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ABSTRACT
In this paper a necessary and sufficient condition for hyperbolicity of the indefinite
numerical range is established. As a consequence, an indefinite version of Brown-
Spitkovsky theorem stating the ellipticity of the numerical range of certain tridiago-
nal matrices is revisited. This result leads to necessary and sufficient conditions for
hyperbolicity of indefinite numerical ranges of new classes of tridiagonal matrices.
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1. Introduction

Let Mn stand for the associative algebra of n × n complex matrices and In be its
identity matrix.

We consider the complex vector space Cn with the Krein space structure induced
by the indefinite inner product [x, y] = y∗J x, for x, y ∈ Cn, where J = Ir⊕−In−r and
0 < r < n. The indefinite numerical range (INR) of A ∈ Mn is denoted and defined
by

W J(A) =

{
[Au, u]

[u, u]
: u ∈ Cn, [u, u] 6= 0

}
.

This set is the union of the two sets

W J
+(A) =

{
[Au, u]

[u, u]
: u ∈ Cn, [u, u] > 0

}
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and

W J
−(A) =

{
[Au, u]

[u, u]
: u ∈ Cn, [u, u] < 0

}
.

Obviously, W J
−(A) = −W−J+ (A) and W J(A) is a singleton if and only if A is a scalar

matrix [1]. If J = In, then W J(A) = W J
+(A) reduces to the well-known (classical)

numerical range W (A). It is well-known that W (A) contains σ(A), the spectrum of
A, and it is a convex set, as asserted by the Toeplitz-Hausdorff Theorem [2,3]. The set
W J(A) is pseudo-convex, that is, for any pair of distinct given points x, y ∈ W J(A),
either W J(A) contains the closed line segment {tx+ (1− t)y : 0 ≤ t ≤ 1} or W J(A)
contains the half-lines {tx+ (1− t)y : t ≤ 0 or t ≥ 1}.

A supporting line of a convex set S ⊂ C is a line containing a boundary point of S
and defining two half-planes, such that one of them does not contain S. The supporting
lines of W J(A) are by definition the supporting lines of the convex sets W J

+(A) and
W J
−(A). A boundary point of W J

±(A) belonging to more than one of its supporting
lines is called a corner of W J

±(A). The corners of W J(A) are closely related to the
eigenvalues of A. In fact, if z0 ∈ W J

±(A) is a corner of the set W J(A), then z0 is an
eigenvalue of A with associated eigenvector x, such that [x, x] = ±1 [4].

The adjoint of the matrix A ∈ Mn in this Krein space structure is the matrix
A# = JA∗J and A is called J-Hermitian if A = A#. Considering

<J(A) =
A+A#

2
and =J(A) =

A−A#

2i
,

we have A = <J(A)+i=J(A). We easily see that the orthogonal projections of W J(A)
into the real and imaginary axes are W J(<J(A)) and W J(=J(A)), respectively.

For A ∈ Mn and each angle θ ∈ R, let Hθ(A) = <J(e−iθA). The characteristic
polynomial of the matrix Hθ(A), given by

pθ(z) = det(<J(A) cos θ + =J(A) sin θ − zIn),

plays an important role in the study of W J(A). Having this in mind, this polynomial
will be called INR generating polynomial. To a matrix A ∈Mn, through the equation

det(<J(A)u+ =J(A)v + wIn) = 0,

it is associated a class n algebraic curve in homogeneous line coordinates, called the
boundary generating curve of W J(A). The supporting lines of W J(A) are generating
elements of this curve. Its real part, denoted by CJ(A), generates the set W J(A) as its
pseudo-convex hull, which is obtained in the following way: for any two points x, y in
the boundary generating curve, take the line segment defined by them if [x, x][y, y] > 0
and the two rays {tx+ (1− t)y : t ≤ 0 or t ≥ 1} if [x, x][y, y] < 0 (see e.g. [5] for more
details).

The Hyperbolical Range Theorem [5] characterizes W J(A) in the case n = 2 and
states the following: for J = diag(1,−1), the set W J(A) is bounded by a non-
degenerate hyperbola with foci at λ1, λ2, the eigenvalues of A, transverse and non-
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transverse axes of length(
Tr(A#A)− 2<(λ1λ̄2)

) 1

2

and
(
|λ1|2 + |λ2|2 − Tr(A#A)

) 1

2

,

respectively, if and only if 2<(λ̄1λ2) < Tr(A#A) < |λ1|2 + |λ2|2. For the degenerate
cases, W J(A) may be a singleton, a line, a line except a point or except an open line
segment, the whole complex plane or the complex plane except a line.

Hyperbolical shape of W J(A) persists in certain cases independently of the size of
A. Our main goal is to investigate classes of matrices with an hyperbolical indefinite
numerical range. The counterpart of the Hyperbolical Range Theorem in the context
of the classical numerical range is the Elliptical Range Theorem. Several papers have
been published, identifying classes of matrices with W (A) being an elliptical disc (for
details we refer to [6–9] and references therein). So, the present study also deserves
attention.

The remaining of this note is organized as follows. In Section 2, a criterium for (no
degenerate) hyperbolicity of W J(A) is stated, being the degeneracy into two half-lines
also studied. Corollaries for matrices of order 2 useful in subsequent discussions are
presented. In Section 3, we revisit an indefinite version of the well known elliptical
range theorem due to Brown and Spitkowsky. This result leads to the characterization
of new classes of tridiagonal matrices with hyperbolical INR. Illustrative examples of
the obtained results are presented. In Section 4, final notes are given.

2. Criterium for hyperbolicity of W J(A)

For A ∈Mn, we will be repeatedly using the following properties:

(i) W J(αA+ βIn)= αW J(A) + β for any α, β ∈ C;
(ii) W J(A) is J-unitarily invariant: W J(U#AU) =W J(A) for any U ∈ Mn J-uni-

tary, that is, satisfying U#U = In.

The matrix

Hθ(A) = <J(A) cos θ + =J(A) sin θ, θ ∈ R, (1)

is J-Hermitian, and so its eigenvalues are real or occur in complex conjugate pairs
[10]. It is known that if Hθ(A) has non-real eigenvalues, then W J(Hθ(A)) is the whole
real line [11, Proposition 2.1]. To avoid this trivial case, we consider the case when all
its eigenvalues are real. In fact, we easily see that if W J(A) has a supporting line in
the direction perpendicular to the angle θ, then the eigenvalues of the matrix Hθ(A)
are all real. In this setup, let us define

σJ±(Hθ(A)) := {λ ∈ R : ∃x ∈ Cn, [x, x] = ±1, Hθ(A)x = λx},

such that

σJ+
(
Hθ(A)

)
= {λ1(θ), . . . , λr(θ) : λ1(θ) ≥ · · · ≥ λr(θ)} (2)

3



and

σJ−
(
Hθ(A)

)
= {λr+1(θ), . . . , λn(θ) : λr+1(θ) ≥ · · · ≥ λn(θ)}. (3)

We will be concerned with the class J of matrices Hθ(A) with real eigenvalues, satis-
fying (2) and (3), that do not interlace, that is, either

λr(θ) > λr+1(θ) (4)

or

λn(θ) > λ1(θ). (5)

Notice that if the eigenvalues of Hθ(A) interlace, then W J(Hθ(A)) is the whole real
line. If W J(Hθ(A)) has a corner point belonging to W J

±(Hθ(A)), then it is an extremum
eigenvalue in σJ±(Hθ(A)).

For simplicity, let ΩA = (η, ξ) be an interval, with greatest possible diameter, of
angles θ, such that Hθ(A) ∈ J . For θ ∈ ΩA, the maximal eigenvalue in σJ−(Hθ(A))
and the minimal eigenvalue in σJ+

(
Hθ(A)

)
if (4) holds are denoted by λL

(
Hθ(A)

)
and λR

(
Hθ(A)

)
, respectively; analougously, the maximal eigenvalue in σJ+(Hθ(A))

and the minimal eigenvalue in σJ−
(
Hθ(A)

)
if (5) holds are denoted by λL

(
Hθ(A)

)
and

λR
(
Hθ(A)

)
, respectively. Without loss of generality, we may assume that (4) holds.

Chien et al. [6, Theorem 1] presented a criterium for the classical numerical range
of a matrix to be an elliptical disc. In the context of Krein spaces, we give a criterium
for hyperbolicity of the boundary of W J(A).

Theorem 2.1. Let ã, b̃ > 0, J = Ir⊕−In−r, 0 < r < n, and A ∈Mn. The set W J(A)
is bounded by the non-degenerate hyperbola centered at the origin, with horizontal
transverse and vertical non-transverse semi-axes of lengths ã and b̃, respectively, if
and only if

λR
(
Hθ(A)

)
=
(
ã2 − c̃2 sin2 θ

) 1

2 and λL
(
Hθ(A)

)
= −

(
ã2 − c̃2 sin2 θ

) 1

2 , (6)

where c̃2 = ã2 + b̃2, for all θ ∈ ΩA = (−θ0, θ0) with θ0 = arctan(ã/b̃).

Proof. (⇐) By hypothesis, for θ ∈ ΩA, we have Hθ(A) ∈ J , that is, the eigenva-
lues λ1(θ), . . . , λn(θ) of the J-Hermitian matrix Hθ(A) are all real, satisfying (2) and
(3), and do not interlace. Without loss of generality, we may suppose that (4) holds,
namely

λR
(
Hθ(A)

)
∈ σJ+(Hθ(A)) and λL

(
Hθ(A)

)
∈ σJ−(Hθ(A)),

so that

λn(θ) ≤ · · · ≤ λr+1(θ) = λL
(
Hθ(A)

)
< 0 < λR

(
Hθ(A)

)
= λr(θ) ≤ · · · ≤ λ1(θ).

In this case, the equation of the supporting line of W J
+(A) perpendicular to the direc-

tion θ is

x cos θ + y sin θ = λr(θ), (7)
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This is a supporting line of W J
+(e−iθA), because W J

+(A) = eiθW J
+(e−iθA). The enve-

lope of this family of supporting lines, with θ ranging over ΩA, gives the boundary of
W J

+(A). To compute this envelope, note that it has parametric equations given by{
x = λr(θ) cos θ − λ′r(θ) sin θ
y = λr(θ) sin θ + λ′r(θ) cos θ

.

Hence,

x =
ã2 (1 + cos 2θ)

1

2(
2ã2 − c̃2(1− cos 2θ)

) 1

2

and y2 =
(ã2 − c̃2)2 (1− cos 2θ)

2ã2 − c̃2(1− cos 2θ)
. (8)

For θ ∈ ΩA, it is clear that

2ã2 − c̃2(1− cos 2θ) = 2(ã2 − c̃2 sin2 θ) = 2λ2r(θ) > 0.

Solving the right hand side equation in (8), with respect to cos 2θ, we obtain

cos 2θ =

(
ã2 − c̃2

)2
+
(
c̃2 − 2ã2

)
y2

(ã2 − c̃2)2 + c̃2y2
. (9)

We remark that
(
ã2 − c̃2

)2
+ c̃2y2 6= 0, since c̃2 = ã2 + b̃2 and ã, b̃ > 0, by hypothesis.

Replacing (9) into the left hand side equation of (8), yields

x = ã

(
y2

c̃2 − ã2
+ 1

)1

2

,

the right branch of an hyperbola, representing the boundary of the set W J
+(A). Analo-

gously, we conclude that W J
−(A) is bounded by the left branch of the hyperbola, that

is, in this case, W J
−(A) = −W J

+(A). Hence, the boundary of W J(A) is defined by

x2

ã2
− y2

c̃2 − ã2
= 1

and the result follows.

(⇒) Let W J(A) be bounded by the hyperbola centered at the origin, with horizontal

transverse semi-axis of length ã and vertical non-transverse semi-axis of length b̃, that
is, defined by the equation:

x2

ã2
− y2

b̃2
= 1. (10)

Consider a supporting line of W J(A), which is perpendicular to the direction of
argument θ and tangent to one of the branches of this hyperbola.

If the eigenvalues of Hθ(A) are not all real, then W J(Hθ(A)) is the whole real line
[11, Proposition 2.1] and we would have a contradiction. We conclude that Hθ(A) has
only real eigenvalues. If the eigenvalues of Hθ(A) are all real and interlace, then by
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the pseudo-convexity of the J-numerical range, the set W J(Hθ(A)) is the whole real
line and we would have a contradiction too. Hence, we may conclude that Hθ(A) ∈ J .

Without loss of generality, suppose that W J
+(A) is bounded by the right branch of

the hyperbola (10). The tangent lines to this branch of the hyperbola include x = ã
and those with non-zero slope mθ = tan θ′, θ′ = π/2 + θ, that is,

y = mθ x+ dθ (11)

for θ ∈ ΩA = (−θ0, θ0), with θ0 = arctan(ã/b̃). By the tangency condition, we have

ã2m2
θ − b̃2 = d2θ > 0. Then

dθ = ±
(
ã2m2

θ − b̃2
) 1

2

and |mθ| > b̃/ã. The point of the right branch of the hyperbola where the tangent line
has the slope mθ is given by

(
xθ, yθ

)
=

(
ã2|mθ|
|dθ|

,− b̃
2

dθ

)
. (12)

Since W J
+(Hθ(A)) is a closed real half-line, its extreme point is a corner of this set, con-

sequently, it is the minimal eigenvalue in σJ+
(
Hθ(A)

)
, which we denoted by λR

(
Hθ(A)

)
.

Clearly, λR
(
Hθ(A)

)
= ã if θ = 0 and the distance of the origin to the tangent line

(11), passing through the point (12), is given by

|dθ|(
m2
θ + 1

) 1

2

=

(
ã2m2

θ − b̃2

m2
θ + 1

)1

2

=
(
ã2 − (ã2 + b̃2) cos2 θ′

) 1

2

=
(
ã2 − c̃2 sin2 θ

) 1

2 ,

that is, λR
(
Hθ(A)

)
=
(
ã2 − c̃2 sin2 θ

) 1

2 for all θ ∈ ΩA. In this case, W J
−(A) = −W J

+(A)
is bounded by the left branch of the hyperbola and the result follows.

The variant of Theorem 2.1 corresponding to the case ã > 0 and b̃ = 0 is as follows.

Corollary 2.2. Let ã > 0, J = Ir ⊕ −In−r, 0 < r < n, and A ∈ Mn. We have
W J(A) = (−∞,−ã ] ∪ [ ã,+∞) if and only if

λR
(
Hθ(A)

)
= ã cos θ and λL

(
Hθ(A)

)
= −ã cos θ

for all θ ∈ ΩA =
(
−π

2 ,
π
2

)
.

Proof. (⇐) Analogously to the proof of Theorem 2.1, we may supppose that (4) holds.
Then the envelope of the family of supporting lines (7) of W J

+(A), with θ ranging over
ΩA =

(
−π

2 ,
π
2

)
is given by x = ã and y = 0. Since W J

−(A) = −W J
+(A), the result

follows using the fact that W J(A) is a pseudo-convex set.
(⇒) This implication is obvious.
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Now, let J = diag(1,−1). For any A = (aij) ∈M2, we have

A = eiα
[
a b
c −a

]
+

1

2
Tr(A) I2,

considering

a =
1

2

∣∣Tr(JA)
∣∣, b = a12e

−iα, c = a21e
−iα, α = arg Tr(JA). (13)

By property (i), W J(A) may be obtained from the J-numerical range of a matrix of
type

Ã =

[
a b
c −a

]
, a ≥ 0, b, c ∈ C. (14)

We set

M = 2|a2 + bc| − 2a2 + |b|2 + |c|2, N = 2|a2 + bc|+ 2a2 − |b|2 − |c|2. (15)

We start with a technical proposition on the eigenvalues and eigenvectors of Hθ(Aφ)

for Aφ = e−iφÃ and φ = 1
2arg

(
a2 + bc

)
, useful in future discussions. Throughout, we

may assume that (14) is nonsingular (cf. Remark 1).

Proposition 2.3. Let J = diag(1,−1), A be of type (14), φ = 1
2arg

(
a2 + bc

)
and

Aφ = e−iφA. Let M,N be defined as in (15). For each θ ∈ R, the eigenvalues of
Hθ(Aφ) are given by

λ±(θ) = ±1

2

(
N − (M +N) sin2 θ

) 1

2 . (16)

If N > 0, then λ±(θ) are simple eigenvalues, with associated eigenvectors u±(θ),
satisfying

[u−(θ), u−(θ)][u+(θ), u+(θ)] < 0

and Hθ(Aφ) ∈ J , for all θ ∈ (−θ0, θ0) with

θ0 =

{
arctan(N/M)

1

2 , M > 0
π/2, M = 0

.

If N ≤ 0, then Hθ(Aφ) 6∈ J , for all θ ∈ R.

Proof. Consider φ = 1
2arg

(
a2 + bc

)
and the rotated matrix Aφ = e−iφA. Let θ ∈ R.

Then Hθ(Aφ) is given by

<J
(
e−i(θ+φ)A

)
=

[
a cos(θ + φ) 1

2

(
be−i(θ+φ) − cei(θ+φ)

)
1
2

(
ce−i(θ+φ) − bei(θ+φ)

)
−a cos(θ + φ)

]
.
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The INR generating polynomial of Aφ is equal to

pθ(λ) = λ2 − 2a2 cos(2(θ + φ)) + bc e−2i(θ+φ) + bc e2i(θ+φ) + 2a2 − |b|2 − |c|2

4
.

Then the zeros of the characteristic polynomial of Hθ(Aφ) are obtained as

λ±(θ) = ±1

2

(
4a2 cos2(θ + φ)− |b|2 − |c|2 + 2<(bc e−2i(θ+φ))

) 1

2

. (17)

We have

2a2 cos(2(θ + φ)) + bc e−2i(θ+φ) + bc e2i(θ+φ)

=
(
2a2 + bc+ bc

)
cos(2(θ + φ))− i

(
bc− bc

)
sin(2(θ + φ))

= 2<
(
a2 + bc

)
cos(2(θ + φ)) + 2=

(
a2 + bc

)
sin(2(θ + φ))

= 2
∣∣a2 + bc

∣∣ cos(2φ) cos(2(θ + φ)) + 2
∣∣a2 + bc

∣∣ sin(2φ) sin(2(θ + φ))

= 2
∣∣a2 + bc

∣∣ cos(2θ),

using trivial trigonometric transformations. Then (17) is equivalent to

λ±(θ) = ±1

2

(
2
∣∣a2 + bc

∣∣ cos(2θ) + 2a2 − |b|2 − |c|2
) 1

2

and (16) holds, because

2|a2 + bc| cos(2θ) + 2a2 − |b|2 − |c|2 = N − 4|a2 + bc| sin2 θ

= N − (M +N) sin2 θ.

If N > 0, then

g(θ) = N − (M +N) sin2 θ

is a continuous even function, which has a maximum given by N attained at θ = 0
and a minimum given by −M attained at π/2. Then there exists an interval (−θ0, θ0),
such that g(θ) > 0 for θ ∈ (−θ0, θ0) and g(±θ0) = 0. In fact, for M > 0, we have
g(θ0) = 0 if and only if

sin2 θ0 = N/(M +N) ⇔ tan2 θ0 = N/M ⇔ θ0 = arctan(N/M)
1

2 .

Obviously, if M = 0, then θ0 = π/2. Hence, for θ in this interval (−θ0, θ0), the
eigenvalues of Hθ(Aφ) are real and distinct.

Consider θ ∈ (−θ0, θ0). If Hθ(Aφ) becomes a non-zero diagonal matrix, then
(1, 0), (0, 1) are eigenvectors of Hθ(Aφ) associated to the real eigenvalues

λ±(θ) = ±a cos(θ + φ) 6= 0.
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If Hθ(Aφ) is not a diagonal matrix, then it has eigenvectors associated to the eigen-
values λ±(θ) given by

u±(θ) =
(
a cos(θ + φ) + λ±(θ),

(
ce−i(θ+φ) − bei(θ+φ)

)
/2
)

and λ±(θ) differ from the main diagonal entries of Hθ(Aφ). Hence,

0 < λ+(θ) ≤ 1

2

(
4a2 cos2(θ + φ)− (|b| − |c|)2

) 1

2 ≤ a | cos(θ + φ)|

and one of the two inequalities in the above chain of inequalities must be strict. Under
this hypothesis, we have(

λ+(θ)− a cos(θ + φ)
)(
λ+(θ) + a cos(θ + φ)

)
< 0

and the corresponding eigenvectors satisfy

[u+(θ), u+(θ)] =
(
λ+(θ) + a cos(θ + φ)

)2 − |b|2 + |c|2

4
+

1

2
<
(
bc e−2i(θ+φ)

)
= 2λ+(θ)

(
λ+(θ) + a cos(θ + φ)

)
6= 0.

Analogously, [u−(θ), u−(θ)] 6= 0. We easily see that [u−(θ), u−(θ)] and [u+(θ), u+(θ)]
have opposite signs. Therefore, one of the eigenvalues λ±(θ) belongs to σJ+ (Hθ(Aφ))
and the other belongs to σJ− (Hθ(Aφ)), that is, we conclude that Hθ(Aφ) ∈ J .

The previous cases imply that a 6= 0 and θ 6= π
2 − φ+ kπ, k ∈ Z.

If N ≤ 0, then λ±(θ) ∈ iR and so Hθ(Aφ) /∈ J , for any θ ∈ R.

Remark 1. If A ∈M2 is non-zero singular of type (14), then a2 = |bc|, which yields

N = −(|b| − |c|)2 = −M < 0.

Indeed, the case N = 0 would give σ
(
Hθ(A)

)
= {0} for all θ ∈ R, that is, A = O.

From N = −M < 0 and (16), we get σ
(
Hθ(A)

)
⊂ iR \ {0}. By [11, Proposition 2.1],

we have W J
(
Hθ(A)

)
= R for all θ ∈ R. In this case, W J(A) = C.

Now, the non-degenerate case of the Hyperbolical Range Theorem for nonsingular
matrices of type (14) is easily derived.

Theorem 2.4. Let J = diag(1,−1), A ∈ M2 be of the form (14) and let M,N be
defined as in (15). The set W J(A) is bounded by the non-degenerate hyperbola centered
at the origin, with foci at the eigenvalues of A,

±
(
a2 + bc

) 1

2 , (18)

whose lengths of the transverse and the non-transverse axes are N
1

2 and M
1

2 , respec-
tively, if and only if M > 0 and N > 0.

Proof. (⇐) Suppose that M > 0 and N > 0. Thus, the eigenvalues of A in (18) are
not equal. Let φ = 1

2arg
(
a2 + bc

)
and consider the rotated matrix Aφ = e−iφA. Since

σ(Aφ) = e−iφσ(A), the eigenvalues of Aφ are real and simple, given by ±|a2 + bc|
1

2 .
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By Proposition 2.3, the eigenvalues of Hθ(Aφ) are given by (16) and Hθ(Aφ) ∈ J ,

for all θ ∈ (−θ0, θ0), with θ0 = arctan(N/M)
1

2 . Clearly, H±θ0(Aφ) 6∈ J holds. Then
ΩAφ = (−θ0, θ0).

Let ã2 = N/4 and b̃2 = M/4. The eigenvalues of Hθ(Aφ) are given

λ±(θ) = ±
(
ã2 − c̃2 sin2 θ

) 1

2 ,

with c̃2 = ã2 + b̃2, fo all θ ∈ ΩAφ . Applying Theorem 2.1, we conclude that W J(Aφ) is
bounded by the hyperbola, centered at the origin, with transverse and non-transverse
axes on the x-axis and y-axis, respectively, of lengths 2ã = N

1

2 and 2b̃ = M
1

2 . In this
case, the foci of the hyperbola are the eigenvalues of Aφ, which are on the real axis.
Finally, the boundary of W J(A) is a rotated hyperbola, centered at the origin, since
W J(A) = eiφW J(Aφ) and the result easily follows.

(⇒) Suppose that W J(A) is bounded by an hyperbola centered at the origin, with
foci at the eigenvalues of A, whose lengths of the transverse and the non-transverse
axes are, respectively, N

1

2 and M
1

2 . Then we must have M > 0 and N > 0.

For M,N defined as in (15), given the matrix A in (14), we remark that

M ≥ 2|a2 + bc| − 2(a2 − |bc|) ≥ 2
∣∣a2 − |bc|∣∣− 2(a2 − |bc|) ≥ 0

and we find that

M = 0 ⇔ |b| = |c| ∧ arg(bc) = −π ∧ a2 ≥ |bc|
⇔ a ≥ |b| ∧ c = −b. (19)

Therefore, if M = 0, then A# = A, that is, A is J-Hermitian, A has real spectrum
and

N = 2
∣∣a2 − |b|2∣∣+ 2(a2 − |b|2) = 4(a2 − |b|2) ≥ 0. (20)

From Corollary 2.2, we readily characterize the degenerate case of W J(A) as a
disjoint union of two closed real half-lines, in terms of the entries of A.

Corollary 2.5. Under the conditions of Theorem 2.4 the set W J(A) is the disjoint
union of two closed real half-lines with endpoints at the eigenvalues of A if and only
if M = 0 and N > 0, equivalently, a > |b| and c = −b.

Proof. (⇐) By (19) and (20), M = 0 and N > 0 if and only if a > |b| and c = −b. In

this case, A has real eigenvalues ± ã with ã = (a2−|b|2)
1

2 6= 0. By Proposition 2.3, with
φ = 0, we have Hθ(A) ∈ J , for θ ∈ (−π/2, π/2), with eigenvalues λ±(θ) = ± ã cos θ.
By Corollary 2.2, this is equivalent to

W J(A) = (−∞,−ã] ∪ [ã,+∞) .

(⇒) Suppose W J(A) is the disjoint union of two closed real half-lines, being the

endpoints, as corners of this set, the eigenvalues ± ã of A, with ã = (a2 + bc)
1

2 6= 0.
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By Corollary 2.2, we have

λR
(
Hθ(A)

)
= ã2 cos θ and λL

(
Hθ(A)

)
= −ã2 cos θ (21)

for θ ∈ (−π/2, π/2). From Proposition 2.3, the eigenvalues of Hθ(A) can be written as

±1

2

(
N cos2 θ −M sin2 θ

) 1

2 . (22)

In this case, (21) and (22) yield N = 4ã2 > 0 and M = 0.

To end this section, the Hyperbolical Range Theorem in terms of the invariants of
the matrix is easily obtained.

Corollary 2.6. Let J = diag(1,−1) and A ∈ M2. The set W J(A) is bounded by a
non-degenerate hyperbola, centered at 1

2Tr(A), with foci at the eigenvalues λ1, λ2 of A,
transverse and non-transverse axes of lengths(

Tr(A#A)− 2<(λ1λ̄2)
) 1

2

and
(
|λ1|2 + |λ2|2 − Tr(A#A)

) 1

2

,

respectively, if and only if

2<(λ1λ̄2) < Tr(A#A) < |λ1|2 + |λ2|2. (23)

Proof. If A = (aij) ∈M2, then

W J(A) = eiαW J(B) +
1

2
Tr(A), (24)

where B is the matrix in (14), considering a, b, c defined in (13). This matrix B has

eigenvalues λ′1 = −
(
a2 + bc

) 1

2 and λ′2 =
(
a2 + bc

) 1

2 , such that

2<(λ′1λ̄
′
2) = −2|a2 + bc|, |λ′1|2 + |λ′2|2 = 2|a2 + bc|, (25)

Tr(B#B) = 2a2 − |b|2 − |c|2. (26)

Let λ1, λ2 be the eigenvalues of A. Hence,

M = |λ1|2 + |λ2|2 − Tr(A#A) and N = Tr(A#A)− 2<(λ1λ̄2).

It is clear that

2<(λ1λ̄2), |λ1|2 + |λ2|2 and Tr(A#A)

are obtained by adding 1
2 |Tr(A)|2 to the respective expressions, concerning B, in (25)

and (26). Then

M = 2|a2 + bc| − 2a2 + |b|2 + |c|2, N = 2a2 − |b|2 − |c|2 + 2|a2 + bc|

11



and we may conclude that M > 0 and N > 0 if and only if (23) holds. By Theorem 2.4
and (24) the result easily follows.

From Corollary 2.5 and following the proof of the previous corollary we have the
next result.

Corollary 2.7. Under the hypothesis of Corollary 2.6, W J(A) is the disjoint union
of two closed half-lines, with endpoints at the eigenvalues λ1, λ2 of A, if and only if

2<(λ1λ̄2) < Tr(A#A) = |λ1|2 + |λ2|2.

3. Indefinite version of Brown-Spitkowski Theorem

A matrix A = (aij) is tridiagonal if aij = 0 for |i− j| > 1. In this section, we consider
tridiagonal matrices with biperiodic main diagonal, that is, aii = a1 if i is odd and
aii = a2 if i is even, with a1, a2 ∈ C.

By property (i), considering J = diag(1,−1, 1,−1, . . .) ∈Mn and

a =
1

n
|Tr(JA)|, bj = aj,j+1e

−iα, cj = aj+1,je
−iα, j = 1, . . . , n− 1,

for α = arg Tr(JA), analogously to the case n = 2, we may focus our study on the
following class of tridiagonal matrices with biperiodic real main diagonal:

T (n; c,a,b) =



a b1 0 0 0 . . .
c1 −a b2 0 0 . . .
0 c2 a b3 0 . . .
0 0 c3 −a b4 . . .
0 0 0 c4 a . . .
...

...
...

...
...

. . .

 ∈Mn, (27)

where

a = (a,−a, a,−a, . . .), b = (b1, b2, b3, . . .), c = (c1, c2, c3, . . .),

with a ≥ 0. For convenience, we also consider the bidiagonal matrix

X(b) =


b1 0 0 . . .
b2 b3 0 . . .
0 b4 b5 . . .
...

...
...

. . .

 . (28)

We recall [13, Lemma 2.1] that the J-numerical range of an n× n tridiagonal ma-
trix is invariant under the interchange of the (j, j + 1) and (j + 1, j) entries for any
j = 1, . . . , n− 1.

We revisit the following theorem partially obtained in [13] and we give a simpler
proof.
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Theorem 3.1. Let J = diag(1,−1, 1,−1, . . .) ∈ Mn, n ≥ 2, and T be a tridiagonal
matrix of type T (n; c,a,b) with a = (a,−a, a,−a, . . .) ∈ Rn, b, c ∈ Cn−1, such that
c = κb for some κ ∈ C. Let s1 ≥ . . . ≥ sbn

2
c be the singular values and r be the rank

of the bidiagonal matrix X(b). For each j = 1, . . . , r, consider

Mj = 2|a2 + κs2j | − 2a2 + (1 + |κ|2)s2j , (29)

Nj = 2|a2 + κs2j |+ 2a2 − (1 + |κ|2)s2j , (30)

and the hyperbola Hj, centered at the origin, with foci at

f±j = ±
(
a2 + κs2j

) 1

2 ,

transverse and non-transverse axes of lengths N
1

2

j and M
1

2

j , respectively. The boundary

generating curves of W J(T ) are the non-degenerate nested hyperbolas H1, . . . ,Hr (the
points a,−a if r < bn2 c) and the point a, when n is odd, if and only if M1 > 0 and
N1 > 0, that is, ∣∣∣∣a2 − 1 + |κ|2

2
s21

∣∣∣∣ < |a2 + κs21|. (31)

In this case, W J(T ) is bounded by the non-degenerate hyperbola H1.

Proof. Firstly, we prove the result in the case n = 2m, m ∈ N. Without loss of
generality, by [13, Lemma 2.1], we may consider T of the form T (n; c̃,a, b̃), with

a = (a,−a, a,−a, . . .), b̃ = (b1, κb2, b3, . . .), c̃ = (κb1, b2, κb3, . . .),

for some κ ∈ C. Let Pπ ∈ Mn be the permutation matrix associated with the permu-
tation π ∈ Sn defined in the following way:

π(i) = 2i− 1, 1 ≤ i ≤ m, and π(m+ i) = 2i, 1 ≤ i ≤ m.

Let J̃ = Im ⊕−Im. By easy computations, we have PπJP
T
π = J̃ and

Ã = PπTP
T
π =



a 0 0 . . . b1 0 0 . . .
0 a 0 . . . b2 b3 0 . . .
0 0 a . . . 0 b4 b5 . . .
...

...
...

. . .
...

...
...

. . .

κb1 κb2 0 . . . −a 0 0 . . .

0 κb3 κb4 . . . 0 −a 0 . . .

0 0 κb5 . . . 0 0 −a . . .
...

...
...

. . .
...

...
...

. . .


=

[
aIm X
κX∗ −aIm

]
,

where X = X(b) ∈ Mm, with b = (b1, b2, b3, . . .) ∈ C2m−1, is the bidiagonal matrix
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defined in (28). It can be easily seen that

W J(T ) = WPπJPTπ (PπTP
T
π ) = W J̃(Ã).

Hence, we focus our proof in the study of W J̃(Ã). By the singular value decomposition,
there exist matrices U, V in the unitary group of degree m, such that the block X of
Ã satisfies X = U DV ∗, where D = diag(s1, s2, . . . , sm) and s1 ≥ s2 ≥ · · · ≥ sm are

the singular values of X. It is easy to see that the matrix Z = U ⊕ V is J̃-unitary.
Moreover, for Z# = J̃Z∗J̃ , we get

Z#Ã Z = (U∗ ⊕ V ∗)
[
aIm X
κX∗ −aIm

]
(U ⊕ V ) =

[
aIm U∗XV

κV ∗X∗U −aIm

]
.

Using the unitary invariance of the J̃-numerical range, we have

W J̃(Ã) = W J̃(Z#ÃZ) = W J̃(B̃),

being

B̃ =

[
aIm D
κD −aIm

]
permutationally similar to

B̃1 ⊕ · · · ⊕ B̃m =

[
a s1
κs1 −a

]
⊕ . . .⊕

[
a sm
κsm −a

]
,

and, under the same permutation, J̃ is permutationally similar to

J1 ⊕ · · · ⊕ J1 =

[
1 0
0 −1

]
⊕ . . .⊕

[
1 0
0 −1

]
,

that is, to J . Hence, W J(T ) = W J̃(B̃) is the pseudo-convex hull of W J1(B̃j) for
j = 1, . . . ,m.

Let γ = arg(κ). For each θ ∈ R, the eigenvalues λ±,j(θ) of the matrix Hθ(B̃j) are
such that

λ2±,j(θ) = a2 cos2 θ − 1

4
s2j
(
1 + |κ|2 − 2|κ| cos(γ − 2θ)

)
.

By the Hyperbolical Range Theorem (cf. Theorem 2.4), the set W J1(B̃1) is bounded
by a non-degenerate hyperbola, namely H1, if and only if M1 > 0 and N1 > 0. In this
case, a 6= 0, κ 6= −1 and we clearly have

1− 2|κ| cos(γ − 2θ) + |κ|2 ≥ (1− |κ|)2 > 0,

so we may conclude that

0 < λ2±,1(θ) ≤ λ2±,2(θ) ≤ · · · ≤ λ2±,m(θ),
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for θ ∈ (φ1 − θ1, φ1 + θ1) with θ1 = arctan(N1/M1)
1

2 and φj = 1
2 arg(a2 + ks2j ). For

j = 1, . . . , r, we remark that sj > 0 implies

−Mj = −4λ2±,j

(π
2

+ φj

)
< 0 < 4λ2±,j (φj) = Nj ,

whenever M1 > 0 and N1 > 0. We conclude that we have a collection of r non-
degenerate nested hyperbolas, namely H1, . . . ,Hr, some possibly coincident, all cen-
tered at the origin, defining the boundary generating curves of the sets W J1(B̃j) for

j = 1, . . . , r. If r < m, then sr+1 = 0 and B̃j = B̃r+1, j > r, is a real diagonal matrix
and the main diagonal entries a,−a of T , which clearly belong to W J(T ), are the

corners and form the boundary generating curve of W J1(B̃j), j > r.
We may conclude that the outer hyperbola H1 defines the hyperbolical boundary

of W J(T ) if and only if N1 > 0 and M1 > 0. Clearly, we have M1 > 0 and N1 > 0 if
and only (31) holds.

In the case n = 2m+ 1, m ∈ N, let Pτ ∈Mn be the permutation matrix associated
with the permutation τ ∈ Sn defined in the following way:

τ(i) = 2i− 1, 1 ≤ i ≤ m+ 1, and τ(m+ 1 + i) = 2i, 1 ≤ i ≤ m.

Now, let J̌ = Im+1 ⊕−Im. By easy computations, we have PτJP
T
τ = J̌ and

Ǎ = PτTP
T
τ =

[
aIm+1 X
κX∗ −aIm

]
,

for X = X(b) ∈ M(m+1)×m, with b = (b1, b2, b3, . . .) ∈ C2m, a bidiagonal matrix
defined as in (28). By the singular value decomposition, there exist unitary matrices
U ∈Mm+1 and V ∈Mm, such that the block X of Ǎ is given by X = U Ď V ∗, where
Ď ∈M(m+1)×m contains the diagonal matrix of the singular values s1 ≥ s2 ≥ · · · ≥ sm
of X and has the last row of zeros. As above, we may conclude that Ǎ and J̌ are
permutationallly similar to

B̃1 ⊕ · · · ⊕ B̃m ⊕
[
a
]

and J1 ⊕ · · · ⊕ J1 ⊕
[
1
]
,

respectively. The proof follows now analogous steps as the even case, also noting now
that a ∈W J1

+ (B̃1). Thus, the boundary of W J(T ) is the hyperbola H1 if and only (31)
holds.

Condition (31) for hyperbolicity of W J(T ) does not hold when κ = −1, in this case,
the tridiagonal matrix T defined as in Theorem 3.1 becomes J-Hermitian and W J(T ),
as the union of two rays, is characterized below.

Corollary 3.2. Under the conditions of Theorem 3.1, we have

W J(T ) =
(
−∞,−ã

]
∪
[
ã,+∞

)
, ã > 0, (32)

if and only if M1 = 0 and N1 > 0, equivalently, |a| > s1 and either κ = −1 or s1 = 0.

Proof. Analogousgly to the proof of Theorem 3.1, W J(T ) is the pseudo-convex hull
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of W J1(B̃j), j = 1, . . . , bn2 c, where J1 = diag(1,−1) and

B̃j =

[
a sj
κsj −a

]
,

with s1 ≥ · · · ≥ sbn
2
c the singular values of the bidiagonal matrix X(b).

(⇐) By hypothesis, M1 = 0 and N1 > 0, equivalently, |a| > s1 and either κ = −1

or s1 = 0. For j = 1, . . . , bn2 c, considering ãj = (a2 − s2j )
1

2 , from |a| > s1, we have
0 < ã1 ≤ ãj and, using Corollary 2.5, we get

W J1(B̃1) ⊇ W J1(B̃j) =
(
−∞,−ãj

]
∪
[
ãj ,+∞

)
⊇ {a}.

Thus, W J(T ) = W J1(B̃1) and (32) holds with ã = ã1.
(⇒) Suppose W J(T ) is the disjoint union of two closed real half-lines. In particular,

we have

W J1(B̃1) ⊆W J(T )

and B̃1 has real spectrum. Thus, arg(a2 + κs21) = 0 and Hθ(B̃1) ∈ J , for all θ ∈
(−π/2, π/2). If N1 ≤ 0, by Proposition 2.3, we would have Hθ(B̃1) /∈ J , which is a

contradiction. Hence, N1 > 0. If M1 > 0, by Theorem 2.4, W J(B̃1) would be bounded
by a non-degenerate hyperbola, another contradiction. Then M1 = 0 and N1 > 0.

Corollary 3.3. Under the conditions of Theorem 3.1, let s be the operator norm of
the bidiagonal matrix X(ei arg b1 , . . . , ei arg bn−1), with

|bj |+ |cj | = |α|+ |β| and bjcj = αβ, j = 1, . . . , n− 1, (33)

for some α, β ∈ C \ {0}. Considering

M = 2|a2 + αβs2| − 2a2 + (|α|2 + |β|2)s2,

N = 2|a2 + αβs2|+ 2a2 − (|α|2 + |β|2)s2,

the set W J(T ) is bounded by the non-degenerate hyperbola, centered at the origin, with
foci at

±
(
a2 + αβs2

) 1

2 ,

transverse and non-transverse axes of lengths N
1

2 and M
1

2 , respectively, if and only if∣∣∣∣a2 − |α|2 + |β|2

2
s2
∣∣∣∣ < |a2 + αβs2|.

Proof. Under the hypothesis (33), we may conclude that either |bj | = |α| and
|cj | = |β| or |bj | = |β| and |cj | = |α|, for each j = 1, . . . , n − 1. Hence, recalling
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[13, Lemma 2.1], we may consider T of type T (n; c,a,b) with

b = |α|(ei arg b1 , . . . , ei arg bn−1), c = |β|(ei arg c1 , . . . , ei arg cn−1).

Moreover, from bjcj = αβ, we have

arg(cj)− arg(α) = arg(β)− arg(bj) + 2kπ, k ∈ Z,

for each j = 1, . . . , n − 1. Therefore, α c = βb. Since α 6= 0, we have c = κb, with
κ = β/α. The result follows now by Theorem 3.1. Let s1 be the operator norm of the
bidiagonal matrix

X(b) = |α|X(ei arg b1 , . . . , ei arg bn−1).

Clearly, s1 = |α|s gives κs21 = αβs and (1 + |κ|2)s21 = (|α|2 + |β|2)s2.

Lemma 3.4. Let 1 = (1, 1, . . . , 1) ∈ Rn−1, n ≥ 2. The singular values of the bidiago-
nal matrix X(1) are

sk = 2 cos
kπ

n+ 1
, k = 1, . . . ,

⌊n
2

⌋
.

Proof. If n = 2m, m ∈ N, then X = X(1) ∈ Mm. If n = 2m + 1, m ∈ N, then
X = X(1) ∈Mm+1,m. Let p =

⌊
n
2

⌋
. We can see that

X∗X = T (p; 1̃,a, 1̃), 1̃ = (1, . . . , 1) ∈ Rp−1, a = (2, . . . , 2, 2− δ) ∈ Rp,

where δ = 1 if n is even or δ = 0 if n is odd. If n is even, then X∗X is a ’perturbed’
Toeplitz matrix, with eigenvalues given [14, Theorem 1] by

λk = 2 + 2 cos

(
2kπ

2p+ 1

)
, k = 1, . . . , p.

If n is odd, then X∗X becomes a Toeplitz matrix with eigenvalues given by

λk = 2 + 2 cos

(
kπ

p+ 1

)
, k = 1, . . . , p.

Thus, we may write

λk = 2 + 2 cos

(
2kπ

n+ 1

)
= 4 cos2

kπ

n+ 1
, k = 1, . . . , p,

and the singular values of X are as stated.

Corollary 3.5. Under the conditions of Theorem 3.1, let c = 0 and s1 be the ope-
rator norm of the bidiagonal matrix X(b). The set W J(T ) is bounded by the hy-
perbola, centered at the origin, with foci at the main diagonal entries a,−a of T
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and non-transverse axis of length s1 if and only if 0 < s1 < 2|a|. If, in addition
b = (b, b, . . . , b) ∈ Cn−1 \ {0}, then W J(T ) has hyperbolical boundary if and only if

cos
π

n+ 1
<
∣∣∣a
b

∣∣∣ .
Proof. Let κ = 0 in Theorem 3.1. In addition, if b is a non-zero constant vector, then
use Lemma 3.4 too.

Now, we consider the hyperbolical shape for the J-numerical range of a tridiagonal
J-Toeplitz matrix, that is, a tridiagonal matrix T such that JT is a Toeplitz matrix.

Corollary 3.6. Let J = diag(1,−1, 1,−1, . . .) ∈ Mn, n ≥ 2, a ∈ R, b, c ∈ C, b 6= 0
and consider

dk,n = 4 cos2
kπ

n+ 1
, ∆k,n = a2 + b c dk,n, k = 1, . . . ,

⌊n
2

⌋
.

The J-numerical range of a J-Toeplitz matrix T of type T (n; c,a,b), with

a = (a,−a, a,−a, . . . ), b = (b, b, . . . , b) , c = (c, c, . . . , c) ,

is bounded by the non-degenerate hyperbola, with foci at ±∆
1

2

1,n, transverse and non-
transverse axes of lengths(

2|∆1,n|+ 2a2 − (|b|2 + |c|2)d1,n
) 1

2 ,
(
2|∆1,n| − 2a2 + (|b|2 + |c|2)d1,n

) 1

2

respectively, if and only if ∣∣∣∣a2 − |b|2 + |c|2

2
d1,n

∣∣∣∣ < |∆1,n| .

Under these conditions, the boundary generating curves of W J(T ) are
⌊
n
2

⌋
nested

hyperbolas, with foci at ±∆
1

2

k,n, transverse and non-transverse axes of lengths

(
2|∆k,n|+ 2a2 − (|b|2 + |c|2)dk,n

) 1

2 ,
(
2|∆k,n| − 2a2 + (|b|2 + |c|2)dk,n

) 1

2

respectively, k = 1, . . . ,
⌊
n
2

⌋
, and the point a, when n is odd.

Proof. Under the hypothesis, since b 6= 0, then there exists κ = c/b ∈ C, such that
c = κb. It follows from Lemma 3.4 that the singular values of the bidiagonal matrix
X(b) are all non-zero, given by

2|b| cos
kπ

n+ 1
, k = 1, . . . ,

⌊n
2

⌋
.

By Theorem 3.1, the result follows.

The following two examples illustrate Theorem 3.1 and Corollary 3.6.
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Example 3.7. Let J = diag(1,−1, 1,−1, 1,−1) and consider the J-Toeplitz tridiago-
nal matrix T given by

T (6; c,a,b) =


2 3 0 0 0 0
1 −2 3 0 0 0
0 1 2 3 0 0
0 0 1 −2 3 0
0 0 0 1 2 3
0 0 0 0 1 −2

 ,

with

a = (2,−2, 2,−2, 2,−2), b = (3, 3, 3, 3, 3) , c = (1, 1, 1, 1, 1) .

By Corollary 3.6, the boundary generating curves of W J(T ) are three hyperbolas,
centered at the origin, with foci at the points

±2
√

1 + 3 cos2(kπ/7), k = 1, 2, 3,

and with horizontal transverse axes, as shown in Figure 1. The lenghts of the transverse
and the non-transverse axes are, respectively, given by

4 sin(kπ/7) and 8 cos(kπ/7), k = 1, 2, 3.

The set W J(T ) is bounded by the outer hyperbola, with cartesian equation

x2

4 sin2(π/7)
− y2

16 cos2(π/7)
= 1,

whose foci, lenghts of the transverse and non-transverse axes are given, approximately,
by ±3.70688, 1.73553 and 7.20775, respectively.

Figure 1.

Example 3.8. Let J = diag(1,−1, 1,−1, 1,−1, 1,−1) and

T =



2 i 0 0 0 0 0
1 −2 2 0 0 0 0
0 2i 2 1 + i 0 0 0
0 0 1 + i −2 3i 0 0
0 0 0 3 2 2 0
0 0 0 0 2i −2 1
0 0 0 0 0 i 2


,

that is, T is a tridiagonal matrix of type T (7; c,a,b) with

a = (2,−2, 2,−2, 2,−2, 2),
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b = (i, 2, i+ 1, 3i, 2, 1) , c = (1, 2i, 1 + i, 3, 2i, i) .

According to Theorem 3.1 with κ = i and its proof, we are considering

Pπ =



1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0


and X =


i 0 0
2 i+ 1 0
0 3i 2
0 0 1

 ,

in order that

Ã = PπTP
T
π =

[
2I4 X
iX∗ −2I3

]
and J̃ = I4 ⊕−I3,

in which case W J(T ) = W J̃(Ã). The singular values of X are

s1 = (8 +
√

53)
1

2 , s2 =
√

5, s3 = (8−
√

53)
1

2 .

The set W J(T ) is bounded by the hyperbola centered at the origin, with foci at

±
(
4 + i(8 +

√
53)
) 1

2 ,

transverse and non-transverse axes given by

√
2
(√

16
√

53 + 133− 4−
√

53
) 1

2

,
√

2
(√

16
√

53 + 133 + 4 +
√

53
) 1

2

,

respectively. In this case, the boundary generating curves of W J(T ) are three non-
degenerate hyperbolas, with transverse axes not collinear, and the point 2, as shown
in Figure 2.

Figure 2.

4. Final notes

We have investigated classe of matrices with hyperbolical indefinite numerical range.
We have imposed some restrictions in order to ensure non-degeneracy of these hyper-
bolas. We have also studied the degeneracy of the indefinite numerical range to two
half-lines. Our approach also allows to obtain conclusions, concerning degeneracy of
other cases. In view of the proof of Theorem 3.1, this discussion relies on the 2 × 2
case, already well studied (see e.g. [5,15]).
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