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Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
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Abstract This project, on Vehicle Routing Problem with Delivery and Pickup (VR-

PDP) aimed at determining the factors that contribute to the quality of

a solution and checking the effect of varying the relative sizes of delivery

demands to the size of pickup demands. This work was done with a dataset

generated by a random uniform distribution of complete graphs with 15, 20,

and 25 nodes, with varying relative sizes of the demands at each node to

create four scenarios, Indifferent relative sizes of delivery to pickup, Large

delivery demand relative to pickup demand, small delivery relative to pickup

demand and delivery demand relatively equal to pick up demand at each

customer. Three distinct problems were created using these scenarios. A

model was created using flow formulation on the GurobiPy solver. The

three problems were solved using the model and the result was tabulated.

Observations on the table were thoroughly examined and relevant inferences

were made on the factors that influence the quality of the VRPDP solution

and the effect of varying the relative sizes of the demands





Palavras-chave Otimização; Planeamento de Rotas; Planeamento Loǵıstico; Otimização de

Problemas de Transportes; Gestão da Cadeia de Abastecimento; Agenda-

mento de Entregas; Agendamento de Recolhas; Programação Inteira Mista

(MIP).

Resumo Este projeto, sobre Problema de Planeamento de Rotas de Véıculos com En-

trega e Recolha (VRPDP), teve como objetivo estudar e determinar diversos

fatores que possam contribuir para a qualidade de uma solução do problema,

houve particular atenção em verificar o efeito que a variação nas quantidades

de procura (quantidades a entregar) e de recolha têm nas soluções. Este

trabalho foi realizado usando um conjunto de dados gerados aleatoriamente,

através de uma distribuição uniforme, que permitiu construir grafos com-

pletos com 15, 20 e 25 vértices, gerar os seus custos de ligações e também

gerar diferentes quantidades de procura e de recolha de forma a criar qua-

tro cenários diferentes. Um cenário tem quantidades de procura e recolha

sem qualquer relacionamento, outro cujos valores de procura são sempre

superiores aos da recolha, outro cujos valores de recolha são sempre superi-

ores aos da procura e, finalmente, o quarto cenário no qual os valores para

entrega e recolha são iguais. São propostas formulações em Programação

Inteira Mista para o Problema de Planeamento de Rotas de Véıculos com

Entrega e Recolha (VRPDP) usando diferentes conjuntos de restrições para

formulações de fluxos. Um modelo foi constrúıdo, em Gurobipy, para ser us-

ado no solver Gurobi. Os problemas foram resolvidos utilizando o modelo e

os resultados obtidos para os diversos cenários foram resumidos em tabelas.

As tabelas foram examinadas minuciosamente e inferências relevantes foram

realizadas sobre os fatores que influenciam a qualidade da solução VRPDP

e o efeito da variação das quantidades relativas das procuras e das recolhas.
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Chapter 1

Introduction

The Vehicle Routing Problem with Pickup and Delivery (VRPPD) is an extension of the

classical Vehicle Routing Problem (VRP) where a fleet of vehicles is required to serve a set

of customers with known demands. In the VRPPD, each customer may have both a pickup

and a delivery request that must be served by the same vehicle with limited capacity, and the

objective is to find a set of routes that minimizes the total cost usually taking into account the

total distance traveled and the total number of vehicles used. The VRPPD is a practical and

important problem that arises in a variety of contexts, such as public transportation, home

health care, waste management, Courier services, food delivery, airline baggage handling,

retail distribution, postal services, and cleaning services.

One of the main motivations for studying the VRPPD is that efficient routing of delivery

vehicles, known as Vehicle Routing Problem with Pickup and Delivery (VRPPD), holds the

potential to substantially decrease transportation costs, minimize fuel consumption, and lower

carbon emissions. Simultaneously, it enhances service levels and customer satisfaction.

1.1 Evolution of Vehicle Routing Problem

Over time, solving the Vehicle Routing Problem (VRP) had being a tough puzzle. This

problem has become even more complicated due to things like online shopping and delivering

to customers’ doors. We can see the changes in VRP by looking at the past, present, and

future of the problem.

The origin of the Vehicle Routing Problem (VRP) can be traced back to the mid-20th century

when distribution companies were faced with the task of optimizing delivery routes. The

seminal work by George Dantzig and John Ramser in 1959 [8] marks a significant milestone

in VRP’s history. They introduced the ”traveling salesman problem with a constraint” this

layed the foundation for the subsequent evolution of the VRP. Dantzig’s most significant
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contribution was the development of the ”nearest neighbor” heuristic, an algorithm that

starts with an arbitrary depot and repeatedly selects the closest unvisited customer until all

customers are visited. This approach provided a simple yet effective solution for the VRP

instances, and it has been widely used as a reference point for evaluating more sophisticated

algorithms. Their pioneering algorithmic approach was initially applied to petrol deliveries,

addressing the challenge of efficiently delivering goods from a central depot to customers

who had placed orders. The central objective of the VRP remains the same till date, to

minimize the overall cost of the delivery routes. This historical context showcases how the

VRP emerged from practical distribution challenges into a well studied optimisation problem.

The importance of VRP grew because of global connections, business growth, and new tech-

nology in transportation. The rise of online shopping and the need for quick deliveries made

VRP more are becoming more complex. It became crucial to meet customer needs accurately

and on time, save money, and handle modern supply chains efficiently.

As VRP evolved, it inspired many ways to approach and solve these problems. Different

methods like starting with groups or routes and using savings or insertion techniques have

developed. Mathematics solvers, machine learning, and artificial intelligence are also used to

find solutions to complex routing issues.

VRP is used in various fields. Businesses in retail, manufacturing, healthcare, and waste

management. These fields use VRP to make their operations smoother, reduce wastage, and

make their customers happier. It’s also useful in city planning, responding to emergencies,

and even guiding self driving cars. Today, VRP has adapted to new technologies. It now uses

tools like maps, real-time data, and smart algorithms to plan routes better. Modern VRP

mathematical solver can do many things like adjust routes in dynamic situations, plan for

different capacities, consider sustainability, and even optimise loading in 3D.

Looking back at work done many years ago, it helps us understand how things were. Back

then, there weren’t computers or GPS like we have now. The research was different, but it

still looked at how to make deliveries better. Even with these challenges, they have knowledge

about the data of each path, math, and ways to make VRP work. They used real examples

to see how things could be improved. Nowadays, VRP technology and solvers have changed

a lot.

1.2 Objective

This project, Vehicle Routing Problem with Pickup and Delivery (VRPDP), is centered on

using a mathematical solver (Gurobipy) to solve the problem. Exploring some instances and

exploring the situation or scenario of relative size differences between the delivery demands

and the pickup demands and also conducting a comprehensive comparison between the sce-
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nario’s solution and the cost of each solution which demonstrates a deep understanding of

both the problem domain and the optimal solution.

The utilization of the Gurobi solver is known for it efficiency and effectiveness in solving com-

binatorial problems, which VRPDP is part of, using matheuristics technique which employs

majorly branch and cut to obtain the optimal solution or close to optimal solution of complex

problems.

The aspect of varying the delivery demand and pickup relative to each other is to determine

the effect of each demand’s contribution to the complexity of solving the problem, hence the

following will be considered

• Indifferent relative demands: here there are no restrictions on the delivery demand and

the Pickup demands

• equal demands: here the delivery demands are required to be the same as the pickup

demands;

• large demands: here the delivery demands are required to be large than the pickup

demands at every location;

• small demands: here the delivery demands is restricted to be lesser than the pickup

demands at every location.

The project goal is to compare the solutions across the various demand scenarios above and

draw a meaningful inference about them.

1.3 Outline

This project comprises four additional chapters. Chapter two presents the Vehicle Routing

Problem a quick review of what the Vehicle Routing Problem problem is. Chapter three,

The Vehicle Routing Problem with Delivery and Pickup, is a quick review of this problem,

its formulation, and approaches used in solving the problem. Chapter four, Computational

Experience, contains the variety types of datasets used to implement a solution code written

in Python using Gurobi solver, the tabulated result for different scenarios for easy study of

the effect of some factors such as the vehicle capacity, relative quantity of pickup to delivery

demands on the optimal cost. And Chapter five is the recommendation, conclusion, and

summary.
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Chapter 2

The Vehicle Routing Problem

In order to comprehend the Vehicle Routing Problem with Delivery and Pickup, it is essen-

tial to delve into the concept of the Vehicle Routing Problem, its variants, its nature, its

formulation, and approaches used in solving them.

The Vehicle Routing Problem (VRP) entails the allocation of a fleet of vehicles to serve a

group of customers, aiming to minimize the cost of the total distance traveled by the vehicles.

The VRP holds great significance in the fields of transportation and logistics, and it also

has high value and significant attention in recent research studies such as resource allocation

problems, and logistics work. Then upon the foundation of the Vehicle Routing Problem

(VRP) that we want to establish in this section, we will build the concept of Vehicle Routing

Problem with Delivery and Pickup (VRPDP) which will be discussed in the next chapter,

which extends the VRP by incorporating more specific constraints on it to make it more

specific for Vehicle Routing Problem with Delivery and Pickup. This exploration will allow

us to gain a deeper understanding of the challenges and complexities associated with the VRP

and also its related variations.

The Vehicle Routing Problem (VRP) is widely recognized as an extension of the Traveling

Salesman Problem (TSP) due to their inherent similarities but additional complexities such

as a fleet of vehicles and possibilities to have multi-route is introduced in the VRP which

brings about the differences. Several studies have explored the relationship between these

two combinatorial optimization problems and established the VRP as a generalization of the

TSP.

One of the works on this topic is the paper titled ”A comparison of heuristics for the Vehicle

Routing Problem” by Solomon (1987) [20], the author investigates various heuristics for solv-

ing the VRP and highlights the TSP as a special instance of the VRP when there is only one
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vehicle and no capacity constraints. Solomon’s work emphasizes the broader applicability of

VRP formulations by showing how they encompass the classic TSP.

In another study, ”The Vehicle Routing Problem: An Overview of Exact and Approximate

Algorithms” by Toth and Vigo (2002) [22]. The authors provided a comprehensive review of

the VRP and highlighted its connection to the TSP. They discuss how the VRP encompasses

the TSP as a special case by introducing multiple vehicles, capacity constraints, and other

practical considerations.

The cited literatures above and some others, consistently affirm that the VRP is an expansion

of the TSP.

As the number of customers increases it affects the difficulty of solving the VRP and con-

sequently its computational time. It is well known that VRP is an NP-hard problem. NP-

hardness, a fundamental concept in computational complexity theory, allows us to compare

and classify the difficulty levels of different computational problems. It helps us identify

problems that are at least as challenging as the toughest problems in the class of NP, which

represents nondeterministic polynomial time. Since it is an established fact that VRP is

an NP-hard problem, it signifies that finding exact optimal solutions for all VRP instances

is computationally demanding and often impractical. The computational requirements for

solving NP-hard problems, including VRP, grow exponentially as the problems sizes increase.

Consequently, using exact algorithms to solve large VRP instances becomes impracticable

due to the extensive computation time they require. Instead of focusing solely on optimality,

approximation techniques become valuable as we are concerned with generating high-quality

solutions that are frequently satisfactory in practical scenarios. By employing approximation

techniques such as heuristics, matheuristics or metaheuristics, we can overcome the compu-

tational challenges associated with NP-hard problems and effectively produce solutions that

are nearly optimal or meet the desired criteria. The reduction shows that VRP can be trans-

formed into the well-known NP-hard problem, the Traveling Salesman Problem (TSP). This

reduction allows to demonstrate that efficiently solving VRP would imply efficiently solving

TSP. Since TSP is also NP-hard, this reduction confirms that VRP shares the same NP-hard

classification with it.

2.1 Variants of VRP

The variants of the Vehicle Routing Problem encompass customized models that aim to pre-

cisely address specific real-life scenarios by incorporating special constraints into the classical

vehicle routing problem. There are so many variants of the vehicle routing problem but some

of the main ones will be highlighted below. The Figure 2.1 illustrates some of the main vari-
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ants of the Vehicle Routing Problem (VRP), highlighting the different variations that exist

within this problem domain. Each of these variants is described below.

Figure 2.1: Some of the variants of the Vehicle Routing Problem.

Capacity Vehicle Routing Problem (CVRP). In this variant, each vehicle has a maxi-

mum capacity, and the total demand of the customers assigned to a vehicle should not exceed

its capacity. This variant incorporates the capacity of the vehicle into the VRP.

Vehicle Routing Problem with Delivery and Pickup (VRPDP). This variant, involves

pickup and delivery tasks, where goods or items need to be picked up from certain locations

and delivered to others. Therefore, it incorporates both delivery and pickup operations in

addition to considering the capacity of the vehicle.

Vehicle Routing Problem with Time Windows (VRPTW). In this variant, time

windows are imposed on customer visits, specifying the time interval during which a customer

can be served, this is accomplished by incorporating a time windows constraint for every

customer.

Vehicle Routing Problem with Multiple Depots (VRPMD). In this variant, there are

multiple depots or starting points for the vehicles. VRPMD extends the VRP by incorporating

the presence of multiple depots, which introduces the need to allocate vehicles to depots and

plan routes that satisfy the capacity constraints.
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Periodic Vehicle Routing Problem (PVRP). In this variant, the objective is to deter-

mine optimal routes for a fleet of vehicles over a given planning horizon, where the routes

repeat periodically.

Dynamic Vehicle Routing Problem (DVRP). In this variant it introduces the element

of dynamic changes in customer demands and/or service locations over time. The dynamic

Vehicle Routing Problem (DVRP) extends the VRP by considering real-time changes in cus-

tomer demands, vehicle availability, and other dynamic factors. It aims to adapt the vehicle

routes dynamically to optimize resource allocation and provide efficient service in response to

evolving conditions throughout the course of the day.

2.2 Importance and Challenges of Vehicle Routing Problems

As already said, the Vehicle Routing Problem (VRP) is a fundamental and highly impacting

combinatorial optimization challenge in the field of logistics and supply chain management.

As businesses strive for greater efficiency, reduced costs, climate consciousness, and improved

customer satisfaction, the significance of VRP becomes ever more pronounced. Some of the

importance of a VRP and its solutions includes:

Complexity Challenges. VRP poses significant difficulties as it falls under the realm of

combinatorial optimization, requiring to explore a vast number of possible combinations.

The problem’s degree of complexity arises from factors such as an increase in the number of

customers, multiple constraints, varying vehicle capacities to model the real life scenario, and

diverse customer demands.

Economic Significance. The logistics sector plays a vital role in the economy of many

countries. In Australia, logistics activities account for approximately 8.6% of the total econ-

omy according to Machship (2022) [11]. Similarly, according to a report from 2021, Portugal

witnessed a notable rise in the export of goods, with an 18.3% increase, and a correspond-

ing 22.0% increase in imports. Additionally, the internal logistics within the country also

experienced significant growth [9]. In Nigeria, the logistics sector contributes approximately

9.13% to the country’s economy as reported by International Trade Administration (2023)

[23]. Moreover, logistics costs can account for over 10% of the selling price of a commodity,

underscoring the importance of efficient vehicle routing [16].

Environmental Sustainability. VRP can contribute to environmental sustainability by

reducing fuel consumption and minimizing carbon emissions. Optimized routing strategies
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help decrease the number of vehicles on the road, leading to lower fuel consumption and

environmental impact [18].

Improved Customer Service. By efficiently allocating resources and optimizing routes,

VRP enables businesses to enhance their delivery schedules, reduce lead times, and improve

overall customer service. Prompt and reliable deliveries are crucial for customer satisfaction

and retention [7].

Urban Traffic Management. With the growing challenges of urban congestion, VRP plays

a crucial role in managing traffic flows efficiently. By optimizing delivery routes and schedules,

VRP can contribute to reducing traffic congestion and improving overall traffic management

in urban areas [4].

2.3 Review on VRP as a MILP

Our focus is to considering the Vehicle Routing Problem (VRP) within the context of a

Mixed Integer Linear Program (MILP) formulation. By examining the VRP through an

MILP framework, we can uncover the potential for representing and analyzing this problem

that incorporates both continuous and discrete decision variables.

Mixed Integer Linear Programming (MILP) is an optimization technique used in operations

research and mathematical programming. It is an extension of Linear Programming (LP)

where some of the decision variables are constrained to be integers rather than continuous

values. It is usually by Branch and Bound algorithm, which explores the search space by

branching on integer variables and bounding the solution space based on linear relaxation

of the problem. MILP is a powerful tool for tackling real-world optimization problems that

involve both continuous and discrete decision variables, and it has widespread use in various

industries and research fields.

The formulation of the Vehicle Routing Problem (VRP) provides a structured representation

that allows for the application of optimization techniques to achieve optimal or near-optimal

solutions. A formulation that encompasses various components, such as decision variables, an

objective function, and constraints, which effectively capture the fundamental requirements

and limitations of the VRP.

To demonstrate the feasibility of representing the VRP as a Mixed Integer Linear Program

(MILP), we need to carefully examine and analyze the objective function(s), decision variables,

constraints, and restrictions involved in the MILP formulation. Through this analysis, we can

illustrate how these elements can be applied to effectively model the VRP within the MILP

framework.
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Incorporation of Decision Variables. In the VRP formulation, the introduction of deci-

sion variables. the decision variables are the unknown quantities that we seek to determine

in order to achieve the desired objective. These variables represent the choices or decisions

we make to optimize a particular system or problem.

Incorporation of Objective Function. The formulation includes an objective function

that quantifies the optimization goal, typically represent various goals, depending on the

problem context. For example, in a production planning problem, the objective function

might represent maximizing profit, minimizing costs, or maximizing production output, while

in VRP it is the it minimizes the total cost, distance, or time required to serve all customers

while satisfying certain constraints. The cost can represent various factors such as travel

distance, travel time, vehicle operating costs, or a combination of these.

Incorporation of Constraints. Constraints play a crucial role in the formulation as they

capture the requirements and limitations of the problem. These constraints encompass vehicle

capacity constraints, flow into node constraint, flow out of node constraint, constraints on

source node constraints; admissible flow in and out of the source node. By incorporating these

constraints, the formulation ensures that the resulting vehicle routes satisfy the necessary

conditions imposed by the problem.

By assuring the incorporation of decision variables, an objective function, and constraints,

the VRP formulation establishes a structured representation that allows for the application

of optimization techniques and effectively captures the essential aspects of the problem.

By allowing a mix of integer and continuous decision variables (real numbers) this make the

above concept to be a mixed integer linear problem.

2.4 Common Types of Formulations for the VRP

Let a network be represented by a complete bidirected graph G = (V,E), where V = {1, . . . , n}

is the set of nodes of the graph G and corresponds to the locations of the customers. Set

E = {(i, j)∣i, j ∈ V, i ≠ j} is the set of arcs connection node i and node j and each arc is

associated with a nonnegative cost cij . We additionally define s as the source node and N as

the non-source nodes given by N = V /{s} Let qi > 0 represent the demand of customer i ∈ N ,

and Q the capacity of the vehicles. Let K be the set of available vehicles, and we assume

that the size of K is not predetermined before the formulation.

In order to establish an initial formulation for addressing this problem, we introduce binary

variables xijk, where (i, j) ∈ E and k ∈K. These variables take on the value 1 when vehicle k

visits customer j immediately after serving customer i, while assuming the roles of handling
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both delivery and pickup demands. Conversely, their value is 0 in all other cases. This

representation aligns naturally with the solution’s underlying structure.

minimize ∑

k∈K

∑

(i,j)∈E

cijxijk (2.1)

subject to: ∑

k∈K

∑

i∈V ∖{j}

xijk = 1, ∀j ∈ N, (2.2)

∑

j∈N

xsjk ≤ 1, ∀k ∈K, (2.3)

∑

i∈V ∖{j}

xijk = ∑

i∈V ∖{j}

xjik, ∀j ∈ N,∀k ∈K, (2.4)

∑

i∈N

qi ∑
j∈V ∖{i}

xijk ≤ Q, ∀k ∈K, (2.5)

∑

(i,j)∈S

xijk ≤ ∣S∣ − 1, ∀S ⊆ N,s ∈ S,∀k ∈K, (2.6)

xijk ∈ {0,1}, ∀(i, j) ∈ E,∀k ∈K. (2.7)

• Expression (2.1) is the objective function that aims to minimize the total cost by sum-

ming the cost associated with arcs (i, j) ∈ E over all vehicles k ∈K.

• Equations (2.2) ensure that each customer j is visited exactly once by any vehicle k.

For each customer j, the sum of decision variables xijk (excluding xjjk) for all vehicles

k and nodes i ∈ V, i ≠ j is equal to 1.

• Inequalities (2.3) state that each vehicle k is allowed to start from the depot (node s)

at most once. The sum of decision variables xsjk leaving the depot for all customers

j ∈ N is limited to be less than or equal to 1.

• Equations (2.4) are the flow conservation constraints and ensure the flow is maintained

throughout the network. For each vehicle, k ∈K, and customer j ∈ N , the total flow to

node j should be the same as the total flow from node j.

• Inequalities (2.5) ensure that each vehicle’s capacity is respected. The delivery demand

qi for each customer i in the route of each vehicle is subject to the vehicle’s capacity Q.

• Equation (2.6). Subtour elimination constraints prevent the formation of subtours. The

sum of decision variables xijk for arcs (i, j) in subset S, with s ∈ S, is restricted to be

less than the size of S minus 1.

• Equation (2.7). The decision variables xijk are binary, they can only take values of 0 or

1, indicating whether vehicle k uses arc (i, j) in the network E or not.
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The formulation’s dimension complexity depends on two factors which are number of cus-

tomers and vehicles. We consider the number of customers n = ∣N ∣ and the number of vehicles

m = ∣K ∣. To gain an understanding of the scale of this formulation, we can determine, based

on m and n.

Number of decision variables xijk:

• each xijk represents whether vehicle k travels from node i to node j;

• there are K possible values for k as there are K available vehicles;

• there are n nodes, so there are n possible values for i and for j;

• thus there are n × n × k variables xijk.

Total number of decision variables = K ⋅N ⋅N

Total number of constraints = N(K + 1) +K + (2N − 1) ⋅K

and here is the breakdown of the constraints in the formulation:

• Constraint (2.2) introduces a constraint for each customer j. Since there are N cus-

tomers, there are N such constraints.

• Constraint (2.3) introduces a constraint for each vehicle k. Since there are K vehicles,

there are K constraints.

• Constraint (2.4) introduces a constraint for each node j and each vehicle k. Since there

are N nodes and K vehicles, there are N ⋅K constraints.

• Constraint (2.5) introduces a constraint for each vehicle k. Since there are K vehicles,

there are K constraints.

• Constraint (2.6) introduces constraints for all possible subsets of customers. There are

2N − 1 non-empty subsets for N customers, so there are (2N − 1) ⋅K constraints.

• Constraint (2.7) has no dependency on K or N .

Total number of constraints = Number of constraints in Constraints (2.2) to (2.6) + Number

of constraints in Constraint (2.7)

Total number of constraints N +K +N ⋅K +K + (2N − 1) ⋅K + 0

For a clearer understanding of the variation in the number of variables and constraints, let’s

consider an example. We construct a table for this example, recording the number of variables

and constraints as a function of the number of customers, assuming the availability of three

vehicles.

12



The Table 2.1 presents the variation in the number of variables and constraints of the VRP

problem for different numbers of customers and using only three vehicles.

Table 2.1: Dimension of Problem with Increase in Numbers Nodes

number of customers 4 7 10 11 12 13 25

Decision variables 48 147 300 363 432 507 1875

Number of the constraints. 67 415 3115 6191 12339 24631 100663399

As we can observe, considering 25 customers and 3 vehicles, the number of constraints is

already enormous. The dimension of this formulation is primarily due to the presence of sub-

route elimination constraints, identified by 2.6. In this formulation, such constraints have

a cardinality that grows exponentially with the number n of customers. This implies that

solving the linear relaxation of the problem becomes practically impossible when n is very

large. One possible way to overcome this disadvantage is to consider a limited subset of these

constraints and add the rest only if necessary, through appropriate constraint separation pro-

cedures. The considered constraints can be relaxed in Lagrangian form or explicitly included

in the linear relaxation of the problem.

Alternatively, in this process, we can replace the constraints (2.6) with a family of constraints

with polynomial cardinality. In this phase, we will introduce two families of constraints. One

of the families was proposed by Miller, Tucker, and Zemlin (MTZ) of the Traveling Salesman

Problem (TSP) called the MTZ formulation, and another family of constraints involves the use

of flows called the Commodity flow Formulation. For the definition of each of these families, we

use additional variables that aid in constructing the constraints. Since they utilize additional

sets of variables, the formulations to be presented are extended formulations.

Next, we will utilize each of the two families of constraints in two groups of formulations. One

group of formulations uses the main decision variables xijk ∈ {0,1}, which take the value 1 if

the arc (i, j) ∈ E is used by vehicle k ∈K to obtain the solution and take the value 0 otherwise.

Another group involves the main decision variables being binary variables xij , which take the

value 1 if the arc (i, j) ∈ E is part of the solution and take the value 0 otherwise. We can verify

that the use of binary variables xijk allows us to immediately identify the route assigned to

each vehicle k, while with the variables xij , the routes are not immediately associated with

the vehicles.

2.5 Formulation using MTZ constraints

In this section, we will consider the family of constraints proposed by Miller, Tucker, and

Zemlin (MTZ) in [12] to eliminate sub-tours in earlier formulations. We continue to use
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the binary variables xijk and introduce additional continuous variables uik, where i ∈ N and

k ∈ K, representing the load of vehicle k after serving customer i. The MTZ constraints are

introduced as a replacement for constraint (2.6) and (2.6), and they can be described using

the following expressions

ujk ≥ uik + qj −Q(1 − xijk), ∀i, j ∈ N, i ≠ j,∀k ∈K, (2.8)

qi ≤ uik ≤ Q, ∀i ∈ N,∀k ∈K. (2.9)

Thus, we have the opportunity to restructure the formulation from Equation(2.1) to (2.7)

incorporating the MTZ constraints from Equations (2.8) and (2.9) as substitutes for the

sub-tour elimination constraints mentioned in Equations (2.5) and 2.6

minimize ∑

k∈K

∑

(i,j)∈E

cijxijk (2.1)

subject to: ∑

k∈K

∑

i∈V ∖{j}

xijk = 1, ∀j ∈ N (2.2)

∑

j∈N

x0jk ≤ 1, ∀k ∈K (2.3)

∑

i∈V ∖{j}

xijk = ∑

i∈V ∖{j}

xjik, ∀j ∈ V,∀k ∈K (2.4)

ujk ≥ uik + qj −Q(1 − xijk), ∀i, j ∈ N, i ≠ j,∀k ∈K (2.8)

qi ≤ uik ≤ Q, ∀i ∈ N,∀k ∈K (2.9)

xijk ∈ {0,1}, ∀(i, j) ∈ E,∀k ∈K (2.7)

The binary variable xijk takes the value 1 if vehicle k travels from customer i to customer

j, and 0 otherwise. To prevent the formation of subtours, the constraint 2.8 enforces that if

vehicle k travels from customer i to customer j, the load after visiting j (ujk) must be greater

than or equal to the load after visiting i (uik) plus the demand at j (qj), adjusted by a term

that considers the capacity Q when the arc (i, j) is not used making the constraint redundant

in this case.

Additionally, constraint 2.9 stipulates that the load of vehicle k after visiting customer i (uik)

must fall within the range of the minimum pickup or delivery demand (qi) and the maximum

capacity (Q). This way, the constraint system ensures that the vehicle’s load is sufficient to

accommodate the goods being transported, while the MTZ constraints replace the sub-tour
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elimination constraints in the original formulation. These constraints can be illustrated with

a diagrams Figure 2.2, as shown below In Figure 2.8 and Figure 2.8

Figure 2.2: Relative Load Sizing Constraints

Figure 2.3: Illustration of vehicle load constraints

In Figure 2.2, we can observe that if customer i is visited by vehicle k, then the vehicle’s load

after visiting the customer falls between the customer’s demand and the vehicle’s capacity:

qi ≤ uik ≤ Q. If vehicle k travels from customer i to customer j which implies that (xijk = 1),

then the load after serving customer j is bounded between the vehicle’s capacity and the sum

of the load after serving customer i and the demand of customer j (uik + qj ≤ ujk ≤ Q).

When vehicle k travels from customer i to customer j (xijk = 1), according to Constraints

(2.9) which is illustrated by Figure 2.3, we have ujk ≥ uik + qj .

Just like we did earlier, let’s figure out how many variables and constraints are in the MTZ

formulation based on the values of n and m. This will help us compare the two formulations.

In terms of n and m.

The number of variables xijk is mn(n+1), and the number of variables uik is mn. Therefore,

the number of variables for this formulation is defined by the following formula, Equation 2.10.
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Total number of decision variables =m n (n + 2) (2.10)

The number of constraints for the formulation is defined by the following Equation 2.11

Total number of constraints = 2m + n + 3mn + 2mn2 (2.11)

It can be observed that the cardinality of the constraints now becomes polynomial in terms

of m and n, unlike the sub-tour formulation which was an exponential that is the power of N.

In the following table, we record the variation in the number of variables and constraints

based on the number n of customers, considering a fleet of three available vehicles.

Number of Customers 4 7 10 11 12 13 25

Number of Variables 72 189 360 429 504 585 2025

Number of Constraints 142 370 706 842 990 1150 4006

When we replace the sub-tour elimination rules 2.6 and the capacity limits (2.5) with the

MTZ rules given by (2.8) and (2.9), we see that the number of rules becomes much smaller.

For instance, if there are 3 vehicles and 25 customers, the number of constraints decrease

from 100,663,399 to 4,006. This greatly helps in reducing the time it takes for calculations.

Lastly, we consider the formulation using commodity flow for the same problem.

2.6 Formulation using Commodity Flows

Another approach to handle the presence of sub-routes is by using flow restrictions to get

rid of them. To do this, we can think of each vehicle k as carrying a certain amount of flow

from the starting depot (node s) to every customer to fulfill their demands. To set up these

restrictions, additionally to the binary variables xijk like before, now we introduce continuous

variables fijk for all combinations of i and j in the set of nodes N where i is not equal to j,

and for all vehicles k in the set of vehicles K. These new variables fijk represent the amount

of flow transported from customer i to customer j using vehicle k. With this in mind, we can

create another formulation for solving this problem using mixed-integer linear programming,

as shown below.
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minimize ∑

k∈K

∑

(i,j)∈E

cijxijk (2.1)

subject to: ∑

k∈K

∑

i∈V ∖{j}

xijk = 1, ∀j ∈ N (2.2)

∑

j∈N

x0jk ≤ 1, ∀k ∈K (2.3)

∑

i∈V ∖{j}

xijk = ∑

i∈V ∖{j}

xjik, ∀j ∈ V,∀k ∈K (2.4)

∑

i∈V /{j}

(fijk − fjik) = qj , ∀j ∈ N,∀k ∈K (2.12)

fijk ≤ Qxijk, ∀(i, j) ∈ E,∀k ∈K (2.13)

fijk ≥ 0, ∀(i, j) ∈ E,∀k ∈K (2.14)

xijk ∈ {0,1}, ∀(i, j) ∈ E,∀k ∈K (2.7)

The only differences from the previous formulation (Sub-tour Elimination Formulation) are

introduction of new decision variables and replacement of constraints (2.5) and (2.6) by new

constraints (2.12), (2.13) and (2.14). The functions of the new constraints are explained as

follows.

Equation (2.12) is the Demand Satisfaction Constraint. This constraint ensures that the

difference between the inflow and outflow at a customer vertex j (for vehicle k) equals the

customer’s demand qj .

Inequality 2.13 is the Flow Capacity Constraint. This constraint limits the flow fijk on an arc

(i, j) for vehicle k to be at most Q when vehicle k travels through arc (i, j) (as it is multiplied

by the decision variable xijk), ensuring that the flow is within the capacity limits.

Non-Negativity of Flow Constraint (Inequality 2.14), this constraint ensures that the flow

variables fijk on each arc (i, j) for vehicle k is non-negative, it restricts flow values to non-

negative real numbers.

Similar to our previous formulations, we want to compute the count of variables and con-

straints in this commodity flow formulation.

The quantity of variables of type fijk matches the number of variables of type xijk, which is

mn(n + 1), resulting in a total of variables to be 2mn(n + 1)

total constraint count expressed algebraically as n+m+m(n+ 1)+mn+mn(n+ 1)+mn(n+

1) +mn(n + 1) = 3mn2
+ (5m + 1)n +m.
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Just like we did with previous formulations, we will create a table to demonstrate how chang-

ing the value of N impacts the count of decision variables and constraints in the commodity

flow formulation we’re using.

Number of Customers 4 7 10 11 12 13 25

Number of Variables 120 336 660 792 936 1092 3900

Number of Constraints 220 565 1072 1277 1500 1741 6037

When comparing the three formulations, we observed that the sub-tour elimination approach

is extremely costly to use. The commodity flow formulation, however, provides a more rea-

sonable solution for solving the problem, as the constraint it employs is only about 3
50000 of

the sub-tour elimination constraint for N = 25. The MTZ (Miller-Tucker-Zemlin) formulation

is even cheaper to use compared to the commodity flow formulation, with values of 4006 and

6037 respectively at N = 25.

We note that, when comparing the corresponding linear relaxations, the strength of the MTZ

constraints compared to the flow formulation is weaker. This means that the performance of

the MTZ formulation is poor when using solving approaches based on the linear programming

relaxations of the formulations.

2.7 Some Work on Vehicle Routing Problems

The Vehicle Routing Problem (VRP) has been approached using various techniques, algo-

rithms, and solvers in recent years. For small problem instances, exact mathematical op-

timization methods can be employed to find the optimal solution, ensuring its uniqueness.

However, as the problem size grows, finding the exact optimal solution becomes computation-

ally challenging. In such cases, heuristic, matheuristic, or meta-heuristic algorithms are often

utilized to obtain near-optimal solutions within a reasonable time frame. More work done on

VRP are examined and reported as follows.

The work by Tan and Yen (2021) [21] delved into the area of transportation planning, specif-

ically focusing on vehicle routing problems (VRP) and their various real-world applications.

With the rise in computational capabilities, the study highlights the increasing complexity

of VRPs that can now be tackled using a range of algorithms. To better understand the re-

cent advancements in this domain, they conducted a thorough analysis of literature published

from 2019 to August 2021. They used a systematic approach, they classified both models

and solutions into distinct categories, encompassing customer-related, vehicle-related, and

depot-related models, as well as exact, heuristic, and meta-heuristic algorithms.
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Jayarathna et al. (2019) [10] present an exploration of the contemporary concepts within

logistics, focusing on innovative solutions for transportation and distribution systems. The

paper’s central goal is to motivate a in-dept thinking concerning Vehicle Routing Problems

(VRP) and their evolution adaptations based on the fact that VRP is becoming more com-

plex as the technologies evolve and more need for VRP arises. The authors spotlight essential

VRP variants such as the Capacitated Vehicle Routing Problem (CVRP), Vehicle Routing

Problem with Time Windows (VRPTW), and Vehicle Routing Problem with MultiDepot

(MDVRP), recognizing their role in the broader VRP context. The study delves into re-

cent developments, encapsulating discussions on VRP categorization, synthesizing common

constraints, and constructing model algorithms. By undertaking a systematic approach, the

paper examines the future implications of VRP modeling, forecasting that the realm of Intel-

ligent Vehicle Routing Problems and Intelligent Heuristic Algorithms will emerge as pivotal

domains for future research endeavors.

The work by Liong et al. (2008) considered the Vehicle Routing Problem (VRP) as well-

studied operational research challenge involving the efficient distribution of supplies to cus-

tomers from one or multiple depots. The work explored a range of approaches used to tackle

the VRP. The paper highlights the application of heuristic methods such as genetic algo-

rithms, evolution strategies, and neural networks, signaling the broadening scope of solution

strategies. The beauty in this work is that the work provides a concise overview of the

VRP’s significance, its diverse problem variations, and the evolving packages of approaches

researchers have harnessed to tackle its complexity for practical scenarios.
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Chapter 3

The VRP with Pickup and Delivery

The Vehicle Routing Problem with Delivery and Pickup (VRPDP) is a combinatorial opti-

mization problem that extends the classical Vehicle Routing Problem (VRP) by introducing

both delivery and pickup tasks into the routing process. In the VRPDP, a fleet of vehicles is

tasked with delivering goods to certain customer locations and picking up goods from other

locations for transportation back to the depot or other specified destinations. The objective

is to minimize the total distance traveled, total cost, or the number of vehicles used, while

ensuring that all delivery and pickup tasks are completed within given constraints such as

vehicle capacities and time windows.

3.1 Real Life Examples of the VRPDP

Various real-life examples demonstrate the practical significance of the VRPDP in numerous

industries and logistics operations, where the efficient management of simultaneous delivery

and pickup tasks is essential. Below, a few of these examples are explained to help understand

the concept of the new tasks (Delivery and pickup) added.

• Waste collection: in urban waste collection, vehicles need to deliver empty bins to

customer locations and pick up full bins for disposal. The VRPDP can optimize the

routes to collect waste efficiently while minimizing the number of collection vehicles and

distances traveled.

• Reverse logistics: in e-commerce or retail industries, vehicles may need to deliver new

products to customers and simultaneously pick up returned items for refurbishment or

recycling. The VRPDP can optimize the return routes, considering capacities and time

windows, to handle reverse logistics efficiently.
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• Home healthcare services: in mobile healthcare providers, such as nurses or care-

givers, may need to deliver medical supplies to patients and pick up medical equipment

or samples for testing. The VRPDP can optimize their routes to minimize travel time

and ensure timely delivery and pickup.

• Food delivery services: in food delivery companies often face the challenge of si-

multaneously delivering prepared meals to customers and picking up empty containers

from previous orders. The VRPDP can optimize the food delivery routes, considering

delivery and pickup tasks to minimize overall transportation costs.

3.2 The problem formulation

Similar to the VRP discussed in the preceding chapter, the VRPDP variant also offers a

variety of formulations. In this context, we will delve into the fundamental formulation, the

commodity flow formulation, in this project, we would employ the directed flow formulation

to optimize the vehicles’ routes.

Let a network be represented by a complete bidirected graph G = (V,E), where V = {1, . . . , n}

is the set of nodes of the graph G and corresponds to the locations of the customers. Set

E = {(i, j)∣i, j ∈ V, i ≠ j} is the set of arcs connection node i and node j and each arc is

associated with a nonnegative cost cij . We additionally define s as the source node and N as

the non-source nodes given by N = V /{s}. We additionally have the following parameters:

• qi > 0 represents the delivery demand of customer i ∈ N , and

• pi stands for the pickup demand at node i.

• Q stands for the vehicle’s capacity. It is assumed that the fleet of vehicles has the same

capacity.

In order to establish an initial formulation for addressing this problem, we introduce binary

variables xij , where (i, j) ∈ E. These variables take on the value 1 when the vehicle visits

customer j immediately after serving customer i, while assuming the roles of handling both

delivery and pickup demands. Conversely, its value is 0 in all other cases.

The following is the mathematical model for the VRPDP
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minimize ∑

(i,j)∈E

cijxij (3.1)

subject to: ∑

i∈V ∖{j}

xij = 1, ∀j ∈ N (3.2)

∑

i∈V ∖{j}

xji = 1, ∀j ∈ N (3.3)

∑

j∈N

xsj ≤ 1 (3.4)

∑

i∈V ∖{j}

xij = ∑

i∈V ∖{j}

xji, ∀j ∈ N (3.5)

∑

i∈N

⎛

⎝

(qi − pi) ∑
j∈V ∖{i}

xij
⎞

⎠

≤ Q (3.6)

∑

(i,j)∈S

xij ≤ ∣S∣ − 1, ∀S ⊆ V (3.7)

xij ∈ {0,1}, ∀(i, j) ∈ E (3.8)

• Equation (3.1): the objective function aims to minimize the total cost by summing the

cost associated with arcs (i, j) over all the arcs (i, j) ∈ E.

• Equation (3.2): this constraint ensures that each customer j is visited exactly once by

a vehicle on a particular route. The Figure 3.1 illustrates this constraint.

Figure 3.1: Constraint on incoming vehicle to each node j.
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• Equation (3.3): This constraint ensures that each customer j is exited exactly once by

a vehicle on a particular route. The Figure 3.2 illustrates this constraint.

Figure 3.2: Constraint on outgoing vehicle from each node j.

• Equation (3.4): ensures that at most 1 vehicle is allowed to start from the depot (node

s).

• Equation (3.5): ensures the flow conservation, is maintained throughout the network.

For every node j ∈ N , the total flow to node j should be the same as the total flow from

node j.

• Equation (3.6): ensures that the vehicle’s capacity is complied to. The sum of the

difference between the delivery demand qi and pickup demand pi for each customer i,

multiplied by the corresponding flow variables xij , is less than or equal to the vehicle’s

capacity Q.

• Equation (3.7): ensures sub-tour elimination constraints to prevent the formation of

sub-tours on the vehicle tour.

• Equation (3.8): ensures that the decision variables xij are binary, indicating whether a

vehicle uses arc (i, j) in the network or not. They can only take values of 0 or 1.
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3.3 Formulation of the VRPDP Using Commodity Flows

As discussed earlier in the last chapter, another approach to handle the presence of sub-routes

is by using flow restrictions to get rid of them. To do this, we can think of a vehicle carrying

a certain amount of flow from the starting depot (node s) to every customer to fulfill the

demands of each customer. To set up these restrictions, we use binary variables xij like in the

last section, and now we introduce continuous variables yij , zij for all combinations of i and j

in the set of nodes N where i is not equal to j. These new variables yij represent the amount

of delivery demand flow transported from node i to node j and zij represents the amount of

pickup demand flow transported from node i to node j. With this in mind, we model this

problem using mixed-integer linear programming, as shown below:

minimize ∑

(i,j)∈E

cijxij (3.1)

subject to: ∑

i∈V ∖{j}

xij = 1, ∀j ∈ N (3.2)

∑

i∈V ∖{j}

xji = 1, ∀j ∈ V (3.9)

∑

i∈V /{j}

(yij − yji) = qj , ∀j ∈ N (3.10)

∑

i∈N

yis = 0, (3.11)

∑

i∈V /{j}

(zij − zji) = −pj , ∀j ∈ N (3.12)

∑

i∈N

zsi = 0, (3.13)

yij + zij ≤ Qxij , ∀(i, j) ∈ E (3.14)

yij ≥ 0, ∀(i, j) ∈ E (3.15)

zij ≥ 0, ∀(i, j) ∈ E (3.16)

xij ∈ {0,1}, ∀(i, j) ∈ E (3.8)

Constraints (3.2) and (3.9) are equivalent to (3.5). The main differences from the previous

formulation (Sub-tour Elimination Formulation) are the introduction of new decision variables

and replacement of constraints (3.6) and (3.7) by new constraints (3.10), (3.11) (3.12), (3.13),

(3.14), (3.15), and (3.16). The new constraints are explained as follows.

The pickup demand satisfaction constraint is considered in Equation (3.12), this constraint

ensures that the difference between the inflow of pickup demanded and outflow of pickup
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demanded at a customer vertex j meets the customer’s delivery demand pj . This is illustrated

in Figure 3.3

Figure 3.3: Constraint on Pickup Demand at node j

The delivery demand satisfaction constraint is considered in Equation (3.10), this constraint

ensures that the difference between the inflow of delivery demanded and outflow of delivery

demanded at a customer j meets the customer’s delivery demand qj . And this constraint is

illustrated by Figure 3.4

Figure 3.4: Constraint on Delivery Demand at node j

Constraints (3.11) and (3.13) ensure the inflow to the depot of the delivery demand is zero

and the outflow of the pickup demand to the depot is also zero.

Resultant flow capacity constraint Equation (3.14), this constraint limits the sum of flow yij
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and zij on an edge (i, j) must be at most Q, multiplied by the decision variable xij , ensuring

that the flow is within the capacity limits.

Non-Negativity of demand flow constraint Equation (3.15) and Equation (3.16), these con-

straints ensure that the flow variable yij and zij on each edge (i, j) is non-negative, it restricts

both demand flow values to nonnegative real numbers.

3.3.1 Example of VRPDP using Commodity Flow Formulation

We will solve a problem using this flow formulation and visualize the solution of the problem.

The next table displays the problem data of the example.

Table 3.1: Data of the example Using Generated Locations

pos x pos y demand delivery demand pickup

Lisbon 1.46 0.95 0 0

Porto 70.55 34.97 5 4

Braga 80.00 12.13 5 1

Faro 0.46 65.88 13 4

Coimbra 9.47 0.23 10 11

Aveiro 0.96 1.89 9 3

Evora 3.70 0.96 12 9

Sintra 4.03 5.55 15 1

Viseu 16.04 0.64 12 4

Portimao 0.06 14.76 14 10

The table below shows the solution of the example using the Solver Gurobi and the formula-

tion.

Table 3.2: Solution Using Commodity Flow Formulation

number of Cities C NI NCP NoR OPT Time(s)

10
15 51 20 8 401.097 0.13

50 2586 4 2 267.397 1.65

The solution for the commodity flow formulation is displayed as follows.

Route Solution to The Problem Using Vehicle with Capacity =50 :
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Optimal solution found!

Total cost: 267.39720000000005

Solution:

Arc (0, 6): Delivery = 46.00000000000033, Pickup = 0.0

Arc (0, 9): Delivery = 49.0, Pickup = 0.0

Arc (1, 2): Delivery = 17.0, Pickup = 18.0

Arc (2, 8): Delivery = 12.0, Pickup = 19.0

Arc (3, 1): Delivery = 22.0, Pickup = 14.0

Arc (4, 7): Delivery = 23.999999999999908, Pickup = 20.000000000000114

Arc (5, 0): Delivery = 0.0, Pickup = 24.0

Arc (6, 4): Delivery = 34.000000000000234, Pickup = 9.000000000000114

Arc (7, 5): Delivery = 8.999999999999908, Pickup = 21.0

Arc (8, 0): Delivery = 0.0, Pickup = 23.0

Arc (9, 3): Delivery = 35.0, Pickup = 10.0

Figure 3.5 gives a better illustration of the solution of the VRPDP when using a vehicle with

capacity of 50.

28



Figure 3.5: Solution to the Problem using Flow Formulation

3.4 Some Work on the VRP with Pickup and Delivery

The Vehicle Routing Problem with Delivery and Pickup, VRPDP has been extensively stud-

ied, and several techniques have been proposed to solving it.

One relevant work in this area is the research by Ropke and Pisinger in [17], where they pre-

sented a unified solution framework for the VRPDP. They developed a set partitioning-based

formulation and proposed a hybrid algorithm combining a large neighborhood search with

an exact method to solve the problem. Their proposed methodology yielded encouraging

outcomes when tested on standard benchmark instances.

The work of Salhi and Nagy [19] and Nagy and Salhi [15] developed a composite heuristic

approach for the Vehicle Routing Problem with Pickup and Delivery (VRPDP). This method-

ology can also cater to multiple depots. The authors modified several previously developed
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VRP routines. The proposed methodology was tested on both single and multiple depot

problem instances, yielding competitive results. To facilitate comparison, an insertion-based

approach was also developed. This approach allows back-hauls to be inserted in clusters

rather than individually. Such an approach leads to modest improvements and entails negli-

gible additional computational effort.

Another notable study is conducted by Baldacci et al. in [1], where they proposed a hybrid al-

gorithm for solving the VRPDP. Their method combines a variable neighborhood search with

an adaptive large neighborhood search, effectively exploring the solution space and improving

the quality of solutions obtained. Experimental results demonstrated the competitiveness of

their approach compared to other state-of-the-art methods.

Additionally, Brandão et al. in [2] introduced a hybrid algorithm based on a variable neigh-

borhood search and a simulated annealing meta-heuristic for the VRPDP. They incorporated

several innovative features into their algorithm, such as diversification strategies and an effi-

cient neighborhood search mechanism. Their experimental results showed that their method

outperformed existing algorithms on various VRPDP instances.

Also considering Dethloff, [5, 6] proposed an insertion-based algorithm. In this technique,

customers are added to emerging routes following three criteria; travel distance (similar to

the basic VRP), ”residual capacity” (a novel concept introduced by the author, resembling

the maxload function by Nagy [14]). This approach yields outcomes similar to Salhi and Nagy

[15] in terms of tour lengths, and it also reduces the number of vehicles needed in many cases.

Tang and Galvão [13] solve the VRPSDP using a tabu search framework. Initial solutions are

found using a number of previously developed methodologies in the literature. The neighbor-

hood is built on the moves insert, exchange, crossover, and 2-opt. The tabu search structure

relies on both short- and long-term memory. Likewise Chen and Wu [3] also solved the

VRPSDP using tabu search but find initial feasible solutions by an insertion method, which

relies on both distance- and load-based criteria. The neighborhood for the improvement phase

is built on the moves 2-exchange, swap, shift, 2-opt, and Or-opt.

In addition to the studies conducted by by the authors cited above spoken about within this

section of this project, numerous other researchers have also explored and investigated this

Variant of VRP. The abundance of related works demonstrates the significant interest in this

Vehicle Routing Problem with Delivery and Pickup (VRPDP) and indicates a promising and

encouraging direction for future research.
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Chapter 4

Computational Experience

The formulation for the problem was presented in the last Chapter 3 and the data used for

this problem was gotten from randomly generation. The data was generated with Python

by writing a code which generated a graph by random distribution on a x-y plane each of

them on a line scale of zero to a hundred, which incorporating nodes’ positions within this

space, compute their relative Euclidean distances from each other, and randomly generated

demands for both Delivery and Pickup, allows for the simulation of realistic scenarios.

The Vehicle Routing Problem with Pickup and Delivery Problem (VRPDP) formulated was

used to create a model by using Gurobipy library which implemented the data. The model

created by Gurobipy creates a model which encompasses the decision variables, objective

function, and constraints on the decision variables.

A systematic computational analysis was conducted on three datasets. The first dataset was a

prototypical example, consisting of a complete graph with 4 nodes. Its purpose was to provide

a clear illustration of the problem, facilitate problem visualization, and aid in explaining

the solution. The second dataset aimed to simulate more practical real-life scenarios and

encompassed complete graphs with node quantities of 15, 20, 25, and different levels for

pickup and delivery demands. We consider four different levels: Indifferent, Large Deliver,

Small Deliver, and Equal. On the Equal level, for each customer, delivery, and pickup demands

are equal. On the Small Delivery level, for each customer, the delivery demands are smaller

than the pickup demands. On the Large Delivery level, the delivery demands are larger than

the pickup demands for each customer. On the Indifferent level, the delivery and pickup

demands have no relation.

The contents of the data generated are summarized in two sets of tables called Graph Table

and Distance Table.
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The Graph Table describes the position and location of the source node and other non-source

nodes and the demands for each nodes. The first column contains the names assigned to the

node, the second column the displacement of the x-axis on an x-y plane, the third column

the displacement of the y- axis on an x-y plane. The remaining columns display the delivery

demands (DD) on each location and the pickup demands (DP) from each location for the four

different levels of deliver and pickup (Indifferent, Large Deliver, Small Deliver and Equal).

The Distance Table provides the Euclidean distances between the nodes generated by calcu-

lation the Euclidean distances between each position of each location which is given by the

Formula Equation (4.1) below.

Euclidean distance =
√

(posx2 − posx1)2 + (posy2 − posy1)2 (4.1)

Both the row and the column contains the names of each node and each cell contains the

distance value between the location on the row to the one on the column. The table has the

values of a square and symmetric matrix that shows the relative distances between any given

pair of node positions.

4.1 Prototypical Example

In this section we described the prototypical examples and solve it using the Gurobipy model

created and the dataset generated. The Table 4.1 is the Graph Table and presents the

positions of the nodes and their corresponding delivery and pickup demands. Additionally,

Table 4.2 is the Distance Table and provides the Euclidean distances between the nodes. To

visualize the complete graph with node positions, delivery demands, and pickup demands,

refer to Figure 4.1.

Table 4.1: Position and demand details for prototypical Dataset

Indiffrent Large Deliver Small Delivery Equal Demands

Node pos x pos y DD DP DD DP DD DP DD DP

s 1.46 0.95 0 0 0 0 0 0 0 0

A 70.55 34.97 3 5 6 1 1 5 5 5

B 80.00 12.13 3 4 6 2 1 8 8 8

C 0.46 65.88 12 3 6 2 1 7 7 7

pos x Displacement from x-axis origin

pos y Displacement from y-axis origin

DD demand delivery

DP demand pickup
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Table 4.2: Distance Table for prototypical Dataset

SN A B C

s 0.0000 77.0116 79.3317 64.9377

A 77.0116 0.0000 24.7178 76.6031

B 79.3317 24.7178 0.0000 95.9983

C 64.9377 76.6031 95.9983 0.0000

Note that the table above has the values of a symmetric square matrix that shows the relative

distances between any given pair of positions.

The Figure 4.1 represents the summary of all the the data in the Table 4.2 and Table 4.1. The

Figure 4.1 illustrates that node s acts as the source node, indicated by zero values for both

delivery and pickup demands. Node A, as one of the non-source nodes, has a delivery demand

of 3 and a pickup demand of 5, other non-source nodes as shown in Figure 4.2 displays the

node weights for both delivery demands and pickup demands. On each node we display (d,p)

which are the demand for delivery d and the demand for pickup p by the customer represented

by the node.

Figure 4.1: Visualization of the Prototypical Dataset Graph

The input data for the Gurobipy solver and Networkx were read from the tables Table 4.1

and Table 4.2. Using the input data, Networkx utilized the position information to create a

visual representation of the problem in the form of graphs which is displayed in Figure 4.1. By
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incorporating the weighted edges and nodes, the solver utilized the information to generate

the mathematical model (3.1) to (3.8) of the flow formulation which is expressed as follows.
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minimize 77.0116x01 + 79.3317x02 + 64.9377x03 + 77.0116x10

+ 24.7178x12 + 76.6031x13 + 79.3317x20 + 24.7178x21

+ 95.9983x23 + 64.9377x30 + 76.6031x31 + 95.9983x32

Subject to

R0: x1,0 + x1,2 + x1,3 = 1

R1: x2,0 + x2,1 + x2,3 = 1

R2: x3,0 + x3,1 + x3,2 = 1

R3: x0,1 + x2,1 + x3,1 = 1

R4: x0,2 + x1,2 + x3,2 = 1

R5: x0,3 + x1,3 + x2,3 = 1

R6: y0,1 − y1,0 − y1,2 − y1,3 + y2,1 + y3,1 = 3

R7: y0,2 + y1,2 − y2,0 − y2,1 − y2,3 + y3,2 = 3

R8: y0,3 + y1,3 + y2,3 − y3,0 − y3,1 − y3,2 = 12

R9: z0,1 − z1,0 − z1,2 − z1,3 + z2,1 + z3,1 = −5

R10: z0,2 + z1,2 − z2,0 − z2,1 − z2,3 + z3,2 = −4

R11: z0,3 + z1,3 + z2,3 − z3,0 − z3,1 − z3,2 = −3

R12: y1,0 + y2,0 + y3,0 = 0

R13: z0,1 + z0,2 + z0,3 = 0

R14: − 15x0,1 + y0,1 + z0,1 ≤ 0

R15: − 15x0,2 + y0,2 + z0,2 ≤ 0

R16: − 15x0,3 + y0,3 + z0,3 ≤ 0

R17: − 15x1,0 + y1,0 + z1,0 ≤ 0

R18: − 15x1,2 + y1,2 + z1,2 ≤ 0

R19: − 15x1,3 + y1,3 + z1,3 ≤ 0

R20: − 15x2,0 + y2,0 + z2,0 ≤ 0

R21: − 15x2,1 + y2,1 + z2,1 ≤ 0

R22: − 15x2,3 + y2,3 + z2,3 ≤ 0

R23: − 15x3,0 + y3,0 + z3,0 ≤ 0

R24: − 15x3,1 + y3,1 + z3,1 ≤ 0

R25: − 15x3,2 + y3,2 + z3,2 ≤ 0

Bounds

Binaries x0,1, x0,2, x0,3, x1,0, x1,2, x1,3, x2,0, x2,1, x2,3, x3,0, x3,1, x3,235



.

The above mathematical model was the result obtained from the Gurobi solver. The objective

is to minimize the total cost to tour the 4 nodes satisfying all the required conditions, the

coefficient of the decision variable, and the decision value of the decision variables which is 1

if the edge is selected and 0 if the edge is not selected. The explanation of the other lines of

the model is as follows

R0 to R2 corresponds to the constraints (3.2), which ensures that only one edge leaves every

node that is not the source node.

R3 to R5 corresponds to the constraint (3.9), which ensures that only one edge enters every

node that is not the source node.

R6 to R8 corresponds to the constraint (3.10), which ensures that for every node the delivery

flow into the node differs from the delivery flow out of the nodes by the value of the delivery

demands.

R9 to R11 corresponds to the constraint (3.12), which ensures that for every node the pickup

flow into the node differs from the pickup flow out of the nodes by the value of the pickup

demands.

R12 corresponds to the constraint (3.11), which ensures that there is no pickup at the source

node.

R13 corresponds to the constraint (3.13), which ensures that there is no delivery done at the

source node.

R14 to R25 corresponds to the constraint (3.14), which ensures that for every node the

pickup flow and the Delivery flow on every selected edge conforms with the vehicle’s capacity

constraints.

Below is the summary of the output result of the solver.

Optimal solution found!

Total cost: 310.9365

Solution:

Arc (s, A): Delivery = 6.0, Pickup = 0.0

Arc (s, C): Delivery = 12.0, Pickup = 0.0

Arc (A, B): Delivery = 3.0, Pickup = 5.0

Arc (B, s): Delivery = 0.0, Pickup = 9.0

Arc (C, s): Delivery = 0.0, Pickup = 3.0
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The output shows the solution has two route and they are shown below in the detailed picture.

The output of the solver was plotted and displayed as in Figure 4.2, which presents the optimal

routes obtained from the Gurobipy solver.

Figure 4.2: Solution of Optimal Routes Graph

From Figure 4.2 above, the arcs connecting the locations show the route toured in the instance.

Next to each arc, we display the value (y,z), y is the total delivery transported along the arc

and z is the total pickup transported on the same arc.

The same model described above was implemented for seven more instances of the problem.

With the same location for both the depot and the destination. We only vary the relative

sizes of demand delivery and pickup demands corresponding to the four levels shown in Table

4.1. Included in the table are each pair of demands for each instance. For an easy description

of the instances, the following notations are used.

In: means indifferent case for the delivery demands and pickup demands.

L: means that the delivery demands are relatively large compared to the pickup de-

mands.

S: the delivery demands are relatively small compared to the pickup demands.

E: means delivery demands are equal to pickup demands.

The distance Table 4.1 remains the same since the positions did not change and we are also
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using a set of vehicles with a capacity of 50 on all the instances. The results for the eight

instances are also summarized and presented in Table 4.3 below.

Table 4.3: Result summary on the prototypical example

NN C DrP NI NCP NoR OPT T

4

15

In 19 6 2 310.94 1.16

L 54 14 2 310.94 0.31

S 19 6 2 310.94 0.11

E 4 0 2 310.94 2.73

50

In 36 5 1 245.59 1.67

L 45 10 1 245.59 0.41

S 33 5 1 245.59 0.33

E 41 8 1 245.59 2.18

The Table 4.3, shows the results of all the instances on the prototypical data set when running

the Gurobipy solver. The table contains 8 columns, the first NN , the number of nodes which

we considered only 4 nodes. The second column C contains the capacity of the vehicle

considered at a particular instance. In the third column, DrP for delivery demands relative

to pickup demands, we stick to the notation explained earlier on the various instances to

be considered. The fourth column, NI is the number of iterations the solver performed to

reach the optimal values. The fifth column, NCP the number of cutting planes used in each

instance. The sixth column, NoR is the number of routes toured in the optimal solution of

each instance. The seventh column, OPT is the optimal solution obtained in each instance,

and the eighth column, T the computational time in seconds to solve the problem in each

instance.

For these small examples built with the four nodes network, the solution cost value and routes

only vary with the capacity of the vehicle. When using a vehicle with a larger capacity, 50

instead of 15, the number of routes decreases, from 2 to 1, and the cost of the solution also

decreases, from 310.94 to 245.59. The computational time varies also with the different levels

of delivery and pickup demands. For L level it reveals the use of more iterations and the

introduction of more cutting planes for obtaining the optimal solution. For E level it reveals

the use of more computational time to obtain the optimal solution while for level S it reveals

the use of less computational time.
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4.2 Real Life Datasets

We conducted three computational experiments that focused on addressing more complex

problems by increasing the number of nodes while keeping the vehicle capacity constant at 15

and 50. We provide the Graph Table which consists of the Positioning of the customers, and

their demand deliveries and demand pickups. To provide additional clarity and organization,

we have included Graph Tables in the appendix from Table A.1 to Table A.36. By including

the graph tables in the appendix, we want to ensure that the information related to the input

data and experimental results is presented in a well structured and comprehensive form. The

distance tables can be generated by computing the euclidean distances between any pair of

nodes in the graph.

The results obtained from this computations are presented in the tables below. The Table 4.4

summary for the solution to the instances with 15 nodes, Table 4.5 summary for the solution

to instances with 20 nodes and Table 4.6 summary for the solution to the 25 nodes instances.
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Table 4.4: Result summary on the 15 node problem

NN C DrP NI NCP NoR OPT T

Prob. 1

15

In 2126 23 9 840.22 7.13

L 498 12 11 988.163 0.48

S 4124 38 10 887.963 6.01

E 719 5 10 887.963 0.45

50

In 10483 225 2 338.238 8.11

L 26534 238 4 426.107 5.03

S 13373 167 3 345.414 2.12

E 9771 135 3 345.414 3.75

Prob. 2

15

In 10200 269 8 662.128 2.48

L 2416 45 11 946.409 5.62

S 0 0 14 1087.76 0.05

E 29623 244 5 638.187 3.15

50

I 15851 283 2 338.107 2.34

L 37795 284 3 416.015 2.87

S 34731 275 3 416.015 2.27

E 3769 97 2 318.589 1.43

Prob 3

15

In 43051 413 6 703.687 3.61

L 6238 98 9 802.151 1.75

S 1663 14 9 807.865 0.61

E 12523 280 5 607.377 2.64

50

In 7477 144 2 318.205 1.56

L 12355 151 3 345.414 2.02

S 74776 311 3 420.112 3.89

E 4599 107 2 304.217 1.43
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Table 4.5: Result summary on the 20 node problem

NN C DrP NI NCP NoR OPT T

Prob. 1

15

In 7920 62 11 1142.43 2.96

L 2982 27 15 1533.333 1.33

S 4318 16 14 1524.326 2.90

E 648 27 14 1524.326 0.50

50

In 76380 264 3 506.263 20.35

L 349602 414 5 612.514 22.43

S 1042674 553 4 602.252 47.54

E 466066 687 4 602.252 33.90

Prob. 2

15

In 72514 279 10 1393.550 6.77

L 6569 0 15 1635.75 2.13

S 3084 0 17 1591.13 0.98

E 402339 501 9 1138.270 26.95

50

In 249121 370 3 517.248 24.80

L 1094724 770 4 610.404 64.35

S 213596 431 5 552.018 22.16

E 39230 216 3 480.994 11.41

Prob 3

15

In 175817 728 7 955.982 13.26

L 4981 0 13 1412.94 1.35

S 12067 38 14 1684.91 3.17

E 124419 670 7 940.581 12.51

50

In 1039330 569 2 468.411 56.67

L 610368 609 3 582.768 42.49

S 1874809 788 4 607.945 111.28

E 971073 629 2 468.411 67.31
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Table 4.6: Result summary on the 25 node problem

NN C DrP NI NCP NoR OPT T

Prob 1.

15

In 249827 331 13 1216.95 29.34

L 153004 397 16 1283.93 14.65

S 34094 356 15 1345.239 7.08

E 4760 9 15 1345.239 1.48

50

In 1411918 832 4 492.244 116.42

L 485659 538 538.358 50.63

S 7007639 1993 5 584.515 497.33

E 2995944 1028 5 584.515 235.10

Prob 2

15

In 62646 397 13 1434.390 8.97

L 6555 40 20 1828.09 1.67

S 3173 65 20 1749.250 0.96

E 432257 718 13 1251.21 46.94

50

In 1092440 843 4 533.593 104.52

L 20905133 1429 6 674.683 1455.80

S 12123847 953 6 645.175 797.99

E 976220 850 3 527.541 111.71

Prob 3

15

In 339239 970 9 1076.31 34.54

L 21979 422 16 1656.11 12.19

S 18706 74 17 1874.47 4.84

E 580953 804 8 1066.97 57.77

50

In 2761573 949 3 492.573 211.91

L 4801563 803 5 643.109 316.27

S 4925111 1074 5 624.997 310.73

E 3846116 639 3 492.573 416.09

Based on observation recorded from the previous tables, we considered the following compar-

isons on the results for these small examples. Taking into account the number of iteration

(NI), relative to the instances, the number of cutting planes applied in the process (NCP )

relative to the instances, the Optimal cost which is the objective of the work (OPT ) relative

to the instances, and the computational time (T ) relative to the instances.

Number of Simplex Iterations (NI). We saw that the numbers of simplex iterations

increased as the number of customers considered increased which is as expected but at a

constant number of customers, the capacity of the vehicle used is the major determinant for

how many times the solver employed simplex iterations to solve the problem. For example,

when the customers are 20, the average number of iterations is 3967 compared to when the
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vehicle with a capacity of 50 is used, the average number of Iterations is 483680.5. However,

there is no significant trend in the effect of varying relative sizes of the demands on the

numbers of simplex iterations done to obtain optimal solutions.

Number of Cutting Planes (NCP). Exactly The same inferences on the cutting planes

just as in the case of the number of simplex iterations. when using the vehicle with the

capacity of 50 instead of 15 for the problem with 20 locations the average of cutting plane,

taking problem 1 as an example, decreases from 479.5 to 33.

Optimal Cost (OPT). Like the number of iterations and cutting plane, the optimal cost

increases as the number of customers increases but reduces as the vehicles’ capacities increase.

Considering the problem for 25 nodes for example as the vehicle capacity was changed from

50 to 15, the average optimal cost increases from 563.313 to 1418.465.

Computational time (T). As stated from a known fact earlier in this project, as the number

of locations for a problem increases the computational time also increases average optimal cost

increases considering the average of Indifferent demand at each location for the 3 problems

at 15 nodes, 20 nodes and 25 nodes are 4.41, 7.66 and 24.28 respectively. And it can also be

observed that as the capacity of the vehicles increases the computation time also increases as

it depends on the number of iterations done and the amount of cutting plane used to obtain

the optimal solution.
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Chapter 5

Conclusion and Future Work

5.1 Summary Remarks

This project’s findings highlight the complex relationships and the intricate dynamics between

vehicle capacity, customer count, optimization process complexity, and the resultant solution

quality, which entails Optimal Solution and its computational time. The insights gained

provide valuable perspectives for enhancing optimization strategies in real world knowing the

key parameters that and how they influence solution of a VRPDP in real world.

Using a small dataset of 15,20 and 25 and repeating the senarios with two more datasets, we

try to study the trends and factors that influences the optimal cost and made the following

observations.

1. the relative sizes of the delivery demands to pickup demands in each scenarios does not

really have significant effect the cutting plains (NCP) on the solution. Hence the relative size

has no direct correlations with the number of cutting plains. Making reference to 25 nodes

problem 1 and Problem 2 for example considering the each scenario using vehicle of capacity

of 15. In problem 1, E had the least number of cutting plains and L had the highest number

of cutting plains while in problem 2, S had the least number of cutting plain E had the highest

number of cutting plains.

2. The amount of simplex iterations depends mostly on the numbers of customers and the

capacity of the vehicles used.

5.2 Future Works

1. Relative Sizes Variant: The analysis revealed that variations in the relative sizes

of delivery and pickup demands had no significant difference on various key metrics,
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including the optimal solution, the number of iterations used, the amount of cutting

plane employed, and computational time. This suggests that when considering changes

in the proportions of delivery and pickup demands, these aspects of the VRPDP remain

relatively stable.

2. Vehicle Capacity: It was observed that vehicle capacity had the most substantial

and consistent influence on the optimal solution, the number of iterations used, the

amount of cutting plane employed, and computational time. This finding emphasizes

the critical role that vehicle capacity plays in shaping the efficiency and effectiveness of

the VRPDP solution. Managers and planners should pay close attention to optimizing

vehicle capacity for improved performance.

3. Number of Customers: The number of customers was also identified as a significant

factor, albeit with some variability in its impact. While it did affect the optimal solution,

the number of iterations, cutting plane utilization, and computational time, these effects

were not as stable as those seen with vehicle capacity. Further investigation may be

necessary to understand the specific circumstances under which changes in the number

of customers have the greatest influence on VRPDP outcomes.

Proposed Future Work

Building on the findings of this study, there are several avenues for future research and

extension of this work:

1. Dynamic VRPDP: investigate how the relative demand variations impact VRPDP

when considering dynamic or real-time scenarios. Real-world logistics often involve

changing demands, and understanding how these variations affect routing decisions in

real-time could be valuable.

2. Measure of Contribution of Number of Costumers and Vehicle Capacity:

investigate using, for example, Principal Component Analysis to measure the contribu-

tion of vehicle capacity and number of customers to the optimal solution, numbers of

number of iterations used, the amount of cutting plain employed and the computational

time.
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Appendix A

Appendix Table

The graph Tables for Problem 1, Problem 2 and Problem 3 for 15 nodes, 20 nodes and 25

nodes
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pos x pos y DD DP

SN 1.46 0.95 0 0
A 70.55 34.97 10 5
B 80.00 12.13 8 5
C 0.46 65.88 7 6
D 9.47 0.23 12 0
E 0.96 1.89 1 4
F 3.70 0.96 10 6
G 4.03 5.55 4 3
H 16.04 0.64 11 11
I 0.06 14.76 6 12
J 0.16 84.12 8 12
K 2.37 7.99 7 9
L 12.66 0.76 4 2
M 60.91 61.88 0 10
N 71.39 59.04 9 5

A.1 Problem 1, 15 Node, Indiffent Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 11 1
2 80.00 12.13 6 3
3 0.46 65.88 9 4
4 9.47 0.23 11 0
5 0.96 1.89 9 0
6 3.70 0.96 6 2
7 4.03 5.55 14 4
8 16.04 0.64 12 4
9 0.06 14.76 8 3
10 0.16 84.12 10 3
11 2.37 7.99 13 5
12 12.66 0.76 8 2
13 60.91 61.88 11 2
14 71.39 59.04 14 4

A.2 Problem 1, 15 Node, Large Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 3 7
2 80.00 12.13 0 12
3 0.46 65.88 5 14
4 9.47 0.23 3 5
5 0.96 1.89 2 6
6 3.70 0.96 0 10
7 4.03 5.55 4 13
8 16.04 0.64 3 14
9 0.06 14.76 1 12
10 0.16 84.12 2 11
11 2.37 7.99 4 15
12 12.66 0.76 5 10
13 60.91 61.88 3 10
14 71.39 59.04 4 14

A.3 Problem 1, 15 Node, small Relative Delivery Demands to

Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 6 6
2 80.00 12.13 1 1
3 0.46 65.88 11 11
4 9.47 0.23 6 6
5 0.96 1.89 4 4
6 3.70 0.96 1 1
7 4.03 5.55 9 9
8 16.04 0.64 7 7
9 0.06 14.76 3 3
10 0.16 84.12 5 5
11 2.37 7.99 8 8
12 12.66 0.76 11 11
13 60.91 61.88 6 6
14 71.39 59.04 9 9

A.4 Problem 1, 15 Node, Equal Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 1 12
2 80.00 12.13 4 2
3 0.46 65.88 12 5
4 9.47 0.23 1 4
5 0.96 1.89 4 9
6 3.70 0.96 0 12
7 4.03 5.55 4 2
8 16.04 0.64 9 7
9 0.06 14.76 3 6
10 0.16 84.12 4 12
11 2.37 7.99 3 6
12 12.66 0.76 7 5
13 60.91 61.88 8 7
14 71.39 59.04 9 5

A.5 Problem 2, 15 Node, Indiffent Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 6 2
2 80.00 12.13 9 1
3 0.46 65.88 9 2
4 9.47 0.23 6 2
5 0.96 1.89 9 4
6 3.70 0.96 5 4
7 4.03 5.55 9 1
8 16.04 0.64 14 3
9 0.06 14.76 8 3
10 0.16 84.12 9 2
11 2.37 7.99 8 3
12 12.66 0.76 12 2
13 60.91 61.88 13 3
14 71.39 59.04 14 2

A.6 Problem 2, 15 Node, Large Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 0 9
2 80.00 12.13 2 7
3 0.46 65.88 2 10
4 9.47 0.23 0 9
5 0.96 1.89 2 14
6 3.70 0.96 0 14
7 4.03 5.55 2 7
8 16.04 0.64 4 12
9 0.06 14.76 1 11
10 0.16 84.12 2 9
11 2.37 7.99 1 11
12 12.66 0.76 3 10
13 60.91 61.88 4 12
14 71.39 59.04 4 10

A.7 Problem 2, 15 Node, Small Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 12 12
2 80.00 12.13 2 2
3 0.46 65.88 5 5
4 9.47 0.23 4 4
5 0.96 1.89 9 9
6 3.70 0.96 12 12
7 4.03 5.55 2 2
8 16.04 0.64 7 7
9 0.06 14.76 6 6
10 0.16 84.12 12 12
11 2.37 7.99 6 6
12 12.66 0.76 5 5
13 60.91 61.88 7 7
14 71.39 59.04 5 5

A.8 Problem 2, 15 Node, Equal Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 8 10
2 80.00 12.13 0 12
3 0.46 65.88 11 5
4 9.47 0.23 4 1
5 0.96 1.89 1 0
6 3.70 0.96 9 10
7 4.03 5.55 1 1
8 16.04 0.64 2 10
9 0.06 14.76 3 4
10 0.16 84.12 1 0
11 2.37 7.99 2 3
12 12.66 0.76 10 1
13 60.91 61.88 12 7
14 71.39 59.04 2 0

A.9 Problem 3, 15 Node, Indiffent Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 13 5
2 80.00 12.13 5 2
3 0.46 65.88 8 2
4 9.47 0.23 9 0
5 0.96 1.89 6 0
6 3.70 0.96 14 5
7 4.03 5.55 6 0
8 16.04 0.64 7 5
9 0.06 14.76 8 2
10 0.16 84.12 6 0
11 2.37 7.99 7 1
12 12.66 0.76 15 0
13 60.91 61.88 9 3
14 71.39 59.04 7 0

A.10 Problem 3, 15 Node, Large Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 8 15
2 80.00 12.13 0 9
3 0.46 65.88 11 10
4 9.47 0.23 4 6
5 0.96 1.89 1 5
6 3.70 0.96 9 15
7 4.03 5.55 1 6
8 16.04 0.64 2 15
9 0.06 14.76 3 9
10 0.16 84.12 1 5
11 2.37 7.99 2 8
12 12.66 0.76 10 6
13 60.91 61.88 12 12
14 71.39 59.04 2 5

A.11 Problem 3, 15 Node, Small Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 8 8
2 80.00 12.13 0 0
3 0.46 65.88 11 11
4 9.47 0.23 4 4
5 0.96 1.89 1 1
6 3.70 0.96 9 9
7 4.03 5.55 1 1
8 16.04 0.64 2 2
9 0.06 14.76 3 3
10 0.16 84.12 1 1
11 2.37 7.99 2 2
12 12.66 0.76 10 10
13 60.91 61.88 12 12
14 71.39 59.04 2 2

A.12 Problem 3, 15 Node, Equal Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

A 70.55 34.97 10 9
B 80.00 12.13 5 2
C 0.46 65.88 0 12
D 9.47 0.23 4 11
E 0.96 1.89 11 1
F 3.70 0.96 11 0
G 4.03 5.55 12 9
H 16.04 0.64 3 4
I 0.06 14.76 8 9
J 0.16 84.12 3 10
K 2.37 7.99 12 11
L 12.66 0.76 11 9
M 60.91 61.88 5 5
N 71.39 59.04 7 0
O 68.18 8.54 11 1
P 9.98 0.76 7 3
Q 89.05 0.43 8 1
R 84.74 71.47 11 9
S 80.11 0.25 3 0

A.13 Problem 1, 20 Node, Indiffent Relative Delivery De-

mands to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 11 1
2 80.00 12.13 6 3
3 0.46 65.88 9 4
4 9.47 0.23 11 0
5 0.96 1.89 9 0
6 3.70 0.96 6 2
7 4.03 5.55 14 4
8 16.04 0.64 12 4
9 0.06 14.76 8 3
10 0.16 84.12 10 3
11 2.37 7.99 13 5
12 12.66 0.76 8 2
13 60.91 61.88 11 2
14 71.39 59.04 14 4
15 68.18 8.54 8 3
16 9.98 0.76 12 2
17 89.05 0.43 9 4
18 84.74 71.47 8 1
19 80.11 0.25 7 0

A.14 Problem 1, 20 Node, Large Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 3 7
2 80.00 12.13 0 12
3 0.46 65.88 5 14
4 9.47 0.23 3 5
5 0.96 1.89 2 6
6 3.70 0.96 0 10
7 4.03 5.55 4 13
8 16.04 0.64 3 14
9 0.06 14.76 1 12
10 0.16 84.12 2 11
11 2.37 7.99 4 15
12 12.66 0.76 5 10
13 60.91 61.88 3 10
14 71.39 59.04 4 14
15 68.18 8.54 1 12
16 9.98 0.76 3 10
17 89.05 0.43 2 13
18 84.74 71.47 1 7
19 80.11 0.25 1 6

A.15 Problem 1, 20 Node, Small Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 6 6
2 80.00 12.13 1 1
3 0.46 65.88 11 11
4 9.47 0.23 6 6
5 0.96 1.89 4 4
6 3.70 0.96 1 1
7 4.03 5.55 9 9
8 16.04 0.64 7 7
9 0.06 14.76 3 3
10 0.16 84.12 5 5
11 2.37 7.99 8 8
12 12.66 0.76 11 11
13 60.91 61.88 6 6
14 71.39 59.04 9 9
15 68.18 8.54 3 3
16 9.98 0.76 7 7
17 89.05 0.43 4 4
18 84.74 71.47 3 3
19 80.11 0.25 2 2

A.16 Problem 1, 20 Node, Equal Relative Delivery Demands

to Pickup.

64



pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 1 12
2 80.00 12.13 4 2
3 0.46 65.88 12 5
4 9.47 0.23 1 4
5 0.96 1.89 4 9
6 3.70 0.96 0 12
7 4.03 5.55 4 2
8 16.04 0.64 9 7
9 0.06 14.76 3 6
10 0.16 84.12 4 12
11 2.37 7.99 3 6
12 12.66 0.76 7 5
13 60.91 61.88 8 7
14 71.39 59.04 9 5
15 68.18 8.54 8 7
16 9.98 0.76 5 3
17 89.05 0.43 11 7
18 84.74 71.47 8 12
19 80.11 0.25 2 4

A.17 Problem 2, 20 Node, Indiffent Relative Delivery De-

mands to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 6 2
2 80.00 12.13 9 1
3 0.46 65.88 9 2
4 9.47 0.23 6 2
5 0.96 1.89 9 4
6 3.70 0.96 5 4
7 4.03 5.55 9 1
8 16.04 0.64 14 3
9 0.06 14.76 8 3
10 0.16 84.12 9 2
11 2.37 7.99 8 3
12 12.66 0.76 12 2
13 60.91 61.88 13 3
14 71.39 59.04 14 2
15 68.18 8.54 13 3
16 9.98 0.76 10 1
17 89.05 0.43 15 3
18 84.74 71.47 13 0
19 80.11 0.25 7 2

A.18 Problem 2, 20 Node, Large Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 0 9
2 80.00 12.13 2 7
3 0.46 65.88 2 10
4 9.47 0.23 0 9
5 0.96 1.89 2 14
6 3.70 0.96 0 14
7 4.03 5.55 2 7
8 16.04 0.64 4 12
9 0.06 14.76 1 11
10 0.16 84.12 2 9
11 2.37 7.99 1 11
12 12.66 0.76 3 10
13 60.91 61.88 4 12
14 71.39 59.04 4 10
15 68.18 8.54 4 12
16 9.98 0.76 2 8
17 89.05 0.43 5 12
18 84.74 71.47 4 5
19 80.11 0.25 1 9

A.19 Problem 2, 20 Node, Small Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 12 12
2 80.00 12.13 2 2
3 0.46 65.88 5 5
4 9.47 0.23 4 4
5 0.96 1.89 9 9
6 3.70 0.96 12 12
7 4.03 5.55 2 2
8 16.04 0.64 7 7
9 0.06 14.76 6 6
10 0.16 84.12 12 12
11 2.37 7.99 6 6
12 12.66 0.76 5 5
13 60.91 61.88 7 7
14 71.39 59.04 5 5
15 68.18 8.54 7 7
16 9.98 0.76 3 3
17 89.05 0.43 7 7
18 84.74 71.47 12 12
19 80.11 0.25 4 4

A.20 Problem 2, 20 Node, Equal Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 8 10
2 80.00 12.13 0 12
3 0.46 65.88 11 5
4 9.47 0.23 4 1
5 0.96 1.89 1 0
6 3.70 0.96 9 10
7 4.03 5.55 1 1
8 16.04 0.64 2 10
9 0.06 14.76 3 4
10 0.16 84.12 1 0
11 2.37 7.99 2 3
12 12.66 0.76 10 1
13 60.91 61.88 12 7
14 71.39 59.04 2 0
15 68.18 8.54 6 3
16 9.98 0.76 2 1
17 89.05 0.43 5 1
18 84.74 71.47 8 5
19 80.11 0.25 9 6

A.21 Problem 3, 20 Node, Indiffent Relative Delivery De-

mands to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 13 5
2 80.00 12.13 5 2
3 0.46 65.88 8 2
4 9.47 0.23 9 0
5 0.96 1.89 6 0
6 3.70 0.96 14 5
7 4.03 5.55 6 0
8 16.04 0.64 7 5
9 0.06 14.76 8 2
10 0.16 84.12 6 0
11 2.37 7.99 7 1
12 12.66 0.76 15 0
13 60.91 61.88 9 3
14 71.39 59.04 7 0
15 68.18 8.54 11 1
16 9.98 0.76 7 0
17 89.05 0.43 10 0
18 84.74 71.47 13 2
19 80.11 0.25 14 3

A.22 Problem 3, 20 Node, Large Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 4 15
2 80.00 12.13 0 9
3 0.46 65.88 5 10
4 9.47 0.23 2 6
5 0.96 1.89 0 5
6 3.70 0.96 4 15
7 4.03 5.55 0 6
8 16.04 0.64 1 15
9 0.06 14.76 1 9
10 0.16 84.12 0 5
11 2.37 7.99 1 8
12 12.66 0.76 5 6
13 60.91 61.88 2 12
14 71.39 59.04 1 5
15 68.18 8.54 3 8
16 9.98 0.76 1 6
17 89.05 0.43 2 6
18 84.74 71.47 4 10
19 80.11 0.25 4 11

A.23 Problem 3, 20 Node, Small Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 8 8
2 80.00 12.13 0 0
3 0.46 65.88 11 11
4 9.47 0.23 4 4
5 0.96 1.89 1 1
6 3.70 0.96 9 9
7 4.03 5.55 1 1
8 16.04 0.64 2 2
9 0.06 14.76 3 3
10 0.16 84.12 1 1
11 2.37 7.99 2 2
12 12.66 0.76 10 10
13 60.91 61.88 12 12
14 71.39 59.04 2 2
15 68.18 8.54 6 6
16 9.98 0.76 2 2
17 89.05 0.43 5 5
18 84.74 71.47 8 8
19 80.11 0.25 9 9

A.24 Problem 3, 20 Node, Equal Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

SN 1.46 0.95 0 0
A 70.55 34.97 3 8
B 80.00 12.13 1 11
C 0.46 65.88 9 3
D 9.47 0.23 0 6
E 0.96 1.89 11 1
F 3.70 0.96 6 10
G 4.03 5.55 11 2
H 16.04 0.64 9 10
I 0.06 14.76 10 7
J 0.16 84.12 8 0
K 2.37 7.99 11 7
L 12.66 0.76 2 0
M 60.91 61.88 12 7
N 71.39 59.04 12 0
O 68.18 8.54 3 3
P 9.98 0.76 2 1
Q 89.05 0.43 0 2
R 84.74 71.47 3 10
S 80.11 0.25 1 1
T 6.76 1.65 4 1
U 0.71 71.78 11 11
V 8.86 0.52 6 0
W 65.08 7.27 8 6
X 0.33 6.90 7 7

A.25 Problem 1, 25 Node, Indiffent Relative Delivery De-

mands to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 11 1
2 80.00 12.13 6 3
3 0.46 65.88 9 4
4 9.47 0.23 11 0
5 0.96 1.89 9 0
6 3.70 0.96 6 2
7 4.03 5.55 14 4
8 16.04 0.64 12 4
9 0.06 14.76 8 3
10 0.16 84.12 10 3
11 2.37 7.99 13 5
12 12.66 0.76 8 2
13 60.91 61.88 11 2
14 71.39 59.04 14 4
15 68.18 8.54 8 3
16 9.98 0.76 12 2
17 89.05 0.43 9 4
18 84.74 71.47 8 1
19 80.11 0.25 7 0
20 6.76 1.65 7 5
21 0.71 71.78 9 0
22 8.86 0.52 13 0
23 65.08 7.27 5 4
24 0.33 6.90 10 2

A.26 Problem 1, 25 Node, Large Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 3 7
2 80.00 12.13 0 12
3 0.46 65.88 5 14
4 9.47 0.23 3 5
5 0.96 1.89 2 6
6 3.70 0.96 0 10
7 4.03 5.55 4 13
8 16.04 0.64 3 14
9 0.06 14.76 1 12
10 0.16 84.12 2 11
11 2.37 7.99 4 15
12 12.66 0.76 5 10
13 60.91 61.88 3 10
14 71.39 59.04 4 14
15 68.18 8.54 1 12
16 9.98 0.76 3 10
17 89.05 0.43 2 13
18 84.74 71.47 1 7
19 80.11 0.25 1 6
20 6.76 1.65 1 15
21 0.71 71.78 2 5
22 8.86 0.52 4 6
23 65.08 7.27 0 14
24 0.33 6.90 2 9

A.27 Problem 1, 25 Node, small Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 6 6
2 80.00 12.13 1 1
3 0.46 65.88 11 11
4 9.47 0.23 6 6
5 0.96 1.89 4 4
6 3.70 0.96 1 1
7 4.03 5.55 9 9
8 16.04 0.64 7 7
9 0.06 14.76 3 3
10 0.16 84.12 5 5
11 2.37 7.99 8 8
12 12.66 0.76 11 11
13 60.91 61.88 6 6
14 71.39 59.04 9 9
15 68.18 8.54 3 3
16 9.98 0.76 7 7
17 89.05 0.43 4 4
18 84.74 71.47 3 3
19 80.11 0.25 2 2
20 6.76 1.65 2 2
21 0.71 71.78 4 4
22 8.86 0.52 8 8
23 65.08 7.27 0 0
24 0.33 6.90 5 5

A.28 Problem 1, 25 Node, Equal Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 1 12
2 80.00 12.13 4 2
3 0.46 65.88 12 5
4 9.47 0.23 1 4
5 0.96 1.89 4 9
6 3.70 0.96 0 12
7 4.03 5.55 4 2
8 16.04 0.64 9 7
9 0.06 14.76 3 6
10 0.16 84.12 4 12
11 2.37 7.99 3 6
12 12.66 0.76 7 5
13 60.91 61.88 8 7
14 71.39 59.04 9 5
15 68.18 8.54 8 7
16 9.98 0.76 5 3
17 89.05 0.43 11 7
18 84.74 71.47 8 12
19 80.11 0.25 2 4
20 6.76 1.65 8 9
21 0.71 71.78 9 1
22 8.86 0.52 5 12
23 65.08 7.27 2 7
24 0.33 6.90 12 3

A.29 Problem 2, 25 Node, Indiffent Relative Delivery De-

mands to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 8 10
2 80.00 12.13 0 12
3 0.46 65.88 11 5
4 9.47 0.23 4 1
5 0.96 1.89 1 0
6 3.70 0.96 9 10
7 4.03 5.55 1 1
8 16.04 0.64 2 10
9 0.06 14.76 3 4
10 0.16 84.12 1 0
11 2.37 7.99 2 3
12 12.66 0.76 10 1
13 60.91 61.88 12 7
14 71.39 59.04 2 0
15 68.18 8.54 6 3
16 9.98 0.76 2 1
17 89.05 0.43 5 1
18 84.74 71.47 8 5
19 80.11 0.25 9 6
20 6.76 1.65 1 9
21 0.71 71.78 3 9
22 8.86 0.52 1 3
23 65.08 7.27 9 3
24 0.33 6.90 4 12

A.30 Problem 2, 25 Node, Large Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 13 5
2 80.00 12.13 5 2
3 0.46 65.88 8 2
4 9.47 0.23 9 0
5 0.96 1.89 6 0
6 3.70 0.96 14 5
7 4.03 5.55 6 0
8 16.04 0.64 7 5
9 0.06 14.76 8 2
10 0.16 84.12 6 0
11 2.37 7.99 7 1
12 12.66 0.76 15 0
13 60.91 61.88 9 3
14 71.39 59.04 7 0
15 68.18 8.54 11 1
16 9.98 0.76 7 0
17 89.05 0.43 10 0
18 84.74 71.47 13 2
19 80.11 0.25 14 3
20 6.76 1.65 6 4
21 0.71 71.78 8 4
22 8.86 0.52 6 1
23 65.08 7.27 14 1
24 0.33 6.90 9 0

A.31 Problem 2, 25 Node, Small Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 1 1
2 80.00 12.13 4 4
3 0.46 65.88 12 12
4 9.47 0.23 1 1
5 0.96 1.89 4 4
6 3.70 0.96 0 0
7 4.03 5.55 4 4
8 16.04 0.64 9 9
9 0.06 14.76 3 3
10 0.16 84.12 4 4
11 2.37 7.99 3 3
12 12.66 0.76 7 7
13 60.91 61.88 8 8
14 71.39 59.04 9 9
15 68.18 8.54 8 8
16 9.98 0.76 5 5
17 89.05 0.43 11 11
18 84.74 71.47 8 8
19 80.11 0.25 2 2
20 6.76 1.65 8 8
21 0.71 71.78 9 9
22 8.86 0.52 5 5
23 65.08 7.27 2 2
24 0.33 6.90 12 12

A.32 Problem 2, 25 Node, Equal Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 8 10
2 80.00 12.13 0 12
3 0.46 65.88 11 5
4 9.47 0.23 4 1
5 0.96 1.89 1 0
6 3.70 0.96 9 10
7 4.03 5.55 1 1
8 16.04 0.64 2 10
9 0.06 14.76 3 4
10 0.16 84.12 1 0
11 2.37 7.99 2 3
12 12.66 0.76 10 1
13 60.91 61.88 12 7
14 71.39 59.04 2 0
15 68.18 8.54 6 3
16 9.98 0.76 2 1
17 89.05 0.43 5 1
18 84.74 71.47 8 5
19 80.11 0.25 9 6
20 6.76 1.65 1 9
21 0.71 71.78 3 9
22 8.86 0.52 1 3
23 65.08 7.27 9 3
24 0.33 6.90 4 12

A.33 Problem 3, 25 Node, Indiffent Relative Delivery De-

mands to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 13 5
2 80.00 12.13 5 2
3 0.46 65.88 8 2
4 9.47 0.23 9 0
5 0.96 1.89 6 0
6 3.70 0.96 14 5
7 4.03 5.55 6 0
8 16.04 0.64 7 5
9 0.06 14.76 8 2
10 0.16 84.12 6 0
11 2.37 7.99 7 1
12 12.66 0.76 15 0
13 60.91 61.88 9 3
14 71.39 59.04 7 0
15 68.18 8.54 11 1
16 9.98 0.76 7 0
17 89.05 0.43 10 0
18 84.74 71.47 13 2
19 80.11 0.25 14 3
20 6.76 1.65 6 4
21 0.71 71.78 8 4
22 8.86 0.52 6 1
23 65.08 7.27 14 1
24 0.33 6.90 9 0

A.34 Problem 3, 25 Node, Large Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 4 15
2 80.00 12.13 0 9
3 0.46 65.88 5 10
4 9.47 0.23 2 6
5 0.96 1.89 0 5
6 3.70 0.96 4 15
7 4.03 5.55 0 6
8 16.04 0.64 1 15
9 0.06 14.76 1 9
10 0.16 84.12 0 5
11 2.37 7.99 1 8
12 12.66 0.76 5 6
13 60.91 61.88 2 12
14 71.39 59.04 1 5
15 68.18 8.54 3 8
16 9.98 0.76 1 6
17 89.05 0.43 2 6
18 84.74 71.47 4 10
19 80.11 0.25 4 11
20 6.76 1.65 0 14
21 0.71 71.78 1 14
22 8.86 0.52 0 8
23 65.08 7.27 4 8
24 0.33 6.90 2 5

A.35 Problem 3, 25 Node, Small Relative Delivery Demands

to Pickup.
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pos x pos y DD DP

0 1.46 0.95 0 0
1 70.55 34.97 8 8
2 80.00 12.13 0 0
3 0.46 65.88 11 11
4 9.47 0.23 4 4
5 0.96 1.89 1 1
6 3.70 0.96 9 9
7 4.03 5.55 1 1
8 16.04 0.64 2 2
9 0.06 14.76 3 3
10 0.16 84.12 1 1
11 2.37 7.99 2 2
12 12.66 0.76 10 10
13 60.91 61.88 12 12
14 71.39 59.04 2 2
15 68.18 8.54 6 6
16 9.98 0.76 2 2
17 89.05 0.43 5 5
18 84.74 71.47 8 8
19 80.11 0.25 9 9
20 6.76 1.65 1 1
21 0.71 71.78 3 3
22 8.86 0.52 1 1
23 65.08 7.27 9 9
24 0.33 6.90 4 4

A.36 Problem 3, 25 Node, Equal Relative Delivery Demands

to Pickup.
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Appendix B

Python codes

This contains the code that was use to generate the datasets, to create the model for the

solver, solve the problem and draw the graphs
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B.1 Graph Generating Code 1.

1 import random

2 import networkx as nx

3 import matplotlib.pyplot as plt

4 from typing import Iterable

5 from project.project_lib.utils import RandomSeedContext ,

RandomSequenceGenerator , get_node_by_label

6 from project.project_lib.utils import set_node_colors

7

8 from project.project_lib.utils import generate_node_labels

9

10

11 def generate_ordinate ():

12 """

13 The generate_ordinate function generates a random number between 0 and 1,

multiplies it by either 1, 10 or 100

14 and then rounds the result to 2 decimal places. This is used to generate x

and y coordinates for points on the R plane.

15

16 :return: A random number between 0 and 1 multiplied by a random choice of

either 1, 10 or 100

17 """

18 return round(random.random () * random.choice ([1, 10, 100]) , 2)

19

20

21 def get_source_node_by_min_l2norm(G):

22 """

23 The get_source_node_by_min_l2norm function takes in a graph and returns

the node closest to the origin.

24 The function first computes the L2Norm of each node from the origin , then

finds which one is smallest.

25

26

27 :param G: Get the position of each node in the graph

28 :return: The node closest to the origin

29 """

30 pos = nx.get_node_attributes(G, "pos")

31 dists_origin = {}

32 for node in G:

33 dists_origin[node] = pos[node ][0] ** 2 + pos[node ][1] ** 2

34 return min(dists_origin , key=lambda k: dists_origin[k])

35

36

37 def get_random_source_node(G):

38 """

39 The get_random_source_node function takes in a graph and returns a random

node from the graph.
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40 This function is used to randomly select the source node for each

simulation run.

41

42 :param G: Select a random node from the graph

43 :return: A random node from the graph

44 """

45 return random.choice(list(G.nodes ()))

46

47

48 def calculate_euclidean_dist(source: Iterable[float], sink: Iterable[float]):

49 """

50 The calculate_euclidean_dist function calculates the euclidean distance

between 2 nodes in space.

51

52 :param source: Iterable[float]: Define the source node

53 :param sink: Iterable[float]: Define the sink node

54 :return: The euclidean distance between 2 nodes in space

55 """

56 return round ((( source [0] - sink [0]) ** 2 + (source [1] - sink [1]) ** 2) **

0.5, 4)

57

58

59 def generate_non_source_node_weight(node_weight_range: list , seed=None) -> int

:

60 """

61 The generate_non_source_node_weight function generates a random integer

between 0 and 12 inclusive.

62 This function is used to generate the weight of non -source nodes in the

graph.

63

64 :param min:int: Set the minimum value of the range to be used in random

65 :param max:int: Set the maximum value of the random number that is

generated

66 :return: A random integer between 0 and 12

67 """

68 min , max = node_weight_range

69 with RandomSeedContext(seed):

70 weight = random.choice(range(min , max + 1))

71 return weight

72

73

74 def set_edge_weights(G):

75 """

76 The set_edge_weights function takes a graph as input and computes the

euclidean distance between each pair of nodes.

77 It then sets the edge weight attribute to this value. The function returns

the modified graph.

87



78

79 :param G: Pass in the graph object

80 :return: The graph with the edge weights set

81 """

82 edge_weights = {}

83 for edge in G.edges:

84 source , sink = edge

85 source_pos = G.nodes.get(source)["pos"]

86 sink_pos = G.nodes.get(sink)["pos"]

87 edge_weights[edge] = calculate_euclidean_dist(source_pos , sink_pos)

88 nx.set_edge_attributes(G, edge_weights , "weight") # set the weights of

the edges

89

90 return G

91

92

93 def set_node_name_weights(

94 G,

95 source_node_selection ,

96 delivery_weight_range: list = [0, 12],

97 pickup_weight_range: list = [0, 12],

98 delivery_seed_gen=None ,

99 pickup_seed_gen=None ,

100 ):

101 """

102 The set_node_weights function takes a graph and generates constrained node

weights with reference to an origin/source node.

103

104 :param G: Pass the graph object to the function

105 :param source_node_selection: Determine which node is the source node

106 :return: The graph with the node weights as attributes

107 """

108

109 if source_node_selection == "min_l2norm":

110 source_node = get_source_node_by_min_l2norm(G)

111 elif source_node_selection == "random":

112 source_node = get_random_source_node(G)

113

114 # Define the weights for each node

115 node_weights = {}

116 node_weights[source_node] = (0, 0) # set weight of source node to 0,0

117 is_source_node = {}

118

119 for node in G.nodes:

120 if node == source_node:

121 is_source_node[node] = True

122 continue
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123 is_source_node[node] = False

124

125 node_weights[node] = (

126 generate_non_source_node_weight(delivery_weight_range , next(

delivery_seed_gen)),

127 generate_non_source_node_weight(pickup_weight_range , next(

pickup_seed_gen)),

128 ) # set node weights not source.

129 nx.set_node_attributes(G, node_weights , "node_weights") # Assign

positions to nodes as attributes

130 nx.set_node_attributes(G, is_source_node , "is_source_node") # Assign

positions to nodes as attributes

131

132 return G

133

134

135 def generate_complete_graph(

136 n: int ,

137 source_node_selection: str = "min_l2norm",

138 graph_seed_value=None ,

139 delivery_seed_value=None ,

140 pickup_seed_value=None ,

141 delivery_weight_range =[0, 12],

142 pickup_weight_range =[0, 12],

143 ):

144 """

145 Generates a complete graph with n nodes.

146

147 Args:

148 n (int): Number of nodes in the graph.

149 source_node_selection (str , optional): Method to select the source

node.

150 Valid options: "min_l2norm", "max_l2norm", and more.

151 Default: "min_l2norm ".

152 graph_seed_value (int or None , optional): Seed for the random number

generator

153 used to create the graph structure. Default: None.

154 delivery_seed_value (int or None , optional): Seed for the random

number generator

155 used to generate delivery node weights. Default: None.

156 pickup_seed_value (int or None , optional): Seed for the random number

generator

157 used to generate pickup node weights. Default: None.

158 delivery_weight_range (list of float , optional): Range for generating

delivery node weights.

159 Default: [0, 12].
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160 pickup_weight_range (list of float , optional): Range for generating

pickup node weights.

161 Default: [0, 12].

162

163 Returns:

164 networkx.Graph: A complete graph with bidirectional edges , node

positions , and edge weights.

165 """

166

167 # Set the seed for the random number generators

168 delivery_seed_gen = RandomSequenceGenerator(delivery_seed_value)

169 pickup_seed_gen = RandomSequenceGenerator(pickup_seed_value)

170

171 # Generate graph

172 G = nx.complete_graph(n)

173

174 # Convert the graph to a directed graph

175 G = G.to_directed ()

176

177 # Add reverse edges to make it bidirectional

178 G.add_edges_from(G.edges())

179

180 # Generate node coordinates

181 node_coordinates = {}

182 with RandomSeedContext(graph_seed_value):

183 for node in G:

184 node_coordinates[node] = (generate_ordinate (), generate_ordinate ()

)

185 nx.set_node_attributes(G, node_coordinates , "pos") # Assign positions to

nodes as attributes

186

187 # Compute and set the edge weights

188 G = set_edge_weights(G)

189

190 # Select source node

191 G = set_node_name_weights(

192 G,

193 source_node_selection=source_node_selection ,

194 delivery_weight_range=delivery_weight_range ,

195 pickup_weight_range=pickup_weight_range ,

196 delivery_seed_gen=delivery_seed_gen ,

197 pickup_seed_gen=pickup_seed_gen ,

198 )

199

200 return G

201

202
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203 def plot_graph(

204 G,

205 with_labels=False ,

206 save_plot_dir=None ,

207 figsize =(8, 4),

208 source_node_color="red",

209 other_node_color="lightblue",

210 color_set=None ,

211 node_size =1400 ,

212 solution=None ,

213 ):

214 """

215 The plot_graph function draws a graph instance.

216

217 :param G: Pass the graph instance to be drawn

218 :param with_labels: Show the labels of the nodes in the graph

219 :param save_plot_dir: Save the plot to a directory of your choice

220 :param figsize: Figure size for the plot (default: (8, 4))

221 :param source_node_color: Color for the source node (default: ’red ’)

222 :param other_node_color: Color for other nodes (default: ’blue ’)

223 :param color_set: Custom color mapping for nodes (optional)

224 :param node_size: Size of the nodes (optional)

225 :param solution: Solution set of routes to mantain (optional)

226 :return: A plot of the graph

227 """

228

229 # Set the figure size

230 fig , ax = plt.subplots(figsize=figsize)

231

232 # Load all edge and node weights

233 node_names = generate_node_labels(G)

234 pos = nx.get_node_attributes(G, "pos")

235 edge_labels = nx.get_edge_attributes(G, "weight")

236

237 # Set the node colors

238 node_colors = set_node_colors(G, source_node_color , other_node_color ,

color_set)

239

240 # Draw the graph with node positions and colors

241 nx.draw(

242 G,

243 pos ,

244 with_labels=with_labels ,

245 node_size=node_size ,

246 node_color=list(node_colors.values ()),

247 edge_color="gray",

248 ax=ax,
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249 )

250

251 # Add edge labels to the graph

252 # if solutions is provided

253 filename = f"{len(G.nodes)}"

254 if solution:

255 filename += "_solution"

256 # Replace values in route sets with pairs of nodes

257 for route in solution.keys():

258 if route.startswith("route_"):

259 edges_to_color = [get_node_by_label(node_names , node) for node

in solution[route ]]

260

261 # Draw edges with custom colors

262 nx.draw_networkx_edges(G, pos , edgelist=edges_to_color ,

edge_color=solution["colours"][ route])

263 nx.draw_networkx_edge_labels(G, pos , edge_labels=edge_labels ,

ax=ax)

264

265 else:

266 nx.draw_networkx_edge_labels(G, pos , edge_labels=edge_labels , ax=ax)

267

268 # Add labels to the nodes with spacing

269 labels = nx.get_node_attributes(G, "node_weights")

270 for index , (node , (x, y)) in enumerate(pos.items()):

271 # Draw the node label

272 label = f"{labels[index ]}\n{node_names[node]}"

273 color = "white" if node_colors[node] == source_node_color else "black"

274 plt.text(x, y, label , ha="center", va="center", color=color)

275

276 # Set spacing between the labels

277 plt.subplots_adjust(wspace =0.3, hspace =0.3)

278

279 if save_plot_dir:

280 plt.savefig(f"{save_plot_dir }/{ filename }.png")

281

282 plt.show() # Show the plot

Listing B.1: Python example
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B.2 Graph Generator 2

[language=Python, caption=Python example]

1 import networkx as nx

2 import string

3 import random

4

5

6 def get_graph_source_node(G) -> str:

7 """

8 From a given graph , extract the source node identified.

9

10 Args:

11 G (networkx.Grph): Graph object

12

13 Returns:

14 str: The source node

15 """

16 is_source_node_dict = nx.get_node_attributes(G, "is_source_node ")

17 return max(is_source_node_dict , key=lambda k: is_source_node_dict[k])

18

19

20 def get_demand_delivery_pickup(G):

21 """

22 From the node weights extract the delivery and pickup demands

23

24 Args:

25 G (networkx.Graph): The graph with node weights pickup and delivery

demands.

26

27 Returns:

28 ({} ,{}): tuple of delivery and pickup demands as object.

29 """

30 d = {} # demand for delivering

31 p = {} # demand for picking up

32 for node , (di , pi) in nx.get_node_attributes(G, "node_weights ").items():

33 d[node] = di

34 p[node] = pi

35

36 return d, p

37

38

39 def get_cost_traversing(G):

40 """

41 Calculates the cost_traversing

42

43 Args:
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44 G (networkx.Graph): The graph object

45

46 Returns:

47 object: the cost

48 """

49 distance_matrix = nx.floyd_warshall_numpy(G)

50

51 # Convert the distance_matrix array to source -sink value representation

52 source_sink_values = {

53 (i, j): distance_matrix[i, j] for i in range(distance_matrix.shape [0])

for j in range(distance_matrix.shape [1])

54 }

55 return source_sink_values

56

57

58 def generate_node_labels(G):

59 """

60 Given the number of nodes , we generate a label set for the graph. Max 676

nodes.

61

62 Args:

63 G (networkx.Graph): number of nodes to generate labels for

64

65 Returns:

66 dict: label dictionary of node: name

67 """

68 labels = {}

69

70 source_node = get_graph_source_node(G)

71

72 label_index = 0

73 for node in G.nodes:

74 if node == source_node:

75 labels[node] = "SN"

76 else:

77 labels[node] = string.ascii_uppercase[label_index]

78 label_index += 1

79

80 return labels

81

82

83 def set_node_colors(G, source_node_color ="red", other_node_color ="blue",

color_set=None):

84 """

85 Set the colors for the nodes in the graph.

86

87 Args:
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88 G (networkx.Graph): Graph instance

89 source_node_color (str): Color for the source node (default: ’red ’)

90 other_node_color (str): Color for other nodes (default: ’blue ’)

91 color_set (dict): Custom color mapping for nodes (optional)

92

93 Returns:

94 dict: Color mapping for nodes

95 """

96

97 source_node = get_graph_source_node(G)

98

99 node_colors = {}

100

101 if color_set:

102 for node in G.nodes:

103 if node in color_set:

104 node_colors[node] = color_set[node]

105 else:

106 node_colors[node] = other_node_color

107 else:

108 for node in G.nodes:

109 if node == source_node:

110 node_colors[node] = source_node_color

111 else:

112 node_colors[node] = other_node_color

113

114 return node_colors

115

116

117 def get_node_by_label(node_names , source_sink):

118 """

119 Retrieve node indices by their corresponding labels from a dictionary.

120

121 Args:

122 node_names (dict): A dictionary containing node indices as keys and

their corresponding labels as values.

123 source_sink (str): A string in the format "source -sink" specifying

source and sink labels.

124

125 Returns:

126 tuple: A tuple containing the node indices corresponding to the source

and sink labels.

127

128 Example:

129 Retrieving node indices by labels.

130

131 ‘‘‘python
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132 node_labels = {0: ’A’, 1: ’B’, 2: ’C’}

133 source_sink_labels = ’A-C’

134 source_index , sink_index = get_node_by_label(node_labels ,

source_sink_labels)

135 ‘‘‘

136

137 """

138 source , sink = source_sink.split ("-")

139

140 # Find the node index corresponding to the source label

141 for key , val in node_names.items():

142 if val == source:

143 source = key

144

145 # Find the node index corresponding to the sink label

146 for key , val in node_names.items():

147 if val == sink:

148 sink = key

149

150 return source , sink

151

152

153 class RandomSeedContext:

154 """

155 A context manager for managing the state of the random number generator.

156

157 Args:

158 seed (int): The seed value to set for the random number generator.

159

160 Example:

161 Using the RandomSeedContext to set a specific seed temporarily.

162

163 ‘‘‘python

164 with RandomSeedContext (42):

165 random_number = random.random () # Uses the seed 42 for this block

166 ‘‘‘

167

168 Methods:

169 __enter__ ():

170 Set the random number generator ’s state to the given seed.

171

172 __exit__(exc_type , exc_value , traceback):

173 Restore the random number generator ’s state.

174

175 Attributes:

176 seed (int): The seed value provided during initialization.
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177 old_state: The state of the random number generator before entering

the context.

178 """

179

180 def __init__(self , seed):

181 self.seed = seed

182 self.old_state = None

183

184 def __enter__(self):

185 # Store the current state of the random number generator

186 self.old_state = random.getstate ()

187 # Set the random number generator ’s state to the given seed

188 random.seed(self.seed)

189

190 def __exit__(self , exc_type , exc_value , traceback):

191 # Restore the random number generator ’s state to the previous state

192 random.setstate(self.old_state)

193

194

195 class RandomSequenceGenerator:

196 """

197 Generates a sequence of random integers based on a specific seed.

198

199 Args:

200 seed (int): The seed value to initialize the random number generator.

201

202 Example:

203 Generating a sequence of random integers with a specific seed.

204

205 ‘‘‘python

206 generator = RandomSequenceGenerator (123)

207 for _ in range (5):

208 next_number = next(generator) # Generates the next random integer

209 ‘‘‘

210

211 Methods:

212 __next__ ():

213 Generates the next random integer in the sequence.

214

215 Attributes:

216 seed (int): The seed value provided during initialization.

217 state: The state of the random number generator for maintaining the

sequence.

218 """

219

220 def __init__(self , seed):

221 self.seed = seed
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222 # Initialize the random number generator with the provided seed

223 random.seed(seed)

224 # Get and store the initial state of the random number generator

225 self.state = random.getstate ()

226

227 def __next__(self):

228 # Set the random number generator ’s state to the initial state for

maintaining sequence

229 random.seed(self.seed)

230 random.setstate(self.state)

231 # Generate the next random integer in the sequence

232 next_number = int(random.random () * 100)

233 # Update the state for the next iteration

234 self.state = random.getstate ()

235 return next_number
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B.3 Graph Generating Code.

1 import math

2 import os

3 import pandas as pd

4 import networkx as nx

5

6 import gurobipy as gp

7 from gurobipy import GRB

8

9 from project.project_lib.graph_generator import (

10 generate_complete_graph ,

11 plot_graph ,

12 )

13 from project.project_lib.utils import (

14 get_graph_source_node ,

15 get_demand_delivery_pickup ,

16 get_cost_traversing ,

17 generate_node_labels ,

18 )

19

20 # Aim is to store graph generated and model results in 1 place

21 result_folder = os.path.join(os.getcwd (), "results ")

22

23 # Create result folder if not already exist.

24 if not os.path.isdir(result_folder):

25 os.makedirs(result_folder)

26

27 # There are two (2) source_node_selection methods: random or min_l2norm

28 G = generate_complete_graph(n=5, graph_seed_value =100, delivery_seed_value

=100, pickup_seed_value =100, delivery_weight_range =[1,15],

pickup_weight_range =[1 ,15])

29 # G = generate_complete_graph(n=5, source_node_selection =" random", seed_value

=100)

30

31 # Save graph generated if the need be

32 plot_graph(

33 G,

34 figsize =(15, 10),

35 save_plot_dir=result_folder ,

36 source_node_color ="green",

37 other_node_color ="red"

38 )

39

40 # Basic

41 n = len(G.nodes) # number of nodes

42 V = list(G.nodes()) # all nodes

43 A = G.edges() # edges
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44

45 # Fetching source node

46 s = get_graph_source_node(G)

47

48 # Extracting demand delivery -pickup

49 d, p = get_demand_delivery_pickup(G)

50

51 c = get_cost_traversing(G) # cost of traversing each arc

52

53 # Extra configs

54 N = set(V) - {s} # set of nodes with demands

55 C = 50 # vehicle capacity

56 #K = 3 maximum number of routes

57

58 # # Get the node set to use as dataframe index

59 nodes = generate_node_labels(G).values () # Assign positions to nodes as

attributes

60 nodes

61

62 distance_matrix = nx.floyd_warshall_numpy(G)

63 distance_df = pd.DataFrame(distance_matrix , index=nodes , columns=nodes)

64 distance_df = pd.DataFrame(distance_matrix)

65 distance_df

66

67 # build position dataframe

68 positions = nx.get_node_attributes(G, ’pos ’) # get the coordinates for each

node

69 positions_df = pd.DataFrame.from_dict(positions).T

70 positions_df.columns = [’pos_x ’, ’pos_y ’]

71 positions_df.index = pd.Index(nodes)

72 positions_df

73

74 # Build the demand delivery and pickup dataframe

75 demands = nx.get_node_attributes(G, ’node_weights ’) # extract the demands

for each client/stakeholders/node

76 demands_df = pd.DataFrame.from_dict(demands).T

77 demands_df.columns = [’demand_delivery ’, ’demand_pickup ’]

78 demands_df.index = pd.Index(nodes)

79 demands_df

80

81 # We build the request summary table with the nodes as indices , positions

coordinates and demands.

82 df_complete = pd.concat ([ positions_df , demands_df], axis =1)

83 df_complete.set_index(pd.Index(nodes))

84

85 df_complete.to_latex ()

86
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87 distance_df.to_latex ()

88

89 model = gp.Model()

90

91 # Add variables

92 x = model.addVars(A, name="x", vtype=GRB.BINARY)

93 y = model.addVars(A, name="y")

94 z = model.addVars(A, name="z")

95

96 model.setObjective(gp.quicksum(c[i, j] * x[i, j] for (i, j) in A), GRB.

MINIMIZE)

97 model.update ()

98

99 model.addConstrs(gp.quicksum(x[i, j] for j in V if j != i) == 1 for i in N)

100 model.update ()

101

102 model.addConstrs(gp.quicksum(x[i, j] for i in V if i != j) == 1 for j in N)

103 model.update ()

104

105 model.addConstrs(

106 gp.quicksum(y[i, j] for i in V if i != j) - gp.quicksum(y[j, k] for k in V

if j != k) == d[j] for j in N

107 )

108 model.update ()

109

110 model.addConstrs(

111 gp.quicksum(z[i, j] for i in V if i != j) - gp.quicksum(z[j, k] for k in V

if j != k) == -p[j] for j in N

112 )

113 model.update ()

114

115 model.addConstr(gp.quicksum(y[i, s] for i in N) == 0)

116 model.update ()

117

118 model.addConstr(gp.quicksum(z[s, i] for i in N) == 0)

119 model.update ()

120

121 model.addConstrs(y[i, j] + z[i, j] <= C * x[i, j] for (i, j) in A)

122 model.update ()

123

124 # Optimize model

125 model.optimize ()

126

127 # Print the solution

128 if model.status == GRB.OPTIMAL:

129 print(" Optimal solution found !")

130 print(" Total cost: ", model.objVal)
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131 print(" Solution :")

132 for i, j in A:

133 if x[i, j].x > 0:

134 print(f"Arc ({i}, {j}): Delivery = {y[i, j].x}, Pickup = {z[i, j].

x}")

135

136 # For proptotypical get the node names vs labels

137 node_names = generate_node_labels(G)

138

139 # Print the solution

140 if model.status == GRB.OPTIMAL:

141 print(" Optimal solution found !")

142 print(" Total cost: ", model.objVal)

143 print(" Solution :")

144 for i, j in A:

145 if x[i, j].x > 0:

146 print(f"Arc ({ node_names[i]}, {node_names[j]}): Delivery = {y[i, j

].x}, Pickup = {z[i, j].x}")

147

148 # Example data to pprint

149 data = {

150 ’arc ’: [],

151 ’delivery ’: [],

152 ’pickup ’: [],

153 }

154 for i, j in A:

155 if x[i, j].x > 0:

156 data[’arc ’]. append(f"{ node_names[i]}-{ node_names[j]}")

157 data[’delivery ’]. append(y[i, j].x)

158 data[’pickup ’]. append(z[i, j].x)

159 pd.DataFrame(data)

160 # pd.DataFrame(data).to_latex ()

161

162 solution = {

163 "route_1 ": {

164 "SN-C",

165 "C-SN",

166 },

167 "route_2 ": {

168 "SN-A",

169 "A-B",

170 "B-SN",

171 },

172 "colours ": {

173 "route_1 ": "blue",

174 "route_2 ": "yellow"

175 },
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176 }

177

178 plot_graph(

179 G,

180 figsize =(15, 10),

181 save_plot_dir=result_folder ,

182 source_node_color ="green",

183 other_node_color ="red",

184 solution=solution ,

185 )

186

187 model.write(os.path.join(result_folder , f"model_{len(G.nodes)}.lp"))
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