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Abstract. We consider a Proca-Higgs model wherein a complex vector field gains mass via
spontaneous symmetry breaking, by coupling to a real scalar field with a Higgs-type potential.
This vector version of the scalar Friedberg-Lee-Sirlin model, can be considered as a UV
completion of a complex Proca model with self-interactions. We study the flat spacetime and
self-gravitating solitons of the model, that we dub Proca-Higgs balls and stars respectively,
exploring the domain of solutions and describing some of their mathematical and physical
properties. The stars reduce to the well-known (mini-)Proca stars in some limits. The full
model evades the hyperbolicity problems of the self-interacting Proca models, offering novel
possibilities for dynamical studies beyond mini-Proca stars.

Keywords: gravity, stars

ArXiv ePrint: 2301.04172

c© 2023 The Author(s). Published by IOP Publishing
Ltd on behalf of Sissa Medialab. Original content from

this work may be used under the terms of the Creative Commons
Attribution 4.0 licence. Any further distribution of this work must
maintain attribution to the author(s) and the title of the work,
journal citation and DOI.

https://doi.org/10.1088/1475-7516/2023/05/022

mailto:herdeiro@ua.pt
mailto:eugen.radu@ua.pt
mailto:etevaldo.s.costa@ua.pt
https://arxiv.org/abs/2301.04172
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1475-7516/2023/05/022


J
C
A
P
0
5
(
2
0
2
3
)
0
2
2

Contents

1 Introduction 1

2 The Proca-Higgs model 3
2.1 Action, field equations and limits 3
2.2 A UV completion of a self-interacting Proca model 4
2.3 The hyperbolicity issue 5
2.4 Ansatz, units and numerical approach 7

3 Proca-Higgs balls 9
3.1 The equations and asymptotics 9
3.2 Numerical results 10

4 Proca-Higgs stars 12
4.1 The equations and asymptotic behaviors 12
4.2 Numerical results 13

5 Compactness and some special geodesics 14
5.1 Compactness 14
5.2 Circular geodesics 16

6 Spherical hairy black holes? 18

7 Conclusions 20

A First law 21

1 Introduction

Scalar boson stars (see [1–4] for reviews) are a popular model of self-gravitating solitons that
have found a variety of applications in gravitational physics, for instance in the context of
dark matter, e.g. [5–8], and as black hole mimickers, e.g. [9–20]. The simplest and historically
pioneering model is that of mini-boson stars [21, 22], which emerge for a massive, free, complex
scalar field minimally coupled to Einstein’s gravity. Adding self-interactions (or non-minimal
couplings) allows a whole landscape of models with different properties and applications. In
most models both static and spinning stars have been constructed — see e.g. [2, 23–48]. In
some cases, multi-centre stars, which can be interpreted as several boson stars in equilibrium
have also been reported [49–54]. A key aspect of boson stars is that they are dynamically
robust, for some models and in parts of the parameter space [55–66], allowing dynamical
strong gravity studies, such as collisions and mergers of individual stars, to test their stability
and obtain to gravitational wave templates — see e.g. [67–76]. Scalar boson stars have flat
spacetime counterparts if appropriate scalar self-interactions are included in the model; the
corresponding flat spacetime solitons go by the name of Q-balls [77].

From a high energy physics viewpoint, most of the aforementioned models accommodating
boson stars are regarded as effective field theories (EFTs) rather than fundamental ones, that
require beyond the standard model constructions for a fundamental physics embedding. For
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instance, many of the self-interactions considered are non-renormalizable. Still, such EFTs are
generically self-consistent, allowing not only the study of equilibrium solutions but also their
dynamics, with or without gravity. For attempts to embed some of these EFTs in extensions
of the standard model of particle physics see [78].

Vector boson stars, on the other hand, have only been constructed more recently [79]. In
analogy to their scalar cousins, they were initially constructed for a massive, free, complex field
minimally coupled to Einstein’s gravity. Such mini-Proca stars share many of the properties
of their scalar cousins — see e.g. [33, 38, 80–83]. Some differences, however, can also be
found, for instance in the geodesic structure of the spherical stars [19] and in the stability
properties of the spinning stars [61]. The latter has motivated phenomenological studies of
collisions of spinning Proca stars and the comparison of the corresponding gravitational wave
signals with some observed transients, in particular GW190521 [84, 85]. In fact, a catalogue of
gravitational waves from Proca stars has been reported [86]. As for their scalar cousins, under
appropriate self-interactions Proca-balls have been constructed in flat spacetime [87–90].

Once again, from the viewpoint of high energy physics, the simplest Proca model should
be regarded as an EFT. The lack of gauge invariance, explicitly broken by the mass term,
causes issues, such as non-renormalizability. In a more fundamental theory, the mass term
should be obtained from a Higgs mechanism, as in the electroweak sector of the standard
model. Still, as a classical EFT, the free Proca model is self-consistent.

A natural next step considered Proca stars in models with self-interactions. These were
reported in [91, 92] for quartic self-interactions. It has recently been pointed out, however,
that generic self-interacting Proca fields (not necessarily complex, and even in flat spacetime)
can suffer from a breakdown of hyperbolicity [93–95]. In other words, these models are not
fully self consistent even as EFTs. Since the theory is being taken beyond its regime of validity,
progress requires a completion of the theory, typically at high energies, thus a UV completion.

UV completions of EFTs can be challenging. A notoriously difficult example is the quest
for the UV completion of General Relativity, which has been a holy grail of theoretical physics
for over half a century. But there are simpler field theories which breakdown as EFTs and
have known possible UV completions. An example is a field theory with non-linear kinetic
terms, used for k-essance [96]. A similar construction to this case has been suggested, in fact,
for self-interacting Proca models [97, 98].

In this paper we shall consider a Proca-Higgs model that can both yield a mass to the
Proca field via a Higgs mechanism — thus addressing one of the obvious shortcomings of the
Proca EFT — and be considered as a UV completion of a self-interacting Proca model. We
shall construct the balls (i.e. flat spacetime solitons) and stars (i.e. self-gravitating solitons) of
this model, hereafter dubbed Proca-Higgs balls and Proca-Higgs stars, studying their physical
and mathematical properties. As we shall see, the model approaches the free Proca model
yielding mini-Proca stars in some limits; but unlike the latter, it also contains flat spacetime
solitons, by virtue of the (effective) self-interactions. Moreover, we show that the model
is free of the hyperbolicity problems that plague the self-interacting Proca models, thus
making it an interesting arena for exploring the dynamics of such Proca-Higgs solitons in a
self-consistent manner.

This paper is organized as follows. In section 2 we present the Proca-Higgs model that
will be the focus of our work, its motivation and features. In sections 3 and 4 we discuss
Proca-Higgs balls and stars, respectively. In section 5 we discuss the compactness of the
Proca-Higgs stars and some special circular geodesics, that could have impact in the stars’
phenomenology. In section 6 we establish a no-hair theorem for spherical black holes with
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Proca-Higgs hair. We wrap up our results providing some discussion in section 7. In an
appendix we establish a first law type relation for the Proca-Higgs stars.

2 The Proca-Higgs model

2.1 Action, field equations and limits

We consider a model with a real scalar, φ, and a complex vector field, Aα, both minimally
coupled to Einstein’s gravity. Unlike previous works dealing with Proca stars1 — e.g. [79, 99]
—, in this model the mass of the vector field results from a scalar-vector coupling. A non-zero
vector mass results from the Higgs-like scalar potential, dynamically imposing a non-trivial
scalar vacuum expectation value (vev) at infinity, v =constant. Explicitly, the model is
described by the action:

S =
∫
d4x
√
−g

[
R

16πG −
1
4FαβF̄

αβ − 1
2φ

2AαĀα −
1
2∂αφ∂

αφ− U(φ)
]
, (2.1)

where R is the Ricci scalar of the spacetime metric gαβ, with determinant g, and the vector
field strength is Fαβ = ∇αAβ −∇βAα, with overbar denoting complex conjugation. We shall
focus on the ‘Mexican-hat’ potential for the scalar field

U(φ) = λ

4 (φ2 − v2)2 , (2.2)

where λ > 0 is a constant.
The vector and scalar equations of the model are, respectively,

∇αFαβ = φ2Aβ , (2.3)

�φ = dU

dφ
+ φ AαĀα, (2.4)

whereas the Einstein equations read

Rαβ −
1
2Rgαβ = 8πG

[
T

(v)
αβ + T

(s)
αβ

]
, (2.5)

where the vector and scalar components of the energy-momentum tensor are

T
(v)
αβ = 1

2(FασF̄βγ + F̄ασFβγ)gσγ − 1
4gαβFστ F̄

στ + φ2
[1

2(AαĀβ + ĀαAβ)− 1
2gαβAσĀ

σ
]
,

(2.6)

T
(s)
αβ = ∂αφ∂βφ− gαβ

[1
2(∂φ)2 + U(φ)

]
. (2.7)

Here we have chosen to assign the mixed terms (i.e. scalar-vector) to the vector energy-
momentum tensor as to make it more Proca-like. This split, however, is arbitrary.

1These works consider the following action, that we shall refer to as the standard (complex) Proca model
(where µ is a constant mass term)

S =
∫
d4x
√
−g
[

R

16πG −
1
4FαβF̄

αβ − µ2

2 AαĀ
α

]
.
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The Proca-like vector field equations (2.3) imply the Lorenz-like condition, which is not
a gauge choice, but rather a dynamical requirement:

∇α(φ2Aα) = 0 . (2.8)

Inspection of the field equations (2.3)–(2.5) reveals that φ = 0 is a consistent truncation
of the model, yielding a complex (massless) vector minimally coupled to Einstein’s gravity.
In other words an Einstein-(double)Maxwell theory. On the other hand, φ = v 6= 0 is not a
consistent truncation. The Einstein-vector equations yield an Einstein-complex-Proca system,
but the scalar equation yields an additional non-trivial constraint, AαĀα = 0.

Despite not reducing exactly to the standard Proca model, there are limits in which the
latter should be recovered. For asymptotically flat solutions, that are the focus of our study,
the asymptotic behavior of the scalar field is fixed by the condition

U(φ)→ 0 , i.e. φ→ v as r →∞ , (2.9)

which implies an effective mass µ ≡ v for the vector field. Thus, the standard Proca
model [79, 99] is recovered asymptotically. One may also anticipate that the standard Proca
model is recovered for “large λ”, as in this case, it becomes energetically costly for φ to depart
from the vev. We shall see below how much this expectation is confirmed by the data.

On the other hand, the model (2.1) will exhibit features unlike those of the standard
(free) Proca model. Namely, flat-spacetime solitonic solutions (hereafter “balls”) may exist.
This is suggested by the analogy with a (renormalizable) theory proposed by Friedberg, Lee
and Sirlin [100]. This model contains two scalars only, and can be seen as the spin-zero version
of (2.1), the complex vector field being replaced by a complex scalar field ψ, with the matter
Lagrangian density

L = −1
2(∂αψ)(∂αψ)∗ − 1

2φ
2ψψ∗ − 1

2∂αφ∂
αφ− U(φ) . (2.10)

The complex scalar ψ becomes massive due to the coupling with the real scalar field φ,
which has a finite vev generated via a symmetry-breaking potential. Since the Friedberg-Lee-
Sirlin possesses particle-like solutions in a flat space background, it is natural to expect a
similar result for its vector generalization that we are proposing. Below we shall confirm this
expectation.

The model (2.1) possesses a global U(1) invariance of the complex vector field, under
the transformation Aµ → eiχAµ, with χ constant. This implies the existence of a conserved
4-current,

jα = i

2
[
F̄αβAβ −FαβĀβ

]
. (2.11)

From (2.3) it follows that ∇αjα = 0. Consequently, there exists a Noether charge, Q, obtained
by integrating the temporal component of the 4-current on a space-like slice Σ:

Q =
∫

Σ
d3x
√
−gj0 . (2.12)

2.2 A UV completion of a self-interacting Proca model
The model we are considering (2.1) can be regarded as a UV completion of a self-interacting
Proca model. To see this, we start by expanding φ around its vev,

φ = v(1 + ρ) ; (2.13)
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one gets

1
2∂αφ∂

αφ+ U(φ) = v2
(

1
2∂αρ∂

αρ+ λv2ρ2 + λv2ρ3 + λv2

4 ρ4
)
, (2.14)

which means that the perturbation around the vev, ρ, acquires an effective mass Mρ ≡
√

2λv.
The equation of motion for ρ then reads

�ρ =
M2
ρ

2 ρ(1 + ρ)(2 + ρ) + (1 + ρ)AαĀα . (2.15)

At energies much lower than Mρ, one can freeze the scalar degree of freedom (�ρ ≈ 0) and
solve (2.15) for ρ

ρ± = −1±

√√√√1− 2AαĀα
M2
ρ

. (2.16)

Using (2.16) in the initial model (2.1), one obtains the low energy EFT

Seff =
∫

d4x

[
R

16πG −
1
4FαβF̄

αβ − v2

2

(
AαĀα −

(AαĀα)2

M2
ρ

)]
. (2.17)

This is a complex Proca model with quartic self-interactions. We had mentioned before that
setting φ = v is not a consistent truncation of the initial model (2.1). We have just shown
that considering small oscillations around the vev, instead of getting a nuisance constraint
from the scalar equation, that constraint can be used to get an extra interaction in the model,
which may suffice to describe the dynamics at sufficiently low energies. It is worth noticing
that the effective Proca field theory obtained has a definite sign for the self-interactions, i.e.
it reads

LProca EFT = −1
4FαβF

αβ − µ2

2 AαĀ
α − α2(AαĀα)2 , (2.18)

with the mass term µ2 = v2, determined by the scalar vev, and the self interactions

α2 = − v2

2M2
ρ

= − 1
4λ < 0 , (2.19)

determined by the strength of the scalar self-interactions. Again, we see that for λ “large”,
the free Proca model should be approximately recovered.

We remark that similar considerations have been made in [98]. Our concrete model
is distinct from those considered in this reference and our goal includes acquiring mass
dynamically.

2.3 The hyperbolicity issue
The dynamics of self-interacting vector fields can sometimes be written as if regulated by
a so-called effective metric [93, 94, 101], that depends on the vector field itself and on the
spacetime, which is a fundamental aspect for understanding the problem. In other words,
such an effective metric controls the principal part of the differential operator governing the
vector field, and it can lead to a loss of hyperbolicity. Given the hyperbolicity issues observed
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for self-interacting Proca fields [93–95, 97, 101], and given the connection between model (2.1)
and the Proca model with quartic self-interactions demonstrated in the last subsection, it is
relevant to discuss the hyperbolicity of model (2.1).

In this subsection, we investigate hyperbolicity issues in the Proca-Higgs model, applying
the methodology introduced in [93, 94, 101], to obtain the effective metric ruling the propa-
gating of the vector field. This approach is focused on the principal part of the differential
operator. It does not rule out tachyonic instabilities [93], which are of a different nature and
do not signal a breakdown of the EFT.

For this analysis we consider a real vector field Aµ with norm A2 = AµAµ, coupled with
a real scalar field, φ, described by the Lagrangian density

L = R

16πG −
1
4FαβF

αβ − 1
2V (φ,A2)− 1

2∂αφ∂
αφ− U(φ) . (2.20)

We assume that φ only occurs multiplied by powers of A2 in the potential V (φ,A2). The
vector field equation is then

−∇µ∇µAν +∇µ∇νAµ +Aν V (0,1) = 0 , (2.21)

where V (n,m) ≡
∂n∂mV

(
φ,A2)

(∂φ)n (∂A2)m ). In order to construct the effective metric, we want to write

the second term in (2.21) as a wave operator. By taking the divergence of the above equation,
one finds the modified Lorenz gauge condition

∇ν
(
AνV (0,1)

)
= 0 , (2.22)

which can be re-written as

∇µAµV (0,1) + 2AµAν∇µAνV (0,2) +Aµ∇µφV (1,1) = 0 . (2.23)

Next, by using the definition of the Riemann curvature tensor (∇µ∇ν −∇ν∇µ)Aµ = RνµAµ
and using equation (2.23), we can cast the vector field equation (2.21) as

∇µ∇µAν+ 2∇α∇νAµV (0,2)

V (0,1) AµAα−AνV (0,1)+∇µφ∇νA
µV (1,1)

V (0,1) −RνµAµ

+ 1
V (0,1)

2(∇αAµ+∇µAα)∇νAαV (0,2)+V (1,1)∇ν∇µφ+

V (2,1)−

(
V (1,1)

)2

V (0,1)

∇µφ∇νφ
Aµ

+ 2
V (0,1)

{
−V

(0,2)V (1,1)

V (0,1) (∇αφ∇νAµ+∇αAµ∇νφ)+V (1,2)(∇αφ∇νAµ+∇αAµ∇νφ)
}
AµAα

+ 4∇βAα∇νAµ
V (0,1)

V (0,3)−

(
V (0,2)

)2

V (0,1)

AµAαAβ = 0 . (2.24)

We can now substitute the second term in (2.24) by using Fαβ = ∇αAβ − ∇βAα and,
consequently, the principal part of the differential operator becomes

∇µ∇µAν + 2∇α∇νAµV
(0,2)

V (0,1) AµAα = ĝµα∇µ∇αAν + 2

Θν︷ ︸︸ ︷
∇αFνµV (0,2)

V (0,1) AµAα . (2.25)
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We have introduced the effective metric

ĝµν ≡ gµν + 2V (0,2)

V (0,1) AµAν . (2.26)

Similarly as [94], the term Θν contributes to the principal part of the differential operator
and must be taken into account. As in the pure Proca case, eq. (2.24) is not manifestly
hyperbolic. Moreover, similar procedures to those in appendix B of [94] shows that, in fact,
the effective metric, ĝµν , governs the dynamics of the vector field and change of its signature
leads to a breaking into the hyperbolicity of the equation.

Notice, however, that our model is free of hyperbolicity issues caused by change in
signature of this effective metric, since for this particular model the effective metric reduces
to the spacetime one. This is verified for our model (2.1), for which

V (φ,A2) = φ2A2 ⇒ V (0,2) = 0 , (2.27)

which confirms the model (2.1) is free of hyperbolicity issues. In this case, moreover, (2.24)
simplifies to

∇µ∇µAν −AµRνµ −Aνφ2 + 2∇νAµ∇µ lnφ+ 2Aµ∇ν∇µ lnφ = 0 . (2.28)

On the other hand, the effective mass matrix

Mµν = Rνµ + δµνφ
2 − 2∇ν∇µ lnφ , (2.29)

can have vanishing determinant. Hence the model can present tachyonic instabilities.

2.4 Ansatz, units and numerical approach

Throughout this paper we shall use units with c = 1. In the explicit computation of the
solutions below, we shall focus on spherically symmetric solutions. Then, by using standard
coordinates (t, r, θ, ϕ), we shall take the following ansatz for the “matter” fields

A = e−iωt [f(r)dt+ ig(r)dr] , φ = φ(r) . (2.30)

Here, f , g and φ are all real functions, which only depend on the radial coordinate r, and ω
is a real frequency parameter, assumed to be non-negative without loss of generality.2 When
computing self-gravitating solitons (“stars”) we assume the following form for the line element
in isotropic coordinates

ds2 = −e2F0(r)dt2 + e2F1(r)
[
dr2 + r2(dθ2 + sin2 θdϕ2)

]
, (2.31)

where F0 and F1 are radial functions.
We shall now discuss some convenient rescalings of the variables and parameters of the

model, that shall be used in the remainder of the paper. Unlike the standard (free) Proca
model, the theory (2.1) allows for flat spacetime solitons. To simplify comparisons between
such Proca-Higgs balls and the self-gravitating stars, we introduce the dimensionless quantities

r → r

v
, ω → vω , φ→ vφ , Aα → vAα , (2.32)

2The electromagnetic potential g should not be confused with the determinant of the metric.
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such that the field equations (2.3)–(2.5) become

∇αFαβ = φ2Aβ , (2.33)
�φ = λ(φ2 − 1)φ+ φ AαĀα , (2.34)

Rαβ −
1
2Rgαβ = 2α2

[
T

(v)
αβ + T

(s)
αβ

]
, (2.35)

where we have defined the coupling constant

α2 ≡ 4πGv2 . (2.36)

This scaling reduces the number of tuneable couplings/parameters in the action from 3
(G,λ, v) to 2 (α, λ). Then, the (gravitational) decoupling limit — in particular to be used for
a flat spacetime background to compute balls — amounts to α = 0.

Under this scaling the Noether charge remains invariant

Q =
∫

Σ
d3x
√
−gj0 . (2.37)

The mass/energy of balls and the Komar mass of the stars, on the other hand, scales as
M →Mv. In the case of stars, M can be computed in two ways: (1) the Komar mass

MKomar ≡ −
∫

Σ
d3x
√
−g

(
2T 0

0 − T
)
, (2.38)

where T is the trace of the total energy-momentum tensor. Obviously, this is also applicable
to balls, in which case it reduces to the standard integral over the energy density3

Mballs
Komar ≡

∫
Σ
d3x
√
−g T00 ; (2.39)

and (2) the ADM mass, that can be read off from the metric behavior at infinity

− gtt ≈
r→∞

1− 2GMADM
r

. (2.40)

Comparing MADM with MKomar, for stars, provides a test for the numerical quality of
the solutions.

Turning now to the issue of numerical construction of the solutions, we mention that our
approach is similar for both Proca-Higgs balls and stars. The solutions are found by solving a
set of coupled non-linear ordinary differential equations for the functions F = (F0, F1;φ, f, g)
(with F0 = F1 = 0 for balls), which are displayed in sections 3.1 and 4.1. These equations were
subject to the boundary conditions introduced in the aforementioned sections. The professional
package fidisol/cadsol [103], which employs a finite difference method with an arbitrary
grid and arbitrary consistency order, has been used to perform all numerical calculations
reported in this work.4 This solver uses a Newton-Raphson method, which requires a good
first guess in order to start a successful iteration procedure (see the references [104, 105] for a
more in-depth explanation of the solver). Inside the solver, we introduce a compactified radial

3This can be seen from (2.38) together with the Deser/virial identity for flat spacetime solitons, which
establishes that the integral of the spatial trace on a spacelike slice vanishes [102].

4We mention that some of the solutions have been recovered by using a Runge-Kutta ordinary differential
equations solver and a shooting technique.
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variable x = r/(c+ r) (with c an input parameter which is usually taken equals to one) which
maps the semi-infinite region [0,∞) to the finite region [0, 1], and make the substitutions

F,r −→
1
c

(1− x)2F,x, F,rr −→
1
c2 (1− x)4F,xx −

2
c2 (1− x)3F,x.

We then discretize the equations for F on a grid in x. The results in this work have
been found for an equidistant grid varying from (around) 400 to 800 points, covering the
integration region 0 ≤ x ≤ 1.

The solver also provides error estimates for each unknown function, which allows for
judging the quality of the computed solution. The numerical error for the solutions reported
in this work is estimated to be typically < 10−5. Moreover, we also use physical constrain to
test the trustworthiness of the numerical solutions, e.g., the equivalence between the ADM
mass and the Komar one, the virial identity, the first-law identity and the gauge condition.

3 Proca-Higgs balls

3.1 The equations and asymptotics

We shall now present our numerical results on the solitonic solutions of (2.1). First we consider
the flat spacetime solutions in the decoupling limit: we set α = 0 = F0 = F1. Then, the only
field equations to solve are (2.33) and (2.34), which, under the ansatz (2.30), yield

d

dr

{
r2 [f ′ − ωg]} = r2φ2f , ωg − f ′ = φ2g

ω
, (3.1)

φ′′ = −
(
f2 − g2 + λ

)
φ− 2φ′

r
+ λφ3 , (3.2)

where the prime denotes the derivative with respect to r. These equations are constrained by
the gauge condition (2.8), which becomes

g′ + ωf = −2g (rφ′ + φ)
rφ

. (3.3)

For the Proca-Higgs balls, the globally conserved quantities, Noether charge (2.37) and
mass/energy (2.39), become

Q = 4π
∫ ∞

0

g2φ2

ω
r2dr , (3.4)

M = 2πv
∫ ∞

0

[(
f ′ − ωg

)2 + φ2
(
f2 + g2

)
+ 1

2λ
(
φ2 − 1

)2
+ φ′2

]
r2dr . (3.5)

These solutions obey the virial identity (see e.g. [106])

∫ ∞
0

{
−1

2φ
′2 − 3λ

4
(
φ2 − 1

)2
+ 1

2φ
2
[
3f2 + g2

(
−1 + φ2

ω2

)]}
r2dr = 0 , (3.6)

which can be used to test the numerical accuracy of the solutions. All solutions reported in
this work obey the virial identity up to errors of order 10−5 − 10−8; the larger errors are for
solutions occurring inside the spiral.
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To numerically integrate eqs. (3.1)–(3.2) we need to impose boundary conditions. At
the origin, r = 0, these establish regularity and read,

φ(r) = φ0 −
φ0
6
(
f2

0 − λ(φ2
0 − 1)

)
r2 +O(r3) , (3.7)

f(r) = f0 + f0
6
(
φ2

0 − ω2
)
r2 +O(r3) , (3.8)

g(r) = −f0ω

3 r +O(r3) . (3.9)

As such, φ(r = 0) = φ0 and f(r = 0) = f0. Due to the Z2 symmetry for the scalar field and
the global U(1) symmetry for the vector potential, φ0 and f0 can be chosen positive. On
the other hand, we impose that the scalar field reaches its vev when r →∞ and the vector
potentials decay exponentially, due to the effective asymptotic mass term:

φ(r) = 1 + c1e
−
√

2λr

r
+ · · · , (3.10)

f(r) = c2e
−r
√

1−ω2

r
+ · · · , (3.11)

g(r) = −
c2ωe

−r
√

1−ω2
(
r
√

1− ω2 + 1
)

r2 (ω2 − 1) + · · · , (3.12)

where c1 and c2 are arbitrary real constants. One observes that in order to have localised
solutions, the frequency is bounded, ω < 1. This is the standard bound state condition, since
our scaling made the asymptotic effective mass term in the vector equation equal to unity.

3.2 Numerical results

For the Proca-Higgs balls, the only tunable parameter in the model is λ. Figure 1 exhibits the
domain of existence of the fundamental solutions5 for two illustrative values of λ, in mass vs.
frequency diagrams. Several features are salient. Firstly, as ω → 1 the mass/energy tends to
diverge. This is a well known feature of Q-ball models. Secondly, and unlike Q-balls, as one
scans the domain of solutions one finds a self-intersection of the mass/energy curve (and also
of the Noether charge one). Thirdly, unlike Q-balls, for which a minimum frequency emerges
wherein the mass/energy again diverges, so far we were not able to compute a minimal
frequency for Proca-Higgs balls. In figure 1 we have plotted the solutions curve only until the
third branch, for better visualization. Finally, the criterion for energetic instability Q < M/v
is obeyed in a larger part of the parameter space as λ increases.

Differently from Q-balls and scalar boson stars, φ0 is not a good solution label for
Proca-Higgs stars. A good parameter is f0, as for Proca stars, since it grows monotonically
along the solutions curve, starting from the maximal frequency limit; thus it is in a one to one
correspondence with the solutions. In this respect, we remark that for a generic solution, f0
is not the maximum of f(r); rather, the maximum occurs in the neighbourhood of the origin.
To illustrate the profile functions of a concrete solution we exhibite them for an illustrative
Proca-Higgs ball with ω = 0.80 and λ = 0.005 in figure 2 (left panel).

5All solutions presented in this work correspond to the fundamental solutions (or ground state), for which
the vector potential temporal component f(r) has the minimum number of nodes (one). Solutions with higher
number of nodes exist, corresponding to excited states, but we shall not report them here.
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Figure 1. Top panels: mass/energy (red solid line) and Noether charge (blue dashed line) of the
Proca-Higgs balls as a function of their frequency ω for two illustrative values of λ. Bottom left panel:
a comparison between the mass/energy for the two values of the coupling λ = 0.005 (red solid line) and
λ = 0.05 (blue dashed line). The self-intersection of the mass/energy curve is a feature observed for all
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as functions of λ for ω = 0.95.
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We have performed thorough studies of the solution space for particular values of λ,
including λ = 0.05 and λ = 0.005, scanning for the frequency ω. To illustrate the dependence
of the solution space on the coupling constant, we have fixed the frequency, say ω = 0.95, and
varied λ — figure 2 (right panel). Interestingly, the model seems to have an upper bound
on the parameter λ. As discussed in the previous section, increasing λ the model tends to
the standard (free) Proca model. As shown in [99], the latter does not admit flat spacetime
solutions for the considered ansatz. In agreement with this, our numerical results suggest
that the solutions cease to exist above some particular value of λ, which depends on the
frequency ω.

4 Proca-Higgs stars

4.1 The equations and asymptotic behaviors

Let us now turn on gravity α 6= 0 and study the Proca-Higgs stars of the model (2.1). Again
we focus on spherical symmetry and thus the full ansatz is given by (2.30) and (2.31). The
scaled matter field equations (2.33)–(2.34) then yield:

d

dr

{
r2 [f ′ − ωg] eF1−F0

}
= r2e3F1−F0fφ2 , ωg − f ′ = e2F0gφ2

ω
, (4.1)

φ′′ =
(
g2 − e2F1−2F0f2 − λe2F1

)
φ−

(2
r

+ F ′0 + F ′1

)
φ′ + λe2F1φ3 . (4.2)

The Lorenz-like gauge condition for these equations becomes

g′ + ωfe2F1−2F0 = −g
(
F ′0 + F ′1 + 2φ′

φ
+ 2
r

)
. (4.3)

The scaled Einstein equations (2.34), are combined as in the following: the (t,t) component

and (r, r) + (θ, θ)− (t, t)
2 ; leading into two equations to be solved

F ′′1 =−F
′2
1
2 −

2F ′1
r

+ α2

2

{
e−2F0

((
f ′−wg

)2 +f2e2F1φ2 +e2F0g2φ2
)
− λ2 e

2F1
(
φ2−1

)2
−φ′2

}
,

(4.4)

F ′′0 =−2F ′0F ′1−F ′20 −
3F ′0
r
− 1

2F
′2
1 −

F ′1
r

+

+ α2

2

{
e−2F0

((
f ′−wg

)2 +5f2e2F1φ2 +e2F0g2φ2
)

+φ′2− 3
2λe

2F1
(
φ2−1

)2
}
. (4.5)

The Noether charge and mass are now

Q= 4π
∫ ∞

0

eF0+F1g2φ2

ω
r2dr , (4.6)

M = 2πv
∫ ∞

0
eF0+F1

[
(f ′−ωg)2 +φ2

(
f2e2F1 +g2e2F0

)
+ e2F0+2F1λ

2 (φ2−1)2 +e2F0φ′2
]
r2dr ,

(4.7)
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whereas the virial identity is

∫ ∞
0

{
− e−2F1

2 φ′2 − 3λ
4
(
φ2 − 1

)2
+ 1

2φ
2
[
3e−2F0f2 + e−2F1g2

(
−1 + e2F0 φ

2

ω2

)]

+ e−2F1F ′1 (2F ′0 + F ′1(r))
2α2

}
eF0+3F1r2dr = 0 . (4.8)

The solutions reported in this section obey the virial identity up to errors of order
10−5 − 10−6, where, as in the case of balls, the larger errors occur inside of the spiral.

Again, the numerical integration requires an analysis of the asymptotic behaviour of the
relevant functions. Close to the origin, r ≈ 0, the different profile functions read

F0(r) = F00 + α2

12 e
2F10−2F00

[
4f2

0φ
2
0 − e2F00λ

(
φ2

0 − 1
)2
]
r2 +O(r3) , (4.9)

F1(r) = F10 −
α2

24 e
2F10−2F00

[
2f2

0φ
2
0 + e2F00λ

(
φ2

0 − 1
)2
]
r2 +O(r3) , (4.10)

φ(r) = φ0 −
φ0
6 e

2F10−2F00
[
f2

0 − e2F00λ
(
φ2

0 − 1
)]
r2 +O(r3) , (4.11)

f(r) = f0 + f0
6 e

2F10−2F00
(
e2F00φ2

0 − ω2
)
r2 +O(r3) , (4.12)

g(r) = −f0ω

3 e2F10−2F00r +O(r3) . (4.13)

Moreover, since we want to describe asymptotically flat solutions, the matter field
behavior for large r is still described by equations (3.10), (3.11) and (3.12), while the behavior
of the metric functions is

e2F0(r) = 1− 2MGv

r
+ · · · , e−2F1(r) = 1− 2MGv

r
+ · · · , (4.14)

where the parameter M can be identified as the ADM mass.

4.2 Numerical results

Let us now present the numerical results for the spherical Proca-Higgs stars. We use the same
numerical framework as in the case of balls. The solutions presented here have typical errors
of order 10−5 − 10−6.

To scan the parameter space of the Proca-Higgs stars, we must sweep (λ, α) and ω.
Let us start by fixing λ and increasing α — figure 3. The left panel shows a key difference
when gravity is turned on — the mass of the solutions is regularised (as compared to balls)
as the maximal frequency is reached. In this limit, often called the Newtonian limit, the
stars become more dilute and their mass tends to zero. The plot also manifests that the self
intersecting mass (and Noether charge) curve remains, even when gravity is turned on, at
least for sufficiently small α. For sufficiently large α, on the other hand, this feature is absent.
In fact, for large enough α the Higgs field is almost frozen at its vev, and Proca-Higgs stars
mass curve approaches that of mini-Proca stars — figure 3 (right panel).

Let us now fix α and vary λ instead — figure 4. A feature that is lost when gravity
is turned on is the apparent maximum of λ described in the last section. Solutions exist
for arbitrarily high λ. This is to be expected, from the reasoning presented before, and the
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Figure 3. (Left panel) Mass (red solid line) and Noether charge (blue dashed line) vs. ω, for Proca-
Higgs stars with λ = 0.005 and α = 0.35. (Right panel) Mass vs. ω curve for Proca-Higgs stars with
λ = 0.005 and four different values of α as well as for the mini-Proca stars.

solutions should approach, again, the mini-Proca stars for λ→∞. In fact, this is what we see
in figure 4 (top right panel). Again, the Higgs field freezes at its vev in this limit (bottom left
panel). Comparing the top left and right panels of figure 4, one notices, however, a change in
trend: for low (high) λ, increasing λ, increases (decreases) the minimum frequency at which
the first branch of solutions ends, and the first backbending of the solution space occurs. The
same non-monotonic behaviour with λ also occurs for the critical frequency at which the
maximal mass occurs (bottom right panel).

Finally, we exhibit the profile of the metric and matter fields profiles, together with
some physical quantities, for an illustrative solution, with ω = 0.80, λ = 0.005 and α = 0.35,
in figure 5.

5 Compactness and some special geodesics

To get some further insight on the Proca-Higgs stars we have presented in the previous section,
we shall now look at their compactness and some special circular geodesics.

5.1 Compactness
As we have seen, Proca-Higgs stars approach mini-Proca stars for both large λ and large α.
Mini-Proca stars are stable from the maximal frequency up to the frequency of the maximal
mass [79]. This is a typical property of spherical bosonic stars [81]. Thus we shall call the
corresponding part of the first branch of Proca-Higgs stars the “stable branch”, albeit a
rigorous stability analysis is beyond the scope of this paper.

Both scalar boson stars and Proca stars become more compact along the stable branch,
from the Newtonian limit up to the maximal mass. Following the literature (see e.g [104]), we
define this compactness in terms of the effective (areal) radius R99, which contains 99% of the
total mass of the star. Note that these consideration are done in terms of the areal radius R,
which has a geometric meaning, and that connects to the isotropic radius r as R99 = eF1r99.
Then, the inverse compactness is defined by

Compactness−1 = R99
2M99

, (5.1)

where M99 = 0.99M .
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Figure 4. (Top left and right) Variation of the Proca-Higgs stars Mass vs. ω curve with λ, for
α = 0.35. The solutions tend to mini-Proca stars λ becomes large. (Bottom left) The mass (red
solid line) and Noether charge (blue dashed line) of Proca-Higgs stars solutions, as functions λ for
ω = 0.95 and α = 0.35. The mass approaches that of mini-Proca stars. The inset shows how much
the scalar field deviates from 1: for large values of λ, φ0, Min(φ) and Max(φ) are all ' 1. (Bottom
right) Variation of the critical frequency, ωc, at which the maximal Mass is attained (for fixed α and
λ) when λ is varied and α = 0.35: black crosses are data points, whilst the red continuous line is an
interpolation. For the computed solutions, the maximal mass monotonically increases with λ, tending
to that of mini-Proca stars (blue cross).

The Higgs-Proca case is no different from the aforementioned models: moving along
the whole first branch the stars become more compact — figure 6 (main panels). Along
secondary branches, the compactness may increase or decrease, but the stars therein become
fairly compact, albeit never as compact as a Schwarzschild black hole.

One can also compare the compactness of the maximal mass solution as one moves
along the (λ, α) parameter space. This is illustrated in figure 7, fixing an illustrative value of
λ (left panel) or α (right panel). One observes that the compactness of the maximal mass
solution is not monotonic. Fixing λ, on the one hand, the maximal mass solution initially
increases considerably in compactness when increasing α, reaching a maximal value, and then
decreasing slightly, tending to the value of the mini-Proca case. Fixing α, on the other hand,
the compactness of the maximal mass solution initially increases slightly when increasing λ,
reaching a maximal value, and then decreasing towards a global minimum of compacness in
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Figure 5. Radial profiles of the mass and Noether charge densities, energy-momentum trace and (in
the inset), metric, vector and scalar functions, for the Proca-Higgs stars with ω = 0.80, λ = 0.005 and
α = 0.35. The solution lies on the first branch and has M = 36.52, Q = 38.86. For this particular
solution, the maximum value of f , f = 0.0305, occurs at the origin, while its minimum, f = −0.0109,
occur at r = 7.695.

solution space (for the maximal mass solution). Then it increases tending to the value of the
mini-Proca case. It is worth noticing that along both sequences of solutions, the maximal
mass always increases, as shown in the inset of both panels in figure 7.

5.2 Circular geodesics
Let us now turn to the study of circular geodesics. Special spacetime circular geodesics include
light rings (LRs) and innermost stable circular orbits (ISCOs). The existence of these features
in a horizonless star-like compact object could make them black holes foils, see e.g. [19], which
justifies their interest. More recently, it was argued that even without an ISCO, a horizonless
spacetime could imitate the shadow of a black hole, under some conditions, if its timelike
circular orbits (TCOs) reached a maximal angular velocity at some non-zero radius [18]. This
rationale was explored in [19] to argue that some mini-Proca stars in the stable branch could
actually imitate the shadow of a Schwarzschild black hole. Since the Proca-Higgs stars connect
to mini-Proca stars, we expect the same feature to hold for the former. The following analysis
will corroborate this hypothesis.

We consider null/time-like circular geodesics on the geometry (2.31), which are planar.
The radial geodesic equation, on the equatorial plane, for a massive (massless) particle, is

Vk(r) ≡ ṙ2 = k e−2F1 + e−2F0−2F1E2 − e−4F1 l2

r2 , (5.2)

where E, l represent the particle’s energy and angular momentum and the dot represents
the derivative with respect to an affine parameter; k = −1, 0 for time-like or null geodesics,
respectively. Then, a particle on a circular orbit at r = rcir simultaneously satisfies the
conditions (see [51] for a more detailed discussion):

Vk(rcir) = 0 , (5.3a)
V ′k(rcir) = 0 . (5.3b)

The stability of such orbits is dictated by the second derivatives

V ′′k (rcir) > 0⇔ unstable; V ′′k (rcir) < 0⇔ stable. (5.4)
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Figure 6. The inverse compactness as a function of the angular frequency ω. In the inset, we plot the
areal radius of the maximal angular velocity along TCOs, RΩ (blue solid line) and the corresponding
value of the angular velocity Ωmax (red solid line), as a function of the parameter f0. In the Newtonian
branch (ω ≈ 1), the TCOs have their highest angular velocity at a location far from the origin, which
corresponds to a large value of RΩ. However, as we move towards the center of the spiral, RΩ decreases
to zero, indicating that the TCOs have their maximum angular velocity at the origin. As we move
along the spiral, RΩ remains zero. However, for certain ranges of parameters, RΩ can deviate again
from the origin in regions well within the spiral, as shown in the inset of the two bottom panels.

Let us first consider the time-like case. For TCOs, the angular velocity of the particle
along the geodesic is given by:

Ω = dϕ

d t
=

eF0−F1
√
F ′0√

r(1 + rF ′1)

∣∣∣∣∣
rcir

. (5.5)

Let RΩ denote the areal radius which maximizes the angular velocity along TCOs. Follow-
ing [19], we define

ξ ≡ RISCO
RΩ

, (5.6)

where RISCO corresponds to the ISCO radius for a Schwarzschild black hole with the same
mass. This measures the ability for a compact object to mimic the accretion flow of a
Schwarzschild black hole [18, 19]. Again, these consideration are done in terms of the areal
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Figure 7. Inverse compactness of the maximal mass solution along the parameter space. Left panel:
λ is fixed and α is increased along the red solid line from left to right. Right panel: α is fixed and
λ increased along the red solid line from left to right until the back-bending and then from top to
bottom. The insets show the corresponding mass of the maximal mass solutions.

radius R. As mentioned before, f0 grows monotonically along the M vs. ω solutions line.
Then, we can introduce the quantity

χ = f0
f0(Mmax) , (5.7)

as an indicator of how close a given solution, characterized by f0, is from the end of the
stable branch.

We now consider null geodesics. For LRs, k = 0, the combination of the conditions (5.3a)
and (5.3b) yields to the algebraic equation

rF ′0(r)− rF ′1(r)− 1 = 0 . (5.8)

The relations just established can now be computed for the numerical solutions of Proca-
Higgs stars.

Our analysis of the numerical data revealed no LRs or ISCO are present for the studied
solutions in the stable branch. This is similar to the mini-Proca stars case, where such
features appear only for more compact (and unstable) solutions [81]. On the other hand, as
for mini-Proca stars, a maximum of the angular velocity for TCOs emerges at a non vanishing
radius within solutions in the stable branch. In particular, we may look for the areal radius
RΩ = 6M , so that ξ = 1. Such “special” solutions would in principle mimic the shadow of a
Schwarzschild black hole, since the accretion flow stalls, leaving an empty inner hole, that
under some observation conditions would be essentially degenerate with the Schwarzschild
shadow [19]. In the following table we provide the numerical data for such special solutions
for different values of λ and α.

In table 1, rΩ is the isotropic radius associated with the areal radius RΩ. Let us close
this section by mentioning that we have found some numerical evidence of solutions with LRs,
but for the parameters explored on the 4th branch of solutions.

6 Spherical hairy black holes?

It is possible to prove that spherical scalar boson stars cannot be put in equilibrium with a
black hole horizon to generate a “hairy” black hole [107]. The same can be shown for spherical
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“Special” solution along the parameter space
α λ ω Mass χ(ξ = 1) rΩ Ω Compactness−1

0.35 2. 0.9369 0.890 0.362 4.797 0.025 11.146
0.35 0.5 0.9386 0.800 0.503 4.333 0.026 11.938
0.35 0.005 0.9414 0.217 0.125 1.273 0.017 39.468
0.35 0 0.8914 0.168 0.115 0.970 0.013 55.436
0.50 0.005 0.9407 0.359 0.121 2.053 0.021 24.568
2.0 0.005 0.9367 0.847 0.257 4.556 0.025 11.692
1.0 1.0 0.9362 0.916 0.313 4.882 0.025 11.001

Proca — 0.936 0.925 0.248 4.970 0.025 10.939

Table 1. Properties of the special solution for different parameters α, λ.

Proca stars [99]. One may wonder if the Proca-Higgs stars can be different. Here, we follow
the methodology in [99] to construct a modified Pẽna-Sudarsky theorem [107] and establish
that Proca-Higgs stars cannot be put in equilibrium with a black hole horizon.

We consider a spherically symmetric line element in Schwarzschild-like coordinates
(unlike the isotropic coordinates used before (2.31)), and with parameterization

ds2 = −σ2(r)N(r)dt2 + dr2

N(r) + r2dΩ2 , N(r) ≡ 1− 2m(r)
r

. (6.1)

The ansatz we consider for the complex Proca potential and real scalar is written as before,
cf. (2.30). The Proca field equations yield

d

dr

{
r2 [f ′(r)− ωg(r)]

σ(r)

}
= φ(r)2r2f(r)

σ(r)N(r) , (6.2)

f ′(r) = ωg(r)
(

1− φ(r)2σ2(r)N(r)
ω2

)
. (6.3)

The Lorenz-like condition determines f(r) in terms of the other functions:

f(r) = −σ(r)N(r)
ωr2φ(r)2

d

dr

[
r2φ(r)2σ(r)N(r)g(r)

]
, (6.4)

or
d

dr

[
r2φ(r)2σ(r)N(r)g(r)

]
= −ωr

2f(r)φ(r)2

σ(r)N(r) . (6.5)

The Tt t component of the energy-momentum tensor — the energy density — reads

−Tt t = −ωg(r)f ′(r)
σ(r)2 + f ′(r)2

2σ(r)2 + f(r)2φ(r)2

2N(r)σ(r)2

+ ω2g(r)2

2σ(r)2 + 1
2g(r)2N(r)φ(r)2 + λ

4 + 1
2N(r)φ′(r)2 + 1

4λφ(r)4 − 1
2λφ(r)2 . (6.6)
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To establish the no-Proca-Higgs hair theorem for spherical black holes, let us assume the
existence of a regular black hole solution of the above equations. Then, the geometry would
possess a non-extremal horizon at, say, r = rH > 0, which requires that

N(rH) = 0 . (6.7)

The regularity of the horizon implies that the energy density of the Proca-Higgs field is finite
there. From (6.6) one can see that this implies

f(rH) = 0 or φ(rH) = 0 . (6.8)

Moreover, neither the functions might diverge for r = rH . Let us first consider the case in
which f(rH) = 0. Then, the function f(r) starts from zero at the horizon and remains strictly
positive (or negative) for some r-interval. Defining

P (r) ≡ 1− φ(r)2σ2(r)N(r)
ω2 , (6.9)

we realize from (6.3) that the sign of f ′ depends on the sign of P and g. Moreover, P (rH) = 1
and for large r, P becomes negative, since N → 1, σ → 1 and φ→ 1, but we also have ω < 1
to ensure an exponential decay of the Proca field at infinity. Then, let r1 > rH be the first
zero of P after the horizon. Hence, in the horizon vicinity, the sign of f ′ equals that of g,
which thus determines the sign of f . Then, let the first zero of g be at r2, hence, g is either
positive or negative in the interval rH ≤ r ≤ r2. Consequently, f ′ and f are strictly positive
or strictly negative in the interval rH ≤ r ≤ r∗ ≡ min {r1, r2}. Now, integrating the gauge
equation for any r in the interval rH ≤ r ≤ r∗, we get:

r2φ(r)2σ(r)N(r)g(r) = −ω
∫ r

rH

x2f(x)φ(x)2

σ(x)N(x) d x (6.10)

The equation above introduces a contradiction. If f(r) is negative, then the R.H.S. is
positive and g must be positive. But we have seen that g and f must have the same sign in
the interval rH ≤ r ≤ r∗. Hence, the only solution possible is g = f = 0.

Instead, if we assume φ(rH) = 0, then, by means of the scalar field equation we see that
all derivatives of φ must be zero at r = rH . Hence, φ would not be an analytical function at
this point.

This establishes there are no spherically symmetric black holes with Proca-Higgs hair.

7 Conclusions

In this paper we have introduced a Proca-Higgs model, as a vector version of the Friedberg-Lee-
Sirlin model, that allows a complex vector field to acquire mass dynamically. The Proca-Higgs
model can be seen as a UV completion of a self-interacting Proca model, free of hyperbolicity
issues, that reduces to the free Proca model in some limits, albeit the latter is never a
consistent truncation of the Proca-Higgs model.

We have constructed solitonic solutions of the Proca-Higgs model, both as non-gravitating
solitons on flat spacetime (Proca-Higgs balls) and as self-gravitating solitons that curve
spacetime (Proca-Higgs stars). The existence of Proca-Higgs balls is a differentiating feature,
as compared to the standard (free) Proca model. One may interpret it as a result of the
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effective self-interactions introduced by the scalar-vector coupling. These flat spacetime
solitons cease to exist, however, for sufficiently strong self-interactions, that mandate the
scalar field to be essentially frozen at its vev.

The space of solutions of Proca-Higgs balls has some qualitative differences with that,
say, of Q-balls, notably the fact that different solutions with the same mass and frequency
(and number of radial nodes of the appropriate functions) can exist. This remains true for
Proca-Higgs stars, with sufficiently low couplings. For sufficiently strong gravitational coupling
or self-interactions, the Proca-Higgs stars tend to mini-Proca stars. The latter provide the
upper limits of mass an Nother charge for the Proca-Higgs stars.

We have also shown that the physical properties of the Proca-Higgs stars bifurcate from
those of mini-Proca stars (again, in the limit of large couplings), for instance, in terms of the
compactness or of the structure of special circular geodesics. Finally, we have shown that no
spherical black hole horizon can be in equilibrium with Proca-Higgs stars, as for spherical
Proca and scalar boson stars.

The Proca-Higgs model and solitons introduced here allow for many applications and
generalizations. Let us just mention two that may be worth pursuing. First, dynamical studies
of the solitons are of interest, both to assess single-soliton stability and multi-soliton dynamics.
In the gravitating case, the possibility of extracting gravitational waves from collisions of
such objects is an interesting one, possibly for phenomenological studies to compare with real
data. Second, rotating solitons (both balls and stars) should exist and can be computed. In
particular, the stars should again bifurcate, for large couplings, from spinning mini-Proca
stars, which are dynamically robust [61], making the corresponding spinning Proca-Higgs
solitons potentially interesting. Moreover, in the spinning case, the no-hair theorem for
spherical black holes with bosonic star hair is circumvented, and, as for scalar [104, 108] and
vector [99, 109], spinning bosonic stars, black hole generalizations should be possible.
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A First law

In this appendix we construct a first law-like relation for the soliton solutions of model (2.1).
To do so, let us assume the existence of an everywhere time-like Killing vector. Then, consider
the Komar mass [110]

M = −
∫

Σ
(2Tν µ − Tδµν )KνdΣµ , (A.1)
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where Ka is a time-like Killing vector. Let us first focus on the term∫
Σ
Tν

µKνdΣµ =
∫

Σ

(1
2(FµγF̄νγ + F̄µγFνγ) + φ2 1

2(AνĀµ + ĀνAµ)
)
KνdΣµ + Lm , (A.2)

where we have defined the Lagrangian of the matter field

Lm =
∫

Σ
LmKµdΣµ , . (A.3)

Lm = −1
4FαβF̄

αβ − 1
2φ

2AαĀα −
1
2∂αφ∂

αφ− U(φ) . (A.4)

Now, we can write the Lie derivative of Aµ as

LK(Aµ) = KνFνµ +∇µ(KνAν) . (A.5)

Differently from what is traditionally done in the literature on the thermodynamics of
stationary gravitating objects, here the electromagnetism potentials depend on time. This
gives the calculation an extra step (see [111] for a good review). Hence, by considering a
harmonic time dependence for the vector potential, we also have

LK(Aµ) = −iωAµ . (A.6)

Thus, by neglecting boundary terms and assuming that the equations of motion are satisfied,
eq. (A.2) can be written as∫

Σ
Tν

µKνdΣµ − Lm = i

2ω
∫

Σ

(
FµγĀγ − F̄µγAγ

)
dΣµ = −ωQ . (A.7)

Thus, the mass reads
M = 2ωQ− 2Lm +

∫
Σ
TKµdΣµ . (A.8)

Moreover, using the Einstein equation (2.5), we see that R = −8πGT . Thus, using that the
total lagrangian density of the theory is L = R

16πG +Lm, we can finally write the first law-like
relation

M = 2ωQ− 2L . (A.9)

Now, considering an on-shell variation of the above equation

δM = 2δ(ωQ)− 2δL . (A.10)

Here, one should be careful by performing the on-shell variation of L or, more specifically,
the on-shell variation of R. One should take into account that such term possess second
order derivatives of the metric. Hence, the boundary term on infinity should be taken into
account. Moreover, one can see that such boundary term is equal to −δM [110]. Therefore,
the differential mass formula becomes

δM = ωδQ , (A.11)

as advertised. These equations are still valid in the flat spacetime limit.

– 22 –



J
C
A
P
0
5
(
2
0
2
3
)
0
2
2

As a side note, following [100], we can introduce the following Legendre relations

− L = M

2 − ωQ , G ≡ M

2 −
1
2ωQ , I ≡ Q

ω
. (A.12)

Then, we find the “thermodynamic” relations [112, 113]

dM

dQ

∣∣∣∣∣
L

= ω ,
dL

dω

∣∣∣∣∣
M

= Q ,
dG

dI

∣∣∣∣∣
L

= 1
2ω

2 . (A.13)

We should emphasize that this result is valid both for gravitating systems and for the flat limit.
In the latter, the metric gαβ should just be understood as the Minkowski metric. Explicitly,
notice also that in the flat spacetime limit, E = M , as discussed in the main text.

To conclude this section, we call out the attention that the variation considered on (A.11)
are those with fixed ω. To understand how the physical quantities change under variations
with respect to ω, then take the derivative of (A.9) with respect to ω

dM

dω
= 2ωdQ

dω
+ 2Q− 2dL

dω
. (A.14)

One can manipulate the last term in the right hand side, and by means of the equations
of motion, one get the definition of the Noether charge plus the derivative of the mass with
respect to the frequency. Hence, we have the relation

dM

dω
= ω

dQ

dω
. (A.15)
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