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Abstract: In this paper, we consider a compartmental model to fit the real data of confirmed active
cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary
Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes
a deterministic component based on ordinary differential equations and a stochastic component based
on bootstrap methods in regression. The main goal of this work is to take into account the variability
underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped
approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active
cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed
algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks.
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1. Introduction

Since the beginning of COVID-19 pandemic, researchers have been using mathematical models
to study the dynamics of SARS-CoV-2 spread and the impact of different non pharmacological and
vaccination strategies in different regions of the world, see e.g. [1–5]. The mathematical framework
and the time scale of epidemic models may depend on the nature of the available real data and on main
goals of the scientific study, leading to different types of models, e.g. discrete, hybrid, deterministic,
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etc. Deterministic compartmental models, given by systems of ordinary differential equations, have
been used in the last decades to model, predict and control the spread of a wide range of infectious
diseases helping to understand the transmission dynamics, the impact of preventive and intervention
measures and predict outcomes of epidemics [6–13].

In this paper, we focus on a compartmental SAIRP model, first proposed in [14] and studied from
the stability point of view in [15] given by a system of five ordinary differential equations, considering
piecewise constant parameters, which allows to model the confirmed number of infected individuals
with the virus SARS-CoV-2 in Portugal. The choice of this specific model was motivated by the good
results when fitting Portuguese data [14]. In [16] the authors provide a Python code that allows to
estimate some of the piecewise constant parameters and fit the model to the real data of COVID-19
transmission in Portugal, from March 2, 2020 until April 15, 2021. In our study, we use data from the
Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit (PHU), between
March 2, 2020 and September 10, 2021. The main goal of this paper, is to extend the point estimation
performed in [16] to interval estimation for the number of active infected individuals with SARS-CoV-
2. With this procedure, we can accommodate the variability within the data and therefore provide
accurate estimates. Since we are dealing with nonlinear methods, standard regression procedures can
not be applied due to the dependence on the underlying distributional assumptions. For this reason, we
use bootstrap methodology to obtain confidence intervals. We propose an algorithm, ran in version
4.0.5 (2021-03-31), which can be used, after a suitable adaptation, to other communicable diseases and
outbreaks.

The paper is structured as follows. In Section 2, we introduce the deterministic compartmental
SAIRP model. In Section 3, we propose a method for interval estimation for the previsions based on
confidence intervals, bootstrap methodology in regression and quantile intervals. The algorithm that
implements the proposed methodology is provided. We show that our method allows to construct an
adequate bootstrap confidence interval for the data under analysis (the number of active infected cases).
We end the paper with Section 4, with some conclusions and challenges for future work.

2. Deterministic SAIRP model

We considered the deterministic compartmental model for COVID-19 transmission in a
homogeneously mixed population with varying total size, proposed in [14, 15]. In this model, it
is assumed that the total population N(t), with t ∈ [0,T ] (in days) and T > 0, is subdivided into
five groups of disjoint individuals: susceptible (S ); asymptomatic infected (A); active infected (I);
removed (including recovered and COVID-19 induced deaths) (R); and protected (P). Therefore,
N(t) = S (t) + A(t) + I(t) + R(t) + P(t), for t ∈ [0,T ]. The susceptible sub-population has constant
recruitment rate, Λ, and the entire population suffers from natural death, at a rate µ > 0. The
susceptible individuals S become infected by contact with active infected I and asymptomatic infected
A individuals, at a rate of infection β (θA+I)

N , where θ represents a modification parameter for the
infectiousness of the asymptomatic infected individuals A and β represents the transmission rate. Only
a fraction q of asymptomatic infected individuals A develop symptoms and are detected, at a rate v.
Active infected individuals I are transferred to the recovered/removed individuals R, at a rate δ, by
recovery from the disease or by COVID-19 induced death. A fraction p, with 0 < p < 1, is protected
(without permanent immunity) from infection, and is transferred to the class of protected individuals
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P, at a rate ϕ. A fraction m of protected individuals P returns to the susceptible class S , at a rate w. Let
ξ = v q and ω = w m. The previous assumptions are described by the following system of ordinary
differential equations:

Ṡ (t) = Λ − β
(
1 − p

) θA(t)+I(t)
N(t) S (t) − (ϕp + µ)S (t) + ωP(t),

Ȧ(t) = β
(
1 − p

) θA(t)+I(t)
N(t) S (t) − (ξ + µ)A(t),

İ(t) = ξA(t) − (δ + µ)I(t),

Ṙ(t) = δI(t) − µR(t),

Ṗ(t) = ϕpS (t) − (ω + µ)P(t).

(2.1)

To systematize and simplify, the parameter’s description and notation are resumed in Table 1.

Table 1. Description and notation of the parameters of model (2.1), [14, 15].

Parameter Description
Λ Recruitment rate
µ Natural death rate
β Transmission rate
θ Modification parameter
v Transfer rate from A to I
q Transfer fraction from A to I
ϕ Transfer rate from S to P
p Transfer fraction from S to P
w Transfer rate from P to S
m Transfer fraction from P to S
δ Recovery rate

In this paper, we skip the mathematical analysis of the model, such as, invariant region, equilibrium
points and its local and global stability, which was done in [15].

Using the package deSolve [17] to find the numerical solution of the system (2.1) and the
function optim of stats package from version 4.0.5 (2021-03-31), we estimate the parameters
vector, using the method L-BFGS-B and splitting the time window in l = 17 sub-intervals
[1, 45, 83, 100, 120, 186, 212, 242, 251, 261, 271, 296, 320, 374, 400, 470, 496, 552], where 1 represents
March 2, 2020 and 552 September 10, 2021. The remaining parameters are assumed to take the
following fixed values: N = 363803, λ = (0.0019 ∗ N)/365, θ = 1, ϕ = 1/6, µ = 1/(81 ∗ 365), δ =
1/27, v = 1, q = 0.15, w = 1/35 , with ξ = v q and ω = w m. With these parameter values, we show
that model (2.1) fits the number of active cases infected by SARS-CoV-2, from March 2, 2020 until
September 10, 2021, from Primary Care Cluster in Aveiro region, ACES BV, see Figure 1. We remark
that, since the parameter space is R+0 , we must add this constraint in the L-BFGS-B routine.

The quality of the fit was measured by a weighted coefficient of determination, denoted by

R2 =
l∑

j=1
w jR2

j . Each w j represents the weight of a sub-interval (a total of l = 17 sub-intervals), and
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is defined as the ratio between the number of observations in that interval and the total number of

observations (552), with
17∑
j=1

w j = 1. Each R2
j represents the proportion of data variability explained

by our model in that particular interval, and is defined as R2
j =

t j∑
i=1

(̂yi j − ȳ j)2

t j∑
i=1

(̂yi j − ȳ j)2 +
t j∑

i=1
(yi j − ŷi j)2

where

yi j represents the observed number of covid cases for the i time in the j interval, ŷi j the corresponding
predicted value, ȳ j the corresponding mean and t j the number of time points for interval j. Therefore, R2

provides the proportion of data variability explained by our model as a weighted sum of the proportion
of data variability explained by each sub-interval. For l = 17 sub-intervals, we obtain R2 = 0.7862
and therefore we can conclude that the model explains the majority of the data variance (more then
three quarters). We highlight that a better result would be very difficult to achieve due to significant
fluctuations in Active Cases, inherent in the data, mainly around day 300.
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Figure 1. Model (2.1) fit the number of active cases infected by SARS-CoV-2, from March
2, 2020 until September 10, 2021, from Primary Care Cluster in Aveiro region, ACES BV,
the observed data and the proposed model fit (SAIRP Model).

3. Confidence intervals for the fit

3.1. Motivation

In the previous section, we presented a deterministic model given by a system of differential
equations to fit the considered COVID-19 data set. However, point estimates do not take into account
the variability that is underlying the data set and therefore the estimation accuracy is not analysed. To
tackle this problem, in this section we introduce confidence intervals for the prediction.

When dealing with linear models, it is usually assumed that the random errors are independent
random variables modelled by the Gaussian distribution, and consequently the dependent variable Y is
also modelled by the Gaussian distribution. When estimating the error variance, chi-square distribution
is used as a consequence of least squares method, and finally the predictions Ŷ are well fitted by the t-
Student distribution. Everything works smoothly and, having a well known distribution for Ŷ , inference
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procedures are straightforward [18]. The problem arises when least square errors method is used in non
linear regression, which is the case presented in this paper. Under these circumstances, the normality
hypothesis must be dropped and alternative procedures should be used.

3.2. Bootstrap methodology in regression

The bootstrap is based on resampling, with replacement, an initial data (a large number of times)
[19]. In this work, we propose a residual bootstrapped approach in order to compute the confidence
interval of the number of COVID-19 active cases.

The bootstrap procedure can be described by the following steps (adapted from [18])

1. Consider the data divided into l time intervals. Each j interval has t j time points, j = 1, ..., l.
2. For each i time point from j interval, compute the optimum non-linear model using the least

square errors method and the corresponding residuals

ei j = yi j − ŷi j

with yi j the observed number of covid cases for the i time in the j interval and ŷi j the corresponding
predicted value.

3. For each interval, center the residuals to a mean of 0

ei j = ei j − ē j

with ē j the residuals mean in j interval.
4. For each interval j, n × t j new samples of residuals were obtained using random sampling with

replacement (n bootstrap residuals for each time points). These bootstrap residuals were denoted
by e∗i jk , k = 1, ..., n

5. As bootstrap sample to the number of covid cases we consider

{y∗i jk = yi j + e∗i jk, j = 1, ..., l, i = 1, ..., t j}.

6. The model was recalculated for each k and new estimates ŷ∗i jk were obtained. The optimal non-
linear model using the least squares errors method was recalculated for each k, and consequently
n new fits were obtained for each j interval.

3.3. Quantile intervals

After the step 3 in the previous subsection, we now have n regression models for each j subinterval.
Let ŷ∗(i jk) represent, for a fixed i and j, the ordered bootstrap estimate, and suppose that we wish to
construct a (1 − α) 100% confidence interval for yi jk. For a large n, ŷ∗(lower) and ŷ∗(upper), where lower =
α

2
n and upper =

(
1 −
α

2

)
n are non-parametric approaches from ŷ∗i jk quantiles and can be use as bounds

for the confidence interval yi jk, that is,

IC(1−α) =]̂y∗(lower); ŷ∗(upper)[.

The assumption underlying this procedure is that the errors are independent and identically distributed
(IID) among our data.
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3.4. Pseudo code algorithm

The implemented algorithm follows the following steps, described in Table 2.

Table 2. Pseudo code algorithm.

Input: Initial conditions, fixed parameters, real data and model equations.
Output: β, m, p estimates, R squared and the active cases curve fit.
1. For each time window sub-interval:

1.1. estimate individually β, m, p minimizing least squares sum;
1.2. based on Step 1.1, estimate 3-uple (β, m, p);
1.3. compute prediction solving the model (2.1) using input and Step 1.2;
1.4. calculate ordinary and centered residuals;
1.5. compute the determination coefficient, R squared.

2. Compute the weighted R squared based on the length of each sub-interval.
3. For each time window sub-interval, bootstrap centered residuals.
4. Repeat 1. using real data plus the bootstrap centered residuals, in place of real data.
5. Compute the 95% confidence intervals.

The algorithm includes a deterministic component based on ordinary differential equations and a
stochastic component based on bootstrap methods in regression. The novelty of this algorithm is the
computation of confidence intervals using a procedure that takes into account the nonlinearity of the
data.

3.5. Results

As stated before, the methodology introduced in the previous section does not rely on the normality
hypothesis for the residuals. Nevertheless, and since we are re-sampling the residuals and randomly
reattach then to the predictions, implicitly we assume that the residuals are identically distributed and
that the functional form of the model is correct [18]. Also, a large skewness can be a drawback since
some y∗i jk might become quite influential leading to confidence intervals with increased amplitude.
When analysing Figure 2, the centered residuals histogram show an even distribution around 0, for the
five central classes. Nevertheless, a positive skewness is detected without being of great relevance.

The next step (see subsection 3.2) was to obtain the bootstrap models. Remember that we considered
17 subintervals with a different number of observations in each interval in order to capture the data
oscillations, according with several epidemic waves. We remark that, although the time window
subdivision is done empirically, it takes into account the public health polices, the adherence of the
population to prevention measures and the intensity of the virus transmission. For each interval, 500
new samples were obtained and the corresponding new models were calculated. The consideration of
500 new samples is an acceptable number according to [20], and the time consuming process connected
with samples generation.

After obtaining the bootstrap models, quantile intervals (see subsection 3.3) were computed. These
intervals are represented in Figure 3 and for each date the grey area corresponds to the 95% bootstrap
confidence interval. It is visually evident that the confidence intervals contain the majority of the active
cases (black line). As expected, for the intervals where data fluctuation is intense (basically between
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October 2020 and February 2021, and later between June 2021 and September 2021) the confidence
intervals reveal a larger range. For example, for the cases record achieved in January 2021, the fitted
model (in red) does not apprehend the increase in the active cases, but the 95% confidence interval is
able to include these peaks inside its bounds. This example clearly shows the importance of introduce
a stochastic component in the predictions.

As we can see in Figure 4, the proportion of points, where the real number of active cases fall within
the bootstrap confidence interval ranges from 0.52 (intervals 9,10,11) to 1.0 (interval 6 ) depending
on the interval. At least 50% of the intervals have a proportion higher than (0.80) and 75% have a
proportion higher than (0.70), with a mean of 0.80. Considering all the points the general mean for that
proportion is 0.79. Weighting by each intervals size the mean is approximately the same. The results
show that the real cover rate of the confidence intervals is, in general, below the expected 0.95 rate.
Moreover, the obtained bounds are a little optimistic and they should be more far apart to achieve a
0.95 cover rate. One alternative would be to consider in Subsection 3.3 a lower value of α that would
lead to an increase in the cover rate.
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Figure 2. Histogram and density plot for the centered residuals of the fitted model.

Figure 3. Time series for the number of active cases (in black) throughout the study period.
In red is the estimate for the original model and the grey area corresponds to the 95%
bootstrap confidence interval. The vertical lines represent the dates of local maximums.
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Figure 4. Box Plot for the proportion of points, by interval where the real number of active
cases fall within the bootstrap confidence interval. The red dot represents the median.

4. Conclusions and future work

In this paper, we considered a model described by a system of differential equations to fit a COVID-
19 real data set. To overcome the fact that deterministic models often use point estimation, which do not
take into account the variability that is underlying the data set, we proposed a method for estimating
confidence intervals that allowed us to analyse the accuracy of the model prediction. To compute
the confidence intervals of the number of COVID-19 active cases, we used a residual bootstrapped
approach, and showed that they contain the majority of the COVID-19 active cases. Moreover,
the 95% confidence interval is able to include inside its bounds the incidence peaks that occurred
during the epidemic period, highlighting the importance of introducing a stochastic component into
the predictions. Up to our knowledge, this is the first time that a deterministic compartmental model
is enriched with a residual bootstrapped approach in order to compute confidence intervals for the
prediction of COVID-19 confirmed active cases.

As future work, robust estimation methods could be employed. Least squares methodology is
sensitive to influential observations, that is, observations that individually have significant influence
on parameter values. Therefore the class of M- estimators could be a valuable option [21].
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