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Abstract: Dental implants have emerged as one of the most consistent and predictable treatments in
the oral surgery field. However, the placement of the implant is sometimes associated with bacterial
infection leading to its loss. In this work, we intend to solve this problem through the development
of a biomaterial for implant coatings based on 45S5 Bioglass® modified with different amounts of
niobium pentoxide (Nb2O5). The structural feature of the glasses, assessed by XRD and FTIR, did
not change in spite of Nb2O5 incorporation. The Raman spectra reveal the Nb2O5 incorporation
related to the appearance of NbO4 and NbO6 structural units. Since the electrical characteristics of
these biomaterials influence their osseointegration ability, AC and DC electrical conductivity were
studied by impedance spectroscopy, in the frequency range of 102–106 Hz and temperature range
of 200–400 K. The cytotoxicity of glasses was evaluated using the osteosarcoma Saos-2 cells line.
The in vitro bioactivity studies and the antibacterial tests against Gram-positive and Gram-negative
bacteria revealed that the samples loaded with 2 mol% Nb2O5 had the highest bioactivity and greatest
antibacterial effect. Overall, the results showed that the modified 45S5 bioactive glasses can be used
as an antibacterial coating material for implants, with high bioactivity, being also non-cytotoxic to
mammalian cells.

Keywords: Bioglass®; biomaterial; niobium oxide; osseointegration; antibacterial properties; cytotoxicity;
electrical properties; bioactivity; bone regeneration

1. Introduction

The loss of one or more teeth has become a common problem resulting from trauma,
bone or dental pathology, cancer, or simply ageing. According to statistics reported by the
American Association of Oral and Maxillofacial Surgeons [1], 69% of adults aged between
35 and 44 have lost at least one permanent tooth due to an accident, gum disease, a failed
root canal, or tooth decay. In addition, by the age of 74, approximately 26% of those
persons have lost all their permanent teeth. Therefore, the demand for dental implants has
increased rapidly. The statistics in 2010 revealed more than 300,000 dental implants placed
per year [2]. The clinical success of dental implants is related to their ability to ensure rapid
osteointegration and prevent the development of peri-implantitis [3]. These conditions
are essential to ensure the long-term success of the implant. Peri-implantitis disease is an
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inflammatory condition that affects the tissues around dental implants. Just like a natural
tooth, bacteria can grow at the implant neck and over time irritate gums, which remain
in a chronic inflamed state and can lead to bone loss around the implant(s). Initially, the
implant(s) remain clinically stable, without any sign of mobility being evidenced. In the
absence of effective treatment, bone lysis continues, ultimately leading to implant loss.
Therefore, peri-implantitis is considered a secondary implant failure.

To mitigate bacterial contamination, various measures have been used such as careful
disinfection and rigorous aseptic surgical protocols [4]. Infection, which can also occur
after surgery, is characterized by bacterial colonization and biofilm formation on implant
surfaces. The biofilm is considered the primary etiologic reason for the inflammation of
peri-implant tissues [5]. Peri-implantitis-associated biofilms are caused by a plethora of
microbial species including anaerobes and facultative aerobes, and Staphylococcus aureus
plays a predominant role in the development of this pathology [6]. To ensure the long-term
success of the dental implant, the selection of the biomaterial to be used is a critical factor.
Research on the development of new biomaterials or the manipulation of the structure
and composition of existing biomaterials has been carried out to improve the properties of
biomedical devices [7–9].

Typically, biomaterials for medical prostheses are made of metallic materials, mainly
stainless steel and titanium alloys [10–12]. However, metal prostheses show dramatic
failure due to their higher mechanical properties than those of bone tissue, resulting in
necrosis and stress shielding of the tissue in contact. It is known that the long-term use
of these materials can lead to an excessive release of metal ions which can promote local
inflammation, pain, and even clinical failure [13–15]. Besides this issue, the formation of
the biofilm problem can also lead to implant failure. Thus, an optimal implant should be
able to prevent bacterial adhesion and enhance osteointegration [16,17]. To address these
challenges, new progress in biomaterial science has led to the development of bioactive
materials for implant coatings [4,18,19].

It has been reported that modifying the surface topography of an implant, by deposit-
ing a bioactive coating, improves the mechanical interlocking of the bone with the implant
and increases the processes of proliferation and adhesion of osteoblasts [20–22]. Among the
bioactive materials, silicate-based bioglasses containing calcium and phosphorus are mainly
used in dental and orthopaedic surgery [23,24]. The first bioactive glasses were discovered
in 1969 by L.L. Hench, called 45S5 Bioglass®, with the weight composition of 45% SiO2,
24.5% Na2O, 24.5% CaO, and 6% P2O5 [25]. This bioactive glass promotes the nucleation of
calcium phosphate hydroxyapatite (HA) and carbonate (HAC) during ion exchanges that
occur through contact/reaction with physiological fluids [26–28]. The formation of HAC
on the surface of bioactive glasses promotes osteoinduction, osteoconduction, osseointegra-
tion, and angiogenesis [29–31]. A further benefit of using bioglass is the ability to alter its
composition by incorporating extra ions that can improve its functionality without being
toxic [32,33].

Several reports have shown that metallic ions (including magnesium, zinc, copper,
silver, etc.) could be employed to generate antibacterial activity [34–37]. However, the
information concerning their long-term effects on human health is limited. Loading these
ions into bioactive systems is an effective strategy to control their release over a long
period [38,39]. Moreover, bioactive materials can optimize the response of the biological
system by interacting with the adjacent tissues, inducing reactions that promote their
development and regeneration [40]. The presence of niobium (Nb) species in biomaterials
has been reported to improve their bioactive and mechanical properties [41,42]. Some
investigations reported that niobium ions promote the differentiation and mineralization
of osteogenic cells [41,43]. The insertion of niobium in metallic alloys and ceramic ma-
trices has shown superior corrosion resistance and low cytotoxicity [44,45]. Although
niobium-containing bioactive glasses have recently attracted great interest, the effect of
their incorporation on the physical and biological response of the 45S5 bioactive glasses is,
according to our knowledge, very low.



Int. J. Mol. Sci. 2023, 24, 5244 3 of 20

For this purpose, 45S5 bioactive glasses containing Nb2O5 were prepared by a melt-
quenching technique. X-ray diffraction, IR, and Raman spectroscopies were used to evaluate
the influence of Nb2O5 on the structure of 45S5 Bioglass®. The electrical characteristics
of the glasses were studied due to their potential to be electrically charged/polarized,
therefore optimizing the osseointegration. Cytotoxicity tests using human osteosarcoma
Saos-2 cells were used to assess the biocompatibility of the 45S5 bioactive glasses modified
by the Nb insertion. The in vitro investigation of bioactivity was conducted by immersing
samples (pellets made of powdered bioactive glass) in simulated body fluid (SBF), which
is a solution with the same ionic strength and mineral content as the blood plasma. The
changes in bioglasses, in terms of dissolution and precipitation of the protective layer
containing calcium phosphates, were evaluated using scanning electron microscopy (SEM)
with energy-dispersive X-ray analysis (EDX). The antibacterial activity of the bioglasses
was evaluated from their ability to inhibit the growth of the S. aureus bacteria, which is
commonly associated with implant infections, as well as other bacteria involved in the
formation of the pathogenic biofilm.

2. Results
2.1. Structural Characterization

The XRD patterns, illustrated in Figure 1, consist of typical broad bands, without traces
of crystalline phases, which confirm the amorphous character of the glasses. These results
match well with the ones reported in the literature for 45S5 glasses [3,46]. The insertion
of niobium, up to 8% mole of Nb2O5, did not promote the formation of any crystalline
phase but enlarged the band at smaller angles. This phenomenon was already observed in
phosphate glasses with niobium [47].
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Figure 1. XRD patterns of 45S5 bioglass samples modified by the insertion of 0 and 8 mol% of Nb2O5.

Figure 2 depicts the features revealed by the FTIR spectra of the glasses. The Si-
O-Si stretching modes are ascribed to the bands detected at around 1010 cm−1 and
721 cm−1 [46,48–54]. The presence of the non-bridging oxygen ions is shown by the appear-
ance of a band at 912 cm−1 that is attributed to the Si-ONBO stretching mode [46,51,53–55].
The presence of a shoulder at 596 cm−1 is attributed to the bending vibration of the P-O
molecule [46,50,53–56]. The band that appeared at around 497 cm−1 is associated with the
Si-O-Si bending mode [46,48–54].

Figure 3 shows the Raman spectra of the bioactive glasses prepared. For a more
detailed analysis, the Raman spectra of BGNb1, BGNb2, BGNb4, and BGNb8 were decon-
volved by a Gaussian fitting (Figure 4).
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The whole range of Raman spectra can be separated into two regions: low wavenum-
ber (500–900 cm−1) and high wavenumber (>900 cm−1). In the low-frequency region, a
broad band at about 630 cm−1 is observed for BGNb0 which can be associated with the
rocking motion of bridging oxygen in structural units that contain non-bridging oxygen
ions (NBO) [57–59]. With the insertion of Nb2O5 in the glass network, it is noted that
the band is shifted towards a higher frequency. By fitting and deconvoluting this peak
(Figure 4), two bands can be differentiated, one located at 630–680 cm−1 and the other at
710–750 cm−1, and attributed to the vibrational mode of the Si-O-Si bond and the vibration
of Nb-O, respectively, in NbO6 octahedra, with a low degree of distortion [60–62]. More-
over, an additional broad peak at 780–890 cm−1 is observed for the modified bioglass. The
deconvoluted Raman spectra (Figure 4), show that this peak could be distinguished as
three different bands located at 782–804 cm−1, 806–829 cm−1, and 857–886 cm−1, which
are assigned to vibrations of NbO6 octahedrons with different degrees of distortion, to the
vibration of NbO4 units, and to the symmetric stretching of Q0 units in the silicate network
(SiO4

4−), respectively [63–65]. The vibrational bands of NbO6 units increased with increas-
ing Nb2O5 concentration up to 2 mol%, whereas the NbO4 vibrational band decreased. A
shoulder is observed for the BGNb0 sample at around 857 cm−1, corresponding to sym-
metric stretching of Q0 Si units [54,65]. At the high-frequency region, a vibration band can
be observed at around 945 cm−1 and a shoulder at 1050 cm−1. From the result obtained
by a deconvolution process (Figure 4), five vibrational modes located at 900–923 cm−1,
938–944 cm−1, 967–975 cm−1, 997–1023 cm−1, and 1051–1078 cm−1 can be distinguished,
which correspond to symmetric stretching of Q1 Si, Q2 Si, Q0 P, and Q1 P units, and
asymmetric stretching of bridging oxygen in all Q species, respectively [54,57,65].
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The sum of the area of Raman vibration bands associated with non-bridging oxygen
ions is plotted in Figure 5 as a function of Nb2O5 concentration. An increase in the number
of NBOs for the bioglass with Nb2O5 content up to 2 mol% can be observed, indicating the
existence of an optimal amount of Nb2O5 that can be added to the base bioglass.
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2.2. Thermal Analysis

The differential thermal analysis (DTA) spectra of BGNb2 and BGNb8 are shown in
Figure 6. The thermograms of both samples demonstrate the presence of a glass transition
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temperature, Tg, followed by an exothermic peak, Tc, ascribed to structural alteration
associated with the formation of crystalline phases, and an endothermic peak, Tm, attributed
to the melting point of bioglass. The Tg values were determined from the thermograms
using the tangent method on the measured DTA curve, above and below the glass transition
region. The value presented in Table 1 is the mean value of the abscissas of the tangents’
interceptions. The uncertainty in these measurements is 2%. In a prior study, a comparable
thermal response was observed for the 45S5 bioglass [3]. The critical temperatures of the
bioglasses modified by Nb2O5 are reported in Table 1.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 20 
 

 

2.2. Thermal Analysis 
The differential thermal analysis (DTA) spectra of BGNb2 and BGNb8 are shown in 

Figure 6. The thermograms of both samples demonstrate the presence of a glass transition 
temperature, Tg, followed by an exothermic peak, Tc, ascribed to structural alteration 
associated with the formation of crystalline phases, and an endothermic peak, Tm, 
attributed to the melting point of bioglass. The Tg values were determined from the 
thermograms using the tangent method on the measured DTA curve, above and below 
the glass transition region. The value presented in Table 1 is the mean value of the 
abscissas of the tangents’ interceptions. The uncertainty in these measurements is 2%. In 
a prior study, a comparable thermal response was observed for the 45S5 bioglass [3]. The 
critical temperatures of the bioglasses modified by Nb2O5 are reported in Table 1. 

 

(a) (b) 

Figure 6. DTA spectra of (a) BGNb2; (b) BGNb8. 

Table 1. The characteristic temperatures for BGNb0, BGNb2, and BGNb8. 

Sample Tg (°C) Tc (°C) Tm (°C) 
BGNb0 [3] 552 728 1175 

BGNb2 550 684 1077 
BGNb8 591 811 1110 

2.3. Electrical Characterization 
Figure 7 depicts the DC conductivity versus 1000/T on a logarithmic scale. It is visible 

that the conductivity rises with the increase in the temperature, which should be related 
to the increased mobility of the charge carriers. For temperatures above 300 K, 
approximately, this variation becomes linear, indicating that the Arrhenius formalism 
may be used to evaluate the activation energy associated with this thermally activated 
process. The calculated activation energy at the high-temperature region (inset in Figure 
7) for all samples is registered in Table 2. The activation energy (Ea (DC)) decreases with 
the increase in Nb2O5 concentration, reaching a minimum value at the value of 2 mol%. 
After, a reversing trend is observed. This behavior is similar to the one observed for the 
NBO ions amount (Figure 5). On the contrary, an opposite trend was observed for the DC 
conductivity (σDC), which shows a maximum value for the sample with 2 mol% of Nb2O5. 

Figure 6. DTA spectra of (a) BGNb2; (b) BGNb8.

Table 1. The characteristic temperatures for BGNb0, BGNb2, and BGNb8.

Sample Tg (◦C) Tc (◦C) Tm (◦C)

BGNb0 [3] 552 728 1175
BGNb2 550 684 1077
BGNb8 591 811 1110

2.3. Electrical Characterization

Figure 7 depicts the DC conductivity versus 1000/T on a logarithmic scale. It is
visible that the conductivity rises with the increase in the temperature, which should be
related to the increased mobility of the charge carriers. For temperatures above 300 K,
approximately, this variation becomes linear, indicating that the Arrhenius formalism may
be used to evaluate the activation energy associated with this thermally activated process.
The calculated activation energy at the high-temperature region (inset in Figure 7) for
all samples is registered in Table 2. The activation energy (Ea (DC)) decreases with the
increase in Nb2O5 concentration, reaching a minimum value at the value of 2 mol%. After,
a reversing trend is observed. This behavior is similar to the one observed for the NBO ions
amount (Figure 5). On the contrary, an opposite trend was observed for the DC conductivity
(σDC), which shows a maximum value for the sample with 2 mol% of Nb2O5.

The dielectric properties of the samples were analyzed using the modulus formalism,
(M* = 1/ε*), to minimize the effect of electrode polarization and conductivity. Figure 8
shows the presence of one dielectric relaxation which is shifted to higher frequencies with
increasing the temperature. It should be noted that other formalisms, such as permittivity
or impedance, did not exhibit this dielectric relaxation behavior. Therefore, the observed
relaxation behavior should be associated with an intrinsic characteristic related to dipole
formation between the network modifier ions and the non-bridging oxygen ions.
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The AC conductivity (Figure 9) showed the same feature, in resonance with DC
conductivity, where the variation increases linearly in the high-temperature region. The
results obtained for AC conductivity are registered in Table 2 and show an agreement with
DC conductivity results. The bioglass with 2 mol% Nb2O5 content exhibits the highest
AC conductivity. The activation energy value decreases with increasing frequency for all
bioglass samples. This can be explained due to the increase in the applied frequency which
enhances the electronic jumps between the localized states [66,67].
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2.4. In Vitro Evaluation of the Biocompatibility

The human osteosarcoma Saos-2 cells were used to evaluate the cytotoxicity of the
bioactive glasses prepared. Two sets of samples were tested, which we call the non-
passivated and the passivated ones. The difference between the two sets is that the non-
passivated is the filtered solution of the pristine bioglass powders that were in contact with
the McCoy 5A medium for 24 h. The passivated solution was achieved by changing the
medium after 24 h to a new medium, which was kept in contact with the powders for a new
24 h period. The filtered solution was then called the passivated sample. Figure 10 displays
the results obtained for the passivated and non-passivated samples. All samples showed
an improvement in cell viability when the concentration decreased from 100 mg/mL to
6.75 mg/ mL, as expected. Moreover, it can be seen that the passivated samples exhibit
higher cell viability compared to the non-passivated samples. The passivated samples,
which better simulate physiological conditions [68], revealed cell viability higher than
80%, except for the BGNb0 and BGNb1 samples that showed toxicity at the 100 mg/mL
concentration and BGNb0 at 50 mg/mL, respectively.
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2.5. Antibacterial Activity

Figure 11 depicts the antibacterial activity of the bioglasses modified by Nb2O5 inser-
tion evaluated by the observed inhibition halo against the Gram-positive Staphylococcus
aureus and Streptococcus mutans and the Gram-negative Escherichia coli bacteria. By the
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rise of the inhibition halo, we can conclude that the samples have antibacterial activity.
An increase in the inhibition halo with increasing the content of Nb2O5 up to 2 mol% is
noted. A decrease in the antibacterial effect was observed with increasing the Nb2O5 from
2 to 8 mol%.
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2.6. In Vitro Degradation and Bioactivity Assay

The in vitro bioactivity, i.e., the ability to induce an apatite-like layer formation, of the
bioglasses prepared, was investigated using an immersion test in simulated body fluid
(SBF). Figure 12 shows the SEM micrographs and the EDS data of the surface of bioglass
pellets after immersion in SBF.

The SEM micrographs confirmed the bioactivity of the glasses. The surface morpholo-
gies of pellets show the presence of spherical (cauliflower-like) particles characteristic of an
apatitic layer formation. With the increase in the immersion time in SBF, this layer becomes
thicker. It can be seen that for the samples with an immersion time of 28 days, the size of
the particles decreases with increasing the percentage of niobium beyond 2 mol%, and in
the case of the sample with the highest load percentage, BGNb8, only small amounts of
apatite particles start to appear. The EDS graphs (Figure 12(d1–d5)) confirm the change in
the amount of the chemical elements with the soaking time in SBF. The amount of Na and
Si atoms tends to decrease with the immersion time, while the amount of P and Ca tends
to increase.

The variation of Si and Na atomic percentage and the Ca/P ratio, determined using the
data from EDS analysis on the surface of the bioglass samples before and after immersion
in SBF solution, are illustrated in Figure 13. An abrupt drop in the atomic percentage of the
elements is evident during the initial 2 days of immersion in all samples while no significant
change is observed afterward. The samples with lower percentages of niobium, BGNb1,
and BGNb2, show a faster decrease in Na and Si percentage in the first 2 d compared to
the other glasses, and the value of the Ca/P ratio decreases reaching a value of 1.60–1.80,
comparable to that of hydroxyapatite (Ca/P = 1.67) [69–71]. The decrease in the atomic
percentage of Na and Si in the sample modified with 8 mol% of Nb2O5 is not significant, in
contrast with the other samples, and the Ca/P ratio is considered high.
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(d1–d5) plots of the EDS analysis for all immersion times. (The magnification of SEM images is 10 kX).
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Figure 13. The variation of elemental concentration of (a) Si; (b) Na; (c) Ca/P ratio on the surface of
bioactive glasses after immersion in SBF as a function of immersion time.

Figure 14 depicts the variation of pH of the bioactive glass samples after soaking
in SBF for different periods, from 12 h up to 28 days. For all samples, the pH initially
increases compared to the initial pH of the SBF solution, 7.4, and then, after 2 days of
sample immersion, it starts to decrease.
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3. Discussion

The results obtained by XRD and FTIR do not reciprocate any type of modifica-
tion in the structure of the glass matrix with the insertion of Nb2O5. However, Raman
spectra clearly showed the appearance of NbO4 and NbO6 structural groups, located at
800–810 cm−1 and 827–862 cm−1, for the glasses modified with Nb2O5 (Figures 3 and 4).
As the concentration of Nb2O5 is raised up to 2 mol%, the quantity of NbO6 units, related
to niobium ions acting as modifiers in the glass matrix, increases progressively. Exceeding
the 2 mol% of Nb2O5, there is a fractional conversion of NbO6 units into NbO4 units, which
contributes to the formation of the glass network. Similar behavior was already found in
other glasses containing niobium [72–74]. The presence of NbO6 units is predicted to act
as a network modifier through the depolymerization of Si-O-Si bonds. These octahedrons
can form a chain structure with different degrees of distortion by sharing their vertices
with at least two silicon octahedrons. With the increasing NbO6 concentration, a higher
concentration of NBO is expected [59,72]. The BGNb2 sample exhibits a high concentration
of NbO6 structural groups (Figure 4), and thus a high concentration of NBO as justified in
Figure 5.

The presence of NbO6 and NbO4 plays a critical role in the thermal response of the
bioglass. From Figure 7 and Table 1, it can be observed that the Tg increases with the
insertion of a high concentration of niobium, which indicates that an increase in network
connectivity occurs due to the presence of a high concentration of NbO4, the network
former, leading to a decrease in the amount of NBO ions. For the BGNb2 sample, a slight
decrease in the characteristic temperatures is observed compared to the bioglass base,
which is attributed to the increase in the amount of NBO ions and the weakness in the glass
network, facilitating the ion mobility. Similar behaviors were reported in the literature for
niobium glass systems [75,76].

The existence of NBO ions could affect the electrical properties of the prepared glasses.
It is known that in the bioactive glass system, the conductivity is mainly related to the
energy transported by Na+ and Ca+ ions moving through the glass network [3,77]. For the
glasses modified with Nb2O5, the presence of NbO6 units leads to the degradation of the
bioglass network by the formation of more NBO ions. Such structural alterations may have
a significant impact on Na+ and Ca+ mobility. The mobility of such network modifier ions
increases with the rise in NBO ions. One can notice in Table 2 that the sample with 2 mol%
content of Nb2O5 exhibits the highest DC conductivity and therefore the lowest activation
energy since the decrease in activation energy suggests an increase in the charge carrier’s
mobility. The same happens to the AC conductivity, the increase in the conductivity with
samples loaded with Nb2O5 up to 2 mol% should be essentially related to the increase in
Na+ ions’ mobility.

From the biomedical applications point of view, it is critical to evaluate the cytotoxicity
of the bioactive glasses given their intended use as implant coating materials. The evalu-
ation of the bioactive glasses’ cytotoxicity against the human osteosarcoma Saos-2 cells,
represented in Figure 10, shows low cell viability at high extract concentration, especially in
the case of the samples with no or low content of Nb2O5. It was found that increasing the
content of Nb2O5 inserted into the bioactive glass network can increase the biocompatibility
of materials, which is consistent with the results of previous studies [75,78,79]. The non-
passivated samples show lower cell viability compared to the passivated samples, which
could be explained by the high rate of ion-exchange reactions that take place during the first
24 h of material–cell culture medium interactions leading to an increase in local pH [52].
Based on the results of passivated samples, which better mimic physiological circumstances,
all modified bioactive glasses by niobium insertion can be used in a biomedical application
where the extracellular fluid is exposed to bioactive glasses in circumstances corresponding
to the 100 mg/mL extract production. The exceptions are the glasses with Nb2O5 content
lower than 2 mol%, which show cell viability less than 80% at that concentration.

An important factor in reducing the risk of implant infection is preventing bacterial
colonization. The 45S5 glass particles promote a considerable antibacterial effect against
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certain oral bacteria mainly due to the change in pH and the osmotic pressure effect [80,81].
The increase in pH to a more alkaline range creates an unfriendly environment for bacteria,
resulting in morphological alterations. Additionally, variations in ion concentration in
the bacterial environment result in a reduction in pressure across the bacterial cell mem-
brane, which causes bacteria to shrink and therefore damages the cell membrane [81,82].
The antibacterial test results obtained using the agar diffusion method demonstrate the
antibacterial properties against Gram-positive and Gram-negative bacteria (Figure 11). The
inhibition halo tends to increase with increasing the Nb2O5 concentration up to 2mol%,
which can be due to the high ionic strength of Nb5+ ions preventing bacteria from growing
by creating a hyperosmotic environment [72,74]. Additionally, the presence of a disinte-
grated glass network due to the high concentration of NbO6 units in those glasses offers a
suitable environment for the leaching of alkali metals ions, Na+, and Ca2+, which could
lead to an increase in pH and thus promote the death of bacteria. Beyond 2 mol% of
Nb2O5 insertion, the antibacterial activity of the samples decreased, which could be re-
lated to the conversion of certain NbO6 structural units into NbO4 units, as proved by the
Raman analysis.

To assess the in vitro bioactivity of the synthesized bioactive glasses in a biological
medium, the SBF immersion test was chosen. This method serves a better understanding
of the physicochemical reactions taking place on bioglass in physiological fluids. When
evaluating bioglass in vitro, it is critical to take into account changes in the surface chemistry,
mainly the formation of an apatitic layer, since it has a significant impact on osteoblast cell
adhesion and proliferation [83]. The formation of an apatitic layer is purely physicochemical
and does not involve cells. This was observed in the SEM images of bioglasses after the
immersion in SBF which is a cell-free solution (Figure 12). The apatite particles are formed
on the surface of the bioglass, and with increasing immersing time the particles tend to
aggregate, and a dense layer is formed. However, the size of the formed apatite seems to be
smaller for the samples with the highest concentration of Nb2O5 (above 2 mol%) compared
to the other samples. To better understand the effect of niobium on the formation of the
hydroxyapatite (HA) layer on the bioglass surface, we refer to the mechanism proposed
by L. Hench for the original Bioglass® which is adaptable to the majority of bioactive
materials [25]. Similarly to the 45S5 bioactive glass, the SiO4 tetrahedron serves as the
main structural unit of the bioactive glasses containing niobium, which may form bonds
with other SiO4 tetrahedrons through Si-O-Si bonding, also known as bridging oxygen
(BO) ions. Network modifiers alter the structure of the glass by converting BO into NBO,
resulting in a drop in the glass network connectivity and thus a rise in the dissolution rate
and consequently the release of ions. In fact, when the glass comes into contact with SBF,
the alkali and alkaline earth ions (Na+ and Ca2+) present on the surface of the glass are
exchanged with the H+ and H3O+ ions of the medium. This leads to an increase in the pH
of the medium as the H+ ions are replaced by cations. The rise in pH values promotes the
breaking, in the glass network, of the Si-O-Si bonds leading to a faster dissolution of the
glass and the formation of silanol units (Si(OH)4). These silanol units then condense on the
surface of the glass, forming a hydrated silica layer which promotes the nucleation of the
carbonated hydroxyapatite. From the results obtained (Figure 13b), a faster drop can be seen
in the atomic percentage of Na on the bioglass surface in the first days of SBF immersion.
The presence of niobium acting as a network modifier, at high concentrations in the samples
with a low percentage of Nb2O5 (≤2 mol%), creates a higher number of NBO ions and
therefore promotes a faster release of the Na+ ions. For the samples with Nb2O5 > 2 mol%,
the amount of NbO4 units increases, reducing the amount of NBO ions, and therefore the
mobility or release of the network modifiers, namely the Na ions, becomes more difficult
leading to a reduction in the glass dissolution rate. The same trend is observed for Si,
which exhibits faster release from the bioglass with Nb2O5 concentration below 4 mol%,
as indicated in Figure 13a by the faster decrease in the atomic percentage of this element.
This proves the enhanced surface reactivity for the bioglasses with niobium load up to
2 mol%. The SEM micrographs in Figure 12 show that after 24 h of SBF immersion, the
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amount and the size of spheroidal apatite particles are more pronounced in the sample
BGNb2, suggesting the existence of an optimal composition for the apatite formation. With
longer soaking times in SBF, the concentration of the ions stabilizes and the Ca/P ratio
decreases, reaching a value between 1.6 and 1.8 for the sample with niobium content up to
2 mol%, close to that of the HA of the human bones [69,70]. For the samples with higher
niobium amount, the value of the Ca/P ratio is above 2, higher than the ideal value of 1.67.
This higher value of Ca/P suggests that those samples are less bioactive [84,85], meaning
that the apatite structure does not develop easily on the glass surface when exposed to
SBF. After 28 days of soaking in SBF, the apatite particles grow and become denser, which
indicates the formation of a dense layer of crystalline HA on the bioglass surface, while
the growth was reduced for the samples with niobium content of 4 mol% and only the
beginning of the formation of small apatite particles was observed for the sample with
8 mol% of niobium loads.

The variation in the pH is indicated in Figure 14. The increase in the pH in the first
48 h was due to the high release of the alkaline metal ions from the bioglass surface, and
then it decreases due to the formation of silanol. The incorporation of 2 mol % of niobium
into the bioglass resulted in a higher value of pH, which can be explained by the highest
degradation rate of this sample and this is consistent with the condition of the creation of
an HA-like layer on the surface of the bioactive glass with higher crystallinity [59,72].

4. Materials and Methods
4.1. Bioglass Preparation

A series of 45S5 bioactive glasses (45% SiO2, 24.5% Na2O, 24.5% CaO, and 6% P2O5
(wt%)) modified by the insertion of different amounts of Nb2O5, from 0 to 8 mol% (designed
by BGNb0, BGNb1 . . . BGNb8) was prepared using the melt-quenching technique. In brief,
high-purity grade SiO2, P2O5, CaCO3, Na2CO3, and Nb2O5 (>99.99%) were mixed and
ground in a planetary ball mill at 300 rpm for 1 h to homogenize, before undergoing
calcination at 800 ◦C for 8 h. The powder was then placed in platinum crucibles and
melted at 1300 ◦C for 1 h. The melt was quenched between the casting plates to obtain bulk
glass samples.

4.2. Structural Characterization

Malvern Panalytical Aeris powder diffractometer (CuKα radiation, λ = 1.54056 Å) was
used to collect the X-ray diffraction (XRD) patterns at room temperature. The acquisition
was performed using a scan step of 0.02◦ in 1 s in a 2θ angle range of 10–70◦.

The FTIR spectra were performed on FT Perkin-Elmer Spectrum BX Spectrometer in
the ATR crystal (Golden Gate Diamond ATR Accessory), in the range of 400 and 1300 cm−1.
The measurements were obtained from bioglass powder dispersed in KBr pellets. During
acquisition, the room temperature and humidity were kept at approximately 23 ◦C and
35%, respectively.

Raman spectra were recorded at room temperature using a Horiba Jobin Yvon HR 800
spectrometer with an Ar+ laser (λ = 532 nm). Spectra were collected in a back-scattering
geometry between 200 and 1500 cm−1 with a 50x lens focused on the sample.

4.3. Thermal Analysis

The thermal properties of the glasses were investigated using a simultaneous differen-
tial thermal analysis (DTA)/thermogravimetric (TG) measurement. A Hitachi STA 7300
system was employed, under Nitrogen N50 (99.999%) flowing at 200 mL/min and heating
at 10 ◦C/min.

4.4. Electrical Characterization

Bulk glass samples were used for the electrical measurements. The samples were pol-
ished until parallel surfaces with a thickness of about 1 mm were obtained and then painted
with silver conductive paste to form the electrodes. The direct current conductivity (σDC) of
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the samples was measured with a Keithley 617 electrometer, capable of measuring currents
down to 10−14 A. This measurement was performed in a temperature range between 200
and 400 K where a voltage of 100 V was applied across the bulk glass. The AC electrical
conductivity (σAC) and impedance measurements were also performed in the temperature
range of 200 to 400 K, using a precision impedance meter, Agilent 4294, operating in a
broad frequency window from 100 Hz to 1 MHz and in the Cp–Rp configuration. The
temperature of the samples was regulated by an Oxford Research IT-C4 and monitored
using a platinum sensor in both DC and AC measurements.

The complex electric permittivity ε* was calculated with the following equation [86,87]:

ε* = ε’ − j ε” = Cp (d/ε0 A) − j d (ω Rp ε0 A) (1)

At the high-temperature range, the activation energy (Ea) of the DC and AC conduc-
tivities was determined by fitting the data to the Arrhenius model [88–91].

σ = σ0 exp(−EA/(kB T)), (2)

where σ0 is a pre-exponential factor, EA is the activation energy, KB is the Boltzmann
constant, and T the temperature.

4.5. In Vitro Evaluation of the Biocompatibility

In accordance with International Standard “ISO 10993-5 Biological evaluation of medi-
cal devices—Part 5: Tests for in vitro cytotoxicity” [92], the cytotoxicity of the bioglasses
was assessed at various concentrations against the human osteosarcoma cell line (Saos-2
cells, ATCC® HTB-85™). Extracts were produced by placing the bioglass powder in contact
with a culture medium, McCoy 5A medium (Merck KGaA, Darmstadt, Germany) at a
concentration of 100 mg/mL. For non-passivated extract, the medium in contact with the
powder was kept in an incubator for 24 h at 37 ◦C then filtered with a 0.22 µm millipore
filter and stored at 37 ◦C. For the passivated extract, a new McCoy 5A medium was added
to the same bioglass powder and then placed in the incubator for another 24 h at 37 ◦C.
The 96-well plates were seeded with a Saos-2 cell line at a density of 30,000 cells/cm2 and
placed in an incubator with 5% CO2 atmosphere for 24 h at 37 ◦C. After, the culture medium
was removed and on the same plate, negative controls (C-) (viable cells), positive controls
(C+) (in which the toxic compound dimethyl sulphoxide was added), non-passivated and
passivated extracts with appropriate dilutions (50 mg/mL, 25 mg/mL, 12.5 mg/mL, and
6.75 mg/mL) were placed in an incubator for 48 h. The resazurin cell viability indicator
was used to assess cell populations [93]. Using a Biotek ELX800 microplate reader, the
optical absorbances of each well were measured at 570 and 600 nm. To confirm the assay’s
reproducibility, two biological replicates, with six statistical replicates each, were carried
out in this test for each sample.

4.6. Antibacterial Activity

The bacterial strains Escherichia coli K12 DSM498, Staphylococcus aureus COL MRSA
(methicillin-resistant strain), and Streptococcus mutans DSM20523, were used as models to
assess the antibacterial activity of the glasses, as previously described [46]. The method of
agar diffusion assay plates, using the two-layer bioassay, was performed with TSB medium
with the molten seeded overlay containing approximately 108 CFU/mL of the appropriate
indicator bacteria. Bioglass pellets with a diameter of 6 mm were placed in the center of the
plates, left for 4 h at room temperature, and then incubated for 24 h at 37 ◦C. In the case of
S. mutans the plates were placed in a 5% CO2 incubator.

Images of the pellets were taken, and the diameter of the inhibition halo was measured
with ImageJ software; each pellet was measured 30 times in several orientations [94]. The
results of the eight independent assays for each bacterium were statistically analyzed
with an unpaired t-test, comparing the bioactive glass base composition with each of the
different samples using GraphPad Prism 8.0 software.
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4.7. In Vitro Bioactivity Assay

The bioactivity evaluation of the bioglasses was conducted by immersing samples (pel-
lets made of powdered bioglass) in simulated body fluid SBF, according to ISO 23317:2017
Standards. The samples were placed in different flasks, soaked in SBF, and remained inside
an incubator at 37 ◦C with continuous oscillating support for 12, 24, 48, 96 h, 14, and 28
days. The SBF solutions were refreshed every 48 h to mimic the biological environment.

To calculate the volume of SBF used for each sample, we used the following formula:

Vs = 100 mm × Sa (3)

where Vs is the volume of SBF in mm3, and Sa is the surface area of the pellet in mm2.
After soaking, the pellets were collected and gently rinsed with deionized water and

then dried at room temperature.
This assay aimed to determine the change in ion concentration and the formation of

an apatite-like layer on the bioglass surface over 28 days with the presence of a different
concentration of Nb2O5. For that, TESCAN Vega 3 scanning electron microscopy (SEM)
(TESCAN ORSAY HOLDING, a.s., Brno-Kohoutovice, Czech Republic) equipped with
energy-dispersive X-ray spectroscopy (EDS) (Bruker EDS) was performed on the glass
surface to determine the morphological and compositional changes resulting from the
reaction in SBF.

5. Conclusions

Bioactive 45S5 glasses modified by the insertion of different amounts of niobium
pentoxide, Nb2O5, were successfully synthesized using the melt-quenching technique. XRD
and FTIR results show that there was no alteration in the glass matrix with the addition of
Nb. The characterization using Raman spectroscopy showed the appearance of additional
bands for the bioactive glass containing niobium attributed to the distortion of NbO6 units
and the vibration of NbO4. The fractional conversion of the network modifier units of NbO6
into the NbO4 network former affects the electrical properties of the sample and causes
a decrease in the bioactivity and antibacterial effect. The sample with 2 mol% of Nb2O5
content presented the highest percentage of NbO6 units and showed a higher dissolution
rate and maximal growth of the HA layer on its surface in the in vitro immersion tests in
SBF. Moreover, the evaluation of the antibacterial activity against E. coli, S. aureus, and S.
mutans revealed that glass loaded with 2 mol% of Nb2O5 had the greatest antibacterial
effect. We can conclude that the 45S5 bioactive glass modified by the insertion of 2 mol%
of Nb2O5 is more suitable for biomedical applications and can be employed as a coating
material for a dental implant without being harmful to osteoblasts cells.
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