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Abstract

The demand for last-mile delivery (LMD) services worldwide increased following online sales growth, so better methods to assess
efficiency issues are paramount. This work explores a data-driven approach to evaluate LMD services and inform logistics service
providers about possible improvement directions. It uses multi-directional efficiency analysis to benchmark LMD services based
on process variables, such as delivery time and service cost. Then, by fitting machine learning models and using explainability
algorithms with new metrics, characterizes factors that influence LMD performance. Early discussions with experts show that the
approach produces understandable and integrable results that generate valuable insights, e.g., regarding the impact of each variable
on service quality informing the direction for further improvement action.
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1. Introduction

In recent years, there has been a notable exposure to the vulnerability of supply chains and transportation networks,
coinciding with a significant surge in demand for last-mile logistics services. The COVID-19 pandemic has posed a
substantial threat to various aspects of modern life, prompting predominantly reactive rather than proactive operational
responses. Concurrently, logistics networks have faced immense strain due to the escalating popularity of online
shopping, highlighting several procedural inefficiencies along the way [12]. Consequently, customer expectations for
a faster and cost-free delivery system with more frequent deliveries became more prominent [8]. According to a
report made by Precedence Research [26], the global last-mile delivery transportation market size, valued in 2022 at
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USD 142.9 billion, is expected to hit around USD 297 billion by 2030. The increasing middle-class population in both
developed and developing regions has also prompted this expansion. Therefore, the importance of forging partnerships
between public or private entities for environmental sustainability, and technology innovation and integration has never
been more imperative.

On the technological side, recent achievements in machine learning (ML) have triggered a wave of new artificial
intelligence (AI) applications where significant advantages have been recognized across a wide range of fields. ML is
here defined as a subset of AI that enables computers to autonomously analyze and learn from data, thereby enhancing
their cognitive capabilities [2]. AI is perceived as a ”system that displays intelligent behaviour by analysing their
environment and taking actions – with some degree of autonomy – to achieve specific goals” [1, p. 1]. One of the
inherent limitations of numerous ML algorithms is their opaque nature, often referred to as a ”black box.” This implies
that comprehending and fully understanding these algorithms, even for domain experts, is highly challenging [22],
with implications on how these can be deployed outside the lab and strongly influencing how end-users may trust
their outcomes. Given such complexities, by the end of 2021, the topic of explainable artificial intelligence (XAI)
became a hot research theme [15]. The term encompasses a collection of processes and methodologies (e.g., SHapley
Additive exPlanations (SHAP) and Local Interpretable Model Agnostic (LIME) are the most widely used [22]) that
enable researchers, developers, and users to comprehend and trust the outcomes generated by ML, deep learning (DP)
or neural network (NN) algorithms, also called AI-powered decision-making [16]. According to [12], the integration of
AI into decision-making processes may provide enhanced real-time information about any business process with data.
Jointly, XAI may work as a guide for decision-makers by giving recommendations for improvement (determining the
most relevant features that explain a certain output – some examples in manufacturing are given in [7, 27]).

The new challenges and goals to embrace Logistics 4.0 [3] require harnessing the latest technologies that can take
the most out of the existing data to support decision-making. However, the use of ML/AI applications for last-mile
delivery (LMD) performance evaluation is still in its infancy, in fact, most applications are focused on anomaly de-
tection, forecasting, and planning (see [14]). Solely the work of [29] has presented a blockchain-based approach to
evaluate customer satisfaction in urban logistics. The authors used the Long Short-Term Memory algorithm with the
following criteria: cost performance, information transparency, cargo damages, and on-time delivery rate. Addition-
ally, to the authors’ knowledge, no studies have been found in the literature using XAI techniques to help explain
LMD performance modelled as an ML algorithm.

Before moving further in this paper, and for the sake of clarification, the literature mentions that the definition of
LMD may suffer slight variations depending on the type of business undergone by the logistics company: business-to-
business (B2B), business-to-consumer (B2C) or consumer-to-consumer (C2C) [25]. In this paper, the most general one
suggested by Motavallian (2019) has been followed, and LMD is defined as: ”The last transportation of a consignment
in a supply chain from the last dispatch point to the delivery point where the consignee receives it.” [23, p. 106].

The original main contribution of this paper is the development and application of a novel data-driven approach
to evaluate and explain the performance of several LMD services, guiding logistics service providers towards higher
efficiency service rates. The novelty of the approach may serve as a catalyst for future research on the topic and
applications in other logistics scenarios.

In the next Section 2, the methodology is described in detail, and a real case study is explored in Section 3.

2. Methodology

To provide clarification, Fig. 1 summarizes the methodology employed in this study. The main scheme of this work
entails (1) a benchmark of the delivery services (using MEA); (2) an identification of the best ML model (i.e. XGBoost
and Random Forest) for fitting the benchmark rank in each destination zone, where the data was enriched with features
not used in the benchmark (i.e., the so-called root cause variables); and (3) the use of explainability techniques (i.e.
SHAP and LIME) to identify the impact of the root cause variables. For the sake of brevity, detailed explanations of
XGBoost and LIME are omitted in favour of a more comprehensive look into the mathematical frameworks underlying
MEA and SHAP, the latter specifically to address modifications introduced to the standard algorithm.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2024.02.067&domain=pdf
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Fig. 1: Overall study methodology flow. Color legend: yellow boxes represent the steps where mathematical techniques or algorithms are employed
to the dataset; purple boxes represent intermediate steps of data categorization or enrichment; green boxes represent decision-making steps.

2.1. Benchmarking using Multi-directional Efficiency Analysis (MEA)

Based on the Data Envelopment Analysis (DEA) methodology, Multi-directional Efficiency Analysis (MEA), pro-
posed in [5], is a non-parametric approach from operational research used to evaluate the relative performance of a
process or organization (in this paper we define it as a benchmark unit) based on a set of input and output variables.
The advantage of MEA over DEA is that (1) it offers additional insights into the potential improvements precisely
for each factor encompassed within the model, and (2) it computes an inefficiency metric to indicate which factors
should be addressed to minimize performance inefficiencies. In the case of this paper, relative performance is as-
sessed through the input-oriented version, i.e., benchmark units with higher ranks are those capable of minimizing
inputs while outputs are suitably normalized and comparable. Henceforth, a detailed exposition of the mathematical
foundation of MEA’s algorithm and the accompanying notation is presented.

Let n ∈ N represent the index of a benchmark unit (i.e. a delivery service). For notation simplicity, [m] defines
the set {1, ...,m} for some m ∈ N. Therefore, any given n produces O outputs yo(n), where o ∈ [O], using I inputs
xi(n), where i ∈ [I]. Within this mathematical model, the initial 1 < D ≤ I inputs are denoted as discretionary
inputs, representing the variables that participate in the optimization process. Conversely, the non-discretionary inputs
are variables that are inherently fixed and cannot be altered. Hence, the inputs vector is denoted by x(n) ∈ RI and
y(n) ∈ RO defines the outputs vector for a given n.

MEA is now computed to benchmark the performance of all n. Considering the variable returns to scale (VRS)
model for the efficiency measurement of benchmark units (see [6]), we define the set Λ =

{
λ ∈ RK :

∑
n∈[K] λn = 1

}
.

For n running in [K], d running in [D], j running in [J], and a fixed n̄ ∈ [K], the MEA score of a certain observation
z(n̄) = (x(n̄), y(n̄)) is determined by solving the following linear optimization programs:

Problem Pαd (z, n̄) : minαd(n̄) such that Problem Pβo(z, n̄) : max βo(n̄) such that∑
n λnxd(n) ≤ αd(n̄),

∑
n λnxi(n) ≤ xi(n̄), i ∈ [I],∑

n λnxi(n) ≤ xi(n̄), i ∈ [I], i � d,
∑

n λnys(n) ≤ βo(n̄), s ∈ [O],∑
n λnyl(n) ≤ yl(n̄), l ∈ [O],

∑
n λnyl(n) ≤ yl(n̄), l ∈ [O], l � o,

Problem Pγ(α, β, z, n̄) : max γ(n̄) such that∑
n λnxi(n) ≤ xi(n̄) − γ(n̄)(xi(n̄) − α∗i (n̄)), i ∈ [D],∑

n λnxi(n) ≤ xi(n̄), i ∈ [I] \ {d},∑
n λnyl(n) ≥ yl(n̄) + γ(n̄)(β∗l (n̄) − yl(n̄)), l ∈ [O],

where λ ∈ Λ, α∗d(n̄) and β∗o(n̄) are the optimal problem solutions of Pαd (z, n̄) and Pβo(z, n̄), respectively. The ideal point
of (x(n̄), y(n̄)) is given by the MEA output vector

ζ(n) .= (α∗1(n), ..., α∗D(n), xD+1(n), ..., xI(n), β∗1(n), ..., β∗O(n)) ∈ RI+O. (1)

Within this mathematical setting, the methodology for a specific observation z(n̄) = (x(n̄), y(n̄)) consists of solving
(|D| + |O| + 1) × K linear programs. Thus, the MEA score of each n ∈ N for a given dataset z = {z(n)}n∈N is given by

MEAz(n) =
1
γ∗(n) −

1
D
∑

i∈[D]
xi(n)−α∗i (n)

xi(n)

1
γ∗(n) +

1
O
∑

o∈[O]
β∗o(n)−yo(n)

yo(n)

, (2)
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where α∗i (n), β∗o(n) and γ∗(n) represent the optimal solutions to the linear optimization problems Pαi (z, n), Pβo(z, n)
and Pγ(z, n, α∗, β∗), respectively. With the directional contribution of each input and output, the MEA score is then
calculated. For the input i ∈ [I], the contribution in the unit z(n̄) is given by mEffi(n), see equation (3), where χ[D]
defines the characteristics function of set [D]. Thus, χ[D](i) = 1, if i ∈ [D] and χ[D](i) = 0 if i � [D]. For the outputs
o ∈ [O] the contribution is given by

mEffi(n) =
xi(n) − γ(n)(xi(n) − α∗i (n))

xi(n)
χ[D](i), and mEffo(n) =

yo(n)
yo(n) + γ(n)(β∗o(n) − yo(n))

. (3)

As aforementioned, a distinguishable feature of MEA over DEA is that inefficiencies can be analyzed individually.
Thus, the inefficiency index is here referred to determine the number of times each input was used inefficiently. Using
the ideas in [6], for a given dataset z = {z(n)}n∈[K] the inefficiency index for each input index i ∈ [I] and n ∈ [K] is
given by

mIneffi(n) =
∑N

n=1 γ(n)(xi(n) − α∗i (n))
∑N

n=1xi(n)
. (4)

After computing MEA, decision-makers are able to make a primary analysis of the most critical benchmark units n
and derive initial improvement directions. Furthermore, referring to the scheme depicted in Fig. 1, the scores obtained
from MEA are partitioned into different classes to be used in next steps.

For p ∈ [0, 1], let µp ∈ [0, 1] be the p percentile of the set of MEA scores (e.g., p = 0.5 is the median value), then
we use the following categorical score metrics for each benchmark unit n:

• 2-Classes Index as the map 2-CIp : N→ {0, 1} with two values:
– Inefficient Group defined as 2-CIp(n) = 0, if MEAz(n) < µp;
– Efficient Group defined as 2-CIp(n) = 1, if MEAz(n) ≥ µp.

• 3-Classes Index as the map 3-CI : N→ {’L’, ’N’, ’H’} with three values:
– Low Efficiency Group defined as 3-CI(n) = ’L’, if MEAz(n) < Q∗1;
– Normal Efficiency Group defined as 3-CI(n) = ’N’, if Q∗1 ≤ MEAz(n) ≤ Q∗3;
– High Efficiency Group defined as 3-CI(n) = ’H’, if MEAz(n) > Q∗3.

Here, the thresholds Q∗1 and Q∗3 are defined by Q∗1 = min{µ0.25, 0.25} and Q∗3 = max{µ0.75, 0.75}, respectively.
In the subsequent step of the methodology, the 2-Classes Index is seen as the label of the machine learning classifier.

The 3-Classes Index is more granular thus, it is relevant to understand the distribution of scores in each zone, allowing
to identify critical zones with respect to the delivery efficiency, see subsection 4.1.

2.2. Best classification model for the benchmark scores of a zone

In order to understand how problem variables contribute to (in)efficient delivery services, we need to find a clas-
sification model that captures the correspondence between variables and MEA scores. Hence, the principal aim of
this step is to construct the best ’black-box’ map between problem variables and the values of the 2-Classes Index.
For such purpose, several machine learning algorithms, e.g. using the Python package scikit-learn, can be used if the
attained machine learning (ML) evaluation metrics are high enough. Then, root cause analysis can be achieved by
XAI techniques, see the next step in the methodology scheme in Fig. 1.

In our case study, involving several delivery zones and after extensible hyperparameter optimization, the best
models for each zone were obtained using the algorithms: Random Forest (RF) and eXtreme Gradient Boosting
(XGBoost), see [10]. A RF, a tree-based ML algorithm as an ensemble of multiple (simple) decision trees, was
created in 1995 by Tin Kam Ho, then extended by Leo Breiman and Adele Cutler. Today, is one of the most known
algorithms in ML. The XGBoost algorithm gained significant recognition in prominent Kaggle competitions and many
use case applications due to its exceptional performance and rapid response in addressing classification and regression
predictive modeling challenges, particularly for structured or tabular datasets. Recent examples of its effectiveness can
be found in studies such as [18] and [13].
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Fig. 1: Overall study methodology flow. Color legend: yellow boxes represent the steps where mathematical techniques or algorithms are employed
to the dataset; purple boxes represent intermediate steps of data categorization or enrichment; green boxes represent decision-making steps.

2.1. Benchmarking using Multi-directional Efficiency Analysis (MEA)

Based on the Data Envelopment Analysis (DEA) methodology, Multi-directional Efficiency Analysis (MEA), pro-
posed in [5], is a non-parametric approach from operational research used to evaluate the relative performance of a
process or organization (in this paper we define it as a benchmark unit) based on a set of input and output variables.
The advantage of MEA over DEA is that (1) it offers additional insights into the potential improvements precisely
for each factor encompassed within the model, and (2) it computes an inefficiency metric to indicate which factors
should be addressed to minimize performance inefficiencies. In the case of this paper, relative performance is as-
sessed through the input-oriented version, i.e., benchmark units with higher ranks are those capable of minimizing
inputs while outputs are suitably normalized and comparable. Henceforth, a detailed exposition of the mathematical
foundation of MEA’s algorithm and the accompanying notation is presented.

Let n ∈ N represent the index of a benchmark unit (i.e. a delivery service). For notation simplicity, [m] defines
the set {1, ...,m} for some m ∈ N. Therefore, any given n produces O outputs yo(n), where o ∈ [O], using I inputs
xi(n), where i ∈ [I]. Within this mathematical model, the initial 1 < D ≤ I inputs are denoted as discretionary
inputs, representing the variables that participate in the optimization process. Conversely, the non-discretionary inputs
are variables that are inherently fixed and cannot be altered. Hence, the inputs vector is denoted by x(n) ∈ RI and
y(n) ∈ RO defines the outputs vector for a given n.

MEA is now computed to benchmark the performance of all n. Considering the variable returns to scale (VRS)
model for the efficiency measurement of benchmark units (see [6]), we define the set Λ =

{
λ ∈ RK :

∑
n∈[K] λn = 1

}
.

For n running in [K], d running in [D], j running in [J], and a fixed n̄ ∈ [K], the MEA score of a certain observation
z(n̄) = (x(n̄), y(n̄)) is determined by solving the following linear optimization programs:

Problem Pαd (z, n̄) : minαd(n̄) such that Problem Pβo(z, n̄) : max βo(n̄) such that∑
n λnxd(n) ≤ αd(n̄),

∑
n λnxi(n) ≤ xi(n̄), i ∈ [I],∑

n λnxi(n) ≤ xi(n̄), i ∈ [I], i � d,
∑

n λnys(n) ≤ βo(n̄), s ∈ [O],∑
n λnyl(n) ≤ yl(n̄), l ∈ [O],

∑
n λnyl(n) ≤ yl(n̄), l ∈ [O], l � o,

Problem Pγ(α, β, z, n̄) : max γ(n̄) such that∑
n λnxi(n) ≤ xi(n̄) − γ(n̄)(xi(n̄) − α∗i (n̄)), i ∈ [D],∑

n λnxi(n) ≤ xi(n̄), i ∈ [I] \ {d},∑
n λnyl(n) ≥ yl(n̄) + γ(n̄)(β∗l (n̄) − yl(n̄)), l ∈ [O],

where λ ∈ Λ, α∗d(n̄) and β∗o(n̄) are the optimal problem solutions of Pαd (z, n̄) and Pβo(z, n̄), respectively. The ideal point
of (x(n̄), y(n̄)) is given by the MEA output vector

ζ(n) .= (α∗1(n), ..., α∗D(n), xD+1(n), ..., xI(n), β∗1(n), ..., β∗O(n)) ∈ RI+O. (1)

Within this mathematical setting, the methodology for a specific observation z(n̄) = (x(n̄), y(n̄)) consists of solving
(|D| + |O| + 1) × K linear programs. Thus, the MEA score of each n ∈ N for a given dataset z = {z(n)}n∈N is given by

MEAz(n) =
1
γ∗(n) −

1
D
∑

i∈[D]
xi(n)−α∗i (n)

xi(n)

1
γ∗(n) +

1
O
∑

o∈[O]
β∗o(n)−yo(n)

yo(n)

, (2)
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where α∗i (n), β∗o(n) and γ∗(n) represent the optimal solutions to the linear optimization problems Pαi (z, n), Pβo(z, n)
and Pγ(z, n, α∗, β∗), respectively. With the directional contribution of each input and output, the MEA score is then
calculated. For the input i ∈ [I], the contribution in the unit z(n̄) is given by mEffi(n), see equation (3), where χ[D]
defines the characteristics function of set [D]. Thus, χ[D](i) = 1, if i ∈ [D] and χ[D](i) = 0 if i � [D]. For the outputs
o ∈ [O] the contribution is given by

mEffi(n) =
xi(n) − γ(n)(xi(n) − α∗i (n))

xi(n)
χ[D](i), and mEffo(n) =

yo(n)
yo(n) + γ(n)(β∗o(n) − yo(n))

. (3)

As aforementioned, a distinguishable feature of MEA over DEA is that inefficiencies can be analyzed individually.
Thus, the inefficiency index is here referred to determine the number of times each input was used inefficiently. Using
the ideas in [6], for a given dataset z = {z(n)}n∈[K] the inefficiency index for each input index i ∈ [I] and n ∈ [K] is
given by

mIneffi(n) =
∑N

n=1 γ(n)(xi(n) − α∗i (n))
∑N

n=1xi(n)
. (4)

After computing MEA, decision-makers are able to make a primary analysis of the most critical benchmark units n
and derive initial improvement directions. Furthermore, referring to the scheme depicted in Fig. 1, the scores obtained
from MEA are partitioned into different classes to be used in next steps.

For p ∈ [0, 1], let µp ∈ [0, 1] be the p percentile of the set of MEA scores (e.g., p = 0.5 is the median value), then
we use the following categorical score metrics for each benchmark unit n:

• 2-Classes Index as the map 2-CIp : N→ {0, 1} with two values:
– Inefficient Group defined as 2-CIp(n) = 0, if MEAz(n) < µp;
– Efficient Group defined as 2-CIp(n) = 1, if MEAz(n) ≥ µp.

• 3-Classes Index as the map 3-CI : N→ {’L’, ’N’, ’H’} with three values:
– Low Efficiency Group defined as 3-CI(n) = ’L’, if MEAz(n) < Q∗1;
– Normal Efficiency Group defined as 3-CI(n) = ’N’, if Q∗1 ≤ MEAz(n) ≤ Q∗3;
– High Efficiency Group defined as 3-CI(n) = ’H’, if MEAz(n) > Q∗3.

Here, the thresholds Q∗1 and Q∗3 are defined by Q∗1 = min{µ0.25, 0.25} and Q∗3 = max{µ0.75, 0.75}, respectively.
In the subsequent step of the methodology, the 2-Classes Index is seen as the label of the machine learning classifier.

The 3-Classes Index is more granular thus, it is relevant to understand the distribution of scores in each zone, allowing
to identify critical zones with respect to the delivery efficiency, see subsection 4.1.

2.2. Best classification model for the benchmark scores of a zone

In order to understand how problem variables contribute to (in)efficient delivery services, we need to find a clas-
sification model that captures the correspondence between variables and MEA scores. Hence, the principal aim of
this step is to construct the best ’black-box’ map between problem variables and the values of the 2-Classes Index.
For such purpose, several machine learning algorithms, e.g. using the Python package scikit-learn, can be used if the
attained machine learning (ML) evaluation metrics are high enough. Then, root cause analysis can be achieved by
XAI techniques, see the next step in the methodology scheme in Fig. 1.

In our case study, involving several delivery zones and after extensible hyperparameter optimization, the best
models for each zone were obtained using the algorithms: Random Forest (RF) and eXtreme Gradient Boosting
(XGBoost), see [10]. A RF, a tree-based ML algorithm as an ensemble of multiple (simple) decision trees, was
created in 1995 by Tin Kam Ho, then extended by Leo Breiman and Adele Cutler. Today, is one of the most known
algorithms in ML. The XGBoost algorithm gained significant recognition in prominent Kaggle competitions and many
use case applications due to its exceptional performance and rapid response in addressing classification and regression
predictive modeling challenges, particularly for structured or tabular datasets. Recent examples of its effectiveness can
be found in studies such as [18] and [13].
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The ML models are not used as predictive algorithms, meaning that no train/test data split exists. The intention is
to use the models as approximations to the true process behaviour, so all the data (the so-called Classification dataset)
is used with the aim to obtain the highest possible ML evaluation metric. This dataset is composed by the label (the
2-Class Index) and the set of features: the MEA input variables, the MEA output variables, and all process variables
that can be understood as factors for root cause analysis.

2.3. Performance Explainability using XAI techniques

For this work, two widely used techniques for XAI were employed, LIME and SHAP. Local Interpretable Model-
agnostic Explanations (LIME) is an XAI technique supporting the interpretability of complex (black-box) models.
The method is model-agnostic and works by approximating the behaviour of a model around a specific instance of
interest, hence its local explanation ability. To this effect, it perturbs the instance by sampling nearby points and
obtains predictions from the model. This enables LIME to build a simpler, interpretable model around the perturbed
instances. By inspecting the coefficients of the interpretable model, LIME identifies the most influential features for a
specific prediction, enabling an analysis to understand why a particular prediction was generated.

In what follows, we delve into more details about the SHAP technique, in order to clarify the version used and
introduce three feature metrics that play a significant role in constructing the analytic graphs that allow a better
interpretation of the root cause analysis of the LDM problem.

SHapley Additive exPlanation (SHAP) is a game theory approach that determines the ordinal contribution of in-
dividual features that influence a model’s prediction f . It was first introduced by game theorist Lloyd Shapley in
1973 [24] mentioning that, in any coalitional game, the Shapley value is the average marginal contribution of the
player to the overall marginal contribution of the set of players considering all possible permutations [28]. One of the
most relevant issues in SHAP is the idea of unification of the attributive feature methods satisfying some properties:
Local Accuracy, Missingness, and Consistency proposed in [21] and reviewed by Chen et. al in [9]. This approach has
the advantage of working with marginal contributions in spite of conditional contributions as explained in [17].

For a given set of d players’ indices D = {1, . . . , d} and a coalitional game with associated value function v : 2D →
R, where 2D denotes the power set of D, the (classical) SHAP value of a player i can be computed as

ϕi(v) =
∑

S⊆D\{i}
wi(S ) [v(S ∪ {i}) − v(S )] with wi(S ) =

|S |!(d − |S | − {i})!
d!

, (5)

where wi is the weight of the coalition S , see [21, 19, 4, 9], also for variants of the classical method. Now, given
a set of features x ∈ Rd (associated with the players’ indices D) and a machine learning classifier f : Rd → I ⊂ N,
the key point is to construct a coalitional game value function v ≡ v f ,x, which can be chosen to represent various
behaviors, including the model’s loss for a single row or the global behavior of classifier on the training dataset [11].
Since this approach works with binary variables (dummy), the class of additive feature attribution methods is con-
sidered (see [21]), meaning that the explainer g is linear and verifies g(z′) = ϕ0 +

∑N
i=1 ϕiz′i , where z′ ∈ [0, 1]d, with

values representing the absence or presence of features in the coalitional subset, respectively. The variable z′ (the
coalitional vector of missing values) is obtained from z (simplified input vector) as the result of a mapping h where
z′ ≈ x′, x = hx(x′), and f (z) = f (hx(z′)). Notice that the explainer model g must satisfy the desirable properties of
local accuracy, missingness, and consistency, as introduced in [20]:

• Local accuracy: The accuracy defines that for a given map function x = hx(x′), we can also map between the
simplified feature inputs z and simplified feature inputs of missing values z′ so, then we can obtain an explainer
model g which approximates f ;
• Missingness: Missing values x′ = 0 have no payoff value/marginal contribution in the coalitional game, so

x
′

i = 0 =⇒ ϕi = 0;
• Consistency: Consistency states that if a model f is changed to another model f ′ the feature attribution assigned

to a certain feature remains unchanged.

To compute the SHAP values, the value function is defined as v f ,x(S ) = g(hx(z′)). For each row index r ∈ [R] ⊂ N of
a dataset with R rows, a SHAP value explaining the contribution of feature i ∈ D can be computed as ψi(x) = ϕi(v f ,x).
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For each feature i ∈ D, we introduce the following metrics:

• Negative impact of feature i: Is the sum of all benchmark units’ contributions with negative SHAP values, i.e.,
γ−i =

∑
r∈[R] min{0, ψi(x(r))};

• Positive impact of feature i: Is the sum of all benchmark units’ contributions with positive SHAP values, i.e.,
γ+i =

∑
r∈[R] max{0, ψi(x(r))};

• Global impact of feature i: Is the sum of all benchmark units’ contributions, i.e., γi =
∑

r∈[R] ψi(x(r)).

These metrics support an analytic graph analysis, which the authors believe better explains the root cause factors of
the problem under study (see Fig. 3) when compared with standard SHAP plots.

3. Case study: Last-mile delivery in Portugal from Porto’s logistics platform

The main application of the proposed approach was to explore a dataset provided by MAEIL, a company based in
Portugal that develops transporter logistics management software and Enterprise Resource Planning (ERP) integration
for small and medium-sized transportation companies. The dataset contained information from April 3 to May 3, 2023.

Due to the complexity of the delivery network and presentation limitations, two filters to the dataset were applied.
Firstly, solely the deliveries with origin in the logistics platform of Porto have been presented (the second largest urban
center in Portugal and with one of the highest LMD volumes - 400k instances in the dataset of the period of study). In
this context, there are 47 different destination zones. Thus, a second filter was applied for destination zones and solely
4 zones have been included for the final analysis (those whose delivery volume represents more than 25% of the total
of deliveries: Zone1, Zone4, Zone7 and Zone21). Herein, each n used in the MEA algorithm is defined as the index n
of the classification dataset associated with the tuple (LMDserviceID, zoneID), where the first parameter represents
the unique identifier of the LMD service and the second the unique identifier of the destination zone where the LMD
was conducted (see Fig. 2). As mentioned earlier, MEA is characterized by its approach of perceiving all problems as
”black box” problems, where inputs are consumed and outputs are produced. For this case study, the input variables
are the Delivery Time and the Service Cost, whilst the outputs are the Delay Time and CO2 Emissions.

The Delivery Time represents the difference between the time a LMDserviceID is available in the warehouse and the
time it is ”concluded” in the ERP, meaning that the product was delivered to the end customer in the respective zoneID.
The Service Cost represents an estimation regarding the total cost of the LMD service. The Delay Time of a service
is defined as the difference between the Delivery Time of the service and the median value of the Delivery Time of
the corresponding zoneID (during the above-mentioned period), where negative values are truncated to zero. Lastly,
the CO2 Emissions is estimated as a combination of parameters, i.e., the fleet’s initial investment, fuel, insurance,
maintenance, and human resources-related costs, per km. Table 2 refers to the global characterization of these variables
per zoneID. Please note, the best-ranked n from the application of the benchmarking algorithm, are those that consume
fewer inputs and produce more outputs. This means that in order to maximize the outputs outlined in Fig. 2, both
Delay Time and CO2 Emissions need to be converted into their complementary version. The complementary value of
an entry j of the variable V is defined by cVj = maxnVn − Vj. So, if V is maximized, then the complementary cV is
minimized, and the other way around. Table 2 shows the output variables in their complementary version, e.g., cDelay
Time. Recall that MEA assumes (by construction) that efficient services minimize inputs and maximize outputs.

Fig. 2: Initial problem characterization of the case study.
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The ML models are not used as predictive algorithms, meaning that no train/test data split exists. The intention is
to use the models as approximations to the true process behaviour, so all the data (the so-called Classification dataset)
is used with the aim to obtain the highest possible ML evaluation metric. This dataset is composed by the label (the
2-Class Index) and the set of features: the MEA input variables, the MEA output variables, and all process variables
that can be understood as factors for root cause analysis.

2.3. Performance Explainability using XAI techniques

For this work, two widely used techniques for XAI were employed, LIME and SHAP. Local Interpretable Model-
agnostic Explanations (LIME) is an XAI technique supporting the interpretability of complex (black-box) models.
The method is model-agnostic and works by approximating the behaviour of a model around a specific instance of
interest, hence its local explanation ability. To this effect, it perturbs the instance by sampling nearby points and
obtains predictions from the model. This enables LIME to build a simpler, interpretable model around the perturbed
instances. By inspecting the coefficients of the interpretable model, LIME identifies the most influential features for a
specific prediction, enabling an analysis to understand why a particular prediction was generated.

In what follows, we delve into more details about the SHAP technique, in order to clarify the version used and
introduce three feature metrics that play a significant role in constructing the analytic graphs that allow a better
interpretation of the root cause analysis of the LDM problem.

SHapley Additive exPlanation (SHAP) is a game theory approach that determines the ordinal contribution of in-
dividual features that influence a model’s prediction f . It was first introduced by game theorist Lloyd Shapley in
1973 [24] mentioning that, in any coalitional game, the Shapley value is the average marginal contribution of the
player to the overall marginal contribution of the set of players considering all possible permutations [28]. One of the
most relevant issues in SHAP is the idea of unification of the attributive feature methods satisfying some properties:
Local Accuracy, Missingness, and Consistency proposed in [21] and reviewed by Chen et. al in [9]. This approach has
the advantage of working with marginal contributions in spite of conditional contributions as explained in [17].

For a given set of d players’ indices D = {1, . . . , d} and a coalitional game with associated value function v : 2D →
R, where 2D denotes the power set of D, the (classical) SHAP value of a player i can be computed as

ϕi(v) =
∑

S⊆D\{i}
wi(S ) [v(S ∪ {i}) − v(S )] with wi(S ) =

|S |!(d − |S | − {i})!
d!

, (5)

where wi is the weight of the coalition S , see [21, 19, 4, 9], also for variants of the classical method. Now, given
a set of features x ∈ Rd (associated with the players’ indices D) and a machine learning classifier f : Rd → I ⊂ N,
the key point is to construct a coalitional game value function v ≡ v f ,x, which can be chosen to represent various
behaviors, including the model’s loss for a single row or the global behavior of classifier on the training dataset [11].
Since this approach works with binary variables (dummy), the class of additive feature attribution methods is con-
sidered (see [21]), meaning that the explainer g is linear and verifies g(z′) = ϕ0 +

∑N
i=1 ϕiz′i , where z′ ∈ [0, 1]d, with

values representing the absence or presence of features in the coalitional subset, respectively. The variable z′ (the
coalitional vector of missing values) is obtained from z (simplified input vector) as the result of a mapping h where
z′ ≈ x′, x = hx(x′), and f (z) = f (hx(z′)). Notice that the explainer model g must satisfy the desirable properties of
local accuracy, missingness, and consistency, as introduced in [20]:

• Local accuracy: The accuracy defines that for a given map function x = hx(x′), we can also map between the
simplified feature inputs z and simplified feature inputs of missing values z′ so, then we can obtain an explainer
model g which approximates f ;
• Missingness: Missing values x′ = 0 have no payoff value/marginal contribution in the coalitional game, so

x
′

i = 0 =⇒ ϕi = 0;
• Consistency: Consistency states that if a model f is changed to another model f ′ the feature attribution assigned

to a certain feature remains unchanged.

To compute the SHAP values, the value function is defined as v f ,x(S ) = g(hx(z′)). For each row index r ∈ [R] ⊂ N of
a dataset with R rows, a SHAP value explaining the contribution of feature i ∈ D can be computed as ψi(x) = ϕi(v f ,x).
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For each feature i ∈ D, we introduce the following metrics:

• Negative impact of feature i: Is the sum of all benchmark units’ contributions with negative SHAP values, i.e.,
γ−i =

∑
r∈[R] min{0, ψi(x(r))};

• Positive impact of feature i: Is the sum of all benchmark units’ contributions with positive SHAP values, i.e.,
γ+i =
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r∈[R] max{0, ψi(x(r))};

• Global impact of feature i: Is the sum of all benchmark units’ contributions, i.e., γi =
∑

r∈[R] ψi(x(r)).

These metrics support an analytic graph analysis, which the authors believe better explains the root cause factors of
the problem under study (see Fig. 3) when compared with standard SHAP plots.

3. Case study: Last-mile delivery in Portugal from Porto’s logistics platform

The main application of the proposed approach was to explore a dataset provided by MAEIL, a company based in
Portugal that develops transporter logistics management software and Enterprise Resource Planning (ERP) integration
for small and medium-sized transportation companies. The dataset contained information from April 3 to May 3, 2023.

Due to the complexity of the delivery network and presentation limitations, two filters to the dataset were applied.
Firstly, solely the deliveries with origin in the logistics platform of Porto have been presented (the second largest urban
center in Portugal and with one of the highest LMD volumes - 400k instances in the dataset of the period of study). In
this context, there are 47 different destination zones. Thus, a second filter was applied for destination zones and solely
4 zones have been included for the final analysis (those whose delivery volume represents more than 25% of the total
of deliveries: Zone1, Zone4, Zone7 and Zone21). Herein, each n used in the MEA algorithm is defined as the index n
of the classification dataset associated with the tuple (LMDserviceID, zoneID), where the first parameter represents
the unique identifier of the LMD service and the second the unique identifier of the destination zone where the LMD
was conducted (see Fig. 2). As mentioned earlier, MEA is characterized by its approach of perceiving all problems as
”black box” problems, where inputs are consumed and outputs are produced. For this case study, the input variables
are the Delivery Time and the Service Cost, whilst the outputs are the Delay Time and CO2 Emissions.

The Delivery Time represents the difference between the time a LMDserviceID is available in the warehouse and the
time it is ”concluded” in the ERP, meaning that the product was delivered to the end customer in the respective zoneID.
The Service Cost represents an estimation regarding the total cost of the LMD service. The Delay Time of a service
is defined as the difference between the Delivery Time of the service and the median value of the Delivery Time of
the corresponding zoneID (during the above-mentioned period), where negative values are truncated to zero. Lastly,
the CO2 Emissions is estimated as a combination of parameters, i.e., the fleet’s initial investment, fuel, insurance,
maintenance, and human resources-related costs, per km. Table 2 refers to the global characterization of these variables
per zoneID. Please note, the best-ranked n from the application of the benchmarking algorithm, are those that consume
fewer inputs and produce more outputs. This means that in order to maximize the outputs outlined in Fig. 2, both
Delay Time and CO2 Emissions need to be converted into their complementary version. The complementary value of
an entry j of the variable V is defined by cVj = maxnVn − Vj. So, if V is maximized, then the complementary cV is
minimized, and the other way around. Table 2 shows the output variables in their complementary version, e.g., cDelay
Time. Recall that MEA assumes (by construction) that efficient services minimize inputs and maximize outputs.
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Variable zone1 zone4 zone7 zone21

Delivery Time (hours) 10.97 ± 1.39 15.89 ± 2.50 16.35 ± 2.79 15.37 ± 3.55
Service Cost (euros/package) 4.77 ± 9.37 1.74 ± 0.90 1.23 ± 0.46 1.44 ± 0.24
cDelay Time (hours) 5.55 ± 1.18 6.34 ± 2.19 6.55 ± 2.29 5.33 ± 3.03
cCO2 Emissions (grams) 111.78 ± 8.62 2.69 ± 0.49 0.71 ± 0.37 19.33 ± 0.15

Table 1: Global characterization of the variables used in the benchmark analysis, per zone ID (mean ± standard deviation values).

4. Results and discussion

4.1. Analysis of most critical zones of last-mile delivery

Following the methodology presented in Fig. 1, the primary result of this work is depicted in Table 2. Both zone4
and zone21 exhibit the lowest percentage of LMD services with class H. Nevertheless, it is noteworthy that zone4 also
possesses the lowest percentage of LMD services with the lowest MEA scores (class L). Consequently, despite the
scarcity of high performers in this zone, the overall performance surpasses that of zone21. Thus, it can be inferred that
attention from decision-makers should be directed towards investigating zone21. Moreover, recall that class L is found
by using the first quartile threshold, so a 25% is expected for class L, meaning that zone4 has fewer LMDservices in
the low efficiency group, increasing the idea that it is a zone centered on the normal efficiency group (class N) with
small variability. What seems interesting for further investigation (acquiring new data) is the fact that there is a low
percentage of LMD services within the high efficiency group (class H), meaning that there is space to introduce
actions that promote a significant improvement of the zones’ performance. Using (3), the inefficient values mIneffi(n)
and mIneffo(n) play a relevant role in identifying the variables and their amount of inefficiency, for each LMDservice
n (data was not presented here for space reasons).

Efficient Groups zone1 zone4 zone7 zone21

L : 3-CI(n) ∈ [0,Q∗1[ 102 25.1% 490 15,5% 1098 25,0% 778 25,0%
N : 3-CI(n) ∈ [Q∗1,Q

∗
3] 300 73,9% 2664 84,4% 3274 74,5% 2330 74,9%

H : 3-CI(n) ∈]Q∗3, 1] 4 1,0% 4 0,1% 24 0,5% 4 0,1%

406 100,0% 3158 100,0% 4396 100,0% 3112 100,0%

Table 2: Number and percentage of LMDserviceIDs, per zoneID, with MEA scores associated to classes L, N and H.

4.2. Analysis of most relevant variables that explain last-mile delivery services belonging to the efficient or inefficient
groups

Before the application of LIME and SHAP, an extensive grid hyperparameter F1 − score optimization was per-
formed for XGBoost, Random Forest, Support Vector Regression, and Artificial Neural Network. The best results
were obtained for XGBoost (zone7) and Random Forest (the other zones), with F1-scores and accuracy scores in the
range [0.89, 0.94]. Then, the application of LIME and SHAP was proceeded for each best model, without significant
differences in the relative order of variable importance so, in what follows, only SHAP results are presented.

The first generated graph per zoneID was the well-known beeswarm (see Fig. 3(a), Fig. 3(c), Fig. 3(e), Fig. 3(g)),
one of the most common graphical results of SHAP, for those familiar with the approach. However, not satisfied
with such plots, extra efforts were made to produce a slightly more extensive plot, capable of revealing in-depth
information from SHAP, to specifically highlight the root causes of MEA scores (see Fig. 3(b), Fig. 3(d), Fig. 3(f),
Fig. 3(h)). These new bar plots are able to provide insights into the three metrics outlined in subsection 2.3. Looking
at the red and blue bars, respectively, it is possible to assess the positive impact (γ+i ) and negative impact (γ−i ) in
that a certain variable produces in the MEA score attributed to the LMDserviceIDs per zoneID. Additionally, within
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Fig. 3: SHAP results. Plots (a), (c), (e) and (g) - typical beeswarm graphs obtained with SHAP. Plots (b), (d), (f) and (h) - extended bar plots
representing the variables’ positive (red bar) or negative (blue bar) impact on the MEA score of an LMDserviceID per zoneID; and the difference
between these impacts (value indicated within parentheses on the y-axis). Please note, the order of the y-axis variables is determined by the module
of the value within parentheses.

parentheses on the y-axis, the global impact (γi) of a variable can be found. Such global metric aims to evaluate if
the impact of a variable is leaning more towards a positive or negative effect in efficiency of the service .

An initial examination of the bar plots enables the identification of a group of ServiceTypeIDs and CarrierIDs
for which implementing corrective measures within their LMD service would yield a positive impact on the perfor-
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Variable zone1 zone4 zone7 zone21

Delivery Time (hours) 10.97 ± 1.39 15.89 ± 2.50 16.35 ± 2.79 15.37 ± 3.55
Service Cost (euros/package) 4.77 ± 9.37 1.74 ± 0.90 1.23 ± 0.46 1.44 ± 0.24
cDelay Time (hours) 5.55 ± 1.18 6.34 ± 2.19 6.55 ± 2.29 5.33 ± 3.03
cCO2 Emissions (grams) 111.78 ± 8.62 2.69 ± 0.49 0.71 ± 0.37 19.33 ± 0.15

Table 1: Global characterization of the variables used in the benchmark analysis, per zone ID (mean ± standard deviation values).

4. Results and discussion

4.1. Analysis of most critical zones of last-mile delivery

Following the methodology presented in Fig. 1, the primary result of this work is depicted in Table 2. Both zone4
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attention from decision-makers should be directed towards investigating zone21. Moreover, recall that class L is found
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actions that promote a significant improvement of the zones’ performance. Using (3), the inefficient values mIneffi(n)
and mIneffo(n) play a relevant role in identifying the variables and their amount of inefficiency, for each LMDservice
n (data was not presented here for space reasons).

Efficient Groups zone1 zone4 zone7 zone21

L : 3-CI(n) ∈ [0,Q∗1[ 102 25.1% 490 15,5% 1098 25,0% 778 25,0%
N : 3-CI(n) ∈ [Q∗1,Q

∗
3] 300 73,9% 2664 84,4% 3274 74,5% 2330 74,9%

H : 3-CI(n) ∈]Q∗3, 1] 4 1,0% 4 0,1% 24 0,5% 4 0,1%

406 100,0% 3158 100,0% 4396 100,0% 3112 100,0%

Table 2: Number and percentage of LMDserviceIDs, per zoneID, with MEA scores associated to classes L, N and H.

4.2. Analysis of most relevant variables that explain last-mile delivery services belonging to the efficient or inefficient
groups

Before the application of LIME and SHAP, an extensive grid hyperparameter F1 − score optimization was per-
formed for XGBoost, Random Forest, Support Vector Regression, and Artificial Neural Network. The best results
were obtained for XGBoost (zone7) and Random Forest (the other zones), with F1-scores and accuracy scores in the
range [0.89, 0.94]. Then, the application of LIME and SHAP was proceeded for each best model, without significant
differences in the relative order of variable importance so, in what follows, only SHAP results are presented.

The first generated graph per zoneID was the well-known beeswarm (see Fig. 3(a), Fig. 3(c), Fig. 3(e), Fig. 3(g)),
one of the most common graphical results of SHAP, for those familiar with the approach. However, not satisfied
with such plots, extra efforts were made to produce a slightly more extensive plot, capable of revealing in-depth
information from SHAP, to specifically highlight the root causes of MEA scores (see Fig. 3(b), Fig. 3(d), Fig. 3(f),
Fig. 3(h)). These new bar plots are able to provide insights into the three metrics outlined in subsection 2.3. Looking
at the red and blue bars, respectively, it is possible to assess the positive impact (γ+i ) and negative impact (γ−i ) in
that a certain variable produces in the MEA score attributed to the LMDserviceIDs per zoneID. Additionally, within
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An initial examination of the bar plots enables the identification of a group of ServiceTypeIDs and CarrierIDs
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mance for its corresponding zoneID. Nevertheless, a deeper analysis reveals that the ServiceTypeID=3, which, despite
exhibiting the lowest global impact in the case of zone1, possesses the highest potential to substantially enhance the
ranking of serviceIDs within all four zones. This observation bears substantial significance since, in a general analysis,
this variable would likely not be deemed a priority for improvement.

Additionally, assessing the global impacts, in zone4, the CarrierID=86 is pointed out as a good case practice,
having the highest positive (+9.526) impact on LMD performance when compared to other carriers (note that the
typical beeswarm graph in the left could not provide such insights directly). Contrarily, showing a big negative impact
of -25.044, services made by CarrierID=132 should be cautiously analysed and assessed to improve performance
efficiency. When γi is significantly lower than the min{γ−i , γ+i }, e.g. for CarrierID=95 in zone4, such variable should
be subject to monitoring and improvement actions since a small variation percentage produces a big impact on the
global performance. These heuristic rules can be incorporated into an automatic recommendation system, connected
to a digital twin processing logistic data in real-time and periodically triggering new recommendations.

5. Conclusions and future work

This work develops and applies a novel data-driven approach to evaluate and explain the performance of LMD ser-
vices, guiding logistics service providers towards higher efficiency service rates through recommendations generated
by new SHAP metrics, derived from ML fitting of a benchmark score.

The results obtained hold substantial relevance for this study. They enable precise identification of the most influ-
ential factors contributing to good and bad performance rankings, including those variables that unexpectedly have
the capacity to improve the ranking of LMD services within the inefficient group. Such ”root cause” findings are
highly valuable in guiding decision-makers towards targeted improvements. Furthermore, the authors believe that the
performance assessment and explainability methodology developed and validated in this work can be applied to other
practical cases in last-mile logistics if the problem definition and mathematical framework are strictly adhered to.

This is one of the first works of the NEXUS agenda incorporating more than 20 partners, which opens several
future paths of application, robustness testing, interoperability with other solutions and mass deployment. One of the
future activities of the research team is the creation of a Logistic Control Tower, which may benefit from solutions
such as the one proposed in this work.
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mance for its corresponding zoneID. Nevertheless, a deeper analysis reveals that the ServiceTypeID=3, which, despite
exhibiting the lowest global impact in the case of zone1, possesses the highest potential to substantially enhance the
ranking of serviceIDs within all four zones. This observation bears substantial significance since, in a general analysis,
this variable would likely not be deemed a priority for improvement.

Additionally, assessing the global impacts, in zone4, the CarrierID=86 is pointed out as a good case practice,
having the highest positive (+9.526) impact on LMD performance when compared to other carriers (note that the
typical beeswarm graph in the left could not provide such insights directly). Contrarily, showing a big negative impact
of -25.044, services made by CarrierID=132 should be cautiously analysed and assessed to improve performance
efficiency. When γi is significantly lower than the min{γ−i , γ+i }, e.g. for CarrierID=95 in zone4, such variable should
be subject to monitoring and improvement actions since a small variation percentage produces a big impact on the
global performance. These heuristic rules can be incorporated into an automatic recommendation system, connected
to a digital twin processing logistic data in real-time and periodically triggering new recommendations.

5. Conclusions and future work

This work develops and applies a novel data-driven approach to evaluate and explain the performance of LMD ser-
vices, guiding logistics service providers towards higher efficiency service rates through recommendations generated
by new SHAP metrics, derived from ML fitting of a benchmark score.

The results obtained hold substantial relevance for this study. They enable precise identification of the most influ-
ential factors contributing to good and bad performance rankings, including those variables that unexpectedly have
the capacity to improve the ranking of LMD services within the inefficient group. Such ”root cause” findings are
highly valuable in guiding decision-makers towards targeted improvements. Furthermore, the authors believe that the
performance assessment and explainability methodology developed and validated in this work can be applied to other
practical cases in last-mile logistics if the problem definition and mathematical framework are strictly adhered to.

This is one of the first works of the NEXUS agenda incorporating more than 20 partners, which opens several
future paths of application, robustness testing, interoperability with other solutions and mass deployment. One of the
future activities of the research team is the creation of a Logistic Control Tower, which may benefit from solutions
such as the one proposed in this work.
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