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Partition problems in graphs are extremely important in 
applications, as shown in the Data Science and Machine 
Learning literature. One approach is spectral partitioning 
based on a Fiedler vector, i.e., an eigenvector corresponding 
to the second smallest eigenvalue a(G) of the Laplacian 
matrix LG of the graph G. This problem corresponds to 
the minimization of a quadratic form associated with LG, 
under certain constraints involving the �2-norm. We introduce 
and investigate a similar problem, but using the �1-norm to 
measure distances. This leads to a new parameter b(G) as 
the optimal value. We show that a well-known cut problem 
arises in this approach, namely the sparsest cut problem. 
We prove connectivity results and different bounds on this 
new parameter, relate to Fiedler theory and show explicit 
expressions for b(G) for trees. We also comment on an �∞-
norm version of the problem.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Often real world networks contain clusters, that is, groups of points each with a large 
number of neighbors among them and not many connections to the outside. In Data 
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Science and Machine Learning the task of clustering is very important. Given a set of 
data points (in some space) and their common properties measured in terms of distances, 
the clustering problem consists in finding subsets of these data points that are “similar”. 
If the points to be clustered are vertices in a graph, and the edges connecting these 
vertices are the only information available, then the problem is called graph clustering
[20,25]. There are many methods for graph clustering, and one popular such method 
is spectral clustering. The basis is then spectral bisection where a Fiedler vector [15]
is used for partitioning a graph into two connected subgraphs based on the signs of 
the components of the vector. This splitting may be repeated for each of the parts and 
thereby obtain a desired partition.

Consider an unweighted (undirected) simple graph G = (V, E) and let n = |V |. 
Throughout the paper we assume that G is connected. Recall that the Laplacian matrix
LG is the n ×n matrix LG = DG−AG where DG is the diagonal matrix with the vertex 
degrees on the diagonal, and AG is the adjacency matrix of G. The matrix LG is positive 
semidefinite and therefore it has only real, nonnegative eigenvalues. The algebraic con-
nectivity a(G) is the second smallest eigenvalue of LG, and it is known as a connectivity 
measure in the graph [14,23]. In particular, G is connected if and only if a(G) > 0. The 
matrix LG is singular, 0 is the smallest eigenvalue and a corresponding eigenvector is 
the all ones vector e. Therefore, by the Courant-Fischer theorem [16],

a(G) = min{xTLG x : eTx = 0, ‖x‖2 = 1}.

Here ‖x‖2 = (
∑

i x
2
i )1/2 is the (Euclidean) �2-norm of x = (x1, x2, . . . , xn) ∈ Rn. By 

using a standard factorization LG = BTB where B is the oriented edge-vertex incidence 
matrix of G, we have the alternative expression

a(G) = min{
∑
uv∈E

(xu − xv)2 :
∑
v∈V

xv = 0, ‖x‖2 = 1}. (1)

Thus, an eigenvector corresponding to the eigenvalue a(G), usually called a Fiedler vec-
tor, can be seen as assigning values to the vertices to obtain an optimal “smoothing” 
along edges, i.e., small difference between end points of edges, under the two normal-
ization constraints, see [26]. These constraints assure that we avoid a constant solution 
x = λe for some λ and, also, the norm constraint avoids scaling (to get similar solu-
tions) and the zero vector. We shall therefore call the minimization problem in (1) the 
�2-graph smoothing problem. Here �2 refers to the fact that both the (objective) function ∑

uv∈E(xu − xv)2 and the norm constraint involve the �2-norm.
The motivating question of our study is:

• What happens if we modify the optimization problem (1) by changing the norm 
involved to the �1-norm (the sum norm)?
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Problem: �2-graph smoothing �1-graph smoothing
Norm: �2-norm �1-norm
Minimize:

∑
uv∈E(xu − xv)2

∑
uv∈E |xu − xv|

Constraints: ‖x‖2 = 1, x ⊥ e ‖x‖1 = 1, x ⊥ e
Solution: Fiedler vector, partition �1-Fiedler vector, sparsest cut
Optimal value: algebraic connectivity a(G) b(G)
Property: connected parts connected parts
Approach: spectral combinatorial

Fig. 1. Graph smoothing and partition problems.

The �1-norm of x = (x1, x2, . . . , xn) ∈ Rn is defined by ‖x‖1 =
∑

i |xi|. In fact, often in 
mathematics different norms may be used in the study of some (approximation) problem. 
A well-known such example is the linear approximation problem minx∈Rn ‖Cx −b‖ where 
C is an m × n (real) matrix, b ∈ Rm and ‖ · ‖ is some vector norm. Then, for the �2-
norm, we obtain the least squares problem, and for the �1-norm and �∞-norm one may use 
linear programming to solve the problem. It is important to understand the properties 
of solutions, and how they depend on the choice of norm.

Therefore, our main goal is to consider a new graph smoothing problem which we call 
�1-graph smoothing. It is similar to �2-graph smoothing except that we change the norm 
from the �2-norm to the �1-norm. Let G = (V, E) be a given connected graph with at 
least one edge. The �1-graph smoothing problem is the following optimization problem

b(G) = min{
∑
uv∈E

|xu − xv| :
∑
v∈V

xv = 0, ‖x‖1 = 1}. (2)

Clearly the minimum here is attained by some x as the constraints define a compact 
set and the function to be minimized is continuous. Note that the constraint set is not 
a convex set. An optimal solution x in (2) will be called an �1-Fiedler vector. Then x
satisfies 

∑
v xv = 0, ‖x‖1 = 1 and 

∑
uv∈E |xu − xv| = b(G).

A main contribution of our paper is indicated in Fig. 1 (where u ⊥ v for vectors u
and v in Rn means uT v = 0). The two graph smoothing problems are indicated in the 
two last columns of the figure. One sees how the two problems are quite similar. Based 
on several intermediate results we establish that optimal solutions in the new problem 
correspond to so-called sparsest cuts. This also means that strong connections, with 
bounds, between the two optimal values a(G) and b(G) may be found. Moreover, there are 
important consequences in terms of computational complexity. A main contribution of 
this paper is to show that there is a very natural optimization approach that is underlying 
sparsest cuts. Thus, the problem (2) can be handled using a combinatorial approach. For 
related combinatorial approaches to Perron values of trees, see [4,5]. We will discuss 
the computational complexity for these graph smoothing problems, although this is not 
done in any detail. However, some remarks are given on the complexity of approximation 
problems related to b(G), and we believe more theoretical work can be done here. The 
approaches discussed in [9] for approximate graph coloring may be of interest in this 
connection. We remark that a slightly related problem to (2) is the minimum p-sum 
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problem [17] where one minimizes the variation over the edges measured in p-norm 
taken over all possible labelings 1, 2, . . . , n of the vertices.

The remaining part of this Introduction is devoted to some more results from spectral 
partitioning and relevant spectral graph theory. Finally, an overview of the next sections 
is given.

In [29] one studies the maximal error in spectral bisection where the two parts in 
the partition have the same size. In [18] the authors investigate graphs having Fiedler 
vectors with unbalanced sign patterns such that a partition can result in two connected 
subgraphs that are distinctly different in size. They also characterize graphs with a 
Fiedler vector having exactly one negative component. Motivated by these results we 
recall some facts concerning spectral partitioning and Cheeger bounds. For a much deeper 
discussion of these areas, we refer to the lectures notes [27] and [28], and the references 
found there. Consider again a graph G = (V, E) and let n = |V |. Let S ⊆ V be a 
nonempty vertex set, where S �= V . The cut induced by S, denoted by δ(S), is the 
set of edges uv where u ∈ S and v �∈ S. Cuts are important objects in graph theory, 
combinatorial optimization as well as in applications. Define the relative cut size

ξ(S) = |δ(S)|
|S| , (3)

which is the size of the cut relative to the size of the vertex set S. This is an important 
notion in this paper. The isoperimetric number of G, also called Cheeger’s constant, is 
the parameter

i(G) = min
S

ξ(S),

where the minimum is taken over all nonempty subsets S of V with |S| ≤ �n/2	.

A basic treatment of the isoperimetric number and its properties may be found in 
[22]. A related notion [21] is the edge density of a cut, defined as follows,

ρ(S) = |δ(S)|
|S||V \S| .

This concept represents the density of the edges in G between the set S and its com-
plement, compared to the number of edges in a complete bipartite graph (with vertex 
set S and its complement). This parameter ρ(S) is also called the sparsity of the cut. A 
sparsest cut is a cut which minimizes ρ(S). For more literature related to these concepts, 
see [12].

A small calculation shows the following relation between edge density and relative cut 
sizes for each subset S (with ∅ ⊂ S ⊂ V )

ξ(S) + ξ(V \ S) = nρ(S). (4)
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Below we give some inequalities relating edge density and Laplacian eigenvalues, in 
particular the algebraic connectivity.

Theorem 1.1 ([21]). Let G be a graph of order n. For any nonempty subset S of vertices 
of G, S �= V , the edge density is uniformly bounded below and above by

a(G)
n

≤ ρ(S) ≤ λ1

n
,

where λ1 is the largest eigenvalue of L(G).

In [13] one characterizes the graphs for which a(G) = ρ(S), for some subset S of 
vertices.

There is another upper bound on the minimal density of cuts in terms of a(G).

Theorem 1.2 ([21]). Let G = (V, E) be a graph of order n with at least two edges. Then

min{ρ(S) : S ⊂ V, S �= ∅} ≤ 2
n

√
a(G)[2dmax(G) − a(G)],

where dmax(G) is the maximal vertex degree in G.

This upper bound is a strong discrete version of the well-known Cheeger’s inequality
from differential geometry [10], bounding the first eigenvalue of a Riemannian manifold. 
It appeared in [1,2] and later, as an improved edge version in [22].

The remaining paper is organized as follows. In Section 2 we study the set of feasible 
solutions of the �1-graph smoothing problem and present a rewriting of the problem. The 
main results are then presented in Section 3, where it is shown that optimal solutions 
correspond to sparsest cuts with a connectivity property. The computational complexity 
is also settled. In Section 4 a comparison of b(G) and other parameters is made. Section 5
is devoted to examples and specific classes of graphs where explicit expressions for b(G)
are found. Moreover, a computational example is shown. In the final section we briefly 
consider a graph smoothing problem based on the �∞-norm.

Notation: Vectors in Rn are considered as column vectors and identified with the real 
n-tuples. The i’th component of a vector x ∈ Rn is usually denoted by xi (i ≤ n). A 
zero matrix, or vector, is denoted by O, and an all ones vector is denoted by e (the 
dimension should be clear from the context). For a real number c define c+ = max{c, 0}
and c− = max{−c, 0}. Then c = c+−c− and |c| = c++c−. Let x = (x1, x2, . . . , xn) ∈ Rn. 
Define x+ = (x+

1 , x
+
2 , . . . , x

+
n ) ∈ Rn and x− = (x−

1 , x
−
2 , . . . , x

−
n ) ∈ Rn. Thus, x = x+−x−. 

In a graph we let P = v1, v2, . . . , vk denote the path with vertices v1, v2, . . . , vk in that 
order, so vivi+1 is an edge (i < k). Moreover, Pn (resp. Sn) is a path (resp. the star) 
with n vertices, and Kn represents the complete graph with n vertices.
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2. The �1-graph smoothing problem

As mentioned, our main goal is to introduce and study the �1-graph smoothing prob-
lem. In this section we shall rewrite the problem into a convenient form.

Throughout, we let the vertex set of the graph G be V = {v1, v2, . . . , vn}, and we 
identify a function x ∈ RV with the vector x = (x1, x2, . . . , xn) where xj = x(vj) for 
each j ≤ n. Define F1 as the feasible set in (2), i.e.,

F1 = {x ∈ Rn :
∑
j

xj = 0, ‖x‖1 = 1}.

We also define the “smoothing function” f1(x) =
∑

uv∈E |xu − xv|. Therefore, the �1-
graph smoothing problem is to minimize f1(x) subject to x ∈ F1.

Example 1. Consider P4 = v1, v2, v3, v4, the path with four vertices. Let x1 =
(−1/2, 0, 0, 1/2), so the only nonzeros are in the end vertices. Then x1 ∈ F1 and 
f1(x1) = 1/2 + 0 + 1/2 = 1. Next, consider x2 = (−1/4, −1/4, 1/4, 1/4). Then x2 ∈ F1

and f1(x2) = 0 + 1/2 + 0 = 1/2. So, x2 is better than x1 and b(P4) ≤ 1/2. But is x2 op-
timal? The answer is yes, as will follow from later results. We remark that the algebraic 
connectivity of P4 is given by a(P4) = 0.5858.

An alternative description of the feasible set F1 is given next.

Lemma 2.1.

F1 = {x ∈ Rn :
∑

j:xj≥0
xj = 1/2,

∑
j:xj≤0

xj = −1/2}. (5)

Proof. Let x ∈ F1. Then

1 = ‖x‖1 =
∑

j:xj≥0
xj −

∑
j:xj≤0

xj ,

and adding this equation to 
∑

j xj = 0 gives 2 
∑

j:xj≥0 xj = 1, i.e., 
∑

j:xj≥0 xj = 1/2. 
This implies 

∑
j:xj≤0 xj = −1/2 as 

∑
j xj = 0. Conversely, if 

∑
j:xj≥0 xj = 1/2 and ∑

j:xj≤0 xj = −1/2, then 
∑

j xj = 0 and ‖x‖1 = 1, by the equation above. �
A vector x ∈ F1 will be called a feasible solution of (2). Thus, by Lemma 2.1, a feasible 

solution partitions the vertices into three subsets depending on the sign of each xj, ±1
or 0, and the sum of the components of x in the positive and negative part is the same 
in absolute value, 

∑
j:x >0 xj = | 

∑
j:x <0 xj | = 1/2.
j j
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We next rewrite problem (2). Define

β(G) = min{
∑
ij∈E

|x1
i−x2

i−x1
j+x2

j | :
n∑

j=1
x1
j = 1/2,

n∑
j=1

x2
j = 1/2, (x1)Tx2 = 0, x1, x2 ≥ O}

(6)
where x1 = (x1

1, x
1
2, . . . , x

1
n) and x2 = (x2

1, x
2
2, . . . , x

2
n) are vectors in Rn. Note that the 

constraints assure that for each i at least one of the two variables x1
i and x2

i is zero. The 
next result connects the two optimization problems (2) and (6).

Lemma 2.2. The following holds:
(i) If x is optimal in (2), then x1 = x+, x2 = x− is optimal in (6).
(ii) If x1, x2 are optimal in (6), then x = x1 − x2 is optimal in (2).
(iii) b(G) = β(G).

Proof. Properties (i) and (ii) follow by replacing each variable xj by xj = x1
j −x2

j where 
x1
j and x2

j are two nonnegative variables. In this construction x1 and x2 are only unique 
up to a positive additive constant in each term, but the orthogonality constraint (x1)Tx2

assures uniqueness and that x1 = x+ and x2 = x−. Thus (6) is a reformulation of (2). 
This implies that the optimal values coincide, so (iii) holds. �

Later we prove that it is NP-hard to compute b(G) and a corresponding �1-Fiedler 
vector. Still, the previous lemma means that computing b(G), and the corresponding 
optimal x, may be done by solving (6). This is a problem of minimizing a piecewise linear 
convex function subject to linear constraints and a “complementarity constraint” saying 
that x1

ix
2
i = 0 for each i. This problem can be written as a linear programming problem 

with certain linear complementarity constraints corresponding to the orthogonality x1 ⊥
x2, as explained next. Consider the following optimization problem with variables x1

j , x
2
j

(j ≤ n) and yij for ij ∈ E.

minimize
∑

ij∈E yij

x1
i − x2

i − x1
j + x2

j ≤ yij (ij ∈ E),
−x1

i + x2
i + x1

j − x2
j ≤ yij (ij ∈ E),∑n

j=1 x
1
j = 1/2,∑n

j=1 x
2
j = 1/2,

x1
jx

2
j = 0 (j ≤ n),

x1 ≥ O, x2 ≥ O, y ∈ RE .

(7)

In fact, the first two constraints are equivalent to |x1
i − x2

i − x1
j + x2

j | ≤ yij (ij ∈ E)
and due to the minimization equality must hold here for every ij ∈ E. As mentioned, 
the �1-graph smoothing problem is NP-hard, but several general integer programming 
based algorithms have been developed that may be used to give approximate solutions 
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of (7). A basic reference on the linear complementarity problem is [11]. We leave it as an 
interesting idea for further research to use this formulation in order to find approximate 
solutions of the �1-graph smoothing problem. In the final section of this paper we also 
use a related linear programming approach to a graph smoothing problem based on the 
�∞-norm.

3. �1-graph smoothing and sparsest cuts

In this section we investigate the �1-graph smoothing problem closer and establish 
strong properties of the optimal solutions. This leads to a connection to sparsest cuts. 
Recall that we assume that the graph G is connected. The proof of the next result uses 
a construction based on the relative cut size ξ(S) defined in (3).

Theorem 3.1. Let x be an �1-Fiedler vector with the maximum number of zeros. Then 
the subgraph induced by {v ∈ V : xv > 0} is connected and the subgraph induced by 
{v ∈ V : xv < 0} is connected.

Proof. We shall first prove that the subgraph induced by V + := {v ∈ V : xv > 0} is 
connected. The proof is by contradiction, so assume the subgraph induced by V + is not
connected. Then there must exist disjoint subsets S1 and S2 of V + such that

(i) no edge joins S1 and S2,
(ii) xv > 0 (v ∈ S1 ∪ S2),
(iii) if vw ∈ δ(S1) with v ∈ S1 (so w �∈ S1) then xw ≤ 0.

We discuss different cases.
Case 1: ξ(S1) > ξ(S2). Let ε be a “suitably small” positive number; in fact, ε <

min{xv : v ∈ V +} works. Define y ∈ RV based on x as follows:

yv =

⎧⎪⎨
⎪⎩

xv − ε (v ∈ S1),
xv + (|S1|/|S2|)ε (v ∈ S2),
xv (otherwise).

Then
∑

v:yv≥0
yv −

∑
v:xv≥0

xv =
∑
v∈S1

(−ε) +
∑
v∈S2

(|S1|/|S2|)ε = −|S1|ε + |S1|ε = 0.

Therefore,
∑

v:yv≥0
yv =

∑
v:xv≥0

xv = 1/2.

Moreover,
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∑
v:yv≤0

yv =
∑

v:xv≤0
xv = −1/2;

recall that yv = xv, for all v �∈ (S1 ∪ S2). This proves that y ∈ F1.
Next, for each edge vw ∈ δ(S1) with v ∈ S1, |yv−yw| = (xv−xw) − ε as xv > 0 ≥ xw. 

Similarly, for each edge vw ∈ δ(S2) with v ∈ S2, |yv − yw| = (xv − xw) + (|S1|/|S2|)ε. 
Therefore

f1(y) − f1(x) = −ε|δ(S1)| + (|S1|/|S2|)ε|δ(S2)|

= −ε
(
|δ(S1)| − (|S1|/|S2|)|δ(S2)|

)
< 0

(8)

as ξ(S1) > ξ(S2) means |δ(S1)|/|S1| > |δ(S2)|/|S2| so |δ(S1)| − (|S1|/|S2|)|δ(S2)| > 0. 
This proves that b(G) ≤ f1(y) < f1(x), contradicting that x is an �1-Fiedler vector.

Case 2: ξ(S1) < ξ(S2). By symmetry of S1 and S2 this can be treated by similar 
arguments and a contradiction is derived.

Case 3: ξ(S1) = ξ(S2). We use the same construction of the vector y as in Case 1, 
but we let ε = min{xv : v ∈ S1}. Then y ∈ F1, and from (8) we see that f1(y) = f1(x), 
so y is also an �1-Fiedler vector. However, y has at least one more zero than x, and this 
contradicts the choice of x (initially in the proof).

Thus, in each case we obtained a contradiction, which proves that the subgraph in-
duced by V + := {v ∈ V : xv > 0} is connected. The proof that the subgraph induced by 
{v ∈ V : xv < 0} is connected is completely similar, by choosing ε < min{|xv|, v ∈ V −}
in Case 1 and ε = min{|vv|, v ∈ S1} in Case 3. �

Next we give a main result which shows an explicit formula for b(G) which is of a 
combinatorial nature. This will give a strong connection to the notions presented in the 
Introduction.

We say that the pair (S1, S2) is a quasi-bipartition of V if

S1, S2 ⊂ V, S1 ∩ S2 = ∅, and S1, S2 �= ∅.

For a quasi-bipartition (S1, S2) let x = x(S1,S2) = (xv : v ∈ V ) ∈ Rn be the vector with

xv =

⎧⎪⎪⎨
⎪⎪⎩

1
2|S1| (v ∈ S1),

− 1
2|S2| (v ∈ S2),

0 (otherwise).

Theorem 3.2. For any graph G

b(G) = 1 min{ξ(S1) + ξ(S2) : (S1, S2) is a quasi-bipartition of V }. (9)
2
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Moreover, when (S1, S2) is optimal in (9), the corresponding vector x(S1,S2) is an �1-
Fiedler vector x.

Proof. Let x be an �1-Fiedler vector. Let κ(x) be the number of distinct positive elements 
in x (i.e., the cardinality of the set of positive components). Choose x (optimal) with 
κ(x) smallest possible. Define

S+ = {v : xv > 0}, S− = {v : xv < 0} and S0 = {v : xv = 0}.

Both S+ and S− are nonempty. Also define M1 = maxv xv, M2 = min{xv : xv > 0} and

S+
1 = {v : xv = M1}, S+

∗ = {v : M2 < xv < M1}, and S+
2 = {v : xv = M2}.

We now prove that there is an optimal solution of (2) where all positive xv’s are equal. 
If M1 = M2, there is nothing to prove, so assume M1 > M2. Let ε1 be a “small” number 
in absolute value and let ε2 satisfy |S+

1 |ε1 = |S+
2 |ε2, i.e., ε2 = ε1|S+

1 |/|S+
2 |. Define xε by

xε
v =

⎧⎪⎨
⎪⎩

M1 − ε1 (v ∈ S+
1 ),

M2 + ε2 (v ∈ S+
2 ),

xv (otherwise).

Observe that the relationship between ε1 and ε2 assures that

∑
v:xε

v≥0
xε
v = 1/2 and

∑
v:xε

v≤0
xε
v = −1/2.

Thus, xε ∈ F1 provided that ε1 is small enough in absolute value.

Let Δ(ε) = f1(xε) −f1(x). Then Δ(ε) =
∑

uv∈E Δuv where Δuv = |xε
u−xε

v| −|xu−xv|
is given as follows for each edge uv

(a) if u ∈ S+
1 , v �∈ (S+

1 ∪ S+
2 ), then Δuv = −ε1,

(b) if u ∈ S+
1 , v ∈ S+

2 , then Δuv = −ε1 − ε2,
(c) if u ∈ S+

2 , v ∈ S+
∗ , then Δuv = −ε2,

(d) if u ∈ S+
2 , v ∈ S− ∪ S0, then Δuv = ε2,

and for all other edges Δuv = 0. Let Na, Nb, Nc, Nd be the number of edges in categories 
(a)–(d), respectively. Then

Δ(ε) = Na(−ε1) + Nb(−ε1 − ε2) + Nc(−ε2) + Nd(ε2).

By inserting the expression for ε2 above we obtain

Δ(ε1) = ηε1,
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for some number η that depends on Na, Nb, Nc, Nd, |S+
1 | and |S+

2 |. Moreover, there 
exists an ε∗ > 0 such that for all ε1 with |ε1| < ε∗, the vector xε lies in F1. We must have 
η = 0, otherwise we could let ε1 be small enough and with opposite sign as η and then

0 > ηε1 = Δ(ε1) = f1(xε) − f1(x).

So f1(xε) < f1(x) which contradicts the optimality of x. Therefore, η = 0 and

f1(xε) = f1(x).

Now, let ε1 > 0 and increase ε1 until Δuv becomes 0 for some edge for which it was 
previously positive. This happens if either the smallest value in S+ has been decreased 
to 0, or when largest value has been decreased to the second largest, or the smallest value 
has been increased to the second smallest (or both of these occur simultaneously). This 
xε1 is also an �1-Fiedler vector. As κ(xε1) < κ(x), this contradicts our choice of x. Thus, 
by contradiction, it follows that M1 = M2, so all positive components in x are equal.

Finally, among all �1-Fiedler vectors whose positive components coincide with that 
of x, we proceed to treat the negative components in exactly the same manner as the 
first part of the proof. As a result, we find an �1-Fiedler vector where all the negative 
components have the same value, and all the positive components have the same value. 
Let x denote this vector and define S1 = {v : xv > 0}, S2 = {v : xv < 0} and 
S0 = {v : xv = 0}. Let [Si : Sj ] be the set of edges uv such that u ∈ Si, v ∈ Sj , where 
i, j ∈ {0, 1, 2}. Then xv = 1/(2|S1|) for all v ∈ S1 and xv = −1/(2|S2|) for all v ∈ S2. 
Moreover,

b(G) = f1(x)

=
∑

uv∈E |xu − xv|

=
∑

uv∈δ(S1)∪δ(S2) |xu − xv|

=
∑

uv:u∈S1,v∈S2
|xu − xv| +

∑
uv:u∈S1,v∈S0

|xu − xv| +
∑

uv:u∈S2,v∈S0
|xu − xv|

= |[S1 : S2]|((1/(2|S1|) − (−1/(2|S2|)) + |[S1 : S0]|(1/(2|S1|))

+|[S2 : S0]|(−1/(2|S2|))

= (|[S1 : S2]| + |[S1 : S0]|)((1/(2|S1|) − (|[S1 : S2]| + |[S2 : S0]|)(−(1/(2|S2|))

= (1/2)
(
|δ(S1)|/|S1| + |δ(S2)|/|S2|

)
= (1/2)

(
ξ(S1) + ξ(S2)

)
.

From this calculation we also see that for any S′
1, S

′
2 ⊂ V with S′

1 ∩ S′
2 = ∅, S′

1, S
′
2 �= ∅, 

there exists an x′ ∈ F1 with f1(x′) = (1/2)
(
ξ(S′

1) + ξ(S′
2)), and therefore f1(x′) ≥ b(G). 

This proves the theorem. �
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Let Γ be the set of all quasi-partitions of V . Thus

b(G) = (1/2) min
(S1,S2)∈Γ

(
ξ(S1) + ξ(S2)

)
.

The next corollary says that if x is an �1-Fiedler vector then x has no component 
equal to zero.

Corollary 3.3. Let x = (x1, x2, . . . , xn) be an �1-Fiedler vector. Then xi �= 0 for all i ≤ n.

Proof. Choose an �1-Fieldler vector x. Partition the set of vertices into S+ = {v : xv >

0}, S− = {v : xv < 0} and S0 = {v : xv = 0}. We recall that S+ and S− are nonempty 
and we want to prove that S0 = ∅. Consider the following edge sets

E1 = {uv : u ∈ S+, v ∈ S0},
E2 = {uv : u ∈ S+, v ∈ S−},
E3 = {uv : u ∈ S−, v ∈ S0}.

Then

b(G) = 1
2
(
ξ(S+) + ξ(S−)

)
= 1

2
( |δ(S+)|

|S+| + |δ(S−)|
|S−|

)
= 1

2
( |E1|+|E2|

|S+| + |E2|+|E3|
|S−|

)
.

Assume that S0 �= ∅.

• Let S′ = S+ ∪ S0 and consider the quasi-bipartition (S′, S−). Then

ξ(S′) + ξ(S−) = |E2| + |E3|
|S+| + |S0| + |E2| + |E3|

|S−| .

If |E3| ≤ |E1|, then 1
2 (ξ(S′) + ξ(S−)) < 1

2 (ξ(S+) + ξ(S−)), which is not possible by 
the definition of b(G). Therefore |E3| > |E1|.

• Let S′′ = S− ∪ S0 and consider the quasi-bipartition (S+, S′′). Then

ξ(S+) + ξ(S′′) = |E1| + |E2|
|S+| + |E1| + |E2|

|S−| + |S0| .

If |E1| ≤ |E3|, then 1
2(ξ(S+) + ξ(S′′)) < 1

2 (ξ(S+) + ξ(S−)), which is not possible by 
definition of b(G). Therefore |E3| < |E1|.

Thus, |E3| < |E1| < |E3|; a contradiction. We conclude that S0 = ∅, as desired. �
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The next theorem sums up the results above. It connects b(G) to the minimum edge 
density and also shows that we may restrict to connected subgraphs when computing 
b(G).

Theorem 3.4. For any graph G of order n

b(G) = n

2 min
S

ρ(S), (10)

where ρ(S) = |δ(S)|
|S|(n−|S|) is the edge density of the cut δ(S) and the minimum is taken 

for nonempty subsets S of V such that S �= V and both S and its complement induce 
connected subgraphs of G.

Proof. This follows by combining Theorem 3.2 and Corollary 3.3: we have that the 
quasi-bipartition (S1, S2) must be a partition, i.e., S1 ∪ S2 = V as from Corollary 3.3
any �1-Fiedler vector has no components equal to zero. Therefore δ(S1) = δ(S2). The 
argument in the proof of Theorem 3.1 assures connectedness of the two subgraphs. The 
definition of edge density of a cut and the relation in (4) give the desired formula for 
b(G). �

Thus we arrive at the important insight:

• up to a multiplicative constant, namely n/2, the optimal value b(G) in the �1-graph 
smoothing problem coincides with the smallest edge density of a cut in G.

This gives a very intuitive interpretation of the partitioning of a graph G according 
to the positive and negative values in the �1-Fiedler vector: it corresponds to a cut of 
smallest edge density, also called a sparsest cut. In fact, for such a sparsest cut δ(S) a 
corresponding �1-Fiedler vector is x = x(S,V \S) = (xv : v ∈ V ) given by

xv =
{ 1

2|S| (v ∈ S),

− 1
2|S̃| (v ∈ V \ S).

(11)

Thus, this correspondence is underlying when we later refer to a solution of the �1-graph 
smoothing problem or the sparsest cut problem, i.e., one solution can be converted into 
the other.

Example 2. Consider the path P5 = v1, v2, v3, v4, v5. By Theorem 3.4, including the 
connectivity result, it is easy to see that a sparsest cut is δ(S∗) where S∗ = {v1, v2}. So 
minS ρ(S) = 1/6 and b(G) = 5/12.

Example 3. The cube graph is the graph formed by the 8 vertices and 12 edges of a 
three-dimensional cube. For the cube graph minS ρ(S) = 1/4 so b(G) = 1.
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Due to this close connection to the sparsest cut, we can now conclude that computing 
an �1-Fiedler vector is a computationally hard problem.

Corollary 3.5. The computation of b(G) and a corresponding �1-Fiedler vector is NP-
hard.

Proof. It was shown in [7] that computing min{ρ(S) : ∅ ⊂ S ⊂ V } is NP-hard. Therefore, 
due to Theorem 3.4, the desired conclusion follows. �

As mentioned, in [7] it is shown that the sparsest cut is NP-hard. The paper fur-
ther contains a number of results showing that the problem is polynomially solvable for 
certain classes of graphs. For instance, this applies to graphs with bounded treewidth. 
Furthermore, for cactus graphs, i.e., connected graphs where each edge is in at most one 
cycle, there is an algorithm for finding a sparsest cut which is linear in n, the number 
of vertices. This class includes trees, which we return to below. In [6] an efficient ap-
proximation algorithm for the sparsest cut was established, and it gives an O(

√
log n)

approximation (to the minimum value). In [30] there is whole chapter devoted to the 
sparsest cut problem. Here the connection to a certain linear programming problem is 
shown. This is a multicommodity network flow problem where the goal is to maximize 
throughput for a given set of demands given by origin/destination (OD-) pairs and the 
corresponding flow demand. The special case where all demands are 1 and every pair 
is an OD-pair leads to an upper bound of the throughput which is the edge density. 
Therefore the minimum edge density, and a sparsest cut, corresponds to a bottleneck 
of the multicommodity flow problem. In this approach linear programming duality is 
combined with some basic results on embeddability of �1-metric spaces. This leads to 
a very important approximation algorithm with approximation error O(logn); for the 
details we refer to [30] or [28].

Sparsest cuts are used in applications. For instance, in [31] sparsest cuts (which is 
called ratio cuts there) are used in image segmentation. They also show that the spars-
est cut problem is polynomially solvable in planar graphs, which is of interest in image 
analysis. In [24] one considered a segmention (or decomposition) problem in image anal-
ysis, using a model based on partial differential equations and total variation norm 
(L1-norm).

4. Comparison with other parameters

This section establishes bounds on b(G) in terms of other parameters.
By combining Theorem 3.4 and Theorem 1.1 we now obtain the following bounds on 

b(G).

Corollary 4.1. Let G be a graph of order n. Then

(1/2)a(G) ≤ b(G) ≤ (1/2)λ1,
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where a(G) is the algebraic connectivity of G and λ1 is the largest eigenvalue of L(G).

Let dmin(G) denote the smallest vertex degree in G.

Corollary 4.2. For any graph G of order n the following bounds on b(G) hold

min
S

ξ(S) ≤ b(G) ≤ n

2(n− 1)dmin(G).

Proof. Let S1 and S2 be such that the minimum in (9) is attained (so S2 = V \ S1). 
Then

min
S

ξ(S) ≤ min{ξ(S1), ξ(S2)} ≤ (1/2)(ξ(S1) + ξ(S2)) = b(G).

Next, let v be a vertex with smallest degree in G, so dv = dmin(G), and let S = {v}. Then 
ρ(S) = dv/(n − 1) so, by Theorem 3.2, an upper bound on b(G) is n

2(n−1)dmin(G). �
Let mc(G) denote the cardinality of a minimum cut in G, i.e.,

mc(G) = min{|δ(S)| : ∅ ⊂ S ⊂ V }.

The next result is proved similar to the upper bound in the previous corollary, by letting 
S be such that δ(S) is a minimum cut.

Corollary 4.3. For any graph G

b(G) ≤ n

2s(n− s)mc(G),

where s = |S| and δ(S) is a minimum cut in G.

This bound is of interest because a minimum cut may be found efficiently (polynomial 
time) by simple greedy algorithms. Moreover, such a minimum cut may be the starting 
point of algorithms for computing approximations to b(G).

Let m = |E| be the number of edges in G.

Theorem 4.4. For every graph G

b(G) ≤
√

m · a(G). (12)

Proof. Let x′ be a Fiedler vector of unit length, so 
∑

uv∈E(x′
u − x′

v)2 = a(G) and ∑
v x

′
v = 0, ‖x′‖2 = 1. Let x∗ = tx′ where t = 1/‖x′‖1. Then ‖x∗‖1 = 1, 

∑
j x

∗
j = 0 and 

t = 1/‖x′‖1 ≤ 1/‖x′‖2 = 1 as, in general, ‖z‖2 ≤ ‖z‖1 for z ∈ Rn. Therefore
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b(G) = min{
∑

ij∈E |xi − xj | :
∑

j xj = 0, ‖x‖1 = 1}

≤
∑

ij∈E |x∗
i − x∗

j |

= t
∑

ij∈E |x′
i − x′

j | · 1

≤ (
∑

ij∈E(x′
i − x′

j)2)1/2 · (
∑

ij∈E 12)1/2

=
√
m · a(G),

where the last inequality is obtained from the Cauchy-Schwarz inequality. �
5. Examples and special graphs

This section contains examples and results for special graphs.
The next example considers the complete graph, which is an extreme case in terms of 

the parameter b(G).

Example 4. Consider Kn the complete graph of order n. Let S ⊂ V where S �= ∅, V . 
Define s = |S|. Then

ρ(S) = s(n− s)
s(n− s) = 1,

which is independent of S. So, by Theorem 3.4, b(Kn) = n
2 . Note that Kn is an (n − 1)-

regular graph. It is known that a(Kn) = n. Thus b(Kn) < a(Kn).

Example 5. Consider the cycle Cn, with n ≥ 4 even. For all S, such that |S| = p, then 
ρ(S) = 2

p(n−p) . In this case minS ρ(S) = 8
n2 , so b(G) = 4/n. If n ≥ 3 and n is odd, then 

minS ρ(S) = 2
�n/2�·n/2� and b(G) = n

�n/2�·n/2� .

A wheel graph Wn, with n ≥ 4, is a graph formed by connecting a single vertex 
(central vertex) to all vertices of a cycle.

Example 6. Let n ≥ 4. Then b(Wn) = n
n−2 . In fact,

1. Consider all subsets S, such that |S| = 1, say S = {v}. Then, two situations can 
occur:
• v is the central vertex. Then, ρ(S) = n−1

n−1 = 1.
• v is not the central vertex. Then, ρ(S) = 3

n−1 .
2. Consider all remaining subsets S, such that |S| = i ≥ 2. Again, two situations can 

occur:
• S does not contain the central vertex. Then, ρ(S) = i+2

i(n−i) .
• S contains the central vertex. Then ρ(S) = n−i+2

i(n−i) .
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With some calculus we see that minS ρ(S) is equal to 2/(n − 2), so b(G) = n/(n − 2).

For trees we can find a sparsest cut analytically, as described next. Let T = (V, E) be 
a tree, and let e = uv ∈ E. Then T \ {e} consists of two disjoint trees, T e

u and T e
v , where 

T e
u = (V e

u , E
e
u) contains u, T e

v = (V e
v , E

e
v) contains v and V e

u ∪ V e
v = V . We call e = uv

a center edge if ||V e
u | − |V e

v || is smallest possible and we let Δ(T ) denote this minimum 
value. For instance, let T be the path Pn. If n = |V | is even, then Δ(Pn) is 0, and there 
exist only one center edge. If n is odd, then Δ(Pn) is 1 and there are two center edges. 
If T is the star Sn, then Δ(Sn) = n − 2 and all the edges of Sn are center edges.

Theorem 5.1. Let T = (V, E) be a tree. Then, there exists a center edge e = uv ∈ E such 
that the cut δ(V e

u ) is a sparsest cut, and

b(T ) = (1/2)
(
1/|V e

u | + 1/|V e
v |
)
.

Proof. We apply Theorem 3.4, so a sparsest cut must be of the form C = δ(V e
u ) for some 

edge e = uv. The corresponding edge density of the cut C is

ρ(V e
u ) = 1

|V e
u ||V e

v |
,

and it is easy to compute that this is minimized precisely when ||V e
u | − |V e

v || is smallest 
possible, i.e., when e is a center edge and therefore

b(T ) = (n/2)ρ(V e
u ) = (1/2)

(
1/|V e

u | + 1/|V e
v |
)
. � (13)

A substar S in a tree T is a vertex-induced subgraph which is a star, i.e., it consists 
of edges sharing a common vertex.

Corollary 5.2. Let T = (V, E) be a tree. Then the set of center edges is a substar.

Proof. We prove this by contradiction. So, assume there are two center edges e = uv and 
e′ = u′v′ that are disjoint (no common vertex). Since T is connected there is a path P
between a vertex in e and a vertex in e′, say that v and v′ are closest with this property.

Claim: |V e
u | ≤ |V e

v |, and |V e′

u′ | ≤ |V e′

v′ |.
Proof of Claim: Otherwise |V e

u | > |V e
v |, and V e′

u′ ⊂ V e
v (strict subset) so |V e′

v′ | > |V e
u | >

|V e
v | > |V e′

u′ |. This contradicts that e′ is a center edge (because the two numbers to the 
left and right in these inequalities are further apart that the two in the middle). This 
proves the claim.

Next, from the Claim, we conclude that |V e
u | = |V e′

u′ | because both e and e′ are 
center edges (otherwise these two numbers would have different distance to n/2; see 
the discussion on center edge above). Let e∗ = vw be the edge in the path P that is 
incident to v. Then e∗ is different from e and e′. Moreover, |V e∗

v | ≥ n/2, otherwise |V e∗
v |
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would be closer to n/2 than |V e
u |; contradicting that e is a center edge. This implies that 

|V e∗
w | ≤ n/2 and then

|V e′

u′ | < |V e∗

w | ≤ n/2,

contradicting that e′ is a center edge. Therefore, such an edge e∗ does not exist, meaning 
that e and e′ must be incident. �
Corollary 5.3. Let Pn be the path with n vertices.

If n is even, then b(Pn) = 2/n and an �1-Fiedler vector has the first n/2 components 
equal to 1/n and the last n/2 components are equal to −1/n.

If n is odd, then b(Pn) = 2n/(n2 − 1). An �1-Fiedler vector has the first (n − 1)/2
components equal to 1/(n − 1) and the remaining components are equal to −1/(n + 1).

Proof. This follows from Theorem 5.1. Let n be even. Taking |V e
u | = p, and |V e

v | = n −p, 
we have δ(Pn) = 1

p(n−p) , where the minimum of this function is attained for p = n/2. 
Then b(Pn) = 2/n. From the proof of Theorem 3.2 the �1-Fiedler vector has p = n/2
entries equal to 1

2p = 1
n and n/2 entries equal to − 1

2(n−p) = − 1
n . The case when n is odd 

is analogous. �
Corollary 5.4. Let Sn be the star with n vertices. Then

b(Sn) = 1
2 + 1

2(n− 1) .

Moreover, the entries of an �1-Fiedler vector are 1
2 for the center vertex and − 1

2(n−1) for 
the remaining vertices.

Proof. This follows from Theorem 5.1 and Theorem 3.2. �
Let C be the set of center edges of a given tree. We next look at some examples 

concerning specific classes of trees.

Example 7. Consider a broom-tree B(�, n − �) consisting of a path v1, v2, . . . , v� and 
additional vertices v�+1, v�+2, . . . , vn each attached to v�. Here eij denotes the edge vivj
or simply ij. There are two cases to discuss.

1. If � ≤ n − �, i.e., � ≤ n/2, then there is a unique center edge, and it is e = e�−1,�. So 
C = {e} and

b(B(�, n− �)) = 1
2
( 1
�− 1 + 1

n− � + 1
)

= n

2(�− 1)(n− � + 1) . (14)

In fact, let us consider an edge ek,k+1 with k = 1, 2, . . . , � − 1, and the function 
f(k) = 1 ( 1 + 1 ). This function is decreasing and its minimum is attained for 
2 k n−k
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k = n − 1. Additionally, for any edge e�,�+p for p = 1, . . . , n − p, the expression in
(13) is (1/2)

(
1 + 1

n−1
)

that is clearly greater or equal than the expression in (14). 
Thus b(B(�, n − �)) is as in (14).

2. If � > n − �, i.e., � > n/2, then two subcases can occur.
(a) n is even, say n = 2k for some integer k.

Then, e = ek,k+1 is the unique center edge, so C = {e}. In this case we have

|V e
vk
| = |V e

vk+1
| = n

2 ,

and

b(B(�, n− �)) = 1
2
( 1
n/2 + 1

n/2
)

= 2
n

= 1
k
.

(b) n is odd, say n = 2k + 1 for some integer k.
i. If � −k = 1, then there exists a unique center edge e = en−1

2 ,n+1
2

and C = {e}. 
Then

b(B(�, n− �)) = 1
2

(
1
k

+ 1
n− k

)
= 1

n− 1 + 1
n + 1 = 2n/(n2 − 1). (15)

ii. Suppose now that � − k > 1. Then we have two center edges e = ek,k+1
and e� = ek+1,k+2, that is e = en−1

2 ,n+1
2

and e� = en+1
2 ,n+3

2
. In this case 

C = {e, e�} and b(B(�, n − �)) is the same value as (15).

A pendant edge in a graph is an edge where one of its vertices has degree 1.

Example 8. Let n1, n2, . . . , nk be positive integers. The starlike tree S(n1, n2, . . . , nk) is 
the tree that results from the stars Sn1 , Sn2 , . . . , Snk

by connecting their centers to an 
extra vertex v, see [19]. Let n =

∑k
i=1 ni + 1 and define nM = maxi=1,2,...,k ni. Then,

b(S(n1, n2, . . . , nk)) = n

2nM (n− nM ) .

If |Sp| > |Si| (i �= p), then there is a unique center edge, which is vv�. Otherwise the 
maximum of |Si| is attained for more than one i, and the center edges constitute a 
substar connecting v to the center of those stars Si.

Finally, in this section, we give a computational example for a graph G. It illustrates 
the partitions obtained based on the Fiedler vector and the �1-Fiedler vector, respectively.

Example 9. In this example we generated some “random” points in the plane and con-
structed edges between points that were closer than some given distance. This gave a 
graph G. The graph contained 15 vertices and 69 edges. We wanted to compare the par-
titions obtained from the �2 (Fiedler) versus �1 (sparsest cut) graph smoothing approach.
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Fig. 2. Graph smoothing partitions: �2 (left) and �1 (right).

In the �2 approach we obtained a cut with 22 edges and the partition contained 7 and 
8 vertices, respectively, see Fig. 2. The two vertex sets in the partition are indicated with 
different bullet sizes. In the �1 approach we obtained a cut with 10 edges and the partition 
contained 3 and 12 vertices, respectively. The corresponding edge densities were 0.39 (for 
�2) and 0.28 (for �1). So the minimum edge density is 0.28. Note that the sparsest cut is 
quite unbalanced, but has very few edges compared to the cut in the Fiedler partition. 
For certain graphs this may happen, but graphs are so different that we will not make 
any general claims on properties of these solutions.

Concerning the previous example, note that each of the two solutions are optimal in 
the respective optimization problems, so comparing partitions is a bit artificial. However, 
both methods may be used for partitioning, and which one is the better is hard to say 
in general. It depends on the underlying application and the type of graph considered. 
Computationally, the Fiedler vector can be computed fast, while for larger graphs we 
need heuristics for finding approximate sparsest cuts. On the other hand, a sparse or 
sparsest cut is a reasonable notion and can be analyzed for specific graph classes, while 
the Fiedler vector relies on an eigenvector which is not easy to give a direct combinatorial 
interpretation. Finally, for clustering it might be possible to combine these two methods, 
possibly also with some of the many other approaches known for graph clustering.

6. Graph smoothing in �∞-norm and concluding remarks

We conclude the paper with some remarks. First, it also makes sense to consider 
the graph smoothing problem in other norms, such as the �∞-norm (given by ‖x‖∞ =
maxi |xi|). This leads to the �∞-graph smoothing problem

γ(G) = min{max
uv∈E

|xu − xv| :
∑

xv = 0, ‖x‖∞ = 1}. (16)

v∈V
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In contrast to the �1-graph smoothing problem we can solve (16) efficiently, for a general 
graph G.

Theorem 6.1. The �∞-graph smoothing problem (16) can be solved in polynomial time, 
using linear programming.

Proof. We rewrite problem (16) using a construction rather similar to what we did for 
the �1-graph smoothing problem in (7). For each k ≤ n consider the linear programming 
problem LP(k):

minimize y

xi − xj ≤ y (ij ∈ E),
−(xi − xj) ≤ y (ij ∈ E),∑n

j=1 xj = 0,
−1 ≤ xj ≤ 1 (j ≤ n),

xk = 1.

(17)

Here the variables are x = (x1, x2, . . . , xn) and y. Note that in every optimal solution of 
(17) y = maxuv∈E |xu − xv|, and ‖x‖∞ = 1. It follows that LP(k) solves the �∞-graph 
smoothing problem under the additional restriction that xk = 1. (Due to symmetry, −x

satisfies the first four constraints when x does, so restricting one component to −1 is 
not needed.) So, by solving LP(k) for every k ≤ n, and taking the minimum y found, we 
solve the �∞-graph smoothing problem. Since LP problems can be solved in polynomial 
time, the resulting algorithm is a polynomial-time algorithm. �
Proposition 6.2. Consider the path Pn with n vertices. Then the minimum value of the 
�∞-graph smoothing problem (16) is γ = γ(Pn) = 2/(n − 1) and an optimal solution is

x = (1, 1 − γ, 1 − 2γ, . . . , 1 − (n− 2)γ,−1).

Proof. For the specified x we have |xi −xi+1| = γ for i ≤ n − 1, so maxi |xi −xi+1| = γ. 
Moreover, 

∑
i xi = 0 and ‖x‖∞ = 1. Assume there is an z = (z1, z2, . . . , zn) satisfying ∑

i zi = 0, ‖z‖∞ = 1 and maxi |zi − zi+1| < γ. By symmetry we may assume that some 
component of z is 1, say zk = 1. Then, if k < n, |zk − zk+1| < γ, so zk+1 > 1 − γ. 
Similarly, zk+2 > 1 − 2γ, and in general zs > 1 − |s − k|γ. But then it is easy to see that

∑
i

zi >
∑
i

xi = 0,

which contradicts that 
∑

i zi = 0. Thus, the optimal value of (16) is not less than γ, and 
therefore equal to γ, as desired. �



250 E. Andrade, G. Dahl / Linear Algebra and its Applications 687 (2024) 229–251
Example 10. Consider the path P6 = v1, v2, v3, v4, v5, v6, with corresponding variables xi

(i ≤ 5). Then γ = 2/5 and an optimal solution of the �∞-graph smoothing problem is

x = (1, 3/5, 1/5,−1/5,−3/5,−1).

Thus consecutive components of x differ in absolute value by y = 2/5.

One can also solve (16) explicitly for stars, and some other graphs. It is ongoing work 
to investigate the �∞-graph smoothing problem further and to relate to the �1- and �2-
graph smoothing problems. Moreover, it is interesting to see if the corresponding cuts 
obtained from the signs in an optimal x∗ are useful in partitioning problems.

Finally, we remark that the main contribution of the present paper was to investigate 
a variant of the optimization (variational) characterization of algebraic connectivity, by 
changing into the �1-norm. We showed strong optimality properties that are similar to 
the Fiedler theory for algebraic connectivity. Also, we showed that optimal solutions 
correspond to sparsest cuts which gives a new way to view these combinatorial objects. 
We believe that further work on similar optimization problems, in different norms, would 
be interesting. This includes to combine the different approaches into useful algorithms 
for important applications in clustering problems in graphs.

Recently, in the revision process, we learned about a PhD thesis (in Portuguese) by 
E.M. Borba [8]. Here the author treats the so-called (p, q)-algebraic connectivity which 
is a parameter aqp(G) associated with the q-Laplacian Lq defined in [3]. For p = q = 1
this leads to a minimization problem which is related, but different, from our �1-graph 
smoothing problem; the difference is that we also use the constraint that x is orthogonal 
to the all ones vector. It was shown in [8] that a1

1(G) is equal to Cheeger’s constant.
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