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Palavras Chave Análise Funcional Quaterniónica, Teoria de Operadores Quaterniónicos, Ideais de
Operadores, Teoria Espectral Quaterniónica, s-numbers.

Resumo O objetivo da tese apresentada é dividido em duas partes. Em primeiro lugar, o
conceito de s-numbers na análise quaterniónica é discutido. Vários exemplos de
funções de s-numbers são naturalmente extendidos. A noção de números nucleares
também é introduzida e a unicidade dos s-números em espaços de Hilbert quater-
niônicos é estabelecida.
Em segundo lugar, focamo-nos na teoria de ideais de operadores que atuam em
algebras de operadores quaterniónicos. São fornecidos exemplos, como classes de
Schatten sobre os quaterniões e discutem-se as relações entre diferentes ideais.
Para isso, adaptamos a abordagem de A. Pietsch ao contexto dos quaterniões,
seguindo as ideias de F.Colombo e I.Sabadini.





Keywords Quaternionic Functional Analysis, Quaternionic Operator Theory, Operator Ideals,
Quaternionic Spectral Theory, s-numbers.

Abstract The presented thesis’ objective is twofold. Firstly, it explores the concept of
s-numbers in quaternionic analysis and extends several examples of s-number func-
tions. The notion of nuclear numbers is also introduced, and the uniqueness of
s-numbers over quaternionic Hilbert spaces is established.
Secondly, it studies the theory of operator ideals of operators acting on quaternionic
algebras. We provide examples, such as Schatten classes over the quaternions, and
discuss the relationships between different ideals.
To this end we adapt A. Pietsch’s approach to the quaternionic framework, follow-
ing the ideas of F.Colombo and I.Sabadini.
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CHAPTER 1
Introduction

The interest in quaternionic analysis can be attributed to the works of G. Birkhoff
and J. von Neumann. Specifically, in their paper on the logic of quantum mechanics [6],
they demonstrated that the Schrödinger equation can be formulated in both complex and
quaternionic settings, giving rise to the theory of quaternionic quantum mechanics (QQM).
Inspired by this, there has been a tendency to generalize classical theories of analysis to the
quaternionic context. In this regard, our objective is to extend the concept of s-numbers and
explore their implications for the theory of operator ideals over the algebra of the quaternions.

The classic s-numbers theory originates from to the works of E. Schmidt [45], where
the concept of singular numbers of integral operators between Hilbert function spaces was
introduced. Afterwards, in [43][44], J. von Neumann and R. Schatten extended this concept to
the setting of compact operators between Hilbert spaces. Hereby, the n-th s-number, previously
referred to as n-th singular value, was defined to be the n-th eigenvalue of |S| =

√
S∗S. More

precisely, they defined the non-increasing sequence of those eigenvalues counted according to
their algebraic multiplicities, λn(|S|). These led to the introduction of Schatten classes

Sp(H) = {T ∈ K(H) : ∥λn(T )|ℓp∥ < ∞} .

An axiomatic approach to the theory of s-numbers was introduced by A. Pietsch, enabling
the extension of s-numbers to general Banach spaces. We utilize this axiomatization to further
expand the theory into the quaternionic framework. Unlike in the Hilbert space setting, the
s-numbers are not unique in a Banach space.

As mentioned previously, it is currently well established that s-functions are unique over
complex Hilbert spaces. By employing the proposed axiomatizations along with the works
of F. Colombo and I. Sabadini on quaternionic Spectral Theory, we are able to extend the
uniqueness of s-numbers to the quaternionic setting.

Following the same reasoning behind the construction of Schatten classes, this approach
allowed to extend the results of Neumann/Schatten to a general Banach Space. Consequently,
various classes of compact operators were obtained, each of which classify the behaviour of
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certain compact operators with respect to a s-number function. By following this methodology,
we derive the quaternionic counterpart of Schatten classes for compact operators acting
between quaternionic Banach spaces, thereby establishing a classification for quaternionic
compact operators.

Furthermore, A. Pietsch has also introduced an axiomatic approach to the theory of
operator ideals. We extend these proposed axioms to the quaternionic setting and, similar to
the classical theory, the aforementioned quaternionic Schatten classes give rise to operator
ideals.

Hence, the objective of this work is twofold. Firstly, we aim to extend A. Pietsch’s axiomatic
approach to s-number theory to the quaternionic framework and explore its implications.
Secondly, we generalize the theory of operator ideals in the sense of A. Pietsch to the
quaternionic setting.
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CHAPTER 2
Preliminaries

This section aims to present the quaternionic analogues of basic tools in functional analysis.
Hereby, we begin by discussing the algebraic properties of quaternions and their consequences.
Next, linearity and boundedness of operators on a quaternionic setting is discussed followed by
required notions of duality. We introduce notation for sequence spaces and extend well-known
results to the quaternionic case. We conclude the discussion of quaternionic functional analysis
by discussion the quaternionic analogues of Hahn-Banach theorem and its consequences, which
are crucial for future developments. Afterwards the notions of extensions and liftings of
quaternionic Banach spaces is presented. We close the chapter with some considerations on
quaternionic spectral theory, namely the construction of a projection valued spectral measure
which will be an essential tool throughout the sequel.

2.1 The algebra of quaternions

For a comprehensive exposition on the algebra of quaternions, we refer to [15]. The
following presentation is largely based on that source.

Definition 2.1.1. The quaternions, denoted by H, are the real algebra generated by {1, i, j, k}
satisfying the following properties:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Thus, an element q ∈ H can be written as q = x0 +x1i+x2j+x3k, where x0, x1, x2, x3 ∈ R
and i, j, k satisfy the above relations. Moreover, we define the real part, imaginary part, and
norm of q ∈ H as:

Re q = x0, Im q = x1i+ x2j + x3k, ∥q∥ =
√
x2

0 + x2
1 + x2

2 + x2
3.

The conjugate of a quaternion is defined as q = Re q − Im q, satisfying ∥q∥ =
√
qq =

√
qq.

Consequently, the inverse of any nonzero element q is given by q−1 = q

∥q∥2 . Thus, H is a skew
field. Finally, we denote the unit sphere of purely imaginary quaternions a s

S := {q = x1i+ x2j + x3k : ∥q∥2 = 1}.

3



2.1.1 Some remarks on quaternionic matrices

As mentioned earlier, H is a skew field, more formally known as a division algebra.
Furthermore, if commutativity is assumed then we obtain a commutative division algebra,
i.e., a field. Therefore, the key distinction between real/complex structures and quaternionic
structures lies solely in the absence of commutativity. Consequently, many arguments and
concepts used in real or complex vector spaces that do not rely on commutativity still hold in
the quaternionic algebra. For instance, considering quaternionic matrices A and B, the same
arguments as the ones used in real or complex algebra can be employed to show the following
inequalities:

rank(A+B) ≤ rank(A) + rank(B) and rank(AB) ≤ min{rank(A), rank(B)}. (2.1)

Although seemingly inoffensive, these modifications have profound implications. Namely,
to guarantee the existence of eigenvalues one resorts to topological arguments, more precisely
using homotopies, as seen in [48]. Moreover, as explained in [2], the classical notion of
determinant is no longer well defined in quaternionic matrices. Several alternatives have been
proposed, each of which with its own limitations. The most suitable for our purposes is the
so-called Study determinant, Sdet. We briefly outline its construction. Any n×n quaternionic
matrix M can be expressed as the sum of two complex matrices, i.e. M = A + jB1. This
allows us to construct an homomorphism

ψ(M) =
(
A −B
B A

)
.

One then defines
SdetM = detCψ(M), (2.2)

where the subscript notation indicates the underlying structure over which the determinant is
calculated. It is important to note that, unlike the classic determinant, multilinearity in rows
and columns is lost according this definition. Nevertheless, several other properties that hold
in the classic theory still hold:

Proposition 2.1.2. [2, pp. 9–10] For any H-matrices A and B with suitable dimensions,
1. Sdet(A) = 0 if and only if A is singular;
2. Sdet(AB) =Sdet(A)Sdet(B);
3. If A′ is obtained from A by adding a left-multiple of a row to another row or a right-

multiple of a column to another column, then Sdet(A′) =Sdet(A).

Since, a priori, multiplying with a quaternion from the left and from the right does not
yield to the same value we need to distinguish when the action of the quaternionic structure is
taken from the left or from the right. As we will see, this phenomenon leads to the distinction
between “one-sided definitions”, where it suffices to consider the action of H just from one

1Recall that ji = k.
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side (usually the right), and “two-sided definitions”, where there is no significant difference
from where the action of H is taken.

Nevertheless, mathematicians are still able to discover analogues of classic theories, such
as the one presented in the following section.

2.2 Quaternionic Analysis

2.2.1 Preliminaries on quaternionic functional analysis

As mentioned previously we must have a clear distinction between left and right operations.
This is done by considering two-sided vector spaces. A two-sided vector space is an abelian
(additive) group V equipped with both a left and right action by the structure K, satisfying
the associativity condition (xv)y = x(vy) for x, y ∈ K and v ∈ V . It is called a right vector
space if it forms a vector space when considering the operation from the right. Moreover, it is
said two sided if it is both a left and right vector space. Additionally, a right Banach space
is a complete normed right vector space, while a two-sided Banach space denotes a left and
right Banach space. As a shortcut we will often refer to a right Banach space space over H as
a right H-Banach space.

Linear and bounded operators

Let us turn our attention to operators. Consider a right vector space V over H. An
operator T : V → V is a right linear operator if it satisfies the following properties for all
s ∈ H and u, v ∈ V :

T (u+ v) = T (u) + T (v), T (us) = T (u)s.

The powers Tn are defined by the relations T 0 = Id and Tn = TTn−1. In particular,
(sId)(v) = (Ids)(v) = sv. Left linear operators and two sided linear operators are defined in
a similar manner. It is worth noting that whether T is a right and left linear operator there
holds aT = Ta for a ∈ R.

To discuss the boundedness of operators, we introduce some additional notation. Let us
V be a right H-Banach space with norm ∥·∥. We denote BR(V ) as the two-sided vector space
of all right linear bounded operators on V , and BL(V ) as the two-sided vector space of all
left linear bounded operators on V . In analogy with the classic theory, it can be shown that
BR(V ) and BL(V ) are Banach spaces when equipped with their natural norms 2:

∥T∥ := sup
v∈V

∥T (x)∥
∥x∥

.

Lastly, when we do not differentiate between left or right linear bounded operators on V we
simply use the symbol B(V ). Clearly, these concepts can be extended to B(V, F ), the set of
linear and bounded operators acting between the H-vector spaces V and F .

2The definition of a norm is analogous, however homogeneity of the norm is required only from the right or
from the left, depending on the nature of the corresponding Banach space.
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Duality

Consider a quaternionic right Banach space XR. Its dual space, denoted as X ′
R, is the

quaternionic left Banach space consisting of all bounded right linear mappings from XR to H.
Analogously, we define X ′

L for a quaternionic left Banach space XL. Thus, in the case of a
two-sided quaternionic Banach space X, we distinguish between two dual spaces: the right
dual X ′

R, which is the dual space of X when regarded as a right Banach space, and the left
dual X ′

L, which is the dual space of X when regarded as a left Banach space. This notion
allows us to define the bidual spaces of X, denoted as X ′′

R and X ′′
L.

If X is a quaternionic right Ba-
nach space its bidual will be the
quaternionic right Banach space of
all bounded left linear mappings from
X ′

R to H. Similarly, if X is a quater-
nionic left Banach space its bidual
will be the quaternionic left Banach
space of all bounded right linear map-
pings from X ′

L to H. Moreover, if X
is two-sided then we analogously have
to distinguish between the left and
right bidual.

X

X ′
R

X ′
L

X ′′
R

X ′′
L

Left Banach space of right

linear mappings X → H

Right Banach space of left

linear mappings X → H

Seen as a right Banach space

Seen as a left Banach space

Right Banach space

of left linear maps

X′
R → H

Left Banach space

of right linear maps

X′
R → H

In either case, the evaluation map KX can be defined as follows:

KX : X ′
R → K, φ 7→ ⟨φ, x⟩ or KX : X ′

L → K, φ 7→ ⟨x, φ⟩.

It defines a right (left) functional on X ′
R (X ′

L). It is a direct consequence of the definition of
the operator norm that KX is an isometry. Moreover, the symbol X ′ will be used to denote
the dual space whenever there is no need to specify whether it is the left or right Banach
space3.

Once the dual spaces are suitably defined, the next step is to define the dual operator T ′

of an operator T .

Definition 2.2.1. Let XR and YR be quaternionic right Banach spaces, and let T ∈
BR(XR, YR). The dual operator of T , denoted as T ′, is a left linear operator that maps Y ′

R to
X ′

R. Its action is defined as follows: for φ ∈ Y ′
R, if T ′(φ) = ψ, then ψ(x) = φ(T (x)).

Observe that, according to this definition, it follows that T ′ ∈ BL(Y ′
R, X

′
R).

In the case of Hilbert spaces, the dual operator coincides with is the adjoint operator,
denoted by T ∗.

3However, it is important to keep in mind that when we say T ∈ B(X) and φ ∈ X ′, it is implicit that
the side on which the operations are performed on T and φ must match in order to correctly proceed with
computations.
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Sequence spaces

Let X be a right H-Banach space. For an index set I, a family x = (xi)i∈I , for which
xi ∈ X, is said to be absolutely p-summable whenever (∥xi∥)i∈I ∈ ℓp(I), for 1 ≤ p < ∞. The
set of these families is denoted by [ℓp(I)]. We define the norm as

∥x|ℓp∥ =
(∑

i∈I

∥xi∥p

) 1
p

.

We reserve the notations [ℓp] and ℓnp (I) for [ℓp(N)] and ∏n
i=1 ℓp(I), respectively. In analogy

with to the classic theory of ℓp spaces, these spaces form right Banach spaces. Moreover, a
family x = (xi)i∈I is said to be weakly p-summable if (⟨φ, xi⟩)i∈I ∈ ℓp(I) for every φ ∈ X ′.
The set of these families is denoted by [wp(I)]. We define the norm

∥x|wp(I)∥ := sup {∥(⟨φ, xi⟩)i∈I |ℓp∥ : φ ∈ BX′}

Similar notation shortcuts are used for these norms, and the resulting spaces are right Banach
spaces as well.

The following results, which we extend to the quaternionic setting, can be found in [8].

Lemma 2.2.2. Let 1 ≤ p, q < ∞. For each operator A ∈ BR(ℓnp , ℓnq ), and for all x =
(ξ1, . . . , ξn) ∈ ℓnp with ∥x∥p ≤ 1, the following inequality holds:

∑
k

(∑
i

|ξi⟨Aei, ek⟩|2
) p

2


1
p

≤ c(p)∥A∥,

where ek denotes the k-th unitary sequence, i.e., ek = δik.

Proof. By hypothesis on x we have

∑
k

∣∣∣∣∣∑
i

ξi ⟨Aei, ek⟩
∣∣∣∣∣
q

=
∑

k

|⟨Ax, ek⟩|q = ∥Ax∥q
q ≤ ∥A∥q

which implies that for all v = (ϵ1, . . . ϵn) for with ϵi = ±1, we have ∑k |
∑

i ϵiξi ⟨Aei, ek⟩|q ≤
∥A∥q. Since there are 2n such vectors v, we can apply the arithmetic mean inequality to
obtain

2−n
∑

v

∑
k

∣∣∣∣∣∑
i

ϵiξi ⟨Aei, ek⟩
∣∣∣∣∣
q

≤ ∥A∥q .

The desired claim follows from the Littlewood-Khintchin’s inequality 4. In particular, it allows
us to write ∑

k

(∑
i

|ξi ⟨Aei, ek⟩|2
) q

2

≤ c(p)2−n
∑

k

∑
v

∣∣∣∣∣∑
i

ϵiξi ⟨Aei, ek⟩
∣∣∣∣∣
q

.

4cf. [26]. For v = (ϵi) with 2n elements that are either 1 or −1, there exists a positive constant c(p) such
that c(p)2− n

p
(∑

v

∣∣∑
i
ϵiξi

∣∣p) 1
p ≥ ∥x|ℓ2∥, for all x = (ξ1, . . . , ξn).
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Lemma 2.2.3. Let A ∈ BR(ℓnp , ℓnq ). Then if 1 ≤ q ≤ 2 ≤ p ≤ ∞ and 1
r = 1

q − 1
p ≥ 1

2 there
holds (∑

k

∥Aek∥r
2

) 1
r

≤ c(p, q) ∥A∥ .

Proof. The case r = 2, with p = ∞ and q = 2 follows immediately from Lemma 2.2.2 by
taking the sequence (ξi) = (1, 1, . . . ). Indeed

(∑
i

∥Aei∥2
2

) 1
2

=
(∑

k

∑
i

| ⟨Aei, ek⟩ |2
) 1

2

≤ c2 ∥A∥ .

Therefore, we can assume 1 ≤ q < 2 and r = 2. Now, let A ∈ BR(ℓnp , ℓnq ), and consider an
arbitrary diagonal operator D(ξi) = λiξi from B(ℓn∞, ℓnp ). We can define the operator B = AD.
Then, by the above, there exists a positive constant c such that(∑

i

∥λiAei∥q
2

) 1
q

=
(∑

i

∥Bei∥q
2

) 1
q

≤ c
∥∥∥B : ℓn∞ → ℓnq

∥∥∥ ≤ c
∥∥∥D : ℓn∞ → ℓnp

∥∥∥ ∥∥∥A : ℓnp → ℓnq

∥∥∥
≤ c

(∑
i

|λi|p
) 1

p ∥∥∥A : ℓnp → ℓnq

∥∥∥
In particular, if we choose λi = ∥Aei∥

2
p

2 , we obtain:
(∑

i

∥λiAei∥q
2

) 1
q

≤ c

(∑
i

∥λiAei∥2
2

) 1
p ∥∥∥A : ℓnp → ℓnq

∥∥∥ ,
since (∑

i

∥λiAei∥q
2

) 1
q

=
(∑

i

∥Aei∥2
2

) 1
q

and
(∑

i

|λi|p
) 1

p

=
(∑

i

∥Aei∥2
2

) 1
p

.

Therefore, for 1
2 = 1

q − 1
p , we have:

(∑
i

∥Aei∥2
2

) 1
2

≤ c
∥∥∥A : ℓnp → ℓnq

∥∥∥ .
For the case when q < 2, let s = 2−q

2−p . Then,
∑

k

∥∥A′ek

∥∥r
2 =

∑
k

∑
i

|
〈
ei, A

′ek

〉
|2
∥∥A′ek

∥∥r−2
2

=
∑

k

∑
i

| ⟨Aei, ek⟩ |2
∥∥A′ek

∥∥r−2
2

=
∑

k

∑
i

| ⟨Aei, ek⟩ |
2
s
∥∥A′ek

∥∥r−2
2 | ⟨Aei, ek⟩ |

2
s′ .
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Applying Hölder’s inequality leads to

∑
k

∥∥A′ek

∥∥r
2 ≤

∑
i

(∑
k

| ⟨Aei, ek⟩ |2
∥∥A′ek

∥∥q−2
2

) 1
s
(∑

k

| ⟨Aei, ek⟩ |2
) 1

s′

=
∑

i

(∑
k

| ⟨Aei, ek⟩ |2
∥∥A′ek

∥∥q−2
2

) 1
s

∥Aei∥
2
s′
2 .

Let l = rs
q . The same reasoning can be applied to obtain

∑
k

∥∥A′ek

∥∥r
2 ≤

∑
i

(∑
k

| ⟨Aei, ek⟩ |2
∥∥A′ek

∥∥q−2
2

) r
q

 1
l (∑

i

∥Aei∥r
2

) 1
l′

.

To further estimate the right-hand side consider the expression∑
i

| ⟨Aei, ek⟩ |2
∥∥A′ek

∥∥q−2
2 |ξi|q =

∑
i

| ⟨Aei, ek⟩ |2−q
∥∥A′ek

∥∥q−2
2 | ⟨Aei, ek⟩ ξi|q.

Once again, applying Hölder’s inequality with exponent 2
2−q yields

∑
i

| ⟨Aei, ek⟩ |2
∥∥A′ek

∥∥q−2
2 |ξi|q ≤

(∑
i

| ⟨Aei, ek⟩ |2
∥∥A′ek

∥∥−2
2

) 2−q
2
(∑

i

| ⟨Aei, ek⟩ ξi|2
) q

2

=
(∑

i

| ⟨Aei, ek⟩ ξi|2
) q

2

.

From Lemma 2.2.2 now follows, when ∑ |ξi|p ≤ 1∑
i

| ⟨Aei, ek⟩ |2
∥∥A′ek

∥∥q−2
2 |ξi|q ≤ c(q)q ∥A∥q .

The reverse Hölder inequality with 1
r + 1

p = 1
q gives

∑
i

(∑
k

| ⟨Aei, ek⟩ |2
∥∥A′ek

∥∥q−2
2

) r
q

 1
r

≤ c(q) ∥A∥

and thus finally ∑
k

∥∥A′ek

∥∥r
2 ≤ c(p′)

r
l ∥A∥

r
l

(∑
i

∥Aei∥r
2

) 1
s′

.

Applying these inequalities to the dual operator of A′ yields

∑
k

∥Aek∥r
2 ≤ c(p′)

r
t ∥A∥

r
t

(∑
i

∥∥A′ei

∥∥r
2

) 1
t′

with t = r(2−p′)
p′(2−r) . Combining both estimates gives us the desired claim:

(∑
k

∥Aek∥r
2

) 1
r

≤ c(p′)
l′t′

t(l′t′−1) c(q)
l′

l(l′t′−1) ∥A∥ .
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Quaternionic Hahn-Banach theorem

Next, we present a natural extension of the Hahn-Banach theorem to the quaternionic
setting. More details can be found in [15, pp. 146–147].

Lemma 2.2.4. Let V0 be a right subspace of a right vector space on H. Let ρ denote a
seminorm on V , and let ϕ ∈ V ′

0 such that | ⟨φ, v⟩ | ≤ ρ(v) for all v ∈ V0. Then it is possible to
extend Φ to ϕ ∈ V ′ for which the same inequality holds.

Proof. We can write any functional ϕ as ψ1(ϕ) + ψ2(ϕ)j with ψ1(ϕ) = ϕ0 + ϕ1i and ψ2(ϕ) =
ϕ2 + ϕ3i which are complex functionals. It is immediate that, for all v ∈ V0

⟨ϕ, v⟩ = ⟨ψ1, v⟩ − ⟨ψ1, vj⟩ j.

As ψ1 is a C−linear functional, the classic Hahn-Banach can be applied to it to guarantee the
existence of an extension, ψ̃1 to V (as a complex vector space). The desired functional ψ is
given by

⟨Φ, v⟩ =
〈
ψ̃1, v

〉
−
〈
ψ̃1, vj

〉
j.

We conclude this topic with a lemma that is a direct consequence of the Hahn-Banach
theorem. It will be fundamental in the subsequent discussion of a particular s-number, the
isomorphism numbers, which we explore in Section 3.2.4.

Lemma 2.2.5. [40, p. 203] Let T ∈ BR(X,Y ) be such that rank(T ) ≥ n. Then there exists a
Banach space G as well as operators A ∈ BR(G,X) and B ∈ BR(Y,G) such that Id = BTA

and dim(G) ≥ n.

The main idea of the proof is the following. By choosing (xi)n
i=1 ∈ X for which (Txi)n

i=1
are linearly independent, Hahn-Banach theorem implies that there are (bi)n

i=1 ∈ Y ′ with
⟨Txi, bk⟩ = δik. The claim follows by taking, G = ℓn2 , A(ξi) = ∑n

i=1 ξixi for ξi ∈ ℓn2 and
By := (⟨y, bi⟩) for y ∈ Y .

Maps, Injections & Surjections

Let Y and X be sets, and let Y be a subset of Y0 and X0 be a closed subset of X. We
denote the natural injection, also called embedding, from Y to Y0 and the canonical surjection
from X to the quotient space X/X0 as follows:

JY
Y0 : Y → Y0, and QX

X0 : X → X
/
X0 .

Furthermore, we use BX to represent the closed unit ball of the set X.
The following definitions and corresponding results, which we adapt to the quaternionic

setting, can be found [39, pp. 26–28]. Let T ∈ BR(X,Y ). We define the injection modulus as

j(T ) := sup{τ ≥ 0 : ∥Tx∥ ≥ τ ∥x∥ , ∀x ∈ X}, and j(0) = 0.

10



An operator is called an injection if j(T ) > 0. Moreover, if ∥T∥ = j(T ) = 1, then T is said to
be a metric injection. Analogously we define the surjection modulus

q(T ) := sup{τ ≥ 0 : T (BX) ⊇ τBY }, and q(0) = 0.

An operator is called a surjection if q(T ) > 0. If ∥T∥ = q(T ) = 1 we say that T is a metric
surjection. Note that in both cases of metric injection and metric surjection, we require the
operator to be an isometry. The following results immediately follow from the definition.

Proposition 2.2.6. The operator T ∈ B(X,Y ) is an injection if an only if it admits a
factorization T = JT0, where T0 is an isomorphism and J denotes the embedding from
Y0 := ran(T ) into Y . In this case, j(T ) =

∥∥∥T−1
0

∥∥∥−1
.

Proposition 2.2.7. The operator T ∈ B(X,Y ) is a surjection if and only if it admits a
factorization T = T0Q, where T0 is an isomorphism and Q denotes the canonical surjection
from X onto X0 := X/ker(T ). In this case, q(T ) =

∥∥∥T−1
0

∥∥∥−1
.

The following result is of significant importance for the sequel. It enables us to significantly
simplify our work in subsection 4.1.

Proposition 2.2.8. Let T ∈ BR(X,Y ). Then q(T ′) = j(T ) and j(T ′) = q(T ).

Proof. We divide the proof into two steps. In the first step, we demonstrate that the surjection
modulus does not depend on whether T is a closed operator or not. We utilize this in the
second step to establish the desired equalities. The proof is addapted from [39, p. 26].

Step 1: Define q(T ) = sup τ ≥ 0 : T (BX) ⊇ τBY . It is evident that q(T ) ≤ q(T ).
Without loss of generality, let us assume q(T ) > 0. Consider y ∈ BY , 0 < ϵ < 1, and set
τ = (1 − ϵ)q(T ) and y1 = y. Now, we construct a family of elements in X that will establish
the remaining inequality. Inductively, choose x1, x2, · · · ∈ X such that∥∥∥yk − τ−1Txk

∥∥∥ ≤ ϵk and ∥xk∥ ≤ ∥yk∥ ,

where yk = y −
∑k−1

i=1 τ
−1Txi. It is clear that ∥x1∥ ≤ ∥y1∥ ≤ 1, and

∥xk∥ ≤ ∥yk∥ =
∥∥∥yk−1 − τ−1Txk−1

∥∥∥ ≤ ϵk−1 for k ≥ 2.

Therefore, ∑∞
k=1 ∥xk∥ ≤ 1

1−ϵ . Let x = ∑∞
k=1 xk. It follows that

y =
∞∑

i=1
τ−1Txk = τ−1Tx,

and since ∥x∥ ≤ (1 − ϵ)−1, we have effectively shown that T (BX) ⊇ (1 − ϵ)τT (BY ), which
immediately implies

q(T ) ≥ (1 − ϵ)2q(T ).

Therefore, q(T ) = q(T ).
Step 2: Consider 0 < τ < j(T ).

11



By definition, ∥Tx∥ ≥ τ ∥x∥ for all x ∈ X. For every a ∈ BX′ , the equation

⟨y, b0⟩ =
〈
T−1y, a

〉
,

defines a functional b0 on ran(T ) with ∥b0∥ ≤ τ−1. Choose an extension b ∈ Y ′ such
that ∥b∥ ≤ τ−1. Consequently, we have φ = T ′b. Therefore, T ′(UY ′) ⊇ τBX′ , and hence
q(T ′) ≥ j(T ).
Considering 0 < τ < q(T ′), for each x ∈ X, choose φ ∈ BX′ such that | ⟨x, φ⟩ | = ∥x∥. Since
T ′(UY ′) ⊇ τBX′ , we can find b ∈ UY ′ with T ′b = τφ. Consequently, we have

∥Tx∥ ≥ | ⟨Tx, b⟩ | = |
〈
x, T ′b

〉
| = ⟨x, τa⟩ = τ ∥x∥ .

This implies that j(T ) ≥ q(T ′), and thus j(T ) = q(T ′). Similarly, one can prove that
j(T ′) ≥ q(T ).
Finally, let us consider 0 < τ < j(T ′). If there were to exist y ∈ BY such that τy ̸∈ T (BX),
then by the separation theorem, we could, in particular, find a functional b ∈ F ′ such that
| ⟨τy, b⟩ | > 1 and | ⟨Tx, b⟩ | ≤ 1 for all x ∈ BX . This would imply that

∥∥T ′b
∥∥ = sup{| ⟨Tx, b⟩ | : x ∈ UE} ≤ 1 < | ⟨τy, b⟩ | ≤ τ ∥b∥ ,

which is a contradiction. Thus, τBY ⊆ T (BX). By the first step, we conclude that q(T ) ≥
j(T ′).

Corollary 2.2.9. An operator T ∈ BR(X,Y ) is a (metric) injection/surjection if and only if
T ′ ∈ BR(Y ′, X ′) is a (metric) injection/surjection.

Liftings & Extensions

This section is directly adapted from [39, pp. 33–34] as it is a purely topological definition.

X0 Y

X

S0

J
S

A right H-Banach space Y possesses the extension property if for every
injection J ∈ BR(X0, X) and every operator S0 ∈ BR(X0, Y ) there
exists an extension S ∈ BR(X,Y ). The metric extension property means
that for every metric injection J ∈ BR(X0, X) and every operator S0 ∈
BR(X0, Y ), we can find S ∈ BR(X,Y ) such that S0 = SJ and ∥S∥ =
∥S0∥. We will denote Xinj = ℓ∞(BX′). Clearly JX is a metric injection
from X into Xinj . In this way every Banach space can be identified with
a subspace of some Banach space having the metric extension property,
as the following Lemma states.

Before proceeding, we require the notion of complemented space. A subspace M of X is
called complemented if there exists a subspace N of X such that X = M

⊕
N .

Lemma 2.2.10. A Banach space has the extension property if and only if it is isomorphic to
a complemented subspace of some Banach space ℓ∞(I).
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X Y0

Y

S0

S Q

A Banach space Y has the lifting property if for each surjection
Q ∈ BR(Y, Y0) and all operators S0 ∈ BR(X,Y0) there is a lifting
S ∈ BR(X,Y ). The metric lifting property means that, given ϵ > 0, for
each metric surjection Q ∈ BR(Y, Y0) and every operator S0 ∈ BR(X,Y0),
we can find S ∈ BR(X,Y ) such that S0 = QS and ∥S∥ = (1+ϵ) ∥S0∥. We
will denote Xsur := ℓ1(UX) and QX(ξx) = ∑

BX
ξxx for (ξx) ∈ ℓ1(BX),

which is metric surjection from Xsur onto X. Thus, each Banach space
can be identified with a quotient space of some Banach space having the
metric lifting property.

Lemma 2.2.11. Let I be any index set. Then ℓ1(I) has the metric lifting property.

From Lemma 2.2.6 and Lemma 2.2.7, it follows that a Banach space Y possesses the
extension property if, for every operator S0 mapping a subspace M of an arbitrary Banach
space X into Y , there exists an extension S from X into Y such that ∥S∥ = ∥S0∥ (S = S0J

X
M ).

Analogously, a Banach space X possesses the lifting property if, for every operator S0 mapping
X into a quotient space Y/N of an arbitrary Banach space Y , and for every ϵ > 0, there
exists a lifting S from X into Y such that |S| ≤ (1 + ϵ)|S0| (QF

NS = S0).

2.3 Preliminaries on quaternionic Spectral Theory

Although the theory that we will presented is relatively recent, efforts to extend the
spectral theorem for normal operators in quaternionic Hilbert Spaces dates to around 1930.
Among several papers, O. Teichmüller in [46] was the first to present a spectral theorem
for normal operators, even in the absence of a clear notion of a spectrum. In his work, a
representation of a normal operator T , was obtained as follows:

T =
∫
R

∫
R+

0

(λ′ + J0λ
′′)dQλ′′dPλ′ ,

where J0 satisfies J0J
∗
0 = IdranB and J∗

0 = −J0 , and Q and P are projection-valued measures.
However, it was not until [12] that a satisfactory notion of spectrum in the quaternionic

setting was developed, which then allowed for the extension of classical theories of functional
analysis to the quaternionic framework, specifically spectral theory.

Therefore, among others, the objective of this section is to introduce the quaternionic
analogue of a projection-valued spectral measure. This concept follows the same principles
as in classical spectral theory, where one starts with the polar representation of an operator
and then introduces the notion of a functional calculus. Subsequently, Riesz’s representation
theorem is utilized to effectively construct the spectral measure. Hence, firstly we need to
establish the aforementioned tools in the quaternionic space. While many aspects of the theory
resemble their complex counterparts, the quaternionic setting requires additional techniques,
namely the Teichmüller decomposition, first introduced in [46]. Moreover, the notion of
spectrum in the quaternionic setting, the S-spectrum, first introduced in [12], is required.

The results presented here are taken from [14] and [15] to which we refer for the corre-
sponding proofs.
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Quaternionic Hilbert spaces & the Teichmüller decomposition

A right Hilbert space, H, is a right Banach space for which there is a map ⟨·, ·⟩ : H×H → H
that satisfies the following properties:

1. ⟨xα+ yβ, z⟩ = ⟨x, z⟩α+ ⟨y, z⟩β;
2. ⟨x, y⟩ = ⟨y, x⟩;
3. ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 ⇔ x = 0.

Furthermore the norm considered is the one induced by the inner product, i.e. ∥x∥ =
√

⟨x, x⟩.
To establish the existence of a polar representation in the quaternionic setting, we begin by

proving the existence and well definiteness of the square root of a bounded positive operator.
In what follows we call an operator A a positive semidefinite operator if for every x ∈ H,
⟨Ax, x⟩ ≥ 0.

Theorem 2.3.1. [14, pp. 198–199] Every positive semidefinite operator A ∈ B(H) has a
unique positive square root A 1

2 that satisfies (A 1
2 )2 = A. Moreover, every operator B ∈ B(H)

that commutes with A also commutes with its square root.

As in the classic case, the existence of and uniqueness of the square root is the first step
to prove the existence of the so called polar decomposition of an operator.

Theorem 2.3.2. [14, pp. 199–201] Every operator T ∈ B(H) admits a unique factorization

T = UP (2.3)

into the product of a positive operator P and a partial isometry U on ran(P )5. The operator
P is furthermore given by P := (T ′T ) 1

2 , and ran(U) =ran(T ).

As a consequence of the existence of a polar decomposition we have what is referred to
as Teichmüller decomposition. This is the first instance where the construction of spectral
measures deviates from the classical construction. Here and thereafter, for an operator
T ∈ B(H), we will reserve to the notation |T | = (T ′T )

1
2 .

Lemma 2.3.3. [14, p. 201] Let T ∈ B(H). Then there exists a triple (A, J,B) of mutually
commuting operators in B(H) all of which commute with T such that

T = A+ JB (2.4)

where, A is self adjoint, B is a positive operator and J is an antiselfadjoint partial isometry
operator which is a partial isometry on ker(T − T ′)⊥. The operators A and B are given by

A = 1
2(T + T ′), B = 1

2 |T − T ′| (2.5)

and J is the partial symmetry that appears in the polar decomposition of the operator 1
2 |T −T ′|.

Finally, the adjoint of T ′ = A− JB, and every operator in B(H) commutes with T and T ′ if
and only if it commutes with A, B and J .

5Recall that U is a partial isometry when ∥Ux∥ = ∥x∥ for every x ∈ ran(P ) and Ux = 0 for every
x ∈ ran(P )⊥)
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The S-spectrum

The second instance, and arguably the most intriguing, where the quaternionic spectral
theory deviates from the classical theory is the notion of spectrum. The following considerations
can be found in more detail in [11]. If one attempts to directly extend the definition of spectrum
by considering right eigenvalues of an operator T , an unsatisfactory result is obtained. It can
be observed that if λ ∈ H is a right eigenvalue of a right operator acting between right Banach
spaces, then so is s−1λs for all s ∈ H. This would imply that any operator would have an
infinite number of eigenvalues, even if it has a finite rank. One possible solution would be to
consider equivalence classes:

Two right eigenvalues µ and λ are equivalent if and only if µ = s−1λs for some s ∈ H.
(2.6)

In this case, we achieve the desired analogy to the classical case: a rank-n operator will
have n eigenvalues [48]. This restores the desired analogy to the classical case, where a
rank-n operator has n eigenvalues. However, this solution introduces another problem: the
well-established idea that the trace of an operator is the sum of its eigenvalues no longer holds,
which is a desired property. Thus, the correct notion of quaternionic spectrum is required.

The appropriate definition of the spectrum of a linear and bounded operator in the
quaternionic setting, known as the S-spectrum, can be found in [14, p. 57]. The S-spectrum
provides a suitable extension of the classical spectrum to the quaternionic framework and will
be utilized throughout this presentation. More precisely, the S-spectrum is defined as follows:

σS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2Id︸ ︷︷ ︸
:=Qs(T )

is not invertible}

A particularly important subset of the S-spectrum is the so called residual S-spectrum. It is
defined as follows

σRS(T ) = {s ∈ H : ker(Qs(T )) = {0}, ran(Qs(T )) ̸= H}.

In accordance with the classic theory, the following result shows that some desired of the
classic notion of spectrum are still preserved when considering the S-spectrum.

Lemma 2.3.4. [14, p. 193] Let T be a right linear, self-adjoint and bounded operator acting
between right H-Hilbert spaces. Then σS(T ) ⊆ R and σRS(T ) = {∅}. Additionally, if T is a
positive operator, σS(T ) ⊆ [0,∞).

Slice functions

Before proceeding with the construction of the spectral measure for bounded normal
quaternionic operators, we need to introduce some technical results and definitions. We will
refer to Ω as an axially symmetric set if for every q ∈ U there holds {Re(q) + j|Im(q)| : j ∈
S} ⊂ U . Thus, an axially symmetric set is one that contains the sphere of radius |Im(q)|
centered at Re(q) for any q ∈ U . A function f : U → H is called a left slice function if it is of
the form

f(q) = f0(u, v) + jf1(u, v), q = u+ jv ∈ U,
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where f0 and f1 are two functions f0, f1 : Ω → H satisfying the conditions:

f0(u,−v) = f0(u, v), f1(u,−v) = −f1(u, v).

If, in addition, both f0 and f1 satisfy the Cauchy-Riemann equations, we refer to f as a
left slice hyperholomorphic function. Furthermore, if f is either a left or right slice function
and the functions f0 and f1 are real-valued, it will be referred to as an intrinsic function.
The set of left slice functions is denoted by SFL(U), the set of left slice hyperholomorphic
functions on U by SHL(U), the set of intrinsic slice functions by N F(U), and the set of slice
hyperholomorphic functions on U by N (U). Some immediate properties of this functions
follow.

Theorem 2.3.5. [14, p. 14] Consider an axially symmetric U ⊆ H. Then
1. If f ∈ N F(U) and g ∈ SFL(U), then fg ∈ SFL(U). If f ∈ SFR(U) and g ∈ N F(U),

then fg ∈ SFR(U).
2. If f ∈ N (U) and g ∈ SHL(U), then fg ∈ SHL(U). If f ∈ SHR(U) and g ∈ N (U),

then fg ∈ SHR(U).
3. If g ∈ N F(U) and f ∈ SFL(g(U)), then f ◦ g ∈ SFL(U). If g ∈ N F(U) and

f ∈ SFR(g(U)), then f ◦ g ∈ SFR(U).
4. If g ∈ N (U) and f ∈ SHL(g(U)), then f ◦ g ∈ SHL(U). If g ∈ N (U) and f ∈

SHR(g(U)), then f ◦ g ∈ SHR(U).

The set of left, right and intrinsic slice functions on Ω that are continuous will be denoted
by SCL(Ω), SCR(Ω) and SC(Ω), respectively. Clearly, for a compact axially symmetric set
Ω ⊂ H, the set C(Ω,H) of all continuous quaternion-valued functions on Ω forms a two-sided
quaternionic Banach space when endowed with the pointwise multiplications (af)(q) = af(q)
and (fa)(q) = f(q)a, along with the supremum norm.

It follows from the so called structure formula6 that the uniform limit of a sequence of
continuous left, right, or intrinsic slice functions is again a continuous left, right, or intrinsic
slice function on Ω. Hence, the set SCL(Ω) is a closed quaternionic right linear subspace of H
and therefore a quaternionic right Banach space. Analogously, SCR(Ω) is a quaternionic left
Banach space. On the other hand, SC(Ω) is only a closed R-linear subspace of C(Ω,H), and
so it is only a real Banach space.

Furthermore, the previous theorem implies that N F(U) is closed under pointwise multi-
plication, and the pointwise product of two intrinsic slice functions is commutative. Thus, we
can conclude that SC(Ω) is a commutative real Banach algebra.

This result is of major significance. Indeed, starting from a set of quaternionic functions,
we have constructed a commutative real Banach algebra. This, as seen in [19], is sufficient for
establishing a spectral theory. However, to fully materialize this theory, we need to develop
the appropriate quaternionic tools.

6The structure formula states that if U ⊆ H is an axially symmetric and i ∈ S then f : U → H is a left
slice function on U if and only if for every q = u + jv ∈ U there holds

f(q) = 1
2 (f(z) + f(z)) + 1

2 ji (f(z) − f(z))

with z = u + iv
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Quaternionic Spectral Theory

As mentioned previously, in order to construct a projection-valued spectral measure, it is
necessary to establish the quaternionic counterpart of the Riesz representation theorem on
the quaternionic Hilbert space. The proof follows the same structure as the classical case.

Theorem 2.3.6. [1, p. 450] Let H be a right H-Hilbert space with quaternionic inner product
⟨·, ·⟩. Let φ be a continuous right linear functional on H. Then there exists a unique yφ ∈ H
such that

φ(x) = ⟨x, yφ⟩ , x ∈ H.

We will also utilize the classic Riesz representation theorem for continuous real-valued
functions.

Theorem 2.3.7. Let X be a compact Hausdorff space. For every ψ ∈ (C(X,R))′ there exists
a unique Borel measure µ on X such that

ψ(f) =
∫

X
f(t)dµ(t), for each f ∈ C(X,R).

Additionally, if ψ is positive, then so is µ.

A crucial step in constructing spectral measures is the Stone-Weierstrass Theorem. In
practice, the theory is only developed for polynomials, and then density arguments are
employed. Therefore, we begin by extending this classical result to the quaternionic setting.
However, we will observe that density only holds for continuous intrinsic slice functions, unlike
in the classical theory where density can be claimed for any continuous function (over a
compact set). Therefore, this marks the first instance where an additional assumption is
required in our theory. We will no longer be able to work solely with continuous functions;
rather, we require intrinsic slice functions.

Theorem 2.3.8. [14, p. 207] Consider the multi-index ℓ = (ℓ1, ℓ2) and coefficients aℓ ∈ R.
Then every polynomial P in q of the form

P (q) =
∑

0≤|ℓ|≤n

aℓq
ℓ1qℓ2 (2.7)

is a continuous intrinsic slice function on H. Moreover, for every compact axially symmetric
set Ω ⊂ H the set of this polynomials is dense in SC(Ω).

As mentioned earlier, we now encounter the first deviation from the classical construction.
By utilizing the Teichmüller decomposition (Lemma 2.3.3), this theorem enables us to establish
the continuous functional calculus. To begin, we define P (T ) for a normal operator T and any
polynomial of the form (2.7) in the natural manner. More precisely, for a normal operator
T ∈ B(H) and every polynomial of the form (2.7), we define the operator as follows:

P (T ) :=
∑

0≤|ℓ|≤n

aℓT
ℓ1(T ∗)ℓ2 . (2.8)

The subsequent requirement is the spectral theorem.
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Theorem 2.3.9. [14, p. 208] Let T ∈ B(H) be a normal operator. For every polynomial
of the form (2.7), P (q), with real coefficients, the operator P (T ) is a normal operator that
commutes with T and T ∗, and

σS(P (T )) = P ((σS)(T )).

This in particular implies that ∥P (T )∥ = maxs∈σS(T ) |P (s)|.

With this theorem established, we can now introduce the so-called functional calculus.

Theorem 2.3.10. [14, p. 211] Consider a quaternionic right H- Hilbert space. If T ∈ B(H),
then there exists a unique continuous homomorphism of real unital *-algebras

SC(σS(T )) ∋ f
ΨT7−→ ΨT (T ) := f(T ) ∈ B(H).

Moreover,
1. ΨT is an isometry, since ∥f(T )∥ = maxs∈σS(T ) |f(s)|;
2. Every operator f(T ) is normal and it commutes with T and T ∗ as well as with the

operators A, B and J appearing in the Teichmüller decomposition of T ;
3. The spectral mapping property σS(f(T )) = f(σS(T )) holds, and for every function

g ∈ SC(σS(f(T ))) we have g(f(T )) = (g ◦ f)(T ).

Let Ω+ = {(u, v) ∈ R × R+
0 : u+ Sv ⊂ Ω} for an axially symmetric set Ω ⊂ H. Equivalent

to the definition of a left slice function f is the existence of functions F0 and F1 defined on
Ω+, where F1(u, v) = 0 if v = 0, such that

f(q) = F0(u, v) + jF1(u, v), q = u+ jv ∈ Ω, v ≥ 0.

One clearly has a similar result for a right slice function by requiring

f(q) = F0(u, v) + F1(u, v)j, q = u+ jv ∈ Ω, v ≥ 0.

This equivalence implies that for a function to be intrinsic, the functions F0 and F1 must be
real-valued. The following lemma demonstrates that the approximation using polynomials
extends to the component functions. More precisely,

Lemma 2.3.11. [14, pp. 213–214] Consider a compact, axially symmetric set K ⊂ H. Let
f = F0 + jF1 in SC(K), and let Pn(q) = ∑

0≤|ℓ|≤n an,ℓq
ℓ1qℓ2 be a sequence of polynomials of

the form (2.7) that converges uniformly to f on K. Then Pn is of the form

Pn(q) = Qn(u, v) + jvRn(u, v), q = u+ jv

where Qn and Rn are real polynomials such that, as n → ∞, Qn(u, v) → F0(u, v) and
vRn(u, v) → F1(u, v) uniformly on K.

Consequently, writing u = 1
2(q + q) and v = (−j)1

2(q − q) we observe that both Qn(u, v)
and Rn(u, v) are polynomials with real coefficients in q and q, meaning that they are also of
the form (2.7). Additionally, Lemma 2.3.11 allows us to conclude the compatibility of the
functional calculus with the component functions F0 and F1. Specifically,
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Theorem 2.3.12. [14, pp. 214–216] Consider the Teichmüller decomposition of the operator
T , T = A+JB ∈ B(H). Moreover suppose that T is a normal operator and let f = F0 +jF1 ∈
SC(σS(T )). Then

f(T ) = F0(T ) + JF1(T ).

Furthermore, the operators F0(T ) and F1(T ) can be expressed as functions of the operators A
and B in terms of the continuous functional calculus for n-tuples of commuting self-adjoint
operators as F0(T ) = F0(A,B) and F1(T ) = F1(A,B).

Remark: The last statement, in particular, implies independence from the choice of
operator J .

Construction of the spectral measure

The following construction and the subsequent results can be found in [14, pp. 234–241].
Let T be a normal operator in B(H) and let j be a fixed imaginary unit. Here and thereafter,
we will use the notation Ω+

j = σS(T ) ∩ C+
j . As noted previously, every fj ∈ C(Ω+

j ,R) is the
restriction fj = f |Ω+

j
of a real-valued continuous slice function f defined on σS(T ). The set of

real-valued slice functions on σS(T ) is denoted by SC(σS(T ),R). In the following, we will not
distinguish between the function fj and the function f , unless it leads to confusion.

For each x ∈ H, we define the map

ℓx(g) = ⟨g(T )x, x⟩, g ∈ C(Ω+
j ,R) ≃ SC(σS(T ),R),

where g(T ) is the operator obtained using the continuous functional calculus introduced in
Theorem 2.3.12. Since T is a bounded operator, its S-spectrum is a compact and non-empty
set. Therefore, ℓx is a bounded linear functional on C(Ω+

j ,R) that takes real values. Moreover,
it is a positive functional. Indeed, consider a continuous nonnegative function h on Ω+

j . We
can then define the function g(u, v) =

√
h(u, v), and thus we have g ∈ C(Ω+

j ,R) such that
g(T ) = g(T )∗. Therefore,

ℓx(h) = ⟨h(T )x, x⟩ = ⟨g(T )x, g(T )x⟩ = ∥g(T )x∥2 ≥ 0.

As a real-valued functional on C(Ω+
j ,R), the classic Riesz’s representation Theorem 2.3.7

guarantees the existence of a uniquely determined positive-valued measure µx on the Borel
sets B(Ω+

j ) such that

ℓx(g) =
∫

Ω+
j

g(p) dµx(p), g ∈ C(Ω+
j ,R).

Since

4 ⟨g(T )x, y⟩ = ⟨g(T )(x+ y), x+ y⟩ − ⟨g(T )(x− y), x− y⟩

+ i ⟨g(T )(x+ yi), x+ yi⟩ − i ⟨g(T )(x− yi), x− yi⟩

+ i ⟨g(T )(x+ yj), x+ yj⟩ k − i ⟨g(T )(x− yj), x− yj⟩ k

+ ⟨g(T )(x+ yk), x+ yk⟩ k − ⟨g(T )(x− yk), x− yk⟩ k,
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it follows that, for each g ∈ C(Ω+
j ,R) and for every x, y ∈ H, there is a unique H-valued

measure µx,y for which
⟨g(T )x, y⟩ =

∫
Ω+

j

g(p) dµx,y(p),

where 4µx,y = µx+y − µx−y + iµx+yi − iµx−yi + iµx−yjk − iµx+yjk + µx+ykk − µx−ykk. In
analogy with the classic construction we have the following properties:

Lemma 2.3.13. [14, p. 235] Let x, y, z ∈ H and α, β ∈ H. The H-valued measures µx,y

satisfy:
1. µxα+yβ,z = µx,zα+ µy,zβ;
2. µx,yα+zβ = αµx,y + βµx,z;
3. |µx,y(Ω+

j )| ≤ ∥x∥ ∥y∥;
4. µx,y = µy,x.

The first and third relations imply that for every fixed y ∈ H and every σ ∈ B(Ω+
j ),

the mapping Φy(x) = µx,y(σ) is a continuous right linear functional on H. Moreover, the
second equality shows that Φyα(x) = αΦy(x) for α ∈ H. Following the classic reasoning,
Theorem 2.3.6 states that there exists a unique w ∈ H corresponding to every x ∈ H for
which Φy(x) = ⟨x,w⟩, i.e., µx,y(σ) = ⟨x,w⟩. This means that for some operator E(σ) ∈ B(H)
there holds E(σ)y = w. Thus, we have constructed an operator such that

µx,y(σ) = ⟨x,E(σ)y⟩, σ ∈ B(Ω+
j ). (2.9)

The fourth equality of the previous lemma guarantees that, for all σ ∈ B(Ω+
j ), E(σ) is self

adjoint. Therefore,
µx,y(σ) = ⟨E(σ)x, y⟩ , σ ∈ B(Ω+

j ).

By construction, E is also countably additive, i.e., for every sequence of pairwise disjoint sets
(σn)n in B(Ω+

j ),

E (∪∞
n=0σn) =

∞∑
n=0

E(σn),

where the limit is taken with respect to the strong operator topology. Therefore, we conclude
that, for a normal operator T ∈ B(H), if g ∈ C(Ω+

j ,R) ≃ SC(Ω,R)

⟨g(T )x, y⟩ =
∫

Ω+
j

g(p) d ⟨E(p)x, y⟩ , ∀x, y ∈ H. (2.10)

Moreover, if f = f0 + jf1 ∈ SCj(Ω+
j ) ≃ SC(Ω) then

⟨f(T )x, y⟩ =
∫

Ω+
j

f0(p) d ⟨E(p)x, y⟩ +
∫

Ω+
j

f1(p) d ⟨JE(p)x, y⟩ , ∀x, y ∈ H. (2.11)

Here, in both cases, E is the spectral measure on B(Ω+
j ) defined above. We will use the

simplified notations

g(T ) =
∫

Ω+
j

g(p) E(dp) and f(T ) =
∫

Ω+
j

f0(p) E(dp) +
∫

Ω+
j

f1(p) JE(dp)
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when referring to (2.10) and (2.11), respectively. In particular, for a normal T ∈ B(H) we
have the representation

T =
∫

Ω+
j

Re(p) E(dp) +
∫

Ω+
j

Im(p) JE(dp) (2.12)

Remark: We can notice the consistency of this construction with the classical theory by
observing how (2.11) collapses to the classical case. As we have already seen, even in the
quaternionic setting, the spectrum of a positive operator is positive, i.e., Ω+

j = σ(T ) ⊆ [0,∞).
Additionally, the Teichmüller decomposition of a positive operator T ∈ B(H) implies that
J ≡ 0. This means that, in the case of a positive operator, (2.11) can be written as:

T =
∫

σ(T )
p E(dp). (2.13)

Therefore, for positive operators, the results from the classical theory can be directly applied.
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CHAPTER 3
Quaternionic s-number Theory

This chapter introduces the theory of quaternionic s-numbers. To achieve this, we adopt
an axiomatic approach inspired by A. Pietsch. We demonstrate that these axioms lead to a
unique s-number function when considered over H-Hilbert spaces. Furthermore, we expand
to the quaternionic Banach space framework certain classical examples of s-numbers and
introduce the concept of nuclear numbers. Finally, we conclude the chapter by exploring the
relationships between various types of s-numbers.

3.1 Quaternionic s-numbers

3.1.1 Axiomatization of quaternionic s-number theory

In the theory of s-numbers, an operator T is associated with various types of scalar
sequences sn(T ). The objective, among others, is to classify the operator based on the
behavior of such sequences. The axiomatic framework we employ was first introduced in
[40, p. 202]. Since they are given in terms of norms of operators they are well defined in
a quaternionic setting. Therefore, there is no need to modify the proposed axioms to our
framework.

Thus, let us consider a right linear bounded operator T , acting between right quaternionic
Banach Spaces X and Y . A mapping s : T → (sn(T ))n, which associates a sequence of
non-negative numbers to T is referred to as an s-number function if it satisfies the following
conditions:
A1. ∥T∥ ≥ s1(T ) ≥ s2(T ) ≥ · · · ≥ 0;
A2. ∀n ∈ N, sn(S + T ) ≤ sn(S) + ∥T∥ for X S,T−→ Y ;
A3. ∀n ∈ N, sn(BTA) ≤ ∥B∥ sn(T ) ∥A∥ for X0

A−→ X
T−→ Y

B−→ Y0;
A4. If dim(X) ≥ n, sn(IdX) = 1;
A5. If rank(T ) < n then sn(T ) = 0.
For a fixed n ∈ N we call sn(T ) the n-th s-number of T . As observed in [40, p. 203] it
immediately follows from A2 that sn(S) ≤ sn(T ) + ∥S − T∥, which implies that

|sn(S) − sn(T )| ≤ |sn(T ) + ∥S − T∥ − sn(T )| = ∥S − T∥ .
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This shows that the s-number functions are continuous functions in the operator topology.
Furthermore, the converse of A5 also holds. If we assume that sn(T ) = 0 and that rank(T ) ≥ n

then by A4, ∥Id∥ = 1. From Lemma 2.2.5 we have Id = BTA with B ∈ L(ℓ2, E) and A ∈
L(F, ℓ2), which implies that 1 = ∥Id∥ = ∥BTA∥ ≤ ∥B∥ sn(T ) ∥A∥ = 0 by A3, contradicting
our assumption.

The following definitions are taken from [40, p. 206] and [40, p. 208] respectively. An
s-number function is injective if for any Y0 ⊂ Y there holds that sn(JY

Y0
T ) = sn(T ) for all

right linear and bounded T . Moreover, it is said surjective if for X0 ⊂ X there holds that
sn(TQX

X0
) = sn(T ) for all right linear and bounded T 1. Also, the notions of multiplicity and

additivity of s-numbers are introduced in [38, p. 327].
A2∗. If, for all m,n ∈ N and for all operators S T , there holds

sn+m−1(S + T ) ≤ sm(S) + sn(T ),

then we say that the s-numbers are additive;
A3∗. If, for all m,n ∈ N and for all operators S T , there holds

sn+m−1(ST ) ≤ sm(S)sn(T ),

then we say that the s-numbers are multiplicative.
In [40, p. 211] the concept of the dual s-number function is introduced. For each s-number

function we define the dual s-number function, s′, via s′
n(T ) = sn(T ′) for all T ∈ BR(X,Y ).

Note that if we consider a right operator T acting between right Banach spaces, its dual will
be a right operator acting between left Banach spaces. Consequently, the proposed axioms
do not encompass this case. Therefore, when the notion of a dual s-number is required, it is
necessary to additionally consider the axioms for a two-sided structure. This will be the only
instance where we require a slight modification to the proposed axioms.

Following [39, p. 152], an s-function, s, is called symmetric if, for each n ∈ N, sn(T ) ≥
sn(T ′), for all T ∈ BR(X,Y ). If equality is achieved, it is called completely symmetric. Recall
that KY denotes the canonical evaluation map (2.2.1). An s-function is said regular if, for for
each n ∈ N, sn(T ) = sn(KY T ), for all T ∈ BR(X,Y ).

Theorem 3.1.1. An s-function is completely symmetric if and only if it is regular and
symmetric.

Proof. Clearly a completely symmetric s-number function is symmetric. Since ∥KY ∥ = 1
sn(KY S) ≤ ∥KY ∥ sn(S) = sn(S) and since

sn(S) = sn(S′) = sn(S′(KY )′KY ′) ≤ sn(S′(KY )′) ∥KY ′∥ = sn((KY S)′) = sn(KY S)

we have sn(S) = sn(KY S) which establishes the regularity. Conversely, for a symmetric
regular s-number function, to prove that it is completely symmetric it remains to show that

1In other words, injectivity means that we have an independence of the codomain of T , while surjectivity
means that we have independence of the domain of T .
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sn(S) ≤ sn(S′). Indeed sn(S) = sn(KY S) by regularity. The canonical mapping KY is such
that

sn(KY S) = sn(S′′KX) ≤ sn(S′′) ∥KX∥ = sn(S′′).

The symmetry assumption yields the boundedness by sn(S′).

As seen in [39, p. 154], by defining sn(T ) = an(JY TQX) for T ∈ BR(X,Y ), where an

denotes the n-th approximation number (defined later in subsection 3.2.1), we can establish
the following existence theorem.

Theorem 3.1.2. There exists an s-function which is injective, surjective and completely
symmetric.

3.1.2 The uniqueness of the s-number function on quaternionic Hilbert spaces

It has been wellknown for some time that s-numbers in the case of Hilbert spaces had various
equivalent definitions, as observed in [22] (these equivalences played a role in establishing some
of the axioms defined in subsection 3.1.1). Later, in [40, pp. 203–204], it was demonstrated
that the proposed axioms are consistent with this fact. We aim to solidify this idea by showing
that also in the quaternionic framework, the s-number function is unique, when considered
over H-Hilbert Spaces.

To see this we require some technical results. Consider T ∈ BR(H), and let E be the
spectral measure associated with the positive operator |T |. In what follows, we denote

σn = inf
σ≥0

{dim(E(σ,∞)) < n} .

The main objective of this section is to show that sn(T ) = σn. The following lemma
simplifies this task, as it shows that it suffices to show that sn(|T |) = σn.

Lemma 3.1.3. Let T ∈ BR(H), then sn(T ) = sn(|T |).

Proof. From the polar representation of T, as given in Theorem 2.3.2, we know that there is
a partial isometry U such that T = U |T | and T ′ = U ′T . The third axiom implies that

sn(T ) ≤ ∥U∥ sn(|T |) = ∥U∥ sn((T ′T )
1
2 ) = ∥U∥ sn((U ′TT )

1
2 ) ≤ ∥U∥

∥∥U ′∥∥ 1
2 sn(T ) = sn(T )

and thus sn(T ) = sn(|T |).

Lemma 3.1.4. rank
(∫∞

σn+ϵ pE(dp)
)
< n.

Proof. By definition of σn it follows

n > rank(E(σn + ϵ,∞)) = rank
(∫ ∞

σn+ϵ
E(dp)

)
= rank

(∫ ∞

σn+ϵ
pp−1E(dp)

)
= rank

(∫ ∞

σn+ϵ
pE(dp)

∫ ∞

σn+ϵ
p−1E(dp)

)
= rank

(∫ ∞

σn+ϵ
pE(dp)

)
rank

(∫ ∞

σn+ϵ
p−1E(dp)

)
,

which implies rank
(∫∞

σn+ϵ pE(dp)
)
< n.
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Lemma 3.1.5. For any ϵ > 0 there holds that

E(σn − ϵ,∞) =
(∫ ∞

0
pE(dp)

)(∫ ∞

σn−ϵ
p−1E(dp)

)
Proof.∫ ∞

0
pE(dp)

∫ ∞

σn−ϵ
p−1E(dp) =

(∫ σn−ϵ

0
pE(dp) +

∫ ∞

σn−ϵ
pE(dp)

)(∫ ∞

σn−ϵ
p−1E(dp)

)
=
∫ σn−ϵ

0
pE(dp)

∫ ∞

σn−ϵ
p−1E(dp) +

∫ ∞

σn−ϵ
pE(dp)

∫ ∞

σn−ϵ
p−1E(dp)

=
∫
pχ(0,σn−ϵ)E(dp)

∫
p−1χ(σn−ϵ,∞)E(dp) +

∫ ∞

σn−ϵ
pp−1E(dp)

=
∫
pχ(0,σn−ϵ)p

−1χ(σn−ϵ,∞)︸ ︷︷ ︸
=0

E(dp) +
∫ ∞

σn−ϵ
E(dp)

= E(σn − ϵ,∞).

Theorem 3.1.6. For S ∈ BR(H) there holds sn(T ) = σn.

Proof. Considering an ϵ > 0, then we can write

|S| =
∫ ∞

0
pE(dp) =

∫ σn+ϵ

0
pE(dp) +

∫ ∞

σn+ϵ
pE(dp).

As an application of A5., it follows from Lemma 3.1.4 that

sn(|S|) ≤
∥∥∥∥∫ σn+ϵ

0
pE(dp)

∥∥∥∥+ sn

(∫ ∞

σn+ϵ
pE(dp)

)
≤ σn + ϵ

because ∥∥∥∥∫ σn+ϵ

0
pE(dp)

∥∥∥∥ ≤ ∥Id∥∞ ∥E(0, σn + ϵ)∥ ≤ ∥P∥ (σn + ϵ) = σn + ϵ.

Now we consider 0 < ϵ < σn. By Lemma 3.1.5

P (σn − ϵ,∞) =
(∫ ∞

0
pE(dp)

)(∫ ∞

σn−ϵ
p−1E(dp)

)
By definition of σn, rank(E(σn − ϵ,∞)) ≥ n. Thus,

1 = sn(P (σn − ϵ,∞)) ≤ sn(|S|)
∥∥∥∥∫ ∞

σn−ϵ
p−1E(dp)

∥∥∥∥ ≤ sn(|S|) sup
p∈(σn−ϵ,∞)

p−1

= sn(|S|)(σn − ϵ)−1.

Therefore σn − ϵ ≤ sn(|S|) ≤ σn + ϵ for all ϵ > 0.

As a consequence, according to the “classic” definition of s-numbers,

Corollary 3.1.7. Consider a compact right operator acting between right H-Hilbert Spaces,
S. Then sn(S) is the n-th eigenvalue of |S|.
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The uniqueness of s-numbers on quaternionic Hilbert spaces is a significant result that
will be useful in the sequel. Moreover, s-numbers on quaternionic Hilbert spaces possess
the properties of additivity and multiplicativity. This can be proven using ideas inspired by
[17, pp. 764–765]. Instead of working directly with general s-numbers, we will work with
eigenvalues. More precisely, we consider the sequences of eigenvalues (ordered by algebraic
multiplicity) of A∗A, B∗B, (AB)∗(AB), and (A + B)∗(A + B), denoted by (λi), (κi), (µi),
and (σi) respectively. Since A and B are right linear quaternionic operators acting on a right
H-Hilbert space, all the operators considered are self-adjoint, and thus their eigenvalues are
real numbers, as seen in Lemma 2.3.4. We aim to show the following inequalities for any
non-negative integers m and n:

µm+n+1 ≤ λm+1κn+1 (3.1)
√
σm+n+1 ≤

√
λm+1 + √

κn+1. (3.2)

To prove these inequalities, let {xs}, {yi} be two orthonormal basis such that AA∗xi = λixi,
B∗Byi = κiyi for i ∈ {1, 2, . . . }. Consider the polar representation of AB as WZ, where Z is
the non-negative square root of (AB)∗(AB) and W is a partial isometry. For any z ∈ Z, we
have by the Cauchy-Schwartz inequality

(Zz, z)2 = (W ∗ABz, z)2 ≤ (AA∗Wz,Wz)(B∗Bz, z).

By choosing z to be such that ∥z∥ = 1, (z,W ∗xi) = 0 for 1 ≤ i ≤ m and (z, yj) = 0 for
1 ≤ j ≤ n, we obtain:

(AA∗Wz,Wz) ≤ ∥Wz∥2 λm+1 ≤ λm+1,

(B∗Bz, z) ≤ κn+1.

Therefore, (Zz, z)2 ≤ λm+1κn+1. By applying the min-max principle on Z, we obtain (3.1).
The proof of (3.2) follows a similar argument.

Hence, on a quaternionic Hilbert space, s-numbers are not only unique but also possess the
properties of additivity and multiplicativity. This contrasts with the case of general Banach
spaces. More precisely, only on Hilbert spaces can one use Theorem 2.3.7, so that the operator
E in (2.9) is well defined. Therefore, a priori, one should not expect the uniqueness claim to
hold in a general Banach.

This is indeed the case. In fact, there are several examples of s-number functions when
considered over Banach spaces. Moreover, having in mind that s-numbers induce operator
ideals in Hilbert spaces (the Schatten classes), it can be expected that a similar phenomenon
occurs in the case of a general Banach Space. Furthermore, the loss of uniqueness leads to the
existence of multiple examples of operator ideals in Banach spaces, under certain assumptions,
as we will see in chapter 4.

3.2 Examples of s-numbers

Throughout this section, unless otherwise stated, X and Y are assumed to be right H-
Banach spaces. As we will observe, a key aspect that s-numbers provide is the independence of
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the choice of basis. This implies that any properties of operators that we obtain via s-numbers
are intrinsic and not dependent on any particular representation. For instance, Theorems
3.2.4 and 3.2.6 can be used as a “measure of compactness".

As mentioned previously, in the context of a general Banach space, there exist multiple
examples of s-number functions. Many of the s-number functions studied thus far are inspired
by geometric phenomena and/or qualitative quantities of Banach spaces.

The following table provides a brief overview of some s-number functions and the corre-
sponding qualitative answer that they provide:

S-numbers Geometric interpretation
Approximation numbers Measures the distance from an operator to the set of

linear and bounded operators of a fixed rank.
Isomorphism numbers Measure how much is an operator isomorphic to the identity.

Gelfand numbers From [16] for uniformly convex and uniformly smooth
Banach spaces, if operator has trivial kernel and dense range

then it measures the best approximation of the image
of the unit ball by linear subspaces of a fixed codimension.

Kolmogorov numbers Measures the best possible approximation of the image of the
unit ball by linear subspaces of a fixed dimension.

In general, in the remainder of this section the reference will indicate where the reader
can find the original result, in the classic setting.

3.2.1 Approximation numbers

Introduced in [40, p. 204], for T ∈ BR(X,Y ), the n-th approximation number is defined by

an(T ) := inf{∥T −A∥ : A ∈ BR(X,Y ), rank(A) < n}.

The basis independence is attained by taking the infimum over all finite-rank operators A in
BR(X,Y ).

Theorem 3.2.1. The map app : T → an(T ) is an additive and multiplicative s-number
function. Moreover, it is the largest s-number function.

Proof. We prove the first two claims together. Consider S, T ∈ BR(X,Y ).
A1. By definition if rank(A) < 1 then A = 0, therefore ∥T∥ ≥ s1(T ). Moreover, since

{A ∈ BR(X,Y ) : rank(A) < n} ⊆ {A ∈ BR(X,Y ) : rank(A) < n+ 1}

it follows that an(T ) ≥ an+1(T ).
A2∗. Consider m,n ∈ N and let X S,T−→ Y . For any matrix A with rank n+m we can always

find two matrices An and Am whose rank is smaller then n and m, respectively, such
that Am +Am = A, upon a proper extension by zeros. Having this we can conclude
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an+m−1(T + S) = inf{∥S + T −A∥ : A ∈ BR(X,Y ), rank(A) ≤ n+m}

= inf{∥S + T −An −Am∥ : An, Am ∈ BR(X,Y ),

rank(An) ≤ n and rank(Am) ≤ m}

≤ inf{∥S −An∥ : An ∈ BR(X,Y ), rank(An) ≤ n}

+ inf{∥T −Am∥ : Am ∈ BR(X,Y ), rank(Am) ≤ m}

=an(S) + am(T ).

A3∗. [39, p. 152] Fix any m,n ∈ N and let T ∈ BR(X,Y ) and S ∈ BR(Y,Z). Given ϵ > 0,
we can construct operators B ∈ BR(X,Y ) and A ∈ BR(Y,Z) such that

∥S −A∥ ≤ (1 + ϵ)am(S) and rank(A) < m,

∥T −B∥ ≤ (1 + ϵ)an(T ) and rank(B) < n.

As mentioned in (2.1), there holds that

rank(AT + (S −A)B) ≤ min{rank(A), rank(T )} + min{rank(S −A), rank(B)}

≤ rank(A) + rank(B) < m+ n− 1

which implies that

am+n−1(ST ) ≤ ∥ST − (AT + (S −A)B)∥ = ∥(S −A)(T −B)∥

≤ ∥S −A∥ ∥T −B∥ ≤ (1 + ϵ)2am(S)an(T ).

A4. The proof follows the same lines as the ones presented in [40, p. 204]. Consider
dim(X) ≥ n and suppose that sn(IdX) < 1. Then there exists A ∈ BR(X) with
rank(A) < n for which ∥IdX −A∥ < 1. Consequently, A = IdX − (IdX − A) is an
invertible operator2,3. Therefore, rank(A) = dim(X) ≥ n, which is a contradiction.
Analogously, if we assume that sn(IdX) > 1 then we can argue similarly with the
operator (IdX −A)−1. Therefore sn(IdX) = 1.

A5. In this case we can take A = T and conclude that ∥T −A∥ = 0.
2This follows from the standard Neumann series argument. Actually, this result holds on a general unital

Banach algebra: Let x be an element of a such an algebra such that ∥x∥ < 1. Since it is a Banach algebra, we
see that the partial sums form a Cauchy sequence:∥∥∥∥∥

m∑
n=l

xn

∥∥∥∥∥ ≤
m∑

n=l

∥x∥n → 0

as l, m → ∞. By completeness, the series
∑∞

n=0 xn converges to some element y. For any m ∈ N we have
(1 − x)

∑m

n=0 xn = 1 − xm+1 and furthermore,
∥∥xm+1

∥∥ ≤ ∥x∥m+1 meaning that lim
m→∞

xm+1 = 0. Thus, by
taking the limit, we get (1 − x)

∑∞
n=0 xn = 1 (We can exchange the limit with the multiplication by (1 − x),

since the multiplication in Banach algebras is continuous). Arguing by multiplying from the right yields to the
same conclusion and as such y = (1 − x)−1.

3The set of linear and bounded quaternionic operators even form a non-commutative unital C∗-Algebra,
where the involution is the quaternionic conjugation
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With this we proved that an is an additive and multiplicative s-number function. It remains
to prove that it is the largest. As seen in [40, p. 204] for each s-number function, sn, one has,
for all A ∈ BR(X,Y ) for which rank(A) < n, that

sn(S) = sn(A+ S −A) ≤ sn(A) + ∥S −A∥ = ∥S −A∥ .

In particular it follows that, sn(S) ≤ an(S).

It follows from definition of the dual operator that an(T ′) ≤ an(T ), i.e. approximation
numbers are symmetric. Indeed it suffices to observe that, for x, φ ̸= 0,

∥(T ′ −A′)(φ)∥X′

∥φ∥Y ′
≤ ∥((T ′ −A′)(φ))(x)∥X

∥x∥X ∥φ∥Y ′
= ∥φ((T −A)(x))∥X

∥x∥X ∥φ∥Y ′
≤ ∥(T −A)(x)∥X

∥x∥X

,

to deduce an(T ′) ≤ an(T ).
The following theorem, in the classic setting, is due to Hutton in [25, p. 278]. It in

particular, shows that stronger assumptions on T allow us to achieve complete symmetry.
Recall that a right compact operator is a right linear operator that maps bounded sets into
relatively compact sets.

Theorem 3.2.2. If a right compact operator T ∈ K(X,Y ), then the approximation numbers
are completely symmetric.

Proof. We shall only consider T ∈ BR(XR, YR) for quaternionic right Banach Spaces, as the
left linear case is analogous. Then T ′′ ∈ BR(X ′′

R, Y
′′

R), where X ′′
R and Y ′′

R are quaternionic
right Banach Spaces of left linear maps from X ′

R to H.
Since T is compact, T ′′(X ′′

R) ⊆ KY (Y ) and T ′′(BX′′) is a totally bounded set4. For each
index i, choose (x′′

i,n)N(i)
n=1 ⊂ BX′′ such that (T ′′(x′′

i,n))N(i)
n=1 is an ϵi-net5 of T ′′(BX′′). By being

totally bounded we can further assume that (ϵi)i ↘ 0 monotonically. In what follows, we
denote

Gi := span
{

(T ′′(x′′
i,n))N(i)

n=1

}
⊆ Y ′′.

By the Principle of local reflexivity6 there is a one-to-one operator φi : Gi → Y such that

∥φi∥
∥∥∥φ−1

i

∥∥∥ ≤ 1 + ϵi and φ
∣∣∣
Gi∩J(Y )

= Id.

Moreover, we define

φ̂ : ∪∞
i=1Gi → F, such that φ̂(x) = φi(x), if x ∈ Gi.

Since for each i, Gi ⊂ KY (Y ), φ̂ is well defined. Define G := ∪∞
i=1Gi and denote the extension

of φ̂ to G by φ̃.
4For every ϵ > 0, there exists a finite collection of open balls of radius ϵ centered at a point of T ′′(BX′′ )

and whose union contains T ′′(BX′′ ).
5Recall that a subset A of X is a ϵ-net if for all x ∈ X, dist(x, A) < ϵ.
6Introduced in [34, p. 332], from which we generalize to the quaternionic setting, it states that for a

quaternionic right Banach space XR and for U ⊂ X ′′
R of finite dimension, if ϵ > 0, then there exists a one-to-one

operator T : U → XR with T (x) = x for all x ∈ U ∩ XR and ∥T ∥
∥∥T −1

∥∥ < 1 + ϵ.
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Let A : X ′′ → Y ′′ be such that rank(A) < k and ∥T ′′ −A∥ < ak(T ′′) + ϵ. Once again,
from principle of local reflexivity we have a bijection ψ : A(X ′′) → Y ′′ such that

∥ψ∥
∥∥∥ψ−1

∥∥∥ < 1 + ϵ and ψ
∣∣∣
A(X′′)∩KY (Y )

= Id.

Let E = G ∪A(X ′′) and define

ϕ : E → Y, x 7→

φ̃(x) if x ∈ G,

ψ(x) if x ∈ A(E′′) ∩G
.

Observe that, if x ∈ A(X ′′) ∩ G ⊂ G ⊂ KY (Y ) then KY ψ(x) = x = KY φ̃(x). This implies
that ψ(x) = φ̃(x) for x ∈ A(X ′′)∩G meaning that ϕ is indeed is well-defined. Finally, consider
the operator ϕAKX : X → Y . Clearly, rank(ϕAKX) < k and for x ∈ BX we have

∥Tx− ϕAKXx∥Y = ∥KY (Tx− ϕAKX)x∥Y ′′ =
∥∥T ′′KXx−KY ϕAKXx

∥∥
Y ′′ .

By construction, T ′′KXx ∈ G, thus it follows that KY ϕT
′′KXx = T ′′KXx and therefore,∥∥T ′′KXx−KY ϕAKXx

∥∥
Y ′′ =

∥∥KY ϕT
′′KXx−KY ϕAKXx

∥∥
Y ′′ < ∥KY ∥ ∥ϕ∥ (αk(T ′′) + ϵ).

That is, αk(T ) ≤ αk(T ′′) for each k.

In the same paper it is shown that one can not extend this result to bounded operators.
Indeed, a counterexample is given:

a2(Id : ℓ1 → c0) = 1, a2(Id : ℓ1 → ℓ∞) = 1
2 .

3.2.2 Gelfand Numbers

The Gelfand widths, introduced in [47], are used to measure the width of a given bounded
set using sets of a specific codimension. More precisely, for a compact subset K of X, the
Gelfand width, cn(K), is defined as follows:

cn(K) = inf
L

inf
x∈K∩L

∥x∥X ,

the infimum being taken over all L ⊂ X, of codimension n. As we mentioned in the beginning
of this section although Gelfand widths and Gelfand numbers, which will be defined below,
are conceptually similar, they only coincide under certain assumptions.

We follow the definition provided in [40, p. 206]. For T ∈ BR(X,Y ), the n-th Gelfand
number is defined as follows:

cn(T ) := inf{
∥∥∥TJX

M

∥∥∥ : cod(M) < n}

where the infimum is taken over all subspaces of X that have codimension n. Therefore, it is
basis independent.

Theorem 3.2.3. The map gelf : T → cn(T ) defines an additive and multiplicative s-number
function. Moreover, it is the largest s-numbers that are injective.
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Proof. We prove the first two claims together.
A1. First, if cod(M) = 0 then the natural injection its the inclusion function M ∋ x → x ∈ X

hence
∥∥∥JX

M

∥∥∥ = 1. Therefore s1(T ) = inf
∥∥∥TJX

M

∥∥∥ ≤ ∥T∥ inf
∥∥∥JX

M

∥∥∥ = ∥T∥. The claim
sn(T ) ≥ sn+1(T ), follows from

{M : cod(M) < n} ⊆ {M : cod(M) < n+ 1}.

A2∗. As a consequence of preceding proof it follows that

sn+m−1(S + T ) = inf
{∥∥∥(S + T )JX

M

∥∥∥ : codim(M < n+m− 1)
}

≤ inf{
∥∥∥SJX

M

∥∥∥ : codim(M) < n+m− 1}

+ inf{
∥∥∥TJX

M

∥∥∥ : codim(M) < n+m− 1}

≤ inf{
∥∥∥SJX

M

∥∥∥ : codim(M) < n}

+ inf{
∥∥∥TJX

M

∥∥∥ : codim(M) < m}

=sn(S) + sm(T ).

A3∗. We adapt the proof that can be found in [39, p. 149]. Consider T ∈ BR(X,Y ) and
S ∈ BR(Y,Z). Fix m,n ∈ N. Given ϵ > 0, we can find subspaces E and F of X and Y ,
respectively, such that∥∥∥TJX

E

∥∥∥ ≤ (1 + ϵ)sn(T ) and codim(E) < n∥∥∥SJY
F

∥∥∥ ≤ (1 + ϵ)sm(S) and codim(F ) < m

Define M := E ∩ T−1(F ). Then it follows from

codim(M) ≤ codim(E) + codim(F ) < m+ n− 1

that
cm+n−1(ST ) ≤

∥∥∥STJX
M

∥∥∥ ≤
∥∥∥SJY

F

∥∥∥ ∥∥∥TJX
E

∥∥∥ ≤ (1 + ϵ)2sm(T )sn(S).

A4. If dim(X) ≥ n then
∥∥∥IdXJ

X
M

∥∥∥ =
∥∥∥JX

M

∥∥∥ = 1.
A5. If rank(T ) < n then codim(ker(T )) < n. Since M ⊂ X is chosen such that codim(M) <

n then it follows that JX
M (M) ⊆ ker(T ) thus

∥∥∥TJX
M

∥∥∥ = ∥0∥ = 0.
Finally, consider s to be any injective s-number function. Then for all S ∈ B(E,F )7

sn(S) = sn(JFS) ≤ an(JFS) = cn(S).

As a preliminary illustration of the classification of operators achievable through s-numbers,
we now present the following result, which is due to H.E. Lacey in [32]. As it is a purely
topological argument (recall that H can be identified with R4), it consists in similar arguments
as those presented in [37, p. 91]. Nevertheless, for the sake of completeness, we provide the
proof here.

7Recall that JY : Y ↪→ Y inj . Therefore, if T : X → Y then JY T ∈ B(X, Y inj) where Y inj has the
extension property. Then Theorem 3.3.3 allows us to conclude that an(JY T ) = cn(JY T )
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Theorem 3.2.4. A right operator T is compact if and only if (cn(T ))n → 0.

Proof. Consider a right compact operator T acting between right Banach spaces X and Y .
Then, for each ϵ > 0, there are y1, . . . , yn ∈ Y such that the set

{yi + ϵBY : 1 ≤ i ≤ n} is a finite cover of T (BX).

For i = 1, . . . n, consider bi for which | ⟨yi, bi⟩ | = ∥yi∥ and set

M := {x ∈ E : ⟨Tx, bj⟩ = 0 for i = 1, . . . n}.

If x ∈ M ∩BX then we can take yj such that ∥Tx− yj∥ ≤ ϵ and since

∥yj∥ = | ⟨yj , bj⟩ | ≤ | ⟨yj − Tx, bj⟩ | + | ⟨Tx, bj⟩ | ≤ ϵ

we conclude that ∥∥∥TJX
M

∥∥∥ ≤ ∥Tx∥ ≤ ∥Tx− yj∥ + ∥yj∥ ≤ 2ϵ.

This gives us the desired claim since cn(T ) ≤
∥∥∥TJX

M

∥∥∥. Conversely, assume that cn(T ) → 0.
Then, for each ϵ > 0, there is a finite codimensional M for which

∥∥∥TJX
M

∥∥∥ ≤ ϵ. Let N
be such that X = M ⊕ N and denote the corresponding projections by PN and PM . Set
δ = min

(
ϵ

∥T ∥ , 1
)
. Since PN is of finite rank, there are x1, . . . xm ∈ BX such that

{PNxi + δBX}n
i=1 covers PN (BX).

Therefore, for x ∈ BX , we can choose xi with ∥PNx− PNxi∥ ≤ δ. Hence, it follows that

∥PMx− PMxi∥ ≤ ∥x− xi∥ + ∥PNx− PNxi∥ ≤ 2 + δ ≤ 3

and so

∥Tx− Txi∥ ≤ ∥TPMx− TPMxi∥ + ∥TPNx− TPNxi∥ ≤ 3
∥∥∥TJX

M

∥∥∥+ δ ∥T∥ ≤ 4ϵ.

Since ϵ was arbitrary we have therefore found a finite subcover of T (BX), more precisely being
given by

T (BX) =
n⋃

i=1
{Txi + 4ϵBY }.

3.2.3 Kolmogorov numbers

The concept shares similarities with Gelfand widths, but in this instance, the approach is
based on dimensionality rather than codimensionality. Despite being a minor modification, it
is enough to ensure the equivalence between the Kolmogorov number (of the identity operator)
and the Kolmogorov width, (this will be clarified below). The following diagram provides a
visual representation of the computation of the first Kolmogorov width of a two-dimensional
set.

33



x

y
L′

1 L1

d(L′
1, X)

d1(X)
X

The Kolmogorov n-width of the subset X
of Y is given by

dn(X) = inf
Ln

d(Ln, X)

Ln being an n-dimensional subset of Y , where

d(Ln, X) = sup
y∈X

inf
l∈Ln

∥y − l∥ .

For instance, the Kolmogorov n-width of
a circle will be its radius while the n-width
of an ellipse will be it semi-minor axis.

The classic Kolmogorov numbers were introduced in [40, p. 208]. We extend this definition
for T ∈ BR(X,Y ), the n-th Kolmogorov number is defined as follows:

dn(T ) := inf{
∥∥∥QY

NT
∥∥∥ : dim(N) < n}

where the infimum is taken over all n-dimensional subspaces of Y , N . Therefore it is basis
independent.

Theorem 3.2.5. The map kolm : T → dn(T ) is an additive and multiplicative s-number
function. Moreover, they are the largest s-numbers that are surjective.

Proof. We prove the first two claims together
A1. First, if dim(N) = 0 then the natural surjection its the identity map, thus

∥∥∥QY
N

∥∥∥ = 1.
Therefore s1(T ) = inf

∥∥∥QY
NT

∥∥∥ ≤ ∥T∥ inf
∥∥∥QY

N

∥∥∥ = ∥T∥. Analogously to the cases
presented so far, the remainder follows from

{N : dim(N) < n} ⊆ {N : dim(N) < n+ 1}.

A2∗.

dn+m−1(S + T ) = inf{
∥∥∥QY

N (S + T )
∥∥∥ : dim(N) < n+m− 1}

≤ inf{
∥∥∥QY

NS
∥∥∥ : dim(N) < n+m− 1}

+ inf{
∥∥∥QY

NT
∥∥∥ : dim(N) < n+m− 1}

=dn+m−1(S) + dn+m−1(T ) ≤ dn(S) + dm(T )

A3∗. It is a consequence of the multiplicativity of Gelfand numbers and Theorem 3.3.5.
A4. Consider Y with dim(Y ) ≥ n. Since we require F with dim(F ) < n then Y ̸= F . As

such dn(Id) =
∥∥∥QY

F IdY

∥∥∥ =
∥∥∥QY

F

∥∥∥ = 18 .
8This follows from

QY
F (BX) = BY /F

.
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A5. If rank(T ) < n then we can take N = Y and thus QY
N as the zero operator which will

imply that
∥∥∥QY

NT
∥∥∥ = 0.

Finally, consider any surjective s-number function, s. Then, as a consequence of Corollary
3.3.4, for all T ∈ BR(X,Y ) we have that sn(T ) = sn(QY

F T ) ≤ an(QY
F T ) = dn(T ).

As a consequence of Theorems 3.2.4 and 3.3.5 we conclude that also Kolmogorov numbers
describe compact operators.

Theorem 3.2.6. A right operator T is compact if and only if (dn(T ))n → 0.

3.2.4 Hilbert Numbers & Isomorphism numbers

Motivation behind isomorphism numbers

Consider X and Y as two real, n-dimensional Banach spaces. The notion of the Banach-
Mazur distance was introduced to quantify how well two Banach spaces are isomorphic. It is
defined as follows:

d(X,Y ) = inf
{

∥T∥
∥∥∥T−1

∥∥∥ : X T−→ Y is an isomorphism
}
. (3.3)

Let X /∼ denote the set of all equivalence classes of real n-dimensional normed spaces,
where the equivalence relation is given by the existence of an isometry, i.e., X ∼ Y if and
only if there exists an isometry from X to Y . It can be shown that the space X /∼ equipped
with log d forms a metric space, which is known as the Minkowski compactum.

In what follows we will use the notations Mn =
(
X /∼ , log d

)
and ρ(X,Y ) = log d(X,Y ).

The lemma presented below, also known as Kadets-Snobar Theorem, which we will later utilize,
is a classical result concerning the geometry of Mn. The classic proof can be found in [27]
which can be directly extended to our case.

Lemma 3.2.7. For any X ∈ Mn there exists a projection P : X → ℓ
(n)
2 such that X = P (Mn)

and ∥P∥ ≤
√
n.

Isomorphism numbers

A slight variation of the metric defined in (3.3) led to the concept of isomorphism numbers,
which were first presented in [40, p. 205]. For any operator T ∈ BR(X,Y ), the isomorphism
numbers are defined as follows: if rank(T ) < n, we set in(T ) = 0. Otherwise, we define it as
follows:

in(T ) = sup{∥A∥−1 ∥B∥−1},

where the supremum is taken over all possible combinations of operators A and B as given by
Lemma 2.2.5. Also in [40, p. 205] it is observed that if T ∈ BR(X,Y ), A ∈ BR(G,X) and
Indeed, on the one hand, QY

F (BX) ⊆ BY /F
. On the other hand, let y ∈ Y for which ϵ := 1 − dist(y, F ) > 0.

Then there is a y0 ∈ F with ∥y − y0∥ < dist(y, F ) + ϵ = 1 and hence QY
F (y) = QY

F (y − y0) ∈ QY
F (BX). As such,∥∥QY

F

∥∥ ≤ 1. Finally, if
∥∥QY

F

∥∥ < 1 it would therefore follow

QY
F (BX) ⊆ ∥QY

F ∥BY /F
⊊ BY /F

.
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B ∈ BR(Y,G) are such that IG = BTA and dim(G) ≥ n, then for each s-number function
there holds

1 = sn(IG) ≤ ∥B∥ sn(T ) ∥A∥

which implies that in(S) ≤ sn(S), meaning that the isomorphism numbers are the smallest
s-numbers.

Hilbert numbers

Consider a right H-Hilbert Space, H. The classic case is studied in [3]. For T ∈ BR(X,Y ),
the n-th Hilbert number is defined as follows:

hn(T ) = sup{sn(BTA) : A ∈ B(H,X), B ∈ B(Y,H) such that ∥A∥ , ∥B∥ ≤ 1}.

Recall that, since the operator BTA is acting between Hilbert Spaces, it does not really
matter the choice of which s-number we take, and because of it, it is immediate that it leads
to an s-numbers function. Moreover, from the additivity and multiplicativity of s-numbers on
Hilbert spaces we have the following

Theorem 3.2.8. The map hilb : T → hn(T ) defines an additive and multiplicative s-number
function.

Observe that, according to this definition, in particular we have have, for A ∈ B(H,X), B ∈
B(Y,H) such that ∥A∥ , ∥B∥ ≤ 1

hn(T ) ≤ in(BTA) ≤ ∥B∥ in(T ) ∥A∥ ≤ in(T ).

But since, the isomorphism numbers are the smallest s-numbers this implies that these
are the same concepts. Therefore, despite appearing initially distinct and sometimes studied
in separate, the isomorphism numbers are, in fact, equivalent to the Hilbert numbers.

Theorem 3.2.9. [3, p. 184] The Hilbert numbers are completely symmetric.

Proof. Consider ϵ > 0. Then, by Lemma 2.2.5, there exists a ρ > 0 and operators B ∈
BR(H,Y ′), A ∈ BR(X ′, H) such that ∥B∥ , ∥A∥ ≤ 1 for which

hn(T ′) ≤ (1 + ϵ)ρ and ρIn = AT ′B.

From the principle of local reflexivity there are C ∈ BR(Y,H) and X ∈ BR(H,X) such that
∥X∥ ≤ (1 + ϵ) ∥A∥ for which

B = C ′ and Aa = X ′a for a ∈ Im(T ′B)

Since ρIn = AT ′B = X ′T ′C ′ = (CTX)′ it follows that hn(T ′)(1 + ϵ)−2 ≤ hn(T ).
The converse inequality follows from the uniqueness of s-numbers between Hilbert spaces,

indeed, considering the operators B and A from the definition of Hilbert numbers we observe
that BTA ∈ B(H) and thus hn(T ) = sn(BTA) ≤ ∥B∥ sn(T ) ∥A∥ ≤ sn(T ) for any s-number
function sn. Now observe that we can define ln(T ) := hn(T ′) which will be an s-number
function, and as such hn(T ) ≤ ln(T )9. Therefore, hn(T ) ≤ hn(T ′).

9since Hilbert numbers are the smallest s-numbers (because they coincide with isormorphism numbers)
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3.2.5 Weyl numbers

The classic Weyl numbers were introduced in [41, p. 149]. For an operator T ∈ BR(X,Y ),
the n-th Weyl number is given by

xn(T ) = sup an(TA),

where the supremum is taken over all contractions A ∈ BR(ℓ2, X). In this way we attain basis
independence.

Theorem 3.2.10. The map weyl : T → xn(T ) is an additive, multiplicative and injective
s-number function.

Proof. The fact that it is an s-number function and the additivity follows immediately from
definition. To prove that it is multiplicative consider T ∈ BR(X,Y ) and S ∈ BR(Y,Z) and
fix any m and n. For X ∈ BR(ℓ2, F ) and ϵ > 0 consider B,A ∈ BR(ℓ2, F ) to be such that
rank(B) < n and rank(A) < m and

∥TX −B∥ ≤ (1 + ϵ)an(TX), ∥S(TX −B) −A∥ ≤ (1 + ϵ)an(S(TX −B)).

Since rank(A+ SB) ≤ rank(A)+rank(B) < m+ n− 1 it follows that

an+m−1(STX) ≤ ∥STX − SB −A∥ ≤ (1 + ϵ)am(A(TX −B))

≤ (1 + ϵ)xm(S) ∥TX −B∥ ≤ (1 + ϵ)2xm(S)an(TX)

≤ (1 + ϵ)2xm(S)xn(T ) ∥X∥ .

In particular it follows xn+m−1(ST ) ≤ xn(T )xm(S).
It remains to prove injectivity. Consider a metric injection JY

Y0
. Since Hilbert spaces have

the metric extension property, then, by Theorem 3.3.1 and Corollary 3.3.4 it follows that

an(JY
Y0TA) = cn(JY

Y0TA) = cn(TA) = an(TA)

for any A ∈ BR(ℓ2, X). In particular, xn(JY
Y0
T ) = xn(T ).

Next, we present properties regarding Weyl numbers that will prove useful throughout
this thesis. We will require the notion of absolutely (p,q)-summable operators, Bp,q, which,
for the moment, can be thought as operators that map p-summable sequences into weakly
q-summable sequences. A precise definition of this class of operators is given in Definition
4.1.4.

The next lemmas are an adaption of [37, pp. 123–125] to the quaternionic setting. Note
that in these lemmas we have to use the appropriate tools of the quaternionic setting, namely,
the Study determinant as we have explained in (2.2) but also the quaternionic analogue of
the Schmidt representation that we discuss later on in (4.1).
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Lemma 3.2.11. Let H and K denote right Hilbert Spaces and consider T ∈ BR(H,K).Then

|Sdet(⟨Txi, yj⟩)| ≤
n∏

k=1
ak(T ),

for all orthonormal families (x1, . . . , xn) and (y1, . . . yn).

Proof. Let us denote the standard basis of ℓ2 by (ei). Consider X ∈ BR(ℓ2, H) and Y ∈
BL(ℓ2,K) defined by

Xx :=
n∑

k=1
⟨x⟩k x, ek and Y y :=

n∑
k=1

⟨y, ek⟩ yk.

Moreover, take the Schimdt representation

Y ′TX(x) =
∞∑

k=1
V vnσn ⟨un, x⟩ ,

where (un) and (vn) are extended orthonormal sequences in ℓ2 and σn = an(Y ′TX). Therefore,
since ∥Y ′∥ , ∥X∥ ≤ 1 it follows that an(Y ′TX) ≤ an(T ). Thus, if h > n we have σn = 0, hence

⟨Txi, yj⟩ =
〈
Y ′TXei, ej

〉
=

n∑
h=1

ah(Y ′TX) ⟨ei, uh⟩ ⟨V vh, ej⟩ .

This implies that

Sdet(⟨Txi, yj⟩) = Sdet(⟨ei, uh⟩)
n∏

h=1
ah(Y ′TX)Sdet(⟨V vh, ej⟩).

It follows by Hadamard’s inequality10 that |Sdet(⟨ei, uh⟩)|, |Sdet(⟨V vh, ej⟩)| ≤ 1 and therefore

|Sdet(⟨Txi, yj⟩)| ≤
n∏

h=1
ah(Y ′TX) ≤

n∏
h=1

ah(T ),

since ∥Y ′∥ , ∥X∥ ≤ 1.

A particular case of the above mentioned class of operators are the so called right absolutely
2-summable operators, BR

2,2 (which we will write BR
2 ).

Lemma 3.2.12. Consider T ∈ BR(E,F ) and S ∈ BR
2 (F,G). Then

(2n−1∏
k=1

xk(ST )
) 1

2n−1

≤ e
∥S|BR

2 ∥2

2n−1

(
n∏

k=1
xk(T )

) 1
n

.

10Hadamard’s inequality states that, for a matrix M = (µij) there holds

|det(M)| ≤
n∏

i=1

(
n∑

j=1

|µij |2
) 1

2

.

The same technique can be applied to show a similiar result for the Study determinant.
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Proof. Since Weyl numbers are multiplicative we have

x2k−1(ST ) ≤ xk(S)xk(T ) and x2k(ST ) ≤ xk(S)xk+1(T ).

Separating the product between odd and even indices, it follows from the above inequalities
that

2n−1∏
k=1

xk(ST ) =
n∏

k=1
x2k−1(ST )

n−1∏
k=1

x2k(ST ) ≤
n∏

k=1
xk(S)

n−1∏
k=1

xk(S)
n∏

k=1
xk(T )

n−1∏
k=1

xk+1(T ).

From Lemma 4.1.5 we know that
√
kxk(S) ≤

∥∥∥S|BR
2

∥∥∥. Thus

n∏
k=1

xk(S)
n−1∏
k=1

xk(S) ≤

√√√√∥∥S|BR
2
∥∥2n

n!

∥∥S|BR
2
∥∥2(n−1)

(n− 1)! ≤ e∥S|BR
2 ∥2

the latter inequality follows by induction. It follows by the first axiom of a s-number function
that (∏n

k=1 xk(T ))
1
n ≤ ∥T∥. Therefore,

n∏
k=1

xk(T )
n−1∏
k=1

xk+1(T ) = ∥T∥−1
(

n∏
k=1

xk(T )
)2

≤
(

n∏
k=1

xk(T )
) 2n−1

n

.

The desired inequality follows as a combination of both of these inequalities.

3.2.6 Chang numbers

First introduced in [38, p. 330], for an operator T ∈ BR(X,Y ), the Chang numbers are
the natural dual counterpart of Weyl numbers as we will see in Theorem 3.3.5. They are
defined as follows,

yn(T ) = sup an(BT ),

where the supremum is taken over all contractions B ∈ BR(Y, ℓ2). In this way we attain basis
independence.

Theorem 3.2.13. The map chang : T → yn(T ) is an additive, multiplicative and surjective
s-number function.

Proof. All the claims easily follow from the fact that the approximation numbers are an
additive and multiplicative s-number function. As a consequence of Theorem 3.3.3 and the
surjectivity of Kolmogorov numbers, it follows

dn(BTQX
X0) = dn(BT ) = an(BT )

for any B ∈ BR(Y, ℓ2). In particular, it we have yn(TQX
X0

) = yn(T ).
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3.2.7 Nuclear numbers

The notion of nuclear operator goes back to the works of A. Grothendieck in [23]. In a
concise manner, these are the operators acting between Banach Spaces for which the classic
notion of the trace of an operator holds true. Hereby, a nuclear operator is linear and bounded
operator T : X → Y such that there are (x′

i) ∈ X ′ and (yi) ∈ Y for which

T =
∞∑

i=1
x′

i ⊗ yi and
∞∑

i=1

∥∥x′
i

∥∥ ∥yi∥ < ∞.

To the former term we refer to nuclear representation of the operator T . We equip it with the
norm

∥T∥ = inf
∞∑

i=1

∥∥x′
i

∥∥ ∥yi∥ ,

where the infimum is taken over all nuclear representations of T .
These concept was latter generalized by Pietsch in [39, p. 243] to (r,p,q)-nuclear operators

as follows: for a sequence (σi) ∈ ℓr, (xi) ∈ w(q′) and (yi) ∈ w(p′) a linear and bounded
operator T : X → Y is said (r,p,q)-nuclear operator if

T =
∞∑

i=1
σixi ⊗ yi and

∞∑
i=1

∥σi|ℓr∥
∥∥x′

i|w(q′)
∥∥ ∥∥yi|w(p′)

∥∥ < ∞. (3.4)

The set of these operators shall be denoted by Rr,p,q(X,Y ). Moreover, the former term in
(3.4) is referred to as (r,p,q)-nuclear representation of the operator T . We equip it with the
norm

∥T |Rr,p,q∥ := inf
∞∑

i=1
∥σi|ℓr∥

∥∥x′
i|w(q′)

∥∥ ∥∥yi|w(p′)
∥∥ ,

where the infimum is taken over all (r,p,q)-nuclear representations of T . As noted in [39,
p. 382], for an Hilbert space H, R1,1,2(H,H) = S1(H). Therefore, Grothendieck-Lidskii trace
formula11 appears as a special case for nuclear operators. Moreover, since R 2

3 ,1,1 ⊆ R1,1,2 the
result also holds for (2

3 , 1, 1). However, for 2
3 < r ≤ 1 one cannot expect a trace formula to

hold. Indeed, counter examples have already been built, cf. [39, p. 138].
These considerations, together with the role that s-number theory play in extending the

notion of trace of an operator to a Banach Space, as we will see in 4.1.2, led us to introduce
the concept of nuclear numbers.

Consider the sequence of (σn), (xn) and (yn) for which∑∞
i=1 ∥σn|ℓ(r)∥ ∥xn|w(q′)∥ ∥yn|w(p′)∥ =∥∥∥T |R(r,p,q)

∥∥∥. Then we define the n-nuclear number of the operator T as

nn(T ) = ∥σ∗
n|ℓ(r)∥

∥∥x∗
n|w(q′)

∥∥ ∥∥y∗
n|w(p′)

∥∥ .
where the ∗ notation represent the decreasing rearrangement of the corresponding sequence.

Theorem 3.2.14. Let T ∈ BR(X,Y ). Then nuclear : T → (nn(T ))n is an additive s-number
function.

11The Grothendieck-Lidskii trace formula states that, for a given operator T there holds T r(T ) =
∑∞

i=1 λi(T ),
(λi(T )) being the sequence of eigenvalues of T .
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Proof. A1. Follows directly by construction.
A2∗. If the (r,p,q)-nuclear reprsentation of S + T is given by ∑∞

i=1 σixi ⊗ yi then σi = λi + µi

where S = ∑∞
i=1 µixi ⊗ yi and T = ∑∞

i=1 λixi ⊗ yi. It then follows that

nn+m−1(S + T ) =
∥∥σ∗

n+m−1|ℓr
∥∥ ∥∥x∗

n+m−1|w(q′)
∥∥ ∥∥y∗

n+m−1|w(p′)
∥∥

≤
∥∥λ∗

n+m−1|ℓr
∥∥ ∥∥x∗

n+m−1|w(q′)
∥∥ ∥∥y∗

n+m−1|w(p′)
∥∥

+
∥∥µ∗

n+m−1|ℓr
∥∥ ∥∥x∗

n+m−1|w(q′)
∥∥ ∥∥y∗

n+m−1|w(p′)
∥∥

=sn+m−1(S) + sn+m−1(T ) ≤ sn(S) + sm(T ).

A3. Suppose that the (r, p, q)-nuclear representation of T is given by ∑∞
i=1 σixi ⊗ yi. Then

the (r, p, q)-nuclear representation of BTA is given by ∑∞
i=1 σiA

′xi ⊗Byi. Therefore

nn(BTA) = ∥σ∗
i |ℓr∥

∥∥A′x∗
i |w(q′)

∥∥ ∥∥By∗
i |w(p′)

∥∥
≤ ∥σ∗

i |ℓr∥ ∥A∥
∥∥x∗

i |w(q′)
∥∥ ∥B∥

∥∥y∗
i |w(p′)

∥∥ = ∥B∥nn(T ) ∥A∥

A4. Since Id = 1 ⊗ 1 then for every n we have nn(Id) = 1.
A5. Without loss of generality let rank(T ) = n − 1. Then T = ∑n−1

i=1 σixi ⊗ yi. We can
technically extend this sum to n since after the n-1 term we are just adding zeros. It
immediately follows that sn(T ) = 0.

3.3 Relations between s-numbers

Theorem 3.3.1. [37, p. 90] For a right H-Hilbert space H and a right H-Banach space Y ,
if T ∈ BR(H,Y ), then cn(T ) = an(T ). On the other hand if T ∈ BR(X,H), for a right
H-Banach space X, there holds dn(T ) = an(T ).

Proof. We only show the first claim as the second one follows the same lines. Indeed, it
remains to show that an(T ) ≤ cn(T ) for any n. Consider a n-codimensional subspace of H,
M . Let P ∈ B(H) denote the orthogonal projection from H onto M and set L = T (Id− P ).
As M ⊆ ker(L) it follows that rank(L) =codim(ker(L)) ≤codim(M) < n. Therefore,

an(T ) ≤ ∥T − L∥ = ∥TP∥ =
∥∥∥TJH

M

∥∥∥ .
Since M was arbitrary the claim follows.

Consequently, for a right H-Hilbert space, H, and a right H-Banach space Y , from the
injectivity of Gelfand numbers, if T ∈ BR(H,Y ) there holds that

xn(T ) = an(TX) = cn(TX) = cn(T ) = an(T ).

Analogously from the surjectivity of Kolmogorov numbers we can write yn(T ) = an(T ).

Corollary 3.3.2. [37, p. 94] Let X and Y be right linear H-Banach spaces. For all T ∈
BR(X,Y ), xn(T ) ≤ cn(T ). Analogously, yn(T ) ≤ dn(T ).
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Proof. Once again we only show the first claim. Consider a right linear H-Hilbert space, H.
From Theorem 3.3.1 it follows that, for X ∈ BR(H,X), such that ∥X∥ ≤ 1

xn(T ) ≤ an(TX) = cn(TX) ≤ cn(T ) ∥X∥ ≤ cn(T ).

Next we present a generalization of Theorem 3.3.1.

Theorem 3.3.3. [40, p. 205] Let X and Y be right H-Banach Spaces. If T ∈ BR(X,Y )
and additionally Y has the metric extension property then cn(T ) = an(T ). Moreover, if
additionally X has the metric lifting property dn(T ) = an(T ).

Proof. Assume that Y has the extension property. Take S ∈ BR(X,Y ). Since an is the largest
s-number it suffices to show that an(S) ≤ cn(S). Considering ϵ > 0 we can choose a subspace
M of X such that ∥∥∥SJX

M

∥∥∥ ≤ cn(S) + ϵ

for which codim(M) < n. As Y has the extension property, there is an extension T ∈ BR(X,Y )
of SJX

M for which ∥T∥ =
∥∥∥SJX

M

∥∥∥. Set A = S − T . By definition, for all x ∈ M , Ax = 0,
therefore dim(A) < n. Hence,

an(S) ≤ ∥S −A∥ = ∥T∥ =
∥∥∥SJX

M

∥∥∥ ≤ cn(S) + ϵ.

Now assume that X has the lifting property. Take S ∈ BR(X,Y ). Again it suffices to
show that an(S) ≤ dn(S). Considering ϵ > 0 we can choose a subspace N of F such that∥∥∥QY

NS
∥∥∥ ≤ dn(S) + ϵ

for which dim(N) < n. As X has the lifting property, there is a lifting T ∈ BR(X,Y ) of
QY

NS for which ∥T∥ = (1 + ϵ)
∥∥∥QY

NS
∥∥∥. Set A = S − T . By definition, for all x ∈ X, Ax ∈ N ,

therefore dim(A) < n. Therefore

an(S) ≤ ∥S −A∥ = ∥T∥ = (1 + ϵ)
∥∥∥QY

NS
∥∥∥ ≤ (1 + ϵ)dn(S).

Corollary 3.3.4. [38, p. 329] Given X and Y , we may choose a metric surjection Q from some
ℓ1(I) onto X and a metric injection J from Y into some ℓ∞(I) in such that cn(T ) = an(JT )
and dn(T ) = an(TQ).

Theorem 3.3.5. [40, pp. 211–212] Consider a right linear and bounded operator, acting
between right H-Banach spaces, T : X → Y . Then cn(T ) = dn(T ′) and dn(T ) ≥ cn(T ′).
Additionally, if the operator is compact, then dn(T ) = cn(T ′).

Proof. Since JY is a metric injection it follows from Corollary 2.2.9 that J ′
Y is a metric surjec-

tion. Thus, by the surjectivity of Kolmogorov numbers and the symmetry of approximation
numbers, we have

dn(T ′) = dn(T ′J ′
Y ) ≤ an(T ′J ′

Y ) ≤ an(JY T ) = cn(T ).
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Analogously from Corollary 2.2.9, Q′
X is a metric injection which allows us to show that

cn(T ′) ≤ dn(T ). The regularity of Gelfand numbers allows to conclude that

cn(T ) = cn(KY T ) = cn(T ′′KX) ≤ cn(T ′′) ≤ dn(T ′).

Now assume that the operator is compact. By definition of Xsur and by Lemma 2.2.10 it
follows that (Xsur)′ has the metric extension property. Now, Theorem 3.2.2 gives the complete
symmetry of approximation numbers and with Theorem 3.3.3 we have

dn(T ) = an(SQX) = an(Q′
XT

′) = cn(Q′
XT

′) ≤ cn(T ′).

Theorem 3.3.6. [38, p. 329] Consider a right linear and bounded operator acting between
right H-Banach Spaces, T . Then xn(T ′) = yn(T ) and yn(T ′) = xn(T ).

Proof. Consider E : ℓ2 → X such that xn(T ) = an(TX). Then, since ∥X ′∥ ≤ ∥X∥, it follows
from Theorem 3.3.1 that

xn(T ) = an(TX) = cn(TX) = dn(X ′T ′) = an(X ′T ′) = yn(T ′).

On the other hand

xn(T ′) = dn(T ′Y ′) = cn(Y T ) = an(Y T ) = yn(T ).

The following lemma will be useful.

Lemma 3.3.7. Let X be a right H-Hilbert space and Y be a right H-Banach space. If
T ∈ BR(X,Y ) and if a2n−1(T ) > 0 then for every ϵ > 0 there exists an orthonormal family
(x1, . . . xn) ∈ X and a family (b1, . . . , bn) ∈ Y ′ such that ∥bk∥ = 1,

a2k−1(T ) ≤ (1 + ϵ)| ⟨Txk, bk⟩ |

for k = 1, . . . , n and ⟨Txi, bj⟩ = 0 whenever 1 ≤ j < i ≤ n.

Proof. The required families can be constructed by induction. If xl, . . . xn−1 ∈ X and
bl, . . . bn−1 ∈ Y ′ have already been found, then we define the subspace

Mn := {x ∈ X : ⟨x, xk⟩ = 0 and ⟨Tx, bk⟩ = 0 for k = 1, . . . , n− 1}.

Since codim(Mn) < 2n − 1, it follows from Theorem 3.3.1 that a2n−1(T ) = c2n−1(T ) ≤∥∥∥TJX
Mn

∥∥∥ . Hence there exists xn ∈ Mn such that a2n−1(T ) ≤ (1 + ϵ) ∥Txn∥ and ∥xn∥ = 1.
Next we choose bn ∈ Y ′ with | ⟨Txn, bn⟩ | = ∥Txn∥ and ∥bn∥ = 1.

The following diagram indicates the “trivial” order of relation, in the sense that, the
arrows point from the larger s-numbers to the smaller ones:
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an(T )

cn(T )

dn(T )

xn(T )

yn(T )

hn(T )

The converse inequalities aren’t so ideal. Indeed, they depend on constants that depend
on the order of the s-number, as the next Lemma shows.

Lemma 3.3.8. [37, pp. 115–117] For any T ∈ BR(X,Y ) there holds
1.

an(T ) ≤
√

2ncn(T ) and an(T ) ≤
√

2ndn(T );

2.

c2n−1(T ) ≤ 2e
√
n

(
n∏

k=1
xk(T )

) 1
n

and d2n−1(T ) ≤ 2e
√
n

(
n∏

k=1
yk(T )

) 1
n

;

3.

x2n−1(T ) ≤
√
n

(
n∏

k=1
hk(T )

) 1
n

and y2n−1(T ) ≤
√
n

(
n∏

k=1
hk(T )

) 1
n

.

Proof. 1. Consider S ∈ BR(X,Y ). For ϵ > 0 we choose a subspace N of Y such that∥∥∥QY
NS
∥∥∥ ≤ dn(S) + ϵ

and dim(N) < n. Then by Lemma 3.2.7 there exists a projection P ∈ BR(X,Y ) for
which N = P (Y ) and ∥P∥ ≤ (n−1) 1

2 . Let J(y+N) := y−Py. Then J ∈ BR
(
Y /N ,Y

)
.

Moreover,
∥J∥ ≤ ∥IY − P∥ ≤ 1 +

√
n− 1 ≤

√
2n.

From S − PS = (IY − P )S = JQY
NS we obtain

an(S) ≤ ∥S − PS∥ ≤ ∥J∥
∥∥∥QY

NS
∥∥∥ ≤

√
2n(dn(S) + ϵ).

The other inequality is proved analogously.
2. Consider ϵ > 0 and inductively choose x1, x2, . . . , x2n−1 ∈ E and b1, b2, . . . , b2n−1 ∈ F ′

such that ∥xi∥ ≤ 1, ∥bj∥ ≤ 1, ⟨Sxi, bj⟩ = 0 for i > j and ck(S) ≤ | ⟨Sxk, bk⟩ |. Set

Mn = {x ∈ E : ⟨Sx, bj⟩ = 0 for j < n}.

As Mn is a codimension n− 1 subspace of E we find xn ∈ Mn such that ∥xn∥ ≤ 1 and

(1 + ϵ) ∥Sxn∥ ≥
∥∥∥SJE

Mn

∥∥∥ ≥ cn(S).
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Moreover, we know that there is bn ∈ F ′ with ∥bn∥ ≤ 1 and | ⟨Sxn, bn⟩ | = ∥Sxn∥. Thus
the required (xi) and (bj) do exist. Now, define Xn ∈ BR(ℓn2 , E) and Bn ∈ BR(F, ℓn2 )
via

Xn(ξn) :=
n∑

i=1
ξixi and Bny := (⟨y, bj⟩).

It is clear by choice of xn that ∥Xn∥ ≤
√
n and ∥Bn|B2∥ ≤

√
n. By construction, the

matrix Sn = BnSXn has upper triangular form it follows from Lemmas 3.2.11 and
3.2.12, from the choice of (xn) and (bn), and by definition of Sn that

1
1 + ϵ

c2n−1(T ) ≤
(2n−1∏

k=1
| ⟨Txk, bk⟩ |

) 1
2n−1

= |Sdet(⟨B2n−1TX2n−1ei, ej⟩)|
1

2n−1

≤
(2n−1∏

k=1
xk(B2n−1TX2n−1))

) 1
2n−1

≤ e
∥B2n−1|B2∥2

2n−1

(
n∏

k=1
xk(TX2n−1)

) 1
n

≤ 2e
√
n

(
n∏

k=1
xk(T )

) 1
n

.

Now take ϵ → 0. The remaining inequality is proved analogously.
3. Let E ∈ L(ℓ2, X). Consider u1, . . . un ∈ ℓ2 and b1, . . . , bn ∈ Y ′ obtained as an application

of Lemma 3.3.7 to the operator TE ∈ L(ℓ2, Y ), for a given ϵ > 0. Define Un ∈ L(ℓ2)
and Bn ∈ L(Y, ℓ2) by

Un :=
n∑

k=1
ek ⊗ uk and Bn :=

n∑
k=1

bk ⊗ ek.

Then ∥U∥ = 1 and ∥Bn∥ ≤
√
n. Since the matrix (⟨TEui, bj⟩ = ((BnTEUnei, ej)) has

upper triangular form, it follows from 3.2.11 that

1
1 + ϵ

a2n−1(TE) ≤
(

n∏
k=1

| ⟨TEuk, bk⟩ |
) 1

n

= (Sdet((BnTEUnei, ej)))
1
n

≤
(

n∏
k=1

ak(BnTEUn)
) 1

n

≤
√
n

(
n∏

k=1
hk(T )

) 1
n

∥E∥

Hence
1

1 + ϵ
x2n−1(T ) ≤

√
n

(
n∏

k=1
hk(T )

) 1
n

.
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CHAPTER 4
Quaternionic Operator Ideals

Theory

This chapter focuses on ideals of quaternionic operators, utilizing an adapted axiomatic
approach by A. Pietsch to the quaternionic framework. We examine examples, discuss the
quaternionic analog of Schatten classes, and briefly explore specific components of operator
ideals. The chapter concludes with considerations of the diagonal limit order.

4.1 Quaternionic ideals on Banach spaces

4.1.1 Basic concepts of ideal theory on Banach spaces

Following the intuition of the ring theoretic perspective an axiomatic approach to the
operator ideal theory is introduced in [39, p. 45]. We extend these considerations to the
quaternionic framework as follows

Definition 4.1.1. Consider right H-Banach spaces X and Y . We call AR(X,Y ) ⊆ BR(X,Y )
a right H-operator ideal if

1. For a 1-dimensional Banach space K, there holds IdK ∈ AR(X,Y );
2. for all S, T ∈ AR(X,Y ), S + T ∈ AR(X,Y );
3. If BR ∈ BR(X0, X), T ∈ AR(X,Y ) and M ∈ BR(Y, Y0) then MTL ∈ AR(X0, Y0)

Therefore, AR(X,Y ) is a left H-vector space. Moreover we shall denote

AR =
⋃

X,Y

AR(X,Y ).

Analogously one defines the left ideal AL and considering the two-sided counterpart one can
define the two-sided ideal A.

Remark: We emphasize that, unlike the classic theory, where the terms “right” and “left”
refer to the side from which the ideal “absorbs” operations, whether an ideal is right or left
refers to the side on which the normed space structure is defined. Additionally, note that the
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third axiom of the operator ideal theory implies that we only consider two-sided ideals in
the sense of the classic theory. Therefore, in this context and thereafter, the ideals “absorb”
operations from both sides, and the reference to the side of the ideal will indicate the side from
which the action of the structure is considered. Therefore, we can write Calkin’s Theorem as
follows

Theorem 4.1.2. Let H be a separable right H-Hilbert Space. For any right operator ideal I
either I = BR or I ⊂ KR, the set of compact right operators.

The proof of this theorem follows the same approach as presented in [7, p. 841]. However,
as previously mentioned, the classic concept of eigenvalues is not suitable for the quaternionic
setting. Therefore, we need to address this issue by using equivalence classes, as discussed in
(2.6). Specifically, if we denote the representative of the equivalence class [λj ] as λj for j ≥ 1,
we can still obtain the following representation, of a given operator T :

H =
n⊕

i=0
E([λi]) and consequently T =

∑
[λj ]∈σS(T )

λjE(λj),

where E([λ0]) = ker(T ) and E([λj ]) = ker[Qλj
]. Therefore, by working with representatives

of each eigenspace, we can overcome the issues associated with the traditional notion of
eigenvalues.

The implications of Theorem 4.1.2 are quite interesting: any ideal of operators is either
the set of linear and bounded operators or a subset of the compact operators. In the sequel,
we will specifically focus on subsets of compact operators.

Before proceeding further, it is worth noting that the first axiom can also be expressed in
terms of tensor products. Consider a right H-Banach space, X. Its dual, X ′, is a left space.
Hence, we can define the following mapping:

X ∋ x
a⊗y7−→ y ⟨a, x⟩ ∈ Y.

From the following diagram

X Y

K K

a⊗ y

IdK

a⊗ 1 1 ⊗ y

we can conclude that IdK ∈ AR(X,Y ) if and only if
a⊗y ∈ AR(X,Y ) for all a ∈ X ′ and y ∈ Y . This is because
a ⊗ 1 : X → K and 1 ⊗ y : K → Y , allowing us to write
a⊗y = 1⊗yIdKa⊗1. Furthermore, the third axiom implies
IdK ∈ AR(X,Y ). We will use these interchangeably, i.e.,
to prove that the first axiom of the operator ideal theory
is satisfied, one can prove that IdK ∈ A holds, where K is
a one-dimensional Banach space, or that a⊗ y ∈ AR(X,Y )
holds for all a ∈ X ′ and y ∈ F .

In this context, we can introduce a quasi-norm as follows:

Definition 4.1.3. Consider a right operator ideal AR. A map α : AR → R+ is called a
quasi-norm in AR if
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1. For a 1-dimensional right H-Banach space K, there holds α(IdK) = 1 or , equivalently,
α(a⊗ y) = ∥a∥ ∥y∥ for all a ∈ X ′ and y ∈ F ;

2. There exists a constant c ≥ 1 for which α(S + T ) ≤ c(α(S) + α(T )) holds true for
S, T ∈ AR(X,Y );

3. α(MTL) ≤ ∥M∥α(T ) ∥L∥ for L ∈ BR(X0, X), T ∈ AR(X,Y ) and M ∈ BR(Y, Y0).
We refer to [AR, α] as a quasi-normed operator ideal. If the constant in the second condition

is 1, then we call it a normed operator ideal. Finally, if every component of AR(X,Y ) is
complete with respect to α, we call [AR, α] a quasi-Banach operator ideal. This definition can
be easily extended to left and two-sided H-operator ideals.

For a right quasi-normed ideal AR [38, p. 342], we define
• the dual Ideal, Adual =

{
T : T ′ ∈ AR

}
. It turns into a left quasi-normed operator ideal

by taking
∥∥∥T |Adual

∥∥∥ =
∥∥∥T ′|AR

∥∥∥;
• the injective ideal, Ainj =

{
T : TJ ∈ AR(X0, Y ) for a metric injection J : X0 → X

}
. It

turns to a right quasi-normed operator ideal by taking
∥∥T |Ainj

∥∥ =
∥∥∥TJ |AR

∥∥∥;
• the surjective ideal, Asurj =

{
T : QT ∈ AR(X,Y0) for a metric surjection Q : Y → Y0

}
.

It turns to a right quasi-normed operator ideal by taking
∥∥T |Asurj

∥∥ =
∥∥∥QT |AR

∥∥∥.
An ideal A is said injective if A = Ainj , and surjective if A = Asur. These definitions
can be extended to quasi-normed operator ideals by, respectively, imposing the additional
requirements: ∥∥∥·|Ainj

∥∥∥ = ∥·|A∥ and
∥∥∥·|Asurj

∥∥∥ = ∥·|A∥ .

A word on the Schmidt representation

In this paragraph, we briefly present the Schmidt representation in the context of quater-
nionic spaces. Although some properties may be lost, they are not essential for our purposes.
Consider separable right H-Hilbert spaces X and Y , and let T be a compact self-adjoint opera-
tor. From Lemma 2.3.4, T has a real S-spectrum. Thus, we obtain the Schmidt representation
by using two orthonormal families, (xi) ∈ X and (yi) ∈ Y . Then, the Schmidt representation
of T is given by

T =
∑
i∈I

σix
′
i ⊗ yi,

where (σi) → 0. The Schmidt representation of an operator can be illustrated using the
following diagram,

X Y

ℓ2(I) ℓ2(I)

T

D

A′A B′ B

where,

A((ξn)) =
∞∑

n=1
xnξn, B((ξn)) =

∞∑
n=1

ynξn.

The decomposition T = BDA′ well be referred
to as the Schmidt decomposition of T . With this
notation it follows that D = B′TA. If T is not a
self-adjoint operator, we can address this issue by
considering its polar decomposition.

49



However, in the quaternionic setting, the polar decomposition is not unique. Specifically,
there exists a partial isometry V such that T = V |T |. Since |T | is a positive operator, the
classical Schmidt representation can still be applied, resulting in

T =
∑
i∈I

σix
′
i ⊗ V yi. (4.1)

The Schmidt representation is a fundamental concept that will be extensively used in the
sequel. This is because, if we consider the Schmidt decomposition of the operator T as A′DB,
the third axiom of operator ideal theory implies that if the diagonal matrix D belongs to
a given ideal with ℓ2 components, then the operator T also belongs to that ideal, with the
corresponding Hilbert spaces X and Y as depicted in the diagram above. This is due to the
boundedness of the operators A′ and B. Consequently, the Schmidt decomposition not only
allows us to simplify the study of an operator to its associated diagonal operator, but it also
reduces the spaces under consideration to the sequence space ℓ2.

4.1.2 Examples of Operator Ideals

Absolutely summable operators

A survey on the theory of absolutely summable operators can be found in [37, pp. 41–57],
which serves as the basis for our generalization to the quaternionic setting.

Definition 4.1.4. Assume 1 ≤ s ≤ r ≤ ∞. An operator L ∈ BR(X,Y ) is called absolutely
(r, s)-summable if there exists c ≥ 0 such that

∥∥(Txi)i∥ |ℓr(I)∥ ≤ c ∥(xi)i|ws∥

holds for every finite family x1, . . . , xn ∈ X. The set of these operators shall be denoted as
BR

r,s(X,Y ) and we equip with the (quasi-) norm
∥∥∥T |BR

r,s

∥∥∥ := inf c. We shall denote BR
r,r by

BR
r and refer to these operators as absolutely r-summable operators. This definition can be

naturally extended to left and to two-sided linear and bounded operators.1.

The Weyl numbers are interestingly related to the (r, s)-norm of an operator.

Lemma 4.1.5. [37, p. 98] Consider 2 ≤ r < ∞. Then

n
1
r xn(T ) ≤

∥∥∥T |BR
r,2

∥∥∥ , ∀ T ∈ BR
r,2(E,F ).

Proof. Let T ∈ BR
r,2(H,F ). Consider (xi)k

i=1 ∈ H such that ak(T ) ≤ (1 + ϵ) ∥Txk∥ and
∥xk|w2∥ = 1 2. Moreover, by definition of absolute (r, 2)-summability it follows

∥ak(T )|ℓr∥ ≤ (1 + ϵ) ∥T (xk)|ℓr∥ ≤ (1 + ϵ)
∥∥∥T (xk)|BR

r,2

∥∥∥ ∥xk|w2∥ .
1However, one needs to be careful with the concept of weak norm, since, if one considers a two sided

structure, then there are two dual spaces to consider.
2Indeed, such family is constructed inductively: if x1, . . . xn−1 are already known we define

Mn = {x ∈ H : ⟨x, xk⟩ = 0 for k = 1, . . . , n − 1} .

It then follows, from Theorem 3.3.1, that an(T ) = cn(T ) ≤
∥∥T JH

M

∥∥ which in turn implies that there is xn ∈ Mn

such that an(T ) ≤ (1 + ϵ) ∥T xn∥ and ∥xn∥ = 1.
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Therefore, ∥ak(T )|ℓr∥ ≤ ∥T (xk)|Br,2∥. Thus if X ∈ BR(H,E) is such that ∥X∥ ≤ 1, then

n
1
r xn(T ) ≤ n

1
r an(TX) ≤ ∥ak(TX)|ℓr∥ ≤ ∥TX|Br,2∥ ≤ ∥T |Br,2∥ ∥X∥ ≤ ∥T |Br,2∥ .

Proposition 4.1.6. [39, p. 41] Let I be any infinite index set. A linear and bounded operator
T is absolutely (r, s)-summable if and only if the map

[ws(I)] ∋ (xi)
T (I)−→ (Txi) ∈ [ℓr(I)]

is well defined. Moreover, we have
∥∥∥T |BR

r,s

∥∥∥ = ∥T (I)∥.

Proof. Assume that T ∈ BR
r,s. On the one hand, it is clear by definition that

∥∥∥T |BR
r,s

∥∥∥ ≤
∥T (I)∥. On the other hand, consider (xi) ∈ [ws(I)]. For a finite subset of I, N there holds

∥(Txi)i|ℓr(N)∥ ≤
∥∥∥T |BR

r,s

∥∥∥ ∥(xi)i|ws(N)∥ .

As (xi) is assumed to be weakly s-summable, passing to limit we can replace N with I to
obtain ∥(Txi)i|ℓr(I)∥ ≤

∥∥∥T |BR
r,s

∥∥∥ ∥(xi)i|ws(I)∥. Therefore ∥T (I)∥ ≤
∥∥∥T |BR

r,s

∥∥∥.
For the converse, suppose that T ∈ BR(X,Y ) is not absolutely (r, s)-summable. Then, for

h = 1, 2, . . . , we can find xh1 , . . . , xhn(h) ∈ X such that

∥(Txhk
)k|ℓr ({1, . . . , n(h)})∥r ≥ 1 and ∥(xhk

)k|ws ({1, . . . , n(h)})∥s ≤ 2−h.

Set xhk
= 0 if k > n(h). Then the subsequence (xhk

) is weakly-s-summable because , for
a ∈ BX′ ,

∞∑
h=1

∞∑
k=1

| ⟨xhk
, a⟩ |s ≤

∞∑
h=1

2−h = 1.

On the other hand ∞∑
h=1

∞∑
k=1

∥Txhk
∥r diverges.

Thus (Txhk
) cannot be absolutely r-summable which means that T (N × N) fails to map

[ws(N × N)] into [ℓr(N × N)]. This finishes the proof because clearly every infinite index set
contains a copy of N × N as a subset meaning that we can extend the subsequence (xhk

) to a
family (xi) with i ∈ I by taking xi = 0 whenever i ̸∈ N × N. This means that there exists
(xi)i∈I ∈ [ws(N × N)] such that (Txi)i∈I ̸∈ [ℓr(N × N)].

This proposition allows us to identify BR
r,s with BR([ws], [ℓr]) and since the latter is clearly

an ideal of operators we have effectively shown that BR
r,s is an Operator Ideal.

Theorem 4.1.7. BR
r,s is a right quasi-Banach operator ideal with respect to

∥∥∥·|BR
r,s

∥∥∥.
Proof. It is straightforward that

∥∥∥·|BR
r,s

∥∥∥ is a quasi-norm with respect to the Definition 4.1.3.
Thus it remains to show that BR

r,s is complete with respect to it.
First note that the inequality

∥(Txi)i|ℓr(I)∥ ≤
∥∥∥T |BR

r,s

∥∥∥ ∥(xi)|ws(I)∥

51



allows us to write ∥T∥ ≤
∥∥∥T |BR

r,s

∥∥∥ by considering I = {1}.
Consider a Cauchy sequence (Tk) ∈ BR

r,s. It has limit in BR(X,Y ) with respect to
the operator norm since ∥Tk − Th∥ ≤

∥∥∥Tk − Th|BR
r,s

∥∥∥. Given ϵ > 0, choose k0 such that∥∥∥Tk − Th|BR
r,s

∥∥∥ ≤ ϵ for h > k ≥ k0. Then we have

∥∥((Th − Tk)xi)i∥ |ℓr∥ ≤ ϵ ∥(xi)i|ws∥ .

Letting h → ∞ we have ∥∥((T − Tk)xi)i∥ |ℓr∥ ≤ ϵ ∥(xi)i|ws∥. Therefore, not only T−Tk ∈ BR
r,s

but also
∥∥∥∥T − Tk∥ |BR

r,s

∥∥∥ ≤ ϵ for k ≥ k0.

In what follows, we will present properties of this ideal that will be useful. Let X and Y

be right Banach spaces. By definition, it follows that if 1 ≤ q ≤ ∞:

BR
∞,q(X,Y ) = BR(X,Y ). (4.2)

Furthermore, it is a consequence of the classic relations between the sequence spaces ℓp that
if r ≤ p and s ≥ q:

BR
r,s(X,Y ) ⊂ BR

p,q(X,Y ). (4.3)

The classic version of the following theorem can be found in [31, p. 334], from which we
directly extend it. We present its proof for completeness.

Theorem 4.1.8. Let 1 ≤ r0 ≤ r1 < ∞ and 1 ≤ s0 ≤ s1 < ∞. Then, if 1
r0

− 1
r1

= 1
s0

− 1
s1

we
have BR

r0,s0 ⊆ BR
r1,s1. More precisely, there holds∥∥∥T |BR

r1,s1

∥∥∥ ≤
∥∥∥T |BR

r0,s0

∥∥∥ .
Proof. Denote 1

r = 1
r0

− 1
r1

and 1
s = 1

s0
− 1

s1
. By hypothesis we have r = s. Let T ∈ BR

r0,s0(X,Y ),
x1, . . . xn ∈ X and α1, . . . , αn ∈ H. Then, as a routine application of Hölder’s inequality, we
have

∥αiTxi|ℓr0∥ ≤
∥∥∥T |BR

r0,s0

∥∥∥ ∥αixi|ws0∥ ≤
∥∥∥T |BR

r0,s0

∥∥∥ ∥xi|ws1∥ ∥αi|ℓs∥ .

In particular, choosing αi = ∥Txi∥
r1
r we can write,

∥αiTxi|ℓr0∥r0 = ∥αi|ℓr∥r = ∥Txi|ℓr1∥r1

and therefore,
∥Txi|ℓr1∥ ≤

∥∥∥T |BR
r0,s0

∥∥∥ ∥xi|ws1∥ ,

this means that T ∈ BR
r1,s1 and

∥∥∥T |BR
r1,s1

∥∥∥ ≤
∥∥∥T |BR

r0,s0

∥∥∥.
For the following theorem, we recall that, for any 1 ≤ p ≤ ∞, ℓnp = ∏n

i=1 ℓp.

Theorem 4.1.9. If 1 ≤ p ≤ q ≤ ∞ and 2 ≤ q ≤ ∞ then Idp,q ∈ BR
(p,1)(ℓp, ℓq).
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Proof. For each k let ek = (δik)i. For A ∈ BR(ℓn∞, ℓnq ), for 1 ≤ p ≤ 2 ≤ q ≤ ∞, since
∥·∥q ≤ ∥·∥2, from Lemma 2.2.3

(
n∑

k=1
∥Aek∥p

q

) 1
p

≤ ∥A∥ .

The case 2 ≤ p ≤ q ≤ ∞ follows from Lemma 2.2.2, for arbitraty x = (ξ1, . . . , ξn), ∥x∥∞ ≤ 1
we have(∑

i

|ξi|p ∥Aei∥p
p

) 1
p

=
(∑

i

|ξi|p
∑

k

| ⟨Aei, ek⟩ |p
) 1

p

=
(∑

k

∑
i

|ξi ⟨Aei, ek⟩ |p
) 1

p

≤

∑
k

(∑
i

|ξi ⟨Aei, ek⟩ |2
) p

2


1
p

≤ c(p) ∥A∥ .

In particular for (ξi) = (1, . . . , 1) we have
(∑

i ∥Aei∥p
p

) 1
p ≤ c(p) ∥A∥ and since ∥·∥q ≤ ∥·∥p

we have shown that
(∑

i ∥Aei∥p
q

) 1
p ≤ c(p) ∥A∥. Now we show that the same holds for

A ∈ BR(ℓ∞, ℓp). For this, define Pn : ℓp → ℓnp and Qn : ℓn∞ → ℓ∞ via

Pn(ξ1, . . . , ξn, ξn+1, . . . ) = (ξ1, . . . , ξn), ∥Pn∥ ≤ 1

Qn(ξ1, . . . , ξn) = (ξ1, . . . , ξn, 0, . . . ), ∥Qn∥ ≤ 1

Bn = PnAQn.

Clearly, B ∈ BR(ℓn∞ → ℓnp ). Moreover, for m ≤ n

(
m∑

k=1
∥Bnek∥p

q

) 1
p

≤ c(p) ∥Bn∥ ≤ c(p) ≤ ∥A∥ .

Since limn→∞ ∥Bnek∥q = ∥Aek∥q for any k we obtain, for all m:

(
m∑

k=1
∥Aek∥p

q

) 1
p

≤ ∥A∥ .

Now, considering any finite system x1, . . . , xn ∈ ℓp, and defining the operator A ∈ BR(ℓ∞, ℓp)
via Ax = ∑n

i=1 ξixi. Then for such an operator it follows that
(

n∑
i=1

∥xi∥p
q

) 1
p

=
(

n∑
i=1

∥Aei∥p
q

) 1
p

≤ c(p) ∥A∥

but this clearly means that Id ∈ BR
(p,1)(ℓp, ℓq).

Theorem 4.1.10. If 1 ≤ p ≤ q ≤ 2 and 1
r = 1

p − 1
q + 1

2 then Idp,q ∈ BR
r,1(ℓp, ℓq) as well as

Idp,q ∈ BR
q,1(ℓp, ℓq), for 1 ≤ q < p.
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Proof. Take 0 < θ < 1 for which 1
q = 1−θ

2 + θ
p . Then, for x ∈ ℓp it follows from Hölder’s

inequality that
∥x∥q ≤ ∥x∥1−θ

2 ∥x∥θ
p .

Applying this inequality and Hölder’s inequality once again, for 1
r = 1−θ

p + θ
2 , yields

(
n∑

i=1
∥xi∥r

q

) 1
r

≤
(

n∑
i=1

∥x∥(1−θ)r
2 ∥x∥θr

p

) 1
r

≤
(

n∑
i=1

∥xi∥p
2

) 1−θ
p
(

n∑
i=1

∥xi∥2
p

) θ
2

.

One can directly generalize the results found in [36] to conclude that, under these assumptions,
Id ∈ BR

2,1(ℓp, ℓp). Moreover, from Theorem 4.1.9 we derive

(
n∑

i=1
∥xi∥r

q

) 1
r

≤
(

n∑
i=1

∥xi∥p
2

) 1−θ
p
(

n∑
i=1

∥xi∥2
p

) θ
2

≤
∥∥∥Id|BR

p,1

∥∥∥ ∥∥xi|w(p′)
∥∥1−θ

∥∥∥Id|BR
2,1

∥∥∥θ ∥∥xi|w(p′)
∥∥θ

≤
∥∥∥Id|BR

p,1

∥∥∥1−θ ∥∥∥Id|BR
2,1

∥∥∥θ ∥∥xi|w(p′)
∥∥

for 1
r = 1−θ

p + θ
2 and 1

q = 1−θ
2 + θ

p which yields 1
r = 1

p − 1
q + 1

2 .

Ideals derived from s-numbers

We extend the concept of Schatten classes to a general Banach space, by considering any
s-number function, s.

Definition 4.1.11. Consider right H−Banach spaces X and Y . For 1 ≤ p < ∞ we denote,

S(s)
p =

{
T ∈ BR(X,Y ) : ∥sn(T )|ℓp(I)∥ < ∞

}
and S(s)

∞ =
{
T ∈ BR(X,Y ) : lim

n→∞
sn(T ) = 0

}
and equip it with the quasi-norm ∥∥∥T |S(s)

p

∥∥∥ = ∥sn(T )|ℓp∥ .

Observe that, by Theorems 3.2.4 and 3.2.6, S(c)
∞ = S

(d)
∞ = KR.

Theorem 4.1.12. Let s be an additive s-number function. Then, for any 1 ≤ p ≤ ∞, S(s)
p is

a quasi-Banach operator ideal.

Proof. We split the proof in three steps. On the first step we show that under the additivity
assumption S

(s)
p is indeed an operator ideal. On the second step we show that

∥∥∥·|S(s)
p

∥∥∥ is a
quasi-norm and finally on the third step we prove the completeness.

Step 1: S
(s)
p is an operator ideal.

Consider a finite dimensional Banach space K and its identity IdK . Then rank(IdK) = 1, as
such, by the axioms of s-numbers sn(IdK) = 0, for any n ∈ N. This immediately implies that
IdK ∈ S

(s)
p for any 1 ≤ p ≤ ∞.

For the second axiom of the theory of operator ideals, the assumption of the additivity of s is
crucial. Consider T1, T2 ∈ S

(s)
p (X,Y ). If 1 < p < ∞, for any non negative x1 and x2 we have
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(x1 + x2)p ≤ α(xp
1 + xp

2) with α = max{2p−1, 1}. Since s-numbers are non increasing we can
write

∞∑
n=1

sn(T1 + T2)p ≤ 2
∞∑

n=1
s2n−1(T1 + T2)p ≤ 2

∞∑
n=1

(sn(T1) + sn(T2))p

≤ 2α
∞∑

n=1
sn(T1)p + sn(T2)p ≤ ∞.

The case p = ∞ follows as well from the additivity:

lim
n→∞

sn(T1 + T2) = lim
n→∞

s2n−1(T1 + T2) ≤ lim
n→∞

sn(T1) + sn(T2) = 0. (4.4)

The third condition is immediate.
Step 2:

∥∥∥·|S(s)
p

∥∥∥ is a quasi-norm.
For the first condition, observe that for any operator S ∈ S

(s)
p , by considering k ∈ BX and

z ∈ BY ′ , there holds3:

| ⟨Sk, z⟩ | ≤ ∥k ⊗ 1∥
∥∥∥S|S(s)

p

∥∥∥ ∥1 ⊗ z∥ ≤
∥∥∥S|S(s)

p

∥∥∥ .
This means that ∥S∥ ≤

∥∥∥S|S(s)
p

∥∥∥. From the first step a ⊗ y ∈ S
(s)
p and thus ∥a∥ ∥y∥ =

∥a⊗ y∥ ≤
∥∥∥a⊗ y|S(s)

p

∥∥∥. On the other hand∥∥∥a⊗ y|S(s)
p

∥∥∥ ≤ ∥a⊗ 1∥
∥∥∥Idk|S(s)

p

∥∥∥ ∥1 ⊗ y∥ = ∥a⊗ 1∥ ∥1 ⊗ y∥ ,

because, since K is a 1 dimensional Banach space,
∥∥∥IdK |S(s)

p

∥∥∥ = s1(IdK) = 1 by or fourth
and fifth axioms of the s-number theory. This allows us to conclude that

∥∥∥a⊗ y|S(s)
p

∥∥∥ =
∥a⊗ 1∥ ∥1 ⊗ y∥ as desired.
For the second condition, take α = 2

1
p max(2

1
p

−1
, 1) then

∥∥∥T1 + T2|S(s)
p

∥∥∥ =
( ∞∑

n=1
sn(T1 + T2)p

) 1
p

≤
(

2
∞∑

n=1
s2n−1(T1 + T2)p

) 1
p

≤
(

2
∞∑

n=1
(sn(T1) + sn(T2))p

) 1
p

≤ α

( ∞∑
n=1

sn(T1)p

) 1
p

+
( ∞∑

n=1
sn(T2)p

) 1
p


= α

(∥∥∥T1|S(s)
p

∥∥∥+
∥∥∥T2|S(s)

p

∥∥∥) .
The third condition is immediate from the third axiom of s-numbers.

Step 3: S
(s)
p is complete. Consider a Cauchy sequence (Tk) ∈ S

(s)
p . From the second

step we know that there exists a limit T with the respect to the operator topology because
∥Tk − Th∥ ≤

∥∥∥Tk − Th|S(s)
p

∥∥∥. From the continuity of s-number functions it follows that
sn(Tk − Th) → 0 as h → k, therefore

∥∥∥Tk − Th|S(s)
p

∥∥∥ → 0.
3this actually holds for any operator ideal
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Moreover, it follows from the definition of injectivity/surjectivity of an operator ideal that,
if an s-number function is injective/surjective then so is the ideal derived from it.

In order to give another example we will denote the non-increasing rearrangement of the
sequence x by x∗. More precisely, we define x∗

n = inf{σ ≥ 0 : card(k : |xk| ≥ σ) ≤ n} which
basically means that we sort the elements of (xn) in such a way that elements of the new
sequence (x∗

n) are ordered in non increasing, way.
The Lorentz sequence space ℓr,w(I) consists of all families x = (ξi) such that (n 1

r
− 1

wx∗
n) ∈ ℓw.

We equip it with ∥x|ℓr,w(I)∥ :=
∥∥∥n 1

n
− 1

wx∗
n|ℓw(I)

∥∥∥. It is a clear generalization of the ℓp sequence
spaces, in the sense that ℓp,p(I) = ℓp(I). Following the same idea as in the previous example,
this allows us to introduce operator ideals associated to s-numbers.

Definition 4.1.13. The operator ideal L(s)
r,w(X,Y ) consists of all the operators S ∈ BR(X,Y )

such that the sequence (sn(S)) belongs to the Lorentz sequence space ℓr,w. In this case we
have a quasi-norm given by ∥∥∥S|L(s)

r,w

∥∥∥ := ∥(sn(S))|ℓr,w∥ .

We will refer to L
(s)
r,w with respect to which s-number function it is constructed, for example

L
(c)
r,w will be defined as the Ideal of (r, w)-Gelfand operators.

Now we are ready to classify operator ideals in terms of s-numbers. But first let us show
that these sets are ideals according to our definition.

Theorem 4.1.14. Let s be an additive s-number function. Then, for any 0 < p, q ≤ ∞, L(s)
p,q

is a quasi-Banach operator ideal.

Proof. Again, we split the proof in three steps.
Step 1: L

(s)
p,q is an Operator Ideal.

The first axiom of the operator ideal theory follows again from the fact that, for a 1 dimensional
Banach Space, K s1(IdK) = 1 and sn(IdK) = 0 for n > 1. Indeed consider a ∈ X ′ and y ∈ Y ,
then

∥sn(a⊗ y)|ℓr,w∥ ≤ ∥∥a⊗ 1∥ sn(IdK) ∥1 ⊗ y∥ |ℓr,w∥ = ∥a⊗ 1∥ ∥1 ⊗ y∥ .

For the second condition, consider S, T ∈ L
(s)
p,q. Then as observed in [37, p. 76] with c0 =

max(2 1
r , 2 1

w ) then we can write 4

∥x|ℓr,w∥ =
( ∞∑

n=1

(
n

1
r

− 1
wx∗

n

)w
) 1

w

=
( ∞∑

n=1

(
(2n− 1)

1
r

− 1
wx∗

2n−1

)w
+

∞∑
n=1

(
(2n)

1
r

− 1
wx∗

2n

)w
) 1

w

≤ c0

( ∞∑
n=1

(
n

1
r

− 1
wx∗

2n−1

)w
) 1

w

.

4Since, for 0 < r, w ≤ ∞, if r ≤ w

(2n − 1)
1
r

− 1
w ≤ (2n)

1
r

− 1
w = 2

1
r

− 1
w n

1
r

− 1
w .

On the other hand, if r ≥ w

(2n)
1
r

− 1
w ≤ (2n − 1)

1
r

− 1
w ≤= n

1
r

− 1
w .
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This allows us to obtain

∥sn(S + T )|ℓr,w∥ ≤ c0 ∥s2n−1(S + T )|ℓr,w∥ = c0
∥∥∥n 1

r
− 1

w s2n−1(S + T )|ℓw
∥∥∥

≤ c0
∥∥∥n 1

r
− 1

w sn(S) + n
1
r

− 1
w sn(T )|ℓw

∥∥∥
≤ c(∥sn(S)|ℓr,w∥ + ∥sn(T )|ℓr,w∥)

which shows that
∥∥∥S + T |L(s)

r,w

∥∥∥ ≤ c
(∥∥∥S|L(s)

r,w

∥∥∥+
∥∥∥T |L(s)

r,w

∥∥∥). The third requirement is easy
to prove.

Step 2: To see that
∥∥∥·|L(s)

p,q

∥∥∥ is a quasi-norm, one can follow the same lines as the ones
presented in the proof of S(s)

p .
Step 3: Consider a Cauchy sequence (Tk) ∈ L

(s)
r,w(X,Y ). Then, since ∥Th − Tk∥ ≤∥∥∥Th − Tk|L(s)

r,w

∥∥∥ there is a limit T ∈ BR(X,Y ) with respect to the operator norm. For ϵ > 0,
choose k0 such that

∥∥∥Th − Tk|L(s)
r,w

∥∥∥ ≤ ϵ for h, k ≥ k0. From the continuity of s-numbers we
have, by taking h → ∞,

∥∥∥T − Tk|L(s)
r,w

∥∥∥ ≤ ϵ for k ≥ k0.

Quaternionic Schatten classes & s-numbers

Efforts are been made in the direction of defining a basis independent notion of Schatten
classes of quaternionic operators, as observed in [13, p. 14]. Following the classic reasoning,
we can introduce what is known as Schatten classes with respect to a given s-number function,
which will be denoted by S

(s)
p . From the uniqueness of s-numbers on Hilbert spaces obtained

in Theorem 3.1.6 we can define a unique Schatten class for each p as follows: For right
H-Hilbert spaces X and Y , let σn(T ) = infσ{dim(E(σ,∞)) < n} where E is the spectral
measure associated to the operator |T |, then

Sp =
{
T ∈ BR(X,Y ) : ∥σn(T )|ℓp∥ < ∞

}
.

Moreover, if we consider just right H-Banach spaces we then have several notions of Schatten
classes, each of which associated to a specific s-number function. For example one can refer to
the approximation-Schatten class of an operator as

S(a)
p =

{
T ∈ BR(X,Y ) : ∥an(T )|ℓp∥ < ∞

}
.

The independence of the basis of the s-number function, seen so far, yields the desired basis
independence. As such we have effectively created several notions of quaternionic Schatten
classes, each of which related to the s-number that generates the operator ideal S(s)

p .

4.2 Specific components of operator ideals

Different operator ideals U and A might coincide for specific Banach spaces. More precisely,
there might exist Banach spaces X and Y for which U(X,Y ) = A(X,Y ) holds true. Of
particular interest is to determine the Hilbert space component of a given ideal. The Theorem
4.2.3 describes each Hilbert space component of the ideal BR

p,q. The proof on the complex
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setting can be found in [31, pp. 334–336], from where we extend this result. As mentioned
previously, it suffices to consider the ideal over the sequence space ℓ2.

We required additional machinary and theorems.

Theorem 4.2.1. [5, p. 363] Let 2 ≤ q < ∞, there is a constant K ′, depending only on
q, so that if (for each m,n = 1, 2, . . . ) Am,n is an m × n random matrix whose entries are
independent, mean zero random variables with |aij | ≤ 1 for all i, j. Then there holds

lim sup
max(m,n)→∞

∥Am,n∥
max(m

1
q , n

1
2 )

≤ K ′.

Therefore, one can choose matrix entries (aij) independently so that

P (aij = 1) = P (aij = −1) = 1
2 .

It follows that there exists, for each positive integer n, at least one matrix of order [n
q
2 ] × n

with all ±1 entries and satisfying ∥A∥2,q ≤ K
√
n, where K is a constant depending only on q.

Lemma 4.2.2. [4, p. 28] Let (λk)∞
k=1 be a decreasing sequence of non-negative real numbers.

Then for 2 < p < ∞, 2 < q < ∞, the following conditions are equivalent
i. ∑∞

k=1 k
q
p

−1(λk)q < ∞;
ii. ∑∞

t=1 t
q
p

−1−q
(∑t

k=1 λk

)q
< ∞;

iii. ∑∞
t=1 t

q
p

−1− q
2
(∑t

k=1 λ
2
k

) q
2 < ∞;

iv. ∑∞
i=1 2tq

(
1
p

− 1
2

) (∑2t+1−1
k=2t λ2

k

) q
2 < ∞.

Theorem 4.2.3. Suppose that 1 ≤ q ≤ p ≤ ∞. Then
1. if 1

q − 1
p ≥ 1

2 or p = +∞, then BR
p,q(ℓ2, ℓ2) = BR(ℓ2, ℓ2);

2. if q ≤ 2 and 1
q − 1

p <
1
2 , then BR

p,q(ℓ2, ℓ2) = Sr(ℓ2, ℓ2), where r = 1
p − 1

q + 1
2 ;

3. if 2 < q < p < ∞2 then BR
p,q(ℓ2, ℓ2) = S 2p

q
,p(ℓ2, ℓ2);

4. if p = q then BR
p,q(ℓ2, ℓ2) = S2(ℓ2, ℓ2);

Proof. 1. It remains to show that BR(ℓ2, ℓ2) ⊆ BR
p,q(ℓ2, ℓ2).

The case where p = ∞ follows for any 1 ≤ q ≤ ∞ from (4.2). The case where p < ∞
is split in two cases. If q = 1 then, from (4.3) we have that

BR
2,1(ℓ2, ℓ2) ⊂ BR

p,q(ℓ2, ℓ2).

Which to completes the proof. Indeed, from Theorem 4.1.9 that Idℓ2 ∈ BR
2,1. Given

that BR
2,1 is a ideal of operators, then BR(ℓ2, ℓ2) ⊂ BR

2,1.
Finally, if q > 1, follows from Theorem 4.1.8. Indeed if 1

2 − 1
p = 1 − 1

q (which is
possible because we assume 1

q − 1
p ≥ 1

2) there holds BR
2,1 ⊆ BR

p,q.
2. We start by proving that BR

p,q ⊃ SR
r . Consider the Schmidt decomposition of A ∈ SR

r

to be given by A = UBV . For 0 ≤ s ≤ 1
2 define

ℓ2 ∋ (ξn) Bs7−→ (|λn|
1
s ξn) ∈ ℓ2.
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By Theorem 4.1.8, since B 1
2

∈ B1,1(ℓ2, ℓ2), it follows that B 1
2

∈ Bq,q(ℓ2, ℓ2). Moreover,
the previous item implies that B0 ∈ BR

2q
2−q

,q
(ℓ2, ℓ2). Therefore, there is a positive constant

M such that, for every finite family x = (xi) ∈ ℓ2(I), there holds∥∥∥B 1
2
x|ℓq(I)

∥∥∥ ≤ M ∥x|wq(I)∥ ,
∥∥∥∥B0x|ℓ 2q

2−q
(I)
∥∥∥∥ ≤ M ∥x|wq(I)∥ .

For each i ∈ I, let xi = (αi
n) ∈ ℓ2 and yi = (βi

n) ∈ ℓ2 such that ∥yi|ℓ2∥ ≤ 1. Then

∥Bxi∥ =
∥∥∥B 1

r
xi

∥∥∥ =
〈
B 1

r
xi, yi

〉
=

∞∑
n=1

|αi
n||βi

n||λn|
1
r .

If 1
p = 1

q + 1
r − 1

2 , then denoting the Hölder’s conjugate of p by p∗ ( i.e., p∗ = p
1−p)

we have

∥Bxi|ℓp(I)∥ = sup
∥ξi|ℓ1(I)∥≤1

∥∥∥B 1
r
xi|ξi|

1
p∗ |ℓ1(I)

∥∥∥ = sup
∥ξi|ℓ1(I)∥≤1

∑
i∈I

∥∥∥B 1
r
xi

∥∥∥ |ξi|
1

p∗

= sup
∥ξi|ℓ1(I)∥≤1

∑
i∈I

∞∑
n=1

|αi
n||βi

n||λn|
1
r |ξi|

1
p∗ .

Now, for a natural number N , a family (ξi)i∈I with ∥ξi|ℓ1(I)∥ ≤ 1 and 0 ≤ s ≤ 1
2 define

the function

fN (s) =
∑
i∈I

N∑
n=1

|αi
n||βi

n||λn|s︸ ︷︷ ︸
≤∥Bsxi∥

|ξi|
3
2 − 1

q
−s

It follows from Hölder’s inequality that

fN (0) ≤
∑
i∈I

|ξi|
3
2 − 1

q ∥B0xi∥ ≤
∥∥∥∥B0xi|ℓ 2q

2−q
(I)
∥∥∥∥ ≤ M ∥xi|wq(I)∥ ,

fN

(1
2

)
≤
∑
i∈I

|ξi|1− 1
q

∥∥∥B 1
2
xi

∥∥∥ ≤
∥∥∥B 1

2
xi|ℓq(I)

∥∥∥ ≤ M ∥xi|wq(I)∥ .

One can show that functions of this kind are convex and thus supa≤s≤b fN (s) =
max(fN (a), fN (b)). In particular

fN

(1
r

)
≤ max

(
fN (0), fN

(1
2

))
≤ M ∥xi|wq(I)∥ .

But
sup
N∈N

sup
∥ξi|ℓ1(I)∥≤1

fN

(1
r

)
≥ ∥Bxi|ℓp(I)∥ ,

which implies that ∥Bxi|ℓp(I)∥ ≤ M ∥xi|wq(I)∥, i.e. B ∈ BR
p,q(ℓ2, ℓ2).

Now let us prove that SR
r ⊃ BR

p,q for q ≤ 2 and 1
r = 1

p − 1
q + 1

2 > 0. By Theorem
4.1.2 , every (p, q)-absolutely summing operator is compact. By being compact, we
know that there is a Schmidt decomposition A = UBV , where B is a diagonal operator
xn → λnxn with λn → 0. Let I = {1, 2, . . . N}.

∥λn|ℓr(I)∥ = sup
∥ξi|ℓ1(I)∥≤1

∥∥∥λi|ξi|
1

r∗ |ℓ1(I)
∥∥∥ ≤ sup

∥ξi|ℓ1(I)∥≤1

∥∥∥λi|ξi|
1

r∗ − 1
p∗ |ℓp(I)

∥∥∥ ∥∥∥|ξi|
1

p∗ |ℓp∗(I)
∥∥∥

≤ sup
∥ξi|ℓ1(I)∥≤1

∥∥∥Bei|ξi|
1
q

− 1
2 |ℓp

∥∥∥ ≤
∥∥∥B|BR

p,q

∥∥∥ ∥∥∥ei|ξi|
1
q

− 1
2 |w(q)

∥∥∥
≤
∥∥∥B|BR

p,q

∥∥∥ ∥ei|w(2)∥
∥∥∥∥|ξi|

1
q

− 1
2 |ℓ 2q

q−2

∥∥∥∥ ≤
∥∥∥B|BR

p,q

∥∥∥ < ∞,
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because 1
r∗ − 1

p∗ = 1
q − 1

2 and because q
(

2
q

)∗
= 2q

q−2 . This means B ∈ SR
r which suffices

to conclude that every operator in BR
p,q is also in SR

r since BR
p,q is an ideal of operators.

3. Following the same argumentation given in the previous item, it suffices to consider a
diagonal operator. Let (λn) ∈ ℓ 2p

q
,p and x(1), . . . , x(n) ∈ ℓ2, then, we ought to show that

 n∑
j=1

( ∞∑
k=1

|λkx
(j)
k |2

) p
2


1
p

≤ M sup
∥f∥2≤1

 n∑
j=1

∣∣∣∣∣
∞∑

k=1
x

(j)
k fk

∣∣∣∣∣
q
 1

q

︸ ︷︷ ︸
:=N

,

where M depends on λ, p and q. Without loss of generality we may assume that
(|λk|)∞

k=1 is a decreasing sequence5. Fix x(1), . . . , x(n) ∈ ℓ2 and a natural number t. For
each j define µj , vj and wj as follows

µj =
∞∑

k=1
|λkx

(j)
k |2 =

t∑
k=1

|λkx
(j)
k |2 +

∞∑
k=t+1

|λkx
(j)k |2 = vj + wj .

On the one hand, since λk is decreasing,

wj ≤ sup
k>t

|λk|2
∞∑

k=t+1
|x(j)

k |2 ≤ |λt+1|2 max
1≤j≤n

∞∑
k=1

|x(j)
k |2 = |λt+1|2 max

1≤j≤n
sup

∥f∥2≤1

∞∑
t+1

|x(j)
k fk|2.

By Jensen’s inequality the latter term can be bounded by |λn+1|2N2. Thus,

max
1≤j≤n

wj ≤ N2

t

t∑
k=1

|λk|2.

On the other hand since

n∑
j=1

v
q
2
j =

n∑
j=1

(
t∑

k=1
|λkx

(j)
k |2

) q
2

≤

 n∑
j=1

(
t∑

k=1
|λkx

(j)
k |q

) 2
q


q
2

.

Minkowski’s inequality in ℓ q
2

gives us

≤
(

t∑
k=1

|λk|2
) q

2

max
1≤k≤t

n∑
j=1

|x(j)
k |q =

(
t∑

k=1
|λk|2

) q
2

sup
∥f∥1≤1

n∑
j=1

∣∣∣∣∣
∞∑

k=1
x

(j)
k fk

∣∣∣∣∣
q

by three applications of Landau’s theorem. Analogously, Jensen’s inequality allows us
to derive the upper bound for the rearrangement of vj

v∗
j ≤ N2

j
2
q

t∑
k=1

|λk|2.

Therefore

v∗
[t

q
2 ]

+ w∗
[t

q
2 ]

≤ 2N2

t

t∑
k=1

|λk|2

5Indeed, the inequality above does not depend on the order of λ which can be seen by rearranging the
coordinates x(1), . . . , x(n)
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where the bracket notation is used to denote the ceilling number, i.e, [x] is the least
positive integer greater then x. By construction, at most 2[t

q
2 ] − 2 values of µj = vj +wj

can exceed v∗
[t

q
2 ]

+ w∗
[t

q
2 ]

, so that

µ
2[t

q
2 ]−1

≤ 2N2

t

t∑
k=1

|λk|2

which holds for any positive integer t. Therefore,

n∑
t=1

µ
p
2
t =

n∑
t=1

(µ∗)
p
2
t =

∑
t

2[(t+1)
q
2 ]−2∑

s=2[t
q
2 ]−1

(µ∗
s)

p
2 = C(q)

∑
t

t
q
2 −1

(
µ∗

2[t
q
2 ]−1

) p
2

≤ 2NpC(q)
∞∑

t=1
t

q
2 −1− p

2

(
t∑

k=1
|λk|2

) p
2

≤ NC(p, q) ∥λ∥p
2p
q

,p

By 4.2.2 (∑∞
t=1 t

q
p

−1−q (∑∞
k=1 λk)q < ∞ is equivalent to ∑∞

t=1 t
q
p

−1− q
2
(∑∞

k=1 λ
2
k

) q
2 < ∞).

Thus, by taking M = C(p, q) ∥λ∥p
2p
q

,p
we obtain the desired inequality. Hence we have

shown that 2 < q < p < ∞ SR
2p
q

,p
⊂ Bp,q.

To see the converse inequality one requires a totally different approach. As observed
in [4, p. 27] it suffices to show that there holds if ∑∞

j=1
(∑∞

k=1 |λkajk|2
) p

2 < ∞, whenever
A = (aij) is a matrix satisfying ∑∞

j=1 |
∑∞

k=1 ajkxk|q < ∞ for each x ∈ ℓ2 then λ ∈ ℓ 2p
q

,p.
By changing the order of the columns of A we conclude that the last statement is
independent of the order of the terms λk. Moreover, considering ai,j = δij it follows that
λ ∈ ℓp, so that the decreasing rearrangement of λ, λ∗, must exist. Thus we can assume
λ is a decreasing sequence. The proof now is constructive, in the sense that, a matrix A
is constructed for which λ ∈ ℓ 2p

q
,p. It is a consequence of 4.2.1 that we can construct a

matrix A = ∑∞
t=1A

(t), where each block A(t) is r-orthonormal6 and such that,

∑
∥x∥2≤1

∞∑
j=1

∣∣∣∣∣
∞∑

k=1
ajkxk

∣∣∣∣∣
q

= sup
t

∥∥∥A(t)
∥∥∥q

2,q
≤ r!.

Consequently by our assumption on the λ’s

∞ >
∞∑

j=1

( ∞∑
k=1

|λkajk|2
) p

2

=
∞∑

t=1

∞∑
j=1

( ∞∑
k=1

|λka
(t)
jk |2

) p
2

=
∞∑

t=1
2rt(2rt)− p

2r

∑
k∈Kt

|λk|2


p
2

=
∞∑

t=1
2tp
(

q
2p

− 1
2

) ∑
k∈Kt

|λk|2


p
2

,

so that λ ∈ ℓ 2p
q

,p by Lemma 4.2.2.
6A m × n matrix A = (aij) is called r-orthogonal if, for 1 ≤ j1, . . . , jr, k1, . . . kr ≤ n we have

∞∑
j=1

r∏
h=1

aj,jh aj,kh = 1,

if {j1, . . . , jr} = {k1, . . . , kr} and zero otherwise. Additionally if |ajk| = m− r
2 , it is called r-orthogonal.
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4. Suppose that T ∈ BR
2 (ℓ2, ℓ2). By definition we have

(
k∑

i=1
∥Txi∥2

) 1
2

≤
∥∥∥T |BR

2

∥∥∥ ∥xi|w2∥ .

Consider a complete orthogonal system of ℓ2, (ei)i∈I . From Bessel’s inequality we have
∥xi|w(2)∥2 = ∑k

i=1 | ⟨φ, ei⟩ |2 ≤ ∥φ∥2. Therefore,
(

k∑
i=1

∥Tei∥2
) 1

2

≤
∥∥∥T |BR

2

∥∥∥ sup
∥φ∥≤1

∥φ∥ ≤
∥∥∥T |BR

2

∥∥∥ .
Thus, taking the limit k → ∞ implies

∥∥∥T |SR
2

∥∥∥ ≤
∥∥∥T |BR

2

∥∥∥. Conversely, assume T ∈ S2.
Then for any x ∈ X it follows from Schmidt’s decomposition that there are two
orthogonal systems (en) and (fn) = (V en) for which

Tx =
∞∑

n=1
λnfn ⟨x, en⟩ , ∥Tx∥ =

∞∑
n=1

|λn|2| ⟨x, en⟩ |2,
∥∥∥T |SR

2

∥∥∥ =
( ∞∑

n=1
|λn|2

) 1
2

.

Then it follows(
k∑

i=1
∥Txi∥2

) 1
2

=
( ∞∑

n=1
|λn|2

k∑
i=1

| ⟨xi, en⟩ |2
) 1

2

≤
∥∥∥T |SR

2

∥∥∥ sup
∥φ∥≤1


(

k∑
i=1

| ⟨φ, xi⟩ |2
) 1

2


which implies

∥∥∥T |BR
2

∥∥∥ ≤
∥∥∥T |SR

2

∥∥∥.

4.3 The Diagonal Limit Order

In this section we will omit the upper script notation for simplicity. However, one should
keep in mind that all the structures in considerations are right structures and that, unless
otherwise stated, the operators are right linear operators.

4.3.1 S-numbers of the diagonal operator

We now compute the the s-number for a given diagonal operator. For now we shall consider
the right diagonal operator D acting between the right ℓmp and the right ℓmq spaces to be given
by

ℓmp ∋ (x1, x2, . . . xm) D7−→ (σ1x1, σ2x2, . . . , σmxm) ∈ ℓmq with σ1 ≥ · · · ≥ σm > 0.

By definition, as sn(D) = 0 for n > m, we might as well just consider n ≤ m. Before
proceeding we will need some technical results, which can be directly extended from the ones
found in [40, pp. 213–215].

Lemma 4.3.1. For each s-number function sn, if 1 ≤ p = q ≤ ∞, then sn(D) = σn.

Lemma 4.3.2. Let M ⊂ ℓm∞ with codim(M) < n; then, there exists e = (ϵ1, . . . ϵm) ∈ M with
∥e∥∞ = 1 such that the set K := {k : |ϵk| < 1} satisfies |K| < n.
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Lemma 4.3.3. Let 0 < q < p < ∞, µ1, . . . , µn+1 > 0, and |ξn+1| ≤ |ξk| for k = 1, . . . , n.
Then (∑n+1

k=1 |ξk|qµk

) 1
q

(∑n+1
k=1 |ξk|pµk

) 1
p

≥ (∑n
k=1 |ξk|qµk)

1
q

(∑n
k=1 |ξk|pµk)

1
p

.

We are now ready to give the first explicit computations of some s-numbers.

Lemma 4.3.4. For n = 1, ...,m, we have

an(D : ℓmp → ℓmq ) = cn(D : ℓmp → ℓmq ) = dn(D : ℓmp → ℓmq ) =
(

m∑
k=n

σr
k

) 1
r

,

where 1/r := 1/q − 1/p, whenever 1 ≤ q ≤ p ≤ ∞.

Proof. As above we set A(x1, . . . xm) := (σ1x1, . . . σn−1xn−1, 0, . . . , 0). Then,

an(D) ≤ ∥D −A∥ = sup
∥x|ℓp∥=1

∥(0, . . . , 0, σnxn, . . . , σmxm)|ℓq∥ =
(

m∑
k=n

σr
k

) 1
r

,

as a consequence of Hölder’s inequality. On the other hand, consider a n-codimensional
subspace M ⊂ ℓmp . Set

ℓmp ∋ (x1, . . . xm) B7−→ (σ
− r

p

1 x1, . . . , σ
− r

p
m xm) ∈ ℓm∞.

By Lemma 4.3.2, there exists e = (ϵ1, . . . , ϵm) ∈ B(M) with ∥e∥∞ = 1 such that K={k :
|ϵk| < 1} has less than n elements. Set x := B−1e. Then from Lemma 4.3.3 it follows

∥∥∥DJ ℓm
p

M

∥∥∥ ≥
∥Dx∥q

∥x∥p

= (∑m
k=1 |ϵk|qσr

k)
1
q(∑m

k=1 |ϵk|pσr
k

) 1
p

≥

(∑
k ̸∈K |ϵk|qσr

k

) 1
q

(∑
k ̸∈K |ϵk|pσr

k

) 1
p

=

∑
k ̸∈K

σr
k

 1
r

≥
(

m∑
k=1

σr
k

) 1
r

and thus cn(D) ≥ (∑m
k=1 σ

r
k)

1
r . By Theorem 3.3.5 we know dn(D) = cn(D′) ≥ (∑m

k=1 σ
r
k)

1
r .

Which proves the claim for 1 ≤ q < p < ∞. The case p = ∞ follows the same lines but we do
not require Lemma 4.3.3.

Consequently,

an(D : ℓp → ℓq) = cn(D : ℓp → ℓq) = dn(D : ℓp → ℓq) =
( ∞∑

k=n

σr
k

) 1
r

,

whenever 1 ≤ q ≤ p ≤ ∞. 1/r := 1/q − 1/p. Many more results of this flavour are known, for
example,

Theorem 4.3.5. [42, p. 463] If 1 ≤ p ≤ q < ∞, then for the diagonal operator D : ℓp → ℓq,
we have dn(D) = an(D) = λ when D is a Diagonal operator associated with (λn) and λn → λ.

For abbreviation we shall denote the identity operator from lmp to lmq by Im
p,q. As particular

case of the above theorem yields to

sn(Im
p,q) = cn(Im

p,q) = dn(Im
p,q) = (m− n+ 1)

1
q

− 1
p .
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4.3.2 The diagonal limit order

What is presented here follows the considerations found in [33]. Given positive scalar
sequences (αn) and (βn), we write αn ⪯ βn if there is a constant c > 0 for which αn ≤ cβn for
all n. The symbol αn ≍ βn means that αn ⪯ βn and βn ⪯ αn.

Let a = (αn) ∈ ℓt,w. We denote the corresponding diagonal operator by Da, this means
that Da(xn) = (αnxn). If 1 ≤ p, q ≤ ∞ and 1

t >
1
q − 1

p then it is a consequence of Hölder’s
inequality that Da is an operator from ℓp into ℓq. In the special case where αn = n− 1

t we
shall denote the corresponding diagonal operator by Dt. Now fix any s-function s. We
aim to classify Da with respect to a parameter r in the sense of finding the value r for
which Da ∈ L

(s)
r,w(ℓp, ℓq). The following theorem introduces equivalent manners of solving this

problem. Before we will require an interpolation formula between Lorentz spaces, whose proof
on the real setting can be found in [30]

Theorem 4.3.6. Let s be any s-function, 0 < r0 < r1 ≤ ∞, 0 < w,w0, w1 ≤ ∞ and 0 < θ < 1.
If 1

r = 1−θ
r0

+ θ
r1

, then there exists a constant c > 0, depending on the s-function and the
numbers r, r0, r1, w, w0, w1 such that∥∥∥T |L(s)

r,w

∥∥∥ ≤ c
∥∥∥T |L(s)

r0,w0

∥∥∥1−θ ∥∥∥T |L(s)
r1,w1

∥∥∥θ
,

for all T ∈ BR(X,Y ) where X and Y are right H-Banach Spaces.

Theorem 4.3.7. [33, p. 89] Consider Dt : ℓp → ℓq. Let s be any s-function, and let 1 ≤ p, q ≤
∞. Assume that the exponents r and t satisfy 1

r = µ
t + ν for 0 ≤ t0 < t < t1 < (1

q − 1
p)−1,

where the parameters µ and ν may be dependent of p and q. Then the following are equivalent:
1. If 0 < w ≤ ∞ and t0 < t < t1, then

a ∈ lt,w implies Da ∈ L(s)
r,w(ℓp, ℓq).

2. If t0 < t < t1, then for each n ∈ N

sn(Dt) ⪯ n− 1
r .

3. If 0 < w ≤ ∞ and t0 < t < t1, then for each m ∈ N∥∥∥Im
p,q|L(s)

r,w

∥∥∥ ⪯ m
1
t .

4. For t0 < t < t1 and every n ∈ N ∥∥∥Im
p,q|L(s)

r,∞

∥∥∥ ⪯ m
1
t .

Proof.
(1) ⇒ (2): It follows from the fact that for each n ∈ N,

n
1
r sn(Dt) ≤

∥∥∥Dt|L(s)
r,∞

∥∥∥ < ∞.
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(2) ⇒ (3): Let a ∈ ℓt,∞. Then
sn(Da) ≤ sup

k
|k

1
t αk|sn(Dt)

implies that Da ∈ L
(s)
r,∞(ℓp, ℓq). By the closed graph theorem it follows that there is a

constant c > 0 such that ∥∥∥Da|L(s)
r,∞

∥∥∥ ≤ c ∥a|ℓt,∞∥

for all a ∈ ℓt,∞. Yielding to ∥∥∥Im
p,q|L(s)

r,∞

∥∥∥ ≤ cm
1
t .

Finally, with Theorem 4.3.6 we complete this step.
(3) ⇒ (4): Trivial.
(4) ⇒ (1): Let t0 < t < t1. We may assume that L

(s)
r,∞ is u-normed 7. Without loss of generality we

might assume that u ≤ t. Moreover, for k = 0, 1, . . . we define

Nk = {n ∈ N : 2k ≤ n < 2k+1}.

If a = (αn) ∈ ℓt,u, then it follows

∥a|ℓt,u∥u =
∞∑

n=1

(
n

1
t
− 1

uαn

)u
=

∞∑
k=1

∑
n∈Nk

(
n

1
t
− 1

uαn

)u

≥
∞∑

k=0
2k
(
2(k+1)( 1

t
− 1

u
)α2k+1

)u
= 1

2

∞∑
k=0

(
2

k+1
t α2k+1

)u
.

Let Dk : ℓp → ℓq be defined by

Dk(ξn) =

αnξn for n ∈ Nk

0 otherwise
.

Then Da = ∑∞
k=0Dk and since ∥Dk∥ = α2k by hypothesis we have

∥∥∥Da|L(s)
r,∞

∥∥∥ ≤
( ∞∑

k=0

∥∥∥Dk|L(s)
r,∞

∥∥∥u
) 1

u

≤ c

( ∞∑
k=0

(
2

k
t α2k

)u
) 1

u

≤ cα0 + c

( ∞∑
k=0

(
2

k+1
t α2k+1

)u
) 1

u

≤ cα0 + 2
1
u c ∥a|ℓt,u∥ < ∞.

Since this is true for all t ∈ (t0, t1) then (1) follow from Theorem 4.3.6.

Given an s-number function s we define the diagonal limit order by the value

ρdiag(t, p, q|s) := sup
{
p ≥ 0 : sn(Dt : ℓp → ℓq) ⪯ 1

np

}
.

7As observe in [39, p. 93] on the classic setting, if AR is a right quasi normed operator ideal with quasi-norm
α, then there exists a u-norm, αu which is equivalent to α. Here a u-norm stands for a quasi norm that satisfies
αu(T + S)p ≤ αu(T )u + αu(S)u, for any T, S ∈ AR(X, Y ).

Indeed, for a right linear and bounded operator S such norm is given by αu(S) = inf ∥α(Si)|ℓu∥, the infimum
being taken over all representation S =

∑∞
i=1 Si with Si ∈ AR(X, Y ).
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This is how Theorem 4.3.7 enters the picture. In order to compute ρdiag(t, p, q|s) for a given
s-number function, we can equivalently, study the asymptotic behaviour of the expression∥∥∥Im

p,q|L(s)
r,w

∥∥∥ ,
for the different s-numbers.

Because of the duality relations it is enough to consider the approximation numbers, the
Weyl numbers, the Gelfand numbers and the Hilbert numbers. Moreover, following the works
of E.D. Gluskin, we can further simplify this task. In section 6.1 we explicitly show that

an(Im
p,q) ≍ max{cn(Im

p,q), dn(Im
p,q)},

which allow us to restrict ourselves to the study of Gelfand, Weyl and Hilbert numbers.

The Ideal of Gelfand Operators

Also in Section 6.1 we explicitly compute the asymptotic behaviour of Kolmogorov widths.
We have shown in Theorem 3.3.5 that the Gelfand numbers are the dual counterpart of the
Kolmogorov numbers, hereby we can write

cn(Im
p,q) = dn(Im

q′,p′).

Therefore, in conjuction with Lemma 4.3.4, the results obtained in section 6.1 give us the
following theorem

Theorem 4.3.8. 1. Let 1 ≤ q ≤ p ≤ ∞. Then

cn(Im
p,q) = (m− n+ 1)

1
q

− 1
p for 1 ≤ n ≤ m.

2. Let 2 ≤ p ≤ q ≤ ∞. Then

cn(Im
p,q) ≍


(

m−n+1
m

) 1
p − 1

q

1− 2
q for 1 ≤ n ≤ m−m

2
q ,

m
1
q

− 1
p for m = n = m−m

2
q .

3. Let 1 < p ≤ 2 ≤ q ≤ ∞. Then

cn(Im
p,q) ≍



(
m−n+1

m

) 1
2 for 1 ≤ n ≤ m

2
p′ ,(

m−n+1
m

) 1
2 m

1
p′ n− 1

2 for m
2
p′ ≤ n ≤ m

m
2
q −1+1

,

m
1
q

− 1
p for m

m
2
q −1+1

≤ n ≤ m.

4. Let 1 ≤ p ≤ q ≤ 2. Then

cn(Im
p,q) ≍


1 for 1 ≤ n ≤ m

2
p′ ,(

m
1
p′ n− 1

2

) 1
p − 1

q
1
p − 1

2 for m
2
p′ ≤ n ≤ m.

As a consequence of Theorem 4.3.7, we have
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Lemma 4.3.9. Let 1 ≤ p, q ≤ ∞ and 0 < r < ∞. Then∥∥∥Im
p,q|L(c)

r,∞

∥∥∥ ≍ m
1
t

with the values of 1
t being:

1. Let 1 ≤ q ≤ p ≤ ∞. Then
1
t

= 1
r

− 1
p

+ 1
q
.

2. Let 2 ≤ p ≤ q ≤ ∞. Then
1
t

= 1
r

3. Let 1 < p ≤ 2 ≤ q ≤ ∞. Then

1
t

=


1
r − 1

p + 1
2 for 0 < r ≤ 2,

2
p′r for 2 < r < ∞.

4. Let 1 ≤ p ≤ q ≤ 2. Then

1
t

=


1
r − 1

p + 1
q for 0 < r ≤ 2

1
p

− 1
2

1
p

− 1
q

,

2
p′r for 2

1
p

− 1
2

1
p

− 1
q

< r < ∞.

Proof. This is an immediate consequence of Theorem 4.3.8. Indeed, since 1 ≤ n ≤ m, we have∥∥∥Im
p,q|L(c)

r,∞

∥∥∥ = sup
n
n

1
r cn(Im

p,q) = m
1
r sup

n
cn(Im

p,q).

The claim follows from the assymptotic behaviour obtained in Theorem 4.3.8.

The previous result has a rather interesting interpretation, when writing 1
r as a function

of t, p and q, in the unit square with the coordinates 1
p and 1

q , acting as x-axis and y-axis,
respectively.

Theorem 4.3.10. If 1 ≤ p, q ≤ ∞, 1
t >

(
1
q − 1

p

)
+

, 0 < w ≤ ∞ and a ∈ ℓt,t then Da ∈

L
(c)
r,w(ℓp, ℓq), where 1

r takes values as as indicated in the following diagrams.

0 ≤ t ≤ 2

1
t

empty

1
t + 1

p − 1
p

1
t

1
t + 1

p − 1
2

2 ≤ t ≤ ∞

1
t

empty
1
t + 1

p − 1
p

1
t

p′

2t

1
t + 1

p
−1

2

Figure 4.1: Diagonal limit order of the Gelfand operator ideal
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The curve in red being given by

1
t

=
1
p − 1

q

p′
(

1
p − 1

2

) .
To clarify what these diagrams represent, let us focus on the case of 0 ≤ t ≤ 2.

1
t

1
t + 1

p − 1
q

•A

At any point in the blue region we can conclude
that, since 0 ≤ t ≤ 2,

1
2 + 1

p
− 1
q

≤ r ≤ ∞

then Da belongs to L
(c)
r,w(ℓp, ℓq) for any 0 ≤ w ≤ ∞.

For example, the point A = (1/4, 1/2), we have that
Da ∈ L

(c)
r,w(ℓ2, ℓ4) for any 0 ≤ w ≤ ∞ if 3

4 ≤ r ≤ ∞.
Thus, the equation presented at each region, dictates
the relation that must exist between r, p, q so that
Da ∈ L

(c)
r,w(ℓp, ℓq) for any 0 ≤ w ≤ ∞.

The Ideal of Weyl Operators

The following results were initially obtained in [35]. We present the details in section 6.2.

Theorem 4.3.11. Let 1 ≤ p < max(2, q) ≤ ∞ and 1 ≤ n ≤ m
2 . Then

xn(Im
p,q) ≍



1 for 2 ≤ p ≤ q ≤ ∞,

n
1
q

− 1
p for 1 ≤ p ≤ q ≤ 2,

n
1
2 − 1

p for 1 ≤ p ≤ 2 ≤ q ≤ ∞,

m
1
q

− 1
p for 1 ≤ q ≤ p ≤ 2.

If max(2, q) ≤ p, then

xn(Im
p,q) ≍

m
1
q

− 1
p for 1 ≤ n ≤ m

2
p ,

m
1
qn− 1

2 for m
2
p ≤ n ≤ m.

From this we deduce the following behaviour of the corresponding quasi-norms.

Lemma 4.3.12. Let 1 ≤ p, q ≤ ∞ and 0 < r < ∞. Then∥∥∥Im
p,q|L(x)

r,∞

∥∥∥ ≍ m
1
t

with the following values of 1
t : if 1 ≤ p < max(2, q) ≤ ∞ and 1 ≤ n ≤ m

2 , then

1
t

=



1
r for 2 ≤ p ≤ q ≤ ∞,(

1
r − 1

p + 1
q

)
+

for 1 ≤ p ≤ q ≤ 2,(
1
r − 1

p + 1
2

)
+

for 1 ≤ p ≤ 2 ≤ q ≤ ∞,

1
r − 1

p + 1
q for 1 ≤ q ≤ p ≤ 2.
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if max(2, q) ≤ p. Then
1
t

=


1
r − 1

p + 1
q for 0 ≤ r ≤ 2,

2
pr − 1

p + 1
q for 2 < r < ∞.

And hence we obtain

Theorem 4.3.13. If 1 ≤ p, q ≤ ∞, 1
t >

(
1
q − 1

p

)
+

, 0 < w ≤ ∞ and a ∈ ℓt,w, then Da

belongs to L
(x)
r,w(ℓp, ℓq), where 1

r takes values as indicated in the following diagrams, where
∗ = p

2

(
1
t + 1

p − 1
q

)
and ∗∗ = empty.

0 ≤ t ≤ 1

1
t + 1

p − 1
q

1
t + 1

p − 1
q

1
t

1
t + 1

p − 1
2

1 < t ≤ 2

∗

1
t + 1

2 − 1
q

1
t + 1

p − 1
q

1
t

1
t + 1

p − 1
2

1
t

∗∗

2 < t < ∞

∗

1
t + 1

p − 1
q

1
t

1
t + 1

p − 1
2

1
t

∗∗

Figure 4.2: Diagonal limit order of the Weyl operator ideal.

The Ideal of Hilbert Operators

In section 6.3 the explicit computations are presented together with their references.

Theorem 4.3.14. 1. Let 1 ≤ p′ ≤ q ≤ 2. Then

hn(Im
p,q) ≍


m

1
q

− 1
p for 1 ≤ n ≤ m

2
p ,

m
1
qn− 1

2 for m
2
p ≤ n ≤ m

2
q′ ,

mn−1 for m
2
q′ ≤ n ≤ m.
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2. Let 2 ≤ p, q ≤ ∞. Then

hn(Im
p,q) ≍

m
1
q

− 1
p for 1 ≤ n ≤ m

2
p

m
1
qn− 1

2 for m
2
p ≤ n ≤ m

.

3. Let 2 ≤ p′ ≤ q ≤ ∞. Then, for 1 ≤ n ≤ m.

hn(Im
p,q) ≍ n

1
q

− 1
p .

Therefore, we can derive the following asymptotic behaviour

Lemma 4.3.15. For 1 ≤ p, q ≤ ∞ and 0 < r < ∞ we have,∥∥∥Im
p,q|L(h)

r,∞

∥∥∥ ≍ m
1
t

with the values of t being given as follows:
1. Let 1 ≤ p′ ≤ q ≤ 2. Then

1
t

=


1
r for 0 < r ≤ 1
2

q′r + 2
q − 1 for 1 < r ≤ 2

2
pr + 1

q − 1
p for 2 < r < ∞

.

2. Let 2 ≤ p, q ≤ ∞. Then

1
t

=


1
r + 1

q − 1
2 for 0 < r ≤ 2(

2
pr + 1

q − 1
p

)
+

for 2 < r < ∞
.

3. Let 2 ≤ p′ ≤ q ≤ ∞. Then, for 0 < r < ∞

1
t

=
(1
r

+ 1
q

− 1
p

)
+

:= max
{1
r

+ 1
q

− 1
p
, 0
}
.

Theorem 4.3.16. If 1 ≤ p, q ≤ ∞, 1
t >

(
1
q − 1

p

)
+

, 0 < w ≤ ∞ and a ∈ ℓt,w, then Da belongs

to L
(h)
r,w(ℓp, ℓq), where 1

r takes values as indicated in the following diagrams.
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0 ≤ t ≤ 1

1
t

1
t + 1

p − 1
2

1
t + 1

2 − 1
q

1
t + 1

p − 1
q

1 < t ≤ 2

1
t + 1

p − 1
2

1
t + 1

2 − 1
q

1
t + 1

p − 1
q

1
t

∗∗

A
A′

B

B′

2 < t < ∞

∗

1
t + 1

2 − 1
q

1
t + 1

p − 1
q

1
t

∗∗

A

A′

A = p
2

(
1
t + 1

p − 1
q

)
;

A′ = q′

2

(
1
t + 1

p − 1
q

)
;

B = q′

2

(
1
t + 1 − 2

q

)
;

B′ = p
2

(
1
t + 2

p − 1
)
;

∗ = 1
t + 1

p − 1
2 ;

∗∗ = empty.

Figure 4.3: Diagonal limit order of the Hilbert operator ideal.
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CHAPTER 5
Conclusions

Our objective of extending the s-number theory to the quaternionic setting has been
successfully achieved. By employing the proposed axiomatic framework, we have obtained
several significant results concerning quaternionic Hilbert spaces, Banach spaces, and operators
acting on them.

In particular, we have demonstrated the uniqueness of s-number functions over quaternionic
Hilbert spaces through the quaternionic functional calculus. This achievement has allowed a
natural extension of the concept of Schatten classes to compact operators over quaternionic
Hilbert spaces. Additionally, we have derived various examples of s-number functions in
quaternionic Banach spaces, thereby expanding the classification of operators acting on these
spaces beyond the realm of classical Banach spaces.

Furthermore, we have explored the consequences of s-number theory in the theory of ideals
of quaternionic operators. By employing the proposed axiomatic setting, we have identified
instances where specific components of operator ideals coincide. Moreover, we have computed
the limit order of specific ideals, resulting in a more precise classification of diagonal operators
and a more intricate categorization of ideals.

It is important to note that s-number theory in the context of quaternionic analysis is by
no means complete; the results in this thesis are only the basis of the theory, and as such,
it opens up numerous avenues for further exploration. Some of these potential directions
include:

• Trace of quaternionic operators: Pietsch is famous for, not exclusively, generalizing the
results on nuclear operators, due to Grothendieck, to a more specific structure: the
(r, p, q)-nuclear operators. These allow the investigation of operators acting Banach
spaces for which a trace remains well defined. This extension could also lead to the
adaptation of Grothendieck-Lidskii formulas for specific (r, p, q)-nuclear operators. The
proposed definition of nuclear numbers is motivated by these endeavors.

• Distribution of eigenvalues of quaternionic operators: This particular subject shows
great promise. s-numbers, especially Weyl numbers, are closely related to the behavior of
eigenvalues of an operator. A lot of research has been produced in this topic. Equipped
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with the suitable notion of spectrum in quaternionic analysis, this may yield to successful
extensions.

• Quaternionic C∗- algebras: While our focus has been primarily on operator ideals, the
realm of linear and bounded operators constitutes a subset of the larger theory of C∗-
algebras. The axiomatic approach proposed for operator ideals sheds light on the study
of ideals in this algebraic structure. Generalizing the ideas of Gelfand-Shillov-Smirnov
to a broader context is another possible line of research.

• Clifford analysis: The algebra of the quaternions is a specific case of the so called Clifford
algebras, both sharing associativity and the existence of a unit. In such general settings,
new difficulties arise, as for instance, the existence of zero divisors (the quaternions
being the “largest” Clifford algebra where these still do not appear). This direction is
perhaps the most challenging one, since even in the finite-dimensional case, it is not
clear how to describe the right spectrum.

While there is still much work to be done, this thesis serves as evidence that, under the
appropriate modifications, important theories within the framework of functional analysis can
be developed in the quaternionic setting.
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CHAPTER 6
Appendix

6.1 Computations of the asymptotic behaviour of Kolmogorov numbers

We adapt the results obtained in [20] and the references therein to effectively compute the
asymptotic behaviour of Im

p,q. But first we need several technical results and definitions. We
will denote the group of m×m orthogonal matrices by O(m) and by P the Haar measure1

on O(m). For n ≤ m and x ∈ Rn we set φn(x) = ∥x|ℓ2(N)∥ where N = {1, . . . , n}.
Mn will denote the median of φn with respect to the normalized Lebesgue measure on the

(m− 1)-sphere, here and thereafter denoted by µ, i.e.,

µ{x ∈ Sm−1 : φn(x) ≤ Mn} = 1
2 .

We remark that for any nonzero x ∈ Rm, the measure P induces the measure µ under the
mapping U → Ux

∥x∥2
. Moreover, it can be verified directly that, there is a positive constant g

for which g
√

n
m ≤ Mn ≤

√
2n
m . The following result will be necessary,

Lemma 6.1.1. [18, p. 26] For any λ > 0 there holds

µ{x ∈ Sm−1 : |φn(x) −Mn| > λ} ≤ 4e
−λ2m

2 . (6.1)

In particular,
µ{x ∈ Sm−1 : |φ2

n(x) −M2
n| > (2Mn + λ)λ} ≤ 4e

−λ2m
2 . (6.2)

Consider A ⊂ {1, 2, . . . ,m}. We define BA
p := {x ∈ Rm : ∥x∥p ≤ 1, xi = 0 for i ̸∈ A}.

F0(N) will stand for the set of absolutely convex polyhedra in Bm
2 that have at most 2N

vertices. Moreover, for an absolutely convex subset V , we will say that V ∈ F(N) if there
exists a K ∈ F0(N) such that V ⊂ K. Furthermore, we define

EA = {x ∈ BA
2 : |xi| = |A|−

1
2 , i ∈ A},

1i.e. the positive, left invariant Radon measure
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where |A| denotes the cardinality of A. The symbol E ′
A will be used to refer to the minimal

ϵ-net2 for the set BA
2 , while ΛA(ϵ) will denote the minimal ϵ-net for the set

√
|A|BA

1 both
of which with respect to the metric of ℓm2 . As observed in [29] we can relate the cardinality
of these sets with cardinality of A. Indeed, there it is shown that |ΛA(ϵ)| ≤

(
a
ϵ

)|A| and that
|E ′

A| ≤ 5|A|. Finally define Pn,m, the orthoprojector of Rm onto the subspace generated by
the n first basis elements and Qn,m = Im − Pn,m. In what follows, EW will denote the the
n-dimensional normed space with unit ball W .

We start with the construction of a specific polyhedra Kq(λ). Fix q ∈ [2,∞[ and let λ ≥ 1.
Set

k(λ) =
[
λ

2q
q−2

]
, tk =

[
λ2k

2
q

]
+ 1, for k > k(λ), and sk =

[
k

tk

]
.

It follows that tk ≤ k and, consequently, k
2tk

≤ sk ≤ k
tk

· Decompose the set {1, . . . ,m} into
sk subsets σ1, . . . , σsk

such that |σi| ≤ 2m
sk
, i = 1, . . . , sk. Take k(λ) < k ≤ m, and define

∆k := {A ⊂ {1, . . . ,m} : |A| = tk and there exists i ∈ {1, . . . sk} for which A ∈ σi} .

Moreover, set ∆0 as the family of all subsets of {1, . . . ,m} whose cardinality is k(λ). Finally,
take

E =
⋃

k(λ)<k≤m

⋃
A∈∆k

EA, E ′ =
⋃

A∈∆0

E ′
A

and define Kq(λ) as the convex hull of the union of these sets, i.e.

Kq(λ) = conv{E ∪ E ′}.

The following lemma shows that Kq(λ) is indeed an absolutely convex polyhedron.

Lemma 6.1.2. There exists a constant solely dependent on q, c(q) for which

Kq(λ) ∈ F0(2ec(q)λ2m
2
q ).

Proof. By the above presented construction, it is clear that Kq(λ) ⊂ Bm
2 and also that it

suffices to show that both E and E ′ have at most eλ2m
2
q c(q) points, for if that is the case then

Kq(λ) will be a convex subset of Bm
2 with at most 2eλ2m

2
q c(q) points. Set the constant

c(q) = 3 sup
{
x

− 2
q ln(8ex) : x ≥ 1

}
,

2Recall that a subset A of X is an ϵ-net if d(x, A) < ϵ for any x ∈ X. It will be refer to minimal if it is
minimal in the sense of cardinality.
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then we can write3

|E| =
∑

k(λ)<k≤m

∑
A∈∆k

|EA| =
∑

k(λ)<k≤m

2tk |∆k|

=
∑

k(λ)<k≤m

∑
i≤sk

2tk

(
|σi|
tk

)
=

∑
k(λ)<k≤m

sk2tk

([2m
sk

]
tk

)

≤
∑

k(λ)<k≤m

sk2tk

([2m
sk

]
tk

)
≤

∑
k(λ)<k≤m

sk2tk

e
[

2m
sk

]
tk

tk

≤
∑

k(λ)<k≤m

sk2tk

(
4e [m]

k

)tk

=
∑

k(λ)<k≤m

sk

(8em
k

)tk

=
∑

k(λ)<k≤m

eλ2k
2
q ln( 8em

k )+ln
( 8emsk

k

)
≤ eλ2m

2
q c(q)

3
∑

k(λ)<k≤m

eln(8em)

≤ eλ2m
2
q c(q)

3 e2 ln(8em) ≤ eλ2m
2
q c(q)

3 e
2
3 c(q)m

2
q ≤ eλ2m

2
q c(q).

Moreover, since 0 ≤ 1 − 2
q < 1,

|E ′| ≤
∑

A∈∆0

|E ′
A| ≤ 5k(λ)

(
m

k(λ)

)
≤ e

k(λ) ln
(

5em
k(λ)

)
≤ ec(q)m

2
q k(λ)1− 2

q ≤ ec(q)m
2
q λ2

.

Next we introduce two functions that have useful properties. Consider the function

vq,λ(x) = sup
{

1
2φk(λ)(x), sup

k(λ)<k≤m
λk

1
q x∗

k

}
,

and, for 2 ≤ r < ∞ and µ ≥ 1, the function

wr,µ(x) = inf
k≤m

φk(x) + µ

 ∑
k<i≤m

(x∗
i )r

 1
r

 , x ∈ Rm.

Lemma 6.1.3. For all x ∈ Rm there holds

vq,λ(x) ≤ max{| ⟨x, y⟩ | : y ∈ Kq(λ)}. (6.3)

Proof. We start by assuming that

vq,λ(x) = 1
2

 ∑
i≤k(λ)

(x∗
i )2

 1
2

= 1
2 sup

A∈∆0

(∑
i∈A

|xi|2
) 1

2

.

Then,

1
2 sup

A∈∆0

(∑
i∈A

|xi|2
) 1

2

= sup
{

| ⟨x, y⟩ | : y ∈ BA
2

}
≤ 2 sup

{
| ⟨x, y⟩ | : y ∈ E ′

A

}
,

3Recall the inequality
(

n
k

)
≤ ( en

k
)k
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which means that there is an y ∈ E ′
A such that vqλ(x) ≤ | ⟨x, y⟩ |. Now assume assume that

vq,λ(x) = λk
1
q x∗

k for some k ∈ k(λ). Then, there exists a subset B ⊂ {1, . . . ,m} with k

elements for which vq,λ(x) = λk
1
q |xi| for i ∈ B. Since∑

j≤sk

|σj ∩B| = k,

there is a j such that |σj ∩ B| ≤ k
sk

≤ tk. Thus, some A ∈ ∆k lies completly in B. Now
observe that

vq,λ(x) ≤
t

1
2
k

λk
1
q

vq,λ(x) ≤ |A|−
1
2
∑
i∈A

|xi| = sup{| ⟨x, y⟩ |y ∈ EA}.

And by construction of Kq(λ) the claim follows.

Lemma 6.1.4. There is a constant solely dependent on q and r, d(q, r), for which there holds

wr,µ(x) ≤ d(q, r)vq,λ(x), for q > r and λ = m
1
r

− 1
qµ. (6.4)

Proof. By homogeneity, it can be assumed without loss of generality that vq,λ(x) ≤ 1. In this
case

ϕk(x) ≤ 2 and x∗
k ≤ (λk

1
q )−1 for k > k(λ).

Therefore we ought to show that wr,µ(x) ≤ d(q, r). Set the constant

d(q, r) = 2 +
(

1 − r

q

)− 1
r

It immediately follows that,

wr,µ(x) ≤ 2 + µ

 ∑
k(λ)<k≤m

(λk
1
q )−r

 1
r

≤ 2 +m
1
q

− 1
r

((
1 − r

q

)−1
m

1− r
q

) 1
r

≤ d(q, r).

The last result that we require follows,

Lemma 6.1.5. Let 1 < p ≤ 2 and µ ≥ 1. Then, there are constants e(p) and f(p) that only
depend of p for which,

(Bm
2 ∩ µBm

p ) ∈ e(p)F(ef(p)µ2m2−2p).

Proof. To see this, set λ = m
1
p′ − 1

2p′ µ and take e(p) = d(2p′, p′) and f(p) = c(2p′). By Lemma
6.1.2 it suffices to show

(Bm
2 ∩ µBm

p ) ⊂ e(p)K2p′(λ).

By duality the previous inclusion is equivalent to

sup{|⟨x, y⟩| : y ∈ Bm
2 ∩ µBm

p } ≤ e(p) sup{|⟨x, y⟩| : y ∈ K2p′(λ)}.

By definition, we have

sup{|⟨x, y⟩| : y ∈ Bm
2 ∩ µBm

p } ≤ wr,µ(x)
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and (6.3) gives us
vq,λ(x) ≤ sup{|⟨x, y⟩| : y ∈ Kq(λ)}.

The result is shown because of (6.4).

Now we are able to prove the desired estimates. To simplify the notation we will use the
following:

Φ(m,n, p, q) =



(
min

{
1,m

1
qn− 1

2
}) 1

p − 1
q

1
2 − 1

q , 2 ≤ p < q ≤ ∞,

max
{
m

1
q

− 1
p ,min

{
1,m

1
qn− 1

2
}√

1 − n
m

}
, 1 ≤ p < 2 < q ≤ ∞,

max

m 1
q

− 1
p ,
(√

1 − n
m

) 1
p − 1

q
1
p − 1

2

 , 1 ≤ p < q ≤ 2,

Before preceding to the main result of this section we take from [21] a sufficient condition
that also holds in our case

Lemma 6.1.6. If dn(Im
2,r) ⪯ m

1
rn− 1

2 then

dn(Im
p,q) ⪯ Φ(m,n, p, q) (6.5)

for 1 ≤ p < q ≤ r.

Theorem 6.1.7. Let 1 ≤ p < q < ∞ and n < m. Then

dn(Im
p,q) ≍ Φ(m,n, p, q). (6.6)

Proof. In [21] it was proved that Φ(m,n, p, q) ⪯ dn(Im
p,q). Now, we prove the remaining

estimate dn(Im
pq) ⪯ Φ(m,n, p, q). It is immediate, from Lemma 6.1.6, that it suffices to prove

dn(Im
2,r) ⪯ m

1
rn− 1

2 for r < ∞. We split the proof in two steps. On the first step, we construct
a set for which the Gelfand number of the identity mapping that set to ℓm2 is 1. This set, on
the second step, will allow us to prove the desired result

Step 1: Consider Λ,W ⊂ Hm, such that

N1 = |Λ| < e
g2n

8

8 , W ∈ F(N2), for N2 <
e

τ2g2n
8

8 (6.7)

for some τ ∈ (0,∞). Take
V ⊂

⋃
z∈Λ

(
z + ∥z∥2

2 + 2τ W
)

∪Bm
2

and consider x1, . . . xn ∈ Bm
2 for which W ⊂ conv{±x1, . . . xN2}. Fix U0 ∈ O(m) and consider

the operator T0 = Pn,mU0
4. Then we have

∥T0 : BW → ℓm2 ∥ < Mn(1 + τ) and ∥T0z∥2 >
Mn ∥z∥2

2 , ∀z ∈ Λ.
4Note that codim(ker T0) = n.
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Indeed, to see this is the case, one turns to a probabilistic argument. Recall that P stands for
the Haar measure on O(m). Denoting T (U) = Pn,mU for U ∈ O(m), it follows by (6.1),

P
({

U ∈ O(m) : ∥T (U) : BW → ℓm2 ∥
Mn(1 + τ) ≥ 1

}
∪
{
U ∈ O(m) : ∃z ∈ Λ : 2 ∥T (U)z∥2

Mn ∥z∥2
> 1

})

=P
({

U ∈ O(m) : ∥T (U) : BW → ℓm2 ∥
Mn(1 + τ) ≥ 1

})
+ |Λ|µ

({
x ∈ Sm−1 : ∥T (U)x∥2 >

Mn

2

})

≤P ({U ∈ O(m) : ∃i ≤ N2 : ∥T (U)xi∥2 ≥ Mn(1 + τ)}) +N14e− M2
nm

8

≤N2µ
({
x ∈ Sm−1 : ∥T (U)x∥2 ≥ Mn(1 + τ)

})
+N14e− M2

nm

8

≤N24e−τ2 M2
nm

2 +N14e
M2

nm

8 < 4e
τ2g2n

8

8 e−τ2 M2
nm

2 + 4e
g2n

8

8 e
−M2

nm

8

<
1
2

(
e

τ2
(

g2n
8 − n

2

)
+ e

1
8 (g2n−n)

)
< 1, for some τ ∈ (0,∞).

Now suppose that the inclusion kerT0 ∩ V ⊂ Bm
2 is false. In this case there is a z ∈ Λ such

that x ∈ kerT0 ∩
(
z + ∥z∥2

2+2τW
)
. But then

0 = ∥T0x∥2 ≥ ∥T0z∥2 −
( ∥z∥2

2 + 2τ

)
∥T0 : BW → ℓm2 ∥ > ∥z∥2

Mn

2 − ∥z∥2
2 + 2τ Mn(1 + τ) = 0.

Therefore kerT0 ∩ V ⊂ Bm
2 . Thus,

∀x ∈ kerT0 ∩ V ⊂ Bm
2 , ∥x∥ ≤ 1.

This means that there are n-codimensional spaces whose intersection with V is contained in
the unit ball, therefore, cn(Id : V → ℓm2 ) ≤ 1.

Step 2: Let p = r′ and δ = min{e(p)−1,1}
16 . We apply the previous step to the set

V = δl
1
p

− 1
2Bm

p

for a still to be choosen l. Here we set τ = 1, W = e(p)−1
(
Bm

2 ∩ l
1
p

− 1
2Bm

p

)
, and Λ = ∪ΛA(δ),

where the union is over all subsets A of {1, . . . ,m} of cardinality l. We start by verifying the
necessary inclusion. Take x ∈ V . It is immediate that ∥x∥p ≤ δl

1
p

− 1
2 . Then x∗

l ≤ δl
1
p

− 1
2 l

− 1
p =

δl−
1
2 . Define a vector

u =

ui = xi, |xi| ≤ x∗
l

ui = 0, otherwise
.

It follows that ∥u∥p ≤ δl
1
p

− 1
2 and

∥u∥2 ≤ ∥u∥
p
2
p ∥u∥1− p

2∞ ≤
(
δl

1
p

− 1
2
) p

2
(
δl−

1
2
)(1− p

2 )
≤ δl

1
2 − p

4 l
p
4 − 1

2 = δ.

Further, for some A with |A| = l

v = x− u ∈ δl
1
p

− 1
2BA

p ⊂ l
1
2BA

1 ⊂ |A|
1
2BA

1 .
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Therefore, there is a z ∈ Λ such that ∥v − z∥2 ≤ δ and, consequently ∥v + z∥p ≤ δl
1
p

− 1
2 . Hence

∥x− z∥2 ≤ 2δ and ∥x− z∥p ≤ 2δl
1
p

− 1
2 . Thus x−z ∈ 1

8W . If ∥x∥2 > 1, then ∥z∥2 ≥ 1−2δ ≥ 1
2 .

This concludes the proof of the desired inclusion. Now define n0 = 4f(p)g−2 log(8) and

h(p) = sup
{
x

2− 2
p log

(8ae
δx

)
: 0 < x ≤ 1

}
.

Finally, let i(p) = min
{
g2

4 f(p), g2

8 h(p)
}

. Now we show that the restrictions (6.7) on |Λ| and

W are satisfied as we take l =
[(

i(p)nm
2
p

−2
) 1

2
p −1

]
for n > n0. This will conclude the prove

because we then we have
dn(Im

2,r) = cn(Im
p,2) ≤ δ−1l

1
2 − 1

p

which give the desired result when replacing l as mentioned above. By Lemma 6.1.2 we have

W ∈ F(ef(p)l
2
p

−1
m

2− 2
p ).

Therefore, the restriction on W follows from the choice of l and the inequality i(p) ≤ g2

4 f(p)5.
Moreover,

|Λ| ≤
(
m

l

)(
a

8

)l

≤
(
ema

lδ

)l

= el log
(
aem

lδ

)
.

The choice of l implies that 6

l log
(
aem

lδ

)
≤ i(p)n

(
l

m

)2−2p

log
(

8aem
δl

)
− log 8 ≤ ng2

8 − log(8),

which is the necessary estimate of |Λ|.

Theorem 6.1.8. Let 1 ≤ p < q < ∞, (p, q) ̸= (1,∞) and n < m. Then

dn(Im
pq) ≍ Ψ(m,n, p, q) =

Φ(m,n, p, q), 1 ≤ p < q ≤ p′,

Φ(m,n, q′, p′), max{p, p′} < q ≤ ∞.
.

Proof. For an m×m orthogonal matrix U define the operator S(U) = U∗(Qn,m −κnPn,m)U7,
where κn = M2

m−n

M2
n

.
Step 1: Consider θ > 0 and x, y ∈ Bm

2 . Set λ1 = (2Mm−n + θ)θ, λ2 = κn(2Mn + θ)θ and
λ = 2(λ1 + λ2). Then

P {U ∈ O(m) : | ⟨S(U)x, y⟩ | > λ} ≤ 16e− θ2m
2 .

5More precisely, one takes τ >

√
8

g2n
ln
(

ng2f
2 ef

)
6

l ≤ i(p)n
(

l

m

)2−2p

⇔ l2p−1 ≤ i(p)nm2p−2 ⇔ l ≤
(
i(p)nm2p−2) 1

2p−1 ⇔ l ≤
(
i(p)nm2−2p

) 1
1−2p

⇔ . . .

7Here Qn,m = Im − Pn,m

81



We start be assuming that x = y ̸= 0. Since P induces µ under the mapping U → Ux
∥x∥2

,
in this case

h = P
{
U ∈ O(m) : | ⟨S(U)x, x⟩ | > λ

2

}
≤ P

{
U ∈ O(m) : | ⟨S(U)x, x⟩ | > λ ∥x∥2

2
2

}

= µ

{
z ∈ Sm−1 : | ⟨(Qn,m − κnPn,m)z, z⟩ | > λ

2

}
= µ

{
z ∈ Sm−1 : |(⟨Qn,mz, z⟩ −M2

m−n) − κn(⟨Pn,mz, z⟩ −M2
n)| > λ

2

}
≤ µ

{
z ∈ Sm−1 : |(⟨Qn,mz, z⟩ −M2

m−n)| > λ1
}

+ µ
{
z ∈ Sm−1 : κn| ⟨Pn,mz, z⟩ −M2

n| > λ2
}
.

Observe now that ⟨Pn,mz, z⟩ = ϕ2
n(z) and that the functions ⟨Qn,mz, z⟩ and ϕ2

n−m(z)
are identically distributed on Sm−1. Now applying (6.2) we have h ≤ 8e− θ2m

2 .
To pass to the general case we first note that

⟨S(u)x, y⟩ =
〈
S(U)(x+ y)

2 ,
(x+ y)

2

〉
−
〈
S(U)(x− y)

2 ,
(x− y)

2

〉
Thus,

{U ∈ O(m) : | ⟨S(U)x, y⟩ | > λ} ⊂
{
U ∈ O(m) : |

〈
S(U)(x+ y)

2 ,
(x+ y)

2

〉
| > λ

2

}
∪
{
U ∈ O(m) : |

〈
S(U)(x− y)

2 ,
(x− y)

2

〉
| > λ

2

}
.

Step 2: Suppose that θ > 0, N > 1
16e

θ2m
4 and the sets V,W ∈ F(N) are absolutely continuous.

Then8

an(V,E∗
W ) ≤ j

(
θ

√
m− n

n
+ θ2m

n

)
(6.8)

for some constant j.
Consider x1, . . . , xN , y1, . . . , yN ∈ Bm

2 to be such that

V ⊂ conv{±x1, . . . xN }, W ⊂ conv{±y1, · · · ± yN },

which implies that
∥S(U)∥EV →E∗

W
≤ sup

i,j≤N
|⟨S(U)xi, yj⟩| .

Take λ as in the previous step. Then we have

P
{
U ∈ O(m) : ∥S(U)∥EV →E∗

W
> λ

}
=

∑
i,j≤N

P {U ∈ O(m) : |⟨S(U)xi, yj⟩| > λ}

≤ N216e− θ2m
2 < 1.

8Here we will perform a slight modification in the notation: in what follows an(X, Y ) will refer to the
approximation number of the identity mapping X to Y .
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Thus, there are U ∈ O(m) for which ∥S(U)∥ ≤ λ. Since rank(Im − S(U)) = n, we have
an(V,E∗

W ) ≤ λ. Now observe that

λ ≤ θ

(
8
√

2
g

)√
m− n

n
+ θ2

( 4
g2

)
m

n
.

Taking j = max
{

8
√

2
g , 4

g2

}
concludes this step.

Step 3: for any k, m, n, p and q such that 1 ≤ p ≤ q ≤ ∞ we have

akn

(
Bkm

p , ℓkm
q

)
≤ an

(
Bm

p , ℓ
m
q

)
(6.9)

This formula follows at once from the representation of Rkm in the form Rk ⊗ Rm if we
use the operator Ik ⊗T for approximating the set Bkm

p , where T is an extremal operator
for an(Bm

p , ℓ
m
q ).

Step 4: By the duality d′
n(BX,Y ) = d′

n(BY ∗, X∗), it suffices for us to confine ourselves to the
case 1 < p < q < p′. The inequality d′

n(B,X) ≥ dn(B,X) gives the necessary lower
estimates. The results found in [28] allows us to exclude the cases p = 1, q < ∞ and
p > 1, q < ∞ from consideration. By Lemma 6.1.5, (6.8) might be applied to the subsets
V = W = e(p)−1Bm

p , with

θ = 2(log 16 + f(p))
1
2m

1
2 − 1

p .

This gives the necessary estimate for d′
n(Bm

p , ℓ
m
p′ ). In particular for m− n < m

2− 2
p

2 we
have

an(Bm
p , ℓ

m
p ) ≤ k(p, p′)m

1
p′ − 1

p .

As q < p′

an(Bm
p , ℓ

m
p ) ≤ k(p, p′)m

1
p′ − 1

p .

For the case 1 < p < q′ ≤ 2 we have

an(Bm
p , ℓ

m
q ) ≤ l(p)m

1
q

− 1
p

for 1 < p < q ≤ 2, m− n ≤ m
2− 2

p

2 . Obviously for 1 < p < q ≤ 2

an(Bm
p , ℓ

m
q ) ≤ 1 ≤ (1 − n

m
)−1Ψ(m,n, p, q). (6.10)

Therefore, to conclude the proof it suffices for us to confine ourselves to the case when

1 < p < q ≤ 2 and m
2− 2

p

2 < m− n < 6
1

2
p −2m. Let

k =
[
(6(m− n)m

2
p

−2)
1

2
p −1

]
+ 1, n1 =

[
n

k

]
, m1 =

[
m

k

]
+ 1

Under our restrictions on m− n it follows that k < m− n and m1 − n1 <
m

2− 2
p

1
2 . Using

(6.10), we find that
an1(Bm1

p , B ℓm1
p ) ≤ l(p)m

1
q

− 1
p

1 .
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Finally, by (6.9) we have

an(Bm
p , ℓ

m
q ) ≤ dkn1(Bkm1

p , ℓkm1
q ) ≤ l(p)m

1
q

− 1
p

1

≤ l(p)2
1
q

− 1
p 6(m− n)m1− 2

pm
( 2

p
−2)( 1

p
− 1

q
)( 2

p
−1)

= l(p)2
1
q

− 1
p 6( 1

p
− 1

q
)( 2

p
−1)Ψ(m,n, p, q).

6.2 Computations of the asymptotic behaviour of Weyl numbers

Here we follow [35].

Theorem 6.2.1. Let 1 ≤ p ≤ q ≤ ∞. Then

xn(Idp,q) ≍


n

1
q

− 1
p , 1 ≤ p ≤ q ≤ 2

n
1
2 − 1

p , 1 ≤ p ≤ 2 ≤ q ≤ ∞

1 2 ≤ p ≤ q ≤ ∞

.

Proof. Let 2 ≤ p ≤ q ≤ ∞. From Theorem 4.3.5 an(Idp,q) = 1 for 1 < p ≤ q ≤ ∞ and
therefore xn(Idp,q) ≤ 1. On the other hand it clearly follows that ∥Idp,q∥ = 1 for p ≤ q.
Therefore in particular, since q ≥ 2, by the definition of Weyl numbers

xn(Idp,q) ≥ an(Idp,q) = 1.

Now, let 1 ≤ p ≤ q ≤ 2. From Theorem 4.1.10 we have that ∥Idp,q|Br,1∥ ≤ c with
1
r = 1

p − 1
q + 1

2 . From Theorem 4.1.8 it follows that, for 1
s = 1

r − 1
2 ,

∥Idp,q|Bs,2∥ ≤ ∥Idp,q|Br,1∥ ≤ c.

Since, for 2 ≤ p ≤ ∞, if T ∈ Bp,2 there holds (n+ 1)
1
pxn(T ) ≤ ∥T |Bp,2∥9. This leads us to

the upper bound
xn(Idp,q) ≲ n− 1

s = n
1
q

− 1
p .

Analogously, for 1 ≤ p ≤ 2 ≤ ∞, via ∥Idp,q|Bp,1∥ ≤ c, we obtain xn(Idp,q) ≲ n− 1
s = n

1
2 − 1

p .

To estimate from below recall the estimates obtained for the Gelfand numbers

cn(Id2n
2,q) ≳

n
1
q

− 1
2 , q ≤ 2,

1 q ≥ 2.

Moreover, we have already seen that, for p ≤ 2,
∥∥∥Id2n

2,p

∥∥∥ = (2n)
1
p

− 1
2 . This yields to, due to the

axioms of s-numbers and definition of Weyl numbers,

cn(Id2n
2,q) ≤ (2n)

1
p

− 1
2xn(Id2n

p,q) ≤ xn(Id2,q).
9More generally, if X ∈ BR(ℓ2, E) then for Y ∈ BR(ℓ2, F x) and for a positive ϵ consider an orthogonal

family fi ∈ ℓ2 to be constructed inductively, such that (1 + ϵ) ∥Y fn∥ ≥ cn(Y ). Then it follows that

(n + 1)
1
p cn(T X) ≤ (1 + ϵ) ∥T Xfk|ℓp({0, . . . , n})∥ ≤ (1 + ϵ) ∥T X|Bp,2∥ ≤ (1 + ϵ) ∥T |Bp,2∥ ∥X∥ .

The claim now follows from Corollary 3.3.2.
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It is a clear consequence of this proof that for 2n ≤ m

xn(Idm
p,q) ≍


n

1
q

− 1
p , 1 ≤ p ≤ q ≤ 2,

n
1
2 − 1

p , 1 ≤ p ≤ 2 ≤ q ≤ ∞,

1 2 ≤ p ≤ q ≤ ∞.

For the case p > q we require an interpolation theorem, which was first observed in [10,
p. 212]. It is a quick consequence of the classic interpolation theorem between ℓp spaces.

Lemma 6.2.2. For 0 < θ < 1 there holds:∥∥∥Idm
p,q|Br,2

∥∥∥ ≤
∥∥∥Idm

p,q1 |Br1,2
∥∥∥θ ∥∥∥Idm

p,q2 |Br2,2
∥∥∥1−θ

,

with 1
r = θ

r1
+ 1−θ

r2
and 1

q = θ
q1

+ 1−θ
q2

.

Theorem 6.2.3. 1.
∥∥∥Idn

p,q|B2,2
∥∥∥ = n

1
q for 1 ≤ q ≤ 2 ≤ p ≤ ∞.

2.
∥∥∥Idn

p,q|Br,2
∥∥∥ ≤ n

1
r for 2 ≤ q < p ≤ ∞ and 1

r =
1
q

− 1
p

1− 2
p

.

Proof. The first claim is directly adapted from [39, p. 309]. By definition B2,2 = B2. Thus,
since

∥∥∥Idn
∞,2|B2

∥∥∥ =
√
n and

∥∥∥Idn
p,q|B2

∥∥∥ ≤
∥∥∥Idn

p,∞

∥∥∥ ∥∥∥Idn
∞,2|B2

∥∥∥ ∥∥∥Idn
2,q

∥∥∥ = n
− 1

pn
1
2n

1
q

− 1
2 = n

1
q

− 1
p ,

it follows that
∥∥∥Idn

p,q|B2
∥∥∥ ≤ n

1
q , since 1 ≤ q ≤ 2 ≤ p.

The second claim is a consequence of the previous lemma together with the first claim.
Indeed, set θ =

1
q

− 1
p

1
2 − 1

p

, then we can write 1
q = θ

2 + 1−θ
p and 1

r = θ
2 . Thus, using Lemma 6.2.2 we

have ∥∥∥Idm
p,q|Br,2

∥∥∥ ≤
∥∥∥Idm

p,2|B2,2
∥∥∥θ ∥∥∥Idm

p,p|B∞,2
∥∥∥1−θ

= m
θ
2 = m

1
r .

As a consequence of
∥∥∥Idm

p,q

∥∥∥ = m
1
q

− 1
p , Theorem 6.2.3 and Lemma 4.1.5 we obtain

Corollary 6.2.4. For 1 ≤ q < p ≤ ∞:
1. xn(Id : ℓmp → ℓmq ) ≤ m

1
q

− 1
p , 1 ≤ q < p ≤ ∞;

2. xn(Id : ℓmp → ℓmq ) ≲ m
1
qn− 1

2 , 1 ≤ q ≤ 2 < p ≤ ∞;

3. xn(Id : ℓmp → ℓmq ) ≲
(

m
n

) 1
r , 2 ≤ q < p ≤ ∞, 1

r =
1
q

− 1
p

1− 2
p

.

Moreover, it follows that if 2n ≤ m, then it follows for 1 ≤ q < p ≤ 2

xn(ℓmp → ℓmq ) ≥ x[ m
2 ](Id : ℓmp → ℓmq ) ≳

c[ m
2 ](Id : ℓm2 → ℓmq )∥∥∥Id : ℓm2 → ℓmp

∥∥∥ ≳ m
1
q

− 1
p .
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6.3 Computations of the asymptotic behaviour of Hilbert numbers

The following results were taken from [24]. From the complete regularity of Hilbert
numbers, it suffices to consider the case 1 ≤ p′ ≤ q ≤ ∞. Let k ≤ m be natural numbers and
let tij(ω) with i = 1, . . . ,m and j = 1, . . . , k be a system of independent, mean-zero random
variables on some probability space (Ω, µ) taking values +1 and −1 only. Let T (ω) be the
matrix (tij(ω)). The following result is found in [5].

Lemma 6.3.1. Let 2 ≤ u < ∞. Then there exists a constant c = c(u) ≥ 1 such that for all
natural numbers k and m with k ≤ m,

µ
(
{ω ∈ Ω :

∥∥∥T (ω) : ℓk2 → ℓmu

∥∥∥ ≤ cmax(m
1
u , k

1
2 )}
)
> 1 − e−2k.

Proof. Step 1: Let (Xj)n
j=1 be independent, mean-zero random variables with |Xj | ≤ 1 for

all j; then for any λ > 0 and real b1, . . . bn

µ

 n∑
j=1

bjXj ≥ λ

 ≤ 2e
(

− λ2
4
∑n

j=1 b2
j

)
.

To see this first observe that ex − x ≤ ex2 . Then for any real m

E
[
em∗Xj

]
= E

[
em∗Xj −m∗Xj

]
≤ E

[
e(m∗)2X2

j

]
≤ e(m∗)2

.

The independence of Xj leads to E
[
e

m∗
∑n

j=1 bjXj

]
≤ e

(m∗)2
∑n

j=1 b2
j . A routine application of

Chebyshev’s inequality yields

µ

 n∑
j=1

bjXj ≥ λ

 ≤ e
(m∗)2

∑n

j=1 b2
j −λm∗

,

for any m∗ > 0. The claim follows by taking m∗ = λ
2
∑n

j=1 b
2
j .

Step 2: For each q ≥ 2, there is a constant C depending only on q, so that if (Xj)n
j=1 satisfy

the assumptions of the previous step, then

E

[
e

m∗
∣∣∣∑n

j=1 bjXj

∣∣∣q] ≤ 1 + Cm∗

 n∑
j=1

b2
j


q
2

for 0 ≤ m∗ ≤
(∑n

j=1 b
2
j

)− q
2 n1− q

2
8 .

To see this, we assume without loss of generality that ∑n
j=1 b

2
j = 1. As application of

integration by parts

E

[
e

m∗
∣∣∣∑n

j=1 bjXj

∣∣∣q] =
∫ ∞

0
em∗λq

dµ

∣∣∣∣∣∣
n∑

j=1
bjXj

∣∣∣∣∣∣ ≤ λ


= 1 +

∫ ∞

0
qm∗λq−1em∗λq

µ

∣∣∣∣∣∣
n∑

j=1
bjXj

∣∣∣∣∣∣ > λ

 dλ.
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Since
∣∣∣∑n

j=1 bjXj

∣∣∣ ≤
(∑n

j=1 b
2
j

) 1
2 √

n, it follows µ
(∣∣∣∑n

j=1 bjXj

∣∣∣ > √
n
)

= 0. Now, the previous
step allows to write

E

[
e

m∗
∣∣∣∑n

j=1 bjXj

∣∣∣q] ≤ 1 + 2qm∗
∫ √

n

0
λq−1e

(
m∗λq− λ2

4

)
dλ

= 1 + 2qm∗
∫ ∞

0
λq−1e

(
m∗λq− λ2

8

)
dλ,

since 0 ≤ m∗ ≤ n1− q
2

8 . The claim follows by taking

C = 2q
∫ ∞

0
λq−1e

(
− λ2

8

)
dλ = 8

q
2 Γ
(
q

2

)
.

Step 3: Fix q ≥ 2 and suppose that tij are independent random variables satisfying the
hypotheses of the first step. Given real xj we obtain estimates on the probability distribution
for the random variable

Y =
∑m

i=1

∣∣∣∑n
j=1 xjtij

∣∣∣(∑n
j=1 x

2
j

) 1
2

.

Indeed, considering the constant C obtained in the previous step, for any λ ∈ R and positive
integers m,n there holds

µ
(
Y ≥ Cm+ 8λn

q
2
)

≤ e−λn.

For a real m∗ we set K(m∗) = logE[em∗Y ] so that E[em∗Y −K(m∗)] = 1. From Chebyshev’s
inequality, for any real ν we have

µ(m∗Y ≥ K(m∗) + ν) ≤ e−ν .

On the other hand, from the second step we have for 0 ≤ m∗ ≤ n1− q
2

8 ,

E
[
em∗Y

]
=

m∏
i=1

[
E

[
e

m∗
∣∣∣∑n

j=1 bjtij

∣∣∣q]] ≤
m∏

i=1
(1 +m∗C) ≤ emCm∗

where bj = xj(∑n

j=1 x2
j

) 1
2

so that K(m∗) ≤ mCm∗. Setting ν = λn and m∗ = n1− q
2

8 , the claim

follows.
Step 4: Denote ∥T∥2,q = sup∥x∥2=1

(
∥Ax∥q

)
. Then, there are constants c1, c2 such that for

all λ > 0,
µ
(
∥T∥2,q ≥ c1(m+ λn

q
2 )

1
q

)
≤ e−(λ−c2)n.

Fix 0 < ϵ < 1 and denote by N an ϵ-net for the unit n-sphere, S 10. Put c1 = (max(C,8))
1
q

1−ϵ .
10by an ϵ-net for the unit n-sphere (with respect to the ℓ2 norm), S, we mean a finite subset, N , of S for

which supx∈S infy∈N ∥x − y∥2 < ϵ. Since

∥T ∥2,q = sup
x∈S

(
∥T x∥q

)
≤ max

y∈N
∥T x∥q + sup

x∈S

min
y∈N

(
∥T (x − y)∥q

)
it follows ∥T ∥2,q ≤ 1

1−ϵ
maxy∈N ∥T x∥q.
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Then

µ
(
∥T∥2,q ≥ c1(m+ λn

q
2 )

1
q

)
≤ µ

(
max
y∈N

∥Tx∥q ≥ (Cm+ 8λn
q
2 )

1
q

)
≤
∑
y∈N

e−λn = |N |e−λn

by the third step. Clearly one may choose |N | ≤ ec2n with c2 t depending only on ϵ.
Step 5: Let k = cq

1(m+ c2n
q
2 ). As a consequence of Jensen’s inequality(

E
[
∥T∥2,q

])q
≤ E

[(
∥T∥2,q

)q]
=
∫ ∞

0
µ
[(

∥T∥2,q

)q
≥ x

]
dx

≤ k +
∫ ∞

k
µ
[
∥T∥2,q ≥ x

1
q

]
dx

≤ k +
∫ ∞

k
e

−n1− q
2
(

x

c
q
1

−m

)
+c2n

dx

= cq
1

(
m+ c2n

q
2 + n

q
2 −1

)
from which the desired result immediately follows.

Note that in the case u = ∞ we obviously have
∥∥∥T (ω) : ℓk2 → ℓm∞

∥∥∥ ≤ k
1
2 for all ω. We need

norm-estimates in different spaces simultaneously. They are given in the following lemma
which is an immediate consequence of the previous result.

Lemma 6.3.2. Let 1 ≤ v ≤ 2 ≤ u ≤ ∞. Then there exists a constant c = c(u, v) ≤ 1 such
that for all k ≤ m there is a matrix T = (tij)m,k with |tij | = 1 satisfying∥∥∥T (ω) : ℓk2 → ℓmu

∥∥∥ ≤ cmax(m
1
u , k

1
2 ),∥∥∥T (ω) : ℓk2 → ℓmv′

∥∥∥ ≤ cmax(m
1
v′ , k

1
2 ),∥∥∥T (ω) : ℓk2 → ℓm2

∥∥∥ ≤ cm
1
2 .

Lemma 6.3.3. Let k ≤ m and let T = (tij)m,k be a matrix satisfying |tij | = 1 and∥∥∥T (ω) : ℓk2 → ℓm2

∥∥∥ ≤ cm
1
2 for some real number c ≤ 1. Then

an(T : ℓk2 → ℓm2 ) ≥ 2− 1
2m

1
2

for all n ≤ k
2c2 .

Proof. Consider the composition ℓk2
T→ ℓm2

T ∗
→ ℓk2. It follows that trace(T ∗T ) = mk11. Therefore,

denoting the eigenvalues of the operator T ∗T by λj(T ∗T ), by Theorem 3.1.6 we have

mk =
k∑

j=1
λj(T ∗T ) =

k∑
j=1

a2
j (T ) =

n−1∑
j=1

a2
j (T ) +

k∑
j=n

a2
j (T )

≤ (n− 1) ∥T∥2 + (k − n+ 1)a2
n(T ) ≤ (n− 1)c2m+ ka2

n(T ).

11because T ∗T is a km × km matrix with ones in the diagonal
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By hypothesis n ≤ k
2c2 which allows us to obtain the bound

an(T ) ≥

√
m

(
1 − (n− 1) c

2

k

)
≥
√
m

2 .

Proposition 6.3.4. 1. Let 2 ≤ v′ ≤ u ≤ ∞. Then there exists a constant c1(u, v) > 0
such that

hn(I : ℓmu → ℓmv ) ≥ c1(u, v)


m

1
v

− 1
u for 1 ≤ n ≤ m

2
u ,

m
1
vn− 1

2 for m 2
u ≤ n ≤ m

2
v′ ,

mn−1 for m
2
v′ ≤ n ≤ m.

2. Let 2 ≤ u, v ≤ ∞. Then there exists a constant c2(u, v) > 0 such that

hn(I : ℓmu → ℓmv ) ≥ c2(u, v)

m
1
v

− 1
u for 1 ≤ n ≤ m

2
u ,

m
1
vn− 1

2 for m 2
u ≤ n ≤ m.

Proof. (1) Let c(u, v) ≥ 1 be the constant appearing in Lemma 6.3.2. The case n ≥ m
2c2 follows

easily from the relation

1 = hn(I : ℓm2 → ℓm2 ) ≤ hn(I : ℓmu → ℓmv ).

Let now n < m
2c2 . Let T be the matrix as in Lemma 6.3.2. We take k = [2c2n] + 1 and consider

ℓk2
T→ ℓmu

I→ ℓmv
T ∗
→ ℓk2.

By Lemma 6.3.3 we have

an(T ∗IT ) = λn(T ∗T ) = an(T )2 ≥ m

2 .

It follows that

hn(I : ℓmu → ℓmv ) ≥ m

2
∥∥T : ℓk2 → ℓmu

∥∥ ∥∥T : ℓk2 → ℓmv′
∥∥ ≥ m

2c2 max(m 1
u , k

1
2 ) max(m

1
v′ , k

1
2 )

≥ m

6c4 max(m 1
u , n

1
2 ) max(m

1
v′ , n

1
2 )

(2) Let c = c2(u, 2) ≥ 1 be the constant in Lemma 6.3.2. Using the relation

hn(I : ℓmu → ℓmv ) ≥ m
1
v

− 1
2

the case n ≥ m
2c2 is again easily verified. We put k = [2c2n] + 1 and consider

ℓk2
T→ ℓmu

I→ ℓmv
I→ ℓm2 .

where T is the matrix in Lemma 6.3.2. This together with Lemma 6.3.3 yields the estimates

hn(I : ℓmu → ℓmv ) ≥
√
m

√
2cmax(m 1

u , k
1
2 )m 1

2 − 1
v

≥ m
1
v

√
6c2 max(m 1

u , n
1
2 )m 1

2 − 1
v

.
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Together with the estimates obtained in [9] we can write the following Theorem.

Theorem 6.3.5. Let 1 ≤ u′ ≤ v ≤ ∞. Then, for all n ≤ m, there holds

hn(I : ℓmu → ℓmv ) ≍ Φ(n,m, u, v),

where

Φ(n,m, u, v) =


min(m 1

v
− 1

u ,m
1
vn− 1

2 ,mn−1) for 1 ≤ u′ ≤ v ≤ 2,

min(m 1
v

− 1
u ,m

1
vn− 1

2 ) for 2 ≤ v ≤ u ≤ ∞,

n
1
v

− 1
u for 2 ≤ u′ ≤ v ≤ ∞.
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