reveal a
better performance of the wind datasets in the Cantabrian sector, with Cor between 0.77
and 0.86. In the West Atlantic sector, Cor was lower, between 0.71 and 0.79. When
compared with Hs Cor values, a decrease in the correlation of 17% in the West Atlantic
sector and 11% in the Cantabrian sector was noticed (Table 3.3 and 3.4).

Nevertheless, and contrary to the Hs results, Tm02 for G2 presents a slightly poorer
outcome at all buoys but P1, being quite improved for G3. G3 shows the best results from
the three considered computational grids. RMSE for Tm02 was close to or over 1.50 s
for most buoys and wind datasets for G1 and G2, while for G3 it remains below 1.0 s for
ERA5 and close to 1.0 s for all the other wind datasets (Table 3.4).
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For the two initial simulation weeks, G1 and G2 solutions do not accurately represent
Tm02 evolution. Such a pattern was corrected for the highest resolution simulation on
grid G3. At P1, and after the first two weeks within the simulation, it seems that for G1
and G2, the wave energy was more spread along the frequency bins, nevertheless, the lower
frequency bins were under-represented in G3. At P5, G3 results clearly show a much better
performance, with a good capture of Tm02, which might indicate a better representation
of the wave energy along the different frequency bins (Figure 3.4b). The best results for
Tm02 at G1 and G2 were produced using NOAA NCEP ds094.0. For the three wind
datasets selected for forcing the waves on G3, ERA5 led to the best results for Tm02.

(a) Comparison of measurements and G1 computational grid.

(b) Measured and modelled results with ERA5 wind data representing all three
computational grids, in buoy locations P2 and P5.

Figure 3.4: Measured and modelled Tm02 for the period between 01.12.13 –
31.01.14. Red dots represent buoys measurement, dotted lines are SWAN results
for each wind dataset considered. The bold line indicates the best fit for each buoy.
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Table 3.4: RMSE, SI, BIAS and Cor for each computational domain (G1, G2 and
G3) at buoys location for mean wave period. The most optimal dataset for each

domain is marked in bold.

Mean (m) RMSE (m) SI (%) BIAS Cor
Tm02 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3
P1 8.94
ERA-Int. 7.62 7.86 7.90 1.24 1.13 0.85 13.85 12.56 9.55 -0.51 -0.42 -0.40 0.75 0.76 0.84
ERA5 7.66 7.86 7.95 1.25 1.14 0.82 13.96 12.77 9.13 -0.49 -0.42 -0.38 0.76 0.76 0.86
Merra-2 8.46 1.14 12.71 -0.19 0.71
ds094.0 8.87 9.16 1.02 0.89 11.43 9.96 -0.03 0.09 0.79 0.82
ds094.1 8.95 1.10 12.31 0.00 0.79
MetGalic 7.61 7.72 1.27 0.95 14.24 10.61 -0.52 -0.47 0.72 0.84
P2 7.73
ERA-Int. 6.95 6.85 7.23 1.59 1.68 1.04 20.52 21.68 13.40 -0.78 -0.88 -0.51 0.71 0.74 0.87
ERA5 6.94 6.81 7.27 1.43 1.65 0.94 18.47 21.36 12.19 -0.79 -0.93 -0.46 0.77 0.76 0.89
Merra-2 6.94 1.58 20.45 -0.79 0.72
ds094.0 7.86 7.85 1.43 1.53 18.46 19.82 0.12 0.12 0.78 0.79
ds094.1 7.93 1.50 19.46 0.20 0.76
MetGalic 6.78 7.20 1.71 1.02 22.11 13.21 -0.95 -0.53 0.71 0.87
P3 7.65
ERA-Int. 6.75 7.11 1.2 0.80 15.72 10.48 -0.68 -0.41 0.81 0.90
ERA5 6.86 7.19 1.17 0.75 15.29 9.78 -0.6 -0.35 0.81 0.91
ds094.0 7.69 1.17 15.27 0.03 0.8
MetGalic 6.78 7.12 1.26 0.81 16.48 10.58 -0.66 -0.40 0.77 0.90
P4 7.60
ERA-Int. 6.61 6.59 7.05 1.32 1.42 0.94 17.42 18.75 12.38 -0.99 -1.01 -0.55 0.85 0.81 0.90
ERA5 6.67 6.62 7.10 1.26 1.36 0.87 16.55 17.95 11.46 -0.93 -0.97 -0.50 0.85 0.83 0.91
Merra-2 6.76 1.24 16.30 -0.84 0.83
ds094.0 7.44 7.34 0.95 1.14 12.53 14.97 -0.15 -0.26 0.86 0.84
ds094.1 7.42 1.03 13.50 -0.18 0.84
MetGalic 6.53 6.97 1.44 0.97 18.87 12.77 -1.06 -0.63 0.81 0.90
P5 7.56
ERA-Int. 6.82 6.46 7.38 1.40 1.8 1.12 18.52 23.81 14.83 -0.73 -1.1 -0.17 0.80 0.69 0.82
ERA5 6.69 6.62 7.43 1.49 1.51 0.96 19.66 19.93 12.70 -0.86 -0.94 -0.12 0.78 0.8 0.87
Merra-2 6.92 1.41 18.64 -0.63 0.81
ds094.0 7.59 7.21 1.40 1.35 18.53 17.9 0.03 -0.34 0.81 0.81

ds094.1 7.61 1.54 20.32 0.06 0.78
MetGalic 5.95 6.75 1.97 1.24 16.12 16.39 -1.61 -0.81 0.72 0.84
P6 8.31
ERA-Int. 8.31 7.01 1.98 1.9 23.88 22.89 -1.56 -1.3 0.86 0.83
ERA5 6.50 6.07 2.24 2.69 26.99 32.32 -1.81 -2.25 0.82 0.76
Merra-2 6.47 2.37 28.51 -1.84 0.77
ds094.0 7.20 6.69 1.89 2.31 22.73 27.85 -1.11 -1.62 0.80 0.73
ds094.1 7.20 1.81 21.73 -1.11 0.83
MetGalic 5.83 2.93 35.3 -2.48 0.72

Peak direction (Pdir)

For Pdir, the best G1 results were obtained with NCEP ds09.1, MERRA-2 and Era-
Interim (Figure 3.5). The best statistical parameters were obtained at P1, where NCEP
ds09.1 and MERRA-2 provided similar outcomes. For both datasets, RMSE was 10◦ and
Cor was 0.92. For the other buoys, the RMSE was mostly close to 30◦ reaching up to 39◦,
with the exception of the ERA-Interim results at P6 where RMSE of 19◦ was obtained.
All the wind datasets clearly display a bias in the peak wave direction, with a tendency
for an anti-clockwise error in the estimated wave direction (Table 3.5).

Similar to Tm02, the numerical model seems to be less accurate in estimating Pdir for
all the buoys locations for the initial two weeks period.

For G2, the best wind datasets were NCEP CFSv2 (ds094.0) for P1 and P3 and Era-
Interim for P2, P4, P5 and P6. For G3, the best dataset was ERA-Interim, although the
Atlantic sector results present small differences (from 1◦ up to 4◦) between the considered
datasets. In the Cantabrian sector, larger differences arise, reaching up to 13◦ at P1.

There existed a small but consistent improvement in almost each buoy location for all
the wind datasets when G1 and G3 results were compared.
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Figure 3.5: Difference between buoys and model outcome (G1) with three wind
datasets, ERA-Interim, Merra-2 and NCEP ds094.0.



32 Chapter 3. Evaluating wind datasets for wave hindcasting in the NWCIP

Table 3.5: RMSE, SI, BIAS and Cor for each computational domain at buoys
location for peak direction. The most optimal dataset for each domain is marked

in bold.

Mean (m) RMSE (m) BIAS Cor
Pdir G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3
P1 322
ERA-Int. 322 326 325 12 9 10 0.21 1.43 1.31 0.88 0.94 0.93
ERA5 324 327 326 15 11 9 4.64 2.06 1.52 0.84 0.91 0.94
Merra-2 323 10 0.44 0.92
ds094.0 322 326 10 9 0.02 1.79 0.92 0.95
ds094.1 322 11 0.19 0.90
MetGalic 329 325 17 10 2.81 1.08 0.83 0.93
P2 297
ERA-Int. 302 304 303 31 24 20 5.16 7.34 5.68 0.91 0.95 0.97
ERA5 304 306 304 33 27 22 7.51 9.12 6.68 0.91 0.94 0.96
Merra-2 305 26 7.95 0.94
ds094.0 303 306 27 27 6.46 9.06 0.94 0.95
ds094.1 302 29 4.88 0.93
MetGalic 313 305 42 24 16 7.69 0.89 0.95
P3 293
ERA-Int. 298 296 29 25 3.94 1.82 0.94 0.95
ERA5 301 298 30 25 5.73 3.25 0.94 0.95
ds094.0 300 27 4.77 0.85
MetGalic 303 296 37 27 7.5 1.85 0.91 0.94
P4 313
ERA-Int. 318 317 317 31 29 25 4.84 4.35 3.62 0.89 0.9 0.92
ERA5 317 313 315 33 37 27 3.84 -0.59 2.01 0.88 0.86 0.91
Merra-2 317 31 3.80 0.89
ds094.0 316 313 35 35 2.45 -0.26 0.86 0.86
ds094.1 317 30 4.29 0.89
MetGalic 318 314 40 34 4.82 1.09 0.83 0.87
P5 316
ERA-Int. 328 317 320 29 29 25 11.74 0.66 3.62 0.63 0.53 0.61
ERA5 321 312 317 35 34 31 5.57 -4.18 0.81 0.54 0.46 0.49
Merra-2 324 32 8.13 0.60
ds094.0 320 311 37 31 4.21 -4.87 0.52 0.5
ds094.1 320 39 4.39 0.51
MetGalic 315 315 38 37 -1.14 -0.68 0.43 0.43
P6 320
ERA-Int. 327 321 19 18 6.87 0.92 0.85 0.83
ERA5 325 318 29 30 4.91 -2.68 0.75 0.71
Merra-2 326 33 5.43 0.69
ds094.0 325 318 29 25 4.09 -2.64 0.74 0.75
ds094.1 326 31 5.80 0.71
MetGalic 323 34 2.57 0.69

3.4 Discussion
The presented results revealed minor differences in model solutions when using different

wind datasets. Nevertheless, for each considered wave parameter, the best ones can be
clearly distinguished. ERA5 gives the best results for Hs, Era-Interim for Pdir and NCEP
CFSv2 (ds094.0) for Tm02, although the difference between NCEP CFSv2 (ds094.0) and
ERA5 was relatively small and both can be considered to properly simulate mean wave
period (Table 3.4).

The temporal and spatial characteristics of the wind datasets did not have a big in-
fluence on the results. The best Pdir results were obtained with Era-Interim, which was
the lower temporal and spatial resolution database (Table 3.1). Therefore, to simulate the
approaching swell, coarse grids and larger time steps with a proper representation of wind
speed and direction, seem to be appropriate to produce accurate solutions.

The different responses observed for the wave parameters in G3 could be related to the
wave spectrum. When calculating the wave variables, different parts of the wave energy
spectra are considered. Hs is calculated taking into account the total wave energy, whereas
the rest of the parameters are found through circular frequency or direction. Errors in the
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velocity and direction fields of the wind could be transferred to the wave model and may
produce inaccurate frequencies transference to the surface waters. This seems not to have
such a big effect on the total energy but rather affects the individual components.

Alvarez et al. (2014) concluded that coarser databases are less reliable in near-shore
areas. Additionally, they noted that the wind speed and direction are less accurate for low
wind speed events (< 4m/s). In wave modelling it is not possible to determine which waves
are induced with low wind speed, so another approach was considered. Calm and storm
periods were analysed separately considering a 5 m wave height threshold. The results
obtained at P1 and P5 with ERA5 for all three modelling levels revealed that the more
accurate Hs results were obtained mostly during calm conditions (Table 3.6). Tm02 and
Pdir were better represented during storms. This confirms that, with lower wind speed,
the wave simulations are less accurate and the total energy spectre of the waves is less
affected by the individual parts.

Our model configuration was reliable when compared with similar studies, presenting
results with the same level of accuracy, or better than previously developed works (Table
3.7). This comparison is not straightforward due to differences such as the geographical
area, the grid’s resolution, the location of the buoys, the type of wind data, etc. Never-
theless, it provides an indication of the type of accuracy and credibility of the wave model
set- up that was implemented in this study.

Table 3.6: RMSE, SI, BIAS and Cor for each computational domain (G1, G2 and
G3) at P1 and P5 in a storm and calm situation using ERA5 wind fields.

Hs Tm02 Pdir
P1 P5 P1 P5 P1 P5
storm calm storm calm storm calm storm calm storm calm storm calm

G1 RMSE 0.33 0.28 0.43 0.51 0.74 1.01 0.60 1.36 7 13 12 33
SI 5.50 7.55 6.99 16.54 7.48 12.13 6.81 18.98 2.22 4.12 3.87 10.49
BIAS -0.07 -0.06 0.04 0.13 -0.16 -0.34 -0.08 -0.78 0.04 0.88 4.62 0.96
Cor 0.72 0.90 0.73 0.91 0.72 0.70 0.67 0.73 0.65 0.87 0.45 0.56
Med. s 5.49 3.47 6.35 3.22 8.85 6.83 8.49 6.13
Med. m 5.91 3.72 6.17 3.06 9.84 8.31 8.85 7.16 329 317 315 316

G2 RMSE 0.30 0.27 0.59 0.59 0.64 0.94 0.63 1.37 5.05 10.17 7.48 32.86
SI 5.11 7.22 9.52 19.38 6.52 11.36 7.09 19.14 1.54 3.21 2.37 10.40
BIAS -0.06 -0.04 -0.24 -0.32 -0.12 -0.29 -0.17 -0.77 0.58 1.48 2.25 -6.44
Cor 0.73 0.91 0.82 0.90 0.71 0.71 0.70 0.76 0.69 0.93 0.57 0.48
Med. s 5.54 3.52 5.17 2.64 9.05 7.02 8.13 6.15
Med. m 5.91 3.72 6.17 3.06 9.64 8.31 8.85 7.16 329 317 315 316

G3 RMSE 0.34 0.30 0.75 0.67 0.47 0.67 0.36 0.89 2.81 8.49 8.66 29.51
SI 5.74 7.99 12.21 21.96 4.73 8.06 4.03 12.44 0.86 2.68 2.75 9.34
BIAS -0.11 -0.09 -0.33 -0.45 -0.15 -0.23 0.04 -0.16 0.42 1.09 3.13 -2.32
Cor 0.78 0.92 0.81 0.92 0.82 0.81 0.84 0.84 0.84 0.95 0.59 0.51
Med. s 5.24 3.34 4.79 2.47 8.90 7.29 9.00 6.95
Med. m 5.91 3.72 6.17 3.06 9.84 8.31 8.85 7.16 329 317 315 316

Table 3.7: Validation results of wave mode SWAN from various studies around
the world.

Author Rusu et al. (2015) Rusu and Soares (2013) Silva et al. (2015) Viitak et al. (2016) This study
Area West Iber. co. Cont. Portugal Spanish co. Baltic Sea NW Iber. co.
Wind HIPOCAS MM5 ERA-Interim HIRLAM ERA5
Hs
RMSE 0.74 0.40 0.81 0.28 0.45
SI 0.17 0.19 0.42 0.22 0.10
BIAS 0.23 0.12 0.36 0.19 -0.19
Cor 0.9 0.95 0.83 0.95 0.94
Tm02
RMSE 0.99 1.11 1.83 - 0.82
SI 0.11 0.15 0.31 - 0.09
BIAS 0.25 -0.69 -0.37 - -0.38
Cor 0.82 0.86 0.68 - 0.86
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3.5 Conclusion
All the wind datasets selected for this study were able to depict quite well the evolution

of the wave fields. The differences arise when analysing the wave parameters. The obtained
results allow us to distinguish the most optimal dataset for each wave characteristic. Hs was
well represented with ERA5, Tm02 with NCEP CFSv2 (ds094.0) or ERA5, and Pdir with
Era-Interim. Overall, the ECMWF datasets seem to produce the most reliable outcome
for the region under study, particularly for Hs and Tm02, with a slight improvement when
using ERA5. This should be taken into account for future wave modelling studies.

The spatio-temporal resolution of the wind datasets does not have as big impact on
wave modelling as the accuracy of the wind speed and direction. The errors in wind
datasets were most likely transferred to waves, contributing to the wave model solutions’
inaccuracy. It was noted that, with lower wind speed values, the results of wave modelling
were not as accurate as with higher wind speed values.

The method applied to simulate NWCIP waves with SWAN was generally reliable and
comparable to other similar studies. The model succeeds to predict extreme wave con-
ditions with relatively good accuracy, depicting the wave field development during storm
events. The best results were obtained for Hs, being more challenging to accurately repre-
sent Tm02 and Pdir.

The obtained results depicted the performance of a numerical wave model considering
different wind data-sets. Model inaccuracies were pointed out, as well as the best wind
databases for each considered parameter, providing valuable information to produce the
best numerical solutions and properly predict the effects of extreme events on a vulnerable
seaboard, helping to mitigate the associated risks for ecosystems and populations.
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Chapter 4

Validation of the models

4.1 Introduction
The configuration and set-up of modelling systems involve sensitivity tests, using differ-

ent prediction methods, and understanding the context and problems at hand. At the same
time, taking into account the limitations of the models and observational data. The con-
figurations of the hydrodynamic model CROCO, wave model SWAN and sediment model
presented in Chapter 2, are based on the validation results presented in this chapter.

In the current application, special attention was put into the validation of the modelling
system to most adequately represent the waves and circulation on the shelf. Even the most
advanced models to date can only predict sediment transport within a factor of two at best
and higher uncertainties are common. This is due to the power dependence of sediment-
transport rates on the flow velocities, which for the bed load is at a power of three and for
the suspended load even higher. Therefore, any small errors in the hydrodynamics create
strong amplifications in the sediment-transport (Amoudry and Souza, 2011).

The sediment transport processes are complex, involving continuous interactions be-
tween the flow of water and the seabed in different time scales, from a few seconds to
hundreds of years and cover space scales, from a few mm to mesoscale. Therefore, there is
a need for generalization and a location-specific approach. In many cases, the site-specific
calibration and the quality of dynamical forcing determine how successfully the numeri-
cal models resolve the sediment dynamics. This is because sediment transport depends
on many complicated and interactive processes, of which several these are not completely
understood and in many cases not even measured, for example, biological effects (Soulsby ,
1997). Consequently, the available observational data usually provides a partial descrip-
tion of the three-dimensional sediment-transport process, presenting a big challenge for the
validation of the 3D modelling systems.

Most commonly, the uncertainties in the sediment transport modelling arise from the
use of empirical expressions, for example in the turbulence closure schemes and bedforms.
In addition, heavy dependence on different coefficients that can exhibit a large variability,
e.g. erodibility constant, and settling velocity of sediments. Often, the continuous sediment
size distribution is represented by a series of discrete values. In many cases, some of the
processes are neglected altogether such as mixed beds or cohesive effects of sediments
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(Amoudry and Souza, 2011). Calibrating the formulas and coefficients for site-specific use
helps to improve considerably the margin of error.

A similar approach has been used by other authors to study the sediment transport pro-
cesses. For instance Blaas et al. (2007) concentrated on the Southern Californian shelves
and Warner et al. (2008) presented a detailed overview of the sediment model functional-
ities, results of sensitivity tests and a realistic application in Massachusetts Bay. Karakaş
et al. (2006); Fischer et al. (2007) and Fischer and Karakaş (2009) studied the sediment
movement and particle advection across the NW African shelf. All of the above-referred
models used an earlier version of the CROCO model. Only a handful of numerical stud-
ies have been performed considering NW Iberian shelf as the study site while using 3D
models (Zhang et al., 2016, 2019). Therefore, the present study contributes to advancing
the understanding of different sediment transport processes in this area. As well, further
validates and improves the knowledge about the CROCO modelling system’s efficiency and
applicability in different locations around the world.

The following chapter focuses on evaluating the performance of the modelling system
configuration presented in Chapter 2.

4.2 Methods and data

4.2.1 Modelling system

The numerical models and their configurations described in Chapter 2 were specifically
developed to model the sediment transport in the NW Iberian Peninsula. A simulation
from November 2008 to December 2009 was performed, covering an annual cycle and two
distinct winters. The chosen period enabled to simulate the movement of sandy sediments
on the shelf in terms of intra-annual changes, during all four seasons, and study the impact
of some specific events like downwelling or upwelling, and different storm responses. It
should be noted, that in the current simulation, the sediments available for transport
originated only from the seabed. No external source of sediments was available, i.e. from
the rivers.

Both the wave and ocean models had a necessary spin-up time that allowed them
to stabilize. Thereafter, one by one, each module in the CROCO model was activated.
Firstly, atmospheric forcing was added, then a realistic wave field was considered, next the
sediments and finally river discharge, allowing us to analyze and understand the role of
each of the forcing terms.

4.2.2 Statistical analysis

To evaluate the performance of the numerical models, a variety of statistical metrics
were calculated for different variables. When possible, the quality of the wave and ocean
models and sediment modules were assessed based on five statistical parameters.
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The mean, denoted with an over-bar, of model estimates a or observations b, were
obtained by the sum of respective values divided by n, the number of values :

a =

∑n
i=1 ai
n

(4.1)

The correlation coefficient, RMSE and BIAS were estimated as

Cor(a, b) =
cov(a, b)

σaσb

(4.2)

RMSE =

√∑n
i=1(ai − bi)

2

n
(4.3)

BIAS = a− b (4.4)

where cov(a, b) is the covariance between a and b, σa and σb the standard deviation of a
and b, respectively. Finally, based on Willmott (1981) metric a model skill was calculated,

SW = 1−
∑n

i=1|ai − bi|2∑n
n=1(|ai − a|+ |bi − b|)2

(4.5)

where skill score one indicates a perfect agreement between the model and observations.
As the model diverges from the observations the skill approaches zero.

4.2.3 Observational data

For almost 18 months, from November 2008 to April 2010, an upward-looking SonTek
500 Acoustic Doppler Current Profiler (hereafter ADCP) was moored at 75 m depth close
to Cabo Silleiro (white circle in Figure 4.1, 42.083◦N and −8.933◦W ), recording every
5 minutes with a vertical resolution of 3 m (Barton et al., 2019a). The ADCP allowed
retrieving information about the current velocities along the water column, temperature 2
meters above the bed (mab) and backscatter signal. The ADCP has the highest sensitivity
for particles with a radius of 480 µm. For larger particles, the sensitivity is inversely
proportional to particle radius. The minimum detectable radius was 25 µm (SonTek.Inc,
1997). During the same period, an automated Technicap PPS 4/3 sediment trap was
deployed at 35 m of water depth at the base of the photic zone in an additional mooring line
(Zúñiga and Castro, 2019). The sediment trap data was used to determine gravimetrically
the total mass fluxes. A detailed explanation of the sediment trap sampling strategy
and processing can be found in Zúñiga et al. (2016). Monthly hydrographic surveys were
conducted along a 42.08◦N across-shelf section, in 7 equally spaced stations from 75 m
(−8.93◦W ) to 580 m (−9.44◦W ) depth, during the same period (Figure 4.1) (Barton
et al., 2019b; Castro et al., 2020a,b). The duration of the cruise was approximately 4
hours starting between 08:00 and 11:00 and ending at the deepest station between 12:00
and 15:00. Using a CTD - Seabird 25 equipped with additional sensors, profiles of salinity,
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temperature, fluorescence and turbidity were obtained among other parameters. More
detailed information about the field measurements and backscatter data corrections can
be found in the article of Villacieros-Robineau et al. (2019).

The wave information was obtained from two different wave buoys, located on the shelf
at various depths. Wave buoy Leixões (41.32◦N , −8.98◦W ) is located at 83 m depth on
the coast of Portugal and maintained by the Instituto Hidrografico 1. The information
is gathered in 3-hour intervals and increased in frequency when significant wave height
reaches over 5 m. Cabo Silleiro wave buoy (42.12◦N , −9.43◦W ), is found on the coast of
Galicia at a depth of 600 m, belonging to Puertos del Estado 2, recording data at every
hour. All the wave buoys are represented with white stars in Figure 4.1.

1https://www.hidrografico.pt/
2https://www.puertos.es/



4.3. Results 39

Figure 4.1: Bathymetric grid of the highest resolution grid in the CROCO model
(local), with red triangles marking the monthly CTD stations (Ns). A white circle
shows the location of ADCP, and white stars represent the locations of wave buoys
(Cabo Silleiro and Leixões). In the Southern area of the study site, the section
marked with a red line and a station (Ss) with a white circle, were chosen to
represent this area’s dynamics. From these locations relative data from the model

results was retrieved.

4.3 Results
In the following sections, the estimates of waves, circulation and sediments were evalu-

ated separately. The results of the statistical analysis were gathered into one table (Table
4.1) for a better general overview of the model assessments.
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Table 4.1: The duration of the modelled period was 14 months, from November
2008 until December 2009. The results of the wave model and the ocean model
with the sediment transport module during this term were analyzed based on five
statistical parameters: mean value, correlation coefficient, RMSE, BIAS and model
skill. The asterisk ∗ in the ocean model section, indicates, that the absolute values

of each variable were considered.

Wave model Location Source Mean Cor. RMSE BIAS Model skill
Sig. wave height Leixões Modeled 2.18 0.95 0.15 -0.02 0.97
(m) Observation 2.20

Cabo Silleiro Modeled 2.43 0.96 0.40 -0.05 0.98
Observation 2.48

Peak wave period Leixões Modeled 10.85 0.80 0.61 -0.33 0.89
(s) Observation 11.18

Cabo Silleiro Modeled 10.80 0.81 1.63 0.95 0.85
Observation 9.85

Peak wave direction Leixões Modeled 293 0.96 9.92 -5.82 0.98
(◦) Observation 299

Cabo Silleiro Modeled 280 0.95 28.10 -6.43 0.97
Observation 287

Ocean model ADCP Source Mean Cor. RMSE BIAS∗ Model skill
Meridional (v) 65.5 mab Modeled 0.18∗ 0.72 0.17 0.007∗ 0.81
(m/s) Observation 0.17∗

2.5 mab Modeled 0.10∗ 0.71 0.09 0.05∗ 0.76
Observation 0.06∗

Zonal (u) 65.5 mab Modeled 0.05∗ 0.19 0.09 -0.02∗ 0.49
(m/s) Observation 0.07∗

2.5 mab Modeled 0.03∗ 0.33 0.03 0.01∗ 0.56
Observation 0.02∗

Temperature 2.5 mab Modeled 12.9 0.85 0.50 -0.19 0.90
(C◦) Observation 13.1

Sediment module ADCP Source Cor. Measured against
Max. w-c shear stress (Pa) Bot Modeled 0.65 Backscatter (dB)
Max. w-c shear stress (Pa) Bot Modeled 0.90 Villacieros-Robineau et al. (2019) (Pa)

4.3.1 Wave model

An overview of the wave model and its application, using a very similar configuration,
was presented in the preceding chapter (Chapter 3), which has been previously published
in Viitak et al. (2020). In this section, the parameters entering the hydrodynamic model
CROCO were compared to two wave buoys, located in the local grid (Figure 4.1). The
validation of the regional grid is not shown here, as it demonstrated similar tendencies
observed in the local grid and all the sediment transport analysis was done, considering
the results of the highest resolution grid.

In the ocean model, the wave field was characterized using the information about the
amplitude of waves, that is, one-half of the significant wave height, peak wave period and
direction.
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The wave model SWAN skillfully reproduces the evolution of the wave field. The
significant wave height and peak wave direction were underestimated, as can be confirmed
by the negative values of BIAS (Table 4.1). This was especially noticeable during winter
periods of high energy, for example during mid-January 2009 and the end of November 2009,
in both wave buoys for significant wave height (Figure 4.2 a), b)) and it has been reported
to be one of the common problems of SWAN (Silva et al., 2015). The underestimation
tendency reduces significantly during late spring, summer and early autumn, with lower
wave energy conditions. The q-q plot vividly confirms these tendencies. Very similar
distributions can be seen, between the model and wave buoy data in Leixões and Cabo
Silleiro for significant wave heights under 5 m (Figure 4.3 a) and d)). When these values
are exceeded, the model begins to underestimate the wave heights.

The peak wave period was represented reasonably well (Figure 4.2 c), d)). According to
the BIAS value 0.95 s in the deeper water buoy, Cabo Silleiro, an overestimation occurred.
Where as, the shallower water buoy demonstrated slight underestimation, with BIAS -0.33
s. Much of the same propensity could be seen from the q-q plot, revealing further details.
The overestimation in the Cabo Silleiro wave buoy was mainly a contribution of shorter
wave periods, roughly under 13 s. As the distribution on the q-q plot started to diverge
notably with higher wave periods, demonstrating an underestimation of the model (Figure
4.3 d)). A similar trend could be observed in the wave buoy Leixões. Short waves with
periods under 10 s were eminently overestimated, while overall the differences between the
observations and the model increased with decreasing wave period. The underestimation
tendencies arise with periods over 13 s and higher (Figure 4.3 b)). It also seems to be
the most challenging wave parameter to simulate, as the correlation coefficient was the
lowest, around 0.80 at different wave buoy locations and model skill ranged between 0.85-
0.89. On the other hand, significant wave height and peak direction were in very good
accordance with the observations, exhibiting a correlation coefficient over 0.95 and model
skill over 0.97. The RMSE improves with decreasing water depth, due to the improved
representation of the buoy location in the model, demonstrating values of 0.15 m for the
significant wave height, 0.61 s for peak wave period and 9.92◦ for peak wave direction
(Table 4.1).

Compared with similar studies, the current model configuration presents reliable results
with the same level of accuracy or better, in the Iberian Peninsula (Rusu and Soares , 2013;
Rusu et al., 2015; Silva et al., 2015) and the rest of the world (Soares et al., 2014).
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Figure 4.2: The wave model metrics comparison with wave buoys: a) and b) the
significant wave height (red - modelled, blue - observations) and peak wave direction
(black - modelled) measured at wave-buoys Leixões (41.32◦N , −8.98◦W , 83 m) and
Cabo Silleiro (42.12◦N , −9.43◦W , 600 m), respectively. See Figure 4.1 for locations
on the shelf. c) and d) the peak wave period (red - modeled, blue - observations)

at Leixões and Cabo Silleiro, respectively.

Figure 4.3: Comparison of the distributions between the wave model output and
wave buoy using q-q plot: a) and c) the significant wave height, b) and d) the peak

wave period at the wave buoy Leixões and Cabo Silleiro locations, respectively.
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4.3.2 Hydrodynamic model

The ADCP measurements close to Cabo Silleiro (Figure 4.1 shows location) enabled
the recording of the current velocity at various depths along the water column. The ocean
model successfully reproduced the meridional (v) and zonal (u) current components in the
surface, middle and bottom layers (Figure 4.5 and 4.6). It was possible to verify that the
alongshore directional component (v) was modelled better than the across-shore component
(u). Furthermore, the bottom layer was more accurately represented than the surface one
for the latter component, whereas the meridional component did not demonstrate such
significant differences. The statistical analysis confirmed these tendencies (Table 4.1). A
correlation coefficient over 0.71 and model skill over 0.76 for component v was obtained,
whereas, with component u, the correlation coefficient was 0.19 with a model skill score of
0.49 for the surface layer and at the bottom layer 0.33 with model skill 0.56.

During the configuration process, various combinations of stretching factors for the
surface (θs) and bottom (θb) were tested to have a balance between the numerical stability
of the model, computational expense and the requirements of the application. The utmost
importance of the BBL dynamics in the study led to a reduction of the resolution at the
surface layers and reinforcement at the bottom layers. In general, the model was slightly
underestimating the current velocity meridional component v in the surface layers, with
positive velocity values above 0.2 m/s (Figure 4.4 a)). An overestimation occurred at the
bottom layers with velocities over 0.1 m/s (Figure 4.4 c)). The zonal component u was
slightly underestimated at the surface, with negative velocity values below -0.05 m/s and
overestimated with values above 0.15 m/s (Figure 4.4 b)). At the bottom layers the model
underestimated velocities below -0.03 m/s and higher than 0.03 m/s (Figure 4.4 d)).

Figure 4.4: Comparison of the distributions between the CROCO model and
ADCP measurements using q-q plot: a) and c) The meridional current component
(v), b) and d) the zonal current component (u), e) temperature at the ADCP

location in the surface and bottom layers, respectively.
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Figure 4.5: Meridional current component (v) obtained with the ADCP (blue)
and the model (red) at various depths along the water column: a) 65.5 mab, b) 56,5
mab, c) 38.5 mab, d) 20.5 mab and 2.5 mab. Positive values indicate the Northward

direction.

Figure 4.6: Zonal current component (u) obtained with the ADCP (blue) and
the model (red) at various depths along the water column: a) 65.5 mab, b) 56,5
mab, c) 38.5 mab, d) 20.5 mab and 2.5 mab. Positive values indicate the Eastward

direction.

Additionally, the simulated temperature at 2.5 mab, showed a very good agreement
with the observational data (Figure 4.7). An increase in the temperature can be observed
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in the measurement data at the beginning of October 2009, which was underestimated by
the model. Nevertheless, the fluctuations in November and December 2009 were relatively
well captured. A correlation coefficient of 0.85, a model skill of 0.90 and an RMSE of half
degrees indicate a good performance of the model (Table 4.1). The q-q plot demonstrated
that temperatures below 13 ◦C were simulated with greater accuracy at the bottom layers.
Temperatures between 13-15 ◦C tend to be lower in the model simulation, whereas higher
temperatures were overestimated (Figure 4.4 e)).

The statistical analysis of the current velocity components and temperature compares
very well with similar studies (Cordeiro, 2018).

Figure 4.7: The temperature at 2.5 mab obtained with the ADCP (blue) and
modelled (red)

.

The point measurements gave a comparatively good idea about the modelling system
performance and the margin of error, which should be taken into account when interpreting
the results. To understand how skillfully the model simulates different seasonal events, the
results were compared to the temperature and salinity profiles obtained from the hydro-
graphic surveys (Figure 2.1 shows location). Detailed descriptions of the following events
can be found in Villacieros-Robineau et al. (2019) and Cordeiro et al. (2021).

Pre-storm upwelling event on December 11, 2008 The Northerly winds which
preceded the event (Figure 4.9) promoted upwelling-driven circulation patterns, creating
strong Southward flowing currents across the whole water column, presenting maximums
close to -0.46 m/s and -0.36 m/s in the surface and bottom layers, respectively (Figure
4.5). At the same time, the significant wave height decreased by half, to 2 m, in wave buoy
Cabo Silleiro (Figure 4.2).

The temperature and salinity distributions recorded during the hydrographic survey re-
flected a well-established upwelling profile (Figures 4.8 a), b)). A clear distinction between
the warm and salty surface waters moving oceanwards and colder waters being transported
through the bottom layers towards the coast could be seen. Peaks in the runoff from Rías
were observed a day before the event, e.g. Lerez 95 m3/s, Ulla 83 m3/s (Figure 4.10), and
the freshwater patch extended out to the shelf (Figures 4.8 b)). The simulation depicted
these conditions fairly well, demonstrating very similar profiles of temperature and salinity,
although the waters from the river did not extend as far out to the shelf (Figures 4.8 c)
and d)). These conditions were followed by brief relaxation in the circulation regime, only
to pick up again and succeed with a peak of a very strong storm 4 days later, described in
the Chapter 5 section 5.3.
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Figure 4.8: Pre-storm upwelling event. On December 11, 2008, a), b) tempera-
ture and salinity were obtained along a cross-section between −8.93◦ W to −9.44◦

W during the hydrographic survey, and c), d) simulated with the model. The tem-
perature graphs show isopycnal 27.0 kg/m3 (grey).

Figure 4.9: The evolution and variation of kinematic wind speed alongshore com-
ponent (v) in the ADCP location (Figure 4.1), where positive and negative values

are represented by red and blue colour schemes, respectively.
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Figure 4.10: Runoff of the rivers considered in the model local grid (Figure 4.1).

Winter mixing on January 13, 2009 On this cruise, a downwelling-favourable circula-
tion regime was detected (Northward directed alongshore component, Figure 4.5, Southerly
winds, Figure 4.9), with strong waves close to 5 m (Figure 4.2) and high river runoff before
the event from Douro and Minho, 585 m3/s and 322 m3/s, respectively, (Figure 4.10).
These conditions determined the water column stratified structure in the inner shelf. The
temperature and salinity profiles demonstrate a clear front between the fresh waters from
the rivers and saline ocean waters, with a difference in salinity of 0.5 (Figure 4.11 a), b)).
The model replicated these conditions fairly well while indicating a lesser intrusion of the
river waters and maintaining the thermohaline front closer to the coast (Figure 4.11 c),
d)).

Spring time upwelling, on May 5th, 2009 During the event the wave energy was low
(Hs ≤ 2 m in Leixões and Cabo Silleiro, Figure 4.2), while the river discharged remained ≤
200 m3/s from Minho and Douro rivers Figure 4.10. An upwelling-driven circulation was
observed, resulting from the Southward wind regime (Figure 4.9). The colder subsurface
oceanic waters moved towards the coast, where the isotherms and isohalines were shifted
closer to the surface (Figure 4.12 a), b)). On the other hand, in the model simulations,
there could be seen more mixing in the surface layers, which positioned the isotherms
deeper in the water column and saline oceanic water propagated further toward the coast
in the mid-layers (Figure 4.12 c)).
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Figure 4.11: Winter mixing. On January 13, 2009, a), b) temperature and salinity
were obtained along a cross-section between −8.93◦ W to −9.44◦ W during the
hydrographic survey, and c), d) simulated with the model. The temperature graphs

show isopycnal 27.0 kg/m3 (grey).

Figure 4.12: Springtime upwelling. On May 5th, 2009, a), b) temperature and
salinity were obtained along a cross-section between −8.93◦ W to −9.44◦ W during
the hydrographic survey, and c), d) simulated with the model. The temperature

graphs show isopycnal 27.0 kg/m3 (grey).
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Summer stratification, on June 22, 2009 Highly stratified surface layers resulted
from very mild wave conditions, minimum river runoff (Figure 4.10) and a relaxation
period in the circulation regime from upwelling (Figure 4.9). Temperature profiles of
measurements and the model (Figure 4.13 a), c)) demonstrate maximums over 16 C◦ at
the upper 30 m and 60 m, respectively. Intense stratification in the salinity profiles was
very similar in both cross-sections (Figure 4.13 b), d)). Traces from the preceding upwelling
event could be observed both in the observational data and model results, with temperature
and salinity minimums of 12.5◦C and 35.75 - 35.7, respectively.

Figure 4.13: Summer stratification. On June 20th, 2009, a), b) temperature and
salinity were obtained along a cross-section between −8.93◦ W to −9.44◦ W during
the hydrographic survey, and c), d) simulated with the model. The temperature

graphs show isopycnal 27.0 kg/m3 (grey).

Post-storm winter upwelling, November 10, 2009 Two days before the hydro-
graphic survey a storm peak had passed. During which the significant wave height reached
8 m at the Cabo Silleiro wave buoy (Figure 4.2), the river discharge was weak (Figure 4.10)
and strong bottom currents were directed coast-ward and oceanward at the surface layers
(Figure 4.5 and 4.6). The post-storm conditions were registered during the cruise, pre-
senting upwelling enforced thermohaline structure, with surface currents transporting the
low salinity water toward the ocean and intrusion of saline water tongue in the mid-layers
(Figure 4.14 a), b)). The model demonstrated a relatively similar state of the temperature
and salinity profiles, with slight differences in the location of the isotherms and isohalines
(Figure 4.14 c), d)).
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Figure 4.14: Post-storm conditions of winter upwelling. On November 10th, 2009,
a), b) temperature and salinity were obtained along a cross-section between −8.93◦

W to −9.44◦ W during the hydrographic survey, and c), d) simulated with the
model. The temperature graphs show isopycnal 27.0 kg/m3 (grey).

4.3.3 Sediment transport model

A countless number of tests were performed to study and understand the model sen-
sitivity to different coefficients and formulations related to sediment transport. It was
concluded that in the current application, the maximum wave-current-induced shear stress
was highly sensitive to bottom roughness length. Initially, the mean bottom roughness
length Z0 = 0.5x10−3 m (0.5 mm) was considered, with bottom roughness ks= 1.5 cm,
assuming that the bed is sandy and unrippled (Soulsby et al., 1993). In the following sim-
ulations, different roughness components (ks, kt, kf ) were included one by one, such as the
only grain-related component (ks), the transport-related term (kt) and the effect of ripples
(kf ) (see Chapter 2 section 2.4.3 for more detailed description).

Throughout the 2 month test period, from November to December 2008, the highest
values of the maximum wave-current shear stress were obtained with constant value of ks=
1.5 cm and the lowest values considering only the grain-related component of the bottom
roughness (k0 = ks) (Figure 4.15 grey line marked as discontinuous and with asterisks,
respectively). Similar results were obtained, using the grain-related component and the
transport-related term together (k0 = ks + kt), while also adding the influence of ripples
(k0 = ks + kt + kf )(continuous grey and red lines in Figure 4.15, respectively).

Comparing the results with the shear stress estimates of Villacieros-Robineau et al.
(2019), the constant bottom roughness (ks= 1.5 cm) overestimated notably the stress, while
generally a slight underestimation could be seen with all of the rest of the simulations. It



4.3. Results 51

was concluded, that in the present application, the most suitable results were obtained
while considering all three components of the roughness. This allows different physical
processes to be represented in the model simulations.

Figure 4.15: The maximum wave-current induced shear stress calculated by the
model at the ADCP location (42.08◦ N, −8.93◦ W) while using different bottom
roughness definitions, with local depth 74 m. Additionally, the estimates of the
shear stress based on the study of Villacieros-Robineau et al. (2019), with a local

depth of 75 m.

The evolution of the combined shear stress at the bottom correlated well with the
backscatter signal of the ADCP at the lower layers, from November 2008 till December
2009 (Figure 4.16 a), b)). A correlation coefficient of 0.65 was obtained for the 3 mab
backscatter time series and the maximum wave-current shear stress at the bottom, which
was in the same order of magnitude as estimated in Villacieros-Robineau et al. (2019) for
a similar period. A very high concordance was found between the referred work and the
current study, with a correlation of 0.90 (Table 4.1). The q-q plot demonstrated a high
concordance between backscatter values below 80 dB and modelled maximum wave-current
shear stress till 0.5 Pa (Figure 4.17 a)). For higher values, the distributions diverged. The
discrepancy was also revealed in the maximums of the shear stress, while identical peaks
did not always have the same response in the backscatter signal, for instance, the storm
peak on December 15, 2008, and November 21, 2009 (Figure 4.16 b)). Most likely this was
linked to the origin of the sediment source. The higher backscatter signal values at the
bottom layers could be due to the entrance of siliciclastic particles from the river plumes.
Also, possibly transported by bottom bedload or saltation from other areas of the shelf. On
the other hand, the maximum wave-current shear stress estimated by Villacieros-Robineau
et al. (2019) and obtained in this study, demonstrated relatively similar behaviors (Figure
4.17 b)). The max. wave-current shear stress up to 1 Pa correlates comparatively well
and for greater values, the CROCO model estimates were higher than those of Villacieros-
Robineau et al. (2019).

The concentration of sediments at the bottom-most layer of the model, approximately
1.5 m from the sea bed, strongly followed the maximum wave-current shear stress (Figure
4.16 c)). The observed total mass flux in the sediment trap demonstrated strong seasonal
influences (Figure 4.16 d)). The correlation between the backscatter data and the maximum
wave current shear stress, with the sediment mass flux, was most evident during winter
seasons, associated with strong re-suspension of surface sediments (Villacieros-Robineau
et al., 2019). On the other hand, during summer and spring, the backscatter signal also
reflects biological production processes in the upper photic zone (Zúñiga et al., 2016). The
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mean suspended sediment concentration, for the same time intervals across the whole water
column, indicates a similar temporal variability as the sediment mass flux captured by the
sediment trap, especially throughout October-December 2009 (Figure 4.16 e) red bars).
While looking at the 1 m thick layer 35-34 m from the sea surface, where the sediment trap
was situated (Figure 4.16 e) magenta bars), the model results demonstrate the proportion
of re-suspended material from the sea bed during the autumn-winter periods (December
2008 – January 2009 and November 2009).

Figure 4.16: The information was captured in the ADCP measurements location,
with local depth 75 m and in the model 74 m (42.08◦N, −8.93◦W): a) backscatter
signal, the blue, green and red triangles represent the current, wave or co-dominance
events, respectively. b) Maximum wave-current shear stress obtained by Villacieros-
Robineau et al. (2019) (blue) and modelled (red), c) sediment concentration at
the bottom-most grid cell. d) Total mass flux from the sediment trap, e) mean
suspended sediment concentration across the water column (red) and in a 1 m

thick layer between 35-34 m from the surface (magenta).
.
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Figure 4.17: Comparison of the distributions using q-q plot: a) backscatter signal
at 3 mab, b) Villacieros-Robineau et al. (2019).

The turbidity and fluorescence data on each of the seasonal events, previously discussed,
were compared with the sediment concentration values in suspension. Turbidity can give
an insight into the presence of suspended particles scattered in the water column, while
fluorescence depicts the processes related to biological productivity.

Figure 4.18: Pre-storm upwelling event on December 11, 2008, a), b) turbidity
and fluorescence obtained along a cross-section between −8.93◦ W to −9.44◦ W

during the hydrographic survey, and c) modelled sediment concentration.

On December 11 2008, the turbidity measurements indicated the presence of a thick
nepheloid layer from the coast up to approximately 23 km offshore (Figure 4.18 a)). Its
thickness was reduced from 40 m to 25 m while moving away from the shore. A very low
concentration of sediment < 0.01 kg/m3 was observed from the model results nearly to
the same extent across the shelf (Figure 4.18 c)). The maximum thickness of the bottom
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nepheloid layer was roughly 20 m. The fluorescence values were below 0.5 mg/m3, referring
to low biological productivity close to the sea bed (Figure 4.18 b)).

The profiles obtained on January 13, showed a clear bottom nepheloid layer that ex-
tended out to the shelf (Figure 4.19 a)) coinciding with the outward limit of the salinity
front (Figure 4.11 b)). The turbidity and fluorescence sections also indicated the presence
of a surface nepheloid layer (Figure 4.19 b)). From the model results, only the bottom
nepheloid layer can be observed, which did not extend as far offshore as seen in the ob-
servational data (Figure 4.19 c)). The highest sediment concentration values were close to
the bottom, around 0.1 kg/m3, while with increasing distance, the concentration reduced
to below 0.005 kg/m3 at higher levels of the water column.

Figure 4.19: Winter mixing on January 13, 2009, a), b) turbidity and fluores-
cence obtained along a cross-section between −8.93◦ W to −9.44◦ W during the

hydrographic survey, and c) modelled sediment concentration.

On May 5th, there can be seen surface nepheloid layer from the turbidity and fluores-
cence data (Figure 4.20 a), b)), but turbidity also shows a low intensity bottom nepheloid
layer. In the model, no sediments could be observed in the water column (Figure 4.20 c)).
Although, 2 days before, on the 3rd of May, a brief storm reached a peak with a significant
wave height of around 3 m (Figure 4.2) and upwelling favourable circulation (Figure 4.9).
This created a relatively thin sediment concentration layer at the bottom seen from the
simulations (Figure 4.20 d)).

In the summer event, June 22nd, no sediments in suspension could be observed from the
model results, although the observations showed the presence of both bottom and surface
nepheloid layers (Figure 4.21).
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Figure 4.20: Spring time upwelling on May 5th, 2009, a), b) turbidity and trans-
mittance obtained along a cross-section between −8.93◦ W to −9.44◦ W during the
hydrographic survey, and c), d) modelled sediment concentration on 5th and 3rd of

May, respectively.

Figure 4.21: Summer stratification on June 22, 2009, a), b) turbidity and trans-
mittance obtained along a cross-section between −8.93◦ W to −9.44◦ W during the

hydrographic survey, and c) modelled sediment concentration on 22nd of June.
.
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The turbidity data from November 10th showed a strong signal up to 10 km from the
coast, decreasing from there on, and another bottom nepheloid layer in the deeper part of
the slope (Figure 4.22 a)). A strong surface nepheloid layer signal was only captured by
the fluorescence data (Figure 4.22 b)). On the cruise day, the model shows no sediments
in suspension (Figure 4.22 c)). Although, 2 days before, a storm had passed and the
simulations indicated the presence of the bottom nepheloid layer during that time (Figure
4.22 d)). During the storm, the significant wave height was between 5-8 m across the shelf
(Figure 4.2) and bottom currents were directed southward at the bottom layers, reaching
over -0.25 m/s at the ADCP location, according to the model (Figure 4.5).

Figure 4.22: Winter upwelling post-storm conditions on November 10, 2009, a),
b) turbidity and transmittance obtained along a cross-section between −8.93◦ W
to −9.44◦ W during the hydrographic survey, and c), d) modelled sediment concen-

tration on 10th and 8th of November, respectively.
.

4.4 Discussion
Waves and hydrodynamics A good agreement between the observational data from
wave buoys and model results demonstrated the wave model’s capability to represent ad-
equately the wave field. The comparison revealed the wave model’s tendency to slightly
underestimate the significant wave height, peak wave period and direction during strong
storm conditions with high energy. From the point of view of sediment transport modelling,
the model-estimated maximum wave-current shear stress acting on the seafloor sediments
is probably lower than reality. On the other hand, the meridional current component v
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was slightly overestimated by the model at the ADCP location, whereas the zonal com-
ponent u was underestimated at the bottom layers. Overall these differences between the
measured and simulated current velocities will have a minimum impact on the shear stress
calculations (Oberle et al., 2014).

The seasonal events comparisons showed that the ocean model was able to simulate
the dynamics of each of the events, with slight dislocation of the observed structures. The
mixed surface layer during spring and summer reached greater depth within the model.
The same tendencies have been observed by other studies (Cordeiro et al., 2021). This
may be due to the choice of the oceanic boundary layer mixing scheme, which most of
the time produces relatively satisfactory results, but in some specific conditions leads to
greater mixing. The plumes from the rivers advected less offshore than observed in the
monthly cruise data. This may be related to the model configuration, where the salinity
and temperature values were fixed at the mouth of the rivers. But also could be influenced
by the fact that the comparison was made with the model snapshot. Nevertheless, the
representation of rivers was considered reasonable taking into account the objectives of the
current application.

Sediments The model results reflected the backscatter signal at the bottom layers. Dur-
ing autumn and winter periods, the ADCP measured high backscatter values, and this was
also seen in the modelled suspended sediment concentration values. During spring and
summer seasons, the backscatter signal was significantly weaker in the bottom layers and
the simulations also indicated low sediment concentration values.

The total mass flux obtained through the sediment trap, located at the surface layers,
demonstrated a clear seasonal variability. The same could be observed for the mean sedi-
ment concentration values across the water column. The re-suspended sediments from the
seabed reached the upper layer of the water column only in winter months: December 2008,
January 2009 and November 2009. This demonstrated the model’s capability to reproduce
the sediment dynamics at the bottom layers during high energy conditions on the shelf.

While looking at a vertical section across the water column, from the turbidity data, it
was possible to observe both the bottom and surface nepheloid layers. The surface layers
were mostly generated by the local biological activity and influenced by the river blooms,
giving a stronger signal to the fluorescence data. These phenomena were not simulated by
the model, as the biology module was not activated and rivers did not transport sediments
in this simulation. Therefore, no surface nepheloid layers could be observed from the
simulations. On the other hand, the bottom nepheloid layers were influenced much more
by the wave and current activity that stirred up the sediments from the seabed, also
observed in the model results. While the winter event on January 13, was represented well
by the model, as the hydrographic conditions during the cruise permitted recording the
re-suspension of sandy sediments. In other events, the sandy fraction had already been
deposited, as the storms had passed a few days before the cruise, leaving behind the flocks
and silt/clay fractions of the sediments that were not represented by the model.
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The suspended sediment concentration at the ADCP location, where the first vertical
level of the model stayed at 1.5 mab, demonstrated values in the same range in similar
conditions as measured in the study of Zhang et al. (2016) with a lander deployed at 73 m
depth in a sandy site off the river Douro. In 2014 during 55 hours from 16 of September,
the significant wave height varied between 3-4 m with maximum heights around 6 m and
current at 1.5 m above the bed presenting maximum values of up to 0.5 m/s, although
remained generally under 0.2 m/s. The SPM demonstrated 4 peaks with the highest
values approximating 0.4 kg/m3. The observed particles belonged to silt and very fine
sand classes, from which in the current study, the latter class was represented with two-
size bins. The sediment concentration values obtained by the model in this study reached
0.6 kg/m3 with wave conditions exceeding 7 m at the Cabo Silleiro wave buoy.

Another study by Zhang et al. (2019) recorded the SPM during intra- and post-storm
periods in September 2014. Their findings showed a maximum SPM of 8 g/m3 during post-
storm conditions close to the outer extent of the Galician mud patch at approximately 9 m
above the seafloor. Whereas, recordings with LISST100 at the Galician mud patch 30 cm
above the seafloor, demonstrated SPM maximums close to 100 g/m3 composed mostly of
coarse silt and fine sands (50-200 µm). Based on the observational data covering the same
period as the current study, (Castro per. comm.), showed the highest SPM between mid-
November 2008 and January 2009, with a maximum of 10 g/m3 across the water column.
Similar values were observed in the mean suspended sediment concentration across the
water column (Figure 4.16 e)). These maximum values represented in the current study,
range in the same order of magnitude as found by several other studies referred to above,
reinforcing the degree of confidence in the results.

4.5 Conclusion
Numerical simulations were conducted using a wave and ocean model with a sediment

transport module to reproduce the suspended sediment transport of a sandy fraction on the
NW Iberian continental shelf. The results obtained were compared against various in situ
observational data sources. The statistical and quantitative analysis demonstrated that
all the models were in relatively good agreement with the measured data while presenting
some shortcomings.

The wave model SWAN tended to underestimate the wave energy in storm conditions.
However, the evolution of the wave field in time, at various locations on the shelf, was
represented comparatively well. The accuracy of the model outcome was at the same level
compared to similar studies conducted or even slightly higher.

The ocean model demonstrated slight differences in the hydrographic parameters, but
the statistical analysis demonstrated a reasonable error range that compared well with
studies alike. The two-step validation process, considering point measurements and the
extended salinity/temperature profiles across the shelf obtained through a hydrographic
survey, demonstrated the reliable capabilities of the model to simulate shelf circulation.
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The sediment transport model, with its limitations and simplifications, simulated skill-
fully the fundamental sediment transport processes and the seasonal variations on the shelf.
The results obtained by the model were in agreement with similar studies, demonstrating
results in the same order of magnitude. However, this study emphasizes the need for
long-term sediment data sets, for better site-specific calibration.
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Chapter 5

The role of driving forces in sediment
transport processes

5.1 Introduction
A wide range of issues in the coastal ocean, such as long-term changes in the sea floor,

the depiction of its habitants and the effects of contaminants, is related to the transport
of sediments and the fate of the particles.

Sediment re-suspension, transport and deposition are determined by various hydro-
dynamic processes, sediment properties and characters of the seabed. Studies show that
wind-driven currents are most effective in redistributing the sediments. An important fac-
tor for sediment re-suspension is wind-driven surface waves, which induce strong bottom
shear stresses through bottom orbital motion (Vitorino et al., 2002a; Oberle et al., 2014).
Although it has been found that generally, the tidal current alone isn’t strong enough to
resuspend sediments in the continental shelf (Oberle et al., 2014; Zhang et al., 2016), in spe-
cific conditions it may add to the sub-inertial flow to re-suspend the fine-grained sediments
(Vitorino et al., 2002a; Xing and Davies , 2003b). Close to river estuaries and inner-shelf
areas, the tidal currents may contribute to the suspension of sediments, in particular dur-
ing spring tides (Villacieros-Robineau et al., 2013). Oliveira et al. (2023) pointed out the
importance of internal waves in generating additional turbulence throughout the water
column, supporting the formation of suspended material "pockets" in mid-layers (mostly
very fine silt, clay) and reinforcing the suspension close to the seabed. Zhang et al. (2019)
illustrated the role of internal solitary waves in the mid-shelf mud depocenters sediment
dynamics.

The biggest sediment sources for the continental shelf areas are rivers. During winter,
extremely high values of river run-off in the NW Iberian continental shelf can be observed,
particularly from Douro (Vitorino et al., 2002b) and Minho (Otero et al., 2010) Rivers.
The coarser fractions are deposited near the river’s mouth and transported by the littoral
currents driven by waves breaking (littoral drift). The fine sand fractions and silt/clay
are transported further offshore as suspended load and can be re-suspended through the
action of storm waves, and wind-induced currents. These physical processes induce a
differential transport of sand fractions which promotes patches with different sediment
particle dimensions along the continental shelf (Bosnic, 2017).
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The low gradient of the continental shelf off from the Douro estuary facilitates the
transport of fine sediments to the deeper areas. Toward the slope a tectonic origin barrier
is present, prohibiting the further advection of fine sediment to the deeper part of the ocean
and therefore supporting the formation of the Douro mud patch (Dias et al., 2002b). A
large amount of sediments from the Douro mud patch and adjacent shelf areas is remobilized
and carried Northwards by bottom currents to the Galician mud patch. There occurs three
to nine storm in a year (2-13 days per year) that can generate current velocities high enough
to re-suspend material within the Douro mud patch (Vitorino et al., 2000). Probably the
mean original sediment source for the Galician mud patch was the Minho river. Due to the
incentive modification of river regimes, mainly because of the construction of dams, the
sediment supply from rivers has reduced significantly during this century (Dias et al., 1980;
Oliveira et al., 1982). Fine-grained sediment input from the Galician Rías is small (Rey ,
1993) due to the morphological features of this area. Rocky outcrops and small islands
protect the Rias from large storm events and as they are relatively deep (up to 50 m) they
tend to act as sediment traps (Dias et al., 2002b; Jouanneau et al., 2002). Probably the
sediments that can reach the shelf are deposited directly into the Galician mud patch. This
scenario is supported by the mineralogical data (Oliveira et al., 2002b). Sediment transport
further North of the Ría Arosa is greatly reduced due to the presence of rocky outcrops
that extend onto the shelf. The morphological features close to the Galician mud patch
area are a little bit different than those of the Douro mud patch. There are no physical
barriers but the outer slope is much more regular and softer. The sediments re-suspended
from the Galician mud patch are probably advected off the shelf to the adjacent oceans.
Dias et al. (2002a) also compared the different mud patches on the Western European
Atlantic Margin and found that the large-scale forcing (storms, swell, bottom currents),
common to this area, largely determines the location, as well as the deposition and erosion
mechanisms of these mud patches.

Jouanneau et al. (2002) also noted that, in addition to the morphological features
influence, the general and seasonal circulation patterns are a big influence on the transport
patterns of sediments. In water depths shallower than 100 m frequent mixing and reworking
of sediments occurs. With increasing depth the forces acting on the seabed diminish. To
re-suspend sediments in greater depths, only less frequently occurring extreme storms
can create enough energy onto the seabed (Vitorino et al., 2000; Jouanneau et al., 2002;
Vitorino et al., 2002b,b; Oberle et al., 2014; Villacieros-Robineau, 2017). These large storm
events act as a sorting mechanism leaving behind the coarser factions of sediments (Dias
et al., 1980; Bosnic, 2017). During autumn and winter seasons downwelling conditions are
more frequent promoting sediment transport to the North (Fiúza et al., 1982; Fiúza, 1983;
Vitorino, 1989; McCave and Omex II partners , 2000). Whereas summer upwelling periods
favour fresh organic input from the ocean to the shelf. In addition, it provokes sediment
transport to the South and the ancient ocean through eddies and filaments (Jouanneau
et al., 2002).

Villacieros-Robineau (2017) recorded the BBL dynamics during the entire annual cycle
from November 2009 to Abril 2010 with a high spatio-temporal resolution at the inner
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Galician Shelf. It was found that the wave orbital velocity is the primary mechanism con-
trolling the surface sediment distribution along the margin and the location of the Galician
mud patch. Similar conclusions were drawn by the study of Oberle et al. (2014). Zhang
et al. (2016) and Villacieros-Robineau et al. (2019) both found that during downwelling
season there was little to no export of re-suspended material across the shore to the adja-
cent ocean. The front created by IPC advected waters and WIBP low saline water, was
the key factor determining the extent of cross-shore transport of sediments during ener-
getic events and the location of the mud patch, favouring the sinking of particular matter
during low energetic conditions. Re-suspended material was transported northward within
the inshore coastal current.

Vitorino et al. (2002a) studied during the spring and winter period the BBL of the
Douro mud patch, based on wave buoy and current measurements. For the northern Por-
tuguese shelf, they found that the mean erosion mechanism was wave action. Whereas
Villacieros-Robineau (2017) and Zhang et al. (2016) observed that the co-dominance situ-
ations were common and no clear dominance of waves or currents was distinguished.

In the current study, a numerical modelling system was run to simulate a period from
November 2008 until December 2009, covering an annual cycle and two distinct winters.
The mean goal was to examine the dynamics of current and wave forcing in the sediment
re-suspension processes. In addition, to understand the importance of shelf, meso- and
submesoscale circulation in the sediment transport processes and mean patterns.

5.2 Methods and data
To study the sediment transport mechanism in the continental shelf of the NW Iberian

Peninsula, a three-dimensional free-surface, split-explicit, terrain following Coastal and
Regional Ocean COmmunity model (CROCO, v1.0 1) was implemented. The model is
capable of resolving the coastal dynamics while interacting with a larger oceanic scale.
The atmospheric and wave forcing were included using offline sources. The river discharge
of the current configuration does not contain sediments. The hydrodynamic model includes
a sediment transport module that calculates the movement of sediments through several
processes like erosion, suspended load and deposition. It takes into account multiple grain-
size classes and includes some of the properties of cohesiveness within the very fine-size
classes. In most cases, the bottom-most grid cell is situated too high up from the seafloor
to properly resolve the wave boundary layer and here comes to play the BBL module (see
section 2.4.3 in Chapter 2). This is to bridge a gap between the different computational
needs to characterize hydrodynamics and sediment transport processes. The BBL module is
responsible for the calculation of critical shear stresses at the bottom for sediment purposes.

A detailed overview of the numerical models and their set-up for this specific application
is presented in Chapter 2. The configuration and validation processes are described in
Chapter 4, including a description of the observational data sets in section 4.2.3.

1https://www.croco-ocean.org
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5.3 Results

5.3.1 Sediment movement along a vertical cross-section

A cross-section on a shelf through a latitude of 42.08◦N , close to Cabo Silleiro, will be
analyzed, which coincides with the measurement’s location (Figure 4.1 in Chapter 4). A
brief overview of the time series will be presented highlighting specific events, with certain
characteristics that could be observed repetitively. Various large-impact re-suspension
events occurred mostly during the winter months of 2008 and 2009. Around 44 events
were identified and the role of the currents and waves was analyzed (Figure 5.1).

Figure 5.1: The information was captured in the ADCP measurements location,
with local depth 75 m and in the model 74 m (42.08◦ N, −8.93◦ W): a) backscatter
signal, red and blue arrows mark the events, where sediment transport rates pre-
sented maximums of 0.4 kg/ms and 0.3 kg/ms, respectively; black triangles with
numbers indicate the peaks of the events discussed in the results. b) Maximum
wave-current shear stress obtained by Villacieros-Robineau et al. (2019) (blue) and
modelled (red). c) Bottom current velocity components in the alongshore direction
v (red) and across-shore direction u (black), hexagram and circle sign the well-
developed upwelling or downwelling regime, respectively. d) Wave orbital velocity
and e) sediment concentration at the bottom-most grid cell. The blue, green and

red triangles represent the current, wave or co-dominance events, respectively.
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In this section, there can be found in the initial sediment bed, three types of particle size
classes: silt (< 0.063mm), very fine (0.063− 0.125mm) and fine sand (0.125− 0.250mm)
(Figure 2.2 in Chapter 2).

Figure 5.2: Co-dominant event and upwelling, December 15th, 2008. The vertical
cross view in the Northern area of a) sediment concentration in suspension with
scattered particle size information (only concentrations > 0.001 kg/m3 are shown)
and b) sediment mass flow rate in alongshore direction. Green ticks indicate the
positions of the finest sediments in the initial surface sediment distribution map.
c) Temperature, with contoured alongshore current velocity components in m/s
(black), and when possible isopycnal 27.0 kg/m3 (grey) and 26.0 kg/m3 (white).
d) Salinity, with contoured cross-shore current velocity components in m/s (black).
The dotted or continuous black contours on c) and d) represent the negative and
positive velocity values relative to the x and y-axis, respectively. Thick continuous

black lines show the isotherms and isohalines when needed.

Co-dominant event and upwelling In 2008, the most significant change in the seabed
sediments was produced by a co-dominance event, that had its peak on 15 December 2008
with maximum wave-current shear stress around 4 Pa acting on the surface sediments
(Figure 5.1 b), event 1). The high bottom shear stress was the product of increasing
current and surface wave activity. The bottom currents started to intensify on the night
of 14 December, with prevailing direction from North to South, reaching over 0.3 m/s
(Figure 5.1 c)), generating upwelling favourable circulation. An intensification could also
be seen in the wave field. The simulated significant wave height was 7 m in the wave buoy
Cabo Silleiro location (Figure 4.2 Chapter 4). During the peak of the event, wave orbital
velocity at the bottom exceeded more than 0.3 m/s at the ADCP measurements location
(Figure 5.1 d)).
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The silt fraction of sediments was re-suspended high up in the water column along a
cross-shore transect off Cabo Silleiro until 100 m water depth (Figure 5.2 a), b)). Very high
concentration values at the bottom layers could be observed presenting maximums close to
0.6 kg/m3 at the bottom-most grid cell (Figure 5.1 e)). Across the whole section transport
was directed Southwards, with the highest flow rates close to the seabed, exceeding -
0.04 kg/m2s (Figure 5.2 b)). The temperature and salinity sections (Figure 5.2 c), d))
confirm an upwelling favourable circulation pattern. The 27 kg/m3 isopycnal (Figure 5.2
c)) separates the deep cold oceanic waters, moving coast-wards with cross-shore current
velocity as high as 0.05 m/s, from the warm surface and mid-layer waters, transported
oceanward (Figure 5.2 d)). The passing of the storm allowed the sediments to be deposited
again, 2 days later, as the concentration levels in the water column reduced close to zero
(Figure 5.1 e)).

Current dominant event and downwelling Mainly current-dominated event oc-
curred between 28 December and 2nd of January (Figure 5.1, event 2). Approximately
5 days the currents were strong, with near bottom velocities over 0.2 m/s, flowing North-
wards (Figure 5.1 c)). During this period the wave orbital velocity stayed mostly under or
close to 0.1 m/s (Figure 5.1 d)). The sediment concentration values at the bottom-most
grid cell seem to follow the wave energy impulses, creating peaks of 0.15 kg/m3 (Figure
5.1 e)).

The section of suspended sediment concentration on 30th December 2008 indicated a
presence of a bottom nepheloid layer. The maximum concentration values reach approx-
imately 0.06 kg/m3 and it was possible to verify the very fine sediment size class in the
upper water column (Figure 5.3 a)). The temperature and salinity sections showed a clear
downwelling circulation pattern, where the surface warm and saline waters moved towards
the coast and cold fresh waters from the rivers entered the shelf (Figure 5.3 c), d)). These
conditions created two fronts indicated, with the 27 kg/m3 isopycnal, that largely seemed
to coincide with the limits of the sediments in suspension (Figure 5.3 a), c)). Subsequently,
12 hours later, the fronts had moved further offshore from the coast (Figure 5.4 c)), and
the sediment profile continued to be limited by the fronts (Figure 5.4 a)). Decrease in the
wave energy, promoted settling of the sediments (Figure 5.1 d)), but, low concentration of
sediments < 0.015kg/m3 continues to be dispersed by the currents (Figure 5.4 a), b)).
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Figure 5.3: Current dominant event and downwelling, December 30, 2008. The
vertical cross views in the North. Panels explained in Figure 5.2.

Figure 5.4: Current dominant event and downwelling, December 31, 2008. The
vertical cross views in the North. Panels explained in Figure 5.2.

At the beginning of 2009, from 13 January until 10th of February, the maximum wave-
current induced bottom stress was constantly over 2 Pa on the ADCP location (Figure



68 Chapter 5. The role of driving forces in sediment transport processes

5.1 b)). This produced a series of re-suspension processes altering between co-, wave or
current dominance.

CO-dominant event during downwelling, with a mismatch in the current and
wave peaks The third event occurred on January 2009, with the intensification of bottom
currents flowing Northward, reaching as high as 0.35 m/s on the 15th at 12 hours (Figure
5.1 c), event 3). On the other hand, wave energy peaked 12 hours later, on the 16th,
producing a wave orbital velocity over 0.37 m/s (Figure 5.1 d)), while the bottom currents
had reduced to 0.2 m/s at that moment. This mismatch in the peaks of the magnitude of
currents and waves had an impact on the profile of sediments in suspension (Figure 5.5 and
5.6 a)). When the current speed was the highest, re-suspended sediments were dispersed
along the observed vertical section reaching the surface layers, while concentration values
in the upper layers did not exceed 0.015 kg/m3 at that moment (Figure 5.5 a)). When
the wave energy peaked on the 16 of January 00 hour, the sediment concentration at the
bottom-most layers increased significantly, from 0.09 kg/m3 up to 0.3 kg/m3, while the
sediments at the surface layers started to settle (Figure 5.6 a)). Larger sediment mass flow
rate values could be observed at the peak of the current along the entire water column,
and intensification in the bottom layers during wave peak, due to the higher sediment
concentration values (Figure 5.5 and 5.6 b)).

The temperature and salinity sections demonstrated clear downwelling circulation pat-
terns on the 15th, reinforcing the sediment transport to the North and through the bottom
nepheloid layer offshore (Figure 5.5 c) and d)). On the 16th, there could be seen a re-
laxation in the circulation patterns, as the front between the ocean and river waters had
dislocated oceanward from its original location and the currents along the water column
reduced the intensity (Figure 5.6 c) and d)).
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Figure 5.5: CO-dominant event during downwelling, with a mismatch in the cur-
rent and wave peaks, January 15th, 2009. The vertical cross views in the Northern

area. Panels explained in Figure 5.2.

Figure 5.6: CO-dominant event during downwelling, with a mismatch in the cur-
rent and wave peaks, January 16th, 2009. The vertical cross views in the Northern

area. Panels explained in Figure 5.2.
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Co-dominant event, with a shift in the circulation patterns from downwelling to
upwelling Various co-dominance events occurred between 24-27 of January 2009 (Fig-
ure 5.1, event 4). On the first day, there could be observed well-established downwelling
circulation patterns (Figure 5.7 c) and d)). The flow in the surface layers was directed
onshore and at the bottom layers offshore, with maximum values of the cross-shore com-
ponent reaching -0.08 m/s. The wave orbital velocity had been constantly over 0.2 m/s
since the 13 of December and exceeded 0.3 m/s on the 24th. These hydrographic condi-
tions favoured the transport of low concentration of sediments, less than 0.015kg/m3, high
up in the water column and their dispersion over a significant area, along the observed
section (Figure 5.7 a) and b)). Concentrations above the sediment bed were less than
0.09 kg/m3, presenting maximums of 0.2 kg/m3 directly above the bed (Figure 5.1 e)).
On the 25th there could be observed a start of a shift in the circulation regime, as the
currents weakened and the sediment flow indicated that the currents offshore had already
turned Southward, while the sediments in the rest of the water column continued to be
transported Northwards (Figure 5.8 b), c) and d)). The next days, wave energy continued
to grow, peaking in the ADCP location at 0.37 m/s on the 26th (Figure 5.1 d)), creating
a high concentration area of sediment at the bottom-most layers (Figure 5.9 a)). By that
time, the alongshore component of current velocity had turned Southward and intensified,
demonstrating an upwelling regime. There could be observed a clear correlation between
the concentration of suspended sediments, sediment mass flow and current velocity along-
shore component v (Figure 5.9 a), b) and c)). An increase in the freshwater input from the
rivers can be observed in the salinity field (Figure 5.9 d)), while the front of the WIBP was
pushed further in the offshore direction, coinciding largely with the coastward limit of the
sediments in re-suspension. On 27/01 00, the post-storm relaxation started and sediments
were rapidly settling down and deposited at the seabed.
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Figure 5.7: Co-dominant event, with a shift in the circulation patterns from
downwelling to upwelling, January 24th, 2009. The vertical cross views in the

Northern area. Panels explained in Figure 5.2.

Figure 5.8: Co-dominant event, with a shift in the circulation patterns from
downwelling to upwelling, January 25th, 2009. The vertical cross views in the

Northern area. Panels explained in Figure 5.2.
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Figure 5.9: Co-dominant event, with a shift in the circulation patterns from
downwelling to upwelling, January 26th, 2009 at 12 hours. The vertical cross views

in the Northern area. Panels are explained in Figure 5.2.

In April and May 2009, there could be observed some sediment movement close to
the bottom layers that reduced to a minimum in the summer months, with very rare
events re-suspending the sediments more than a few meters above the bed. This continued
throughout the early autumn until the middle of October when there could be seen an
increase in wave energy.

Wave dominated event During the autumn of 2009, several wave-dominated events
occurred. The strongest one happened on 21 of October at 12 hours (Figure 5.1, event 5).
The currents were weak, below 0.05 m/s and wave orbital velocity reached 0.3 m/s at the
ADCP location (Figure 5.1 c), d)). This created a thin layer of sediment in suspension at
the bottom with concentrations maximum close to 0.24 kg/m3 near the seabed sediments
(Figure 5.10 a)). The transport of sediments was principally to the North (Figure 5.10 b)).
This event occurred during downwelling, while the water column was strongly stratified
at the surface layers. Warm surface waters mixed with fresh water from the rivers were
confined to the first 30 m from the surface, separated by the 26 kg/m3 isopycnal from the
colder and more saline waters below (Figure 5.10 c) and d)).
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Figure 5.10: Wave dominated event, October 21st, 2009. The vertical cross views
in the Northern area. Panels explained in Figure 5.2.

5.3.2 The transport of sediment in the water column in North and
South of the study domain

The Northern area of the study domain is characterized by a relatively narrow conti-
nental shelf and steep slope. The Southern part, on the other hand, has a significantly
wider shelf area and a series of narrow steps leading from the shelf break to the adjacent
ocean. A vertical profile of a cross-section between −9.30◦W and −8.74◦W along a lat-
itude of 41.28◦N was examined (Figure 4.1 in Chapter 4) and its dynamics is compared
to the movement in the Northern section, discussed above. In the South, all the sediment
size classes are represented in the initial surface sediment distribution map. The coarser
fraction dominates in the shallower waters, and with increasing depth, the fine fraction
becomes dominant. Rocky outcrops can be found surrounding the Douro mud patch on
the outer extent. On the other hand, in the Northern section, only three size classes of the
finer fraction are present and rocky outcrops extend from the shore to approximately 60
m depth (Figure 2.2 in Chapter 2).

Comparing several variables of each section approximately in the same water depth
(74 m) reveals a similar behaviour in terms of hydrodynamics and sediment response.
In the Northern location, the maximum wave-current bottom stress and current velocity
components were slightly higher than in the South (Figure 5.11 a), b)). The wave-induced
bottom velocity on the other hand was in the same order for both locations (Figure 5.11
c)). A small increase in the sediment concentration values at the bottom-most grid cell
could be observed in the Southern point (Figure 5.11 d)).
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Figure 5.11: Time series were obtained from the Northern (Ns) and Southern
(Ss) areas of the study site at 74 m depth retrieved from the model (location in
Figure 4.1). The following variables were retained: a) maximum wave-current shear
stress (red (Ns), black (Ss)), b) near bottom current velocity components v (red
(Ns), yellow (Ss)) and u (black (Ns), green (Ss)), c) wave orbital velocity (red (Ns),
black (Ss)) and d) sediment concentration at the bottom-most grid cell (red (Ns),
black (Ss)). The blue, green and red triangles represent the current, wave or co-

dominance events, respectively.

Further analysis demonstrated that in the North the dominant sediment size class
in suspension was 0.094 mm and in the South 0.063 mm, presenting similar maximum
concentration values, while in some moments a slight enhancement in the Southern section
could be observed. Lower concentrations of 0.063 mm and 0.094 mm were present in both
locations, respectively, exhibiting slightly higher values in the South (Figure 5.12). In
other words, the maximum wave-current bottom stress was slightly higher in the Northern
area than in the South, but due to the characteristics of the sediment bed in the observed
location, this resulted in higher concentration values in the South.
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Figure 5.12: The sediment size class concentrations for Ns and Ss (location in
Figure 4.1) at the bottom-most grid cell.

The strongest re-suspension events observed along the Southern section were aligned
with the ones that occurred in the Northern one (Figure 5.11). The area in the vertical
section, where sediments can be seen in suspension, was significantly broader on the South
compared to the North, as can be seen from the co-dominance event on 15 December 2008
at 12 hours (Figure 5.13). This has to do with the differences in the bathymetric forms of
each section. Due to the steep shelf in the North, sediments were re-suspended in an area
up to 8 km offshore (−9.00◦W ), where the depth varies from 5 to 104 m in the model,
although in rare cases also beyond these limits. In some of the events the sediments also
reached the surface layers, but in most cases, the transport occurred in the bottom layers.
On the other hand, in the South, the seabed slopes more gradually and sediments were
moved along in a much wider area until 26 km offshore (−9.10◦W ) from the coast. In this
section, depth varies from 5 to 120 m.

During summer months it could be observed that, along the Southern section, at the
bottom-most layers the sediments were re-suspended from time to time whereas the same
was not observed for the North.

Figure 5.13: a) Cross-sections in North and b) South, on December 15th, 2008.
The vertical cross view of sediment concentration in suspension with scattered par-
ticle size information (only concentrations > 0.1mg/l are shown). Green lines indi-
cate the positions of the finest sediments in the initial surface sediment distribution

map.
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5.3.3 Sediment transport on the shelf

Events with very high sediment transport rates

During the modelled period, there occurred 6 events where the transport flux exceeded
0.3 kg/ms in some areas of the shelf (Figure 5.1 a), indicates the incident dates). Two
of the events happened during upwelling in the first half of the observed period (14-16
December 2008, 05-06 March 2009), creating very high sediment transport rates, exceeding
0.4 kg/ms. The remaining events (20-27 January 2009, 8 and 15 November 2009, and 22
December 2009) demonstrated transport rates close to 0.3 kg/ms, during which there could
be observed both upwelling and downwelling. In all the cases a co-dominance of waves and
currents was identified.

The meso- and submesoscale circulation

Of the 44 previously identified events, 17 of them occurred during downwelling and 27
during upwelling conditions.

Upwelling driven sediment transport On the 4th of March 2009 at 12, the height
of the waves started to increase and reached a peak on the 5th with 6-8 m waves from
NW, approaching the coast in depths > 70 m (Figure 5.14 a)). The wave orbital velocity
exceeded 0.14 m/s well beyond 90 m depth and a significant amount of sediments were
re-suspended from the seafloor all across the shelf (Figure 5.15 a)). At the same time, also
currents intensified at the bottom layers, presenting the highest velocities in the inner and
mid-shelf, and in the outer shelf North from 42.2 ◦N, with maximums over 0.2 m/s, flowing
Southward (Figure 5.14 b)). An increased sediment transport flow could be seen in the
mid-shelf below 70 m depth across the layer 5 mab, reaching over 0.8 kg/ms (Figure 5.15
b)).
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Figure 5.14: March 5th, 2009. a) The significant wave height and wave peak
direction. The dis-continued magenta line represents the 0.14 m/s isopleth of the
bottom wave orbital velocity. b) The current velocity and direction at the bottom

layers.

Figure 5.15: March 5th, 2009. a) The mean concentration of suspended sediments
across a layer with a thickness of 5 mab. b) Sediment transport flux in the bottom-

most 5 m.
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Sediments along the Northern and Southern cross-sections were carried high up to the
water column and even reached the surface layers (Figures 5.16 a) and 5.17 a)). There
could be observed a strong Southward movement of sediments across the whole water
column in both locations (Figures 5.16 b) and 5.17 b)). The temperature and salinity
sections confirm the upwelling circulation patterns across the shelf, indicating propagation
of colder and more saline water coastward along the bottom layers (Figures 5.16 and 5.17,
c), d)). There could be observed an increased freshwater input from the Xallas, Tambre,
Ulla, and Umia rivers in the North and from Minho and Douro in the South, on the 3rd
of March. With upwelling favourable winds, these waters were pushed Southward, giving
an origin to these freshwater patches in the surface layers reaching up to 50 m depth,
seen from the salinity section (Figures 5.16 and 5.17 d)). Well-defined fronts developed
between the saline oceanic water and the fresh water at the surface layers, marked with
37.5 isohaline in the Southern section (Figure 5.17 d)), seem to confine and restrict the
suspended sediment dispersion in the water column. The fronts also coincide largely with
the borders of the areas where sediments could be seen in suspension in the water column
(5.17 a), b)).

With a decreasing wave height, after the peak of the storm, the deposition patterns
started to dominate as confirmed by the decreasing sediment concentration values at the
bottom (Figure 5.1 d), e)). The upwelling-driven circulation continued to stay relatively
strong, promoting the transport of previously re-suspended sediments Southwards (Figure
5.1 c)). Even 4 days later, after the peak of the storm, there could be observed a sediment
transport at the bottom layers. A similar event occurred on December 15 2008, but the
sediment settled to the bed after 2 days due to the difference in the circulation intensity.

Figure 5.16: Cross-sections in North, on March 5th, 2009. Panels explained in
Figure 5.2.
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Figure 5.17: March 5, 2009, cross-sections in South, on March 5th, 2009. Panels
explained in Figure 5.2.

Downwelling driven sediment transport On the 12th of November 2009, the ocean
circulation shifted from upwelling to downwelling and the currents at the bottom layers
intensified, reaching the first peak on the 14th and the second peak on the 15th of Novem-
ber. In both dates, the current velocity along-shore component v exceeded 0.3 m/s (Figure
5.1 c) ). At the same time, waves started to grow, travelling from SW and the maximum
significant wave height varied between 5-6 m (Figure 5.18 a)), which coincided with the
current second peak. Across a large part of the shelf, the current velocity at the bottom
layers exceeded 0.2 m/s, presenting maximums over 0.3 m/s. These oceanographic settings
lead to high mean sediment concentration values in a layer of 5 m from the sediment bed,
exceeding 1 kg/m3 in the mid-shelf and reached up to 0.2 kg/m3 in the outer shelf (Figure
5.19 a)). Elevated sediment transport flow rates were seen all over the shelf, reaching in
some areas over 1 kg/ms (Figure 5.19 b)).

The cross-section in North and South demonstrated clear downwelling-driven circula-
tion patterns. The along-shore current component v was directed Northwards across the
entire water column up to approximately 150 m water depth, with a counter-current in
the surface layers deepest area (Figure 5.20 and 5.21 c)). Cross-shore current component
u indicated a coastward flow of warmer and less saline water in the surface layers, and an
oceanward flow of colder and more saline water at the bottom (Figure 5.20 and 5.21 d)).
The sediment concentration and sediment mass flow profiles indicate a strong influence of
the fronts on the propagation of the sediments, both in the Northern and Southern regions
(Figure 5.20 and 5.21 a), b)). Water mass in the bottom layers, separated by the 13.7 ◦C
and 15 ◦C isotherms, and 35.7 and 35.8 isohalines in the Northern and Southern sections,
respectively (Figures 5.20 and 5.21 c), d)), limit the sediment movement in the mid-shelf.
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Figure 5.18: November 15th, 2009. a) Significant wave height and wave peak
direction. The dis-continued magenta line shows the 0.14 m/s isopleth of the bottom

wave orbital velocity. b) Current velocity and direction at the bottom layers.

Figure 5.19: November 15, 2009. a) Mean concentration of suspended sediments
across a layer with a thickness of 5 mab. b) Sediment transport flux in the bottom-

most 5 m.
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Figure 5.20: Cross-sections in North, on November 15th, 2009. Panels are ex-
plained in Figure 5.2.

Figure 5.21: Cross-sections in South, on November 15th, 2009. Panels are ex-
plained in Figure 5.2.
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Changes in the seabed sediments

The most significant changes in the seafloor sediments were particularly evident in the
large-impact events, marked on Figure 5.1 a) with arrows. However, when significant wave
height approached 5 m on the outer or middle shelf and currents at the bottom exceeded 0.1
m/s, there could be observed changes at the sediment bed over 1 mm. With less energetic
conditions the bed remained almost unchanged or the changes produced were below 1 mm.
Clear tendencies of erosion or deposition patterns were present with the evolution of the
storms. The sediments were removed from the seabed while the storms reached their peaks
and deposited again afterwards.

The highest sediment transport rates, associated with upwelling events, occurred on 15
December 2008 and 5th of March 2009, demonstrating relatively similar tendencies when
it came to changes in the sediment bed (Figure 5.22). The erosion patterns were mainly
evident in depths greater than 90 m in the Galician mud patch region and greater than
70 m in the Douro mud patch area. The deposition occurred in areas shallower than 70
m and South from 41.2◦N . The duration and the amplitudes of the peaks of both of the
events were comparatively alike (Figure Figure 5.1 b)), resulting in deposition and erosion
maximums of 6 cm and -10 cm in some areas on the shelf seabed.

Figure 5.22: Changes in the seabed sediments after the a) 15th of December 2008
and b) 5th of March 2009 event.

Changes caused by the downwelling events were more notable during the last two
months, at the end of 2009. Frequent downwelling favourable circulation could be seen on
the shelf (Figure 5.1 c)). During this period, various energetic wave episodes took place and
the collective oceanographic settings produced notable changes in the seabed sediments.
These were most evident on the 15 of November and on the 22 of December. By the end
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of the November event (Figure 5.23 a)), the sediments were deposited in the outer shelf
beyond or close to 90 m depth contour North from the 41.6◦N latitude line. South from
there, the deposition could also be observed in depths in the region of 70 m. Erosion took
place mostly in depths below 70 m. In December (Figure 5.23 b)), the deposition and
erosion patterns created patches across the shelf up to 90 m depth. During both of these
events the common denominators were the well-established downwelling circulation regime,
the amplitudes of the peaks of the current along-shore component at the bottom layers and
wave orbital velocity (Figure 5.1 c), d)), demonstrating very close values, approximately
0.33 m/s and 0.2 m/s, respectively. A considerable difference was in the duration of the
events. The November event lasted roughly 6 days, maintaining the peak values for a day
and a half. On the other hand, the December event endured for 3 days and the peak of
the velocity of the bottom currents was 12 hours before the wave peak. This produced
significant differences in the maximum values of the bed changes, with accumulation rates
of 4.5 cm and erosion rates of -5 cm in the November event. In December the maximums of
deposition varied between 4.5 cm below 20 m depth and 1.5 cm beyond, and erosion rates
up to -2 cm. Nevertheless, some similar tendencies in the deposition and erosion patterns
could be seen during both events.

Figure 5.23: Changes in the seabed sediments after the a) 15th of November 2009
and b) 22th of December 2009 event.
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5.4 Discussion

5.4.1 Sediment dynamics in the inner, middle and outer shelf

The continental shelf margin can be divided into three distinct zones: inner-, middle-
and outer shelf, based on the grain size distribution and the hydrodynamic regime. The
inner shelf most landward area covers the wave-breaking zone and it is characterized by
frequent exchange of littoral sediments with a sub-aerial beach which translates into mea-
surable morphological changes. The seaward inner shelf limit can be determined by the
presence of finer littoral sediments, that are frequently mobilized but mostly transported
under highly energetic events. The middle shelf feels less wave energy at the bottom and
constituents of medium and coarse sand fractions. In this zone the re-mobilization of sed-
iments is dominant, but the net transport is relatively low. The muddy sediments mark
the end of the middle and the beginning of the outer shelf. Here the hydrodynamic regime
is milder and the finer fraction can settle (Bosnic, 2017).

Based on the initial grain size distribution of sediment in the study area, the approxi-
mate depth distribution is as follows. The inner shelf lies between 0-20 meters, the middle
shelf from 20 to 70-90 meters and the outer shelf starts from 70 meters in the Douro mud
patch location and at 90 meters in the Galician mud patch.

The model results indeed showed that in the inner shelf area, the sediments were most
frequently in suspension and with the highest mean transport rates in a 5 m layer above
the bed. In the middle shelf, a frequent re-mobilization of sediments could be observed,
but the mean transport rates stayed mostly very low, less than 0.02 kg/ms. Only, in
the presence of currents sufficiently strong to transport sediments, can there be seen an
increase in the transport rates. Nevertheless, during energetic events, the transport rates
in the middle shelf exceeded 0.3 kg/ms in some locations.

On the outer shelf, the sediments were re-mobilized and transported the least. This
only happened with certain hydrodynamic conditions. Sediments were re-suspended and
presented mean concentration values higher than 0.15 kg/m3 in a 5 m layer above the bed
when wave orbital velocity reached 0.14 m/s or higher. Villacieros-Robineau et al. (2019)
found this to be the threshold of hydrodynamic stability for muddy sediments. A statistical
value characterizing the average impact of all the storms during the observed period, with
a percentile of 95 %. The model simulations of the present study demonstrated that in a
single event with wave orbital values as low as 0.06 m/s, the waves were able to re-mobilize
the finest fractions of sediments in the deeper end of the shelf. Generally, waves with a
significant wave height of 4-5 m were able to create sufficient shear stress at the bottom to
re-suspend sediments on the outer shelf. During the modelled period, there were several
episodes where the sediments were re-suspended from the bottom due to the high energetic
wave event, but the transport flux were minimum (less than 0.02 kg/ms) as the currents
in the bottom layers were weak (smaller than 0.1 m/s). Also, opposite situations could
be observed, where the current speed exceeded 0.4 m/s, but waves did not have enough
energy to suspend sediments in the outer shelf, again resulting in low transport rates.
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Due to the sediment size differences in the continental shelf, the current speed necessary
to transport sediments was smaller on the outer shelf compared to the mid-shelf.

5.4.2 The key forcing factors of sediment transport

Across the whole shelf, most commonly co-dominance situations occurred presenting
approximately 39 % of the 44 distinguished events during the observed period. Followed
by wave dominance, with 32 % and also not unusual were current dominated events, with
29 %. Current dominated events always coincided with notable wave activity with lower
energy and vice versa. It was not possible to distinguish any differences in the roles of waves
and currents for the Northern and Southern areas of the study site. Similar conclusions
were drawn by Zhang et al. (2016) and Villacieros-Robineau (2017).

The sediments’ movement along a cross-shore section demonstrated well the effects of
currents and waves in the re-suspension and transport of sediments. With only current-
dominated events, the suspended sediment concentration values at the bottom layers were
notably smaller than with only wave or co-dominance situations. Therefore, the wave
action promoted the re-suspension of sediments from the seabed and currents moved the
sediments further off from the source. The timing and intensity of oceanographic settings
had a great impact on the sediment movement dynamics. A mismatch in the intensity
peaks of waves and currents reduced the co-dominance impact and therefore the action
of each was less effective. In the presence of suspended sediments in the water column,
low current velocity, with a constant change in the flow direction, allowed to continue to
transport sediments and slowed down the settling processes. Possibly, the turbulence that
was created from the shifts in the circulation regime enhanced the transport mechanisms.

As noted by other authors e.g. Dias et al. (2002a); Vitorino et al. (2002a) morphological
features greatly influence the fine-grained sediment movement and accumulation on the
shelf. This was also seen from the model results when observing the Northern and Southern
areas of the shelf. Due to the difference in shelf-slope gradients, in the South, sediments
were transported in a wider area than in the North. Consequently, a more frequent re-
mobilization of sediment in the Douro mud patch could be observed compared to the
Galician one.

Throughout the 14 months, there occurred 6 storms which had a remarkable impact in
redistributing the sediments on the shelf. The effect of this was also seen in the Douro and
Galician mud patches. All of these large-scale storms took place during winter months,
except one early spring storm. A frequent reworking of sediments was observed between the
mud depocenters and the coast, depths below 90 m. Among others, similar observations
were also done by Vitorino et al. (2000); Jouanneau et al. (2002); Vitorino et al. (2002a,b);
Oberle et al. (2014); Villacieros-Robineau (2017), about the impact of storms on the surface
sediments.
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5.4.3 Suspended sediment transport patterns

Seasonal influence

The seasonal impact on the movement of sediments indicates a major impact of large-
scale forcing like storms, waves and bottom currents in shaping the sediment transport
patterns. During late spring, summer and early autumn, there was little to no movement
in the seabed sediments. Whereas, with the increase in the intensity of the waves and
currents, significant mixing and reworking of sediments could be observed.

Shelf circulation

Upwelling and biogenic input to the shelf are favoured during the summer period
(Jouanneau et al., 2002) and stormy periods promote downwelling, with the mean di-
rection of transport of the sediments to the North (McCave and Omex II partners , 2000).
During the observed period, the events highlighted in this study that took place during
storm seasons were mainly upwelling-dominated, constituting 61 % of the total occurrences.
While the sediments were re-suspended from the seabed to the water column, and in the
presence of strong downwelling conditions, the sediment transport was mostly Northward
directed (limited to the NW sector) and promoting the offshore transport of sediments in
the BBL (Figure 5.19 b)). On the other hand, with upwelling, the transport was mainly
Southwards (limited to the SE sector) and associated with an onshore transport through
the BBL (Figure 5.15 b)).

The impacts on the sediment bed in the event of upwelling or downwelling were distinct.
While sediments were mostly removed from the outer shelf areas and accumulated onto
the mid-shelf during upwelling, the opposite occurred during downwelling. Erosion was
largely dominant in the mid-self, although in some cases also in the Douro mud patch
location. Deposition of sediments was predominant in the outer shelf areas. The duration
of a particular storm, and also the timing of the wave and current energy peaks created
a significant difference in the long-lasting impact of a particular event. The seasonal
circulation patterns give an insight into the mean sediment transport patterns (e.g. winter
downwelling, summer upwelling). On the other hand, a large-scale storm may generate a
significant change in the sediment bed, reworking the sediment bed and leaving a lasting
signature of the event.

In the study conducted by Zhang et al. (2016), during a downwelling event, there could
be seen a significant deposition of mud patches on the outer shelf. Although very similar
patterns were observed in the current study, deposition of sediment beyond the shoreward
boundary of the Galician mud patch was not detected. This may be largely due to the
characteristics of the seafloor surface sediments described in the model. Only the sand
fractions were considered and the aggregate-forming properties of clay and silt fractions
were for the most part neglected. Another contributing factor may be the unavailability
of observational data sets to calibrate more efficiently the sediment model.
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In winter periods, a well-established circulation regime could change fast and be re-
placed by another well-developed one. During these rapid shifts, the sediments were trans-
ported toward the coast when downwelling changed to upwelling and towards the slope
with a change from upwelling to downwelling. While there was sediment in suspension, the
shifts in the circulation seemed to enhance the turbulence in the water column, promoting
the levitation of sediments.

Bottom eddies and density fronts

Often there could be observed bottom eddies form across the shelf, more frequently and
clearer off from the Galician rivers in depths greater than 90 m. During a well-established
circulation regime (upwelling or downwelling), that frequently coincided with a strong wave
energy event in the winter period, the eddies that were formed, mostly transported the
sediments to the direction of the mean circulation, South- or Northward on the shelf. This
was due to the positioning of the eddy in terms of depth distribution. A part of the
eddy that was located in the shallower area, where sediments were in suspension, followed
the circulation patterns. On the other hand, the counter-current of the eddy was in the
deeper part of the shelf, with a limited supply of sediments in the water column (Figure
5.24). When the circulation patterns were not fully developed or the shift from one well-
established regime to another was progressive, the circulation in the near-bottom eddies
generally tended to be weaker in strength. If there existed sediments in suspension in the
water column, these eddies would form the pathways of transport toward the adjacent
oceans (Figure 5.25).

Figure 5.24: November 26th, 2008, a well-established upwelling event. a) The
current velocity and direction at the bottom layers. b) Sediment transport flux in

the bottom-most 5 m.



88 Chapter 5. The role of driving forces in sediment transport processes

Figure 5.25: December 18th, a shift from upwelling to downwelling. a) The
current velocity and direction at the bottom layers. b) Sediment transport flux in

the bottom-most 5 m.

Density fronts between the fresh water from the rivers and saline oceanic waters creating
the WIBP can restrict the sediment movement in the shoreward end of the shelf. It was
also possible to observe this restrictive nature of the surface layers front in the mid-shelf,
impeding the suspended sediments from being suspended higher up to the water column.
The storm-generated downwelling fronts observed during this period coincided largely with
the shoreward boundary of both of the mud patches found in the study area, confirming
the conclusion drawn in the Zhang et al. (2016) study.

5.5 Conclusion
The fundamental processes in the seasonal dynamics of sediment movement in the con-

tinental shelf were reasonably presented in this study. While considering the simplification
and generalizations made by the numerical models, the influence of morphological fea-
tures, the effect of seasonal and general circulation, and the impact of waves and storms
on sediment transport patterns were all described.

It was found that suspended sediment transport in the NW Iberian shelf was largely
controlled by the combination of the current and wave co-dominance effects. While the
shelf circulation patterns, influenced by the seasonality, determine the mean direction of
the transport. The magnitude of wave energy acting onto the seabed sediments regulated
the amount of sediment mass that would be re-suspended.

The storm-driven upwelling and downwelling events promote the Southward and North-
ward transport of sediments. Big storms were able to erode sediments in the outer shelf
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and upwelling favoured the deposition of sediments in the mid- and inner shelf. On the
other hand, downwelling favoured the accumulation of sediments close to or on the outer
shelf. Single large-scale storms observed mainly during the winter periods, had a great
impact in re-distributing the seafloor sediments compared to the potential of the mean
transport tendencies of a particular season (upwelling or downwelling).

The density fronts in the water column limited and controlled the horizontal and ver-
tical movement of sediment in the water column. The fronts created during storm-driven
downwelling coincided largely with the shoreward limits of the mud patches. Restrict-
ing the movement beyond its shoreward and eventually supporting the formation of these
depocenters.

The cross-shore transport of suspended sediments in the Southern part of the study
site was bound by the morphological characters of the seabed. Whereas, in the Northern
area there could be seen forming large-scale bottom eddies, and open pathways to the
re-suspended sediment transport to the open ocean.
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Chapter 6

The fate of sediments coming from the
river systems

6.1 Introduction
The origin of sediment basin and bed features of the NW Iberian continental shelf date

back to the last glacial maximum. Since then, the mean sea level has increased drastically,
leaving a part of the continent under the water. Additionally, the changing climate and
oceanographic settings, laid the foundation to form the seabed as we know it today (Dias
et al., 1997). There are presently two large deposits of fine sediments in the study site,
the Douro one in the South and the Galicia one in the North (Chapter 2 Figure 2.2, areas
with the finest fraction). Douro mud patch has been deposited over strata of Paleocene
and Eocene age (Dias et al., 2002a) and the observations indicate that the sediments at
3.1 m depth date back to 1400 B.P. Similarly to Douro, Galician mud patch is considered
a recent sedimentary feature (Drago et al., 1994) and consists of 2 to 6 m thick sandy and
muddy Quaternary sediments (Rey , 1993; González-Álvarez et al., 2005).

Both mud patches are orientated from North to South (Jouanneau et al., 2002). The
Douro mud patch is about 8-18 km wide and 42 km long and located at a depth of 90-120
m Northwest at the mouth of the Douro River. The Galicia mud patch is about 2-3 km
wide to 50 km long, located at a depth of 110-120 m further North of the Minho estuary.
For the most part, the sediments within these patches are fine-grained, though slightly
coarser in the Galicia patch (Dias et al., 2002a).

The N-S and W-E directional variations in both of the mud patches are described
in detail in Jouanneau et al. (2002). Around 100 m depth contour the N-S directional
variations in the sedimentation rates were found to be higher off the Douro Estuary in the
Southern sector and near the Galician Rias to the North.

According to Jouanneau et al. (2002) the sedimentation rates vary between 0.17-0.58
cm/yr in different locations in the Douro mud patch and Galicia between 0.06 and 0.21
cm/yr. Nevertheless, the outer reaches of the Southern region of the shelf are relatively
poor in recent sediments. There can be seen features related to the ancient coastlines and
river mouth, as well as relict sediments. The Northern area, on the other hand, is covered
with a thin layer of fine-grained material (Dias et al., 2002b). These differences can be
explained by the mechanism controlling the development of these mud patches, including
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the terrestrial supply of sediments to the shelf, favourable hydrodynamic conditions and
morphological features promoting the accumulation of sediments. During this century, the
anthropological influence and construction of dams have significantly reduced the mean
input of river sediment supply (Dias et al., 1980; Oliveira et al., 1982). The most rele-
vant rivers in this region, providing the terrestrial sediments to the shelf, are Minho and
Douro. During flood events, fine sediments are transported to the inner and sometimes to
the mid-shelf, staying relatively close to their source. The coarser fraction stays behind,
and it is transported Southwards through littoral drift. The finer fractions from different
rivers become mixed. Most often, the re-suspended finer fraction gets trapped by the pole-
ward current on the continental shelf (Villacieros-Robineau, 2017; Jouanneau et al., 2002;
Vitorino et al., 2002b,a).

The morphology plays a crucial role in the dispersal and deposition of fine sediment
onto the shelf. The continental shelf in the Northern area of the study site has rocky
outcrops and small islands in the shallower region of the shelf (Dias et al., 2002a). These
features shelter the Rias, which are quite deep, up to 50 m, capturing the sediments coming
from this region’s river systems (Jouanneau et al., 2002). A strong depth gradient leads
to the outer shelf, where the Galician mud patch is located. The outer shelf is relatively
soft and regular, without any physical barriers, so sediments may be transported into the
ocean. In the Southern location, the shelf is gentle. A tectonic origin barrier is present at
the far end of it, restricting further movement of sediments to the adjacent ocean (Dias
et al., 2002b).

The studies about the formation and development of the seabed, along with the move-
ment of fine-grained sediments on the shelf, have further raised questions about the sus-
pended sediment transport and the evolution of the mud patches on the shelf under the
current climate. The fate of the sediment entering the shelf from the river systems is still
poorly understood. This is due to the lack of long-term observational data sets, regarding
the quantity and the specific characters of the particulate matter. So, this is the first
attempt to understand the course of action of the material coming from the river systems
exploiting numerical models and universal formulations.

6.2 Methods and data

6.2.1 Set-up of the modelling system

A three-dimensional numerical model CROCO (v1.0) was used to simulate the transport
of the particulate matter coming from the rivers. The configuration of the model was based
on the previous study, presented in Chapter 5, about the role of driving forces in sediment
transport processes. The model set-up is described in great detail in Chapter 2 and the
validation process in Chapter 4. In the present study, further modifications to the source
code of CROCO were done. So, the model would also consider sediment concentration
information along with the river discharge. For more details about the changes in the
source code, consult Appendix B.
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In general, there exists little to no information about the sediment concentration values
transported by the various rivers in the NW Iberian region. Therefore estimates of sediment
flow were calculated following the formulation presented in Franz et al. (2014).

Qs = 0.0043×Q1.45 (6.1)

where Qs (kg/s) is the total suspended sediment flow and Q (m3/s) the river discharge.
A concentration was found as:

Qs = Q× C => C =
Qs

Q
(6.2)

In terms of river flow capacities, the most important rivers in the study area are Minho
and Douro. The properties of the sediments entering the ocean from these river systems
are not very well known. There are limited observational data available, covering very
short periods. According to the study of Santos (2021), the sediments belong to a silt
fraction class, varying between 0.016 - 0.032 mm, and are mostly transported in the upper
layer of the water column when the river discharge is strong. Based on the estimates in
the previously mentioned study, the model is set up in a way that all 11 rivers in the study
area carry sediments only when the river discharge exceeds 100 m3/s. While this limit was
set even higher for the Douro, > 500 m3/s, as with lower values, due to the shape of the
estuary and its inner circulation, sediments get trapped. All the names and locations of
the rivers can be seen in Figure 6.1 a).

Figure 6.1: a) Locations and names of all the rivers included in the simulation. b),
c) Estuaries of Minho and Douro, respectively, with Mp 1-3 and Dp 1-2 indicating
the points, where the mean sediment concentrations were estimated in Figure 6.2

c) and e). The red dots represent the sediment concentration entry point.
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Based on the mean daily river flow and the net sediment flux data presented in Santos
(2021) for 9 March 2006 in Minho and 7 March 2006 in the Douro, estimates of sediment
concentration were calculated closest to the river inlets (Equation 6.2). For Minho, the
approximate sediment concentration value was 4 mg/l, with a daily mean river flow of
557.4 m3/s and sediment flux 100x103kg during 12.6 h. For Douro 8 mg/l, with a daily
mean river flow of 569.25 m3/s and sediment flux 200x103kg during 12.4 h. These values
were used as rough approximations of the order of magnitude of sediment concentration
while adjusting the model setup.

In the initial configuration, 8 different size classes of sediments were present, each with
inherent properties (see Chapter 2 Table 2.1). At first, the rivers would transport the two
finest sediment fractions, silt and very fine sand (D50 < 0.063 mm and 0.0940 mm). After
various tests, it was found that the modelled concentration values at the entrance of the
Douro and Minho rivers were too high compared to the above-referred estimates. Therefore,
two additional size classes were added to the model configuration, with D50 0.032 mm and
0.016 mm. These sediments were only transported by the rivers and not placed on the
sediment bed. The settling velocity, erosion rate and critical shear stress were calculated
based on the recommended formulation in the model manual (Table 6.1, information about
the formulations is in Appendix A). This lowered significantly the concentration values,
as the sediments moved further away from the river inlet, instead of being deposited near
the entrance of the river outlet. Additionally, the point of entry on the computational
grid, where the sediment concentration values were introduced, was moved more inland.
Pushing the boundary point further away from the area of interest reduces the so-called
boundary effect (Figure 6.1 b) and c)).

The two additional sediment classes added to the model, silt 1 and silt 2, demonstrated
similar transport patterns. As the silt 1 fraction was with smaller D50, lower settling
velocity and critical stress, it could be seen dispersed further from the input source (Table
6.1). In many cases, the second fraction, silt 2, was deposited in the mouth of the estuary
or stayed inside the river. Therefore, hereon, only the smaller fraction, silt 1, will be
described and discussed.

Table 6.1: Mean grain size classes entering the shelf from the river systems,
represented by D50, ws,m - settling velocity, E0 - erosion rate and τce - critical

shear stress for sediment motion (suspended load).

D50 ws,m E0 τce
(mm) (mm/s) (kg/m2s) (N/m)

1) Silt 1 0.016 0.1611 6.6 10−05 0.0552
2) Silt 2 0.032 0.6442 1.4 10−04 0.0859

In this simulation, the properties of the sediments entering the shelf through river
systems were modified according to which behaviour was expected, based on some rough
estimates and the general knowledge from the literature. This is due to a lack of mea-
surement data available and the modelling system does not have a module capable of
representing the cohesive behaviour of the silt fraction. Therefore, some caution should
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be taken while interpreting the results. This is considered as a first try in understanding
better the kind of observational data needed and which are the technical requirements of
the numerical model, to obtain satisfactory results.

6.3 Results

6.3.1 River runoff and sediments

During the observed 14-month period of simulation, the most energetic conditions on
the shelf occurred from November 2008 until the beginning of March 2009 and again from
October 2009. This was seen from the maximum wave-current induced shear stress (Figure
6.2 a)). Similar tendencies could be observed from the river runoff data from Minho and
Douro (Figure 6.2 b), d) blue line).

Due to the set-up of the model, the Minho River transported more frequently sediments
in its river flow, than the Douro. The sediment concentration values were estimated based
on the river discharge (Equation 6.2) and limited to specific flow conditions that were
set based on the recommendations in the literature. Minho River would only transport
sediments when the discharge was equal to or higher than 100 m3/s. These conditions were
met almost always, so the sediment concentration that was imposed in the model varied
between 20-60 mg/l and presented maximum values around 100 mg/l during the highest
river flow (Figure 6.2 b) red circles). Douro river runoff, on the other hand, exceeded
the criteria 500 m3/s only during approximately 5 months out of the whole observed
period. Within, the sediment concentration levels were always above 60 mg/l, while the
highest values reached close to 160 mg/l (Figure 6.2 d) red circles). All the rest of the
rivers hardly ever met the criteria of 100 m3/s, therefore the sediment input from these
can be considered trivial in the current application. The mean sediment concentration
levels leaving the estuary close to the mouth of the rivers varied significantly (Figure 6.2
c) and e)). For the river Minho, at the end of January throughout February 2009, the
concentration maximums rounded close to 2-3 mg/l, while the river runoff maintained
over 500 m3/s, with the maximum reaching approximately 1400 m3/s (Figure 6.2 b) and
c)). This order of magnitude was also estimated by Santos (2021), rounding to 4 mg/l, with
a mean river flow of 569.25 m3/s. At the end of 2009, from mid-November until December,
there were two distinct peaks on 15 November and 22 December, with greater maximums
of 8 and 13 mg/l, respectively. At the same time, river runoff maintained similar values
compared to the previous winter, while varying around 500 m3/s, with maximums close to
1000 m3/s. During autumn, spring and summer the mean sediment concentration levels
remained close to 0, although the river discharge continued to carry sediments.

In the case of the Douro River (Figure 6.2 d) and e)), from December 2008 until January
2009, the mean concentration varied between 1-4 mg/l. From the end of January until the
beginning of March 2009, these values increased considerably, with maximum peaks around
14 mg/l. During this period, the river runoff maintained over 1000 m3/s, with maximums
around 1500 m3/s. Thereon, the concentration levels dropped, maintaining close to 1-2
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mg/l throughout spring, summer and autumn seasons, except for one event in April. Only
increasing again in the middle of November 2009 until the end of the year, exhibiting peaks
between 6-10 mg/l in the mean sediment concentration values. River runoff presented even
higher maximums, 2700 m3/s, compared to the beginning of the year. Mostly, these values
were in the same order of magnitude as proposed by Santos (2021), with a mean river flow
of 569.25 m3/s and a concentration of 8 mg/l.

Figure 6.2: a) Maximum wave-current shear stress obtained by Villacieros-
Robineau et al. (2019) (JGR) at the ADCP measurements location (42.08◦ N,
−8.93◦ W, with local depth 75 m and simulated by the CROCO model. b), d)
River runoff (blue discontinuous line) and the sediment concentration values (red
circles) imposed in the intrusion point of the river estuaries of Minho and Douro,
respectively. The horizontal dashed black line indicates the threshold from which
sediments were released into the system. c), e) The mean sediment concentrations
along the entire water column close to the river mouths of Minho and Douro, re-
spectively. The exact locations of these points can be seen in Figure 6.1 b) and
c). The black and orange dots in c) indicate an upwelling or downwelling-driven

circulation on the shelf, based on the data presented in Chapter 5 Figure 5.1.

At the beginning of 2009, from January 24 until March 20, the suspended sediment
concentration remained high in the mouth of the Douro estuary. While from 23/01 - 14/02
the river runoff was over 1500 m3/s, decreasing after that and varying between 855 - 500
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m3/s from 15/02 - 07/03 (Figure 6.2 d)). The opposite could be seen in points Dp 1-2 close
to the Douro River entrance. There was an increase in the sediment concentration values,
while the sediment input and river runoff decreased (Figure 6.2 e)). Generally, this was
more evident in the Northern point, Dp 2, though the storm event on March 5th created
a strong peak in both points.

6.3.2 Oceanographic conditions

Downwelling driven storm

The end of January 2009 and February were distinguished by persistent high wave
energy conditions and strong river discharge (Figure 6.2 a), b) and d)). There could
be seen well-developed upwelling or downwelling-driven circulation patterns, such as the
downwelling event on the 1st of February 2009. At the peak of the event, the maximum
mean sediment concentration at the bottom layers, right off of the Minho River outlet, was
close to 21 mg/l (Figure 6.3 a)). These values reduced significantly and fast with distance
from the coast, presenting a strong concentration gradient, remaining below 5 mg/l beyond
the 20 m depth contour. On the other hand, concentration remained high, in the range
of 15 mg/l, in the coastal zone depths below 10 m and diminished with a distance from
the river source. Very close to the coastline, North of Douro estuary, the mean suspended
sediment concentration exceeded 33 mg/l. It continued high in depths below 10 m, up to
river Cavado, with minimums ranging around 15 mg/l. Again, these values reduce rapidly,
with increasing distance from the coast, staying below 11 mg/l beyond 20 m depth isoline,
although showing higher values compared to river Minho.

In both locations, the mean bottom current direction was Northward, while it was
noticeably stronger in the inner shelf area North of the river Minho, compared to the same
location in river Douro (Figure 6.3 b)). The bottom current velocity exceeded 0.5 m/s in
the Minho area, remaining mostly below or around 0.2 m/s in the Douro area.

In the surface layers, the suspended sediment concentration values were relatively alike
to the ones described at the bottom layers and presented similar patterns (Figure 6.4 a)).
On the other hand, the current velocities were remarkably higher (Figure 6.4 b)). In depths
below 20 m, the maximum current velocity reached 1 m/s North of Minho, and in Douro,
0.8 m/s, with a coastal jet around 20 m depth contour, where velocities exceeded 0.9 m/s.
The track of this jet can also be seen in the surface sediment concentration map.
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Figure 6.3: February 1st, 2009, a) The mean suspended sediment concentration
at the bottom in a 5 m layer. The blue lines mark the locations of the vertical
transects displayed in Figure 6.5. Red contour marks the 33 mg/l and magenta the
5 mg/l isopleth. b) The current velocity and direction (every 10th arrow) at the

bottom.

Figure 6.4: February 1st, 2009, a) The suspended sediment concentration at the
surface layer. Red contour marks the 33 mg/l and magenta the 5 mg/l isopleth.

b) The current velocity and direction (every 10th arrow) at the surface.
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While observing the vertical structure of the water column of this event, the Minho
transect (location in Figure 6.3 a) SM-1) shows that the suspended sediment concentra-
tion values drop drastically, with the distance from its source (Figure 6.5 a)). The 33 mg/l
isoline coincides closely with the river Minho estuary entrance. The current systems indi-
cate an oceanward flow in the surface and mid-layers, with maximums at the surface close
to -0.4 m/s. Close to the bottom shoreward flow was present, with maximums around 0.1
m/s (Figure 6.5 b)). The along-shore velocity component v was Northward directed in the
deeper region, and a counter-current flowed Southward close to the river Minho estuary,
with maximum velocities around 0.5 m/s and -0.15 - -0.2 m/s, respectively (Figure 6.5 c)).

Similar conditions can be encountered in the Douro transect (location in Figure 6.3 a)
SD-1), with greater magnitudes. Close to the entrance of the river, the suspended sediment
concentration values were extremely high, approximating 105 mg/l and reducing rapidly
to 80 mg/l with a distance from the source (Figure 6.5 d)). In the surface layers, the
cross-shore component u was very strong, exceeding -0.7 m/s at the mouth of the river.
The entire water body was moving away from the coast (Figure 6.5 e)). The along-shore
velocity component v, indicated a strong Northwards flow, with higher velocities at the
surface approximating 0.5 m/s (Figure 6.5 f)).

Figure 6.5: February 1st, 2009, vertical sections close to Minho estuary, at the
SM-1 and close to river Douro, at the SD-1 locations (Figure 6.3) a), blue lines).
a) and d) suspended sediment concentration. Red squares mark the location of the
river mouth. b), e) and c), f) current velocity components u and v, respectively.

White isopleth indicate velocities 0.5 and 0.7 m/s
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Upwelling conditions on the shelf

Upwelling was seen from the 20th February 2009 event, although the sea state demon-
strated calmer energy conditions. The maximum wave-current induced shear stress had
reduced and river runoff decreased (Figure 6.2 a)). Sediments at the seabed were dispersed
along the shelf close to the seabed, evidenced by the low levels of suspended sediments
concentration in the middle and outer shelf ranging from 1-5 mg/l (Figure 6.6 a)). Near
the estuaries of Minho and Douro, high sediment concentration areas were present South
of the river mouths, notably larger in the Douro area. Maximum right off the coast close
to Minho ranged from 51-71 mg/l, reducing to 21 mg/l at 20 m depth. Douro presented
maximums between 111-151 mg/l, while the high concentration area patch right off the
coast demonstrated values that exceeded 33 mg/l. The current velocity was moderate at
the bottom layers, varying mostly between 0.03-0.06 m/s (Figure 6.6 b)). In line with the
Ekman dynamics, predominantly directed Southeastwards.

At the surface, the suspended sediment concentration was significantly smaller com-
pared to the concentration values at the bottom (Figure 6.7 a)). Sediments were propagat-
ing towards the ocean, with maximum values rounding close to 11 mg/l at the entrance of
river Minho and 5 mg/l at the 20 m depth isoline. Two paths of sediment transport could
be observed close to the Douro River. One moving ocean-wards, with maximums over 71
mg/l right off the river mouth and depleting to 33 mg/l at 20 m depth. A second one
moving Southward, near the coastline, with a maximum between 61-71 mg/l. The surface
currents were directed Westward (Figure 6.7 b)). Two high-velocity areas forming jet-like
paths from the Minho and Douro rivers to the adjacent ocean could be seen. Velocities in
these jets varied between 0.3-0.4 m/s. The higher concentration areas of suspended sedi-
ments at the surface largely correlate with the location and direction of the high-velocity
areas.
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Figure 6.6: February 20th, 2009, a) The mean suspended sediment concentration
at the bottom in a 5 m layer. The blue lines mark the locations of the vertical
transects displayed in Figure 6.8. Red contour marks the 33 mg/l and magenta the
5 mg/l isopleth. b) The current velocity and direction (every 10th arrow) at the

bottom.

Figure 6.7: February 20th, 2009, a) The suspended sediment concentration at the
surface layer. Red contour marks the 33 mg/l and magenta the 5 mg/l isopleth.

b) The current velocity and direction (every 10th arrow) at the surface.
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The suspended sediment concentration levels were significantly lower for the SM-1 tran-
sect in Minho, compared to the Douro transect SD-1 (Figure 6.8 a) and d)). In the surface
layers, close to the river entrance of Minho, concentration ranged around 33-40 mg/l, while
maximums at the bottom layer were between 16-20 mg/l. The velocity components u and v
showed clear upwelling-driven circulation patterns (Figure 6.8 b) and c)). The cross-shore
component u was mostly onshore directed in the bottom layers ranging between 0.05-0.15
m/s. A thin layer of approximately 3 m at the surface was moving the waters offshore,
presenting a relatively strong velocity gradient changing from -0.05 to -0.45 m/s. The
along-shore velocity component v indicates a Southwards flow, with maximums between
-0.1 - -0.15 m/s.

The suspended sediment concentrations along the cross-section from Douro River ex-
ceeded 160 mg/l close to the river mouth and extended out to the shelf in the bottom
layers approximately in a 2 m thick layer (Figure 6.8 d)). The suspended sediments at the
surface moved away from the coast across a 3 m layer. The cross-shore velocity compo-
nent u matched relatively well with the suspended sediment patterns profile (Figure 6.8
e)). The velocity at the bottom layers was 0.1-0.15 m/s, directed coastward and ocean-
ward it in the surface layers with maximums little over -0.5 m/s. The along-shore velocity
component ranges between -0.05 - -0.01 m/s, indicating a Southwards movement, with a
counter-current at the surface close to the coast, with maximums around 0.15 m/s (Figure
6.8 f)).

Figure 6.8: February 20th, 2009, vertical sections close to Minho estuary, at the
SM-1 and close to river Douro, at the SD-1 locations (Figure 6.6) a), blue lines).
a) and d) suspended sediment concentration. Red squares mark the location of the
river mouth. b), e) and c), f) current velocity components u and v, respectively.

White isopleth indicate velocities 0.5 and 0.7 m/s



6.3. Results 103

Downwelling conditions on the shelf

At the end of the year 2009, several downwelling events occurred during which the mean
suspended sediment concentration at the river Minho was significantly higher compared to
similar events at the beginning of the year (e.g. Figure 6.2 c) e.g. 01.02 vs 22.12).

On 22nd of December 2009, the mean suspended sediment concentration close to the
seabed revealed very high concentration areas close to the coast, moving Northwards from
Minho and Douro (Figure 6.9 a)). These areas reached up to 20 m depth in the Douro
region, with concentrations over 33 mg/l. Throughout the rest of the inner shelf, concen-
tration levels stayed above 5-11 mg/l. The currents at the bottom were directed mainly
Northwards, with maximum velocities around 0.2-0.4 m/s in different regions close to the
coast (Figure 6.9 b)).

In the surface layers, the high sediment concentration areas showed similar distribution
patterns as encountered at the bottom layers (Figure 6.10 a)). These areas were slightly
bigger in the Douro region and significantly larger in the Minho region, extending out to
the 20 m depth isoline. Transport across the inner shelf was almost non-existent. There
can be encountered two high-velocity areas at the surface layers in the current field, near
the 20 m depth contour directed Northwards (Figure 6.10 b)). Coastal jet North from
Douro River presents velocities between 0.5-0.7 m/s, while velocities reach up to 1 m/s
North from river Minho.

Figure 6.9: December 22nd, 2009, a) The mean suspended sediment concentration
at the bottom in a 5 m layer. The blue lines mark the locations of the vertical
transects displayed in Figure 6.11. Red contour marks the 33 mg/l and magenta
the 5 mg/l isopleth. b) The current velocity and direction (every 10th arrow) at

the bottom.
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Figure 6.10: December 22nd, 2009, a) The suspended sediment concentration at
the surface layer. Red contour marks the 33 mg/l and magenta the 5 mg/l isopleth.

b) The current velocity and direction (every 10th arrow) at the bottom.

The vertical cross-section in the Minho River region indicates extremely high sediment
concentration values leaving the river (Figure 6.11 a)). In the surface layers, still, inside the
river estuary, the concentration levels exceed 600 mg/l. These levels decrease rapidly with
the distance from its source, demonstrating a suspended sediment movement towards the
shelf at the surface (Figure 6.11 b)). Significantly lower concentrations can be encountered
at the bottom, with maximums ranging between 33-80 mg/l in the area out of the river
entrance. Yet comparatively higher, compared to the two other events discussed previously
(Figure 6.11 a)).

The cross-shore velocity component u indicates the movement of water towards the
coast at the bottom layers and away at the surface (Figure 6.11 b)). The maximum at the
surface was close to -0.3 m/s, much lower at the bottom, reaching only up to 0.1 m/s in
the river estuary, and remaining below 0.05 m/s elsewhere. Alongshore component v was
0.3 m/s at the far side, flowing Northwards, with Southward counter-current at the mouth
of the river estuary -0.15 m/s (Figure 6.11 c)).

The Douro section demonstrated similar concentration ranges compared to the previous
downwelling event on February 1st (Figure 6.5 d)). Suspended sediment concentration at
the bottom layers reduced from 80 mg/l to 33 mg/l in a short distance (Figure 6.11 d)),
while at the surface layers the areas where concentrations exceeded 80 mg/l, extended
further out from the estuary.

The current velocity component u indicated, that the water was moving away from
the coast, with a high-velocity region at the surface layers reaching over -0.5 m/s. The v
components showed solely Northwards flow, with the highest velocities very close to the
surface varying between 0.4-0.5 m/s.



6.4. Discussion 105

Figure 6.11: December 22nd, 2009, vertical sections close to Minho estuary, at
the SM-1 and close to river Douro, at the SD-1 locations (Figure 6.9) a), blue lines).
a) and d) suspended sediment concentration. Red squares mark the location of the
river mouth. b), e) and c), f) current velocity components u and v, respectively.

White isopleth indicate velocities 0.5 and 0.7 m/s

6.4 Discussion

6.4.1 Sediment input from rivers during off-storm seasons

Due to the nature of the formulations used, there was a linear correlation between the
sediment input and river discharge (Equation 6.2). A higher river outflow flow carried
more sediments in it. This translated into variable mean sediment concentration values at
the river outlet, that did not only depend on the imposed sediment concentration levels
and river discharge but also on the hydrodynamic conditions and morphology of the shelf.
This was distinctly seen from the time series of river runoff, input and mean sediment
concentration levels at the mouth of river Minho and Douro estuaries (Figure 6.2 b),c) and
d), e)).

Although during the off-storm period, the river Minho flow continued to carry sedi-
ments, the mean concentration stayed very low. During annual terms in spring, summer
and autumn, river Douro flow did not introduce any new sediment to the shelf, however,
higher mean sediment concentration values were present. Most likely, this was the fluctua-
tion of sediments released previously and deposited close to the estuary. The difference in
the sediment concentration levels during the off-storm season in the two rivers was prob-
ably due to the morphological characteristics of the shelf and the river flow capacity. The
sediments from river Minho were either deposited inside the river or close to the estuary,
as the river flow was weak. Whereas the Southern region of the study area, with a smaller
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depth gradient, was more receptive to the ocean forcing. The sediments from the seabed,
close to the estuary, were re-suspended.

For the most part during the off-storm season, very low concentrations of suspended
sediments can be seen on the continental shelf, principally confined to the inner shelf at
the surface and, inner and mid-shelf at the bottom.

6.4.2 Shelf circulation and sediment transport

The results of the simulations depict the complex dynamics between the shelf circulation
and the transport patterns of sediments introduced by the rivers to the shelf. Giving an
idea, about the relation between the ocean state and river runoff, and their influence on
the amount of sediment dispersed in the continental shelf.

On the whole, Douro River introduced more sediments to the shelf system, compared
to Minho River, due to the higher flow capacity. During the winter season, the storm
peaks were mostly accompanied by a larger river discharge. When a high river discharge
coincided with a storm event, that had a well-established circulation regime, the suspended
sediments leaving the river systems were rapidly transported away from their source. In
case of downwelling Northwards (Figures 6.3 and 6.4 ) and with upwelling Southward (not
shown), inside the inner shelf region in a limited and confined area. In storm conditions,
no cross-shore transport occurred.

Milder oceanographic conditions along with possibly lower river sediment discharge
allowed the development of sediment blooms and further transport offshore through bottom
or surface layers (Figure 6.6 and 6.7, 6.11).

6.4.3 Changes in the seabed sediments

The movement of this very fine fraction of silt 1, did not translate to any significant
changes in the seabed surface sediments. The order of magnitude stayed in the µm range.
However, it was possible to identify areas where erosion or deposition of sediments occurred.
For example during the downwelling event on 22 December 2009 (Figure 6.9, 6.10, 6.11),
there could be seen accumulation and erosion of sediments across the shelf (Figure 6.12).
Deposition of sediments occurred in the Galicia mud patch, in the mid-shelf area between
river Douro and Cavado until approximately 70 m depth, in the inner shelf from river
Minho up to the Galician Rías. Everywhere else on the shelf until approximately 90 m,
erosion took place, which was the most visible in the inner shelf region South of Douro
River. Similar deposition and erosion patterns were simulated in the Zhang et al. (2016)
study during a downwelling event.
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Figure 6.12: December 22nd, 2009, changes in the seabed considering only the
finest fraction, silt 1.

6.5 Conclusion
The numerical model CROCO, together with wave model SWAN was configured and

implemented specifically to understand the fate of the sediments coming from the river
systems. The overall behaviour of the model was relatively satisfactory, based on the
comparison with other similar studies about the subject. The simulations demonstrated
comparatively well the general patterns and transport pathways of suspended sediments
coming from the rivers.

For both rivers, Minho and Douro, it was clear that the relation between the sediment
input from rivers, river runoff and the amount of sediments transported away from the river
estuaries was not straightforward. In general, the Douro River introduced more sediment
to the shelf than Minho. Most likely, this was due to the differences in the river flow
capacity and characteristics of regions. When a storm and a high river runoff coincide, the
majority of sediments are introduced to the shelf. The suspended sediments were rapidly
transported in the inner shelf along the coast North, during downwelling or South, with
upwelling-driven circulation. No cross-shore transport occurred. Less energetic conditions
at the shelf, but velocities strong enough to transport suspended sediments, allowed the
sediments to disperse beyond the inner shelf. The milder oceanographic environments made
possible the formation of sediment transport pathways across the shelf through surface or
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bottom layers. During very low energy periods on the shelf, like late spring, summer and
early autumn, sediment introduced from the rivers to the shelf was extremely limited.

To increase confidence in the model results, there is an urgent need for long-term
observational data sets. Information about the type of sediments and concentration levels
across the river estuaries and in the inner shelf would help immensely to improve the
models. It would make it possible to calibrate the numerical model’s site specifically and
generate valuable information about the suspended sediment movement.
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Chapter 7

Conclusions and future research

The present thesis focused on studying different aspects of suspended sediment trans-
port on the continental shelf. The outcome of this work helped to improve the understand-
ing of the underlying physical processes affecting the fine-grained sediment transport in
different time scales. Considering the impact of storm events, inter-annual and seasonal
variability. Moreover, the research advanced the knowledge in comprehending the link
between forcing mechanisms and sediment re-suspension and transport patterns. In addi-
tion, the first steps were made to study the fate of the materials coming from the rivers.
Through the successful implementation of a numerical modelling system, supported by in
situ data, the findings were in alignment with the existing research, while providing new
insight into the continental shelf sediment dynamics.

A multidisciplinary approach was adopted to implement a modelling system. The
numerical model CROCO with sediment model was used as a main tool in this study. The
wind and wave forcing terms were included through offline coupling, from the atmospheric
and wave models WRF and SWAN. A high-resolution configuration was built, using a
nested grid system. The study site, NW Iberia continental shelf, is situated in an upwelling
affected area and characterized by a highly energetic wave regime during winter. A 14-
month-long period was considered, from November 2008 until December 2009, covering an
annual cycle while including two distinct winter seasons. The strengths and weaknesses of
the configuration were described in detail, to analyze and interpret the results accordingly.

The quality of the dynamical forcing in many ways determines the success of a modelling
study. This was demonstrated distinctly, while evaluating the performance of the wave
model SWAN, considering different wind data sets. The results showed the influence of
wind products on various wave characteristics and the importance of accurate wind speed
and direction over spatio-temporal resolution.

The validation process of the modelling system, designed to solve the sediment trans-
port dynamics, was carried out by exploiting various types of in situ observations. Wave
buoy data, ADCP, monthly hydrographic surveys and information from the sediment trap
were used to evaluate the accuracy of the modelling system. The statistical and quanti-
tative analysis showed a relatively good agreement between the modelled and measured
data for all the models. It was possible to verify that the wave model SWAN simulated
comparatively well the evolution of the wave field and the hydrodynamic model CROCO
exhibited reliable capabilities to reproduce the shelf circulation. Moreover, the sediment
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transport model efficiently described the fundamental sediment transport processes and
simulated the seasonal variations. However, for a better site-specific calibration of the sed-
iment model, more direct and long-term sediment data would be needed about the study
site. All the numerical models considered in this thesis, had been previously successfully
implemented in the site of interest and around the world, to study different problems. This
allowed us to assess, compare and improve the present set-up of the modelling system, cre-
ating reliable simulations. On the other hand, further advance the skills and efficiency of
these models.

The relation between the forcing mechanisms and the sediment transport patterns
revealed the effect of waves, seasonal and general shelf circulation, influence of storms and
morphological features. The simulations indicated that the re-suspension of sediments on
the shelf was controlled by the co-dominant effect of currents and waves. At the same time,
it was largely influenced by the seasonality of the circulation patterns and wave energy.
During winter months, the storm-driven upwelling or downwelling favoured the Southward
and Northward transport of sediments, enhanced by the wave activity. Extreme storms
had a remarkable and lasting impact in re-distributing the sediments, reaching also the
outer shelf. The morphology of the continental shelf limited the cross-shore transport of
sediments in the Southern region of the study site while promoting the formation of bottom
eddies mainly in the Northern region, forming pathways for transport of sediment to the
adjacent ocean.

To understand the fate of sediment coming from the river systems, various limitations
have to be overcome. The biggest challenge arises from the lack of information about the
properties and amount of the sediments transported by the rivers to the shelf. Neverthe-
less, the modelling system produced relatively reasonable results based on the comparison
made with the literature. The simulation reproduced the general patterns and transport
pathways of suspended matter originating from the rivers. At the same time, demonstrat-
ing the dynamics between the sediment input, river discharge and the volume of sediments
entering the shelf.

While taking account of the simplifications and generalizations made in the modelling
system, the results obtained demonstrated a good level of accuracy, comparable with other
similar studies or even slightly better. The present configurations allow us to fill in the
gaps in the observational data sets, due to the malfunctions of the equipment or scarce
sampling periods. Also, reproduces the general dynamics of sediments of this region’s
continental shelf during a different period, even when the measurement data available is
lacking. The findings in this thesis could be useful as well in different multidisciplinary
studies related to benthic habitats, aquaculture, and detection of contaminants deposition,
among many others. The results could be used in the Lagrangian models to solve problems
related to, for example, environmental issues (oil spills, microplastics) or marine biology
(larvae transport). For future research, this work has helped to lay down the road, to
further study the long-term changes of the seafloor, transport patterns of material coming
from the river systems and eventually run through different climate change scenarios. The
modelling system also permits the implementation of biogeochemical modules, opening up
new possibilities for research topics.
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Appendix A

Sediment.in

The input file sediment.in describes 14 parameters, that have to be chosen to use in
the sediment module.

1. Sediment grain diameter:
Sd [mm], varies according to the surface sediment distribution map on Figure 2.2.

2. Initial concentration:
CSED = 0 [kg/m3]

3. Density of sediment material of size class (quartz):
ρs = 2650 [kg/m3]

4. Settling velocity:
WSED [mm/s], based on Soulsby (1997) equations 75 and 102.

ws,m =
103(ν(

√
10.362 + 1.049D3 − 10.36))

D50

(A.1)

where D = D50 ∗ (g ∗ (ρs/ρ0 − 1)/(ν2))0.33333, ρ0 = 1025 [kg/m3], D50 = Sd10−3, [m],

g = 9.8 [m2/s], ν =
1.310−3

ρ0
[m2/s]

5. Erosion rate:
ERATE [kg/m2/s],

ERATE = γ0ws,mρ010
−3 (A.2)

where γ0 = 10−3 − 10−5 (Smith and McLean, 1977). For the current configuration
γ0 = 10−5 is applied.

6. Critical shear stress for sediment motion:
TAU_CE [N/m2], for suspended load the critical stress is calculated as

τce,m = 6.410−7ρ0w
2
s,m (A.3)

Oberle et al. (2014) calculated the critical stress for the mobilization of the sediment
bed using the Shield parameter methodology of Madsen and Grant (1977). The



112 Appendix A. Sediment.in

cohesive effects of the fine particles on the critical shear stress were incorporated
into the model by applying van Rijn (2007) methodology that effectively adds the
impact of gelling and cohesive forces to the modified Shield parameter formulation.
This methodology was later on also applied in the current study for the fine particle
classes (1 and 2).

Zhang et al. (2016) uses a constant threshold value (0.1 Pa) for resuspension of
suspended sediments. The availability of surface sediments for resuspension was
limited by consolidation and armouring effects.

7. Critical shear stress for deposition of cohesive sediments:
TAU_CD [N/m2] - currently is not used in the model.

8. Volume fraction of each size class in each bed layer (NLAY columns):
BED_FRAC = 100 [%]
The implicit assumption is that sum(bed_frac) should be 100 % along the the bed
layers.

9. Initial thicknesses of bed layers:
BTHK [m]
Bthk(1) active layer thickness, fixed in simulation unless SUM(Bthk(:)) < Bthk(1).
In the current configuration there are 8 bed layers, with total thickness of 6 m. The
thickness distribution starting from the top layer is as fallows: 0.01; 0.01; 0.01; 0.01;
0.01; 0.95; 2; 3.

10. Initial porosity of bed layers:
BPOR = 0.41

11. Bottom ripple height:
Hrip = 0 [m]

12. Bottom ripple length:
Lrip = 0 [m]

13. Bed load transport rate coefficient
bedload_coeff = 0, currently bedload is not considered.

14. Morphological time scale factor morph_fac >= 1.
morph_fac = 1. A value 1 has no scale effect.
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Appendix B

Changes to the CROCO source code

• averages.h

– when using WKB wave model, variables whrm_avg and wfrq_avg had to be
declared as real.

• ncscrum.h and ncscrum_F90.h

– the number of characters for the file names was increased.

• param.h

– maximum allowed number of parallel threads (NPP) was increased.

• bbl.F

– modified to calculate bustr, bvstr as in get_vbc.F, when no waves are present.
Bustr, bvstr are used in the calculation of current velocities.

MPI_master_only added to reduce the information written out in .txt:

• sediment.F - lines 2196 and 2295.

• get_initial.F - lines 355 and 374.

• get_wwave.F -

• line 313.

To add waves from offline source:

• get_wwave.F

– possibility to add one or several points, where the variable of your choice will
be written out.

– interpolation of wave direction between 360 and 0 was corrected.
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– a flag SWAN_DIR_CONVENTION was created and added. It was activated
in the ccpdefs.h to avoid the change in the direction convention (Input in deg.;
Cartesian convention)

– WAVE_OFFLINE flag added to initiate the calculation of some variables like
whrm, wfrq etc.

• ncscrum.h

– define WAVE_OFFLINE was added to declare integer indxSUP,
indxUST2D, indxVST2D.

• def_his.F

– added defined WAVE_OFFLINE to declare integer iwkb.

• forces.h

– define WAVE_OFFLINE was added to declare real
whrm(GLOBAL_2D_ARRAY), wepb, wepd, wdrx, wdre.

• read_inp.F

– define WAVE_OFFLINE was added, so the model would go to look for forcing
file.

Agrif: Currently not working correctly

• zoom.f

– get_sediment is not called as this subroutine does not exist.

– in the child’s grid level the ana_sediment was not called so
the bed_fraction was not initialized (modified by Rachid Benshila, LEGOS,
CNRS, Toulouse, France).

• BUG I

– When running CROCO in AGRIF with offline waves and idealized sediments,
variables v (v-momentum component) and w (vertical momentum component)
in the history and average output have a square shape areas where the values
are 0. After approximately 1 day the model recuperates and presents reasonable
results.
Solution: This problem does not occur when using more than one class of
sediments.
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• BUG II

– Everything related to the water column is passing well from the child’s grid
to the parent grid, only the information about the sediment bed is not being
passed correctly, causing the erosion in the parent grid and accumulation in the
child’s grid.

Writing average variables (BBL)

• def_his.F

– when asking to write out the average variables related to BBL module, the
model bowed up with a following error: " DEF_HIS/AVG ERROR: Cannot
find variable ’Abed’ in netCDF file ’/.../res/cro_avg_.nc.1’". BBL is defined
(searched for indxBBL) for two cases: assigning attributes for the NetCDF file
and writing the variable. When average values were calculated no attributes
had been assigned in the NetCDF file, although the model tried to write the
variables and that caused the above-named error. So for now, an additional
condition && ! defined AVRH was added to # if defined BBL, so the model
would not try to write the average variables. Moreover, it turned out that the
average values for Abed, Hripple, Lripple, Zbnot, Zbapp and bostrw are never
calculated.

• read_inp.F

– when asking to write out the average variables related to BBL module, the same
error occurs as described above. In read_inp.F, where there is define BBL (line
1769) the average variables are assigned as history variables, although they are
never calculated.

To read sediment bed from initial NetCDF file:

• get_initial.F

– indxWrk is used instead indxHrip and indxLrip when writing messages in the
information .txt file. CROCO always looks for ripple height and length values,
even if ripples are not defined. This produces an error in the information .txt
file, saying that bed fraction values were not found from the initial NetCDF file
and the analytical values are used. This is somewhat miss leading, as actually
the ripple height and length values are being looked for.

• analytical.F

– when reading bed fraction values for the sediment bed in the initial NetCDF
file, END-IFs were placed in a way that bed_age, bot_thick, bed_mass and
some other variables were newer calculated, causing all the variables that were
related to sediments to be 0.
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• BEDROCK

– there exists an assumption that sum(bed frac) along the vertical axes of the
sediment bed should be 100 %. If a 0-bed fraction is set to some of the grid
cells (the sum(bed frac) of the grid cell bed layers = 0), the model creates areas
where the bed fraction is set to 100 % even though, there should not exist
any sediments. Solution: Use fake sediment with unrealistically large settling
velocity, critical stress etc. and distribute it to the areas with no sediments (no
information). Also can be used as bedrock.

To increase the number of sediments size classes read from .nc file:

• init_scalars.F

– if conditions were added to the variables that are read from the initial NetCDF
file and that that contained sand_ in their name. NB! Note that some of the
variables that are not read or written as output with this configuration, were
not changed (mud, gravel etc.). It may cause problems later on.

• put_global_atts.F

– if conditions was added to the variables that contained sand_ in their name.

To have stations output as -ASCII file:

• all the files modified are located in a separate folder.

– to include or exclude these changes modify jobcomp.

– keep in mind that the location inserted in the stations file will be dislocated
depending on the configuration. Verify this with the script gre_MY_sta.m.

– if line 486 in wrt_sta.F ( else /* defined STA_wrt_nc */) is commented also
netcdf file will be produced (keep in mind that any small disconnection between
MPIs will cause the model run to stop).

Bed roughness for sediment purposes

• bbl.F

– line 351. To calculate the maximum wave-current stress for sediment purposes
znot is used instead of default znotc, as with znotc the maximum wave current
bottom stress was demonstrating very low values.

– When activating ripples, the maximum wave-current stress for sediment pur-
poses will be recalculated, by default it was not done.

Rivers, waves and sediments
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• nscrum.h

– line 500. When activating rives and waves from offline source, the index of wave
variable and river was the same. So the model searches for a variable in the
river_forcing.nc file, that has to do with waves. The number of indexes in the
nscrum.h was increased.

• analytical.F

– line 1847. The following loop was relocated:
do is=1,Nsrc Qbar0(is)=Qbar(is) enddo

– If the model blows up on a land point or close to the river location then there
are two options to resolve this issue.
1) Increase the salinity for this river temporarily for the months when river
runoff is strong
2) Change how the river input is distributed. Three options: uniform and
exponential. For exponential add a new flag to cppdef and for fine grid change
cff in analytical.F to 1 or 2.
3) Increase the time step of the finer grid

Sediments from river system
In croco.in file if Lsrc is F the values of the sediment concentrations from rivers
will not be read in from the NetCDF and instead, the value that is predefined in the
analytical.F will be considered. If T, the values will be read from the NetCDF. When
needed 0 concentration, it is better to read it from the NetCDF file. Another thing
to remember. When adding extra sediment types for the river input, it also has to
be declared in the initial NetCDF, as non-existent but all the attributes have to be
given. Otherwise, if the program does not find them and the initial distribution of
the sediment bed will be considered analytic.

• get_psource_ts.F

– line 69. Look for the new variables in the netcdffile.

– line 498. Read the concentration values from netcdf.

• init_scalars.F

– lines 1625 and 1642. Declare a new variable.

• analytical.F

– line 1909. Set-up tracer (tracer units) point Sources/Sinks.
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