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Abstract. Reinforced concrete is one of the most predominant materials in infrastructures throughout the world, hence management
of the structures maintenance is an important subject of study in order to slow down the degradation process and to extend a structure
lifespan. This work focus on a numerical model to find the best inspection planning for concrete structures under carbonation-
induced corrosion, decomposed in three steps: (a) estimate the probability density function for critical failure time, (b) determine
the optimal times for inspections sequences maximising its detectability; (c) multi-objective optimisation via frontier analysis to
have a final relative ranking of inspection sequences. In short, this work answer the questions: when the inspections should be done
and what are the best inspections for a given efficiency metric, under a set of parameters characterising the degradation process
and inspection capabilities. Our formulation extend the models in the literature (e.g. detectability function) and its seems that the
multidirectional efficiency analysis algorithm used here is better suited for real situations.

MATHEMATICAL FORMULATION

The degradation of infrastructures requires an analysis highly governed by a mixture of stochastic processes and opti-
misation problems; hence their study require good mathematical models and accurate numerical techniques to obtain
the results. Its importance in structure maintenance and cost reduction despite its high complexity makes inspection
planning an active subject of research with great impact in budget and structure lifespan. This research addresses the
capability of each inspection method (detectability) and the probability of early detection of damage, see [1, 2, 3, 4]; a
new formulation, developed from other studies, are proposed to give a decision-making model more suitable for real
cases; and answer the questions: when the inspections should be done and what are the best inspections for a given
efficiency metric, under a set of parameters characterising the degradation process and inspection capabilities.

In what follows, we formulate the steps of the algorithm and briefly describe the models proposed to attain our
aims. Theoretical results are kept to the minimum for presentation reasons.

§1. Probability density function for the time failure (Step 1). In this step, we obtain the probability function ψT f (t)
for the time of failure T f to attain a fixed critical damage ηcr.

§1.1 Damage Degree. Let D0 ∈ (0,+∞) be the initial bar diameter (cm), D(t) ∈ [0,D0] the rebar diameter (cm),
Vcorr ∈ [0, 1] the corrosion rate (cm/year), Ticorr ∈ [0,T ) the time of corrosion initiation (years), and T ∈ (0,+∞)
is the structure lifespan. The degradation mechanism is represented as a function measuring the corrosion damage
degree η(t), at the time t, as follows

η(t) =
{

0 , if t ≤ Ticorr
D0−D(t)

D0
, if t > Ticorr

with D(t) = D0 − 2 Vcorr (t − Ticorr). (1)

§1.2 Time to Attain ηcr Failure and Probability Density Function ψT f (t). Considering the problem under the structural
reliability theory, the probability of failure is obtained as Pf = P[g(η(t)) ≤ ηcr], where g(η(t)) is the limit state function
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that defines the failure of concrete due to corrosion damage degree. Hence, from (1), the limit state function can be

expressed by η(T f ) = ηcr, so T f =
D0 ηcr
2 Vcorr

+ Ticorr where ηcr is the critical damage degree, usually having the value
0.25 in the literature. In practice, no deterministic values are realistic in practical applications, so D0, Vcorr and Ticorr
are assumed to be random variables, usually following a lognormal distribution. In this way, the probability density
function (PDF) of Ticorr can be calculated by a Monte Carlo method or by applying a numerical method to

ψT f (t) =
2

ηcr

∫ +∞
−∞

∫
ψicorr(t − ζ)ψD0,Vcorr (ζ θ, θ) |θ| dθ dζ,

where ψD0,Vcorr is the join PDF (e.g. by using the composition of an algorithm for numerical calculating convolutions
with an algorithm for the product of pdf’s).

§2. Optimal inspection sequence times (Step 2). This step associate to each inspection sequence a set of times,
where the sequence has the maximum probability of detection before failure. So, answer the question which are the
best time to do the inspections.

§2.1 Inspection Methods and their Detectability Function. Suppose we may use a inspection techniques θ from a
given set θ ∈ Θ = {A, B,C, . . .}. The quality of an inspection technique θ is usually characterised by a probability of
detection function (i.e. detectability of θ) which depends on ηθ

0.5
and σθ, where ηθ

0.5
is the damage intensity at which the

inspection technique has a 50% probability of detection, and σθ is the standard deviation. The detectability function
of θ may be modelled in several ways depending on the deterioration mechanism and building structure. For corrosion
damage the most common formula in the literature (see [2]) is the following left hand side expression

PθD(η) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 , if η ≤ ηθmin,

Φ

(
η−ηθ

0.5

σθ

)
, if ηθmin < η ≤ ηθmax,

1 , if η > ηθmax.

−→ PθD(η) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p1(η) , if η ≤ ηθmin,

Φ

(
η−ηθ

0.5

σθ

)
, if ηθmin < η ≤ ηθmax,

p2(η) , if η > ηθmax,

(2)

where Φ is the standard normal cumulative distribution function, η ∈ [0,+∞) is the damage degree and ηθmin, η
θ
max

are given values. Note that the function PθD is not continuous, since 0 < Φ(x) < 1 for x ∈ R, limx→−∞Φ(x) = 0, and
limx→+∞Φ(x) = 1. When there is no experimental based values for the parameters ηθ

0.5
andσθ, it’s common to consider

σθ = 0.1ηθ
0.5

, ηθmin = 0.7ηθ
0.5

, and ηθmax = 1.3ηθ
0.5

, then the discontinuity gap is quite mild but additionally, for each fixed

η ∈ (ηmin, ηmax), we have PθD(η) = Φ
(
η−ηθ

0.5

0.1ηθ
0.5

)
= Φ
(
αθ−1
0.1

)
with η = αθηθ

0.5
, from where we conclude that if ηθ1

0.5
≥ ηθ2

0.5

then Pθ1D (η) ≤ Pθ2D (η), because Φ is nondecreasing, so the best inspection method turn-out to be always the one with
smaller ηθ

0.5
value. A natural way to improve the detectability function of an inspection method θ is to consider the

right handside expression in (2),where p1, p2 are polynomials of degree n verifying p1(0) = 0, p1(ηθmin) = Φ
(
ηθmin−ηθ0.5
σθ

)
,

p2(ηθmax) = Φ
(
ηθmax−ηθ0.5
σθ

)
, p2(1) = 1. The simplest choice for p1, p2 is when they are linear polynomials and there is

an even symmetry with respect to ηθ
0.5

, i.e. n = 1 and ηθmax = 1 − ηθmin. Another choice for p1, p2 is to assume they
are cubic splines, so the resulting polynomials will agree in monotonicity and concavity at the boundary points of the
middle part of PθD, which is generate by the standard normal cumulative distribution function. Notice also that, using

equation (1), we may see the detectability function of θ as a function of time by PθD(t) = PθD
(

2 Vcorr
D0

(t − Ticorr)
)

for
t ≥ Ticorr.

§2.2 Inspection Sequences and their Damage Detection before Failure. From the set of inspection methods Θ =
{A, B,C, . . .}, we define the set SNS = {A, B,C, AA, AB, . . .} of all possible combinations of elements of Θ up to NS
elements. For any sequence ρ ∈ S, we define |ρ| as the number of methods in the sequence, and ρi as the method
which lies at the position i ∈ {1, . . . , |ρ|}, e.g. ρ = ABC, |ρ| = 3, and ρ2 = B. The detection in time of corrosion damage
is quite meaningful from the viewpoint of durability as well as life-cycle cost. The probability of damage detection
before failure P ρDBF of an inspection sequence ρ ∈ S is a function which mathematically may be described as

P ρDBF(t1, . . . , t|ρ|) =

|ρ|∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎝
j∏

i=1

P ρ j

D (t j) (1 − P ρi−1

D (ti−1))

(
1 −
∫ ti

−∞
ψT f (τ)dτ

)⎞⎟⎟⎟⎟⎟⎟⎠ , (3)

where, for notation simplicity, we assume P ρ0

D (t) ≡ 0 and t0 = 0.
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§2.3 Optimal Times for Inspection. For each inspection sequence ρ ∈ SNS , the aim is to compute the moments of time
t̄i ∈ [0,T ], with t̄1 < t̄2 < · · · < t̄|ρ|, where the inspection method ρi will be applied in order to maximize the total
probability of the inspection sequence to detect corrosion before failure, hence we may write

PD ρ ≡ P ρDBF(t̄1, . . . , t̄|ρ|) = max
(t1,...,t|ρ|) ∈ [0,T ]|ρ|

P ρDBF(t1, . . . , t|ρ|) s.t. ti − ti−1 ≥ mT and

|ρ|∑
i=1

ti − ti−1 ≤ T, (4)

where t0 = 0 and mT ∈ (0,T/NS ] is fixed as the minimum time admissible between consecutive inspections. The
continuity of PθD by using the right handside definition (2) is now relevant, together with ψT f ∈ C([0,T ]) and [0,T ]|ρ|
being a compact set, to ensure that the maximum in (4) is attained. Also notice that the optimal times t̄i may not be
unique.

§3. Multi-objective Optimisation via Frontier Analysis (Step 3) To overcome some of the limitations and further
extend some techniques in the literature, we additionally apply benchmarking techniques to compare the (technical)
efficiency of the inspection sequences, as the stochastic frontier analysis (SFA), and an improvement of the data en-
velopment analysis (DEA), i.e. the multidirectional efficiency analysis (MEA).

§3.1 Cost of Inspection Sequences. The cost to determine an structure intervention is directly related to the detectabil-
ity of the inspection methods applied and the number of interventions performed during the service life of the structure.
For a given inspection sequence ρ ∈ SNS , the cost of the sequence at the moment (t1, . . . , t|ρ|) ∈ [0,T ]|ρ| is given by

Cρ(t1, . . . , t|ρ|) = C0

∑|ρ|
i=1

α
ρi
insp

(1+r)ti (1− ηρi
min)20 where αθinsp ∈ (0, 1) is the percentage cost of the method θ ∈ Θ as a fraction

of the initial construction cost C0 > 0, and r ∈ R is the annual discount rate, applied to obtain the present value of
money for future investments.

§3.2 Optimal Times for Detection versus Inspection Costs and Other Costs. The optimal times for an inspection
sequence ρ may be the time T ρ is are a trade-off between the maximum probability of detection P ρDBF and a min-
imum of cost Cρ. The problem may be modelled as a vetor value constraint maximisation by Oρ(t̄1, . . . , t̄|ρ|) =
max(t1,...,t|ρ|) ∈ [0,T ]|ρ|

(
P ρDBF(t1, . . . , t|ρ|),−Cρ(t1, . . . , t|ρ|)

)
, under the restrictions in (4). The above optimisation problem

is usually solve by gradient free optimisation methods as genetic algorithms or non-dominated sorting in genetic al-
gorithms (NSGA-III). The algorithms provide a Pareto optimal set of solutions which are optimum trade-offs between
the two-objectives. Nevertheless, this approach do not consider resources needed for the implementation of the in-
spections or administrative indirect costs, neither give a relative orderer ranking which allows to determine which are
the best sequences. In general, there are several other costs associated with the realisation of an inspection that many
times can be associated to other variables which correlate well with such costs, which a priori are difficult to estimate.
Here, as a demonstrative scenario, we consider two additional variables that we want to optimize: (i) Nρ the number of
different inspection methods in the sequence ρ (to minimise), and (ii) Wρ the window of inspections of the sequence ρ
(to maximise), which is defined as Wρ = T ρ|ρ| −T ρ

1
, i.e. the elapse time between the optimal time for the first inspection

up to the optimal time of the last inspection.

§3.3 Frontier Analysis via SFA and MEA. Here, we briefly state the MEA model used in this work, see the original
model proposed in [5]. Let [m] denote the set {1, ...,m}, for some m ∈ N. From the previous steps, to any given se-
quence ρ ∈ SNS we may associate J ∈ N outputs y j(ρ), j ∈ [J] and I ∈ N inputs xi(ρ), i ∈ [I]. Some of the input
variables may be discretionary (i.e. their values can be changed) but others may be non-discretionary (i.e. they are
fixed). From now on, the discretionary variables are represented by the first indices from 1 to d ∈ [1, I]. So, x(ρ) ∈ RI

is the vector of all the inputs and y(ρ) ∈ RJ is the vector of all the outputs. DEA/MEA model my change with respect
to a chosen set of complementary variables. We consider the variable returns to scale (VRS) model, by defining the set

ΛN =
{
λ ∈ RN :

∑N
n=1λn = 1 ∧ λn ≥ 0

}
, where N is the number of sequences under study; although other possibilities

exists. Then, the MEA score is found by solving the following linear optimisation problems

Pαm(ρ̄) : minαm(ρ̄) s.t.
∑
ρ λρxm(ρ) ≤ αm(ρ̄), F(ρ̄) ≤ 0, i ∈ [I]\{m}, G(ρ̄) ≤ 0, l ∈ [J],

Pβj (ρ̄) : max β j(ρ̄) s.t.
∑
ρ λρys(ρ) ≥ β j(ρ̄), s ∈ [J], F(ρ̄) ≤ 0, i ∈ [I], G(ρ̄) ≤ 0, l ∈ [J]\{ j},

Pγ(α∗, β∗, ρ̄) : max γ(ρ̄) s.t F(ρ̄) ≤ −γ(ρ̄)(xi(ρ̄) − α∗i (ρ̄)), i ∈ [I], F(ρ̄) ≤ 0, i ∈ [I] \ {m}, G(ρ̄) ≥ γ(ρ̄)(β∗l (ρ̄) − yl(ρ̄)), l ∈ [J].

where F(ρ̄) = −xi(ρ̄) +
∑
ρ λρxi(ρ), G(ρ̄) = −yl(ρ̄) +

∑
ρ λρyl(ρ), λ ∈ Λn, α∗m(ρ̄), β∗j(ρ̄) and γ∗m(ρ̄) are the optimal

solutions to the problems Pαm(ρ̄), Pβj (ρ̄) and Pγ(α∗, β∗, ρ̄), respectively. The MEA score of ρ can be obtained by

MEA(ρ) =

⎛⎜⎜⎜⎜⎜⎝ 1

γ∗(ρ)
− 1

D

D∑
i=1

xi(n) − α∗i (ρ)

xi(ρ)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ 1

γ∗(ρ)
+

1

J

J∑
j=1

β∗j(ρ) − y j(ρ)

y j(ρ)

⎞⎟⎟⎟⎟⎟⎟⎠
−1

∈ [0, 1]. (5)

A simple and raw rule to decide which are the inputs versus outputs is to consider as inputs, the variables to minimise,
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and as outputs, the variables to maximize; or consider its complementary values, e.g. for the cost we use the variable
CCρ = −Cρ +maxρCρ instead. Therefore, the best inspection sequences are the ones with higher MEA score.

NUMERICAL SIMULATION AND CONCLUSIONS

A combined Matlab and R package was developed to do the numerical analysis of the methodology presented. As a
demonstrative example, we present here the results for T = 80 years, C0 = 1000 cost units, r = 0.055 and ηcr = 0.25.
We also assume that the same inspection method cannot be used consecutively. The probability density function for
T f was obtained from a Monte Carlo simulation method, where the randomness of the parameters are assumed as is
shown in Table 1, a sample size of 50000 and subdividing the select sampling region into 1000 even spaced regions.
The figure below shows the plots of the inspection methods detectability, see (2), for the values in Table 2.

TABLE 1. Parameters for generating T f .

Variable(s) Units Value(s) or Distribution

D0 cm LogN, μ = 2.5, σ = 0.020

Ticorr years LogN, μ = 3.84, σ = 1.200

Vcorr cm/year LogN, μ = 0.0065, σ = 0.0015

TABLE 2. Parameters of the inspection methods.

Inspection Method η0.5 σ ηmax αinsp

A 0.15 0.035 0.95 0.003

B 0.18 0.030 1.00 0.004

C 0.05 0.005 0.55 0.003

D 0.08 0.03 0.75 0.004

TABLE 3. SFA and MEA results.

InspSeq t1 t2 t3 Nρ Wρ PD ρ Cρ SFA(ρ) MEA(ρ)

B 45.77 0.000 0.000 1 0.000 0.812 0.052 (1) 0.859 1.000 (1)

A 43.425 0.000 0.000 1 0.000 0.862 0.117 (2) 0.903 1.000 (1)

CB 39.728 45.770 0.000 2 6.042 0.926 0.228 0.919 1.000 (1)

CBC 39.733 45.146 46.646 2 6.913 0.966 0.350 0.953 1.000 (1)

DBC 38.502 45.147 46.647 3 8.145 (1) 0.979 0.796 0.943 1.000 (1)

DBD 38.502 44.717 46.217 2 7.715 (3) 0.984 1.088 0.967 1.000 (1)

DB 38.489 45.770 0.000 2 7.281 0.953 0.674 0.939 0.500 (2)

CDB 37.899 39.399 45.769 3 7.870 (2) 0.981 0.838 0.947 0.401 (3)

DAB 38.493 43.425 45.770 3 7.277 0.994 (2) 0.791 0.961 0.342

ADA 41.492 42.992 44.492 2 3.000 0.994 (2) 0.728 0.999 (2) 0.162

ABA 42.881 44.381 45.881 2 3.000 0.995 (1) 0.279 1.000 (1) 0.150

BAB 43.447 44.947 46.447 2 3.000 0.994 (2) 0.217 0.998 (3) 0.148

BA 43.985 45.485 0.000 2 1.500 0.967 0.162 (3) 0.979 0.129

ADB 42.59 44.090 45.771 3 3.182 0.993 (3) 0.635 0.979 0.098

In Table 3, the first three relative ranks for each variable is presented in brackets. It’s clear that our approach is broader
in scope and the best sequences obtained from the standard methods are suboptimal when taken in consideration
further variables. Also SFA seems to be a not appropriate frontier analysis tool in the scope of inspection planning
for reinforced concrete structures. Several other conclusions and results (e.g. monotonicity ranking behaviour, error
estimations and sensitivity analysis) may be derived from our approach but, for space reasons, such will be discussed
in another publication.
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