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Demystification of artificial intelligence for respiratory clinicians managing patients 
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ABSTRACT
Introduction: Asthma and chronic obstructive pulmonary disease (COPD) are leading causes of mor-
bidity and mortality worldwide. Despite all available diagnostics and treatments, these conditions pose 
a significant individual, economic and social burden. Artificial intelligence (AI) promises to support 
clinical decision-making processes by optimizing diagnosis and treatment strategies of these hetero-
geneous and complex chronic respiratory diseases. Its capabilities extend to predicting exacerbation 
risk, disease progression and mortality, providing healthcare professionals with valuable insights for 
more effective care. Nevertheless, the knowledge gap between respiratory clinicians and data scientists 
remains a major constraint for wide application of AI and may hinder future progress. This narrative 
review aims to bridge this gap and encourage AI deployment by explaining its methodology and added 
value in asthma and COPD diagnosis and treatment.
Areas covered: This review offers an overview of the fundamental concepts of AI and machine 
learning, outlines the key steps in building a model, provides examples of their applicability in asthma 
and COPD care, and discusses barriers to their implementation.
Expert opinion: Machine learning can advance our understanding of asthma and COPD, enabling 
personalized therapy and better outcomes. Further research and validation are needed to ensure the 
development of clinically meaningful and generalizable models.
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1. Introduction

Artificial Intelligence (AI) has grown strikingly over the last dec-
ade, driven by recent technological advancements in computa-
tional power and increased acquisition and (real-time) availability 
of large volumes of different types of data. There is no consensus 
on AI definition [1]. For this review, the definition proposed in the 
University of Helsinki’s Elements of AI course was adopted, which 
defines AI as systems that can execute specific tasks autono-
mously and adaptively. Broadly, AI includes machine learning 
(ML), rule-based expert systems and supporting technologies 
(Figure 1). AI is leading to a paradigm shift in clinical practice, 
optimizing processes and curtailing medical errors [2]. In respira-
tory medicine, it is primarily applied to optimize analyses of chest 
computed tomography scans and conventional chest radio-
graphs, supporting the diagnosis of a wide range of health 
conditions, such as lung cancer [3].

Asthma and chronic obstructive pulmonary disease (COPD) 
are highly prevalent chronic airway diseases, placing 
a substantial burden on individuals, healthcare systems and 
societies [4,5]. AI offers great promise in addressing challenges 

associated with the diagnosis and management of these het-
erogeneous and complex diseases by i) analyzing simulta-
neously different types of data including demographics, 
lifestyle, patient-reported outcome measures, pulmonary and 
extrapulmonary features; and ii) finding linear and non-linear 
relationships and complex patterns. Consequently, it may aid 
in gaining insight into disease heterogeneity [6,7] and identi-
fying patients at risk of exacerbations or premature death 
[8,9], allowing for timely treatment adjustments and improved 
health outcomes and costs.

Despite the mounting evidence showcasing AI advantages 
within respiratory medicine, its integration in clinical practice 
remains scarce. This is partly due to the unawareness of AI 
potential and clinicians’ limited understanding of these tech-
niques [10]. Bridging the knowledge gap may help build trust 
in AI, consequently boosting its deployment in respiratory 
medicine [10]. This narrative review aims to improve clinicians’ 
understanding of AI and provide examples of its implementa-
tion in the diagnosis and management of chronic airway 
diseases.
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2. Demystifying machine learning

ML, a subfield of AI, encompasses three main methods: super-
vised learning (deep and shallow), unsupervised learning, and 
reinforcement learning (Figure 1). For simplicity, this section 
introduces ML starting by covering linear regression.

A linear regression model is the relationship y ¼ f xð Þ
between a dependent (or response) variable y, and ≥ 1 inde-
pendent (or explanatory) variables x, as shown in (1):

ŷi ¼ β0 þ β1xi;1 þ β2xi;2 þ . . .þ βmxi;m (1) 

Here, x1; . . . ; xm denote the explanatory variables, which can 
be clinical characteristics (e.g. age or forced expiratory volume 
in the first second (FEV1)). ŷi denotes the response values 
predicted by the model (e.g. the predicted number of days 
until the next exacerbation-related hospitalization) as opposed 
to yi, which are the true observed response values (e.g. the 
actual number of days until the exacerbation-related 
hospitalization).

The model’s coefficients β0; . . . ; βm, are traditionally fitted 
by ordinary least squares which selects β0; . . . ; βm, such that 
the mean squared difference between observed and pre-
dicted/expected values is minimized (e.g. the smallest differ-
ence between the predicted and observed number of days 
until the next exacerbation-related hospitalization) (Figure S1).

Linear regression adjusted for confounders on observa-
tional data has been a common approach for hypothesis 
testing and causal explanation [11]. In the AI/ML era, emphasis 
has shifted to predictive models, which do not claim to test 
a causal hypothesis. Instead, they are correlational models, 
fitted on observational data, that claim to predict an outcome 
(e.g. the number of days until the next exacerbation-related 
hospitalization). Many clinical tasks are predictive in nature, 
such as identifying patients at increased risk of a poor out-
come [12] or making a diagnosis from radiological images [13]. 
It is noteworthy that causality cannot be inferred from pre-
dictive models due to confounders. While randomized con-
trolled trials are the gold standard for establishing causality, 
they are not always feasible [14]. With the increasing avail-
ability of data, there is a growing interest in estimating causal 
effects from observational data using ML (also known as cau-
sal ML) [14–17]. In contrast to traditional ML, causal ML com-
bines data-driven methods with causal inference to determine 
the effect of a variable on an outcome while considering the 
complex interplay between all variables [15–17]. This usually 
requires domain knowledge of the relationships between vari-
ables involved to guide the modeling process and deduce 
causal effects [15–17]. Causal ML holds significant promise in 
healthcare, particularly for tasks that extend beyond predic-
tion (e.g. deciding which intervention is likely to result in the 
best outcome [16]). In such cases, clinicians seek to under-
stand what would happen to the outcome if different deci-
sions were made [16]. In a recent application, causal ML has 
been used to estimate the treatment effects of dual therapy 
fluticasone furoate/vilanterol on mortality and exacerbation 

Article highlights

● Artificial intelligence and machine learning can learn from big data, 
identify non-linear relationships, and uncover connections that 
healthcare professionals may overlook.

● Machine learning may improve the diagnosis and prognosis of 
asthma and chronic obstructive pulmonary disease by providing 
valuable support to physicians in clinical decision-making.

● A better understanding of machine learning by clinicians may over-
come their resistance to the use of machine learning models and 
facilitate the widespread adoption of these techniques in healthcare.

● Future research should focus on conducting studies with larger 
samples and thoroughly validating machine learning models to 
ensure their generalizability and safety.

● Reinforcement learning and causal machine learning hold promise as 
future avenues for the management of chronic respiratory diseases.

Figure 1. Artificial intelligence hierarchy. Artificial intelligence comprises a variety of methods, including supporting technologies, rule-based expert systems and 
machine learning. Machine learning can be further divided into supervised, unsupervised and reinforcement learning. KNN – K-nearest neighbors; OLS – ordinary 
least squares; SVM – support vector machine.
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rate in people with COPD [18]. Healthcare professionals may, 
therefore, identify responses to different treatments prior to 
an intervention by incorporating causal ML in their practice.

2.1. Forms of machine learning

2.1.1. Supervised learning
Predictive modeling is the underlying concept of supervised 
learning and consists of models, fitted on data, that predict 
response values y (labels in ML) from independent variables x 
(features in ML) [19]. Linear regression is the simplest form of 
supervised learning. There are many types of algorithms, such 
as decision trees, support vector machines, and neural net-
works (Table S1). All these types of models are similar in form 
and function to the linear regression model (1), in that they 
are mathematical equations used to predict y values from x 
values. Supervised learning involves fitting a mathematical 
equation of the form y ¼ f xð Þ based on the training data, in 
which both the response yi and the features xi have been 
observed. The function of the model is to predict for new 
observations, where we observe the features x, and then use 
the equation to find a y value.

Problems in which the y variable is categorical are called 
classification (Figure 2(a)). For instance, support vector 
machine and artificial neural networks have been applied to 
discriminate asthmatics from healthy subjects (y1=asthma or 
y0=healthy), using lung sounds signals as predictors (features, 
x0s) [20]. Conversely, if y is quantitative, then the application is 

called regression (Figure 2(b)). For example, predicting asthma 
lung function (y = FEV1% predicted) from breathing and 
speech audio (features, x0s) using linear regression, random 
forest, and support vector machine [21].

Deep learning takes model complexity to an extreme. 
A deep learning model is built around artificial neural net-
works, which are essentially mathematical equations of the 
form y ¼ f xð Þ [19]. In deep learning, artificial neural network 
models have multiple layers, where the output y of one layer 
is the input x for the next layer [22]. The resulting model is 
essentially still a mathematical equation of the form y ¼ f xð Þ, 
but with many more terms than the model in (1). Deep neural 
networks have achieved high predictive performances in 
detecting asthma [23] and COPD [24] from sociodemographic 
variables, clinical data, biochemical results, lung function, 
bronchial challenge test [23], and lung sounds [24], respec-
tively. Such algorithms are superior at handling many features, 
and therefore outperform shallow algorithms in applications, 
such as image and audio processing [25].

2.1.2. Unsupervised learning
Unsupervised learning is another form of ML, where x data 
(features) are available but no y values (labels) [19]. It con-
sists of exploratory techniques, such as clustering 
(Figure 2(c)) and dimensionality reduction, which aim to 
find structure in data, or suggest a representation of data 
with fewer dimensions (i.e. fewer x variables), respectively. 
Table S1 provides a brief overview of the algorithms used for 

Figure 2. Graphical representation of (a) classification and (b) regression problems of supervised learning; (c) clustering analysis and (d) reinforcement learning.
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these purposes. Clustering techniques have been of great 
value to better understand asthma and COPD heterogeneity. 
A hierarchical cluster analysis was conducted to explore 
COPD phenotypes based on 13 comorbidities (features, x, 
no label, y) [26].

2.1.3. Reinforcement learning
In reinforcement learning [27], the task is not to find a y ¼ f xð Þ
relationship in the data, but to learn a suitable action in each 
set of possible scenarios. Conversely to supervised and unsu-
pervised learning, reinforcement learning does not fit a model 
based on historical data, but instead, the procedure creates 
new data by interacting with the system in which it tries to 
learn suitable actions (Figure 2(d)). Reinforcement learning can 
be used for optimizing ventilation regimes in critically ill 
patients [28]. A ventilation strategy (tidal volume, positive 
end-respiratory pressure, and fraction of inspired oxygen) is 
proposed by the model based on patient’s current character-
istics (e.g. demographics, vitals, laboratory results, and medi-
cation). The algorithm learns the optimal ventilation regime by 
analyzing patients’ health status and observing the result of its 
actions on patient’s survival [28]. Reinforcement learning holds 
great potential in informing clinical decision-making due to its 
ability to address sequential decision-making problems, e.g. 
when treatment requires continuous adjustments considering 
changes in patient’s health status [29]. Examples of successful 
research applications using reinforcement learning in health-
care practice [29] include the optimization of cancer treatment 
[29,30] and of multimorbidity management in patients with 
type 2 diabetes [31].

3. Rule-based expert systems

Rule-based algorithms translate expert knowledge, like the 
implicit rules used by physicians in diagnosis, into explicit if/ 
then/else statements. Please note this is fundamentally differ-
ent from ML; ML algorithms are mathematical relationships 
derived from data and not deduced from expert knowledge. 
Rule-based expert systems can support clinical decision mak-
ing by providing recommendations or warnings from a set of 
rules based on patient’s information. For example, an expert 
system has been developed by pulmonologists for supporting 
the diagnosis of obstructive lung disease in primary care [32]. 
Complex tasks like natural language processing and image 
recognition are challenging to handle with rule-based meth-
ods. As a result, ML has become the predominant approach, 
contributing to recent successes in AI.

4. Supporting technologies

AI also includes supporting technologies such as sensors, 
machine-human interaction, and knowledge representation, 
as well as integrated technologies in which ML is applied, 
such as robotics and autonomous cars. Examples of support-
ing technologies are the digital AI-powered stethoscope for 
remote monitoring of respiratory sounds [33], continuous 
remote monitoring of oxygen saturation levels using pulse 
oximetry [34] or physical activity sensors [35].

5. Phases of ML model development

ML models for medical purposes have advanced, but respira-
tory clinicians often lack understanding. This section describes 
the steps for building ML models.

5.1. Data cleaning

ML algorithms are data-driven methods capable of integrating 
extensive and multimodal data, i.e. different types of data 
including clinical and omics data, text, audio (e.g. lung sounds) 
and imaging (e.g. computed tomography scans). Healthcare 
data often contains missing values, inconsistencies, or errors, 
leading to inaccurate analysis and unreliable results that can 
jeopardize patient safety. It is imperative to ensure data is 
complete, accurate, and consistent before training a model. 
Data cleaning includes checking data accuracy, format, unifor-
mity, de-duplication, handling of missing values and out-
liers [36].

5.2. Model selection

The selection of an ML algorithm is task dependent. If the aim 
is to predict an outcome such as a diagnosis (i.e. presence or 
absence of a disease) or prognosis (e.g. risk of death), super-
vised learning algorithms may be useful for these types of 
tasks. Conversely, if the goal is to uncover patterns in data 
where there is no predefined outcome variable, such as clus-
tering individuals based on a set of characteristics, unsuper-
vised learning methods should be employed. For tasks 
involving a sequence of decisions such as the management 
of chronic diseases with a sequential set of interventions to 
manage disease progression and severity, reinforcement learn-
ing becomes more appropriate. Other aspects should also be 
taken into consideration, such as number of features, model 
complexity, interpretability, and performance.

5.2.1. Number of features and model complexity
Including a large set of features may substantially increase 
model complexity and risk of overfitting. An ideal model has 
the right complexity to capture the y ¼ f xð Þ relationship, but 
not the random noise [19] (Figure S2A). Underfitted models 
fail to capture the y ¼ f xð Þ relationship and thereby produce 
less accurate predictions (Figure S2B). In contrast, overfitted 
models not only model the y ¼ f xð Þ relationship, but also 
capture sample-specific random noise [19] (Figure S2C), lead-
ing to a small error in the training set, but a large error in new 
data [19].

5.2.2. Predictive performance and interpretability
Predictive performance and interpretability are important 
aspects that influence the choice of a ML algorithm [36]. 
In healthcare, both accuracy and interpretability are 
required. Interpretable models, such as linear regression, 
enable easy understanding of how independent variables 
contribute to the response, but may show low predictive 
ability when input variables have non-linear relationships. In 
linear regression, a positive coefficient indicates that the 
mean of the dependent variable tends to increase as the 
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value of the independent variable increases, whereas 
a negative coefficient implies the opposite. More complex 
models, such as artificial neural networks, may yield higher 
predictive performances at the cost of lower interpretability 
[19], for which they are known as ‘black box’ algo-
rithms [37].

5.3. Validation

Model validation is the process of evaluating an ML model on 
a test set to ensure its precision before using it in real-life 
applications [38]. There are two forms of validation: internal 
and external validation [39]. Internal validation is performed in 
individuals that have the same origin as the ones used for 
model training [39]. External validation consists of testing the 
model in a fully independent sample to determine its general-
izability [39].

5.4. Performance metrics

Performance metrics are required to measure the perfor-
mance of an ML model. Most regression metrics are based 
on the difference between the observed and the predicted 
values, such as mean absolute error and root mean squared 
error [40]. There is no determined threshold above which 
a model is considered appropriate, since both mean abso-
lute error and root mean squared error are scale dependent. 
Therefore, as the error decreases, the model’s performance 
improves.

In classification, most metrics are obtained from 
a confusion matrix, which is a cross-tabulation of the true 
and the predicted classes (Table S2) [40]. Several metrics can 
be calculated from the confusion matrix, such as sensitivity, 
specificity, and accuracy (Table S3) [40]. The model’s perfor-
mance improves as accuracy, sensitivity, and specificity con-
verge toward one. A good discrimination model should have 
a high accuracy (>70%) [41] and a good trade-off between 
specificity and sensitivity (sum of specificity and sensitivity 
greater than 1.5) [42].

Another commonly reported metric is the area under the 
Receiver Operating Characteristic (ROC) Curve (AUC). The 
AUC can also be denoted as C-statistic. It is important to 
recognize that C-statistics involve distinct formulations in 
time-to-event analysis compared to the standard binary out-
come. An AUC value of one indicates perfect classification, 
whereas an AUC value of 0.5 indicates that the model pre-
dicts no better than chance [19]. AUC scores above 0.7 are 
considered acceptable [43]. The AUC, however, can be mis-
leading when classes are imbalanced [40]. In these situa-
tions, the area under the precision-recall curve is 
recommended [40].

6. Role of ML in asthma

Examples of articles implementing ML in asthma care are 
summarized in Table 1.

6.1. Diagnosis

Asthma diagnosis remains a major problem due to disease 
heterogeneity and non-specificity of the symptoms. In fact, 
respiratory symptoms vary over time and in intensity, which 
may lead to misattribution to other respiratory diseases, 
especially in the absence of lung function testing [44]. 
Therefore, diagnosis of asthma is often challenging, and 
attempts have been made to identify potential diagnostic 
markers using ML.

Sociodemographic variables, clinical data, spirometry para-
meters, biomechanical findings, and bronchial tests [23]; car-
bon dioxide waveforms [45]; respiratory sounds [20]; and 
Raman spectra from blood sera samples [46] have been con-
sidered in the development of ML-based diagnostic tools for 
asthma. Accuracies exceeded 90% using deep neural networks 
[23] and support vector machine [20,45,46].

6.2. Phenotypes

Asthma phenotyping is becoming increasingly important as it 
provides a foundation to understand disease etiology, hetero-
geneity and ultimately guide treatment [7]. Various clustering 
approaches, predominantly hierarchical, k-means, and 
k-medoids algorithms, have been employed to investigate 
asthma phenotypes in adults [7]. These approaches have con-
sidered a diverse range of variables, including sociodemo-
graphic, clinical, pathophysiological, lung function, 
behavioral, medication, and healthcare utilization data [7].

Based on readily available variables in clinical practice, 
recent research has identified three phenotypes using the 
k-medoids method [47]. The cluster solution was indepen-
dently replicated in another sample [47]. Another recent 
study considered biomarkers from routine blood tests to 
explain asthma heterogeneity using the k-means algorithm. 
The three identified clusters had different risks of asthma 
exacerbations [48].

6.3. Management

Electronic health records have gained increased popularity as 
sources of valuable information and have already been con-
sidered for predicting asthma exacerbations [49–51]. 
Exacerbations, defined as the need for oral corticosteroids, 
an asthma-related emergency department visit, or hospitaliza-
tion, were moderately predicted with a deep neural network 
(AUC = 0.70) [50]. Similarly, a boosting algorithm was used to 
predict non-severe exacerbations, emergency department vis-
its or hospitalization [49]. Emergency department visits and 
hospitalizations were better predicted (AUC = 0.88 and 
AUC = 0.85, respectively) than non-severe exacerbations 
(AUC = 0.71) [49]. Similar accuracies were obtained when pre-
dicting emergency department visits or hospitalizations in 
asthma (AUC = 0.86) using another boosting algorithm [51]. 
Identified predictors for exacerbations were history of non- 
severe exacerbations requiring oral glucocorticoid bursts, 
severe asthma, age, number of hospital visits and number of 
systemic corticosteroids prescriptions [49,51].
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Monitoring asthma control levels and symptoms can 
guide clinical decision-making. An artificial neural network 
model was proposed to remotely monitor asthma symp-
toms using indexes from a digital AI-powered stethoscope 
[33]. Included were individuals of all age groups, both asth-
matics and non-asthmatics, with and without adventitious 
respiratory sounds [33]. The model that best distinguished 
abnormal from normal respiratory sounds in people with 
asthma reached an AUC of 0.94 using intensity scores of 
wheezes and rhonchi [33]. Recently, a novel approach com-
bined a rule-based expert model and ML to predict asthma 
control level from demographics, clinical characteristics, 
lung function and environmental factors, yielding an excel-
lent predictive power (accuracy = 91.7%) [52].

ML has also shown potential in identifying patients who 
may be responsive to standard care or who may require more 
personalized treatment. A random forest algorithm predicted 
treatment failure after an exacerbation and the prescription of 
systemic corticosteroids during exacerbation in individuals 
with asthma and COPD [53]. Patients who were readmitted, 
required treatment adjustment, or died over the 30-day fol-
low-up period were deemed unresponsive [53]. The model 
achieved a good performance for treatment failure 
(AUC = 0.81), with the scores of the visual analogue scale for 
breathlessness and sputum purulence being the most predic-
tive [53]. A satisfactory performance (AUC = 0.69) was found 
for the prescription of systemic corticosteroids using only as 
input the presence of wheezing and the percentage of blood 
eosinophils [53].

7. Role of ML in COPD

Examples of the applicability of ML in COPD care are described 
in Table 2.

7.1. Diagnosis

Several attempts have been made to diagnose COPD using 
different types of data. Data from cardiopulmonary exercise 
tests [54], chest computed tomography scans [55,56], respira-
tory sounds [24] coupled with spirometry [57], volatile organic 
compounds [58,59], electronic health records [60] have been 
used to distinguish COPD from controls. Accuracies varied 
between 76.7% to 100% using support vector machine 
[54,57,58] or boosting algorithms [59]. The model developed 
based on real-world data also reached an excellent predictive 
performance (precision-recall AUC = 0.93) [60]. Deep learning 
applied to lung sounds (sensitivity = 0.93, specificity = 0.93) 
[24] and chest computed tomography scans (AUC >0.85) 
[55,56] also showed high discriminatory power in the detec-
tion of COPD.

The forced oscillation technique parameters have been 
used to build classifiers that discriminate between different 
levels of airflow limitation in people with COPD [61]. K-nearest 
neighbors and random forest yielded excellent performances 
(AUC ≥0.90) in control versus all people with COPD and con-
trol versus patients with moderate, severe, and very severe 
airflow limitation [61].

7.2. Phenotypes

Over the last decade, considerable research was performed to 
identify clinically relevant COPD phenotypes using unsuper-
vised learning, mainly through hierarchical and k-means algo-
rithms [6].

COPD heterogeneity has also been explored using k-means 
[62], k-medoids [63] and hierarchical [64] algorithms consider-
ing multidimensional data [62] as well as clinically relevant 
and easily accessible variables [63,64]. Clusters were either 
prospectively validated with clinically relevant outcomes 
[62,64] or assessed for stability over time [63]. Other studies 
demonstrated that people with COPD have distinct comorbid-
ity [26] and lung function profiles [65] using self-organizing 
maps followed by hierarchical clustering. There are, however, 
several studies reporting different cluster solutions, which 
reflect the use of different sample sizes and characteristics, 
choice of input variables and clustering algorithms [6].

7.3. Management

Currently, risk classification of COPD is mainly based on the 
history of previous exacerbations and hospitalizations, which 
is often based on patient recall and characterized by under-
reporting of events [5]. Early identification of at-risk patients 
may allow timely treatment adjustment, prevent disease pro-
gression, and reduce the burden on the healthcare system. 
Recent research has applied ML to identify risk factors for 
hospital readmission in people with COPD [66]. Top predictors 
were hospitalization in the previous two years, older age, 
being male, number of comorbidities, and longer length of 
hospital stay [66].

Exacerbation prediction based on remote monitoring of 
respiratory sounds has also been reported [67]. A support 
vector machine model was able to predict the onset of exacer-
bation, on average, 5 ± 1.9 days before in 75.8% of the 
cases [67].

ML has also been applied to identify physically inactive 
people with COPD who could benefit from physical activity 
promotion interventions [68]. Patients were divided into two 
categories based on their daily walking duration and intensity 
level: extremely inactive or overactive. The random forest 
algorithm, which was trained to distinguish extremely inactive 
from overactive using nonphysical activity related data, 
yielded an overall AUC of 0.84 [68].

Prediction models have also been developed to identify 
individuals at risk of mortality using decision tree algorithm 
[12], Cox regression [69], and deep neural networks [55]. The 
tree-based model developed based on age, spirometry para-
meters, dyspnea, physical activity, and number of hospital 
admissions in the previous 2 years reached comparable per-
formances when compared to established mortality prediction 
models (AUC�0.7) [12]. Similarly, a Cox regression model built 
using imaging, spirometry, and clinical data to predict all- 
cause mortality in people with COPD [69], outperformed body- 
mass index, airflow obstruction, dyspnea, exercise capacity 
(BODE) index, modifications of BODE index and age, dyspnea, 
and airflow obstruction index [69]. The top predictors were the 
6-minute walk distance, FEV1%-predicted, age, and pulmonary 

EXPERT REVIEW OF RESPIRATORY MEDICINE 1213



Ta
bl

e 
2.

 S
um

m
ar

y 
of

 c
ha

ra
ct

er
is

tic
s 

of
 t

he
 in

cl
ud

ed
 s

tu
di

es
 a

pp
ly

in
g 

m
ac

hi
ne

 le
ar

ni
ng

 f
or

 C
O

PD
 d

ia
gn

os
is

 a
nd

 m
an

ag
em

en
t.

Fi
rs

t 
au

th
or

, y
ea

r
St

ud
y 

po
pu

la
tio

n
In

pu
t 

fe
at

ur
es

O
ut

pu
t

Al
go

rit
hm

s
Va

lid
at

io
n

Pe
rf

or
m

an
ce

In
ba

r, 
20

21
 

[5
4]

23
4 

su
bj

ec
ts

 (
73

 p
eo

pl
e 

w
ith

 c
hr

on
ic

 h
ea

rt
 

fa
ilu

re
, 7

5 
pe

op
le

 w
ith

 C
O

PD
 a

nd
 8

6 
he

al
th

y 
co

nt
ro

ls
)

CE
PT

 d
at

a
Ch

ro
ni

c 
he

ar
t 

fa
ilu

re
 v

s 
CO

PD
 v

s 
he

al
th

y 
co

nt
ro

ls

SV
M

Tr
ai

n-
te

st
 s

pl
it;

 c
ro

ss
-v

al
id

at
io

n
Ac

c 
=

 9
9%

Sr
iv

as
ta

va
, 

20
21

 [
24

]
12

6 
su

bj
ec

ts
Re

sp
ira

to
ry

 s
ou

nd
s

CO
PD

 v
s 

he
al

th
y 

co
nt

ro
ls

D
N

N
Tr

ai
n-

te
st

 s
pl

it;
 1

0-
fo

ld
 c

ro
ss

- 
va

lid
at

io
n

Sn
 =

 0
.9

3;
 S

p 
=

 0
.9

3

H
ai

de
r, 

20
19

 
[5

7]
55

 s
ub

je
ct

s 
(3

0 
pe

op
le

 w
ith

 C
O

PD
 a

nd
 2

5 
he

al
th

y 
co

nt
ro

ls
)

Re
sp

ira
to

ry
 s

ou
nd

s 
an

d 
sp

iro
m

et
ry

 
pa

ra
m

et
er

s
CO

PD
 v

s 
he

al
th

y 
co

nt
ro

ls
SV

M
, K

N
N

, L
R,

 D
T 

an
d 

di
sc

rim
in

an
t 

cl
as

si
fie

rs

Tr
ai

n-
te

st
 s

pl
it;

 5
-f

ol
d 

an
d 

10
-f

ol
d 

cr
os

s-
va

lid
at

io
n

Lu
ng

 s
ou

nd
s 

SV
M

: A
cc

 =
 8

3.
6%

 
Lu

ng
 s

ou
nd

s +
 sp

iro
m

et
ry

 
SV

M
: A

cc
 =

 1
00

%
Am

ar
al

, 
20

15
 [

61
]

16
8 

su
bj

ec
ts

 (
12

6 
pe

op
le

 w
ith

 C
O

PD
 a

nd
 

42
 h

ea
lth

y 
co

nt
ro

ls
)

Fo
rc

ed
 o

sc
ill

at
io

n 
te

ch
ni

qu
e 

pa
ra

m
et

er
s

CO
PD

 d
iff

er
en

t 
le

ve
ls

 o
f 

ob
st

ru
ct

io
n 

vs
 

he
al

th
y 

co
nt

ro
ls

SV
M

 (
Li

ne
ar

 a
nd

 
ra

di
al

 b
as

is
 

ke
rn

el
), 

KN
N

, R
F

10
-f

ol
d 

cr
os

s-
va

lid
at

io
n

Co
nt

ro
l v

er
su

s 
al

l p
eo

pl
e 

w
ith

 C
O

PD
 

an
d 

co
nt

ro
l v

er
su

s 
m

od
er

at
e,

 
se

ve
re

, a
nd

 v
er

y 
se

ve
re

 p
eo

pl
e 

w
ith

 C
O

PD
 s

ep
ar

at
el

y 
AU

C 
>

0.
90

Be
rk

el
, 2

01
0 

[5
8]

79
 s

ub
je

ct
s 

(5
0 

pe
op

le
 w

ith
 C

O
PD

, 2
9 

he
al

th
y 

co
nt

ro
ls

)
Vo

la
til

e 
or

ga
ni

c 
co

m
po

un
ds

 id
en

tif
ie

d 
by

 g
as

 c
hr

om
at

og
ra

ph
y-

m
as

s 
sp

ec
tr

os
co

py

CO
PD

 v
s 

he
al

th
y 

co
nt

ro
ls

SV
M

Cr
os

s-
va

lid
at

io
n,

 e
xt

er
na

l 
va

lid
at

io
n 

(1
6 

pe
op

le
 w

ith
 

CO
PD

 a
nd

 1
6 

co
nt

ro
ls

)

Cr
os

s-
va

lid
at

io
n 

Ac
c 

=
 9

2%
 

Te
st

 s
et

 
Ac

c 
=

 9
1%

V.
A 

B,
 2

02
1 

[5
9]

19
9 

su
bj

ec
ts

 (
55

 p
eo

pl
e 

w
ith

 C
O

PD
, 5

1 
pe

op
le

 w
ith

 lu
ng

 c
an

ce
r 

an
d 

93
 h

ea
lth

y 
co

nt
ro

ls
)

Vo
la

til
e 

or
ga

ni
c 

co
m

po
un

ds
 id

en
tif

ie
d 

by
 a

n 
el

ec
tr

on
ic

 n
os

e 
de

vi
ce

CO
PD

 v
s 

he
al

th
y 

co
nt

ro
ls

, 
lu

ng
 c

an
ce

r 
vs

 h
ea

lth
y 

co
nt

ro
ls

XG
Bo

os
t, 

Ad
aB

oo
st

, 
RF

Tr
ai

n-
te

st
 s

pl
it;

 3
-f

ol
d,

 5
-f

ol
d 

an
d 

10
-f

ol
d 

cr
os

s-
va

lid
at

io
n

CO
PD

 v
s 

H
ea

lth
y 

co
nt

ro
ls

 
XG

Bo
os

t: 
Ac

c 
=

 7
7%

, A
U

C 
=

 0
.7

6

G
on

zá
le

z,
 

20
18

 [
55

]
7,

98
3 

CO
PD

 s
m

ok
er

s 
(8

,9
83

 f
ro

m
 

CO
PD

G
en

e 
st

ud
y 

an
d 

1,
67

2 
fr

om
 

EC
LI

PS
E 

st
ud

y)

Ch
es

t 
co

m
pu

te
d 

to
m

og
ra

ph
y 

im
ag

in
g

CO
PD

 v
s 

co
nt

ro
ls

, 
3-

ye
ar

 a
ll-

ca
us

e 
m

or
ta

lit
y

D
N

N
Tr

ai
n-

te
st

 s
pl

it 
of

 t
he

 s
am

pl
e 

fr
om

 C
O

PD
G

en
e 

st
ud

y,
 

EC
LI

PS
E 

sa
m

pl
e 

us
ed

 f
or

 e
xt

er
na

l 
va

lid
at

io
n

CO
PD

 v
s.

 c
on

tr
ol

s 
AU

C 
=

 0
.8

56
 

M
or

ta
lit

y 
C-

st
at

is
tic

 =
 0

.6
0

Ta
ng

, 2
02

0 
[5

6]
4,

78
4 

CO
PD

 f
or

m
er

 a
nd

 c
ur

re
nt

 s
m

ok
er

s 
(2

,5
89

 f
ro

m
 P

an
Ca

n 
st

ud
y 

an
d 

2,
19

5 
fr

om
 E

CL
IP

SE
)

Ch
es

t 
co

m
pu

te
d 

to
m

og
ra

ph
y 

im
ag

in
g

CO
PD

 v
s 

he
al

th
y 

co
nt

ro
ls

D
N

N
3-

fo
ld

 c
ro

ss
-v

al
id

at
io

n,
 E

CL
IP

SE
 

sa
m

pl
e 

us
ed

 f
or

 e
xt

er
na

l 
va

lid
at

io
n

AU
C 

=
 0

.8
86

M
ar

ia
ni

, 
20

21
 [

60
]

19
,0

77
 p

eo
pl

e 
w

ith
 a

st
hm

a 
or

 C
O

PD
 

(2
00

7–
20

11
)

El
ec

tr
on

ic
 H

ea
lth

 R
ec

or
ds

CO
PD

 v
s 

as
th

m
a 

vs
 

AC
O

S
SV

M
 (

lin
ea

r 
an

d 
ra

di
al

 b
as

is
 

fu
nc

tio
n)

, K
N

N
, R

F

Tr
ai

n-
te

st
 s

pl
it;

 1
0 

to
 3

0-
fo

ld
 

cr
os

s-
va

lid
at

io
n

pr
e-

re
c 

AU
C 

As
th

m
a 

=
 0

.9
, A

CO
S 

=
 0

.3
4,

 
CO

PD
 =

 0
.9

3,
 u

nc
le

ar
 =

 0
.2

5
G

ar
ci

a-
 

Ay
m

er
ic

h,
 

20
11

 [
62

]

34
2 

pe
op

le
 w

ith
 C

O
PD

 h
os

pi
ta

liz
ed

 w
ith

 
ex

ac
er

ba
tio

n
Re

sp
ira

to
ry

 s
ym

pt
om

 a
nd

 q
ua

lit
y 

of
 

lif
e,

 lu
ng

 f
un

ct
io

n,
 c

he
st

 x
-r

ay
 

m
or

ph
om

et
ry

, s
ys

te
m

at
ic

 
in

fla
m

m
at

io
n,

 n
ut

rit
io

na
l s

ta
tu

s,
 

m
us

cl
e 

st
re

ng
th

, e
xe

rc
is

e 
ca

pa
ci

ty
, 

co
m

or
bi

di
tie

s,
 lu

ng
 d

en
si

ty
, a

irw
ay

 
m

or
ph

ol
og

y,
 b

ro
nc

hi
al

 c
ol

on
iz

at
io

n 
an

d 
in

fla
m

m
at

io
n 

da
ta

N
A

k-
m

ea
ns

Pr
os

pe
ct

iv
e 

va
lid

at
io

n 
w

ith
 

ho
sp

ita
l a

dm
is

si
on

 a
nd

 a
ll-

 
ca

us
e 

m
or

ta
lit

y

3 
cl

us
te

rs

Bu
rg

el
, 2

01
7 

[6
4]

2,
40

9 
pe

op
le

 w
ith

 C
O

PD
Ag

e,
 B

M
I, 

sp
iro

m
et

ry
 p

ar
am

et
er

s,
 

m
M

RC
 d

ys
pn

ea
 s

ca
le

, n
um

be
r 

of
 

pr
ev

io
us

 e
xa

ce
rb

at
io

ns
, p

re
se

nc
e 

of
 

co
m

or
bi

di
tie

s

5 
cl

us
te

rs
H

ie
ra

rc
hi

ca
l 

al
go

rit
hm

, D
T

Tr
ai

n-
te

st
 s

pl
it;

 P
ro

sp
ec

tiv
e 

va
lid

at
io

n 
w

ith
 a

ll-
ca

us
e 

m
or

ta
lit

y

5 
cl

us
te

rs
 

D
T 

Ac
c 

=
 7

7%

M
ar

qu
es

, 
20

22
 [

63
]

35
2 

pe
op

le
 w

ith
 C

O
PD

So
ci

od
em

og
ra

ph
ic

 a
nd

 c
lin

ic
al

 d
at

a,
 

lu
ng

 f
un

ct
io

n,
 s

ym
pt

om
s,

 
di

se
as

e 
im

pa
ct

, q
ua

lit
y 

of
 li

fe
, l

ow
er

- 
lim

b 
m

us
cl

e 
st

re
ng

th
 a

nd
 f

un
ct

io
na

l s
ta

tu
s

4 
cl

us
te

rs
k-

m
ed

oi
ds

, D
T

Tr
ai

n-
te

st
 s

pl
it;

 s
ta

bi
lit

y 
ov

er
 t

im
e

4 
cl

us
te

rs
 

D
T 

Ac
c 

=
 7

1.
7%

(C
on

tin
ue

d
)

1214 J. ANTÃO ET AL.



Ta
bl

e 
2.

 (
Co

nt
in

ue
d)

. 

Fi
rs

t 
au

th
or

, y
ea

r
St

ud
y 

po
pu

la
tio

n
In

pu
t 

fe
at

ur
es

O
ut

pu
t

Al
go

rit
hm

s
Va

lid
at

io
n

Pe
rf

or
m

an
ce

Va
nf

le
te

re
n,

 
20

13
 [

26
]

21
3 

pe
op

le
 w

ith
 C

O
PD

13
 c

om
or

bi
di

tie
s 

(c
hr

on
ic

 k
id

ne
y 

di
se

as
e,

 a
ne

m
ia

, h
yp

er
te

ns
io

n,
 

ob
es

ity
, u

nd
er

w
ei

gh
t, 

m
us

cl
e 

w
as

tin
g,

 h
yp

er
gl

yc
em

ia
, 

dy
sl

ip
id

em
ia

, o
st

eo
po

ro
si

s,
 a

nx
ie

ty
 

an
d 

de
pr

es
si

on
, a

th
er

os
cl

er
os

is
, 

m
yo

ca
rd

ia
l i

nf
ar

ct
io

n)

N
A

Se
lf-

or
ga

ni
zi

ng
 m

ap
s 

an
d 

hi
er

ar
ch

ic
al

 
al

go
rit

hm

N
A

5 
cl

us
te

rs

Au
gu

st
in

, 
20

18
 [

65
]

51
8 

pe
op

le
 w

ith
 C

O
PD

Lu
ng

 f
un

ct
io

n 
at

tr
ib

ut
es

N
A

Se
lf-

or
ga

ni
zi

ng
 m

ap
s 

an
d 

hi
er

ar
ch

ic
al

 
al

go
rit

hm

N
A

7 
cl

us
te

rs

Ca
va

ill
es

, 
20

20
 [

66
]

14
3,

00
6 

pe
op

le
 w

ith
 C

O
PD

 h
os

pi
ta

liz
ed

 f
or

 
an

 a
cu

te
 e

xa
ce

rb
at

io
n

So
ci

od
em

og
ra

ph
ic

 a
nd

 c
lin

ic
al

 
va

ria
bl

es
Re

ho
sp

ita
liz

at
io

n 
fo

r 
ac

ut
e 

ex
ac

er
ba

tio
n

D
T

Tr
ai

n-
te

st
 s

pl
it

N
A

Fe
rn

an
de

z-
 

G
ra

ne
ro

, 
20

15
 [

67
]

15
 p

eo
pl

e 
w

ith
 C

O
PD

Re
sp

ira
to

ry
 s

ou
nd

s
Ac

ut
e 

ex
ac

er
ba

tio
ns

SV
M

10
-f

ol
d 

cr
os

s 
va

lid
at

io
n

Sn
 =

 0
.7

4,
 S

p 
=

 0
.9

8

Ag
ui

la
ni

u,
 

20
21

 [
68

]
1,

40
9 

pe
op

le
 w

ith
 C

O
PD

Cl
in

ic
op

at
ho

lo
gi

ca
l d

at
a

Ex
tr

em
e 

in
ac

tiv
ity

RF
Tr

ai
n-

te
st

 s
pl

it
AU

C 
=

 0
.8

4

M
ol

l, 
20

20
 

[6
9]

3,
90

0 
pe

op
le

 w
ith

 C
O

PD
 (

2,
63

2 
fr

om
 

CO
PD

G
en

e 
st

ud
y 

an
d 

1,
26

8 
fr

om
 

EC
LI

PS
E)

Cl
in

ic
al

, s
pi

ro
m

et
ry

 a
nd

 im
ag

in
g 

fe
at

ur
es

Al
l-c

au
se

 m
or

ta
lit

y
Co

x 
re

gr
es

si
on

 w
ith

 
RF

Tr
ai

n-
te

st
 s

pl
it 

of
 t

he
 s

am
pl

e 
fr

om
 C

O
PD

G
en

e 
st

ud
y,

 
EC

LI
PS

E 
sa

m
pl

e 
us

ed
 f

or
 e

xt
er

na
l 

va
lid

at
io

n

Co
x 

re
gr

es
si

on
 

C-
st

at
is

tic
 =

 0
.7

02
 

BO
D

E 
C-

st
at

is
tic

 =
 0

.6
6 

BO
D

E 
an

d 
ex

ac
er

ba
tio

ns
 

C-
st

at
is

tic
 =

 0
.6

7 
up

da
te

d 
BO

D
E 

C-
st

at
is

tic
 =

 0
.6

5 
AD

O
 

C-
st

at
is

tic
 =

 0
.6

5
Es

te
ba

n,
 

20
11

 [
12

]
61

1 
pe

op
le

 w
ith

 C
O

PD
So

ci
od

em
og

ra
ph

ic
 d

at
a,

 s
pi

ro
m

et
ry

 
pa

ra
m

et
er

s,
 s

ym
pt

om
s,

 p
hy

si
ca

l 
ac

tiv
ity

 a
nd

 n
um

be
r 

of
 h

os
pi

ta
l 

ad
m

is
si

on
s 

in
 t

he
 

pr
ev

io
us

 2
 y

ea
rs

5-
ye

ar
 m

or
ta

lit
y

D
T

Ex
te

rn
al

 v
al

id
at

io
n 

(3
48

 p
eo

pl
e 

w
ith

 C
O

PD
)

D
T 

AU
C 

=
 0

.7
4 

BO
D

E 
AU

C 
=

 0
.7

2 
H

AD
O

 
AU

C 
=

 0
.7

0 
AD

O
 

AU
C 

=
 0

.7
4

Lu
o,

 2
02

0 
[7

0]
26

3,
01

5 
pe

op
le

 w
ith

 C
O

PD
 (

78
0,

29
5 

ho
sp

ita
l a

dm
is

si
on

s)
M

ed
ic

al
 in

su
ra

nc
e 

da
ta

 (
de

m
og

ra
ph

ic
, 

cl
in

ic
al

 a
nd

 c
os

ts
 in

fo
rm

at
io

n)
H

ig
h-

co
st

 p
at

ie
nt

s
LR

, X
G

Bo
os

t, 
RF

Tr
ai

n-
te

st
 s

pl
it 

an
d 

ex
te

rn
al

 
va

lid
at

io
n 

(2
 d

at
as

et
s)

Tr
ai

n-
te

st
 

XG
Bo

os
t: 

AU
C 

=
 0

.8
0 

Te
st

 s
et

 1
 

XG
Bo

os
t: 

AU
C 

=
 0

.7
8 

Te
st

 s
et

 2
 

XG
Bo

os
t: 

AU
C 

=
 0

.7
6

Ac
c:

 A
cc

ur
ac

y;
 A

da
Bo

os
t: 

ad
ap

tiv
e 

bo
os

tin
g;

 A
D

O
: a

ge
, d

ys
pn

ea
 a

nd
 a

irf
lo

w
 o

bs
tr

uc
tio

n;
 p

re
-r

ec
 A

U
C:

 A
re

a 
un

de
r 

pr
ec

is
io

n-
re

ca
ll 

cu
rv

e;
 A

U
C:

 A
re

a 
un

de
r 

th
e 

Re
ce

iv
er

 O
pe

ra
tin

g 
Ch

ar
ac

te
ris

tic
 C

ur
ve

; B
M

I: 
Bo

dy
 m

as
s 

in
de

x;
 

BO
D

E:
 b

od
y 

m
as

s 
in

de
x,

 a
irf

lo
w

 o
bs

tr
uc

tio
n,

 d
ys

pn
ea

, 
an

d 
ex

er
ci

se
 c

ap
ac

ity
; 

CE
PT

: 
Ca

rd
io

pu
lm

on
ar

y 
Ex

er
ci

se
 T

es
t; 

CO
PD

: 
ch

ro
ni

c 
ob

st
ru

ct
iv

e 
pu

lm
on

ar
y 

di
se

as
e;

 D
T:

 D
ec

is
io

n 
tr

ee
; 

D
N

N
: 

D
ee

p 
N

eu
ra

l 
ne

tw
or

k;
 X

G
Bo

os
t: 

ex
tr

em
e 

gr
ad

ie
nt

 b
oo

st
in

g;
 H

AD
O

: h
ea

lth
, a

ct
iv

ity
, d

ys
pn

ea
, o

bs
tr

uc
tio

n;
 K

N
N

: k
-n

ea
re

st
 n

ei
gh

bo
rs

; L
R:

 L
og

is
tic

 r
eg

re
ss

io
n;

 m
M

RC
: m

od
ifi

ed
 M

ed
ic

al
 R

es
ea

rc
h 

Co
un

ci
l; 

N
A:

 N
ot

 a
pp

lic
ab

le
; R

F:
 R

an
do

m
 F

or
es

t; 
Sn

: S
en

si
tiv

ity
; 

Sp
: S

pe
ci

fic
ity

; S
VM

: S
up

po
rt

 V
ec

to
r 

M
ac

hi
ne

. 

EXPERT REVIEW OF RESPIRATORY MEDICINE 1215



artery-to-aorta ratio [69]. In contrast, a deep learning model 
exhibited only moderate predictive capability for the risk of 
death, using computed tomography imaging data 
(C-statistic = 0.6) [55].

Moreover, ML has been used to identify high-cost 
patients based on medical insurance data [70]. A good 
predictive performance was reached with a boosting algo-
rithm (AUC = 0.80). Relevant predictors were cost-related 
variables, age, region, gender, type of insurance, number 
of comorbidities, emphysema, hypertension, heart disease, 
and Charlson Comorbidity Index scores [70].

8. Implementation challenges

AI deployment into outpatient or bedside care for asthma and 
COPD has been hindered by the knowledge gap but also by 
other hurdles. Studies often lack external validation, which 
may lead to overoptimistic predictive performances [71]. 
Cluster validity assessment is crucial to confirm reproducibility 
of the proposed classification and their relevance in guiding 
asthma and COPD care. Studies also frequently included small 
sample sizes, which hinders the model’s generalizability. 
Hence, studies with larger samples, as well as external valida-
tion of findings are crucial steps prior to ML implementation 
within clinical workflow [71]. Additionally, it is also imperative 
to compare the predictive ability across models and conduct 
prospective clinical trials to assess efficacy at improving 
patient care [72].

ML also raises concerns regarding data protection [36]. 
Data collection and processing must comply with ethical 
guidelines and data privacy legislation throughout model 
development and implementation [36].

Another major issue arises when black-box algorithms are 
employed. The lack of interpretability delays ML acceptance, 
as clinicians are unable to double-check for errors or biases 
and provide an explanation to the patient [36,72].

Accountability is also a source of ongoing debate in AI 
implementation in healthcare, as poor decision-making may 
jeopardize patient safety [72]. Currently, no broad consensus 
exists regarding responsibility for the model’s decisions since 
healthcare professionals, data scientists, and software devel-
opers lack complete control [72].

9. Conclusion

This review covers fundamental concepts of AI/ML and main 
steps of ML model development, providing a simple guide for 
clinicians to improve their understanding of AI/ML, create 
trust, and accelerate ML deployment in clinical practice. This 
paper has also provided examples of AI/ML for diagnosis, 
phenotyping, and management of people with asthma and 
COPD. AI may aid in making informed decisions about diag-
nosis and management by incorporating a large number of 
data and drawing connections that healthcare professionals 
may overlook. AI has potential to enable a fast and accurate 
diagnosis and support early identification of at-risk patients. It 
also provides valuable information necessary for treatment 
adjustments and personalized medicine, preventing worsen-
ing of patient’s health, saving time and resources.

However, low-quality evidence, data privacy, interpretabil-
ity, and accountability need to be addressed for AI to become 
a reality in healthcare. Research with larger sample sizes and 
a thorough validation of findings are crucial to ensure 
unbiased, generalizable, and clinically relevant ML models.

10. Expert opinion

This review introduces ML in a user-friendly language and gives 
examples of its application in the context of respiratory medi-
cine. It describes how ML can support the diagnosis and man-
agement of chronic respiratory diseases such as asthma and 
COPD, which are characterized by considerable heterogeneity 
and complexity. It also serves as a guide for clinicians to improve 
their understanding and build trust in the use of ML in health-
care. Nevertheless, clinicians need to be aware of some metho-
dological issues to be considered in future studies with ML. 
Adequate sample size, high quality data and thorough valida-
tion are critical requirements for developing robust ML models. 
A sufficient sample size and representativeness of the target 
population are crucial to ensure generalizability and reduce 
the risk of overfitting and bias toward a particular group. 
Electronic health records have become one of the most impor-
tant sources of data in clinical research. However, data collected 
in clinical practice are often unstructured, non-standardized and 
incomplete, which can significantly affect the performance of 
the model if not properly addressed. It is necessary to report 
errors that occur and describe the pre-processing steps used to 
correct them. Establishing the performance of a model should 
include not only internal, but also external validation. Many 
models have demonstrated excellent predictive performance 
during development phase, only to fail when tested on an 
independent sample. Therefore, extensive validation is needed 
to ensure generalizability and avoid potentially harmful models 
for patients. Interpretability should also be highlighted as an 
important aspect in the development of ML models. Simpler 
models allow for better transparency of the decision-making 
process, which can help detect and reduce algorithmic bias 
and clarify some of the ethical issues associated with the use 
of AI (e.g. accountability), while promoting trust among health-
care professionals and patients. Post-hoc explainability methods 
have been developed to facilitate understanding of the reasons 
for the predictions of black-box models. However, there is still 
room for improvement [73,74]. In addition, the (dis)advantages 
of incorporating ML models into standard care need to be 
carefully weighed from both a patient-centered and an eco-
nomic perspective [36], which is only possible if data scientists 
work closely with healthcare professionals and other stake-
holders to identify and resolve important issues early on. Such 
efforts can lead to models that are clinically useful and oper-
ationally feasible. Finally, it is of utmost importance to follow the 
guidelines for development (e.g. Cross-Industry Standard 
Process for Data Mining – CRISP-DM [75,76]) and reporting of 
ML projects (e.g. Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis – 
TRIPOD [77]).

The potential impact of reinforcement learning in the man-
agement of chronic diseases is also noteworthy. In reinforce-
ment learning, data is constantly fed into the system and 
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incorporated into the model through continuous updates. 
Unlike static models – i.e. the model is trained exactly once – 
the goal is to choose an action at each point in time that 
maximizes long-term reward through constant feedback from 
the environment. Reinforcement learning can become 
a powerful tool for improving chronic respiratory disease man-
agement and represents a promising avenue for future advances 
in the field. Moreover, with its ability to identify treatment 
responses before intervention, causal ML can support clinicians 
in selecting the most effective treatment for each patient, and 
therefore may also represent a promising avenue to advance 
personalized medicine in chronic respiratory diseases.
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