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Abstract. We revisit a special rational number sequence, introduced by L. Vietoris in 1958 in the study of the positivity of some 
trigonometric sums and used in other contexts by several authors. The aim of the present paper is to embrace and explore real 
and hypercomplex analytical methods to obtain generalizations of that rational number sequence, where Jacobi polynomials and 
generalized Appell polynomials are involved.

Introduction

The famous paper of L. Vietoris [13] contains a result about positivity of certain trigonometric sums where a special 
sequence of rational numbers plays a crucial role. In Askey’s version [2] this result is the following:

Theorem 1 (L. Vietoris)
n∑

k=1

ak sin kθ > 0, 0 < θ < π, and
n∑

k=0

ak cos kθ > 0, 0 ≤ θ < π,

with

a2k = a2k+1 =
( 1

2
)k

k!
, k = 0, 1, . . . ,

where (.)k is the Pochhammer symbol.

The sequence (ak)k≥0 is explicitly given by
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Notice that the coefficients in the sine sum in Theorem 1 do not include the repetition of the first term 1, i.e, can be
considered as terms of the index-shifted sequence (ck)k≥0, where ck = ak+1, k ≥ 0, or, explicitly
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In this paper we focus our attention on this second sequence slightly different from the sequence (1) that Vietoris con-
sidered. The main reason is that the sequence (2) appears naturaly as coefficients of generalized Appell polynomials
in the context of Clifford analysis.

The paper has two parts: in the first one, we generalize the sequence (2) by using only real analytic methods and,
in the second part, we explain how those generalized sequences appear in the hypercomplex framework. Finally, we
combine results in order to obtain more features associated with the constructed generalized Vietoris sequences.



A n-parameter generalization of the Vietoris sequence (ck)k≥0

The key point for a n-parameter generalization of the sequence (ck)k≥0 is the Taylor series of the rational function

g(t; γ; δ) :=
1

(1 − t)γ(1 + t)δ
for particular values of γ and δ. This approach is motivated by Askey [2] that observed

that the sequence (1) is related to the orthogonal expansion of the function g in terms of Jacobi polynomials P
(1/2,1/2)

k (t),
for t = cos θ, 0 < θ < π, γ = 3

4
and δ = 1

4
.

A different expansion of g having the Vietoris numbers (2) as coefficients can be establish with the help of the
ordinary (power series) generating function for the Vietoris sequence (2) that was achieved in [7]:

Theorem 2

F(t) :=

√
1 + t − √1 − t

t
√

1 − t
=

∞∑
k=0

cktk, t ∈] − 1, 0[∪]0, 1[. (3)

By observing that (tF(t))′ = g(t; 3/2; 1/2), from (3) we obtain

g(t; 3/2; 1/2) =

∞∑
k=0

(k + 1)cktk. (4)

Notice that in this development of the function g, the numbers γ and δ are related by γ + δ = 2 and γ − δ = 1. The
main goal of this section is to generalize the sequence (ck)k≥0 by generalizing (4) with the introduction of a parameter
n ∈ N such that g is written in terms of those generalized ck(n), having in mind that ck(2) = ck

1. In this way, it seems
natural to consider in the expansion of g, γ and δ such that γ + δ = n and keeping γ − δ = 1, i.e. consider γ = n+1

2
and

δ = n−1
2

.

Theorem 3 For n ∈ N, we have
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=
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(n)k
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tk, |t| < 1,

where 	.
 stands for the floor function.

Proof The result follows from the Cauchy product of the series 1
(1−y)m =

∑∞
k=0

(m)k
k!

yk, m ≥ 0; |t| < 1, for the cases

m = n+1
2

, y = t and m = n−1
2

, y = −t, respectively, and from the properties of the Pochhammer symbol. For details, see
[5].

Definition 1 (cf. [5]) For each n ∈ N, the n-parameter generalized Vietoris sequence (ck(n))k≥0 is defined by

ck(n) =
( 1

2
)	 k+1

2



( n
2
)	 k+1

2


, k = 0, 1, 2, . . . . (5)

Notice that all the terms of this sequence, apart from the first, are pairwise repeated, i.e. c2m(n) = c2m−1(n), m = 1, 2, . . .
and we get the sequence (2) for the particular case n = 2.

Methods of holonomic differential equations can be successfully used to obtain an exponential generating func-
tion of the n-parameter generalized Vietoris sequence defined above.

Theorem 4 For each n ∈ N, if

F(t; n) =

∞∑
k=0

ck (n)
tk

k!

is an exponential generating function of the sequence (ck(n))k≥0, then F(t, n) is the solution of the second order
holonomic differential equation

tF′′(t) + nF′(t) − (1 + t)F(t) = 0

1Notice that, requiring γ + δ = 1 and γ − δ = 1 gives g(t; 1; 0) = 1
1−t =

∑∞
k=0 tk and ck(1) = 1, for all k ∈ N0.



or, equivalently, of the Sturm-Liouville equation

(tnF′)′ − tn−1(1 + t)F = 0

with the initial conditions
F(0) = 1, F′(0) =

1

n
.

For the proof of this theorem, we refer to [4]. The solution of the considered Sturm-Liouville initial value problem in
terms of confluent hypergeometric functions is known (see [8]). More precisely,

F(t; n) = e−t M
(n + 1

2
, n, 2t

)
,

where M(a, b, z) is the Kummer’s confluent hypergeometric function 1F1(a; b; z) =

∞∑
n=0

(a)nzn

(b)nn!
. It is well known that

when b − 2a is a nonnegative integer (which is the case here), the Kummer function can be expressed in terms of
modified Bessel functions of the first kind Iα. This means that F can be written as

F(t; n) = Γ
(n
2

)( t
2

)1− n
2
(
I n

2
−1(t) + I n

2
(t)
)
. (6)

The n-parameter generalized Vietoris sequence (ck)k≥0 from the hypercomplex point of view

We start by recalling some basic knowledge about Clifford analysis. Let {e1, e2, . . . , en} be an orthonormal basis of the
Euclidean vector space Rn endowed with the non-commutative product eie j + e jei = −2δi j, i, j = 1, 2, . . . , n, where
δi j is the Kronecker symbol. A basis for the associative 2n−dimensional Clifford algebra C�0,n over R is the set {eA :
A ⊆ {1, . . . , n}} formed by eA = eh1

eh2
. . . ehr , 1 ≤ h1 < . . . < hr ≤ n, e∅ = e0 = 1. In general, the vector space Rn+1 is

embedded in C�0,n by identifying (x0, x1, . . . , xn) ∈ Rn+1 with x = x0 +
∑n

k=1 ek xk ∈ An := span
R
{1, e1, . . . , en} ⊂ C�0,n.

The element x :=
∑n

k=1 ek xk is called vector and x = x0 + x is a paravector. The conjugate of x is x̄ = x0 − x and its

norm is given by |x| = (xx̄)1/2 = (x̄x)1/2 =
(∑n

k=0 x2
k

)1/2
.We consider C�0,n−valued functions defined in an open subset

Ω ⊆ Rn+1 � An, i.e. functions of the form f (z) =
∑

A fA(z)eA where fA(z) are real valued functions. The generalized

Cauchy-Riemann operator in Rn+1 is defined by ∂ := 1
2
(∂0 + ∂x), with ∂0 := ∂

∂x0
, and ∂x :=

∑n
k=1 ek

∂
∂xk
. Its

conjugate ∂ := 1
2
(∂0−∂x) is also the hypercomplex derivative operator for monogenic (or hyperholomorphic) functions,

i.e. solutions of the generalized Cauchy-Riemann system ∂ f = 0 ( f∂ = 0). The hypercomplex differentiability as
generalization of complex differentiability has to be understood in the following way (see [11]): a function f defined
in an open domain Ω ⊆ Rn+1 is hypercomplex differentiable if there exists in each point of Ω a uniquely defined
areolar derivative f ′. Then f is real differentiable and f ′ := ∂ f . Furthermore, f is hypercomplex differentiable in Ω if
and only if f is monogenic Ω (cf. [11]). For a deeper study of monogenic function theory we refer [3].

Since the variable x and its powers xk are, in general, not monogenic, the usual way of constructing polynomials
is not valid in this class of functions. In order to obtain an higher dimensional analogue of the holomorphic powers
zk, z ∈ C, the concept of Appell’s power-like polynomials (cf. [1]) was generalized to the hypercomplex setting as
homogeneous monogenic polynomials Fk of degree k such that

∂Fk(x) = kFk−1(x), k = 1, 2, .... and F0(x) = const., x ∈ An.

The construction of the simplest case of generalized monogenic Appell polynomials by choosing F0(x) = 1, for all
x ∈ An, lead to the homogeneous polynomials

Pk(x) =

k∑
s=0

(
k
s

)
cs(n)xk−s

0 xs,

that include the real powers xk
0
, when x = 0 and the holomorphic powers z = (x0 + x1 e1)k when n = 1 (with the usual

identification of e1 with the imaginary unit)2. The coefficients cs(n), s = 0, 1, . . . , k, are precisely the terms (5) of the
generalized Vietoris sequence (ck(n))k≥0 (for details, see [6], [9] and [10]).

2Notice that for the case n = 1, we are dealing with polynomials from R2 � C to R2 � C and, in this case, ck(1) = 1, for all k ∈ N0.



As a first application of Appell polynomials in the framework of hypercomplex function theory, a monogenic
exponential function was studied in [10]:

Expn (x) = Expn (x0 + ω |x|) :=

∞∑
k=0

Pk(x)

k!
= ex0Γ

(n
2

) (
2

|x|
) n

2
−1(

J n
2
−1(|x|) + ωJ n

2
(|x|)
)
,

where Jα are Bessel functions of the first kind and ω :=
x
|x| is such that ω2 = −1. Applying different methods, Laville

et al. (cf. [12]) constructed an equivalent monogenic exponential function, but represented in terms of the modified
Bessel functions:

En (x) := ex0En(x),

where

En(x) = Γ
(n
2

) ( x
2

)1− n
2 (

I n
2
−1(x) + I n

2
(x)
)
. (7)

Notice that the paravector valued function (7) is formally identical with the real valued exponential generating
function (6) of the n-parameter generalized Vietoris sequence (ck(n))k≥0.

The functions (6) and (7) are related to hyperbolic trigonometric functions, for n odd and to Bessel functions of
integer order, when n is even.
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