
Contents lists available at ScienceDirect

CIRP Journal of Manufacturing Science and Technology

journal homepage: www.elsevier.com/locate/cirpj

Review 

Challenges in predictive maintenance – A review

P. Nunes a,b,⁎, J. Santos a,b, E. Rocha c,d

a Department of Mechanical Engineering, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal 
b Center for Mechanical Technology and Automation (TEMA), University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal 
c Department of Mathematics, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal 
d Center of Research and Development in Mathematics and Applications (CIDMA), University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal 

a r t i c l e  i n f o

Available online 23 November 2022

Keywords: 
Predictive maintenance 
Prognostics 
Predictive models 
Review 
Industry 4.0

a b s t r a c t

Predictive maintenance (PdM) aims the reduction of costs to increase the competitive strength of the en-
terprises. It uses sensor data together with analytics techniques to optimize the schedule of maintenance 
interventions. The application of such maintenance strategy requires the cooperation of several agents and 
involves knowledge and skills in distinct fields, since it encompasses from the averaging of relevant signals 
in the shop-floor to its processing, transmission, storage, and analysis in order to extract meaningful 
knowledge. PdM is a broad topic, making it impossible to address all its subtopics in the same paper. Having 
this into consideration, this paper focuses on the main challenges that hinder the development of a gen-
eralized data-driven system for PdM, namely: the existence of noisy or erroneous sensor data in a real 
industrial environment; the necessity to collect, transmit and process high volumes of data in a timely 
manner; and the fact that current approaches for PdM are specific for a part or equipment rather than 
global. This paper connects three different perspectives: anomaly detection, which allows the removal of 
noisy or erroneous data and the detection of relevant events that can be used to improve the prognostics 
methods; prognostics methods, which address the models to forecast the condition of industrial equip-
ment; and the architectures, which may allow the deployment of the anomaly detection and prognostics 
methods in real-time and in different industrial scenarios. Furthermore, the last trends, current challenges 
and opportunities of each perspective are discussed over the paper.

© 2022 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).
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Introduction

Maintenance plays an important role in industrial sector, since its 
costs may represent a significant percentage of an enterprise’s pro-
duction costs [1]. Effective maintenance strategies avoid unexpected 
production stops, reduce the costs, and may even increase the useful 
lifetime of industrial machines. For these reasons, maintenance ap-
proaches have suffered transformations in the result of the concern 
and efforts of researchers, engineers, technicians and experts. Fig. 1
depicts this evolution over the time. The most primitive strategy is 
the corrective maintenance (CM), also known as “run-to-failure”, 
which consists in replacing or repairing a part only when it is da-
maged and the equipment is unable to work without an inter-
vention.

Due to the high costs of having unexpected production stops, CM 
evolved to proactive approaches. The first one to emerge was the 
preventive maintenance (PM), which involves periodical inspections 
made by specialized technicians and the replacement of parts before 
a critical failure occurs. This replacement is made in equal-spaced 
periods of time, or after a certain number of working cycles, gen-
erally provided by the equipment’s manufacturer. This may lead to 
an earlier or later replacement of components. In the first scenario 
parts that are in good conditions and could perform a considerably 
higher number of working cycles are replaced, increasing the costs 
with maintenance [2], however, the second scenario may have more 
severe consequences, since a CM action has to be performed [3].

With the technological advances in the field of Industry 4.0 and 
the development of the Internet of Things (IoT), condition-based 
maintenance (CBM) approach emerged [4]. The inspections that 
were made by technicians and experts were automatized by sensors 
and devices capable of measuring, monitoring, and processing sig-
nals that represent physical parameters of industrial equipment, 
such as acoustic signals, current, voltage, temperatures, forces, vi-
brations, etc. With this strategy, interventions can be based on 
sensors’ values and actions can be triggered when a value is out of 
pre-established bounds. More effective and complex approaches 
arose from the CMB, such as predictive maintenance (PdM), that 
aligns the paradigms of IoT and Cyber Physical Systems (CPS) with 
knowledge in the fields of automation, engineering, information 
technology and data analytics [5] to predict failures and the re-
maining useful life (RUL) of industrial assets, and schedule main-
tenance actions accordingly [6]. On the other hand, prescriptive 

maintenance goes a step further, since it uses the predictions made 
to make relevant suggestions to address the failure mode and in-
crease the RUL [7,8]. For example, by monitoring the bearing tem-
perature PdM can predict when the equipment is likely to fail, while 
prescriptive maintenance can suggest a speed reduction to increase 
its RUL.

Besides the advantages that came with the more recent main-
tenance approaches, namely the prescriptive maintenance, the im-
plementation of such strategy requires that the CBM and PdM are 
well consolidated, since it is not possible to implement a prescriptive 
maintenance approach without a solid PdM, and a PdM cannot be 
obtained if the necessary apparatus to perform CBM is not well es-
tablished. For this reason, this paper will focus on PdM, which still 
has some unsolved issues. One of the challenges is that industrial 
data may be prone to erroneous measurements, due to harsh en-
vironmental conditions or sensor faults. Conversely, the exponential 
increasing amounts of data that have to be processed, stored and 
analyzed represent a specific challenge, especially when a real or 
almost real-time actions are needed [9]. Moreover, the actual in-
dustrial environment is composed by very different equipments and 
flexible management and production systems, which require PdM 
systems to be effective in very different scenarios. A robust solution 
should include effective monitoring systems, as well as appropriate 
analytics techniques to forecast failures and the RUL, and also pro-
vide an architecture that can process large amount of data in 
real-time.

Review approach

PdM requires knowledge from different fields, making it a broad 
topic. For this reason, it is impossible to address in depth all its 
subtopics in this paper. In a general way, to develop an effective PdM 
system, it is necessary to have a careful data treatment to deal with 
missing data, noise, outliers and other issues that are commonly 
present in industrial data. Most of the anomaly detection techniques 
address these issues, while detecting relevant anomalous patterns. 
On the other hand, the prediction of the RUL of an asset is one of the 
main features of PdM and is a part of prognostics and health man-
agement (PHM) [10]. Often these topics (prognostics and anomaly 
detection) are addressed individually, however they are both fun-
damental for PdM, since the anomaly detection outputs can be a 
valuable input for the predictive models and enhance its perfor-
mance [11], while contributing to a more generic predictive ap-
proach. As depicted in Fig. 2, PdM is often associated with the 5 V’s of 
Big Data; velocity, veracity, value, volume and variety [12]. To ac-
complish these requirements in an industrial environment the ar-
chitecture employed plays an important role, especially with respect 
to volume, velocity and variety, since sensors and devices produce 
large amounts of data (volume) from different types, such as images, 
videos, texts, among others (variety), with a high cadence and must 
be analyzed in real or almost real-time (velocity). The volume plays a 
key role to develop the predictive models, since typically they re-
quire considerable amounts of data to be fitted/trained. The im-
portance of velocity is related to the need to collect data and process 
data in real-time to forecast problems in a timely manner, so actions 
can be planned accordingly. Veracity stands for the truthfulness and 
accuracy of data [13], which is very important in PdM, since sensors 
and devices work in harsh conditions and are prone to erroneous 
data. In this scope, anomaly detection can play an important role, by 
detecting these data and improving the predictive performance of Fig. 1. Evolution of maintenance strategies over time. 
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prognostics methods. Value represents all the valuable information 
obtained from data. It strongly depends on the employed methods 
for the RUL determination and anomaly detection, since they extract 
knowledge and value from data.

The reasons mentioned motivated the writing of this paper, 
which explores three different subjects in PdM, namely, anomaly 
detection, prognostics, and architectural perspectives. Since we 
could not address all the topics of PdM in this paper, only the most 
fundamental topics to deploy a generalized and flexible data-driven 
PdM system are addressed. Prognostics and the RUL forecasting are a 
central topic in PdM, and anomaly detection is connected to it, since 
it can improve the prognostics model by detecting and removing 
noisy or erroneous data, and by providing new inputs in the form of 
events automatically retrieved from data. The architectural per-
spectives are connected to these subjects, since not only the models 
are required to be generalized, i.e., the efficient deployment of these 
models in different industrial scenarios strongly depends on the 
architectural aspects. The main objective of this work is to connect 
the three topics, in order to discuss approaches and methods to 
develop a generic and efficient PdM solution.

We searched in two scientific databases, Scopus and Web of 
Science. The reviewed papers were published in journals or con-
ferences in the last six years. Concerning the anomaly detection 
topic, papers that did not consider sensor data or industrial use cases 
were excluded. Moreover, the chosen papers were divided based on 
the employed architecture, which is an important feature when the 
integration with prognostics models is intended. The prognostics’ 
topic focus on data-driven approaches, however physics-based and 
knowledge-based approaches are defined, and the most relevant 
papers are cited even if their publication date is older than six years, 
because it is pertinent for a better understanding of multi-model 
approaches that exploit data-driven approaches together with phy-
sics or knowledge-based models. The papers reviewed from the ar-
chitectural perspective topic were chosen based on their novelty, 
namely which concerns the interaction between cloud, fog and edge 
layers and their potential to address the 5 V’s requirements in the 
industrial sector. The remaining of this document is organized as 
follows. Section 3 addresses anomaly detection in sensor data and 
presents the most recent approaches in this area. Section 4 presents 
models employed to determine the RUL and/or the degradation of 
industrial assets, while, Section 5 explores different architectures 
employed in PdM systems. Finally, Section 6, summarizes the con-
tributions obtained from this paper.

Anomaly detection

Anomaly detection is concerned with identifying data values that 
are considerably deviated from a typical behavior. The anomaly may 

be caused by several factors; some of them are related to errors in 
the acquisition system, such as sensor malfunction, low battery, er-
rors during data transmission, while other anomalies may be caused 
due to an industrial equipment malfunction, or event, such as 
changes in the production line or a curative stop [14]. While 
anomalies caused by machinery’s events have relevant information 
for the analyzer, anomalies caused by sensor errors do not provide 
any relevant information, and could lead to misinterpretation of 
data. These anomalies may be designated as noise, however, as 
discussed by [15], the characterization of anomalies and noise is 
different for different types of data.

As depicted by Fig. 3, anomalies may be classified in: point 
anomalies, when one data point is considerably different from its 
neighbors; behavioral or collective anomalies, when a data pattern is 
different from an expected behavior; and contextual anomalies, 
when a data pattern may be expected but in a different context 
[14,16]. As shown in Fig. 3, there are two types of approaches to 
handle data anomalies regarding the architecture of the solution; 
centralized approaches, where the computing process is full-carried 
in the same equipment (e.g. remote server); and distributed solu-
tions, where the several steps of the computing process are carried 
in different components, (e.g. edge devices, cloud, etc.). Regarding 
the methodologies for anomaly detection, they may be divided in 
two big groups: statistical and machine learning (ML) approaches. 
Statistical approaches aim to determine anomalies based on the 
distribution of variables during the working process, while ML is 
within the field of artificial intelligence (AI), and provides meth-
odologies to handle high dimensional data and extract hidden re-
lationships between data in non-linear and complex 
environments [17].

Since there are different types of anomalies, and they may be 
triggered by several factors, most of recent researches employ data 
from several sensors and exploit the correlation between them 
[16,18–21–24], as can be noted in Table 1. The exploited correlations 
may be temporal [20,21], spatial [16], or multi-variate [18,19]. In 
most of the researches, correlation values are employed together 
with other techniques, such as the exponential moving average 
(EMA) [25], artificial neural networks (ANN) [26,27], or fuzzy tech-
niques [28,29]. Besides the exploitation of the correlated sensors, 
cluster techniques [30], such as the fuzzy clustering [31], the Den-
sity-Based Spatial Clustering of Applications with Noise (DBSCAN) 
[32], the Principal Component Analysis (PCA) [33], or the Balanced 
Iterative Reducing and Clustering using Hierarchies (BIRCH) algo-
rithm [34] have been widely applied in recent researches in order to 
detect anomalous data. The further subsections detail the most re-
cent methods and techniques to detect anomalies that are sum-
marized in Table 1. Note that this paper presents anomaly detection 
in the specific context of PdM and sensor data. For this reason, the 
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Fig. 2. Schematic of review topics. 
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methodologies presented are focused on data-driven approaches, 
which are categorized according to their architecture. To have a 
more detailed view of broader definitions and concepts, we point the 
reader to the review made by [14].

Centralized approaches

This subsection presents recent centralized solutions that have 
been developed to detect anomalies. Note that the researches that 
do not explicitly propose an architecture to implement the proposed 
approach in a real environment are encompassed in this subsection.

The authors in [16] introduced the context of shared area, in 
which sensors are divided by type and area. The continuous data are 
grouped in blocks and a sliding window is used during a training 
phase to construct a probabilistic detector, based on the number of 
times that a sequence of a pair of blocks occurs. The results de-
monstrated that this approach has better accuracy detection com-
pared to other statistical approaches, such as the K-Nearest- 
Neighbor probabilistic [39] and the K-means-Gaussian [40].

In [18] the authors employed the Piecewise Aggregate Approx-
imation [41] to aggregate the data in fixed intervals of time. The 
correlation matrix is calculated for a training set, in order to detect 
outliers when the correlation of two highly correlated sensors de-
creases more than a defined threshold. When a sequence has more 
than a defined limit of outliers, it is considered abnormal, and a 
minimal number of outliers is removed to respect the speed con-
straint used by the authors (speed of increasing/decreasing of a 
sensor’s value). The experimental results are compared with two 
other approaches to detect anomalies, namely Window-median 
(WM) predict model [42] and the autoregressive (AR) predict model 
[43]. The proposed approach has a slightly higher time consumption 
compared to the WM and a considerable higher time consumption 
compared to the AR, however, globally it performs better than the 
other approaches, considering metrics as precision and recall in a 
real dataset.

The authors in [19] proposed a majority voting system. First, 
three existing algorithms that use multi variable correlation are 
applied to detect outliers, namely the Elliptic Envelope [44], the 
Isolation Forest [45] and the Local Outlier Factor [46]. Then, points 
that are classified as outliers by two or more methods are classified 
as outliers by the final algorithm. The results show that the approach 
has very stable results, however, one of the approaches employed in 
the majority voting system has better results and less computational 
overheads compared with the voting system that needs the execu-
tion of the three techniques.

A supervised method to detect faults was proposed by [20]. The 
approach assumes that the correlation between the variables of the 
system changes due to equipment’s failure. The method consists in 
exploiting a large dataset containing normal behavior data, to 

compute the correlation matrix [47]. The variables whose correlation 
coefficient is between 0.5 and 0.95 are grouped in 2-D clusters and 
their data are selected to perform the anomaly detection, by calcu-
lating the Mahalanobis distance between the incoming data and the 
clusters built in the training phase, i.e., an anomaly is detected when 
the data point is outside the elliptic cluster.

The authors in [35] used a polynomial regression model provided 
by the manufacturer of wind generators to separate valid sensor data 
from invalid. A fuzzy clustering technique is applied to the invalid 
data and a regression model is deployed for each statistically re-
levant cluster. The final output separates the derating curves and the 
normal operation curve from incoherent data.

The authors in [21] presented a method that uses sliding win-
dows to segment time series data, and the Mahalanobis distance 
between sliding windows to detect spike-shaped noisy data. To 
detect temporary noisy data, a piece of normal behavior data is se-
lected and divided in time windows to build a background model. If 
the Mahalanobis distance between a time window and the back-
ground model is higher than a threshold, it is considered noise. The 
approach was tested in real industrial IoT (IIoT) data with real noise 
and anomalies, and it achieved better results in detecting noise 
compared with outlier detection methods.

Another approach, that intends to differentiate noise or data 
anomaly caused by errors from anomalous data from events, was 
proposed by [22]. The authors normalize the data and apply the EMA 
to smooth the time series. An anomaly is detected when the value of 
a variable is higher than a threshold. When an anomaly is detected, it 
is considered an event if the previous and next values are detected as 
anomaly, otherwise, the anomaly detection is performed for corre-
lated sensors and the classification depends on the results obtained 
for these sensors. The experimental results on a real traffic dataset 
reveal good prediction accuracy in detecting noise (96%), however, 
they only achieve 70% in event detection.

Distributed approaches

In most industrial scenarios, it is of utmost importance to detect 
anomalies in real-time, or almost real-time. Due to the harsh en-
vironmental conditions and communication latency, in some cases, 
the detection solution has to be distributed between sensor nodes or 
data acquisition systems, intermediate gateways or base stations and 
cloud, in order to achieve higher accuracy in a timely manner.

A two-stage anomaly detection was proposed by [23]. The first 
detection stage is performed in the sensor node, using fuzzy theory. 
It takes two arguments: the degree of abnormality of a sensor value, 
and the past values averaged for that sensor. The second stage is 
performed in the base station, and it considers the data from sensors 
of the same type in different locations and their correlation coeffi-
cient. The goal of the multi-stage detection is to detect local 

Fig. 3. Overview of anomaly types according to [14,16], and detection techniques and architectures. 

P. Nunes, J. Santos and E. Rocha CIRP Journal of Manufacturing Science and Technology 40 (2023) 53–67

56



abnormal points in each sensor, and compare the result with cor-
related sensors (in the same base station) to determine if the ab-
normal detection is induced by external conditions, or due to a 
sensor malfunction. The results show that the anomaly detection 
method for multi source data achieves higher accuracy compared to 
traditional methods using single source data. However, it has higher 
computational costs, which according to the authors is worthwhile 
compared to the improvement in detection. In comparison with the 
DBSCAN technique, this approach achieved better performance re-
garding detection accuracy and computation time for large amounts 
of data.

A multi-stage anomaly detection was also proposed by [36]. In 
the first stage, the data are processed using the Boruta algorithm 
[48], which extracts the most relevant features from raw data. In the 
second stage, the data are divided into clusters using the extended k- 
medoid partitioning algorithm [49] together with the firefly inspired 
partitioning [50], which is employed to determine the number of 
clusters. In the third stage, an algorithm based on the DBSCAN is 
employed to detect anomalies. This algorithm does not force all the 
data to be located in one cluster, thus sparse points which are not in 
any cluster are considered anomalous data. The approach was tested 
on 6 different datasets from online available repositories and the 
results show better performance, regarding detection metrics such 
as F1-score, accuracy, false positive rate, and detection rate. Fur-
thermore, the necessity to properly set some initialization para-
meters in the DBSCAN is overcome, because it is employed a 
methodology to automatically compute these parameters.

A two-stage unsupervised method to detect abnormal data from 
acoustic sensors was addressed by [37]. First the authors divide the 
acoustic data in time windows, and then employ three different 
techniques to extract features from raw data, namely linear pre-
dictive coding (LPC) [51], Mel-frequency cepstral coefficients 
(MFCCs) [52], and Gammatone frequency cepstral coefficients 
(GMCC) [53]. In the first stage, the BIRCH algorithm is employed to 
aggregate the data in several micro clusters according to the com-
puted features. In the second stage the clusters are merged using the 
distance between clusters’ centroids, i.e., if the distance between 
two centroids is lower than a threshold, they are merged, otherwise 
they are not. The final output consists of two clusters: a dense one 
containing normal behavior points, and the other containing rare 
events. The experiments were performed on background noise re-
cords, where the sounds of a gun shot, a glass break, sirens and 
screams were added as anomalous data. The approach shows good 
results, namely, the metrics precision, recall and F1-score reached 
values above 90%. The F1-score and precision metrics outperformed 
a single stage approach, where only a macro-clustering technique is 
employed.

The authors in [24] proposed a decentralized architecture in 
which short-term anomaly detection is performed in the sensor 
nodes, using an unsupervised ANN algorithm. In this stage, all the 
data from a sensor node are handled together, in order to ensure 
data fusion. The second detection stage is triggered by the short- 
term detection, and is performed in the cloud. It analyzes the cor-
relation changes between high correlated sensors. Thus, the short- 
term detection identifies potential anomalies and temporal windows 
that may contain relevant information, while cloud computation 
enables more complex methods and uses historical data to compute 
correlation changes between sensors and identify anomalies. Note 
that due to the limited computational capabilities of the sensor 
node, the authors make use of the concept of generative replay [54], 
more specifically, the Restricted Boltzmann Machine (RBM) [55] is 
employed to allow the ANN to be trained in the cloud and avoid 
recording data on the edge device, thus, only the parameters of the 
algorithm are stored in the sensor nodes. A supervised and dis-
tributed method was proposed by [38]. The architecture of the 
proposed solution encompasses clusters of sensor nodes with low Ta

bl
e 

1 
Su

m
m

ar
y 

of
 c

on
tr

ib
ut

io
ns

 i
n 

an
om

al
y 

de
te

ct
io

n.
 

Re
f.

Te
ch

ni
qu

es
Ex

pe
ri

m
en

ta
l 

da
ta

se
ts

Re
su

lt
s

Ce
nt

ra
liz

ed
 A

pp
ro

ac
he

s
[1

6]
Sp

at
ia

l 
co

rr
el

at
io

n 
St

at
is

ti
ca

l 
m

et
ho

ds
Sp

at
ia

l 
co

rr
el

at
io

n 
St

at
is

ti
ca

l 
m

et
ho

ds
Be

tt
er

 d
et

ec
ti

on
 m

et
ri

cs
 c

om
pa

re
d 

to
 o

th
er

 s
ta

ti
st

ic
al

 m
et

ho
ds

[1
8]

Ti
m

e-
se

ri
es

 a
na

ly
si

s 
Co

rr
el

at
io

n 
be

tw
ee

n 
se

ns
or

s
Re

al
 w

in
d 

tu
rb

in
e 

da
ta

se
t, 

er
ro

rs
 r

an
do

m
ly

 i
nt

ro
du

ce
d

Be
tt

er
 d

et
ec

ti
on

 m
et

ri
cs

 c
om

pa
re

d 
to

 o
th

er
 a

pp
ro

ac
he

s,
 s

lig
ht

ly
 h

ig
he

r 
ti

m
e 

co
st

[1
9]

M
aj

or
it

y 
vo

ti
ng

 s
ys

te
m

 C
or

re
la

ti
on

 b
et

w
ee

n 
se

ns
or

s
Se

ns
or

 d
at

a 
fr

om
 I

nt
el

 B
er

ke
le

y 
da

ta
ba

se
M

or
e 

st
ab

le
 p

er
fo

rm
an

ce
 t

ha
n 

us
in

g 
ot

he
r 

te
ch

ni
qu

es
 a

lo
ne

[2
0]

Cl
us

te
r 

of
 h

ig
h 

co
rr

el
at

ed
 s

en
so

rs
Ex

pe
ri

m
en

ta
l 

da
ta

 f
ro

m
 h

yd
ra

ul
ic

 t
es

t 
eq

ui
pm

en
t

D
et

ec
t 

fa
ul

ts
 i

n 
se

ve
ra

l 
eq

ui
pm

en
ts

, e
na

bl
e 

th
e 

an
al

ys
is

 o
f 

ph
ys

ic
al

 
m

ea
ni

ng
 o

f 
an

om
al

ie
s

[3
5]

Fu
zz

y 
cl

us
te

ri
ng

 t
ec

hn
iq

ue
 P

ol
yn

om
ia

l r
eg

re
ss

io
n

Re
al

 d
at

a 
fr

om
 w

in
d 

ge
ne

ra
to

r
Re

m
ov

e 
in

co
he

re
nt

 d
at

a 
fr

om
 w

in
d 

ge
ne

ra
to

r 
da

ta
se

t
[2

1]
M

ah
al

an
ob

is
 d

is
ta

nc
e 

Co
rr

el
at

io
n 

be
tw

ee
n 

se
ns

or
s

II
oT

 d
at

a 
w

it
h 

re
al

 n
oi

se
 a

nd
 a

no
m

al
ie

s
D

at
a 

re
co

ns
tr

uc
ti

on
 w

it
h 

be
tt

er
 r

es
ul

ts
 a

ft
er

 t
he

 c
le

an
si

ng
 p

ro
ce

ss

[2
2]

EM
A

 C
or

re
la

ti
on

 b
et

w
ee

n 
se

ns
or

s
Re

al
 t

ra
ffi

c 
da

ta
se

t
H

ig
h 

ac
cu

ra
cy

 i
n 

de
te

ct
in

g 
no

is
e 

Lo
w

 a
cc

ur
ac

y 
de

te
ct

in
g 

ev
en

ts
D

is
tr

ib
ut

ed
 S

ol
ut

io
ns

[2
3]

Fu
zz

y 
th

eo
ry

 C
or

re
la

ti
on

 b
et

w
ee

n 
se

ns
or

s
Te

m
pe

ra
tu

re
, w

in
d 

sp
ee

d,
 g

as
 p

ar
am

et
er

s 
A

bn
or

m
al

 d
at

a 
ge

ne
ra

te
d 

by
 m

an
ua

l 
se

tt
in

g
Be

tt
er

 d
et

ec
ti

on
 m

et
ri

cs
 c

om
pa

re
d 

to
 o

th
er

 a
pp

ro
ac

he
s,

 s
lig

ht
ly

 h
ig

he
r 

ti
m

e 
co

st
[3

6]
U

ns
up

er
vi

se
d 

cl
us

te
ri

ng
, b

as
ed

 o
n 

D
BS

CA
N

U
CI

-M
L 

re
po

si
to

ry
Be

tt
er

 d
et

ec
ti

on
 m

et
ri

cs
 c

om
pa

re
d 

to
 o

th
er

 D
BS

CA
N

 a
pp

ro
ac

he
s

[3
7]

M
ic

ro
 c

lu
st

er
in

g 
A

gg
lo

m
er

at
iv

e 
cl

us
te

ri
ng

M
ix

in
g 

va
ri

ou
s 

ra
re

 e
ve

nt
s,

 f
ro

m
 m

ul
ti

pl
e 

so
ur

ce
s,

 w
it

h 
di

ff
er

en
t 

ba
ck

gr
ou

nd
s

G
oo

d 
de

te
ct

io
n 

m
et

ri
cs

 N
o 

co
m

pa
ra

ti
ve

 r
es

ul
ts

[2
4]

U
ns

up
er

vi
se

d 
ne

ur
al

 n
et

w
or

k 
Co

rr
el

at
io

n 
be

tw
ee

n 
se

ns
or

s
Se

ns
or

 n
et

w
or

k 
D

is
tu

rb
ed

 m
an

ua
lly

M
or

e 
co

ns
is

te
nt

 r
es

ul
ts

[3
8]

V
ar

ia
nt

 o
f 

PC
A

D
at

as
et

 f
ro

m
 I

BR
K

 S
yn

th
et

ic
 a

no
m

al
ie

s 
ge

ne
ra

te
d

Be
tt

er
 d

et
ec

ti
on

 m
et

ri
cs

 c
om

pa
re

d 
w

it
h 

lo
ca

l 
de

te
ct

io
n

P. Nunes, J. Santos and E. Rocha CIRP Journal of Manufacturing Science and Technology 40 (2023) 53–67

57



computational capacities, and a cluster head, which is a device with 
more computational capabilities in the neighborhood of the sensor 
nodes. Initially, the first detection model is developed during the 
offline training phase, by applying a variant of PCA [56,57] to com-
pute the eigenvector matrix and eigenvalues for the training dataset. 
A dissimilarity measure for each point (based on the eigenvector 
matrix and eigenvalues) is calculated in this phase. The anomaly 
detection is performed by detecting dissimilarity values that are not 
between the limits computed during the training phase. The sensor 
nodes average data and constantly build new models with the up-
coming data that is sent to the cluster head, which uses the in-
formation from the several sensor nodes to periodically build a new 
global model and send it back to the nodes. The approach was tested 
using an Intel Berkeley Research Lab (IBRL) sensor network, and 
synthetic anomalies were generated and introduced in the dataset. 
The results show that the combination of local and global models to 
detect anomalies achieves better results compared to local models. 
The approach was also compared with other spatial and temporal 
correlation based distributed outlier detection methods, showing 
that only one of the techniques achieved better results in both, de-
tection rate and false positive rate metrics, however the authors 
demonstrated that their approach has less computational overheads.

Current challenges, trends and future directions

One of the main challenges in anomaly detection is related to the 
fact that the abnormal behavior of data can have several causes. 
While an anomaly caused by a machine malfunction or degradation 
contains valuable information, anomalies caused by a sensor’s mal-
function, low battery or other external disturbance, are considered 
noise and may cause miss-interpretations [58]. For this reason the 
majority of recent proposed techniques [16,18–24] uses correlation 
between different sensors, which minimizes erroneous data due to 
sensor problems, however, only the approaches proposed by [21]
and [22] focus explicitly on distinguish noise from abnormal data 
that describes relevant events. However, these techniques often re-
quire the fine-tuning of several parameters, like thresholds and 
bounds. In addition, these models have to be updated, due to the 
degradation of equipment’s and new external conditions, which 
requires specialized engineering knowledge, as stated by [21]. 
Moreover, when using the variation of correlation between sensors, 
it is assumed that an anomaly causes a considerable difference in the 
correlation values, however, it may change due to the machine 
working state or other non-abnormal situation. On the other hand, 
supervised techniques, as the ones proposed by [20] and [38] need 
large amounts of labeled data to build the models.

One of the challenges to develop and test anomaly detection 
techniques is the lack of labeled data. For this reason, some authors 
employ unsupervised techniques [24,36,37]. Besides the results 
presented for these techniques being good, the datasets used to 
obtain the metric performances are built by adding explicit pertur-
bations. For example, in [37], the authors introduced sounds, such as 
gun shot, glass break, screams and sirens no normal background 
audio, while in [24], sensors were disturbed with lighted bulbs, and a 
silicon bag. In a real industrial environment, one may have pertur-
bations that are not so explicit. A real labeled dataset with noise, 
events and machines’ degradation need a lot of specialized en-
gineering work. For this reason, such a rich dataset is still a lack in 
the field of anomaly detection. Thus, the majority of datasets used in 
the researches addressed in this subsection introduce synthetic er-
rors to the normal behavior dataset, which may not represent ac-
curately the real behavior of anomalous data.

There is a growing concern with industrial Big Data, and the 
requirements of modern industry compel systems to be efficient and 
give timely responses. For these reasons, multi-stage and decen-
tralized systems have gained popularity, since they distribute the 

processing load by several agents. Furthermore, if incoherent or ir-
relevant data are detected in the sensor network, it does not need to 
be stored or transmitted, optimizing the resources’ exploitation. It 
must be pointed that anomaly detection plays an important role, 
since the results of these techniques may be explored two-fold in 
further steps of PdM systems: the noisy data with no value can be 
removed; and the relevant anomalies, such as changes in production, 
curative stops, oil refills, etc., can be detected automatically from 
sensor data and employed as additional features for the models that 
forecast the RUL, which can potentially improve the accuracy of 
predictive models.

Prognostics methods

In the context of manufacturing, prognosis refers to the fore-
casting of the expected state of degradation of a machine or its 
components to estimate its RUL [59]. In the modern industry, 
prognostics is seen as a service that has a key role in the main-
tenance field [60], since it allows the schedule of long and short time 
actions, according to the predictions made by the models to de-
termine the RUL. In this scope, literature refers to different ap-
proaches, namely knowledge-based, physics-based and data-driven 
models [60,61], as depicted in Fig. 4. Data-driven models may exploit 
statistical or ML approaches and are often combined with knowl-
edge-based and physics-based models, in order to address more 
complex problems [62].

Anomaly detection was addressed in the previous section of this 
review, since it can be exploited to enrich the predictive models. For 
that purpose, anomaly detection has to be performed earlier, and for 
this reason, the presented approaches were categorized according to 
the employed architecture, since it is relevant for their integration 
with more complex prognostics models. Prognostics is in general a 
more complex subject compared with anomaly detection, and for 
reason, this section categorizes prognostics techniques according to 
the type of approach used, while architectural perspectives are 
discussed with more detail in section 5. Since one of the main goals 
of this paper is to connect anomaly detection with prognostics and 
architectural perspectives in the context of PdM, data-driven ap-
proaches will be addressed more in depth, compared with other 
approaches.

Knowledge-based approaches

Knowledge-based approaches are settled on expert knowledge 
that is usually gathered during years of experience working with a 
specific equipment or part. This knowledge can be employed to 
detect faults, determine the state of degradation of equipment or 
determine the root cause of faults (diagnostics). These approaches 
are applied in industry since the beginning of 1990s [63–65], 

Fig. 4. Overview of different prognostic methods, according to [60]. 
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because they rely mainly on the performance of specialized en-
gineers and technicians, with no need to acquire specialized 
equipment for monitoring industrial assets. The exploitation of ex-
perts inputs evolved with the arising of computational models and 
techniques to enable the automation of diagnostics and fault de-
tection. In a general way, knowledge-based models may be rule- 
based, case-based or fuzzy knowledge-based [62]. The most recent 
research on these topics, concerning maintenance use cases, is 
summarized in Table 2.

Rule-based models intend to code human reasoning in the form 
of rules “IF-THEN”. These rules are gathered by experts and stored in 
knowledge bases, that can be exploited when necessary to infer the 
causes of a fault or stop. Similar to the rule-based models, the fuzzy 
knowledge-based models also employ rules in the form of “IF-THEN”, 
but differently from the previous approaches which use the boolean 
logic, i.e, a rule statement may assume only two values, True or False, 
these rules follow the fuzzy logic [28,29], meaning that the state-
ments may assume continuous values according to its degree of 
truthfulness. This approach intends to express human perception. 
For example, the vibration level of an asset can be low/high and its 
degradation can be low/high according to the different perceptions 
of each expert. Several researches have exploited these techniques, 
especially regarding the diagnostics in different industrial use cases 
[66–69]. A similar approach, which uses a Bayesian approach to 
estimate the expert’s beliefs, was developed by [70]. It is important 
to note that these models may be used together with data-driven 
approaches, which will be discussed further in this document.

The Case-based knowledge based uses experiences to address 
current situations. For example, in the research developed by [71]
authors use a case-base reasoning [72], where several cases are 
stored in a knowledge base. These include the feature’s values and 
the actions taken to overcome that situation (usually a failure). Each 
time a similar situation occurs, the system suggests the solution 
adopted to previous situations.

In general knowledge-based methods are interesting for diag-
nostics, however they are not widely employed to predict a ma-
chine’s failure or its RUL, without being fused with data-driven 
methods. Expert knowledge is expensive and may not be available 
for all components or machines in a factory, but when it exists, these 
models should exploit and automate expert decision and provide 
more insights to other approaches such as the data-drive ones.

Physics-based models

Physics-based approaches exploit mathematical models to de-
scribe physical processes, which have direct or indirect impact on 
the health condition of equipment. These models are often applied 
to mechanical and structural components, since studies concerning 
physical models to describe fatigue and crack propagation are widely 
explored in the literature [73–75]. These approaches, like the 
knowledge-based models are domain specific and require deep 
knowledge on mathematics together with expertize on the physical 
behavior of machinery’s elements, which is expensive, time- 

consuming, and the necessary knowledge is often scarce for the 
majority of the components.

Data-driven approaches

Data-driven approaches exploit information collected by sensors 
and actuators in a factory, in order to extract meaningful knowledge 
from it. The proliferation of technologies, such as IIoT and CPS [76]
contributed to enhance the importance of these approaches. The 
collected data may be used to study the degradation of components, 
or to create behavioral models from data and estimate its RUL. In the 
era of Big Data, the capabilities of data-driven approaches have been 
a topic of exploration in the literature in recent years, mostly due to 
their capability to be applied together with other approaches in a 
multi-model approach. For example, collected data may be used 
with statistical or ML techniques to build a behavioral model of the 
system, or to deduce the physical model of a particular component. 
Multi-model approaches allow addressing the complexities of 
modern industry and the exploitation of existing knowledge about 
the system, since expert knowledge may be combined with data- 
driven technique to enhance the approaches’ effectiveness.

Data-driven approaches, as the anomaly detection approaches, 
may be classified in two different types, statistical and ML. In the 
literature there are several statistical models and techniques applied 
to PdM, namely hidden Markov models (HMM) [77], Wiener process 
model (WPM) [78], gamma process model [79], proportional hazards 
model [80], autoregressive-moving-average (ARMA) models [81], 
among others. ML techniques comprise ANN [82,83] and its varia-
tions, support vector machines (SVM) [84], random forests (RF) [85], 
xGBoost [86], self organized map (SOM) [87], among others. The 
remaining of this section addresses data-drive approaches in the 
prognostics field, as well as the main contributions of each one, 
which are summarized in Table 3.

Statistical methods
The authors in [88] and [89] employed sensor-based degradation 

models to predict RUL. This approach is mentioned as sensory-up-
dated degradation-based model (SUDM). First, the degradation is 
described as a stochastic process by degradation features extracted 
from sensor data, and then, a vector of stochastic parameters is used 
to measure the unit-to-unit variability (UtUV), which is a parameter 
that describes the differences of the machine’s health state due to 
external conditions. In the research developed by [88], the RUL is the 
necessary time for the degradation to reach a threshold value, and it 
is updated according to a Bayesian approach [100]. On the other 
hand, authors in [89] aim to take advantage of the statistical lifetime 
distribution (SLD), which is the methodology typically employed in 
preventive maintenance to estimate the time between equally 
spaced maintenance interventions, and SUDM. The SUDM is applied 
to determine the RUL and SLD is used to determine when the 
parameters have to be updated. The results presented demonstrate 
that by combining SUDM and SLD approaches, fewer parameters 
have to be defined in comparison to the research developed by [88], 
because the time increments to update SUDM model are obtained 
with the inclusion of SLD model. However, the approach proposed by 
[88], demonstrated that if the most suitable time increments are 
chosen, the system’s availability is higher.

In [91], the authors developed a methodology based in the WPM 
to estimate the RUL of turbofan engines. They also employ the UtUV 
parameter to describe the differences of machine’s health state due 
to the difference of health and operational conditions. This para-
meter is updated during the process via particle filtering (PF) [101]
and fuzzy resampling algorithms. The results showed that the RUL 
converges to the ground truth when both algorithms are used to 
update the UtUV during the working cycles. One of the drawbacks of 
this approach is the fact that it is more effective when the UtUV 

Table 2 
Summary of knowledge-based approaches. 

Ref. Technique (s) Prognostics Diagnostics Use case

[66] Fuzzy logic no yes Car production line
[67] Fuzzy logic no yes Semi-conductor 

manufacturing process
[68] Fuzzy logic no yes Grinding wheels
[69] Fuzzy logic no yes Bearings
[70] Bayesian 

Networks
no yes Pipeline leak detection

[71] Case-base 
reasoning

no yes Rolling mill geraboxes
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plays a more important role than other resources, such as age and 
state-dependent WPMs. On the other hand, theoretically, it allows 
the methodology to be employed in different contexts by changing 
the degradation model, which brings the opportunity to use physics- 
based models when they are available.

There are two different types of failure with respect to de-
gradation signals. One is the soft failure, in which an asset condition 
is given by a degradation signal and its failure occurs when a pre-
defined degradation threshold is reached [102]. The other type is the 
hard failure, which occur instantaneously instead of having an es-
tablished degradation threshold [93,102]. The authors in [93] use the 
WPM to model the degradation of automotive components (lead- 
acid batteries) subjected to hard failures, which increase the com-
plexity of the problem due to its unpredictability nature. These 
failures are addressed by assuming that the hazard rate [103] follows 
a Weibull distribution, whose parameters are determined from 
historical data. The experimental results show that the RUL predic-
tions improve when the batteries are near to failure, which may not 
be enough for a proper maintenance, due to the short period of time 
that the decision maker has available. Moreover, the approach only 
considers hard failures, when real systems often can suffer from 
both: degradation induced soft failures, and hard failures. Another 
drawback of the model is the fact that authors fit the hazard rate to a 
Weibull distribution in order to comply with statistical theoretical 
models, instead of using its real distribution.

The authors in [90] developed a health indicator based on the 
vibration’s data collected from bearing tests. The weighted 
minimum quantization error (WMQE) was developed from [104]
and used as a health indicator, while a PF algorithm is used to predict 
the RUL. The results of this research showed that the developed 
indicator improves the prediction of the RUL. However, the de-
gradation process was described using a variant of the Paris-Erdogan 
model [105], which describes the propagation of micro fatigue 
cracks in mechanical components, making the approach specific to 
some mechanical components. This research shows how physics- 
based models may be employed together with data-driven ap-
proaches, but unfortunately, this kind of approach can not to be 
applied in a wide range of contexts, since the failure model is often 
unknown.

A statistical method was employed by [92] to assess the de-
gradation phenomena in the insulation of electrical machines. First, 
the authors describe an empirical model of the normal behavior of 
components [106], and then, Chi-Square (Chi2) and Kolmogorov- 
Smirnov (KS) tests are employed to determine if the considered data 
corresponds to a normal behavior. Besides the strategy for the PdM, 
the authors propose an IoT-based system architecture and algo-
rithms to embed the strategy in low-cost devices, such as Raspberry 
Pi. The fact that the approach is computationally light and un-
supervised leverages a wide range of capabilities, for example, labels 
extracted from each apparatus may be concatenated in a central 

unit, thus more knowledge may be extracted from these data. 
However, in the present research, the exploitation of such cap-
abilities was not explored.

Machine Learning methods
ML approaches were applied by [94], who employed an ANN 

algorithm to build a normal behavior model of a wind turbine 
gearbox, which was used to assess the health state of the system. 
The sensor values predicted by the normal model were compared to 
the actual values, in order to determine maintenance actions. ML 
techniques, such as ANN are able to model very complex systems, 
however, in this case study, the considered variables are well-known 
and in a short number. In more complex systems with dozens of 
sensors, other techniques, such as data reduction, feature extraction, 
and other data treatments may have to be performed in order to 
extract meaningful knowledge. All these tasks may cause a heavy 
burden in a centralized cloud system, as the one proposed by the 
authors, especially when this strategy is applied to several equip-
ments.

In [95], authors applied an RBM to extract relevant features from 
data of operating bearings, to train a SOM. The online process con-
sists in comparing a vector of testing data with the weight vectors of 
all the units in the baseline map, using the minimum quantization 
error. The results show that the features extracted by RBM improve 
the RUL prediction. The feature extraction and the RUL prediction are 
addressed as two separated tasks, which allows the application of 
other prediction techniques, but, on the other hand, parameter 
tuning and model selection, have to be performed for both tasks, 
increasing the computational effort.

On the other hand, [96] proposed an ensemble method that 
combines an ML methodology, the similarity-based interpolation 
(SBI) [107] with a statistical technique, the PF. Both algorithms are 
trained offline and their outputs are weighted according to the 
predicted degradation stage. The output of this linear combination is 
considered the final prediction for RUL. The results of the tests made 
on aircraft bearings and engines showed better predictive perfor-
mance compared to the use each one of the methods alone. How-
ever, the application of two different methods involves more 
computational effort and complexity, especially, when the weights 
for each method are dynamic, i.e., each degradation level has dif-
ferent weights.

The authors in [97] exploited the building information modeling 
(BIM) together with an IoT system that collects relevant data, con-
cerning electrical and plumbing (MEP) components. The condition 
forecasting is performed by using two different algorithms, whose 
choice strongly depends on the developer’s experience, according to 
the author. Furthermore, the predicted deterioration curves of MEP 
components depend on a lot of parameters, which forces the model 
to be trained for each MEP component, meaning that the models are 

Table 3 
Summary of data-driven approaches in prognostics. 

Ref. Techniques Case study Main contributions

Statistical methods [88] SUDM Simulation model Updates degradation models with sensor data
[89] SUDM Simulation model Advantages of SLD-based models and SUDM
[90] PF; WMQE Bearing tests New health indicator
[91] WPM; PF Turbo fan engines RUL based on age and state
[92] KS; Chi2 Insulation of electrical machines Automatic data labeling
[93] WPM Lead-acid batteries Considers hard failures

Machine learning methods [94] ANN Wind turbine gearbox Normal behavior model created by ANN
[95] RBM; SOM Bearing data RBM extracts features that improve RUL prediction
[96] PF; RF Aircraft bearings; aircrafts engines Ensemble method
[97] SVM; ANN MEP components Extended life of MEP components
[98] DBF Hot rolling machine Fusion of expert knowledge, real-time information and configuration 

parameters
[99] XGBoost; RF Consumer goods factory Applied in real environment
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specific for each MEP component (even if the components are si-
milar).

On the other hand, [98] developed a model in which expert 
knowledge is exploited together with a discrete Bayesian filter (DBF) 
[108] to predict the degradation of a hot rolling machine. The de-
gradation is discretized, and the model is trained with expert’s be-
liefs [109], concerning the degradation stage at each moment. 
According to the results, this approach has higher performance 
compared to the preventive maintenance schema and also performs 
better than the traditional state-of-the-art ML algorithms. Besides 
exploiting expert’s knowledge is a good practice that contributes to 
the effectiveness of predictive models, this kind of approach can not 
be applied to all industrial equipments, because this knowledge is 
not always available, especially in complex equipment with many 
parts subjected to different kinds of failure.

Finally, [99] tested several ML algorithms to predict the RUL of 
components of a production factory. The results showed that 
XGBoost and RF were the most effective techniques. Besides the 
results from the models, the authors proposed and deployed an ar-
chitecture in a real industrial environment. This fact highlights the 
necessity to distribute tasks, such as data collection, data processing 
and training models, by several layers to achieve the computational 
performance required by modern industry. In terms of the employed 
models, the methodology was applied at one factory, thus, it can not 
be generalized, as pointed out by the authors.

Current challenges and future directions

As can be concluded, the most recent state of the art on prog-
nostics in PdM combines data-driven approaches with models or 
expert knowledge to achieve better predictive results. Although the 
research developed in this area, there are some challenges unsolved. 
The presented methods are applied to a specific part or equipment, 
making the solutions specific rather than global. There are papers 
that present good results in different use cases, for example [110]
presented accuracies higher than 90% assessing the condition of 
cutting tools and rolling bearings, however, it was achieved with 
different ML models, namely SVM and a type of ANN. Furthermore, 
the influence of each part’s degradation on the others is not ac-
counted in the solutions. Furthermore, risk metrics or models such 
as Dynamic Fault Trees (DFT) [111] are not applied to model the 
failure’s cause and the interaction between the parts.

One of the components widely studied are the rolling bearings 
[112,91,90,95], since there are plenty of tests to model the failure of 
these components, thus enough expert knowledge have been gath-
ered. Moreover, to develop models from data is easier for simple 
components, compared to an entire complex industrial machine, 
such as presses, or molding machines. Also, the datasets with syn-
thetic data typically do not represent the heterogeneity present in 
real data [88,89], thus the validation of these models is not as strong 
as the ones tested in a real industrial environment.

With respect to statistical methods, they have a very strong 
theoretical basis, however, they assume that parameters follow 
known distributions, such as exponential, Weibull, or others, instead 
of using the real distributions, which may be a rough approximation 
of the real behavior. Besides that, sometimes statistical approaches 
are based on fatigue or crack failure models that are known for some 
components, but the methodology can not be replicated on other 
industrial assets. On the other hand, ML methods have the capability 
to represent highly heterogeneous and non-linear models, but they 
need large amounts of data to train the models, and require high 
computational capabilities.

Although the advantages of data-driven methodologies, they 
require large amounts of data, and often, the less frequent modes of 
failure are not considered, because there is not enough data to 
predict them. Moreover, the researches do not use anomaly or event 

detection together with degradation models. As discussed in section 
3, anomaly detection is employed to detect failures or events that 
may cause a prompt alert, however, anomaly detection could be 
applied to detect events such as the filling of oil level, changing the 
machine’s parameters, as well as the changing of work conditions. 
Moreover, anomaly detection can be employed to detect events that 
may be generalized and used as features for predictive models, en-
abling a general method for a PdM system. Finally, anomaly detec-
tion can be employed to remove noisy data that deteriorates the 
accuracy of predictive models. In fact, the potentiality of fusing 
anomaly detection and classification methods was demonstrated in 
the research presented by [11], where the authors exploited a 
combination of time segmentation and anomaly detection techni-
ques together with ML classification algorithms to predict mechan-
ical failures on stamping presses. The simultaneous application of 
anomaly detection, segmentation and ML allowed an improvement 
rate up to 22.971% of the metric F1-score, which brings exciting 
prospects concerning the application of similar methodologies to 
forecast the RUL of other industrial assets.

Another issue observed in the presented researches, is that, the 
degradation models tend to differ from the ground truth RUL when 
the failure is far from happen, converging to the ground truth RUL 
when the degradation state is near the failure, which may not give 
enough time to the stakeholders to plan maintenance activities in a 
timely manner.

Architectural perspective

The increasing complexity of industrial processes, and the ne-
cessity to deal with high volumes of heterogeneous data, motivated 
the necessity to develop technologies and architectures to tackle 
these challenges in the context of PdM. The developed approaches 
have suffered several modifications and evolutions over the years. 
The first architectures proposed were centralized cloud-based ap-
proaches [113]. These, typically explore the computational cap-
abilities of a centralized cloud server to handle the most complex 
tasks, such as data processing, training predictive, or detect 
anomalies [114–116], while edge devices are responsible only by 
data collection (sensor networks) and data transmission to the 
cloud. Besides being a simple and effective approach in some sce-
narios, with the increasing number of sensor nodes on the shop- 
floor, the amount of data to process increased in a large scale, and 
handling all these tasks in the cloud may not be feasible, due to the 
required network low latency, fast response of the system, and due 
to the cost of constantly transmitting large amounts of data.

For the mentioned reasons, decentralized architectures ex-
ploiting the computational capabilities of edge devices, fog nodes, or 
the capabilities of several cloud servers, are being the focus of recent 
researches in the field of industrial maintenance. Fig. 5 (a) depicts 
the different types of architectures and respective layers, while Fig. 5
(b) gives an overview of the computing layers that may be exploited. 
Edge devices have computational capabilities, allowing them to pre- 
process complex data, creating and selecting relevant data features, 
or even running algorithms [117]. In this scope, the Bosch white 
paper [118] highlights the advantages, and presents features to 
consider when building edge computing solutions, namely the 
capability to run analytics and ML, availability and reliability, local 
persistent storage, remote management and update, among others.

The fog computing offers some cloud services near to the place 
where data are generated. It encompasses storage and networking 
capabilities, which reduces latency and alleviates the burden on the 
network [119]. The next subsection highlights some recent ap-
proaches, focusing on architectural aspects of PdM. These may ex-
ploit one or more layers represented in Fig. 5, as can be seen in 
Table 4, which summarizes the contributions in this field.
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Main recent contributions

A modular framework designated IDARTS was developed by 
[120] to support the pluggability of new agents and reduce the 
network latency. It is based on the monitoring approach developed 
by [129], and is composed by three main components, the cyber- 
physical production system, where data are collected, processed and 
evaluated. The real-time data analysis component, focused on early 
fault detection of components, and the knowledge management 
component, which is responsible for updating models with historical 
and incoming data. The platform was tested using a cluster with four 
nodes containing three Java Agent Development Framework (JADE) 
agents [130] and a message queue based on Apache Kafka [131]. The 
main features achieved by this research are: the support for plugg-
ability, as well the scalability and flexibility, since virtual resources 
can be added or removed; different configurations were successfully 
tested; and different models were trained. Besides the mentioned 
achievements, the architecture requires four different machines 
with cloud computing capabilities, instead of exploiting the cap-
abilities of edge devices and handling locally with data.

In the research developed by [121], a MapReduce-based Random 
Matrix Mode algorithm [132] was employed at edge devices for 
anomaly detection in a decentralized architecture with three layers. 
The bottom layer comprises the environment where the big data are 
generated, above are the IoT networks, composed by several edge 
devices that collect data from the environment, acting as simple 
network management protocol (SNMP) agents, i.e., they act as SNMP 
clients and enable the communication between the central network 
management station and the shop-floor. The fact that the detection 
technique may run on edge devices is very interesting, however, the 
presented research is in a very embryonic stage, instead of 

employing a real case study with real-time data collection, a simu-
lated virtual sensor was employed to validate the approach.

Guided by the features highlighted in the Bosch white paper 
[118] the authors in [122] developed a modular platform focused on 
assuring the features mentioned in the white paper. The modularity 
of the proposed architecture allows the use of cloud computing or 
edge computing. The edge computing capabilities are improved with 
an AI accelerator hardware, which allows running complex deep 
learning modules, and the use of standard libraries such as Tensor-
Flow. The research is very interesting, in the way it achieves almost 
all features mentioned in [118], especially the capability to run ML 
models. However, the data treatment and the fine-tuning of para-
meters such as the window size are not automatic. Furthermore, it 
was used an existing dataset for validation of the model, thus, no 
data collection from the edge devices was performed.

With focus on edge computing, the authors in [123] developed a 
compressed recurrent neural network (RNN) [82], by employing 
techniques such as quantization and pruning [133]. The main focus 
of this research is the ability to run ML algorithms on low power 
edge devices, in order to predict bearing faults of induction motors. 
Also concerned with edge devices computational performance, in 
[124], the authors explored diverse sensor’s configurations and 
tested different fault detection algorithms running on different edge 
devices, such as Raspberry Pi 3, NVIDIA Jetson TX2 and NVIDEA 
Xavier boards, being the last board the one who achieved better 
performance concerning the computational time. These researches 
highlight the fact that even when the power consumption or com-
putational performance are critical factors, it is possible to process 
data, run ML models, while collecting and transmitting data, using 
edge devices. However, the capabilities of an architecture for PdM 
may be extended with the exploitation of both, cloud server and 

Fig. 5. Architectures for PdM. (a) Overview of different PdM architectures [119]; (b) Overview of different computing layers in PdM architectures. 
(adapted from [119]).

Table 4 
Summary of architectures for PdM. 

Ref. Cloud layer Fog layer Edge layer Main contributions

[120] Yes (4 nodes) No No Support for pluggability, scalability and flexibility
[121] Yes No Yes Anomaly detection runs directly on edge devices
[122] Yes No Yes Flexibility to use edge or cloud to run several ML algorithms
[123] Yes No Yes Compressed a RNN to run on low power edge devices
[124] No No Yes Tested different algorithms on different low power edge devices
[125] Yes Yes Yes High flexibility and scalability, allowed by docker micro-services
[126] Yes Yes Yes Optimized computing resources and brings analytics closer to the shop-floor
[37] Yes Yes Yes Tasks divided by the different layers allow more complex event detection methods
[127] Yes No Yes Plug-and-play gateway to extract and structure field-level data in different scenarios
[128] Yes Yes Yes Classifiers are trained near the shop-floor
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edge devices. For example, several data frameworks and data vi-
sualization tools, as well as more complex data analysis may be 
enabled by cloud computing.

The authors in [125] proposed an architecture where the cloud 
capabilities are explored to train complex predictive models, which are 
pushed to the edge devices through a fog network. The developed 
framework encompasses several microservices, such as predictive 
analytics, data visualization and maintenance schedule. These micro-
services are built within docker containers, allowing the scalability of 
all the resources. A similar architecture based on docker containers 
was employed by [134] in robotics industry. This kind of service-based 
architecture, theoretically allows the implementation of all the func-
tionalities mentioned in [118], however, there are important features 
that were not reported by these researches.

Cloud, fog and edge layers were considered in the architecture 
proposed by [126]. The edge layer is mainly responsible for sensing 
and transmitting the data and run low complexity analytics, while fog 
layer employs technologies such as Apache NiFi and is responsible for 
gathering the data sent by the edge layer and route it to the cloud. In 
addition, it can aggregate data and run more complex analytics than 
the edge layer. The cloud layer enables the storage of all the data and 
further data analysis. Besides being an interesting architecture, it is in 
a very embryonic stage, since it lacks of evaluation tests.

Another approach that explores edge and fog capacities was 
developed by [37], who proposed a framework to detect anomalies 
in audio stream data, where data is collected by edge devices, feature 
extraction is performed in the fog layer and an ML method is com-
puted in the cloud. However, the edge layer is under exploited, when 
one consider all the features highlighted by [118], since it only col-
lects data and sends it to the fog layer.

In some cases, industrial equipment has already built-in field- 
level sensors, with interfaces that allow users to gather the data 
produced by machines. However, it requires knowledge about dis-
tinct industrial communication interfaces, since manufacturers 
provide different protocols for their machines. The authors in [127]
developed a plug-and-play gateway to extract field-level data [135], 
and transform it according to a data schema, to store it in databases 
on the cloud. The gateway was tested in two different scenarios with 
different communication interfaces. Gathering the data in a well- 
structured schema is very important for PdM, however, the gateway 
is under-exploited, since other tasks such as data processing, and 
event persistent storage could be performed, instead of handling all 
these tasks on the cloud.

A modular approach for PdM was proposed by [128]. The re-
search encompasses a sensing module to collect raw data, a feature 
module to extract and select relevant features, a learning module to 
train classifiers, and a monitoring module. The proposed framework 
explores the advantages of fog computing paradigm to have these 
services running on edge devices, near the end users. However, the 
computational performance and latency were not tested in this re-
search. The fog computing is also exploited by [136], who proposed a 
decentralized architecture and a genetic algorithm to schedule 
maintenance interventions [137]. However, the edge devices only 
collect data, while the fog nodes send it to the cloud, where all the 
data processing and the development of models are handled.

Challenges and future directions

On top of the different architectures available in the literature 
and presented above, there is a trend to exploit decentralized ar-
chitectures in order to distribute the workload by several compo-
nents. While some authors, such as [120] employ a network of server 
machines to optimize the data flow, others use a fog layer 
[37,126,136,128], in order to distribute the computational burden and 
bring more computational capabilities near to the shop floor. 
Moreover, the authors in [127] address another issue with this type 

of architecture, namely gathering data from industrial built-in field- 
level sensors.

Edge devices play an important role in several researches, 
[121–125,134], because they allow the execution of several tasks, 
from data collection and processing, to data analysis using complex 
ML models. In some mentioned researches, these resources are un-
exploited, because they are merely used to collect data and send it to 
storage units, when for example, a data analysis could be performed 
in order to store only relevant data. Besides some promising re-
searches have been presented, none of them accomplished all the 
features highlighted by the Bosch white paper [118], which may be a 
good guide for the development of futures PdM architectures based 
on edge devices. Moreover, the interaction between edge devices 
and cloud servers is not fully exploited. While edge devices can have 
built-in models and analyze the data from a machine, the mean-
ingful data could be gathered in the cloud, which, on the other hand, 
can extract more information by analyzing together relevant data 
from several industrial assets. Another important aspect that should 
be considered in future researches, is the connection between en-
terprise information systems, such as manufacturing execution 
system (MES) and IIoT devices, as stated in [138].

The need for an easy and practical distribution of relevant ser-
vices leads to the adoption of technologies, such as Docker [125,134]
and devices with more computational power [124], that allow a 
more flexible distribution of features as services. A growing im-
portance feature is related to the capability to run models and al-
gorithms as near as possible from the end users. For this reason, not 
only the edge device’s capabilities have been explored, but efforts in 
developing lighter algorithms have been made [122,123].

Conclusion

This review presents a state of the art on topics that present 
challenges to the implementation of a generalized data-driven 
system in the PdM context. These challenges encompass the ex-
istence of noisy or erroneous data from harsh industrial scenarios, 
the lack of generalization of prognostic models, and the necessity to 
collect and process data in a timely and effective way in very distinct 
industrial scenarios. Three main perspectives are presented: 
anomaly detection; prognostics; and architectural perspectives. 
Anomaly detection techniques have the potential to improve prog-
nostics models two-fold: by removing noisy or erroneous data; and 
by detecting relevant events that can be used as new input features 
for the prognostics models, making it possible to have more gen-
eralized models. Architectural perspectives are connected to these 
techniques, since they require an efficient and flexible architecture 
to allow their deployment in distinct industrial scenarios. The three 
mentioned perspectives offer the basis for developing and deploying 
a generalized and effective PdM system. For this reason, they were 
chosen over other PdM topics to be the focus of this paper.

Along this document, the importance of anomaly detection is de-
scribed, and the approaches applied in the last years are reviewed 
from a critical point of view and categorized according to their ar-
chitecture. Then, a pivotal subject is addressed, prognostics and RUL 
forecasting, where the different approaches are categorized according 
to the type of model employed. Then, the open issues and the con-
nection with the previous subject (anomaly detection) are presented. 
Finally, the most recent advances concerning architectures are re-
viewed, connected to the previous subjects, and the current challenges 
are presented from a critical analysis of the presented researches.

In the field of anomaly detection in industrial scenarios, one of the 
major challenges is the fact that the anomalies may be caused by 
several events, such as a machine malfunction, curative stops, changes 
in work conditions, sensors’ malfunctions induced by harsh environ-
mental conditions, transmission errors, among others. In this context, 
the approaches proposed by [21] and [22] are interesting, since they 
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focus explicitly on this challenge by using correlation between sensors. 
Nevertheless, the outputs of these approaches are not exploited in the 
prognostic approaches, namely in the models for RUL forecasting. The 
anomaly detection together with the prognostic techniques has the 
potential to improve the degradation models, since real data may be 
less prone to errors when using events or anomalies as inputs instead 
of raw data. Moreover, erroneous data can be handled to not influence 
the final output of the predictive models.

The majority of approaches for prognostics are specific for a part 
or equipment, rather than solutions validated in different industrial 
scenarios. For example, the researches developed by [112,90,91,95]
consider only the failure of rolling bears. Furthermore, the influence 
of each part’s degradation on the others is not accounted, which 
jointly with the employment of synthetic datasets [88,89] con-
tributes to the loss of accuracy when trying to represent the real 
behavior of industrial machinery. The inclusion of these interactions 
in the global predictive model would improve the accuracy of the 
predictive models, since the proposed models to determine the RUL 
in the literature are effective only when the degradation stage is near 
to a failure point.

The growing production of data in industrial environment re-
quires the exploitation and integration of edge and cloud cap-
abilities, as well as enterprises’ information systems, such as MES. 
Moreover, the architectures employed for PdM should be flexible 
and allow the integration of more components and the prompt 
modification of the existing ones. In this field, the researches pro-
posed by [125,134] are interesting, since they propose a scalable 
service distribution based on docker microservices. Also, the ex-
ploitation of edge devices in decentralized and distributed archi-
tectures is very interesting, since it allows a more efficient treatment 
of data near the shop-floor, while alleviating the burden in the cloud. 
The Bosch white paper [118] provides valuable insights, concerning 
the requirements of an edge device, and the research developed by 
[122] showed interesting results, since the authors achieved the 
majority of the features mentioned in the white paper.

Future research should address the current challenges in PdM, 
namely integrate anomaly detection in the developed prognostics 
models and account with the interaction of the several components, 
in order to achieve more generalized models to be applied in com-
plex equipments, such as injection molding machines, presses, 
among others. Furthermore, future research should exploit compu-
tational resources of cloud and edge devices and their interaction in 
order to achieve the best computational and predictive performance 
of models, to address real-time and flexibility required by modern 
industries in the context need of Industry 4.0.
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