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Abstract. This paper deals with different power series expansions of generalized holomorphic (monogenic) functions in the setting 
of Clifford Analysis. Our main concern are generalized Appell polynomials as a special class of monogenic polynomials which 
have been introduced in 2006 by two of the authors using several monogenic hypercomplex variables. We clarify the reasons why a 
particular pair of non-monogenic variables allows to obtain a power series expansion by those generalized Appell polynomials. 
The approach is based on the differential of a function. Some other monogenic polynomials as well as applications are mentioned.

Introduction

Higher-dimensional analysis relying on non-commutative Clifford algebra tools is frequently called Clifford Analysis. 
Besides work of Weierstrass at the end of the 19th century about functions of two complex variables or others about 
functions of quaternions, the time for such methods matured only at the end of the second decade of the 20th century. 
The incubation time ended mainly due to research done by R. Fueter [14] from the 30ies on. Almost during 20 years 
he developed with his pupils a theory of quaternionic functions of a quaternion variable as the theory of general-ized 
Cauchy-Riemann or Dirac differential equations. Naturally, solutions of those systems have been considered as 
(hypercomplex) regular or generalized holomorphic functions. The book [6] favored the equivalent name monogenic 
functions that we also use. Two decades after Fueter, a great part of Fueter’s work was renewed or actualized by 
following Riemann’s approach through partial differential equations, a long time thought as the only one reasonable. 
Nevertheless, it led very quickly to a generalized function theory as refinement of Harmonic Analysis. But this type of 
function theory heavily relies on representation theoretic and algebraic tools, and much less on instruments from clas-
sical complex function theory. For a long time applications, mainly based on polynomials, to number theory (the main 
motivation for Fueter himself) or methods related to combinatorial questions were almost neglected. This drawback 
substantially restricted the class of functions useful for a treatment in more analytically oriented research. The main 
reason for such a situation was that powers of one hypercomplex variable (and corresponding polynomials or power 
series) do not belong to the set of monogenic functions in the sense of Fueter. In the 90ies the papers [16, 17, 18] 
contributed to a radical change of this perspective, describing the same class of regular functions by using several 
hypercomplex variables (Fueter variables) as a new starting point for a hypercomplex function theory. The papers 
also clarified the fact that differentiability as property of local linear approximation and derivability (the existence of a 
hypercomplex derivative) are, contrary to the complex case n = 1, dual and have to be considered for n > 1 in 
hypercomplex dimension one resp. in co-dimension one of Rn+1 [20]. More about this approach and its applications 
the reader can find in the recent paper [2].

Starting with the differential we follow now the approach in [16, 17, 18] and consider monogenic functions and 
their power series representation in general as well as in terms of generalized Appell polynomials [11]. They can be 
found in 3D-quasi-conformal mappings [19], new analytic methods in elasticity [4, 5], or the construction of 
generalized Hermite, Laguerre [7], Chebyshev [8], as well as Bernoulli, Euler and other polynomials [1].



Basic Notations

For an independent reading, let {e1, e2, · · · , en} be an orthonormal basis of the Euclidean vector space Rn with the 
multiplication rules ekel+elek = −2δkl, k, l = 1, · · · , n, where δkl is the Kronecker symbol. The set {eA : A ⊆ {1, · · · , n}} 
with

eA = eh1 eh2 · · · ehr , 1 ≤ h1 < · · · < hr ≤ n, e∅ = e0 = 1,
forms a basis of the 2n-dimensional Clifford algebra C�0,n over R. Let x = (x0, x1, . . . , xn) ∈ Rn+1. We consider
functions of the form f (x) =

∑
A fA(x)eA, where fA(x) are real valued, i.e. C�0,n-valued functions f defined in some

open subset Ω ⊂ Rn+1. In particular, the embedding of Rn+1 in the 2n-dimensional Clifford algebra C�0,n over R with
An ⊂ C�0,n is realized by consideringAn � Rn+1 with elements of the form x = x0 + e1x1 + · · · + enxn = x0 + x. Then
x ∈ An is called a paravector. The generalized Cauchy-Riemann operator in Rn+1, n ≥ 1, is defined by

∂ := 1
2
(∂0 + ∂x), ∂0 :=

∂

∂x0

, ∂x := e1

∂

∂x1

+ · · · + en
∂

∂xn
. (1)

C1-functions f satisfying the equation ∂ f = 0 (resp. f∂ = 0) are called left monogenic (resp. right monogenic).
This is true if f is hypercomplex differentiable in Ω in the sense of [16, 17], i.e. it has a uniquely defined areolar
derivative f ′ in the sense of Pompeiu in each point of Ω . The hypercomplex (areolar) derivative f ′ of a monogenic
function can be obtained as f ′ = ∂ f = 1

2
(∂0 − ∂x) f where ∂ := 1

2
(∂0 − ∂x) is just the conjugate generalized Cauchy-

1
2

1
2

1
2

Riemann operator. The guaranteed existence of the hypercomplex derivative for a monogenic function is vital for 
the definition o f a n A ppell p olynomial s equence. M oreover, l ike i n c omplex f unction t heory, t he (hypercomplex) 
differentiability of a given function f is equivalent to f being monogenic. Derivating the function f (x) = x we get

∂x = x∂ = (∂0 x0 + ∂x x) = (1 − n). This shows that for n ≥ 2 the paravector x is not monogenic. Furthermore, the

application of the conjugate operator results in ∂x = x∂ = 1 (∂0 x0 − ∂x x) = (1 + n). Both formulae together, indicate
2

that only the particular complex case n = 1 as specification of the general hypercomplex case gives the desired result,
i.e. the variable x itself is a monogenic function with its derivative equal to 1. In other words, the identity function 
does not belong to the set of monogenic functions if n ≥ 2.

The Differential of a Monogenic Function of Several Monogenic Variables

Let us introduce the n + 1 hypercomplex variables
zk := xk − ek x0; k = 1, . . . , n, z̄ := x0 − e1x1 − · · · − enxn. (2)

This choice defines - easy to verify by using (1) - n monogenic variables zk and one non-monogenic variable z̄ = x̄.
It extends the complex case with the usually applied z = x + iy as holomorphic variable resp. z̄ = x − iy as non-
holomorphic variable. In fact, the use of z1 = −iz = y − ix instead of z corresponds only to a change of the real
resp. imaginary axis of the complex plane. Considering now f : Rn+1 −→ An and the corresponding hypercomplex

differentials dzk and dz̄, then the usual differential of f ∈ C1(Rn+1,Ω) , i.e. d f = ∂ f
∂x0

dx0 +
∂ f
∂x1

dx1 · · · + ∂ f
∂xn

dxn is

transformed into the hypercomplex differential of a right monogenic function f , which because of f∂ = 0 reduces to

d f =
(

2

n + 1
f∂
)

dz̄ +
(
∂ f
∂x1

+
2

n + 1
f∂
)

dz1 + · · · +
(
∂ f
∂xn
+

2

n + 1
f∂
)

dzn =
∂ f
∂x1

dz1 + · · · + ∂ f
∂xn

dzn. (3)

Remark. The final form of the differential shows that the particular choice (2) implies that a monogenic function de-
pends only on n- monogenic variables corresponding to co-dimension 1 of Rn+1, but not on z̄. In this sense they behave
like holomorphic functions of one complex variable z not depending on z̄. Like complex holomorphic functions they
are infinitely differentiable and admit locally their expansion in Taylor series. The differential (3) implies, analogously
to the ordinary real multivariate calculus and its conventions, the following result (cf. [18]).

Proposition 1 The Taylor series expansion of a (right) monogenic function f in terms of n hypercomplex variables
around the origin and ordered by powers of the same homogeneous degree k has the form

f (z1, . . . , zn) =

∞∑
k=0

1

k!

(
∂

∂x1

z1 +
∂

∂x2

z2 + · · · + ∂

∂xm
zm

)k
f (0) =

∑
|ν|=0

1

ν!

∂|ν| f (0)

∂x1
ν1 · · · ∂xn

νn
zν1

1
× · · · × zνnn . (4)



with the usual multi-index ν = (ν1, . . . , νn); |ν| = ν1 + · · · + νn; ν! = ν1! · · · νn! . The symbol ” × ” is based on an
additional convention about an n-nary symmetric product symbolized by ” × ” of the hypercomplex variables so that
for any multi-index ν all functions z ν

1
1 × · · · × zνnn are separable and monogenic.

The Differential of a Monogenic Function of Several Non-monogenic Variables

Let Ji(ei) := −ei, Ji(ek) := ek, for k � i, J0 = id, be linear mappings Jk : C�0,n −→ C�0,n, k = 0, 1, . . . , n, then a set of
n + 1 non-monogenic hypercomplex variables can be defined by

z̃k := Jk(Jk−1(· · · (J0(z)))) = Jk,k−1,...,0(z), k = 0, 1, . . . , n. (5)

Any real linear mapping L fromA toA (such as the differential d f ) may be represented by a linear combination
L(z) =

∑
k c̃kz̃k, (cf. [15]). This means that formally and after a very tedious determination of the gradient

∇ f :=
(
∂z̃0
, · · · , ∂z̃n

)
(6)

corresponding to the chosen set of variables, one would get in analogy to (4)

f (z̃0, z̃1, . . . , z̃n) =

∞∑
k=0

1

k!

(
∂

∂z̃0

z̃0 +
∂

∂z̃1

z̃1 + · · · + ∂z̃n
z̃n

)k
f (0). (7)

But as we can see, the Taylor series expansion (7) is not of some reduced hypercomplex form since it is an expansion
with respect to n+1 non- monogenic variables and at the same time with non-commutative partial derivatives. Never-
theless, we can find in (5) a pair of two non-monogenic variables with the algebraic advantage of being commutative,

namely z̃0 = x and z̃n = x̄. Corresponding operations in the differential d f = ∂ f
∂x0

dx0 +
∂ f
∂x1

dx1 · · · + ∂ f
∂xn

dxn, taking into

account that f∂ = 0, lead to the following result.

Proposition 2 The differential of a monogenic function f = f (x, x̄) has the form

d f = ∂x f dx + ∂x̄ f dx̄,

with the corresponding hypercomplex gradient ∇ f = (∂x, ∂x̄) =
(

1
2
(∂0 − 1

n∂x), 1
2
(∂0 +

1
n∂x)
)
. Moreover, the Taylor

series expansion of a paravector valued function f as function of the paravector x and its conjugate x̄ is given by

f (x, x̄) =

∞∑
k=0

1

k!

(
∂

∂x
x +
∂

∂x̄
x̄
)k

f (0) =

∞∑
k=0

1

k!

k∑
s=0

(
k
s

)
∂k f (0)

∂xk−s∂x̄s xk−s x̄s =

∞∑
k=0

k∑
s=0

1

(k − s)!s!

∂k f (0)

∂xk−s∂x̄s xk−s x̄s. (8)

Since ∂xx = −n it is easy to see that ∂xx = ∂x̄ x̄ = 1 and ∂x x̄ = ∂x̄ x = 0. Since ∂0x0 = 1 and ∂0x = 0, the action of
the hypercomplex gradient on the paravector-functions x and x̄ implies (∂x, ∂x̄)x = 1 and (∂x, ∂x̄)x̄ = 1. It is evident
that these relations are the essential tools for a direct differential calculus adapted to monogenic functions f = f (x, x̄)
given in terms of the hypercomplex mutual conjugated variables x and x̄ which for n ≥ 2, contrary to the complex
case, are mutual independent. Like in the case of two independent real variables the gradient plays the role of the
derivative. Indeed, it is easy to verify that this is in agreement with the hypercomplex derivative obtained simply by
f ′ = ∂0 f . But the last expression in formula (8) is nothing else than the expansion of the given function f in a series
of polynomials of the form

Pn
k(x, x̄) =

k∑
s=0

T k
s (n) xk−s x̄s, k = 1, 2, . . . . (9)

Such polynomials with

T k
s =

(
k
s

) ( n+1
2

)
k−s

(
n−1

2

)
s

(n)k
(10)

form a generalized Appell sequence (cf. [3, 19]) of hypercomplex monogenic polynomials associated to the hyper-
complex derivative ∂. With a = 1, b = n+1

2
, b′ = n−1

2
, c = n, u = x, and v = x̄, the corresponding function F = F(x, x̄)

in (8) is recognized as Appell’s function F1 of two variables (see [21], § 139)

F1(a; b, b′; c; x, x̄) =

∞∑
r,t=0

(a)r+t(b)t(b′)rutvr

t!r!(c)r+t
=

∞∑
k=0

k∑
s=0

(
k
s

) ( n+1
2

)
k−s

(
n−1

2

)
s

(n)k
xk−s x̄s =

∞∑
k=0

Pn
k(x, x̄). (11)
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[4] S. Bock and K. Gürlebeck, Math. Methods Appl. Sci., 33 (2010), no. 4, 394–411.
[5] Bock S. On Monogenic Series Expansions with Applications to Linear Elasticity. Adv. Appl. Clifford Alge-

bras 24, (2014), 931 - 943.
[6] F. Brackx, R.Delanghe, and F. Sommen, Clifford analysis . Pitman, Boston-London-Melbourne; 1982.
[7] I. Cação, M. I. Falcão, and H. R. Malonek, Laguerre derivative and monogenic Laguerre polynomials: An

operational approach. Math. Comput. Model. 2011;53(5-6): 1084–1094.
[8] I. Cação and H. R. Malonek, On an hypercomplex generalization of Gould-Hopper and related Chebyshev

polynomials. In: D. Murgante et al (eds) Computational Science and Its Applications - ICCSA 2011, LN in
Computer Science, Springer-Verlag Berlin Heidelberg, 6784, (2011, 316–326.

[9] I. Cação, M. I. Falcão, and H. R. Malonek, Hypercomplex Polynomials, Vietoris’ Rational Numbers and a
Related Integer Numbers Sequence. Complex Anal. Oper. Theory. 11,(2017) no. 5, 1059–1076.

[10] I. Cação, M. I. Falcão, and H. R. Malonek, On generalized Vietoris’ number sequences. Discret. App. Math.
296, (2019), 77–85.

[11] M.I. Falcão, J. Cruz, and H.R. Malonek, Remarks on the generation of monogenic functions, In: K. Gürlebeck
and C. Könke, (eds.), Proc. of the 17-th Inter. Conf. on the Application of Computer Science and Mathematics
in Architecture and Civil Engineering, Bauhaus-University Weimar, ISSN 1611- 4086, 2006.

[12] M. I. Falcão and H. R. Malonek, Generalized exponentials through Appell sets in Rn+1 and Bessel func-
tions.AIP Conf. Proc., edited by T. E. Simos, G. Psihoyios, and C. Tsitouras, 936, (2007), 738–741.

[13] M. I. Falcão and H. R. Malonek, A note on a one-parameter family of non-symmetric number triangles.
Opuscula Mathematica. 32 (2012) no.4,661–673.

[14] R. Fueter, Analytische Funktionen einer Quaternionenvariablen. Comment. Math. Helv. 4, (1932), 9–20.
[15] B. Goldschmidt, A theorem about the representation of linear combinations in Clifford algebras.
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