
Received May 5, 2022, accepted June 1, 2022, date of publication June 10, 2022, date of current version June 20, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3182211

Fault-Tolerance in the Scope of Cloud Computing
A. U. REHMAN , RUI L. AGUIAR , (Senior Member, IEEE), AND JOÃO PAULO BARRACA
Instituto de Telecomunicações, 3810-193 Aveiro, Portugal
Departamento de Eletrónica, Telecomunicações e Informática (DETI), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Corresponding author: A. U. Rehman (asad.rehman@av.it.pt)

This work was supported in part by the Fundação para a Ciência e a Tecnologia/Ministério da Educação e Cin̂cia (FCT/MEC) through
national funds and when applicable co-funded by Fundo Europeu de Desenvolvimento Regional (FEDER)-PT2020 Partnership Agreement
under Project UIDB/50008/2020-UIDP/50008/2020, and in part by FCT under Grant PD/BD/113822/2015.

ABSTRACT Fault-tolerance methods are required to ensure high availability and high reliability in cloud
computing environments. In this survey, we address fault-tolerance in the scope of cloud computing.
Recently, cloud computing-based environments have presented new challenges to support fault-tolerance
and opened new paths to develop novel strategies, architectures, and standards. We provide a detailed
background of cloud computing to establish a comprehensive understanding of the subject, from basic to
advanced. We then highlight fault-tolerance components and system-level metrics and identify the needs
and applications of fault-tolerance in cloud computing. Furthermore, we discuss state-of-the-art proactive
and reactive approaches to cloud computing fault-tolerance. We further structure and discuss current
research efforts on cloud computing fault-tolerance architectures and frameworks. Finally, we conclude by
enumerating future research directions specific to cloud computing fault-tolerance development.

INDEX TERMS Cloud computing, fault-tolerance, system-level metrics, component-level metrics, fault-
tolerance frameworks, fog computing, 5G networks, edge computing, emerging cloud technologies.

I. INTRODUCTION
Cloud computing can dramatically simplify resource shar-
ing and the cost of computation. The National Institute of
Standards and Technology (a physical sciences laboratory
and non-regulatory agency of the United States Department
of Commerce) define cloud computing as follows: ‘‘Cloud
computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction’’ [1].

Cloud computing offers multiple benefits and features
for enterprises to develop their cloud platform according to
their business models and customer needs. Cloud computing
supports multiple service models such as Infrastructure as a
Service (IaaS), Application as a Service (AaaS) [2]. These
services and Platform as a Service (PaaS) can be deployed as
public, private, hybrid, and community clouds, with strategies
that evolved over the past decade in order to generate new
revenue streams. The main salient features and advantages
[3]–[6] are summarized below.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Kashif Bashir .

• Multi-tenancy: Cloud computing is designed to support
a multi-tenant model in which multiple end-users
can share the same application over the same
infrastructure while retaining their own privacy and
security [7], [8].

• Resource Pooling: Computing resources are pooled to
serve multiple end-users using a multi-tenant model.
Resources are assigned and reassigned according to
multiple end-users demands.

• Dynamic Resource Provisioning: Computing resources
are created and terminated on the fly considering the
current demand of end-users instead of provisioning
resources using traditional peak-load demand. Allocat-
ing resources through dynamic provisioning can lower
the operating cost.

• On-demand Self-service: End-users can provision their
cloud computing resources without any human interac-
tion through a web-based self-service portal.

• Elasticity and Scalability: Resources are provisioned
and released on-demand, in some cases automatically
to ensure that the application has exact capacity at any
given point in time to scale in and scale out as per the
end-users demand.
These features provide with a well-known set of advan-
tages as follows:

63422 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-5575-2021
https://orcid.org/0000-0003-0107-6253
https://orcid.org/0000-0002-5029-6191
https://orcid.org/0000-0003-2601-9327

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

A. ADVANTAGES OF CLOUD COMPUTING
1) COST SAVING
Cloud computing reduces cost for organizations by provid-
ing infrastructural resources using pay as you go pricing
models [9]. End users/organizations do not need to pay up-
front costs for infrastructure, and start gaining benefits from
cloud computing by simply renting the resource from cloud
providers according to their own needs.

2) DISASTER RECOVERY
Usually, in cloud computing, service providers implement
their Information and Communications Technology (ICT)
infrastructure spanning multiple geographical locations in
order to effectively recover from natural or human-induced
disasters and ensure the continuity of the end-users services
and provide quick data recovery.

3) SUSTAINABILITY
Hosting applications on the cloud is more environmentally
friendly than hosting them on-premises. Recent studies show
that the adoption of cloud and other virtual data options
reduces carbon footprint and improves energy efficiency.

4) EASY BACKUP AND DATA RESTORATION
Generally, on-premises data storage capacity is low and stor-
ing data can be a time taking process while in cloud comput-
ing data storage capacity with high data stored on the cloud
is easy to back up and recover.

5) AUTOMATIC SOFTWARE INTEGRATION
In the cloud, applications are updated and software is inte-
grated automatically, instead of on-premises time-consuming
manual updates.

As a consequence cloud computing offers compelling
features and provides considerable opportunities [10], [11]
for information technology-based businesses and cloud
infrastructure owners (cloud service/solution providers).
However, the development of fault-tolerance in the scope of
cloud computing is still in its infancy and must be addressed
thoroughly.

Cloud computing architectures are complex and consist
of multiple interconnected servers in data centers [12]–[14].
Designing fault avoidance and prevention approaches [15]
are necessary to resist changes that occur due to hardware
and software failures. We call fault-tolerance the ability of a
system to provide services even in the presence of faults [16].

Cloud computing systems are implemented in a central-
ized, decentralized, or distributed fashion (typical complex
computing infrastructure). Due to their inherent complexity,
cloud computing systems are prone to three major issues:
Failures, Errors, and Faults.

‘‘A failure happens if a system is unable to implement the
specified function appropriately. An error is caused because
one ormore of the sequences of system states deviate from the
specified sequence, and can cause service disruption. A fault

FIGURE 1. Relationship: Fault, error, and failure.

is the hypothesized cause of an error, for instance, a software
bug, human-made error, or hardware power failure’’ [17].
Faults can cause errors and lead to single or multiple fail-
ures [18]. Relationship between fault, error, and failure [19]
is depicted in Fig. 1 [20].

Multiple system-level tools are being used for imple-
menting fault-tolerance techniques in environments, such as
HAProxy, SHelp, Assure, Hadoop, andAmazonElastic Com-
pute Cloud (EC2) [21], [22].

The rest of the paper is structured as follows. Section II
discusses previous studies on fault-tolerance in cloud com-
puting, and identifies differentiating factors of this work.
Section III provides detailed background on cloud computing
and its related concepts. Section IV discusses fault-tolerance
concepts in cloud computing, and an analysis of reactive and
proactive fault-tolerance concepts. Section V discusses exist-
ing proactive and reactive fault-tolerance architectures and
state-of-the-art of cloud computing research. Section VI dis-
cusses respective cloud computing fault-tolerance challenges
and future research directions. Section VII summarizes an
overall discussion and analysis on cloud computing fault-
tolerance. Section VIII concludes the paper.

II. RELATED WORK
Some previous surveys have explored fault-tolerance in cloud
computing [23]–[25]. We can summarize these efforts as
follows.

Cheraghlou et al. [23] pointed out the methods of creating
the capacity of fault-tolerance in cloud computing and briefly
discuss architectures for the production of such capacity.
They compared architectures already employed in terms of
their methods of failure detection and recovery and imple-
mented policies. They also briefly discussed general cloud
computing models, their challenges, and provide an overview
of fault-tolerance techniques. They further described existing
architecture that provides fault-tolerance in cloud computing
and broadly divided them into proactive and reactive groups.
Finally, they evaluated and discussed existing cloud fault-
tolerance architectures.

Hasan and Goraya [24] presented a systematic study of
fault-tolerance in a cloud computing environment. They clas-
sify various types of faults in the cloud and briefly discuss
proactive and reactive fault-tolerance approaches. Next, they
present an in-depth analysis of fault-tolerance frameworks.
Furthermore, they provide their own graphical representation
of a quantified view of targeted fault categories and fault-
tolerance methods utilized in the previous studies. Finally,
they outline future research directions concerning cloud
fault-tolerance.

VOLUME 10, 2022 63423

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

TABLE 1. Scope and technical contributions of previous and this work.

FIGURE 2. Condensed structure of this survey.

Kumari and Kaur [25] also addressed fault-tolerance in
cloud computing and provided detailed backgrounds of
cloud computing in terms of cloud computing infrastructure,

data-center system model, deployment, and service models,
and analyzed their connections in distributed computing
environments. Furthermore, they briefly discussed existing

63424 VOLUME 10, 2022

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

models and frameworks based on proactive and reactive fault-
tolerance approaches and touched on security aspects in fault-
tolerance. Finally, discuss future research direction in terms
of block-chain, distributed systems, and performance issues.

A. CONTRIBUTION AND SCOPE OF THIS SURVEY
However, these previous studies have not discussed the needs
and applications for fault-tolerant computing, basic topics,
components, and system-level metrics in the context of fault-
tolerance in the cloud. This survey concisely addresses fault-
tolerance specific to cloud computing. Furthermore, Table 1
locates the present work in the context of other technical
contributions. We can distinguish our contribution in this
paper in comparison to the other related work as follows:

• We organize state-of-the-art research efforts addressing
cloud computing fault-tolerance based on reactive and
proactive approaches used to ensure cloud computing
fault-tolerance.

• We linked and discuss components and system-level
metrics in the context of fault-tolerance in the cloud
comprehensively, which was not addressed before.

• We structure and compare state-of-the-art research
efforts addressing fault-tolerance of existing cloud
computing architecture/frameworks based on reactive
and proactive techniques.

• We outline important future research directions from
the perspective of cloud versus fog versus edge com-
puting, advancing machine learning tools, and energy-
efficient fault-tolerant programming.

The condensed structure of this survey is summarized in
Fig. 2. In this paper, we presented an organized survey of
fault-tolerance in the scope of cloud computing. We overview
fault-tolerance techniques and discuss the taxonomy of faults.
Furthermore, we reviewed over 100 recent state-of-the-art
studies to cover fundamental as well as advanced topics
from literature related to fault-tolerance in the cloud to clar-
ify, classify, analyzes, and discuss fault-tolerance in cloud
computing.

III. CLOUD COMPUTING: BACKGROUND AND
RELATED CONCEPTS
In this section, we provide a brief background on the concepts
of cloud computing. Furthermore, we discuss centralized,
decentralized, and distributed systems in the context of imple-
menting a cloud architecture on top of these systems. Generic
research challenges of cloud computing are discussed in [26].

A. CLOUD COMPUTING OVERVIEW
Cloud computing aims to provide Internet-based computing
services from the pool of shared resources and enable on-
demand seamless data processing and resource sharing to
the computer and other devices with greater cost reduction,
flexibility, and elasticity. Typically, cloud computing consists
of four main elements, classified as client, data center, dis-
tributed servers, and Virtualization/Virtual Machines.

FIGURE 3. Cloud computing architecture.

• Clients: End-user devices such as a computer, laptop,
mobile phone, and tablet are being used for exchanging
information on clouds.

• Data Center: Collection of servers (ICT infrastructure)
where cloud applications and services are hosted by the
service provider.

• Distributed Servers: Service provider Servers located
in different geographical locations in order to provide
resilient, secure, and high availability to end-users.

• Virtualization/Virtual Machines: Virtualization is the
technology that provides an abstracted view of physical
resources such as a server, storage, and networking.

A simplified cloud computing architecture is illustrated
in Fig. 3. A generic cloud computing architecture can be
divided into four layers: the hardware layer, the infrastructure
layer, the platform, and the application layer. Furthermore,
the cloud offers services that can be grouped into three busi-
ness models, as discussed, IaaS, PaaS, and SaaS. In addition
to that, these services are deployed using different types
of clouds namely: Public, Private, Hybrid, and Community
clouds. We describe briefly each of them as follows.

1) HARDWARE LAYER
This layer is the combination of physical hardware, including
servers, routers, switches, power, and cooling system. These
physical resources of the cloud, (i.e., hardware layer) are
typically deployed in data centers, interconnection systems.

2) INFRASTRUCTURE LAYER
This layer is an abstracted view of the hardware layer.
Generally, a hypervisor provides an abstraction to create a
virtual environment over the underlying infrastructure.

3) PLATFORM LAYER
This layer is built on top of the infrastructure layer. Software
frameworks, such as Java, Python, and .Net, provide appli-
cation programmable interfaces (APIs) support to quickly

VOLUME 10, 2022 63425

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

create and implement databases and storage of different web
applications.

4) APPLICATION LAYER
This layer is responsible for hosting and managing actual
cloud applications over the Internet, on-demand and on a
subscription basis.

Cloud computing architectures are very modular and each
layer is loosely coupled (isolated), which means that a wide
variety of applications can be supported and better managed
in the cloud compared to traditional services hosted on dedi-
cated server farms.

B. CLOUD BUSINESS/SERVICE DEPLOYMENT MODELS
Cloud service providers model their computing services
based on three primary business/service strategies (also
known as cloud computing stack) namely: Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS).

1) INFRASTRUCTURE AS A SERVICE
IaaS is a basic model of cloud computing services that allows
renting infrastructural resources in terms of virtual machines
or servers from the cloud service provider. Amazon web
services, GoGrid, and Flexi-scale are examples of IaaS.

2) PLATFORM AS A SERVICE
In this model, an on-demand environment for developing,
testing, managing, and delivering software applications using
software development frameworks (Java, Python, and .Net)
is provided to built web applications quickly without worry-
ing about the configuration of the underlying infrastructure.
Google app engine, Microsoft Azure, and Force.com are
examples of PaaS.

3) SOFTWARE AS A SERVICE
In this model, the cloud service provider delivers on-demand
software applications to the end-users. Google, Salesforce
cloud-based software solutions [27], and Zoho are examples
of SaaS.

C. TYPES OF CLOUD
In terms of different levels of security and management
requirements, there are four different types of cloud: Public,
Private, Hybrid, and Community clouds [28]. The details of
these different types of clouds are as follows:

1) PUBLIC CLOUDS
The entire computing infrastructure is located on the premises
of the cloud service provider. The security and data control
level is lowest while using a public cloud. There is no upfront
cost for hosting applications on public clouds. Examples
include AWS/EC2 Amazon, Azure Microsoft, and Google
cloud platform.

2) PRIVATE CLOUDS
The entire computing infrastructure is typically located or
used exclusively by a single organization. The security and
data control level is highest while using a private cloud.
There is an upfront cost for hosting applications on private
clouds. Examples include Eucalyptus Systems, OpenNebula,
and OpenStack.

3) HYBRID CLOUDS
A hybrid cloud is a combination of public and private clouds,
depending on the purpose and sensitivity of applications to be
hosted on the cloud. Most important applications are hosted
on a private cloud while other applications can be hosted on
a public cloud, this allows flexibility to use both public and
private cloud and some potential cost-saving.

4) COMMUNITY CLOUDS
A community cloud is a collaborative effort in which infras-
tructure is shared between professional communities (groups
of organizations) having mutual goals and common concerns.

The cloud computing architectures, as depicted in Fig. 3,
end-user, and network devices can be deployed in different
cloud deployment models such as public, private, hybrid,
and community, depending on the computing requirements
that can support the needs of service requested by end-users.
These services can be a method to achieve business goals
with reduced costs. However, it is quite challenging to offer
resiliency, where fault-tolerance is one of the key enablers
for seamless operations in a cloud computing environment to
offer a high-quality service experience to end-users [26].

IV. FAULT-TOLERANCE CONCEPTS IN
CLOUD COMPUTING
In this section, we describe fault-tolerance in cloud comput-
ing and related concepts to establish a basic understanding of
the subject.

Faults in the cloud environment can be classified into
two main categories [14], [15]: Crash faults and Byzantine/
Arbitrary faults. Crash faults can cause system fatal errors
(for instance process and machine power-related failures),
while Byzantine/Arbitrary faults can cause the system to
deviates from normal operation [14]. Typically, in a cloud
environment, the faults appear as a failure of resources, such
as applications, storage, and hardware faults that affect the
end-users (leading to failures and performance degradation)
[29]. Faults can be transient (appears once and then disap-
pears), intermittent (appears, disappears, and reappears with
no real pattern), and permanent hardware faults (appear and
persist until the faulty component is replaced or repaired).
They can be of the following type considering the scope of
this work:
• Physical Faults (hardware faults): Faults that are related
mainly to hardware such as Central Processing Unit
(CPU), memory, storage, and power failure.

63426 VOLUME 10, 2022

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

• Network Faults (link faults): In cloud computing
resources are accessed through a network and prone to
network-related faults such as packet loss, link failure,
etc.

• Processor Faults (node faults): Faults that occur due
to bugs in software, resource shortage, and inefficient
processing of computing resources.

• Service Expiry Faults: Faults that occur when the service
time of an application is expired while the application is
using it.

• Timing Faults: Faults that cause an application unable to
complete within the specified period.

A. CLOUD IMPLEMENTATION: CENTRALIZED VERSUS
DECENTRALIZED VERSUS DISTRIBUTED SYSTEMS
Computer networks are built to enable sharing resources
through communications. Moreover, in networking, comput-
ers are connected together in different settings and organized
into different systems known as Centralized, Decentralized
and Distributed system as shown in the Fig. 4 [30]. Clouds are

FIGURE 4. Centralized vs decentralized vs distributed systems.

implemented using distributed, centralized and decentralized
architectures. For the sake of clarity, we discuss such systems
because the meaning of fault-tolerance and resilience of a
system can be understood differently depending on the (small
or large) scale implementation.

Distributed systems/distributed computing can either be
centralized or decentralized. To enable easy access and ensure
the availability of computing resources, cloud providers offer
data storage facilities in different geographical locations,
although the access control is centralized. These concepts are
significant in a cloud computing environment, and the prin-
ciples of centralized, decentralized, and distributed systems
remain applicable to emerging cloud technologies such as
Blockchain [31]. Public Blockchains, including Bitcoin and
Ethereum (cryptocurrencies), are both distributed (indepen-
dent nodes at different geographical locations) and decentral-
ized (data once stored cannot be altered). In the following,
we briefly discuss centralized, decentralized, and distributed
systems.

1) CENTRALIZED SYSTEM
Centralized systems are also known as command and control
systems. In this type of system, the central command node
is the node in which all decisions must be taken and another
connected node has to follow strictly the commands. More-
over, a centralized system is easy to maintain. However, due
to the single point of failure they can become unstable. The
development of such systems is easy due to centralized con-
trol but such systems are not known for extreme scalability.

2) DECENTRALIZED SYSTEM
The decentralized system is also known as a partially dis-
tributed system. In this type of system, there is no central
command node issuing instruction that other connected nodes
strictly have to follow. The decision is made independently,
involving multiple parties and sub-nodes to achieve system-
wide goals. Moreover, the decentralized system is moderate
to maintain.

3) DISTRIBUTED SYSTEM
‘‘A distributed system is a collection of autonomous com-
puting elements that appears to its users as a single coherent
system’’ [32]. In this type of system, all the connected nodes
are involved in the decision to achieve system-wide goals.
Distributed systems are complex and hard to maintain. How-
ever, they are highly scalable and support large complexities.

B. NEEDS AND APPLICATIONS FOR
FAULT-TOLERANCE COMPUTING
Generally, fault-tolerance is an essential part of the design of
any communication system. However, designing needs differ
across different environments and specific needs related to the
environments in which the communication system is operat-
ing. For instance, mission-critical computation systems are
highly critical systems and require expensive and advanced
fault-tolerance support with high accuracy to guarantee the
handling of mission-critical applications and situations (such
as computer systems in aircraft, medical equipment systems
in health and safety, E-commerce systems for financial appli-
cations, and space shuttle communications systems). All of
these environments are critical and any malfunction can be
catastrophic. Therefore, to avoid such damage, these systems
are designed in a way that the probability of failures is
very low or negligible. Such systems are highly reliable and
equipped with advanced fault-tolerance support and are quite
expensive systems [33]. Another example includes highly
available and reliable systems, in which the availability
requirement is set to a maximum of Five 9’s reliability [34]
which means that a system must not go down (unavailable)
for more than ‘‘5 min and 15 seconds’’ per year. Carrier-
grade networks have this strict requirement for Five 9’s
reliability [35].

Research in fault-tolerant cloud computing systems span a
wide range of applications, from general-purpose computer

VOLUME 10, 2022 63427

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

systems to highly available computer, space, transportation,
and military systems [33], [36], [37]. We list some applica-
tions and discussed them briefly in order to illustrate the dif-
ference between them. Each application has its fault-tolerant
design considerations and challenges.

• Durable and Heavy-duty Systems.
• Highly Complex Computer Systems.
• Overlay Computer Networks Systems.

1) DURABLE AND HEAVY-DUTY SYSTEMS
Durable and heavy-duty systems are designed to operate
in a harsh environment in the presence of electromagnetic
disturbance and external noise. These systems usually consist
of both electrical and mechanical parts. As these systems are
designed to operate for a long period, repairing is hard for
such systems. Therefore a completely redundant system, i.e.,
including all parts, are essential for the continuous operation
of the system. After a certain time, these systems are replaced
with a new system.

2) HIGHLY COMPLEX COMPUTER SYSTEMS
Another example includes highly complex systems, which
consist of billions of equipments. Moreover, each equip-
ment connected to these complex systems has a probability
of failure. Due to the huge number of devices attached to
the system, the total system failure probability can be high.
However, different types of hardware, coupled with different
software redundancy and replication techniques, minimize
the probability of system failures. Distributed systems in
computer networks are based on these complex types of
systems.

3) OVERLAY COMPUTER NETWORKS SYSTEMS
These network systems use existing hardware infrastructure
andmap existing hardware infrastructure to form a virtualized
infrastructure with the use of technologies such as Software-
defined Networking (SDN), Network Functions Virtualiza-
tion (NFV), and Cloud Computing, concepts often associated
with Fifth-generation (5G) networks. Such systems, unlike
traditional static distributed systems, are highly dynamic in
nature. A vast set of fault-tolerancemechanisms are needed to
support and embrace the use of these evolving technologies,
high availability and reliability [38] must be guaranteed.

We have discussed above different types of systems and
fault-tolerance requirements to clarify the concepts.

C. FAULT-TOLERANCE COMPONENT LEVEL METRICS
In this section, we discuss fault-tolerance traditional metrics
that can be explained in cloud computing. Traditional com-
ponent metrics related to fault-tolerance are [39]:

1) Mean Time to Failure (MTTF): The mean time until a
component fails.

2) Mean Time to Repair (MTTR): Themean time required
to repair a failed component.

FIGURE 5. MTBF, MTTR, MTTF.

3) Mean Time Between Failures (MTBF): It is the mea-
sure of the total time when the system is available and
operating.

These three metrics can be differentiated as shown in Fig. 5.
Metrics described above can vary in real-time cloud

computing environments. This infers that both software
and hardware-based fault-tolerance is a must offer. Further,
hardware-based fault-tolerance is critical as it provides an
infrastructure to run over it; this is not too complex but costly.
Although service abstraction needs software fault-tolerance
and it is perceived as more critical in a real-time environment.
Improper handling can cause multiple problems and service
may deviate and result in failure of achieving cost reduction.

D. FAULT-TOLERANCE SYSTEM LEVEL METRICS
Several system-level metrics, considered in cloud computing
to design a fault-tolerance system, are as follows [40], [41]:

1) AVAILABILITY
Availability refers to the access of service without any service
deviation within a particular time. This means that resources
can be accessed when needed for proper functionality. The
availability is the probability of the system running without
failure.

2) RELIABILITY
Reliability refers to the service continuity with correct results
in a certain period. Reliability is the probability of the system
running continuously without failure at the given time. The
difference between reliability and availability is one provides
a way to access resources without any faults and others
maintain the continuity without any fault while the service
remains active.

3) MAINTAINABILITY
Maintainability refers to the ease of a system to repairs and
adapt modifications.

4) SCALABILITY
Scalability refers to the effectiveness of the fault-tolerant
algorithm to manage increasingly more nodes without any
degradation in services. A fault-tolerant solution must be
scalable.

5) SAFETY
Safety refers to the property of a system that temporarily fails
to operate correctly, but still nothing catastrophic happens to

63428 VOLUME 10, 2022

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

the users acquiring the services. A fault-tolerant solutionmust
be safe.

6) INTEGRITY
Integrity refers to the intelligence mechanisms to prevent the
system from improper alteration, and also to avoid user crash
failure.

7) CONFIDENTIALITY
Confidentiality refers to the mechanisms to protect unautho-
rized access to information.

8) PERFORMANCE
Performance refers to metering system efficiency by analyz-
ing and evaluating multiple system-level metrics. This evalu-
ation significantly depends on the throughput: the greater the
system throughput greater the performance.

E. TYPES OF FAULT-TOLERANCE
There are twomain types of techniques used to design a fault-
tolerant system. These techniques are known as hardware and
software fault-tolerance [42].

1) HARDWARE FAULT-TOLERANCE
In general hardware fault-tolerance system is the design-
ing of hardware components and their implementation such
that these components can perform tasks and interacts with
another component correctly within the systems. In a com-
puting system, these components can be the CPU, memory,
hard disk, and other hardware-based computing devices.
Hardware-based fault-tolerance techniques in computing are
useful to develop a structured computing system that not
only tolerates faults but is also capable of initializing a sys-
tem recovery itself. The system recovery process normally
involves splitting a computing system into modules, where
these modules are already backed up with protective redun-
dancy hence providing at some extent automatic recovery in
the case of failure [43].

2) SOFTWARE FAULT-TOLERANCE
Recently, the rise of virtual networks (software-defined
networks) and the concept of softwarization of telecommu-
nications systems boost software fault-tolerance. Software
fault-tolerance became an area of interest for researchers.
Similar to hardware-based fault-tolerance, software fault-
tolerance is the continuous development process for attaining
software that can tolerate software faults (programming
errors), both active and passive redundancy techniques are
used to design fault-tolerant software.

Fault-tolerance in cloud computing may vary in real-time
scenarios, but mostly in cloud computing the data plane,
control plane and specialized hardware that provides abstrac-
tion must be fault-tolerant with built-in self-recovery, self-
healing mechanisms to guarantee the quality of service with
scalability. This infers that both software and hardware-based

fault-tolerance is a must offer. Further, hardware-based fault-
tolerance is critical as it provides an infrastructure to run over
it; this is not too complex, but is usually costly. Although,
service abstraction needs software fault-tolerance and it is
often perceived as more critical in a real-time environment
without this a service may deviate and fail in achieving cost
reduction.

Broadly, the twomain approaches used to implement fault-
tolerance are Recovery and Redundancy [44]. i) In Recovery,
the system state is restored (rollback) to a predefined check-
point. ii) In Redundancy, the hardware, software, and comput-
ing components are replicated (extra components are added
to the system for backup purposes). Both the Recovery and
Redundancy approaches can impact reactive and proactive
policies.

The next section discusses and compares cloud computing
fault tolerance based on reactive and proactive policies.

F. FAULT-TOLERANCE APPROACHES THROUGH
REACTIVE TECHNIQUES
Reactive fault-tolerance policies are mainly developed to
decrease the failures in the cloud/distributed system after
the occurrence of the faults/errors. The Reactive poli-
cies used to prevent faults in cloud computing are as
follows [21], [41], [45], [46], [47].

1) CHECKPOINT/RESTART
The system recovers from faults using a recent reference
checkpoint instead of instantiating the task from the begin-
ning. This policy is effective for a large application, in the
case of failure because of uncompleted tasks.

2) REPLICATION
To safeguard the consistency between resources in a different
cluster, a copy or replicas of the various task are stored. In the
event of a crash, the identical replicas take over and therefore
guarantee fault-tolerance.

3) JOB MIGRATION
This approach enables tasks to be migrated to a new machine
seamlessly in case execution is not possible with a current
machine. This technique is very useful in cloud computing
and data center environments.

4) RETRY/TASK RE-SUBMISSION
Task submission refers to the execution of that task that failed
to execute. The task is re-implemented repeatedly on the same
or different resources to proceed with the execution of the
failed tasks. The fault is rectified or it reaches the stage where
the fault is unrepairable.

5) S-GUARD
This policy uses the rollback recovery fault-tolerance tech-
nique and can be implemented in Hadoop, and Amazon
Elastic Compute Cloud. It periodically checkpoints the state
of stream processing nodes and restarts failed nodes from

VOLUME 10, 2022 63429

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

TABLE 2. Classification of fault-tolerance approaches and used tools.

their most recent checkpoints. SGuard is less disruptive to
normal stream processing and typically leavesmore resources
available for normal stream processing.

6) TIMING CHECK
This is based on the idea of continuous monitoring. The
state of the execution of tasks through watchdog supervision
and in any case of alteration of the time-critical task can be
processed to avoid failures.

7) USER-DEFINED EXCEPTIONAL HANDLING
In this, the user specifies the workflow for the treatment of
failed tasks.

G. FAULT-TOLERANCE APPROACHES THROUGH
PROACTIVE TECHNIQUES
Proactive fault-tolerance policies are mainly developed to
predicts the failures in the cloud/distributed system before the
occurrence of the faults/errors.

The Proactive policies used to prevent faults in cloud com-
puting are as follows:

1) SELF-HEALING
Tasks are isolated on different virtual machines. This enables
easier automatic fault handling. In the case of certain tasks
failure, only the specific isolated task on a specific machine
recover automatically, instead of affecting the operation of all
virtual machines.

2) PREEMPTIVE MIGRATION
This technique checks the system for latent and dormant
faults through feedback control.

3) SOFTWARE REJUVENATION
This technique checks and updates system records for any
new configuration. The re-initialization depends on the set
design assumption of the specific system failure and the time
interval for re-initialization.

4) LOAD BALANCING
This technique is used to auto-scale the computing resources
(CPU, and the load of thememory) when the certain threshold
defined in the auto-scaling policy exceeds. The load bal-
ancing algorithms reallocate a load of exceeded computing

resources to other computing resources that are not exceeded
in order to balanced resources and efficient utilization of
cloud infrastructure.

Table 2 presents a classification of reactive, proactive
approaches, and system tools used in cloud computing
fault-tolerance.

V. EXISTING CLOUD COMPUTING FAULT-TOLERANCE
ARCHITECTURAL FRAMEWORKS
In this section, we present existing fault-tolerance architec-
tures developed for cloud computing. The classification of
these architectures as per fault-tolerance policy is depicted
in Fig. 6. In cloud computing, fault-tolerance architectures
are based on proactive and reactive policies and with the
combination of more than one fault-tolerance approach to
devise error detection and recovery mandatory for end-to-
end service delivery. For instance, MapReduce and FT Cloud
are proactive policy-based architectures and HAProxy, BFT
Cloud are reactive-based architectures.

Previous surveys were mostly focused on addressing reac-
tive fault-tolerance architectures and only briefly touched on
the proactive fault-tolerance architectures. Here, we discuss
in detail proactive as well as reactive architectures. The sim-
plified taxonomy of fault-tolerance architectures/frameworks
is depicted in Fig. 6. Further, we made a comparison of this
architecture with fault-tolerance policy and aspects of fault-
tolerance covers by these architectures [23]. We provide a
brief comparison based on the studied and discussed state-
of-the-art research efforts and with the type of fault-tolerance
support offered by these architectures.

FIGURE 6. Fault-tolerance architectures in cloud computing.

63430 VOLUME 10, 2022

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

In Table 3, we structure and compare the state-of-the-art
research works on fault-tolerance architecture/frameworks in
cloud computing based on proactive and reactive techniques.

A. RESEARCH EFFORTS FOCUSING PROACTIVE
FAULT-TOLERANT ARCHITECTURES
In this section, we survey state-of-the-art proactive architec-
tures that support fault-tolerance in cloud computing.

In MapReduce, the task is divided into sub-tasks and
data is processed based on the concept of parallel com-
puting [48]. In big data processing, high availability is a
key requirement [49]. Therefore, as MapReduce architecture
aims to provide high availability, a proactive policy is uti-
lized because these techniques meet availability requirements
much better than a reactive approach [50]. Fault-tolerant tech-
niques, self-healing, and preemptive migration are exploited
in MapReduce architecture.

Hadoop, based on the MapReduce architecture, has been
implemented successfully by Yahoo, Amazon, IBM, and
Google to process and analyze big data in data center environ-
ments [51]. Hadoop is an open-source software framework
developed for storage and large-scale data processing in cloud
environments [52]. It is designed to detect and handle appli-
cation layer failures in cloud systems.

Sidiroglou et al. [53] have presented Assure, a system tool
that offers automatically self-healing software using res-
cue points that recover systems from unknown failures.
It uses lightweight instrumentation mechanisms to monitor
and triage the system for fault analysis. When a fault is
detected, Assure restores execution to an appropriate rescue
point, and provides recovery from software failures in server
applications. However, Assure does not assign weights to
rescue points, and selecting an appropriate point contributes
to overheads which can slow down system recovery.

Chen et al. [54] presented SHelp, a tool that can provide
automatic self-healing for multiple application instances in
a cloud-based system. SHelp followed the Assure framework
and improved the earlier proposed work by assigning weights
to rescue points. When weights are assigned, searching for
and selecting an appropriate rescue point can be done quickly
in contrast with Assure, which uses additional overheads
to search and assign rescue points. SHelp handles software
failures in the framework of virtual machines.

Another proactive framework named FTCloud, pro-
posed by [55], uses a component invocation structure
to identify the significant components and select optimal
fault-tolerance strategies to automatically confront faults in
cloud computing. They propose two algorithms to rank
application components: first, considering the invocation
frequencies only; and second, considering the character-
istics of application components along with the invoca-
tion frequencies. They use three replication techniques and
compute failure probability, response time, and application
cost based on these techniques to select the optimal fault-
tolerance strategy. The FTCloud framework detects software

faults with high accuracy. However, implementing it is quite
complex.

Egwutuoha et al. [56] carried out a research study to
develop a proactive fault-tolerance system to support high-
performance cloud computing applications. Their proposed
design consisted of three modules: i) Node monitoring—
module monitoring, CPU temperature, and fan speed;
ii) Fault- tolerance—the module takes necessary action in
case of failure due to any adverse network behavior, and
iii) Controller—the module controls the live migration of
virtual machines and implements predefined fault-tolerance
policies whenever a failure is detected. They argue that their
developed fault-tolerance system was able to tolerate hard-
ware faults at a low cost. However, the live migration of
virtual machines and predicting node failure are complex
phenomena in their developed solution.

Liu et al. [57] argued that the existing fault-tolerance
schemes do not adequately consider coordination among
virtual machines (VMs) that jointly complete a parallel appli-
cation execution. To address this problem, they proposed
using a virtual cluster algorithm to reduce VM resource and
energy consumption in the data center. They then modeled
CPU temperature to predict physical machine failure and to
search for and target optimal physical machines. Their solu-
tion uses a proactively coordinated fault-tolerance (PCFT)
approach, which is based on particle swarm optimization
(PSO) [74], to address the coordinated fault-tolerance prob-
lem of a virtual cluster. They evaluated their approach by
considering overall transmission overheads, resource con-
sumption, and execution time for a set of parallel applications.
They claimed their approach outperforms others by reducing
network and resource consumption while guaranteeing cloud
service reliability.

Liu and Buyya [58] proposed using a holistic software,
rejuvenation-based, fault-tolerance scheme to overcome
cloud applications’ aging problem. The system architecture
is based on four fault-tolerance entities that work together to
detect an aging failure and start the rejuvenation process. The
fault-tolerance modules are as follows: i) the aging failure
detector monitors CPU and memory usage of the service
components to detect aging failures; ii) the aging degree eval-
uator identifies fatal errors that tend to result in crash failure
and are queued and rejuvenated, iii) a software rejuvenation
manager-control software rejuvenation execution; they used
a checkpoint and VM migration-based service component
to avoid re-executing of aging service components to guar-
antee service continuity of running cloud applications; and
iv) interim node when VMs are prone to failure, their working
state is stored in an interim node and migrated to seamlessly
maintain service communication. After the migration process
is completed, VMs are rebooted to clear the aging effects.
They showed that their fault-tolerance scheme improves the
availability of cloud applications.

Sun et al. [59] proposed a fault-tolerant framework with
a deadline guarantee for stream computing called FTDG.
They have implemented their framework on an open-source

VOLUME 10, 2022 63431

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

TABLE 3. Selected work on cloud computing fault-tolerance architectures/frameworks and their characteristics.

distributed computing platform called Strom. Their proposed
system architecture is composed of four spaces as follows.

i) hardware space-data centers are distributed in different geo-
graphical locations for big data stream computing; ii) storm

63432 VOLUME 10, 2022

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

space real-time scheduling, optimization, and fault-tolerance
strategy is applied using storm platform; iii) graph space-data
stream graphs are created according to the source code and
based on a user profile; and iv) user-space-users can design
applications and submit their data stream on-demand of data
centers. Their results showed that FTDG provides a desirable
trade-off between high fault-tolerance and low response time
objectives set for big data stream computing environments.

Failure of critical configurations in configurable systems
can have a severe impact on system reliability and per-
formance. To address this problem, Chinnaiah et al. [60]
proposed fault-tolerant software systems using software con-
figurations for cloud computing. They first classified the
configuration of a software system into critical and non-
critical configurations based on the frequency of configura-
tion interactions (IFrFT) and characteristics and frequency of
interactions (ChIFrFT). They argued that identifying critical
configurations and then developing fault-tolerance support
for each configuration is the way to overcome this prob-
lem. They then proposed an algorithm that identifies optimal
fault-tolerance for every critical configuration of the software
system. They tested the performance of IFrFT and ChIFrFT
using the file structure system. They argued that their pro-
posed scheme achieves higher reliability and fault-tolerance
software configurations for cloud computing.

Zhang et al. [61] argued that traditional Support Vector
Machine (SVM)models used for fault-detection provide very
low accuracy. To overcome this problem, they presented an
online fault-detection model considering SVM Grid. In their
proposed approach, the Grid method was used to enhance the
input parameter to calibrate fault predictions for achieving
high accuracy and stability of the cloud. They experimented
with their developed fault-tolerance algorithm using Google2
application cluster data sets and illustrated in their study
that their developed fault-detection model using SVM Gird
provides high accuracy and reduces time costs compared with
traditional approaches such as learning vector quantization
based on traditional SVM.

B. RESEARCH EFFORTS FOCUSING REACTIVE
FAULT-TOLERANT ARCHITECTURES
In this section, we survey state-of-the-art reactive architec-
tures that support fault-tolerance in cloud computing.

HAProxy is an open-source tool used to build a fault-
tolerant cloud system [62]. It provides an efficient and
reliable solution offering high availability and load balancing
of web-based applications. Job migration and replication
fault-tolerance approach is being used with redundancy.
HaProxy can be migrated to another server in the presence
of system failures. In the event of a primary server failure,
the secondary server can backup the operation of the entire
system. HAProxy handles server fail-over in the cloud.

Malik and Huet [63] presented an adaptive fault-tolerance
in the real-time cloud computing (AFTRC) model for the
cloud computing environment. In their model, the incoming
tasks are executed in a first come first serve (FCFS) manner.

Tasks are executed on virtual machines that are embedded
with different algorithms replicated and executed in real-
time. For the verification of the result’s correctness, the result
produced by each algorithm is sent to the acceptance test.
After verification, results are moved to the time checker (TC)
to check the time-stamps. The task is sent back to the input
buffer if the results are not obtained within the time limit. The
task states are periodically saved in the recovery cache.

AFTRC model also contains checkpoint mechanisms to
serve the client requests on a highly reliable platform.
AFTRC is applicable for real-time applications and offers
high accuracy. However, when the workload increases it may
lead to low resource availability.

Zhou et al. [64] proposed an optimal redundant vir-
tual machine placement (OPVMP) model to improve the
reliability of Server-based cloud services by using a
replication-based fault-tolerance method. The method used
in their work employs three algorithms. The first algorithm
selects a VM hosting-server potentially from a large set of
servers. The second algorithm decides an optimal strategy
(optimal VM placement) to place the primary and backup
VMs selected by the first algorithm with ‘‘k’’ fault-tolerance
assurance. Finally, the Third algorithm (using heuristic
approach) is formulated for recovery strategy decisions by
finding a maximum weight matching. The results obtained
from this approach were compared with other models. They
demonstrated that the proposed approach utilized fewer net-
work resources in the service recovery stage.

Sun et al. [65] studied a dynamic Adaptive Fault-tolerance
(DAFT) model using checkpoint technique in order to
provide fault-tolerant services in a cloud computing envi-
ronment. The measures for fault-tolerance are taken from
the fault-tolerance space (a main component of the archi-
tecture). The checkpoint technique used in the study is not
conventional, rather dynamic and adaptive. Thus, checkpoint-
ing interval varies corresponding to check-pointing overhead,
fault-tolerance overhead, fault overhead, and failure density.
Maximum recovery could be obtained. On the one hand,
whenever the failure rate increases the system adapts to con-
ditions by dynamically decreasing the checkpoint interval.
On the other hand, whenever the failure rate decreases the
checkpoint interval increases, due to which the overhead
would be optimized. DAFT can be applied to crash failures.
However, the adaptiveness of the DAFT fault-tolerance is
system-based, not component-based.

Zhou et al. [66] proposed a model named Edge switch
failure-aware check-pointing (EDCKP). This model is
designed to enhance service reliability in the cloud com-
puting system. To address the edge switch failure, a fat-
tree network topology and two algorithms were proposed.
The first algorithm is used to select a storage server
for the checkpoint image. The second algorithm is used
for the recovery server. They compared their model with
the network topology-aware distributed delta checkpoint-
based technique (NDCKP) model which is based on a
network topology-aware distributed delta checkpoint-based

VOLUME 10, 2022 63433

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

technique, and with the No checkpoint-based method
(NOCKP). They argue that their result illustrated that the
EDCKP model performs better in terms of service reliability
by reducing the execution time and by consuming fewer
network resources.

Zhao et al. [67] studied interference-free scheduling to
provide flexible reliability optimization in the cloud environ-
ment. The Joint Checkpoint Scheduling and Routing (JCSR)
model was presented. In their model, they use a peer-to-peer
checkpointing method that optimized the client consistency
levels based on the evaluation of their requirements and
resources available in the data center. In order to solve the
joint optimization by dual decomposition. They developed a
distributed algorithm and argue that their developed solution
can improve resource scheduling in the data center cloud.
JCSR, with peer-to-peer check-pointing, provides a solution
to the joint checkpoint scheduling problem.

Zhang et al. [68] proposed the BFT-Cloud architecture
based on replication policy. User requests in the cloud were
implemented on different nodes with one node is selected
as the primary and the remaining nodes as backup nodes.
All applications were locally executed on the machine during
request execution. In this architecture, the cloud computing
system implements users request on different nodes. If the
user requests running on both primary and backup nodes are
the same, the cloud computing system considers the output to
be correct and verify that it responds to the requesting mod-
ule. However, in case of discrepancy, the cloud computing
system considers the node as the faulty node. In this case,
recovery operations are performed by updating this stage.
If the faulty node is the primary node then update with the
new primary version and if the faulty node is other than the
primary node i.e., the backup node then updates the replica
with the appropriate nodes. The fault-tolerance capability
of this framework is 33% which means this framework can
identify up to 33 faulty nodes out of 100 nodes in the cloud.

BFTCloud can tolerate all complicated faults and is a
highly reliable fault-tolerance architecture. However, the
drawback of BFTCloud is that it is low resource utilization.

Chen et al. [69] proposed a K-out-of-n fault-tolerance
(FT) framework that provides an energy-efficient and fault-
tolerance solution for data storage and processing in clouds.
To store data, the AllocateData function is developed, and to
process data, the ProcessData function is developed. At the
time of data storage, the proposed model provided the facil-
ity of data fragmentation by a node. The storage requests
and processing requests are separated and transferred to
their respective functions. The expected transmission time
is computed based on operation failure probability, which
is estimated then using the K-out-of-n FT framework; and
after that, the resources are allocated. This framework con-
sists of five components as follows: (a) Topology Discovery
and Monitoring, the current topology of the ad-hoc network
is discovered by this component. (b) Failure Probability
Estimation, the node failure probability is estimated here.
(c) Expected Transmission Time Computation, generates

a matrix of communication costs between two nodes.
(d) K-out-of-n allocation uses an erasure code algorithm to
partition data into n fragments. (e) K-out-of-n Processing,
to minimize energy consumption it creates a job that consists
of m tasks and schedules them on n processing nodes.

The K-out-of-n FT framework provides the solution for
energy-efficient and network fault-tolerance in the cloud.
However, resource utilization is significantly low.

Jhawar et al. [70] proposed a Fault-tolerance Manage-
ment (FTM) framework in cloud computing. In this
framework, the fault-tolerance approach is applied at the
virtualization layer directly. Faults are detected by a run-
time monitoring system that uses a heartbeat protocol to
detect faults. Following are the basic components of this
architecture: i) Resource Manager: this component is respon-
sible to keep the information of resources in the cloud,
ii) FTM Kernel: Central component and decision-maker
about the type of fault recovery, iii) Client Interface: This
component provides the client interface to the fault-tolerance
service provider (to put up the user’s respective require-
ments), iv) Messaging Monitor: This component has four
sub-components as follows: (a) Replication Manager, which
manages the execution of replication resources, (b) Fault
Detection/Prediction Manager manages and predicts fault by
applying an optimal fault detection algorithm, (c) FaultMask-
ing Manager, this component masks the fault occurrence to
hide them from the users, and (d) The recovery Manager
maintains and repairs the faulty nodes in the cloud.

The FTM framework can be applied to all crash faults.
However, the fault-tolerance overhead is relatively high.

Lin et al. [71] proposed VegaWarden (a uniform user man-
agement system for cloud applications) to address two
problems on user management: usability and security. These
problems arise due to cluster virtualization and infras-
tructure sharing in a cloud computing environment. The
proposed VegaWarden architecture was implemented in a
Cloud-oriented infrastructure and a production Grid Com-
puting environment. The authors claimed that their proposed
uniform user management system can solve these problems.
They addressed these problems by providing global userspace
and providing a uniform resource interface (using a resource
controller) under a single cloud. Different administrative
domains were isolated by separate authentication with autho-
rization and access control. Vegawarden uses decentralized
and distributed rules through naming service to construct
global-consistent and global-synchronous metadata storage.
However, when more than one application service is installed
authors assumed that the load balancing mechanisms must
be used automatically. VegaWarden architecture is a uni-
form user management system that supports different virtual
infrastructure provider and application service provider mod-
els in a cloud computing environment.

Fagg and Dongarraet [72] Message Passing Interface
(MPI) architecture is a standard for parallel programming,
and it uses checkpoint/restart and job migration techniques.
Like most of the other models, fault detection is done outside

63434 VOLUME 10, 2022

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

the node and by another module. It has two layers: the top
layer does not depend on any infrastructure communication,
and the bottom layer, (which is called SSI) specifies the
need for backup of the checkpoint. This architecture uses
checkpoint/restart and jobmigration techniques in such a way
that if there is a faulty node then it sends MPI Request to
the other nodes. The nodes that have received the faulty node
request sends the positive response of the request to the faulty
node. The faulty node migrates the program to the healthy
node from the last checkpoint.

Egwutuoha et al. [73] introduced Process Level Redun-
dant (PLR) architecture which creates redundancy in the
processes using three policies of the reactive method (repli-
cation, job migration, and checkpoint). Furthermore, MPI
architecture is embedded in the PLR architecture. The PLR
architecture has five modules. The first one is the fault
predictor which is for the prediction of fault. The second
module is for MPI monitoring and application which is called
PLR Controller Daemon, this module is also responsible for
replica redundancy management. The next module is the
fault-tolerance policy to select the policy type for dealingwith
certain types of fault. The fourth module is a fault-tolerance
dream which first sends a message of monitoring-based
to PLR and then performs live migration and checkpoints
are initialized as defined in the checkpoint library. Finally,
the fifth module failure points are eliminated through the
checkpoint/restart method which stores checkpoints on the
neighboring nodes, and resources are released used for check-
points. The policies used in the PLR architecture increase the
fault-tolerance capability as well as increases the response
time of the system to eliminates failures.

VI. FUTURE RESEARCH DIRECTION FOR
FAULT-TOLERANT CLOUD COMPUTING
Cloud computing models and frameworks have attracted
significant attention from both the academic research com-
munity and industry [10], [75]. In this section, we outline
the future directions for fault-tolerance cloud computing
development from the perspective of its role in advanc-
ing machine learning tools, energy-aware infrastructure, and
finally enabling fault-tolerance in emerging architectures
based on cloud related technologies.

A. ADVANCING CLOUD FAULT-TOLERANCE USING
MACHINE LEARNING TOOLS
Cloud technology has been proposed to fulfill different
demands of future networks. To offer shared resources and
infrastructure cloud computing models and frameworks are
implemented in the data center. In a data center, virtualiza-
tion approaches are used to structure physical machines into
virtual machines [76] for better resource allocation and uti-
lization. However, the main problems faced by cloud service
providers are task scheduling, resource allocation, and virtual
machine workload management.

Virtual machines in a data center are deployed using
cloud infrastructures comprised of several high-volume

servers. Task scheduling is the process of embedding Virtual
machines in such a way to compose a service chain that
minimizes the total run time of service execution and mini-
mizes energy consumption [77]–[79]. However, task schedul-
ing is complex and should be carried out carefully without
performance degradation and affecting the operating cloud.
Acquiring resource allocation in the cloud requires efficient
algorithms to determine the locations of required virtual
machines in high-volume servers located in the data center.
This then enables the live migration of virtual machines from
one location to another for efficient utilization in a cloud.
Further, this flexible placement of virtual machines can offer
load balancing and optimization of traffic flow.

The methods developed to address the mentioned prob-
lems still consume more power, time, and lack quality and
accuracy. Advanced machine learning and artificial intel-
ligence [80] tools/algorithms are necessary to develop in
order to provide better resource allocation, reduce power
consumption, and mitigate VMworkload management issues
in a cloud. We envisaged that advancing machine learning
and artificial intelligence tools/algorithms [81] can pro-
vide solutions to mentioned problems and their integration
with fault-tolerant methods can significantly improve cloud
performance.

B. ENERGY-EFFICIENT FAULT-TOLERANT
SCHEDULING ALGORITHMS
Over the past few years, cloud usage has grown. Shortly
there will be a significant increase in the usage of cloud
infrastructure which has an associated growing impact on
energy consumption [82]. Presently, ICTs societies are glob-
ally facing energy efficiency challenges coupled with carbon
(CO2) emission [83]–[85]. Recently, significant research
studies focused on the development of energy-aware cloud-
based infrastructure an initiative to support a green network-
ing environment (eco-friendly) [86]. Energy efficiency in
a cloud-based environment is still a key issue, and there
is still a need to develop an energy-efficient [87] and
energy-aware ICTs infrastructure (cloud-based ecosystem)
that is based on energy-efficient Fault-tolerant scheduling
algorithms [77], [88].

The emergence of IoT technology has extended the usage
of ICT infrastructure [89]. New IoT enables applications such
as smart home control [90], industrial automation [91], and
the health sector [92] has evolved significantly over the years.
To support IoT applications over ICT infrastructure energy
management and fault-tolerance are critical. Energy-efficient
and optimal fault-tolerant scheduling [93], [94] algorithms
are a key requirement for cloud infrastructure to support the
goals of the green networking environment [95], [96].

C. FAULT-TOLERANCE IN EMERGING ARCHITECTURES:
CLOUD-RELATED TECHNOLOGIES
Cloud computing offers several advantages and efficient
usage of shared resources, but due to its centralized
approach, it is often considered inefficient for transferring

VOLUME 10, 2022 63435

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

TABLE 4. Features of different technological concepts.

and processing data for latency-sensitive applications. As dis-
cussed and predicted in [6], the number of devices connected
to the Internet may exceed 50 billion shortly, and data pro-
duced by these devices may exceed 500 zettabytes [7]. Due
to the growing amount of data and heavy traffic processing,
it is becoming difficult to accommodate the transmission of
data and real-time processing in the cloud.

In order to address these limitations, fog and edge comput-
ing architectures [97] (value addition to the cloud computing
architecture) were recently introduced [98]. These computing
architectures may appear similar but they vary greatly in
terms of their features and theymeet differing requirements in
certain real-world applications (smart grid, connected vehi-
cles, and smart cities). Furthermore, fog and edge architec-
tures also support emerging technologies such as SDN [99],
NFV [100], cloud computing concepts associated with 5G
networks.

In Fig. 7 the cloud’s fog and edge approaches are
illustrated [101].

The requirements for supporting ICTs have recently
evolved as never before. Due to the continuous growth of
network devices, more and more devices will be connected
simultaneously to ICTs infrastructure. To accommodate these
devices requires re-designing the network architecture to
support the future computing scenarios they enable. As a
consequence, Next-generation Networks (NGNs) research
is building its foundation based on multiple evolving tech-
nologies. These include technologies like NFV, SDN, cloud
computing, and the 5G of telecommunications networks,
all reputed to transform ICTs infrastructure and fulfill the
future needs of computing. It is important to note that
all these technologies are directed towards supporting the
growing trend of network programmability and network soft-
warization of telecommunications systems. These concepts

FIGURE 7. Levels of computing: Cloud, Fog, and Edge.

reflect different approaches: NFV provides network service
or function abstractions, SDN provides network abstrac-
tion, while cloud computing provides computing abstraction.
NFV promises to bring flexibility and cost reduction, SDN
promises to bring programmable control and open interfaces,
and cloud computing promises to bring flexible and efficient
pooling and resource sharing of computing power.

In our view, data plane programmability is an impor-
tant area for future SDN and cloud computing develop-
ment [102]. Recent studies carried out adopted SDN data
plane programmability. New data plane specification such
as Protocol Independent Packet Processors (P4) [103] and
Protocol-Oblivious Forwarding (POF) [104] has been devel-
oped to extend the feature of SDNbeyondOpenFlow protocol
specifications [105] hence resulting new data plane specifi-
cation can enhance fault-management in SDN, thus improv-
ing the fault-tolerance and reliability aspects of software

63436 VOLUME 10, 2022

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

influenced network based on SDN, NFV, Edge, Fog and
Cloud computing-based deployments.

SDN and NFV provide support for multi-tenancy, user, and
application quality of service experience. However, in order
to sustain the complexity and the heterogeneity requirements
associated with 5G technology, for instance, low latency and
critical communications scenarios. For such requirements,
SDN/NFV needs to be enhanced not only considering orches-
tration and control plane but also data plane programmability.
Considering this enhancement to SDN and NFV a new layer
of softwarization has been introduced that provides the fea-
sibility to program the switch data plane through high-level
API and languages [106]. The most prominent approach that
attracts the research community is the P4 language [107]. The
fog/edge node with P4 capabilities can interconnect several
heterogeneous network segments and core infrastructures.
P4-based data plane programmability enables flexible and
advanced programmable functions in SDN/NFV-based cloud
computing implementations. Furthermore, P4 programs open
the way for the development of novel services to integrate the
SDN/NFV and cloud computing paradigms.

In Table 4 we summarize different technological concepts
and their features that can impact fault-tolerance in cloud
computing environments.

Cloud computing is more applicable to non-real-time
applications such as mobile commerce and mobile learning
because non-real-time applications require neither mobility
localization nor real-time processing of data. Hence, cloud
resources can be efficiently utilized. Fog and edge computing
are more applicable to real-time applications such as online
gaming, smart vehicles, and smart grids. Cloud, fog and
edge computing are all relevant and are used today to fulfill
different application requirements. It is important to note that
cloud, fog, and edge computing paradigms are complemen-
tary, and it is desirable to combine these architectures in a
network.

VII. OVERALL DISCUSSION AND ANALYSIS
Cloud computing considers the delivery of any hosted
services through the Internet. Potential users can access,
manipulate, and process their data over the Cloud comput-
ing infrastructure instead of purchasing local servers with
high maintenance costs. Cloud computing offers elasticity
and scalability features to synchronize and update users’
data automatically at a low cost. However, despite sev-
eral advantages of cloud infrastructure, it has inherent
vulnerabilities. Therefore, to utilize the cloud computing
services, fault-tolerance in cloud computing environments is
a critical requirement to maximize the efficiency of cloud
computing-based services. To achieve high performance in
cloud computing environments, we argue that it is a signif-
icant requirement to handle performance-related issues of
fault tolerance matrices at the system and component level
efficiently (as discussed in sections IV-C and IV-D).

Proactive fault-tolerance approaches are considered bet-
ter as compared to the reactive fault-tolerance approaches

because proactive methods predict fault before their occur-
rence and replace faulty components or software’s with
another functional software or components by using the four
main proactive fault techniques such as self-healing, pre-
emptive migration, software rejuvenation, and load balancing
discussed in section IV-G. For instance, with the self-healing
technique, big tasks are divided into multiple small tasks.
In the event of a failure, the system is recovered from the
faults by analyzing the small tasks and recovering errors with-
out shutting down the complete system. In the preemptive
migration technique, failures are being monitored on each
running node running on the High-Performance Comput-
ing (HPC) system, and in the event of failure, unhealthy nodes
are replaced by healthy compute nodes. The software rejuve-
nation technique is used to deal with software aging-related
defects that are caused due to software aging problems.
It tolerates software failures, and can perform operations
continuously despite interruptions due to software errors.
Load balancing provides better scalability and availability
by managing system load efficiently. It helps to improve
the applications and services response to the end-users by
managing task and process flows adequately in the cloud
system. However, in general, the proactive approaches rely
on predicting the faults before their occurrence, and continu-
ously monitoring the health of the cloud system, which could
impose extra overhead and higher execution costs.

On the other hand, reactive methods handle faults after
their occurrence, and faulty components or software are man-
aged using a set of already developed maintenance programs
based on the selected seven techniques discussed in section
IV-F. Reactive approaches are invoked after the occurrence of
faults hence at the system level there are no extra overheads
used to ensure the functioning of the cloud system itself.

Reactive and proactive fault-tolerance approaches have a
significant role in shaping reliable cloud computing appli-
cations and services. However, both reactive and proactive
approaches are considered in cloud computing based on
the applications developed for and purposed used for as
summarized in Table 3. The presented state-of-the-art cloud
computing fault-tolerance studies show that both techniques
have their advantages and limitation. The Hybrid (policies
mix of both reactive and proactive) would yield a better result
for ensuring better strategies for developing a fault-tolerance
cloud computing environment.

VIII. CONCLUSION
In 2019, the global cloud computing market was $250 billion,
and this trend keeps growing. Recent forecast results show
that 80% of organizations are poised to migrate to the cloud
computing environment by 2025. Therefore, the ability to
design, build and migrate cloud-based applications is in very
high demand.

In the study ofWang et al. [79] and Ding et al. [108] about
95% of task completion rate is achieved on real-world cloud
workload. However, the remaining 5% tasks were failed
which indicates that thousands of tasks were not completed.

VOLUME 10, 2022 63437

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

Therefore, highly efficient fault-tolerant models and frame-
works are required that can increase task completion rate as
well as minimize the service failure in cloud-based environ-
ments to further enhance fault-tolerance in the cloud comput-
ing environments.

In this survey, we overview cloud computing salient fea-
tures, advantages, components, business/service deployment
models, types of cloud, and cloud implementation using
distributed, centralized, and decentralized architecture to
establish an understanding of cloud computing topics and
related concepts comprehensively.

We study cloud fault-tolerance by analyzing fault cate-
gories, methods, metrics, tools, and applied fault-tolerance
frameworks. Furthermore, we discussed fault-tolerance
specific to cloud computing and organize a comprehen-
sive review of the state-of-the-art research focusing on
fault-tolerance in cloud computing, considering reactive
and proactive approaches and existing fault-tolerance archi-
tecture/frameworks and outline future research directions
specific to cloud computing fault-tolerance.

The fault-tolerance frameworks studied provide solutions
to specific fault types, and a single fault-tolerance framework
can not provide a solution to all types of faults. Currently,
Service providers choose fault-tolerance mechanisms as per
the end-user requirements. The end-user can select services
from the service provider catalog (tailor-made to fulfill cus-
tomer needs). After that service level agreements in terms of
fault-tolerance must be guaranteed by the service provider
to meet end-user quality of service expectations. However,
it may be possible to develop a unified fault-tolerance frame-
work that could provide solutions to most fault types. A uni-
fied fault-tolerance framework is easy to manage but difficult
to develop due to design complexity.

In summary, in this paper, we highlight salient features
and advantages of cloud computing and provide a detailed
background of cloud computing. Furthermore, we present
a fault-tolerance overview, as well as techniques in the
scope of cloud computing. We then highlight proactive and
reactive approaches that can provide fault-tolerance in the
cloud, after which we structure and organize state-of-the-art
research efforts addressing fault-tolerance by utilizing these
approaches and discuss existing fault-tolerance architec-
ture/frameworks support for cloud computing. We also out-
lined important future research directions for fault-tolerance
in cloud from multiple perspectives.

REFERENCES
[1] The NIST Definition of Cloud Computing, Standard SP 800-145, National

Institute of Science and Technology, 2011.
[2] A. Keshavarzi, A. T. Haghighat, and M. Bohlouli, ‘‘Research challenges

and prospective business impacts of cloud computing: A survey,’’ in Proc.
IEEE 7th Int. Conf. Intell. Data Acquisition Adv. Comput. Syst. (IDAACS),
vol. 2, Sep. 2013, pp. 731–736.

[3] M. G. Avram, ‘‘Advantages and challenges of adopting cloud computing
from an enterprise perspective,’’ Proc. Technol., vol. 12, pp. 529–534,
Jan. 2014.

[4] A. Apostu, F. Puican, G. Ularu, G. Suciu, and G. Todoran, ‘‘The
advantages of telemetry applications in the cloud,’’ in Recent
Advances in Applied Computer Science and Digital Services, vol. 2103,
H. Fujita and M. Tuba, Eds. 2013, pp. 118–123. [Online]. Available:
https://www.wseas.org/main/books/2013/Morioka/DSAC.pdf

[5] A. Gajbhiye and K. M. P. Shrivastva, ‘‘Cloud computing: Need, enabling
technology, architecture, advantages and challenges,’’ in Proc. 5th
Int. Conf. Confluence Next Gener. Inf. Technol. Summit (Confluence),
Sep. 2014, pp. 1–7.

[6] V. Rajaraman, ‘‘Cloud computing,’’ Resonance, vol. 19, no. 3,
pp. 242–258, 2014.

[7] P. R. Kumar, P. H. Raj, and P. Jelciana, ‘‘Exploring data security issues and
solutions in cloud computing,’’Proc. Comput. Sci., vol. 125, pp. 691–697,
Jan. 2018.

[8] N. Subramanian and A. Jeyaraj, ‘‘Recent security challenges
in cloud computing,’’ Comput. Electr. Eng., vol. 71, pp. 28–42,
Oct. 2018.

[9] R. Buyya et al., ‘‘A manifesto for future generation cloud computing:
Research directions for the next decade,’’ ACM Comput. Surv., vol. 51,
no. 5, pp. 1–38, Nov. 2018.

[10] M. N. O. Sadiku, S. M. Musa, and O. D. Momoh, ‘‘Cloud computing:
Opportunities and challenges,’’ IEEE Potentials, vol. 33, no. 1, pp. 34–36,
Jan./Feb. 2014.

[11] F. Durao, J. F. S. Carvalho, A. Fonseka, and V. C. Garcia, ‘‘A sys-
tematic review on cloud computing,’’ J. Supercomput., vol. 68, no. 3,
pp. 1321–1346, Jun. 2014.

[12] R. Lin, Y. Cheng, M. D. Andrade, L. Wosinska, and J. Chen, ‘‘Disag-
gregated data centers: Challenges and trade-offs,’’ IEEE Commun. Mag.,
vol. 58, no. 2, pp. 20–26, Feb. 2020.

[13] C. Kachris and I. Tomkos, ‘‘A survey on optical interconnects for data
centers,’’ IEEE Commun. Surveys Tuts., vol. 14, no. 4, pp. 1021–1036,
4th Quart., 2012.

[14] H. Qi, M. Shiraz, J.-Y. Liu, A. Gani, Z. A. Rahman, and T. A. Altameem,
‘‘Data center network architecture in cloud computing: Review, taxon-
omy, and open research issues,’’ J. Zhejiang Univ. Sci. C, vol. 15, no. 9,
pp. 776–793, Sep. 2014.

[15] B. Mohammed, M. Kiran, K. M. Maiyama, M. M. Kamala, and
I.-U. Awan, ‘‘Failover strategy for fault tolerance in cloud comput-
ing environment,’’ Softw., Pract. Exp., vol. 47, no. 9, pp. 1243–1274,
2017.

[16] H. P. Zima and A. Nikora, Fault Tolerance. Boston, MA, USA: Springer,
2011, pp. 645–658.

[17] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic con-
cepts and taxonomy of dependable and secure computing,’’ IEEE Trans.
Depend. Sec. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[18] M. V. Steen and A. S. Tanenbaum, Distributed Systems, 3rd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2017.

[19] S. Hukerikar and C. Engelmann, ‘‘Resilience design patterns—A struc-
tured approach to resilience at extreme scale (version 1.0),’’ 2016,
arXiv:1611.02717.

[20] A. U. Rehman, R. L. Aguiar, and J. P. Barraca, ‘‘Fault-tolerance in the
scope of software-defined networking (SDN),’’ IEEE Access, vol. 7,
pp. 124474–124490, 2019.

[21] A. Ganesh, M. Sandhya, and S. Shankar, ‘‘A study on fault tolerance
methods in cloud computing,’’ in Proc. IEEE Int. Adv. Comput. Conf.
(IACC), Feb. 2014, pp. 844–849.

[22] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes,
and J. N. de Souza, ‘‘Elasticity in cloud computing: A survey,’’ Ann.
Telecommun.-Annales des Télécommun., vol. 70, no. 7, pp. 289–309,
2015.

[23] M. N. Cheraghlou, A. Khadem-Zadeh, and M. Haghparast, ‘‘A survey of
fault tolerance architecture in cloud computing,’’ J. Netw. Comput. Appl.,
vol. 61, pp. 81–92, Feb. 2016.

[24] M. Hasan and M. S. Goraya, ‘‘Fault tolerance in cloud computing envi-
ronment: A systematic survey,’’ Comput. Ind., vol. 99, pp. 156–172,
Aug. 2018.

[25] P. Kumari and P. Kaur, ‘‘A survey of fault tolerance in cloud computing,’’
J. King Saud Univ., Comput. Inf. Sci., vol. 33, no. 10, pp. 1159–1176,
2018.

[26] Q. Zhang, L. Cheng, and R. Boutaba, ‘‘Cloud computing: State-of-the-
art and research challenges,’’ J. Internet Services Appl., vol. 1, no. 1,
pp. 7–18, May 2010.

[27] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ‘‘A view of
cloud computing,’’ Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[28] T. Noor, S. Zeadally, A. Alfazic, and Q. Z. Sheng, ‘‘Mobile Cloud
computing: Challenges and future research directions,’’ J. Netw. Comput.
Appl., vol. 115, pp. 70–85, Aug. 2018.

[29] K. Bilal, O. Khalid, S. U. R. Malik, M. U. S. Khan, S. U. Khan, and
A. Y. Zomaya, Fault Tolerance in the Cloud. Hoboken, NJ, USA: Wiley,
2016, ch. 24, pp. 291–300.

63438 VOLUME 10, 2022

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

[30] H. T. M. Gamage, H. D. Weerasinghe, and N. G. J. Dias, ‘‘A survey on
blockchain technology concepts, applications, and issues,’’ Social Netw.
Comput. Sci., vol. 1, no. 2, pp. 1–15, Mar. 2020.

[31] C. V. N. U. B. Murthy, M. L. Shri, S. Kadry, and S. Lim, ‘‘Blockchain
based cloud computing: Architecture and research challenges,’’ IEEE
Access, vol. 8, pp. 205190–205205, 2020.

[32] M. van Steen and A. S. Tanenbaum, ‘‘A brief introduction to distributed
systems,’’ Computing, vol. 98, no. 10, pp. 967–1009, Oct. 2016.

[33] K. Nørvåg, ‘‘An introduction to fault-tolerant systems,’’ Dept.
Comput. Inf. Sci., Norwegian Univ. Sci. Technol., Trondheim,
Norway, Tech. Rep. IDI 6/99, Jul. 2000. [Online]. Available:
https://folk.idi.ntnu.no/noervaag/papers/IDI-TR-6-99.pdf

[34] R. Arno, P. Gross, and R. Schuerger, ‘‘What five 9’s really means and
managing expectations,’’ in Proc. Conf. Rec. IEEE Ind. Appl. Conf. 41st
IAS Annu. Meeting, Oct. 2006, pp. 270–275.

[35] O. Haq, M. Raja, and F. R. Dogar, ‘‘Measuring and improving the
reliability of wide-area cloud paths,’’ in Proc. 26th Int. Conf. World Wide
Web, Apr. 2017, pp. 253–262.

[36] D. K. Pradhan, Fault-tolerant Computer System Design. Upper Saddle
River, NJ, USA: Prentice-Hall, 1996.

[37] E. Dubrova, Fault-Tolerant Design. New York, NY, USA:
Springer, 2013. [Online]. Available: http://www.alavinia.ir/ebook/
FaultTolerantDesign.pdf, doi: 10.1007/978-1-4614-2113-9.

[38] M. R. Mesbahi, A. M. Rahmani, and M. Hosseinzadeh, ‘‘Reliability
and high availability in cloud computing environments: A reference
roadmap,’’ Hum.-Centric Comput. Inf. Sci., vol. 8, no. 1, pp. 1–31,
Dec. 2018.

[39] A. J. Frank. (Dec. 2018). Fault Tolerance. [Online]. Available: http://
u.cs.biu.ac.il/~ariel/download/ds590/pdfs/chp08.pdf

[40] S. M. A. Ataallah, S. M. Nassar, and E. E. Hemayed, ‘‘Fault tolerance
in cloud computing—Survey,’’ in Proc. 11th Int. Comput. Eng. Conf.
(ICENCO), Dec. 2015, pp. 241–245.

[41] H. Agarwal and A. Sharma, ‘‘A comprehensive survey of fault tolerance
techniques in cloud computing,’’ in Proc. Int. Conf. Comput. Netw. Com-
mun. (CoCoNet), Dec. 2015, pp. 408–413.

[42] E. Dubrova, Software Redundancy. New York, NY, USA: Springer, 2013,
pp. 55–86,157–179.

[43] D. A. Rennels, ‘‘Fault-tolerant computing,’’ in The Encyclopedia of Com-
puter Science. Chichester, U.K.: Wiley, 2000, pp. 698–702.

[44] J. Zhang, A. Zhou, Q. Sun, S. Wang, and F. Yang, ‘‘Overview on fault
tolerance strategies of composite service in service computing,’’Wireless
Commun. Mobile Comput., vol. 2018, pp. 1–8, Jun. 2018.

[45] S. Bansal, S. Sharma, and I. Trivedi, ‘‘A detailed review of fault-tolerance
techniques in distributed system,’’ Int. J. Internet Distrib. Comput. Syst.,
vol. 1, no. 1, pp. 1–7, 2011.

[46] L. P. Saikia and Y. L. Devi, ‘‘Fault tolerance techniques and algorithms
in cloud computing,’’ Int. J. Comput. Sci. Commun. Netw., vol. 4, no. 1,
pp. 1–8, 2014.

[47] D. Poola, M. A. Salehi, K. Ramamohanarao, and R. Buyya, ‘‘A taxonomy
and survey of fault-tolerant workflow management systems in cloud and
distributed computing environments,’’ in Software Architecture for Big
Data and the Cloud, I. Mistrik, R. Bahsoon, N. Ali, M. Heisel, and
B. Maxim, Eds. Boston, MA, USA: Morgan Kaufmann, 2017, ch. 15,
pp. 285–320.

[48] G. C. Fox, R. D.Williams, and G. C.Messina,Parallel ComputingWorks!
Amsterdam, The Netherlands: Elsevier, 2014.

[49] C. Wu, R. Buyya, and K. Ramamohanarao, ‘‘Big data analytics
= machine learning + cloud computing,’’ in Big Data, R. Buyya,
R. N. Calheiros, and A. V. Dastjerdi, Eds. San Mateo, CA, USA:
Morgan Kaufmann, 2016, ch. 1, pp. 3–38.

[50] T. Sterling, M. Anderson, and M. Brodowicz, ‘‘MapReduce,’’ in
High Performance Computing, T. Sterling, M. Anderson, and
M. Brodowicz, Eds. Boston, MA, USA: Morgan Kaufmann, 2018,
ch. 19, pp. 579–589.

[51] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, ‘‘The rise of ‘big data’ on cloud computing: Review and open
research issues,’’ Inf. Syst., vol. 47, pp. 98–115, Jul. 2015.

[52] I. Polato, R. Ré, A. Goldman, and F. Kon, ‘‘A comprehensive view of
Hadoop research—A systematic literature review,’’ J. Netw. Comput.
Appl., vol. 46, pp. 1–25, Nov. 2014.

[53] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and
A. D. Keromytis, ‘‘ASSURE: Automatic software self-healing using res-
cue points,’’ ACM SIGARCH Comput. Archit. News, vol. 37, no. 1,
pp. 37–48, Mar. 2009.

[54] G. Chen, H. Jin, D. Zou, B. B. Zhou,W. Qiang, and G. Hu, ‘‘SHelp: Auto-
matic self-healing for multiple application instances in a virtual machine
environment,’’ in Proc. IEEE Int. Conf. Cluster Comput., Sep. 2010,
pp. 97–106.

[55] Z. Zheng, T. C. Zhou, M. R. Lyu, and I. King, ‘‘FTCloud: A component
ranking framework for fault-tolerant cloud applications,’’ in Proc. IEEE
21st Int. Symp. Softw. Rel. Eng., Nov. 2010, pp. 398–407.

[56] I. P. Egwutuoha, ‘‘A proactive fault tolerance framework for
high performance computing (HPC) systems in the cloud,’’
Ph.D. dissertation, Dept. Electr. Inf. Eng., Univ. Sydney, Sydney,
NSW, Australia, Dec. 2013. [Online]. Available: http://hdl.handle.
net/2123/11484

[57] J. Liu, S. Wang, A. Zhou, S. A. P. Kumar, F. Yang, and R. Buyya,
‘‘Using proactive fault-tolerance approach to enhance cloud service reli-
ability,’’ IEEE Trans. Cloud. Comput., vol. 6, no. 4, pp. 1191–1202,
Oct./Dec. 2018.

[58] J. Liu, J. Zhou, and R. Buyya, ‘‘Software rejuvenation based fault toler-
ance scheme for cloud applications,’’ in Proc. IEEE 8th Int. Conf. Cloud
Comput., Jun. 2015, pp. 1115–1118.

[59] D. Sun, G. Zhang, C. Wu, K. Li, and W. Zheng, ‘‘Building a
fault tolerant framework with deadline guarantee in big data stream
computing environments,’’ J. Comput. Syst. Sci., vol. 89, pp. 4–23,
Nov. 2017.

[60] M. R. Chinnaiah and N. Niranjan, ‘‘Fault tolerant software systems using
software configurations for cloud computing,’’ J. Cloud Comput., vol. 7,
no. 1, p. 3, Dec. 2018.

[61] P. Zhang, S. Shu, and M. Zhou, ‘‘An online fault detection model and
strategies based on SVM-grid in clouds,’’ IEEE/CAA J. Autom. Sinica,
vol. 5, no. 2, pp. 445–456, Mar. 2018.

[62] V. Kaushal and A. G. Bala, ‘‘Autonomic fault tolerance using haproxy in
cloud enviorment,’’M.S. thesis, Dept. Comput. Sci., Thapar Univ. Patiala,
India, 2011. [Online]. Available: http://hdl.handle.net/10266/1439

[63] S. Malik and F. Huet, ‘‘Adaptive fault tolerance in real time cloud com-
puting,’’ in Proc. IEEE World Congr. Services, Jul. 2011, pp. 280–287.

[64] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. N. Chang, M. R. Lyu,
andR. Buyya, ‘‘Cloud service reliability enhancement via virtualmachine
placement optimization,’’ IEEE Trans. Services Comput., vol. 10, no. 6,
pp. 902–913, Nov./Dec. 2017.

[65] D. Sun, G. Chang, C. Miao, and X. Wang, ‘‘Modelling and evaluating a
high serviceability fault tolerance strategy in cloud computing environ-
ments,’’ Int. J. Secur. Netw., vol. 7, no. 4, pp. 196–210, 2012.

[66] A. Zhou, Q. Sun, and J. Li, ‘‘Enhancing reliability via checkpointing in
cloud computing systems,’’ China Commun., vol. 14, no. 7, pp. 1–10,
Jul. 2017.

[67] J. Zhao, Y. Xiang, T. Lan, H. H. Huang, and S. Subramaniam, ‘‘Elastic
reliability optimization through peer-to-peer checkpointing in cloud com-
puting,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 491–502,
Feb. 2017.

[68] Y. Zhang, Z. Zheng, and M. R. Lyu, ‘‘BFTCloud: A Byzantine fault
tolerance framework for voluntary-resource cloud computing,’’ in Proc.
IEEE 4th Int. Conf. Cloud Comput., Jul. 2011, pp. 444–451.

[69] C.-A. Chen, M. Won, R. Stoleru, and G. G. Xie, ‘‘Energy-efficient fault-
tolerant data storage and processing in mobile cloud,’’ IEEE Trans. Cloud
Comput., vol. 3, no. 1, pp. 28–41, Jan./Mar. 2015.

[70] R. Jhawar, V. Piuri, and M. Santambrogio, ‘‘Fault tolerance management
in cloud computing: A system-level perspective,’’ IEEE Syst. J., vol. 7,
no. 2, pp. 288–297, Jun. 2013.

[71] J. Lin, X. Lu, L. Yu, Y. Zou, and L. Zha, ‘‘VegaWarden: A uniform user
management system for cloud applications,’’ in Proc. IEEE 5th Int. Conf.
Netw., Archit., Storage, Jul. 2010, pp. 457–464.

[72] G. E. Fagg and J. J. Dongarra, ‘‘FT-MPI: Fault tolerant MPI, support-
ing dynamic applications in a dynamic world,’’ in Recent Advances in
Parallel Virtual Machine and Message Passing Interface, J. Dongarra,
P. Kacsuk, and N. Podhorszki, Eds. Berlin, Germany: Springer, 2000,
pp. 346–353.

[73] I. P. Egwutuoha, S. Chen, D. Levy, and B. Selic, ‘‘A fault toler-
ance framework for high performance computing in cloud,’’ in Proc.
12th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID),
May 2012, pp. 709–710.

[74] R. Poli, J. Kennedy, and T. Blackwell, ‘‘Particle swarm optimization,’’
Swarm Intell., vol. 1, no. 1, pp. 33–57, Jun. 2007.

[75] P. K. Senyo, E. Addae, and R. Boateng, ‘‘Cloud computing research:
A review of research themes, frameworks, methods and future research
directions,’’ Int. J. Inf. Manage., vol. 38, no. 1, pp. 128–139, 2018.

VOLUME 10, 2022 63439

http://dx.doi.org/10.1007/978-1-4614-2113-9

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

[76] A. Abdelaziz, M. Elhoseny, A. S. Salama, and A. M. Riad, ‘‘A machine
learning model for improving healthcare services on cloud computing
environment,’’Measurement, vol. 119, pp. 117–128, Apr. 2018.

[77] P. Guo, M. Liu, J. Wu, Z. Xue, and X. He, ‘‘Energy-efficient fault-tolerant
scheduling algorithm for real-time tasks in cloud-based 5G networks,’’
IEEE Access, vol. 6, pp. 53671–53683, 2018.

[78] Y. Zhang, X. Cheng, L. Chen, and H. Shen, ‘‘Energy-efficient tasks
scheduling heuristics with multi-constraints in virtualized clouds,’’
J. Grid Comput., vol. 16, no. 3, pp. 459–475, Sep. 2018.

[79] J. Wang, W. Bao, X. Zhu, L. T. Yang, and Y. Xiang, ‘‘FESTAL: Fault-
tolerant elastic scheduling algorithm for real-time tasks in virtualized
clouds,’’ IEEE Trans. Comput., vol. 64, no. 9, pp. 2545–2558, Sep. 2015.

[80] M. Rath, J. Satpathy, and G. S. Oreku, ‘‘Artificial intelligence and
machine learning applications in cloud computing and Internet of
Things,’’ in Artificial Intelligence to Solve Pervasive Internet of Things
Issues, G. Kaur, P. Tomar, and M. Tanque, Eds. New York, NY, USA:
Academic, 2021, ch. 6, pp. 103–123.

[81] S. Mahfoudhi, M. Frehat, and T. Moulahi, ‘‘Enhancing cloud of things
performance by avoiding unnecessary data through artificial intelligence
tools,’’ in Proc. 15th Int. Wireless Commun. Mobile Comput. Conf.
(IWCMC), Jun. 2019, pp. 1463–1467.

[82] W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and
P. Demeester, ‘‘Trends in worldwide ICT electricity consumption from
2007 to 2012,’’ Comput. Commun., vol. 50, pp. 64–76, Sep. 2014.

[83] A. Fehske, G. Fettweis, J. Malmodin, and G. Biczok, ‘‘The global foot-
print of mobile communications: The ecological and economic perspec-
tive,’’ IEEE Commun. Mag., vol. 49, no. 8, pp. 55–62, Aug. 2011.

[84] W. Vereecken, W. Van Heddeghem, D. Colle, M. Pickavet, and
P. Demeester, ‘‘Overall ICT footprint and green communication tech-
nologies,’’ in Proc. 4th Int. Symp. Commun., Control Signal Process.
(ISCCSP), Mar. 2010, pp. 1–6.

[85] W. Van Heddeghem, W. Vereecken, D. Colle, M. Pickavet, and
P. Demeester, ‘‘Distributed computing for carbon footprint reduction
by exploiting low-footprint energy availability,’’ Future Gener. Comput.
Syst., vol. 28, no. 2, pp. 405–414, Feb. 2012.

[86] A. P. Bianzino, C. Chaudet, D. Rossi, and J.-L. Rougier, ‘‘A survey of
green networking research,’’ IEEE Commun. Surveys Tuts., vol. 14, no. 1,
pp. 3–20, 1st Quart., 2012.

[87] K. Gai, M. Qiu, and H. Zhao, ‘‘Energy-aware task assignment for mobile
cyber-enabled applications in heterogeneous cloud computing,’’ J. Paral-
lel Distrib. Comput., vol. 111, pp. 126–135, Jan. 2018.

[88] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, ‘‘Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,’’ IEEE Trans. Mobile Comput., vol. 18, no. 2, pp. 319–333,
Feb. 2019.

[89] G. Ortiz, M. Zouai, O. Kazar, A. Garcia-de-Prado, and J. Boubeta-Puig,
‘‘Atmosphere: Context and situational-aware collaborative IoT archi-
tecture for edge-fog-cloud computing,’’ Comput. Standards Interfaces,
vol. 79, Jan. 2022, Art. no. 103550.

[90] M. Kasmi, F. Bahloul, and H. Tkitek, ‘‘Smart home based on Internet
of Things and cloud computing,’’ in Proc. 7th Int. Conf. Sci. Electron.,
Technol. Inf. Telecommun. (SETIT), Dec. 2016, pp. 82–86.

[91] H. P. Breivold and K. Sandström, ‘‘Internet of Things for industrial
automation—Challenges and technical solutions,’’ in Proc. IEEE Int.
Conf. Data Sci. Data Intensive Syst., Dec. 2015, pp. 532–539.

[92] O. Ali, A. Shrestha, J. Soar, and S. F.Wamba, ‘‘Cloud computing-enabled
healthcare opportunities, issues, and applications: A systematic review,’’
Int. J. Inf. Manage., vol. 43, pp. 146–158, Dec. 2018.

[93] S. Bansal, R. K. Bansal, and K. Arora, ‘‘Energy efficient backup over-
loading schemes for fault tolerant scheduling of real-time tasks,’’ J. Syst.
Archit., vol. 113, Feb. 2021, Art. no. 101901.

[94] Z. Li, V. Chang, H. Hu, H. Hu, C. Li, and J. Ge, ‘‘Real-time and dynamic
fault-tolerant scheduling for scientific workflows in clouds,’’ Inf. Sci.,
vol. 568, pp. 13–39, Aug. 2021.

[95] R. Arshad, S. Zahoor, M. A. Shah, A. Wahid, and H. Yu, ‘‘Green IoT:
An investigation on energy saving practices for 2020 and beyond,’’ IEEE
Access, vol. 5, pp. 15667–15681, 2017.

[96] Z. Niu, ‘‘Green communication and networking: A new horizon,’’ IEEE
Trans. Green Commun. Netw., vol. 4, no. 3, pp. 629–630, Sep. 2020.

[97] P. Varshney and Y. Simmhan, ‘‘Characterizing application scheduling on
edge, fog, and cloud computing resources,’’ Softw. Pract. Exp., vol. 50,
no. 5, pp. 558–595, May 2020.

[98] B. Varghese and R. Buyya, ‘‘Next generation cloud computing: New
trends and research directions,’’ Future Gener. Comput. Syst., vol. 79,
pp. 849–861, Feb. 2018.

[99] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, ‘‘Software-defined networking: A comprehensive survey,’’
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[100] A. U. Rehman, R. L. Aguiar, and J. P. Barraca, ‘‘Network functions
virtualization: The long road to commercial deployments,’’ IEEE Access,
vol. 7, pp. 60439–60464, 2019.

[101] H.-J. Cha, H.-K. Yang, and Y.-J. Song, ‘‘A study on the design of fog
computing architecture using sensor networks,’’ Sensors, vol. 18, no. 11,
p. 3633, Oct. 2018.

[102] O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, ‘‘The programmable
data plane: Abstractions, architectures, algorithms, and applications,’’
ACM Comput. Surveys, vol. 54, no. 4, pp. 1–36, May 2022, doi:
10.1145/3447868.

[103] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
‘‘P4: Programming protocol-independent packet processors,’’
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[104] H. Song, ‘‘Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,’’ in Proc. 2nd ACM SIGCOMM
Workshop Hot Topics Softw. Defined Netw. (HotSDN). New York, NY,
USA: Association for Computing Machinery, 2013, pp. 127–132.

[105] W. L. da Costa Cordeiro, J. A. Marques, and L. P. Gaspary, ‘‘Data
plane programmability beyond OpenFlow: Opportunities and challenges
for network and service operations and management,’’ J. Netw. Syst.
Manage., vol. 25, no. 4, pp. 784–818, Oct. 2017.

[106] F. Paolucci, F. Cugini, P. Castoldi, and T. Osinski, ‘‘Enhancing 5G
SDN/NFV edge with p4 data plane programmability,’’ IEEE Netw.,
vol. 35, no. 3, pp. 154–160, May 2021.

[107] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, ‘‘An exhaustive survey on P4
programmable data plane switches: Taxonomy, applications, challenges,
and future trends,’’ IEEE Access, vol. 9, pp. 87094–87155, 2021.

[108] Y. Ding, G. Yao, and K. Hao, ‘‘Fault-tolerant elastic scheduling algorithm
for workflow in cloud systems,’’ Inf. Sci., vol. 393, pp. 47–65, Jul. 2017.

A. U. REHMAN received the Ph.D. degree in
telecommunications from MAP-tele–a joint doc-
toral program of the Universidade do Porto, the
Universidade de Aveiro, and the Universidade
do Minho, Portugal, three universities with a
strong tradition in the area of telecommunications
engineering). He received the master’s degree
with Distinction in telecommunications engineer-
ing from The University of Sunderland, U.K., in
2011, having followed an approved program in

telecommunications engineering. He was also a Research Fellow of the
Fundacao para a Ciencia e a Tecnologia/Ministerio da Educacao e Ciencia
(FCT/MEC) hosted by the Instituto de Telecomunicacoes. He has been
developing research work in the areas of reliability at a different level from
software-defined networking (SDN), network functions virtualization (NFV)
to cloud computing, and service assurance of virtual networks. His research
interests include software-defined networking, network functions virtual-
ization, reliability and resilience in future networks, and mobile networks
(5G, and beyond). He was a Visiting Scholar at Telenor Research ASA,
HQ, Norway (research focus: software-defined networks, network functions
virtualization, and service assurance). He has working experience of over
7 years of working with research institutes and over 12 years of education
and working experience in the EU and EEA area. His professional back-
ground is a mix of teaching and practical experience gained from working
at telecommunications research institutes and in the industry with different
organizations. He received the certificate of excellence in ethics, research
data management, manuscript writing, and several others from Elsevier. He
already published articles in IEEE high-impact journals and conferences. He
is reviewing articles for IEEE ACCESS and IEEE INTERNET OF THINGS JOURNAL.
His verified reviews are available at Publons. He is also a member of the
Future Networks Community, the Communications Society (ComSoc), and
the Software-defined Networks Community, IEEE.

63440 VOLUME 10, 2022

http://dx.doi.org/10.1145/3447868

A. U. Rehman et al.: Fault-Tolerance in the Scope of Cloud Computing

RUI L. AGUIAR (Senior Member, IEEE) received
the degree in telecommunication engineering and
the Ph.D. degree in electrical engineering from the
University of Aveiro, in 1990 and 2001, respec-
tively. He is currently a Full Professor with the
University of Aveiro, responsible for the network-
ing area, and has been previously an Adjunct Pro-
fessor at INI, Carnegie Mellon University. He was
a Visiting Research Scholar with the Universidade
Federal de Uberlândia, Brazil, and served as an

Advisor to the Portuguese government on 5G policies. He is coordinating
a research line nationwide in the Instituto de Telecomunicações, in the area
of networks and services. During six years, he led the Technological Platform
on Connected Communities, a regional cross-disciplinary industry-oriented
activity on smart environments. His current research interests include the
implementation of advanced wireless networks and systems, with special
emphasis on 5G networks, and the future internet. He has more than 500 pub-
lished articles in those areas, including standardization contributions to IEEE
and IETF. He has served as the Technical and General Chair for several
conferences from IEEE, ACM, and IFIP, and is regularly invited for keynotes
on 5G and future internet networks. He sits on the TPC of most major
IEEE ComSoc conferences. He has extensive participation in national and
international projects, as well as in industry technology transfer actions. He is
currently associated with the 5G PPP Infrastructure Association and is the
current Chair of the Steering Board of the Networld Europe ETP. He is the
Portugal ComSoc Chapter Chair and a member of ACM. He is an Associate
Editor of Wiley’s ETT, and Springers’Wireless Networks and has helped on
the launch of Elsevier’s ICT Express. He is a Chartered Engineer, has acted as
a consultant to several major operators, as a technology advisor to bootstrap
several SMEs, and as an expert to several public bodies, both on the societal
and on the judiciary branches. He currently sits on the Advisory Board of
several EU projects and research units.

JOÃO PAULO BARRACA received the Ph.D.
degree in informatics engineering from the Uni-
versidade de Aveiro, in 2012. He is currently an
acting Assistant Professor with the Universidade
de Aveiro. He conducts research with the Insti-
tuto de Telecomunicações, having led the TN-AV
Group, from 2015 to 2016. He has more than
100 peer-reviewed publications and reports related
to solutions for the Internet of Things and software
for cloud environments, with a focus on software-

defined networking and 5G networks. Having participated in many review
panels, he has also organized workshops and conferences. He has par-
ticipated in more than 20 projects, either developing novel concepts or
applying these concepts in innovative products and solutions. He leads
the FCT/CAPES DEVNF Project in Portugal devoted to NFV orchestra-
tion, the local teams of EU LIFE-PAYT, participates in European Science
Cloud for Astronomy (EUAENEAS), the local team in the P2020 (CRUISE
Project), the security team at P2020-Social, participates in the EU Interreg
CISMOB smart cities pilot, the Engage SKA research infrastructure, and
the Square Kilometer Array System (SKA) Team, and having lead activi-
ties for TM-LINFRA, among a dozen other innovation projects. Recently,
he received the third place from the INCM Innovation Challenge, for the
development of a project targeting smarter environments for public transports
in smart cities, using block chain technologies.

VOLUME 10, 2022 63441

