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resumo O nosso objectivo nesta tese é o de expandir, até onde for pos-
sível, noções e resultados da teoria de polinómios escalares até
à dos polinómios matriciais. O nosso estudo começa por inves-
tigar o caso de sucessões de polinómios ortogonais matriciais
de tipo semiclássico seguindo tão próximo quanto possível o
que se sabe no caso escalar, tendo-se conseguido alguns resul-
tados neste sentido.

Além disso, ao impor certas restrições aos graus dos polinómios
envolvidos na equação de Pearson associada à função peso, es-
tabelecemos caracterizações para os chamados polinómios or-
togonais semiclássicos matriciais bem como para as correspon-
dentes funções de segunda espécie matriciais que lhes estão
associadas. Demos particular atenção ao caso clássico conhe-
cido na literatura como famílias de polinómios ortogonais ma-
triciais tipo Hermite, Laguerre, Jacobi e Bessel.

Esta monografia teve como motivação um estudo anterior
em [15], que se concentrou em funções peso e polinómios
ortogonais matriciais tipo Hermite. Tendo por base esse
trabalho, concentramos a investigação nos pesos matricias
tipo Laguerre, Jacobi ou Bessel (cf. [11, 12, 13, 14]). Estes
exemplos incluem (quando considerados juntamente com o
caso Hermite), pelo menos no que nos é dado a conhecer, as
famílias estudadas na literatura.

Estabelecemos problemas de Riemann–Hilbert para estas
famílias de polinómios ortogonais matriciais. Esta abordagem
manifestou-se como uma óptima técnica que permite obter pro-
priedades diferenciais para estas famílias de polinómios orto-
gonais matriciais, bem como para as correspondentes funções
de segunda espécie. Assim sendo estabelecemos fórmulas de
estrutura de primeira ordem bem como relações diferencias de
segunda ordem para esta famílias.

O segmento final desta tese está dedicado às aplicações
destas famílias a operadores diferencias matriciais de segunda
ordem bem como a equações matriciais de Painlevé discretas.
As relações que encontramos colapsam, quando consideradas
com o seu análogo escalar, nas equações conhecidas para as
famílias de polinómios ortogonais de Hermite, Laguerre, Jacobi
e Bessel. Conseguimos ainda obter relações análogas para as
famílias de funções de segundo tipo associadas a estas famílias
de polinómios ortogonais escalares. Além disso, encontramos
equações Painlevé que governam os coeficientes matricias da
relação de recorrência de certas famílias semiclássicas.



keywords Riemann–Hilbert problem, Matrix orthogonal polynomials, Ma-
trix biorthogonal polynomials, Pearson equation, Painlevé equa-
tion.



abstract In this thesis, our objective is to expand upon existing notions
and results, transitioning from scalar to matrix concepts in a
highly versatile framework. Our exploration begins by delving
into the realm of semiclassical matrix orthogonal polynomials
with respect to a regular matrix weight function that satisfies
a Pearson equation. Through our research, we unveil various
characterizations that shed light on these polynomials.

Furthermore, by imposing certain restrictions on the degrees of
polynomials involved in the Pearson equation associated with
the weight function, we are able to establish characterizations
for the semiclassical matrix orthogonal polynomials and corre-
sponding second kind functions. Here, special attention was
given to the classical case known in the literature as families
of matrix orthogonal polynomials Hermite, Laguerre, Jacobi and
Bessel type.

Our research is motivated by a previous study in [15], which
focused on matrix weight functions of Hermite type. Building
upon this foundation, we are excited to expand our investiga-
tion by introducing matrix weight functions of Laguerre, Jacobi,
and Bessel types (cf. [11, 12, 13, 14]). To the best of our knowl-
edge, these definitions are the most comprehensive and, when
combined with the Hermite type, encompass all examples doc-
umented in the literature.

We set up Riemann–Hilbert problems for these families of ma-
trix orthogonal polynomials. This approach proved to be an ex-
cellent technique that allows us to obtain differential properties
for these families of matrix orthogonal polynomials, as well as
for the corresponding functions of the second kind. Therefore,
we established first-order structural formulas as well as second-
order differential relations for these families.

The final segment of this thesis is dedicated to the applications
of these families to second-order matrix differential operators
as well as discrete Painlevé matrix equations. The second order
differential relations we found collapse, when considered with
their scalar analogue, into the known differential equations for
the Hermite, Laguerre, Jacobi and Bessel families of orthogo-
nal polynomials. However, we were able to obtain analogous
relations for the families of functions of the second type associ-
ated with these families of scalar orthogonal polynomials. Fur-
thermore, we find the significant Painlevé equations that gov-
ern the matrix coefficients of the recurrence relation of certain
semiclassical families.
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CHAPTER 1

Definitions and preliminary results

1. Introduction

The theory of orthogonal polynomials has a rich history. Here we follow the semi-
nal works of mathematicians like Szegő [87], Akhiezer [1], Chihara [28], Ismail [71]
and Van Assche [90], in order to enter in this beautiful area of Mathematics. The sub-
ject of orthogonal polynomials covers a wide range of topics within mathematics and
physical problems. These include the moment problem, numerical quadrature, ra-
tional and polynomial interpolation and approximation, electromagnetism, potential
theory and many other fields as well as their applications in engineering.

As the theory progressed, researchers extended the scalar theory of orthogonal
polynomials to the matrix one. Matrix extensions of real orthogonal polynomials
were first discussed back in 1949 by Krein [74, 75] and thereafter were studied
sporadically until the last decade of the XX century, being some relevant papers [3,
8, 59]. In that way a comprehensive theory of matrix-valued orthogonal polynomials
has been developed.

Notably, significant results from the theory of scalar-valued orthogonal polynomi-
als, such as Favard’s Theorem and Markov’s Theorem, have been extended to the
matrix-valued case [43, 44, 45, 52, 53]. In 1984, Aptekarev and Nikishin, for a kind
of discrete Sturm–Liouville operators, solved the corresponding scattering problem
in [3], and found that the polynomials that satisfy a three term recurrence relation
of the form

xPk(x) = AkPk+1(x) +BkPk(x) + A∗
k−1Pk−1(x), k ∈ N,

are orthogonal with respect to a positive definite measure, i.e. they derived a matrix
version of Favard’s Theorem.

Between 1990 and 2010, it was discovered that in some cases, matrix orthogonal
polynomials exhibit properties similar to classical orthogonal polynomials. Grün-
baum provided the first explicit nontrivial example of matrix-valued orthogonal poly-
nomials satisfying a second-order differential equation in [63], as a byproduct of [66,
67, 68]. Later, additional examples were found in a different manner in [46].

The theory of matrix valued orthogonal polynomials has been developed from
different perspectives and found applications in several areas of mathematics and
mathematical physics including spectral theory [61], scattering theory [59], tiling

1



2 1. DEFINITIONS AND PRELIMINARY RESULTS

problems [41], integrable systems [2, 4, 5], stochastic processes [64, 70] and time-
band limiting problem [54, 62]. Recently, we finished an incursion to the topic in [24].

The use of Riemann–Hilbert problems has proven to be beneficial in the analysis
of orthogonal polynomials, special functions and various other applications. These
techniques, also known as Riemann–Hilbert methods, have been applied extensively
in the realm of orthogonal polynomials, special functions, and applications. There
are numerous examples in the literature from mathematics and physics, including
nonlinear waves and integrable systems theory, statistical mechanics, random matrix
theory, integrable probability and quantum mechanics.

It was in 1992, when Fokas, Its and Kitaev, in the context of 2D quantum gravity,
discovered that certain Riemann–Hilbert problem was solved in terms of orthogo-
nal polynomials on the real line, [55]. Namely, it was found that the solution of a
2×2 Riemann–Hilbert problem can be expressed in terms of orthogonal polynomials
on the real line and its Cauchy transforms. Later, Deift and Zhou combined these
ideas with a nonlinear steepest descent analysis in a series of papers [36, 37, 39, 40]
which was the seed for a large activity in the field. To mention just a few relevant
results let us cite the study of strong asymptotic with applications in random ma-
trix theory, [36, 38], the analysis of determinantal point processes [33, 34, 76, 77],
orthogonal Laurent polynomials [81, 82] and Painlevé equations [35, 72].

One remarkable outcome of this development was the appearance of Painlevé
equations. These nonlinear differential equations were first discovered by the French
mathematician Paul Painlevé in the late 19th century. They arise naturally in the
study of special functions, integrable systems, and orthogonal polynomials. The
Painlevé equations have since become a subject of great interest and importance in
both pure and applied mathematics.

Despite the extensive research on extending results from the scalar to matrix set-
ting, there are still many unexplored aspects in the realm of matrix-valued orthogo-
nal polynomials that require further investigation. Throughout this thesis, our aim
is to contribute to the existing body of knowledge, pushing the boundaries of under-
standing in the field of matrix orthogonal polynomials and their associated weight
functions.

Organization

This thesis is organized in four chapters. In the first one we present the matrix
orthogonal polynomials theory we need for the sequel. Here we mainly use the
general references [15, 20, 65] as well as [51], where the authors show that the
matrix orthogonal polynomials generically satisfy structured relations. In fact, this
was our departure point to the world of semiclassical matrix orthogonal polynomials
that we study in Chapter 2.

To study the family of semiclassical matrix orthogonal polynomials we need a deep
understanding of the concepts of matrix three term recurrence relation, and of their
consequences, as the Christoffel–Darboux formulas. The Riemann–Hilbert problem
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that we state in the Chapter 1 (cf. for example [15, 20]) gives some insight for the
results in this thesis, as can be seen in Chapters 3 and 4.

Nevertheless our approach in Chapter 2 was to see how far one can go using
the orthogonality in context of semiclassical weights. The main results in this chap-
ter are Theorems 2.2 and 2.3 that pave the way for the Magnus type interpretation
of the matrix semiclassical orthogonal polynomials given in Theorem 2.7. Another
interesting result that, so far as we know is new, is the characterization of the semi-
classical matrix orthogonal polynomials in terms of structure formulas, given in The-
orem 2.5. We also show that the zero curvature formula characterizes this families
of matrix orthogonal polynomials in Theorem 2.8. These last two results give us the
idea of studying the sequences of functions that are in the constant jump fundamen-
tal matrix. The result of this study is in Section 5 of Chapter 2, about Geronimus
characterization for the classical matrix orthogonal polynomials. We end Chapter 2
with a characterization of semiclassical matrix orthogonal polynomials in terms of a
Riccati differential equation.

The Chapter 3 is devoted to the analytic study of logarithm derivatives of the
constant jump fundamental matrices for generic weights of types Hermite, Laguerre,
Jacobi and Bessel. From this study we easily find structure formulas, as well as
second order matrix differential relations for the matrix orthogonal polynomials and
associated second kind functions. Our contributions are mainly to the study of the
Laguerre, Jacobi and Bessel classes (cf. [11, 12, 14]). Even so, we present the
Hermite case (cf. [15]) in order to make the work self contained.

In Chapter 4 we continue presenting the main results of works [11, 12, 13, 14]
and determine explicitly the logarithm derivatives of the constant jump fundamen-
tal matrices for the weights defined in Chapter 3 and for some of their extensions.
Within these matrices, and from the zero curvature formula, we get Painlevé type
matrix equations for the three term recurrence relations coefficients. We also ex-
plain, how the differential matrix operators associated with the matrix orthogonal
polynomials studied in Chapter 3 can be interpreted in the scalar setting in terms
of a differential equation of Bochner type for the scalar orthogonal polynomials and
associated functions of second kind.

Notation

We start with some notations that will be useful later. In what follows:

• By N we denote the set of positive integers including the zero, i.e. {0, 1, . . .}
and by Z+ the set of positive integers, i.e. {1, 2, . . .}.

• Cn will be the set of complex vectors with n components.
• Cn×m the set of matrices with n rows, m columns and complex entries.

Hence, CN×N is the set of square matrices having the same number N of
rows as columns.

• Let us denote respectively 0 and I the zero and the identity matrices.
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• For sake of simplicity we will denote 0 the zero linear functional that all
outputs are zero.

• We shall denote by CN×N [z] the set of matrix polynomials of size N , i.e.

CN×N [z] =
{ n∑
k=0

αkz
k, n ∈ N

∣∣αk ∈ CN×N , k ∈ N
}
,

and by means of
(
CN×N [z]

)′
its algebraic dual space, that is the space of

linear functionals defined on CN×N [z].
• CN×N

n [z] will be the subset of matrix polynomials of CN×N [z] with a degree
not greater than n.

• The adjugate of a square matrix M denoted adj(M) is the transpose of its
cofactor matrix.

• For a given matrix M ∈ CN×N , we denote M∗ its conjugate transpose.

2. Weights, moments, and orthogonality

We give a summary of basic results we use for the rest of this work. Let

W =

W
(1,1) · · · W (1,N)

...
. . .

...
W (N,1) · · · W (N,N)

 ∈ CN×N ,

be a N × N weight matrix with support on a smooth oriented non self-intersecting
curve γ, in the complex plane C, i.e. W (j,k) is, for each j, k ∈

{
1, . . . , N

}
, a complex

weight with support on γ.

The weight matrix induces a matrix inner product in the set of matrix polynomials
CN×N [z] given by

⟨P,Q⟩W :=

∫
γ

P (z)W (z)Q∗(z)
d z

2π i
,

such that Q∗(z) :=

p∑
k=0

q∗kz
k for a given Q(z) =

p∑
k=0

qkz
k ∈ CN×N [z].

This matrix inner product possesses the standard sesquilinear properties. The
orthogonality with respect to W means the orthogonality with respect to the in-
ner product.

Definition 1.1. We define the moment of order k associated with a weight ma-
trix, W , as

wk :=

∫
γ

tkW (t)
d t

2π i
, k ∈ N.

Within a sequence of moments
(
wk
)
k∈N, in CN×N we define a linear functional

u : CN×N [z] → CN×N , as wk =
(
tk, u

)
, k ∈ N.
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Definition 1.2. Let W be a matrix weight function (respectively, a functional of
moments, u) and wn the moment of order n associated to W (respectively, to u). We
say that W (respectively, u) is regular, quasi-definite, or nonsingular, if det∆n ̸= 0,
n ∈ N, where ∆n is the Hankel-block matrix

∆n =

w0 · · · wn
...

. . .
...

wn · · · w2n

 , n ∈ N.

Given a weight matrix W , we say that
{
P L
n

}
n∈N respectively,

{
PR
n

}
n∈N, is a se-

quence of matrix polynomials left orthogonal (respectively, sequences of matrix poly-
nomials right orthogonal ), with respect to W , if degP L

n = degPR
n = n, n ∈ N, with

nonsingular leading coefficient, and

1

2π i

∫
γ

P L
n (z)W (z)zk d z = δn,kC

−1
n , left orthogonality(1.1)

1

2π i

∫
γ

zkW (z)PR
n (z) d z = δn,kC

−1
n , right orthogonality(1.2)

for k = 0, 1, . . . , n and n ∈ N, where Cn is, for each n ∈ N, a nonsingular matrix.

We say that two sequences of matrix monic polynomials
{
Pn
}
n∈N and

{
Rn

}
n∈N, are

biorthogonal with respect to a regular matrix weight W , if there exists a nonsingular
matrix Cn ∈ CN×N such that:∫

γ

Pn(t)W (t)Rm(t)
d t

2π i
= δn,mC

−1
n , n,m ∈ N.(1.3)

We have that
{
P L
n

}
n∈N and

{
PR
n

}
n∈N, just defined, are biorthogonal with respect

to W , i.e. ∫
γ

P L
n (t)W (t)PR

m(t)
d t

2π i
= δn,mC

−1
n , n,m ∈ N.

Theorem 1.1. The weight matrix, W , is regular if and only if, there exists a
sequence

{
P L
n

}
n∈N of left orthogonal matrix polynomails and

{
PR
n

}
n∈N right orthog-

onal matrix polynomials with respect to W . Moreover, the sequences
{
P L
n

}
n∈N and{

PR
n

}
n∈N are unique up to nonsingular, left and right matrix factor, respectively.

Proof. We can see that the sequence of monic polynomials
{
P L
n

}
n∈N are defined

by (1.1) with respect to a regular matrix weight W . In fact, taking into account a
representation for P L

n as

P L
n (z) = p0L,nz

n + p1L,nz
n−1 + · · ·+ pn−1

L,n z + pnL,n,

such that for each j = 0, 1, . . . , n− 1,∫
γ

P L
n (z)W (z)zj

d z

2π i
= p0L,nwn+j + p1L,nwn+j−1 + · · ·+ pn−1

L,n wj+1 + pnL,nwj = 0,
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and with j = n∫
γ

P L
n (z)w(z)z

n d z

2π i
= p0L,nw2n + p1L,nw2n−1 + · · ·+ pn−1

L,n wn+1 + pnL,nwn = C−1
n .

Let us notice that

∆n =

w0 · · · wn
...

. . .
...

wn · · · w2n

 is such that det∆n ̸= 0, n ∈ N.

In matrix notation we have[
pnL,n pn−1

L,n · · · p1L,n p0L,n
]
∆n =

[
0 0 · · · 0 C−1

n

]
.

Since det∆n ̸= 0, we know that the above linear system has a unique solution, i.e.
there exist and are unique the matrices pnL,n, p

n−1
L,n , . . . , p

1
L,n, p

0
L,n, and so the sequence{

P L
n

}
n∈N is uniquely defined up to a multiplicative nonsingular matrix defined by (1.1).

As a direct consequence of the nonsingularity of the last block of ∆−1
n , i.e. the one

in the position (n+ 1), (n+ 1), of the matrix ∆−1
n , as (see for instance [58])

∆−1
n =

[
A B

C D

]
with

D =
(
w2n −

[
wn · · · w2n−1

]
∆−1
n−1

[
w⊤
n · · · w⊤

2n−1

]⊤)−1

,

and detD = det∆n−1

det∆n
we get that p0L,n is a nonsingular matrix. The same can be seen

for
{
PR
n

}
n∈N. □

A sequence of matrix polynomials
{
Pn
}
n∈N, is said to be monic if the leading coef-

ficient of Pn is equal to the identity matrix, I. We can normalize the corresponding
matrix orthogonal polynomial by choosing the monic ones. In what follows we will
assume that choice. So, a unique sequence of nonsingular matrices

(
C−1
n

)
n∈N with

C−1
n =

(
znP L

n (z), u
)
=

∫
γ

znP L
n (z)W (z)

d z

2π i
, is associated with a regular, linear func-

tional u or weight matrix W .

Theorem 1.2 (Favard). Let
{
P L
n

}
n∈N be a sequence of monic matrix polynomials.

Then, the following are equivalent:

(i)
{
P L
n

}
n∈N is left-orthogonal with respect to a linear functional u.

(ii) There are sequences of scalar matrices (βL
n)n∈N, and (γLn)n∈N with γLn nonsingular

matrices for n ∈ N, such that the sequence
{
P L
n

}
n∈N satisfies

zP L
n (z) = P L

n+1(z) + βL
nP

L
n (z) + γLnP

L
n−1(z), n ∈ N,

where P L
−1(z) = 0 and P L

0 (z) = I
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Proof. We will prove the sufficient condition. Since
{
P L
n

}
n∈N is a basis in the

CN×N -left-module of matrix polynomials then there exist constant matrices, Ank , such
that:

zP L
n (z) =

n+1∑
k=0

AnkP
L
k (z), n ∈ N.

Multiplying the identity successively by zj for j ∈ {0, . . . , n} on the right and applying
the functional u, we obtain:

Anj = 0, j = 0, . . . , n− 2

Ann−1 =
(
P L
n (z)z

n, u
)
= C−1

n Cn−1 nonsingular

Ann =
(
P L
n (z)z

n+1, u
)
Cn − Ann−1

(
P L
n−1(z)z

n, u
)
Cn,

and Ann+1 = I by comparison of the highest powers in the above identity. Taking
βn = Ann, γn = Ann−1 the result follows.

For the necessary condition, we define recursively the matrix moments associated
with the linear functional u by the following conditions

w0 =
(
P L
0 (z), u

)
= C−1

0 and
(
P L
n (z), u

)
= 0, n ∈ Z+,

where C0 is a nonsingular matrix. Now, the polynomial P L
n can be written as

P L
n (z) = p0L,nz

n + p1L,nz
n−1 + · · ·+ pn−1

L,n z + pnL,n

where p0L,n = I. Then we have

wn + p1L,nwn−1 + p2L,nwn−2 + · · ·+ pnL,n = 0

thus the moments are defined recursively by wn =
∑n−1

k=0 p
n−k
L,n wk. Let us show that(

P L
n (z)z

k, u
)
= 0, k = 0, . . . , n− 1,(

P L
n (z)z

n, u
)
= C−1

n , n ∈ N.

Using the recurrence relation, we get for all n = 2, 3, . . .(
zP L

n (z), u
)
=
((
P L
n+1(z) + βL

nP
L
n (z) + γLnP

L
n−1(z)

)
, u
)
= 0.

Again by multiplying both sides of the recurrence relation by z we get

z2P L
n (z) = zP L

n+1(z) + βL
nzP

L
n (z) + γLnzP

L
n−1(z)

and, as a consequence,(
z2P L

n (z), u
)
= 0, n = 3, 4, . . .

In an analogous way, we conclude that(
zkP L

n (z), u
)
= 0, k = 0, . . . , n− 1.

For k = n, we have:(
znP L

n (z), u
)
=
((
zP L

n (z)
)
zn−1, u

)
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=
((
P L
n+1(z) + βL

nP
L
n (z) + γLnP

L
n−1(z)

)
zn−1, u

)
= γn

(
P L
n−1(z)z

n−1, u
)
= γLnγ

L
n−1 · · · γL1C−1

0 ,

which ends the proof. □

A similar result can be obtained for the right-orthogonality, i.e.

zPR
n (z) = PR

n+1(z) + PR
n (z)β

R
n + PR

n−1(z)γ
R
n , n ∈ N,

where PR
−1(z) = 0 and PR

0 (z) = I.

As the polynomials are chosen to be monic, we can write:

P L
n (z) = I zn + p1L,nz

n−1 + p2L,nz
n−2 + · · ·+ pnL,n,(1.4)

PR
n (z) = I zn + p1R,nz

n−1 + p2R,nz
n−2 + · · ·+ pnR,n,(1.5)

where piL,n, p
i
R,n ∈ CN×N , i = 0, . . . , n − 1 and n ∈ N. Also, βL

n and γLn will denote the
related recurrence relation

zP L
n (z) = P L

n+1(z) + βL
nP

L
n (z) + γLnP

L
n−1(z), n ∈ N,(1.6)

with P L
−1(z) = 0 and P L

0 (z) = I. The, βR
n and γRn will denote the related recurrence re-

lation

zPR
n (z) = PR

n+1(z) + PR
n (z)β

R
n + PR

n−1(z)γ
R
n , n ∈ N,(1.7)

with PR
−1(z) = 0 and PR

0 (z) = I. Moreover, the coefficients in (1.6) and (1.7) are given
in terms of the ones in (1.4) and (1.5) by

βL
n = p1L,n − p1L,n+1, γLn = C−1

n Cn−1,(1.8)

βR
n = Cnβ

L
nC

−1
n , γRn = Cnγ

L
nC

−1
n = Cn−1C

−1
n n ∈ N.(1.9)

3. Second kind functions, Stieltjes function and associated polynomials

Given a regular weight matrix we define the sequence of second kind matrix func-
tions by

QL
n(z) :=

∫
γ

P L
n (t)

t− z
W (t)

d t

2π i
, QR

n(z) :=

∫
γ

W (t)
PR
n (t)

t− z

d t

2π i
.(1.10)

When, n = 0 we are in presence of a Stieltjes–Markov matrix function of the weight
matrix W , i.e.

SW (z) :=

∫
γ

W (t)

t− z

d t

2π i
.(1.11)

Theorem 1.3. Let a and b be the starting and end points of γ, respectively. Let C
be a simple closed curve (circle for example) negatively oriented (clockwise), such
that a and b are in the interior of C. Then the Stieltjes–Markov matrix function SW is
a complex measure of orthogonality for

{
P L
n

}
n∈N and

{
PR
n

}
n∈N over C.
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Proof. We have the following identities∫
C

P L
n (z)SW (z)PR

m(z)
d z

2π i
=

∫
C

P L
n (z)

(∫
γ

W (t)

t− z

d t

2π i

)
PR
m(z)

d z

2π i

=

∫
γ

(∫
C

P L
n (z)W (t)PR

m(z)

t− z

d z

2π i

)
d t

2π i
(Fubini’s Theorem)

=

∫
γ

P L
n (t)W (t)PR

m(t)
d t

2π i
(Cauchy’s integral formula)

and so we get the desired result. □

Sometimes in the literature some authors distinguish between Markov transforms
and Stieltjes transform when we are dealing with a measure defined on a bounded
or an unbounded interval, respectively, of the real line. Here we unify the notion as
the scalar Markov convergence theorem (stated for the bounded case) is still valid
for the unbounded case when the moment problem is determined.

Theorem 1.4. The left and right sequences of second kind functions
{
QL
n

}
n∈N and{

QR
n

}
n∈N verify

zQL
n = QL

n+1(z) + βL
nQ

L
n(z) + γLnQ

L
n−1(z), n ∈ N,(1.12)

zQR
n = QR

n+1(z) +QR
n(z)β

R
n +QR

n−1(z)γ
R
n , n ∈ N,(1.13)

with initial conditions QL
−1(z) = QR

−1 = −C−1
−1 and QL

0(z) = QR
0 (z) = SW (z).

Proof. Multiplying the relation (1.6) on the right by
W (t)

t− z
and integrating we get,∫

γ

tP L
n (t)

t− z
W (t)

d t

2π i
= QL

n+1(z) + βL
nQ

L
n(z) + γLnQ

L
n−1(z).

As
t

t− z
= 1 +

z

t− z
, from the orthogonality condition (1.1), the result follows. The

proof of (1.13) is similar. □

From the orthogonality conditions (1.1) and (1.2) we have, for all n ∈ N, the
following asymptotic expansion when z → ∞ for the sequence of functions of the
second kind

QL
n(z) = −C−1

n

(
I z−n−1 + q1L,nz

−n−2 + · · ·
)
,(1.14)

QR
n(z) = −

(
I z−n−1 + q1R,nz

−n−2 + · · ·
)
C−1
n .(1.15)

Assuming that the measures W (j,k), j, k ∈
{
1, . . . , N

}
are Hölder continuous, and

using the Plemelj’s formula, cf. [57], applied to (1.10), we get the following funda-
mental jump identities (

QL
n(z)

)
+
−
(
QL
n(z)

)
− = P L

n (z)W (z),(1.16) (
QR
n(z)

)
+
−
(
QR
n(z)

)
− = W (z)PR

n (z),(1.17)
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z ∈ γ, where,
(
f(z)

)
± = lim

ϵ→0±
f(z + iϵ). Here ± sign indicates the positive/negative

region according to the orientation of the curve γ.

Definition 1.3. We define the sequences of left associated polynomials
{
P

L,(1)
n

}
n∈N

with respect to
{
P L
n

}
n∈N and W by

P
L,(1)
n−1 (z) =

∫
γ

P L
n (t)− P L

n (z)

t− z
W (t)

d t

2π i
, n ∈ Z+,

Similarly, for the right situation we have the right associated polynomials
{
P

R,(1)
n

}
n∈N

with respect to
{
PR
n

}
n∈N and W by

P
R,(1)
n−1 (z) =

∫
γ

W (t)
PR
n (t)− PR

n (z)

t− z

d t

2π i
, n ∈ Z+.

Theorem 1.5. The associated polynomials verify

zP
L,(1)
n−1 (z) = P L,(1)

n (z) + βL
nP

L,(1)
n−1 (z) + γLnP

L,(1)
n−2 (z), n ∈ N,(1.18)

with P L,(1)
−2 (z) = −C−1

−1 and P L,(1)
−1 (z) = 0.

zP
R,(1)
n−1 (z) = PR,(1)

n (z) + P
R,(1)
n−1 (z)βR

n + P
R,(1)
n−2 (z)γRn , n ∈ N,(1.19)

with PR,(1)
−2 (z) = −C−1

−1 and PR,(1)
−1 (z) = 0.

Proof. We will prove (1.18):

zP
L,(1)
n−1 (z) = z

∫
γ

P L
n (t)− P L

n (z)

t− z
W (t)

d t

2π i

=

∫
γ

(z − t+ t)P L
n (t)− zP L

n (z)

t− z
W (t)

d t

2π i

= −
∫
γ

P L
n (t)W (t)

d t

2π i
+

∫
γ

tP L
n (t)− zP L

n (z)

t− z
W (t)

d t

2π i

using now (1.6) and the orthogonality condition (1.1), we get

zP
L,(1)
n−1 (z) = P L,(1)

n (z) + βL
nP

L,(1)
n−1 (z) + γLnP

L,(1)
n−2 (z), n ∈ N.

The proof of (1.19) follows by similar arguments. □

Theorem 1.6. The Hermite–Padé formula for the left-orthogonal polynomials is
given by,

P L
n (z)SW (z) + P

L,(1)
n−1 (z) = QL

n(z), n ∈ N,(1.20)

and the Hermite–Padé formula for the right-orthogonal polynomials is given by,

SW (z)PR
n (z) + P

R,(1)
n−1 (z) = QR

n(z), n ∈ N.(1.21)
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Proof. Using (1.10) we successively get

QL
n(z) =

∫
γ

P L
n (t)

t− z
W (t)

d t

2π i
=

∫
γ

P L
n (t)− P L

n (z) + P L
n (z)

t− z
W (t)

d t

2π i

= P
L,(1)
n−1 (z) + P L

n (z)

∫
γ

W (t)

t− z

d t

2π i
= P

L,(1)
n−1 (z) + P L

n (z)SW (z).

In the same way we prove the Hermite–Padé formula for the right-orthogonal poly-
nomials. □

We consider two possible reductions from biorthogonality to orthogonality:

(1) When the weight matrix, W , with support on γ is symmetric, i.e. (W (z))⊤ = W (z),
z ∈ γ, then

PR
n (z) =

(
P L
n (z)

)⊤
, QR

n(z) =
(
QL
n(z)

)⊤
, z ∈ C.

Moreover, ⟨P L
n , P

L
n ⟩W =

∫
γ

P L
n (x)W (x)(P L

n (x))
⊤ dx

2π i
.

(2) When the weight matrix W is Hermitian positive definite with support on γ ⊂
R, i.e. (W (x))∗ = W (x), x ∈ R, then

PR
n (z) =

(
P L
n (z̄)

)∗
, QR

n(z) =
(
QL
n(z̄)

)∗
, z ∈ C.

In this case we have ⟨P L
n , P

L
n ⟩W =

∫
R
P L
n (x)W (x)(P L

n (x))
∗ dx

2π i
.

4. Fundamental and transfer matrices

We can summarize the left three term recurrence relation (1.6) and (1.12) as
follows[

P L
n+1(z) QL

n+1(z)
−CnP L

n (z) −CnQL
n(z)

]
=

[
z I−βL

n C−1
n

−Cn 0

] [
P L
n (z) QL

n(z)
−Cn−1P

L
n−1(z) −Cn−1Q

L
n−1(z)

]
;

and by (1.18) [
P

L,(1)
n (z)

−CnP L,(1)
n−1 (z)

]
=

[
z I−βL

n C−1
n

−Cn 0

] [
P

L,(1)
n−1 (z)

−Cn−1P
L,(1)
n−2 (z)

]
.

In terms of the left fundamental matrix Y L
n (z) and the left transfer matrix T L

n (z),

Y L
n (z) :=

[
P L
n (z) QL

n(z)
−Cn−1P

L
n−1(z) −Cn−1Q

L
n−1(z)

]
, T L

n (z) :=

[
z I−βL

n C−1
n

−Cn 0

]
,(1.22)

we rewrite the above identities as follows

Y L
n+1(z) = T L

n (z)Y
L
n (z), n ∈ N.
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From this relation and taking into account that detT L
n = 1, one can see that detY L

n (z)
= detY L

0 (z) = 1 on C \ γ for n ∈ N. For the right orthogonality, we similarly obtain
from (1.7) and (1.13) that[

PR
n+1(z) −PR

n (z)Cn
QR
n+1(z) −QR

n(z)Cn

]
=

[
PR
n (z) −PR

n−1(z)Cn−1

QR
n(z) −QR

n−1(z)Cn−1

] [
z I−βR

n −Cn
C−1
n 0

]
and also by (1.19)[

P
R,(1)
n (z) −PR,(1)

n−1 (z)Cn

]
=
[
P

R,(1)
n−1 (z) −PR,(1)

n−2 (z)Cn

] [z I−βR
n −Cn

C−1
n 0

]
as we have the Hermite–Padé like formula for the right orthogonal polynomials,

QR
0 (z)P

R
n (z) + P

R,(1)
n−1 (z) = QR

n(z).

Taking the right versions of fundamental matrix Y R
n (z) and transfer matrix TR

n (z),

Y R
n (z) :=

[
PR
n (z) −PR

n−1(z)Cn−1

QR
n(z) −QR

n−1(z)Cn−1

]
, TR

n (z) :=

[
z I−βR

n −Cn
C−1
n 0

]
,(1.23)

we see that detY R
n (z) = det Y R

0 (z) = 1, because detTR
n = 1 on C \ γ for n ∈ N.

Note that,

TR
n (z) =

[
Cn 0
0 −C−1

n

]
T L
n (z)

[
Cn 0
0 −C−1

n

]−1

, n ∈ N.

Lemma 1.1. For any fixed integers s, r, m, M , the following holds, for all n ∈ N:

Y L
n−m =

r−m−1∏
i=0

(T L
n−m−i)Y

L
n−r, m < r,

Y L
n−r−M =

M−1∏
i=0

(T L
n−r−i)

−1
Y L
n−r, M ≥ 1.

For all n in N and k an integer such that 1 ≤ k ≤ n we have

Y L
n+k =

k∏
i=1

T L
n+iY

L
n and Y L

n−k =
k−1∏
i=0

(T L
n+1−k+i)

−1
Y L
n =

( k−1∏
i=0

T L
n−i

)−1

Y L
n .

Theorem 1.7 (Christoffel–Darboux formulas). For all n ∈ N, we have that:

(z − t)
n∑
k=0

PR
k (t)CkP

L
k (z) = PR

n (t)CnP
L
n+1(z)− PR

n+1(t)CnP
L
n (z),(1.24)

(z − t)
n∑
k=0

QR
k (t)CkQ

L
k(z) = QR

n(t)CnQ
L
n+1(z)−QR

n+1(t)CnQ
L
n(z),(1.25)

(z − t)
n∑
k=0

QR
k (t)CkP

L
k (z) = QR

n(t)CnP
L
n+1(z)−QR

n+1(t)CnP
L
n (z) + I,(1.26)

(z − t)
n∑
k=0

PR
k (t)CkQ

L
k(z) = PR

n (t)CnQ
L
n+1(z)− PR

n+1(t)CnQ
L
n(z)− I,(1.27)



4. FUNDAMENTAL AND TRANSFER MATRICES 13

(z − t)
n∑
k=0

P
R,(1)
k (t)CkP

L,(1)
k (z) = P

R,(1)
n−2 (t)Cn−1P

R,(1)
n−1 (z)− P

R,(1)
n−1 (t)Cn−1P

L,(1)
n−2 (z),(1.28)

(z − t)
n∑
k=0

P
R,(1)
k−1 (t)CkP

L
k (z) = P

R,(1)
n−1 (t)CnP

L
n+1(z)− PR,(1)

n (t)CnP
L
n (z) + I,(1.29)

(z − t)
n∑
k=0

PR
k (t)CkP

L,(1)
k−1 (z) = PR

n (t)CnP
L,(1)
n (z)− PR

n+1(t)CnP
L,(1)
n−1 (z)− I .(1.30)

Proof. To prove (1.24), we multiply (1.6) on the left by PR
n (t)Cn and (1.7) on the

right by CnP
L
n (z) and taking into account (1.9), then summing up, we arrive after

applying telescoping rule to the result. Proceeding in the same way with
{
QL
n

}
n∈N

and
{
QR
n

}
n∈N,

{
P

L,(1)
n

}
n∈N and

{
P

R,(1)
n

}
n∈N in place of

{
P L
n

}
n∈N and

{
PR
n

}
n∈N and us-

ing (1.12), (1.13), (1.18) and (1.19), the results (1.25) and (1.28) follow.

For the proof of (1.26), (1.27), (1.29) and (1.30) applying the same procedure
mixing the P ’s, the Q’s and first kind associated polynomials. □

If we take t = z in the previous theorem, we get

PR
n (z)CnP

L
n+1(z)− PR

n+1(z)CnP
L
n (z) = 0, n ∈ N,(1.31)

QR
n(z)CnQ

L
n+1(z)−QR

n+1(z)CnQ
L
n(z) = 0, n ∈ N,(1.32)

QR
n+1(z)CnP

L
n (z)−QR

n(z)CnP
L
n+1(z) = I, n ∈ N,(1.33)

PR
n (z)CnQ

L
n+1(z)− PR

n+1(z)CnQ
L
n(z) = I, n ∈ N,(1.34)

P
R,(1)
n−2 (z)Cn−1P

R,(1)
n−1 (z)− P

R,(1)
n−1 (z)Cn−1P

L,(1)
n−2 (z) = 0, n ∈ N,(1.35)

PR,(1)
n (t)CnP

L
n (z)− P

R,(1)
n−1 (t)CnP

L
n+1(z) = I, n ∈ N,(1.36)

PR
n (t)CnP

L,(1)
n (z)− PR

n+1(t)CnP
L,(1)
n−1 (z) = I, n ∈ N.(1.37)

Corollary 1.1. The previous equations could be summarized as(
Y L
n (z)

)−1
=

[
0 I
− I 0

]
Y R
n (z)

[
0 − I
I 0

]
, n ∈ N.(1.38)

Proof. From (1.31), (1.32), (1.33), and (1.34) we get[
−QR

n−1(z)Cn−1 −QR
n(z)

PR
n−1(z)Cn−1 PR

n (z)

]
Y L
n (z) = I, n ∈ N,

straightforward calculation shows that[
−QR

n−1(z)Cn−1 −QR
n(z)

PR
n−1(z)Cn−1 PR

n (z)

]
=

[
0 I
− I 0

]
Y R
n (z)

[
0 − I
I 0

]
, n ∈ N,

Hence, we get (1.38), for all n ∈ N. □

Corollary 1.2. For all n ∈ N, we have

QL
n(z)P

R
n−1 − P L

nQ
R
n−1(z) = C−1

n−1(1.39)
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P L
n−1(z)Q

R
n −QL

n−1P
R
n (z) = C−1

n−1(1.40)

QL
n(z)P

R
n − P L

nQ
R
n(z) = 0.(1.41)

Proof. As we have already proved that the matrix[
−QR

n−1(z)Cn−1 −QR
n(z)

PR
n−1(z)Cn−1 PR

n (z)

]
is the inverse of Y L

n (z), so

Y L
n (z)

[
−QR

n−1(z)Cn−1 −QR
n(z)

PR
n−1(z)Cn−1 PR

n (z)

]
= I

by identifying the components of this product, we get the result. □

Denoting Ŷ L
n+1(z) :=

[
P L
n+1(z) QL

n+1(z)W
−1(z)

−CnP L
n (z) −CnQL

n(z)W
−1(z)

]
, then Ŷ L

n+1 is invertible and

(
Ŷ L
n+1

)−1

=

[
−QR

n(z)Cn −QR
n+1(z)

W (z)PR
n (z)Cn W (z)PR

n+1(z)

]
.

Moreover, if we denote

Ỹ L
n (z) :=

[
P L
n (z) P

L,(1)
n−1 (z)

−Cn−1P
L
n−1(z) −Cn−1P

L,(1)
n−2 (z)

]
, Ỹ R

n (z) :=

[
PR
n (z) −PR

n−1(z)Cn−1

P
R,(1)
n−1 (z) −PR,(1)

n−2 (z)Cn−1

]
,

then, from (1.35), (1.36) and (1.37) it follows that Ỹ R
n is invertible and,

Ỹ R
n (z)

[
−Cn−1P

L,(1)
n−2 (z) Cn−1P

L
n−1(z)

−P L,(1)
n−1 (z) P L

n (z)

]
= I,

From this matrix equation we get[
−Cn−1P

L,(1)
n−2 (z) Cn−1P

L
n−1(z)

−P L,(1)
n−1 (z) P L

n (z)

]
Ỹ R
n (z) = I,

or equivalently, the following Christoffel–Darboux formulas holds

P
L,(1)
n−1 (z)P

R
n (z)− P L

n (z)P
R,(1)
n−1 (z) = 0(1.42)

P
L,(1)
n−1 (z)P

R
n−1(z)− P L

n (z)P
R,(1)
n−2 (z) = C−1

n−1,(1.43)

P L
n−1(z)P

R,(1)
n−1 (z)− P

L,(1)
n−2 (z)P

R
n (z) = C−1

n−1,(1.44)

Furthermore, we gather the Hermite–Padé formulas (1.20), (1.21) in such way

Ỹ L
n (z)

[
I SW (z)
0 I

]
= Y L

n (z),

[
I 0

SW (z) I

]
Ỹ R
n (z) = Y R

n (z), n ∈ N.

Theorem 1.8 (Riemann–Hilbert problem). Given a regular weight matrix W with
support on γ, then the matrix function Y L

n and Y R
n , defined respectively by (1.22)

and (1.23) satisfies, for each n ∈ N, the following properties:

(i) Y L
n and Y R

n is holomorphic in C \ γ.
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(ii) Satisfies the jump condition(
Y L
n (z)

)
+
=
(
Y L
n (z)

)
−

[
I W (z)
0 I

]
,

(
Y R
n (z)

)
+
=

[
I 0

W (z) I

] (
Y R
n (z)

)
−, z ∈ γ.

(iii) Has the following asymptotic behavior, as z → ∞

Y L
n (z) = (I+O(1/z))

[
zn I 0
0 z−n I

]
, Y R

n (z) =

[
I zn 0
0 I z−n

](
I+O(1/z)

)
.

Proof. Conditions ii) and iii) are direct consequences of the representation of the
second kind functions (1.14), (1.15) and the inverse formulas (1.16), (1.17), respec-
tively. □

We define the family of normalized left fundamental matrices
{
SL
n(z)

}
n∈N associ-

ated with
{
Y L
n (z)

}
n∈N by means of

SL
n(z) := Y L

n (z)

[
I z−n 0
0 I zn

]
, n ∈ N.

Taking into account the representation of
{
P L
n (z)

}
n∈N and

{
QL
n(z)

}
n∈N in (1.6) and

(1.12), we arrive to the asymptotic representation for the normalized fundamental
matrices

SL
n(z) = I+

[
p1L,n −C−1

n

−Cn−1 q1L,n−1

]
1

z
+

[
p2L,n −C−1

n q1L,n
−Cn−1p

1
L,n−1 q2L,n−1

]
1

z2
+O(z−3),

for z → ∞, where

p1L,n − p1L,n+1 = βL
n,

p2L,n − p2L,n+1 = βL
np

1
L,n + C−1

n Cn−1,

p3L,n − p3L,n+1 = βL
np

2
L,n + C−1

n Cn−1p
1
L,n−1,

and

q1L,n − q1L,n−1 = βR
n ,

q2L,n − q2L,n−1 = βR
nq

1
L,n + CnC

−1
n+1.

Observe that we will also have the following asymptotics for z → ∞,(
SL
n(z)

)−1
= I−

[
p1L,n −C−1

n

−Cn−1 q1L,n−1

]
1

z

+

([
p1L,n −C−1

n

−Cn−1 q1L,n−1

]2
−
[

p2L,n −C−1
n q1L,n

−Cn−1p
1
L,n−1 q2L,n−1

])
1

z2
+O(z−3).

For the right version we have normalized right fundamental matrices
{
SR
n (z)

}
n∈N

associated with
{
Y R
n (z)

}
n∈N

SR
n (z) =

[
I z−n 0
0 I zn

]
Y R
m(z),
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with asymptotic behavior at infinity given by

SR
n (z) = I+

[
p1R,n −Cn−1

−C−1
n q1R,n−1

]
1

z
+

[
p2R,n −p1R,n−1Cn−1

−q1R,nC−1
n q2R,n−1

]
1

z2
+O(z−3),

for z → ∞, and the asymptotics for the inverse matrix is

(
SR
n (z)

)−1
= I−

[
p1R,n −Cn−1

−C−1
n q1R,n−1

]
1

z

+

([
p1R,n −Cn−1

−C−1
n q1R,n−1

]2
−
[

p2R,n −p1R,n−1Cn−1

−q1R,nC−1
n q2R,n−1

])
1

z2
+O(z−3).

Here

p1R,n − p1R,n+1 = βR
n ,

p2R,n − p2R,n+1 = p1R,nβ
R
n + Cn−1C

−1
n ,

p3R,n − p3R,n+1 = p2R,nβ
R
n + p1L,n−1Cn−1C

−1
n ,

and

q1R,n − q1R,n−1 = βL
n,

q2R,n − q2R,n−1 = q1R,nβ
L
n + C−1

n+1Cn.

5. Dual sequences and Riccati equation

We begin this section with the definition of dual sequence.

Definition 1.4. The sequences of matrix functions
{
αL
n

}
n∈N,

{
αR
n

}
n∈N defined on γ

are said to be dual if∫
γ

αL
n(t)α

R
m(t)

d t

2π i
= C−1

n δn,m, n,m ∈ N,

where Cn is nonsingular matrix.

Given a regular weight matrix W , factorized in terms of two weight matrices W L

and WR, in such way W = W LWR, we define the dual sequences

αL
n(t) = P L

n (t)W
L(t) and αR

n(t) = WR(t)PR
n (t), n ∈ N, t ∈ γ.

In fact, ∫
γ

αL
n(t)α

R
m(t)

d t

2π i
=

∫
γ

P L
n (t)W (t)PR

m(t)
d t

2π i
= C−1

n δn,m, n,m ∈ N.

We underline that for a given weight matrix W we will have many possible factoriza-
tion W (z) = W L(z)WR(z). Indeed, if we define an equivalence relation

(W L,WR) ∼ (W̃ L, W̃R) if and only if, W LWR = W̃ LW̃R,
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then each weight matrix W can be though as a class of equivalence, and can be
described by the orbit{

(W LΣ,Σ−1WR), Σ(z) is a nonsingular matrix of entire functions
}
.

It is straightforward consequence of (1.6) and (1.7), and taking into account (1.8)
and (1.9), that the dual sequences just defined satisfy the same three term recur-
rence relations as

{
P L
n

}
n∈N and

{
PR
n

}
n∈N, respectively, i.e.

zαL
n(z) = αL

n+1(z) + βL
nα

L
n(z) + γLnα

L
n−1(z)

zαR
n(z) = αR

n+1(z) + αR
n(z)β

R
n + αR

n−1(z)γ
R
n ,

with initial conditions, αL
−1 = 0, αL

0 = W L, and αR
−1 = 0, αR

0 = WR.

Theorem 1.9. Let
{
αL
n

}
n∈N,

{
αR
n

}
n∈N be dual sequences defined on γ. Then, the

sequence
{
αL
n

}
n∈N satisfies a three term recurrence relation of type (1.6) if and

only if, the sequence
{
αR
n

}
n∈N satisfies a three term recurrence relation of type (1.7).

Proof. Let’s consider, for example, that {αL
n}n∈N are such that

zαL
n(z) = αL

n+1(z) + βL
nα

L
n(z) + γLnα

L
n−1(z), n ∈ N.

Then, let’s write

zαR
n =

∞∑
k=0

αR
k A

n
k ,(1.45)

where by duality,

C−1
m Anm =

∫
γ

zαL
m(z)α

R
n(z)

d t

2π i
=

∫
γ

(
αL
m+1(z) + βL

mα
L
m(z) + γLmα

L
m−1(z)

)
αR
n(z)

d t

2π i

=


C−1
n , m+ 1 = n

βL
nC

−1
n , m = n

γLn+1C
−1
n , m− 1 = n

0, if not

Hence, the equation (1.45) can be written as,

zαR
n(z) = αR

n+1(z) + αR
n(z)β

R
n + αR

n−1(z)γ
R
n , n ∈ N,

where, βR
n = Cnβ

L
nC

−1
n , γRn = Cn−1C

−1
n (we observe that Cn+1γ

L
n+1C

−1
n = I).

On doing the same procedure departing from {αR
n}n∈N defining by (1.7) we get a

three term recurrence relation of type (1.6) for {αL
n}n∈N. □

Theorem 1.10. Let a and b be the starting and end points of γ. Let C be a
simple closed curve (circle for example) negatively oriented (clockwise), such that
a and b are in the interior of C. Then, the sequence

{
P L
nW

L
}
n∈N (respectively,
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QL
n

(
WR
)−1}

n∈N), is left dual of
{ (
W L
)−1

QR
n

}
n∈N (respectively,

{
WRPR

n

}
n∈N), over C, i.e

for all n,m ∈ N, we have∫
C

QL
n(z)P

R
m(z)

d z

2π i
= C−1

n δn,m,

∫
C

P L
n (z)Q

R
m(z)

d z

2π i
= C−1

n δn,m.

Proof. The result follows by analogous arguments as the one used in the proof of
Theorem 1.3. In fact,∫

C

QL
n(z)P

R
m(z)

d z

2π i
=

∫
C

(∫
γ

P L
n (t)W (t)

t− z

d t

2π i

)
PR
m(z)

d z

2π i

=

∫
γ

P L
n (t)W (t)

(∫
C

PR
m(z)

t− z

d z

2π i

)
d t

2π i
(Fubini’s Theorem)

=

∫
γ

P L
n (t)W (t)PR

m(t)
d t

2π i
(Cauchy’s integral formula)

= C−1
n δn,m, n,m ∈ N.

Similarly we obtain the result between
{
P L
nW

L
}
n∈N and

{
(W L)−1QR

n

}
n∈N. □

In this section we are inspired in the work of Durán and Ismail [51].

Lemma 1.2. For any polynomials P and any matrix function F with C1 entries,
we have∫

γ

F (t)W ′(t)P (t) d t = F (t)W (t)P (t)
]
∂γ

−
∫
γ

F ′(t)W (t)P (t) d t−
∫
γ

F (t)W (t)P ′(t) d t.

Proof. We first expand P as

∫
γ

F (t)W ′(t)P (t) d t as a linear combination of t with

matrix coefficients and joint the power of t to the function F to the left-hand side
of W ′. It is now enough to apply an integration by parts and then to recover the
polynomial P and its derivative P ′ by moving the powers of t to the right-hand side
of W . □

Theorem 1.11. Let
{
P L
n

}
n∈N,

{
PR
n

}
n∈N be sequences of biorthogonal polynomials

with respect to W . Then P L
n (z) satisfies the following differential recurrence rela-

tions (lowering and raising operators, respectively).

(P L
n )

′
(z) = An(z)Cn−1P

L
n−1(z)−Bn(z)Cn−1P

L
n (z)(1.46)

(P L
n )

′
(z) =

(
An(z)Cn(zI − βn)−Bn(z)Cn−1

)
P L
n − An(z)CnP

L
n+1

where

An(z) =
P L
n (t)W (t)PR

n (t)

t− z

]
∂γ

−
∫
γ

P L
n (t)W

′(t)PR
n (t)

t− z
d t,

Bn(z) =
P L
n (t)W (t)PR

n−1(t)

t− z

]
∂γ

−
∫
γ

P L
n (t)W

′(t)PR
n−1(t)

t− z
d t.
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Proof. We first prove (1.46). We start by stating the yielding relation

(P L
n )

′
(z) =

n−1∑
k=0

AnkP
L
k (z)

where

Ank =

∫
γ

(P L
n )

′
(t)W (t)PR

k (t)
d t

2π i
Ck, k = 0, . . . , n− 1

In fact, we can write(
P L
n

)′
(z) =

n−1∑
k=0

AnkP
L
k (z) and find Ank .

Multiplying the previous equality on the right by WPR
m, m = 0, . . . , n− 1, and inte-

grate: ∫
γ

(P L
n )

′
(t)W (t)PR

m(t)
d t

2π i
=

∫
γ

n−1∑
k=0

AnkP
L
k (t)W (t)PR

m(t)
d t

2π i

=
n−1∑
k=0

Ank

∫
γ

P L
k (t)W (t)PR

m(t)
d t

2π i

= Amn C
−1
m . (biorthogonality condition (1.3))

Let k = 0, . . . , n− 1∫
γ

(P L
n )

′
(t)W (t)PR

k (t) d t = P L
n (t)W (t)PR

k (t)

]
∂γ

−
∫
γ

P L
n (t)W

′(t)PR
k (t) d t

−
∫
γ

P L
n (t)W (t)(PR

k )
′
(t) d t (integration by parts)

= P L
n (t)W (t)PR

k (t)

]
∂γ

−
∫
γ

P L
n (t)W

′(t)PR
k (t) d t

So

(P L
n )

′
(z) =

n−1∑
k=0

AnkP
L
k (z) =

n−1∑
k=0

(
P L
n (t)W (t)PR

k (t)

]
∂γ

−
∫
γ

P L
n (t)W

′(t)PR
k (t) d t

)
P L
k (z)

=
n−1∑
k=0

P L
n (t)W (t)PR

k (t)

]
∂γ

−
∫
γ

P L
n (t)W

′(t)
n−1∑
k=0

PR
k (t)CkP

L
k (z) d t.

Using the fact that

(t− z)
n−1∑
k=0

PR
k (t)CkP

L
k (z) = PR

n (t)Cn−1P
L
n−1(z)− PR

n−1(t)Cn−1P
L
n (z)

we obtain the result.

To establish the raising differential relation, eliminate Cn−1P
L
n−1 between (1.46)

and (1.6). This completes the proof. □



20 1. DEFINITIONS AND PRELIMINARY RESULTS

Corollary 1.3. Let
{
P L
n

}
n∈N be a sequence of left orthogonal polynomials with

respect to W , and define fn = P L
n+1(P

L
n )

−1, n ∈ N. Then,
{
fn
}
n∈N verifies a Riccati

type matrix equation such that:

f ′
n(z) = An+1(z)Cn + fn(z)

(
Bn(z)Cn−1 − An(z)Cn(zI − βn)

)
−Bn+1(z)Cnfn(z) + fn(z)An(z)Cnfn(z)

Proof. After replacing n by n+ 1 in (1.46) and multiplying on the right by (P L
n )

−1
,

we get

(P L
n+1)

′
(z)(P L

n (z))
−1 = An+1(z)Cn −Bn+1(z)Cnfn(z) ,(1.47)

then, multiplying (1.46) on the left by −fn and on the right by (P L
n )

−1
,

(1.48) − P L
n+1(z)(P

L
n (z))

−1
(P L

n )
′
(z)(P L

n (z))
−1

= fn(z)Bn(z)Cn−1 − fn(z)An(z)Cn−1P
L
n−1(z)(P

L
n (z))

−1

So that

P L
n+1(z)

(
(P L

n )
−1
)′
(z) = fn(z)Bn(z)Cn−1 − fn(z)An(z)Cn−1f

−1
n−1,

by summing up (1.47) and (1.48), we get

f ′
n(z) = An+1(z)Cn −Bn+1(z)Cnfn(z)− fn(z)AnCn−1f

−1
n−1(z) + fn(z)BnCn−1(1.49)

Using now (1.6) we obtain: f−1
n−1(z) = (γLn)

−1(
zI − βL

n − fn(z)
)
. By replacing f−1

n−1(z)
in (1.49), and using Cn−1γ

−1
n = Cn the result follows. □



CHAPTER 2

Semiclassical monic orthogonal polynomials

1. Introduction

One approach to study various families of matrix orthogonal polynomials is to ex-
tend the analysis of their differential properties. A natural progression in this line of
research involves extending the theory of semiclassical scalar orthogonal polynomi-
als to the matrix setting. In [18] semiclassical matrix orthogonal polynomials were
defined using a Pearson type equation that relates to matrix functionals, i.e. for a
given linear functional u, there exists a nonzero scalar polynomial ϕ and a matrix
polynomial ψ, such that

D(ϕu) = ψu,

where D denotes the distributional derivative operator on the space
(
CN×N [z]

)′
D :
(
CN×N [z]

)′ → (
CN×N [z]

)′
with (P,Du) := − (P ′, u) .

Similar to the scalar case, several characterizations were obtained, including a
structural relation and a differential recurrence relations for the matrix orthogonal
polynomials.

In [17], classical matrix orthogonal polynomials are defined as a specific instance
of the semiclassical ones by imposing restrictions on the polynomial degrees in the
Pearson type equation described above. However, unlike the scalar case, it was
observed that the differential recurrence relations satisfied by semiclassical matrix
orthogonal polynomials does not simply reduce to a differential equation in the clas-
sical scenario.

In this chapter, we delve into a broader context that highlights the non-commu-
tativity aspect in the Pearson equation fulfilled by the regular matrix weight func-
tion W . More precisely, a noncommutative matrix Pearson type equation (called
equivalently Sylvester type differential equation) is satisfied, i.e.

ϕ(z)W ′(z) = ψ1(z)W (z) +W (z)ψ2(z),

where ϕ is a nonzero scalar polynomial and ψ1 and ψ2 are two matrix polynomials.
The current context expands upon the one explored in [17, 18]. In fact, the weight
function W defines a linear functional u in the space CN×N [z] in the following way

(P, u) =

∫
γ

P (z)W (z)
d z

2π i
.

21
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If some boundary conditions are taken at the endpoints of γ, a and b,

lim
z→a

ϕ(z)W (z) = 0 and lim
z→b

ϕ(z)W (z) = 0,(2.1)

then the linear functional u defined above satisfies the following equation

ϕ(z)D(u) = ψ1(z)u+ uψ2(z).

In fact, for all P in CN×N [z](
P, ϕD(u)

)
= −

(
(Pϕ)′ , u

)
= −

∫
γ

(
P (z)ϕ(z)

)′
W (z)

d z

2π i

=

∫
γ

P (z)ϕ(z)W ′(z)
d z

2π i
(Integration by parts)

=

∫
γ

P (z)
(
ψ1(z)W (z) +W (z)ψ2(z)

) d z

2π i

=
(
P, ψ1u

)
+
(
P, uψ2

)
.

Within this general framework, we establish various characterizations for the semi-
classical matrix orthogonal polynomials. These characterizations encompass struc-
tural relations for the orthogonal polynomials, second kind functions, associated
polynomials, and the Stieltjes–Markov matrix function. Moreover, these findings
provide a characterization in terms of a Sylvester type equation for the fundamental
matrix, and prove another characterization that involves the constant jump funda-
mental matrix when the weight matrix function can be factorized using two weights
that satisfy left and right Pearson equations. Additionally, inspired by the Corollary
of Theorem 1.11 we discover a new type of Riccati equation that characterizes these
families of matrix orthogonal polynomials.

2. Pearson type equation

A particularly interesting family of matrix functionals is given by the ones which
satisfy a matrix differential equation of Pearson type.

Definition 2.1. We say that a regular matrix weight function W is semi-classi-
cal, if there exists a scalar polynomial ϕ and two matrix polynomials ψ1 and ψ2, with
deg ϕ ≥ 0 and degψ1, degψ2 ≥ 1 such that W satisfies the matrix Pearson type equa-
tion

ϕ(z)W ′(z) = ψ1(z)W (z) +W (z)ψ2(z),(2.2)

together with the boundary conditions (2.1).

In this way, the corresponding sequence of left or right orthogonal matrix polyno-
mials are called semiclassical. Moreover, if W satisfies (2.2) with

0 ≤ deg ϕ ≤ 2 and degψ1 = degψ2 = 1,

we say that W is a classical weight, and the corresponding sequence of left or right
orthogonal matrix polynomials are called classical.
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So far we discussed the properties of biorthogonal families of matrix polynomials
and the fundamental matrices for a given weight matrixW . In what follows, to derive
different characterization theorems for these families of matrix polynomials we will
assume that the weight matrix defined in Definition 2.1 factors out as

W (z) = W L(z)WR(z), z ∈ γ.

We suppose that W is a semiclassical weight matrix, admitting the factorization
W = W LWR, such that

ϕ(z)
(
W L
)′
(z) = ψ1(z)W

L(z), ϕ(z)
(
WR
)′
(z) = WR(z)ψ2(z).(2.3)

Theorem 2.1 (Pearson type differential equation). In the setting just described,
any solution of the Pearson equation for the weight, W , (2.2), is of the form W (z) =
W L(z)WR(z) where the matrix factors W L and WR are solutions of (2.3).

Proof. Given solutions W L and WR of (2.3), it follows intermediately, just using
the Leibniz law for derivatives, that W = W LWR fulfills (2.2). Moreover, given a
solution W of (2.2) we pick a solution W L of the first equation in (2.3), then it is easy
to see that (W L)−1W satisfies the second equation in (2.3). □

Now, we prove a characterization using Stieltjes–Markov matrix function.

Theorem 2.2. Let ϕ be a scalar polynomials and W be a regular matrix weight
function together with the boundary conditions (2.1). The following are equivalent:

(i) W is semiclassical (cf. Definition 2.1).
(ii) There exists a matrix polynomial η such that, its Stieltjes–Markov matrix func-

tion, SW , cf. (1.11), satisfies

ϕ(z)S ′
W (z) = ψ1(z)SW (z) + SW (z)ψ2(z) + η(z)(2.4)

Proof. Assume that W satisfies

ϕ(z)W ′(z) = ψ1(z)W (z) +W (z)ψ2(z).

Then write

ϕ(z)S ′
W (z) = ϕ(z)

∫
γ

W (t)

(t− z)2
d t

2π i

=

∫
γ

ϕ(z)− ϕ(t)

(t− z)2
W (t)

d t

2π i
+

∫
γ

ϕ(t)

(t− z)2
W (t)

d t

2π i

Hence

ϕ(z)S ′
W (z) =

∫
γ

ϕ(z)− ϕ(t)

(t− z)2
W (t)

d t

2π i
− ϕ(t)W (t)

2π i(t− z)

]
∂γ

+

∫
γ

(ϕ(t)W (t))′

t− z

d t

2π i

=

∫
γ

ϕ(z)− ϕ(t)

(t− z)2
W (t)

d t

2π i
+

∫
γ

ϕ′(t)W (t)

t− z

d t

2π i
+

∫
γ

ϕ(t)W ′(t)

t− z

d t

2π i

=

∫
γ

ϕ(z)− ϕ(t) + ϕ′(t)(t− z)

(t− z)2
W (t)

d t

2π i
+

∫
γ

ϕ(t)W ′(t)

t− z

d t

2π i
.
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Now, using (2.2), we get

ϕ(z)S ′
W (z) =

∫
γ

ϕ(z)− ϕ(t) + ϕ′(t)(t− z)

(t− z)2
W (t)

d t

2π i

+

∫
γ

ψ1(t)W (t)

t− z

d t

2π i
+

∫
γ

W (t)ψ2(t)

t− z

d t

2π i

=

∫
γ

ϕ(z)− ϕ(t) + ϕ′(t)(t− z)

(t− z)2
W (t)

d t

2π i

+
ψ1(z)

2π i

∫
γ

W (t)

t− z

d t

2π i
+

∫
γ

(ψ1(t)− ψ1(z))W (t)

t− z

d t

2π i

+

∫
γ

W (t)
ψ2(t)− ψ2(z)

t− z

d t

2π i
+

∫
γ

W (t)

t− z

d t

2π i
ψ2(z).

So, we arrive to

ϕ(z)S ′
W (z) = ψ1(z)SW (z) + SW (z)ψ2(z) + η(z),

with

(2.5) η(z) =

∫
γ

ϕ(z)− ϕ(t) + ϕ′(t)(t− z)

(t− z)2
W (t)

d t

2π i

+

∫
γ

ψ1(t)− ψ1(z)

t− z
W (t)

d t

2π i
+

∫
γ

W (t)
ψ2(t)− ψ2(z)

t− z

d t

2π i
.

We notice that, η is a matrix polynomial. In fact, we only have to use the Taylor
expansion of ϕ centered at t, i.e.

ϕ(z) = ϕ(t) + ϕ′(t) (z − t) +
ϕ′′(t)

2!
(z − t)2 + · · ·+ ϕ(deg ϕ)(t)

(deg ϕ)!
(z − t)deg ϕ;

and that (t− z) divide
(
P (t)− P (z)

)
, P ∈ CN×N [z], to get the desired result.

Let us prove the reciprocal. From the calculation done in the first part of the proof
we know

ϕ(z)S ′
W (z) = p̃ol1(z) +

∫
γ

ϕ(t)W ′(t)

t− z

d t

2π i
,

and

ψ1(z)SW (z) + SW (z)ψ2(z) =

∫
γ

ψ1(t)W (t)

t− z

d t

2π i
+

∫
γ

W (t)ψ2(t)

t− z

d t

2π i
+ p̃ol2(z).

where p̃ol1 and p̃ol2 are matrix polynomials. Hence (2.4) is equivalent to∫
γ

ϕ(t)W ′(t)− ψ1(t)W (t)−W (t)ψ2(t)

t− z

d t

2π i
= p̃ol(z)
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where p̃ol is a matrix polynomial. Taking into account the behavior at infinity, and
using Liouville’s Theorem, we can assert that∫

γ

ϕ(t)W ′(t)− ψ1(t)W (t)−W (t)ψ2(t)

t− z

d t

2π i
= 0

Now, denoting v(t) := ϕ(t)W ′(t)− ψ1(t)W (t)−W (t)ψ2(t) we get∫
γ

v(t)

t− z

d t

2π i
=

+∞∑
k=0

vk
zk+1

,

∣∣∣∣ tz
∣∣∣∣ < 1, with vk = −

∫
γ

v(t)tk
d t

2π i
.

Hence, ϕ(t)W ′(t)− ψ1(t)W (t)−W (t)ψ2(t) = 0. □

Corollary 2.1. A regular matrix weight W together with the boundary condi-
tions (2.1) is classical if and only if,

ϕ(z)S ′
W (z) = ψ1(z)SW (z) + SW (z)ψ2(z) + ψ′

1(z)C
−1
0 + C−1

0 ψ′
2(z)−

1

2
ϕ′′(z)C−1

0 .

Proof. It is enough to write

ψ1(t) = ψ1(z) + ψ′
1(z)(t− z), ψ2(t) = ψ2(z) + ψ′

2(z)(t− z),

ϕ(t) = ϕ(z) + ϕ′(z)(t− z) +
ϕ′′(z)

2
(t− z)2,

and substitute these expressions in (2.5), to get the result. □

3. Structure relation and differential recurrence relations

In this section we need the following technical Lemma.

Lemma 2.1. Let W be a regular matrix weight with boundary conditions (2.1),
and

{
P L
n

}
n∈N,

{
QL
n

}
n∈N, be the sequences of left monic orthogonal polynomials and

functions of second kind, respectively. Then, we have for all n ≥ max
{
deg ϕ −

1, degψ2

}
, ∫

γ

P L
n (t)ϕ(t)

W (t)

(t− z)2
d t

2π i
= ϕ(z)

(
QL
n

)′
(z) + ϕ′(z)QL

n(z),(2.6) ∫
γ

P L
n (t)ϕ

′(t)
W (t)

t− z

d t

2π i
= ϕ′(z)QL

n(z),(2.7) ∫
γ

P L
n (t)

W (t)

t− z
ψ2(t)

d t

2π i
= QL

n(z)ψ2(z).(2.8)

Proof. We start with the proof of (2.6),∫
γ

P L
n (t)ϕ(t)

W (t)

(t− z)2
d t

2π i

=

∫
γ

P L
n (t)

(
ϕ(t)− ϕ(z)

)
W (t)

(t− z)2
d t

2π i
+ ϕ(z)

∫
γ

P L
n (t)W (t)

(t− z)2
d t

2π i
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=

∫
γ

P L
n (t)

(
ϕ(t)− ϕ(z)

)
W (t)

(t− z)2
d t

2π i
+ ϕ(z)

(
QL
n

)′
(z).

Using the Taylor expansion of ϕ centered at z, i.e.

ϕ(t) = ϕ(z) + ϕ′(z) (t− z) +
ϕ′′(z)

2!
(t− z)2 + · · ·+ ϕ(deg ϕ)(z)

(deg ϕ)!
(t− z)deg ϕ;

or, equivalentely,

ϕ(t)− ϕ(z)

(t− z)2
= ϕ′(z)

1

t− z
+
ϕ′′(z)

2!
+ · · ·+ ϕ(deg ϕ)(z)

(deg ϕ)!
(t− z)deg ϕ−2,

then∫
γ

P L
n (t)

(
ϕ(t)− ϕ(z)

)
W (t)

(t− z)2
d t

2π i
= ϕ′(z)QL

n(z) +

deg ϕ∑
k=2

ϕ(k)(z)

k!

∫
γ

P L
n (t)W (t)(t− z)k−2 d t

2π i

Now, applying the orthogonality (1.1), of
{
P L
n

}
n∈N with respect to W we have,∫

γ

P L
n (t)W (t)(t− z)k−2 d t

2π i
= 0, n ≥ deg ϕ− 1.

And so (2.6) is true. Now we will prove (2.7),∫
γ

P L
n (t)ϕ

′(t)
W (t)

t− z

d t

2π i

=

∫
γ

P L
n (t)

ϕ′(t)− ϕ′(z)

t− z
W (t)

d t

2π i
+ ϕ′(z)

∫
γ

P L
n (t)

W (t)

t− z

d t

2π i

= ϕ′(z)QL
n(z), n ≥ deg ϕ− 1.

We finish with the proof of (2.8),∫
γ

P L
n (t)

W (t)

t− z
ψ2(t)

d t

2π i

=

∫
γ

P L
n (t)W (t)

ψ2(t)− ψ2(z)

t− z

d t

2π i
+QL

n(z)ψ2(z)

= QL
n(z)ψ2(z), n ≥ degψ2

As we wanted to prove. □

Theorem 2.3. Let W be a semiclassical matrix weight function, and
{
P L
n

}
n∈N,{

QL
n

}
n∈N, and

{
P

L,(1)
n−1

}
n∈N the corresponding sequences of left matrix orthogonal poly-

nomial, second kind function, and of associated polynomials, respectively. Then, for
all n ≥ max{deg ϕ− 1, degψ2}, we have

ϕ(z)(P L
n )

′(z) + P L
n (z)ψ1(z) =

n+s∑
k=n−r

AnkP
L
k ,(2.9)

ϕ(z)(QL
n)

′(z)−QL
n(z)ψ2(z) =

n+s∑
k=n−r

AnkQ
L
k,(2.10)
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ϕ(z)(P
L,(1)
n−1 )

′(z)− P
L,(1)
n−1 ψ2(z) + P L

nη =
n+s∑

k=n−r

AnkP
L,(1)
k−1 ,(2.11)

where s = max
{
deg ϕ− 1, degψ1

}
and r = max

{
deg ϕ− 1, degψ2

}
.

Proof. We suppose W is semiclassical and we start with the proof of (2.9).
As
{
P L
n

}
n∈N is a basis in the linear space of matrix polynomials, there existAnk ∈ CN×N

such that

ϕ(z)(P L
n )

′(z) + P L
n (z)ψ1(z) =

n+s∑
k=0

AnkP
L
k .

Multiplying on the right by Wzj for j = 0, . . . , n+ s and integrating, we get

(2.12)

∫
γ

ϕ(z)(P L
n )

′(z)W (z)zj
d z

2π i
+

∫
γ

P L
n (z)ψ1(z)W (z)zj

d z

2π i

=
n+s∑
k=0

Ank

∫
γ

P L
k (z)W (z)zj

d z

2π i
.

Begin with∫
γ

ϕ(z)(P L
n )

′(z)W (z)zj
d z

2π i
=
P L
n (z)ϕ(z)W (z)zj

2π i

]
∂γ

−
∫
γ

P L
n (z)

(
ϕ(z)zjW (z)

)′ d z
2π i

(boundary conditions (2.1)) = −
∫
γ

P L
n (z)

(
ϕ(z)zj

)′
W (z)

d z

2π i
−
∫
γ

P L
nϕ(z)z

jW ′(z)
d z

2π i

(orthogonality (1.1)) = −
∫
γ

P L
n (z)ϕ(z)z

jW ′(z)
d z

2π i
, n ≥ j + deg ϕ

(Pearson equation (2.2)) = −
∫
γ

P L
n (z)ψ1(z)W (z)zj

d z

2π i
−
∫
γ

P L
nWψ2(z)z

j d z

2π i

(orthogonality (1.1)) = −
∫
γ

P L
n (z)ψ1(z)W (z)zj

d z

2π i
, n ≥ j + 1 + degψ2.

Together, the previous calculation with (2.12) leads to

0 =
n+s∑
k=0

Ank

∫
γ

P L
k (z)W (z)zj

d z

2π i
= AnjC

−1
j , j ≤ min

{
n− deg ϕ, n− 1− degψ2

}
.

Then

ϕ(z)(P L
n )

′(z) + P L
n (z)ψ1(z) =

n+s∑
k=min

{
n−deg ϕ,n−1−degψ2

}
+1

AnkP
L
k (z).
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Since min
{
n−deg ϕ, n−1−degψ2

}
+1 = n−max

{
deg ϕ−1, degψ2

}
we get the result.

To derive (2.10), we multiply (2.9) on the right by
d t

2π i

W (t)

t− z
and integrate

∫
γ

ϕ(t)(P L
n )

′(t)
W (t)

t− z

d t

2π i
+

∫
γ

P L
n (t)ψ1(t)

W (t)

t− z

d t

2π i
=

n+s∑
k=n−r

AnkQ
L
k(z).(2.13)

Let us analyze the left-hand side of this equality,∫
γ

ϕ(t)(P L
n )

′(t)
W (t)

t− z

d t

2π i

=
1

2π i
ϕ(t)P L

n (t)
W (t)

t− z

]
∂γ

−
∫
γ

P L
n (t)

(
ϕ(t)

W (t)

t− z

)′
d t

2π i

= −
∫
γ

P L
n (t)ϕ

′(t)
W (t)

t− z

d t

2π i
−
∫
γ

P L
n (t)ϕ(t)

W ′(t)

t− z

d t

2π i
+

∫
γ

P L
n (t)ϕ(t)

W (t)

(t− z)2
d t

2π i

Now, using the previous Lemma 2.1, in particular identity (2.6), we get∫
γ

ϕ(t)(P L
n )

′(t)
W (t)

t− z

d t

2π i
= −ϕ′(z)QL

n(z)−
∫
γ

P L
n (t)ψ1(t)

W (t)

t− z

d t

2π i

−
∫
γ

P L
n (t)

W (t)

t− z
ψ2(t)

d t

2π i
+
(
ϕ(z)

(
QL
n

)′
(z) + ϕ′(z)QL

n(z)
)

= −
∫
γ

P L
n (t)ψ1(t)

W (t)

t− z

d t

2π i
−QL

n(z)ψ2(z) + ϕ(z)QL
n

′
(z),

then ∫
γ

ϕ(t)(P L
n )

′(t)
W (t)

t− z

d t

2π i
+

∫
γ

P L
n (t)ψ1(t)

W (t)

t− z

d t

2π i
= ϕ(z)

(
QL
n

)′
(z)−QL

n(z)ψ2(z).(2.14)

Comparing the equations (2.13) and (2.14), we get (2.10) as we wanted to prove.
To get (2.11) we substitute QL

n in (2.10) by the left Hermite–Padé formula (1.20),

n+s∑
k=n−r

Ank

(
P L
k (z)SW (z) + P

L,(1)
k−1 (z)

)
= ϕ(z)

(
P L
n (z)SW (z) + P

L,(1)
n−1 (z)

)′
−
(
P L
n (z)SW (z) + P

L,(1)
n−1 (z)

)
ψ2(z).

Now replace ϕ(P L
n )

′ and ϕS ′
W from (2.9) and (2.4), respectively, to get (2.11). □

In the next theorem we go to a block matrix scenario.

Theorem 2.4. Let W be a semiclassical matrix weight function, and
{
Y L
n

}
n∈N,{

Y R
n

}
n∈N be the corresponding sequences of left and right fundamental matrices.

Then, there exists Ln, Rn ∈ C2N×2N [z] (whose degree does not depend on n), such
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that the left and right fundamental matrices Y L
n , Y R

n satisfies the following Sylvester
matrix differential equations, for all n ≥ max

{
deg ϕ− 1, degψ2

}
,

ϕ
(
Y L
n

)′
(z) + Y L

n (z)

[
ψ1(z) 0
0 −ψ2(z)

]
= Ln(z)Y

L
n (z).(2.15)

ϕ
(
Y R
n

)′
(z) +

[
ψ2(z) 0
0 −ψ1(z)

]
Y R
n (z) = Y R

n (z)Rn(z),(2.16)

where

Rn(z) =

[
0 I
− I 0

]
Ln(z)

[
0 I
− I 0

]
.(2.17)

Proof. We begin the proof by establishing the equivalence between (2.15) and (2.16).
In fact, taking derivative in (1.38) and multiplying by ϕ, we arrive to,

−
(
Y L
n

)−1
(z)ϕ(z)

(
Y L
n

)′
(z)
(
Y L
n

)−1
(z) =

[
0 I
− I 0

]
ϕ(z)

(
Y R
n

)′
(z)

[
0 − I
I 0

]
,

or, equivalently,

ϕ(z)
(
Y R
n

)′
(z) =

[
0 I
− I 0

] (
Y L
n

)−1
(z)ϕ(z)

(
Y L
n

)′
(z)
(
Y L
n

)−1
(z)

[
0 I
− I 0

]
.

Now, replacing ϕ(z)
(
Y L
n

)′
(z) or ϕ(z)

(
Y R
n

)′
(z) by (2.15), respectively by (2.16), we get

ϕ
(
Y R
n

)′
(z) +

[
ψ2(z) 0
0 −ψ1(z)

]
Y R
n (z) = Y R

n (z)

[
0 I
− I 0

]
Ln(z)

[
0 I
− I 0

]
,

ϕ
(
Y L
n

)′
(z) + Y L

n (z)

[
ψ1(z) 0
0 −ψ2(z)

]
=

[
0 − I
I 0

]
Rn(z)

[
0 − I
I 0

]
Y L
n (z),

which prove also (2.17), i.e. the conexion between Ln and Rn.

Now, supposing that W is semiclassical, from Theorem 2.3, we know that

ϕ
(
Y L
n

)′
(z) + Y L

n (z)

[
ψ1(z) 0
0 −ψ2(z)

]

=


n+s∑

k=n−r

AnkP
L
k (z)

n+s∑
k=n−r

AnkQ
L
k(z)

−Cn−1

n−1+s∑
k=n−1−r

An−1
k P L

k (z) −Cn−1

n−1+s∑
k=n−1−r

An−1
k QL

k(z)

 .
Using the three term recurrence relation (1.6), it can be proven the existence of Ln1,1,
Ln1,2 ∈ CN×N [z] such that

n+s∑
k=n−r

AnkP
L
k (z) = Ln1,1(z)P

L
n (z)− Ln1,2(z)C

−1
n−1P

L
n−1(z).
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The same happens to be for the linear combinations of
{
QL
n

}
n∈N or

{
P

L,(1)
n

}
n∈N.

Hence we get (2.15), and by the discussion made at the beginning (2.16). Alter-
natively, we can apply Lemma 1.1 to explicitly determine the matrix polynomials
Ln1,1, L

n
1,2, L

n
2,1 and Ln2,2. □

Denoting Ln(z) =

[
L11n (z) L12n (z)
L21n (z) L22n (z)

]
then from (2.17) follows

Rn(z) =

[
−L22n (z) L21n (z)
L12n (z) −L11n (z)

]
.(2.18)

In the next result we present a characterization for the semiclassical matrix weights.

Theorem 2.5. Let W be a regular matrix weight together with the boundary con-
ditions (2.1). Then, W is semiclassical if and only if, there exist matrix polynomials
L11n , L12n , L

21
n , L

22
n ,R

11
n ,R

12
n ,R

21
n ,R

22
n such that for all n ≥ max{deg ϕ− 1, degψ2},

ϕ
(
P L
nW

L
)′
= L11n

(
P L
nW

L
)
− L12n Cn−1

(
P L
n−1W

L
)
,(2.19)

ϕ
(
QL
n(W

R)−1
)′
= L11n

(
QL
n(W

R)−1
)
− L12n Cn−1

(
QL
n−1(W

R)−1
)
,(2.20)

ϕ
(
WRPR

n

)′
= −

(
WRPR

n

)
L22n −

(
WRPR

n−1

)
Cn−1L

12
n ,(2.21)

ϕ
(
(W L)−1QR

n

)′
= −

(
(W L)−1QR

n

)
L22n −

(
(W L)−1QR

n−1

)
Cn−1L

12
n ,(2.22)

−ϕCn−1

(
P L
n−1W

L
)′
= L21n

(
P L
nW

L
)
− L22n Cn−1

(
P L
n−1W

L
)
,(2.23)

−ϕCn−1

(
QL
n−1(W

R)−1
)′
= L21n

(
QL
n(W

R)−1
)
− L22n Cn−1

(
QL
n−1(W

R)−1
)
,(2.24)

−ϕ
(
WRPR

n−1

)′
Cn−1 =

(
WRPR

n

)
L21n +

(
WRPR

n−1

)
Cn−1L

11
n ,(2.25)

−ϕ
(
(W L)−1QR

n−1

)′
Cn−1 =

(
(W L)−1QR

n

)
L21n +

(
(W L)−1QR

n−1

)
Cn−1L

11
n .(2.26)

Proof. It is a straightforward fact from (2.15) and (2.16), and using (2.18), that

ϕ(z)
(
P L
n

)′
(z) + P L

n (z)ψ1(z) = L11n (z)P L
n (z)− L12n (z)Cn−1P

L
n−1(z),(2.27)

ϕ(z)
(
QL
n

)′
(z)−QL

n(z)ψ2(z) = L11n (z)QL
n(z)− L12n (z)Cn−1Q

L
n−1(z),(2.28)

ϕ(z)
(
PR
n

)′
(z) + ψ2(z)P

R
n (z) = −PR

n (z)L
22
n (z)− PR

n−1(z)Cn−1L
12
n (z),

ϕ(z)
(
QR
n

)′
(z)− ψ1(z)Q

R
n(z) = −QR

n(z)L
22
n (z)−QR

n−1(z)Cn−1L
12
n (z),

−ϕ(z)Cn−1

(
P L
n−1

)′
(z)− Cn−1P

L
n−1(z)ψ1(z) = L21n (z)P L

n (z)− L22n (z)Cn−1P
L
n−1(z),(2.29)

−ϕ(z)Cn−1

(
QL
n−1

)′
(z)− Cn−1Q

L
n−1(z)ψ1(z) = L21n (z)QL

n(z)− L22n (z)Cn−1Q
L
n−1(z),(2.30)

−ϕ(z)
(
PR
n−1

)′
(z)Cn−1 − ψ2(z)P

R
n−1(z)Cn−1 = PR

n (z)L
21
n (z) + PR

n−1(z)Cn−1L
11
n (z),

−ϕ(z)
(
QR
n−1

)′
(z)Cn−1 − ψ1(z)Q

R
n−1(z)Cn−1 = QR

n(z)L
21
n (z) +QR

n−1(z)Cn−1L
11
n (z).

At this moment we only have to:

• multiply the first equation on the write byW L, and applying (2.3) to get (2.19);
• multiply the second equation on the write by (WR)−1, and applying (2.3) to

get (2.20);
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• multiply the third equation on the left byWR, and applying (2.3) to get (2.21);
• multiply the fourth equation on the left by (W L)−1, and applying (2.3) to

get (2.22);

Doing the same with the 5-th till 8-th equations we get (2.23)–(2.26).

We will see now, how to derive equations (2.3), for W L and WR, from (2.19)–(2.26).
Substitute n by n− 1 in (1.33) and multiply on the left by

(
W L
)−1

, to get(
W L
)−1

=
(
W L
)−1

QR
n(z)Cn−1P

L
n−1(z)−

(
W L
)−1

QR
n−1(z)Cn−1P

L
n (z).

Taking derivative in this equation, i.e.

(2.31)
(
(W L)−1

)′
=
(
(W L)−1QR

n

)′
Cn−1P

L
n−1 + (W L)−1QR

nCn−1(P
L
n−1)

′

−
(
(W L)−1QR

n−1

)′
Cn−1P

L
n − (W L)−1QR

n−1Cn−1(P
L
n )

′.

multiplying by ϕ, applying equations (2.22), (2.26), together with (2.27) and (2.29),
in (2.31), we obtain

ϕ
(
(W L)−1

)′
= (W L)−1

(
QR
n(R

12
n − L21

n )P L
n −QR

n−1Cn−1(R
22
n + L11

n )P L
n

+QR
n−1Cn−1(L

12
n −R21

n )Cn−1P
L
n−1 +QR

n(R
11
n + L22

n )Cn−1P
L
n−1

+ (QR
n−1Cn−1P

L
n−1 −QR

nCn−1P
L
n−1)ψ1

)
.

Using the connection between Ln and Rn in (2.18) and (1.33), in this equation to get

ϕ(z)
(
(W L(z))−1

)′
= −(W L(z))−1ψ1(z) i.e. ϕ(z)

(
W L(z)

)′
= ψ1(z)W

L(z).

In a very similar way we get ϕ
(
WR
)′
= WRψ2. In fact, departing from equation (1.34)

written in n− 1, multiplying on the right by WR, taking derivatives, and multiplying
by ϕ we get

(2.32) ϕ(WR)′ = ϕ
(
WRPR

n−1

)′
Cn−1Q

L
n +WRPR

n−1Cn−1ϕ(Q
L
n)

′

− ϕ
(
WRPR

n

)′
Cn−1Q

L
n−1 −WRPR

n ϕCn−1

(
QL
n−1

)′
.

Combining (2.21) and (2.25) with (2.28) and (2.30), and taking into account (1.34),
we get from (2.32) that

ϕ(z)
(
WR
)′
(z) = WR(z)ψ2(z), i.e. we arrive to (2.3).

From Theorem 2.1 we get that W is semiclassical. □

What we have just proven in Theorem 2.5 is that (2.15) or, equivalently, (2.16)
characterizes the sequences of semiclassical matrix orthogonal polynomials.
From the last theorem we see that the following matrices are instrumental in the
study of the semiclassical matrix orthogonal polynomial theory. Associated with a
regular weight matrix, W , factorized as W = W LWR, we define the constant jump
fundamental matrices, in terms of its fundamental matrices, Y L

n , Y R
n , by means of,

ZL
n(z) := Y L

n (z)

[
W L(z) 0

0 (WR(z))−1

]
,(2.33)
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ZR
n (z) :=

[
WR(z) 0

0 (W L(z))−1

]
Y R
n (z), n ∈ N.(2.34)

Taking inverse on (2.33) and applying (1.38) we see that ZR
n given in (2.34) admits

the representation

ZR
n (z) =

[
0 − I
I 0

]
(ZL

n(z))
−1

[
0 I
− I 0

]
, n ∈ N.(2.35)

Moreover, it’s easy to check that they satisfy the same recurrence relations as Y L
n

and Y R
n , i.e.

T L
n (z)Z

L
n(z) = ZL

n+1(z), ZR
n (z)T

R
n (z) = ZR

n+1(z), n ∈ N.(2.36)

Now, we state a matrix reinterpretation of Theorem 2.5.

Theorem 2.6. Let W be a regular matrix weight function together with the
boundary conditions (2.1), admitting the factorization W = W LWR and the constant
jump fundamental matrices, ZL

n, ZR
n . The following are equivalent:

(i) W is semiclassical, i.e. (2.2) takes place;
(ii) there exists a polynomial matrix (whose degree does not depend on n), Ln, such

that the corresponding left constant jump fundamental matrix ZL
n satisfies, the

following Sylvester matrix differential equations,

ϕ(z)
(
ZL
n

)′
(z) = Ln(z)Z

L
n(z), n ≥ max{deg ϕ− 1, degψ2};(2.37)

(iii) there exists a polynomial matrix (whose degree does not depend on n), Rn, such
that the corresponding right constant jump fundamental matrix ZR

n satisfies, the
following Sylvester matrix differential equations,

ϕ(z)
(
ZR
n

)′
(z) = ZR

n (z)Rn(z), n ≥ max{deg ϕ− 1, degψ2},(2.38)

where the matrices Ln and Rn are connected by (2.17).

Proof. It is easy to see from Theorem 2.5, that the equations (2.19), (2.20), (2.23)
and (2.24) colapse into (2.37). In the same way, equations (2.21), (2.22), (2.25)
and (2.26) colapse into (2.38). Moreover, (2.37) and (2.38) are equivalent to the ones
in Theorem 2.4, i.e. (2.15) and (2.16), respectively. Hence, we get the result. □

4. Characterization using Magnus procedure

In an inspiring work, cf. [78], Alphonse Magnus explains a procedure to derive
structure relations for the sequence of scalar monic orthogonal polynomials associ-
ated with a semiclassical weight function. This procedure, uses the Hermite–Padé
formula connecting the monic orthogonal polynomials, functions of second kind and
associated monic polynomials, instead of using the left and right orthogonality. Us-
ing Theorem 2.2 we know that the Stieltjes–Markov matrix function associated with
a semiclassical weight (cf. Definition 2.1) satisfies (2.4).
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Theorem 2.7. Let W be a regular matrix weight function together with the
boundary conditions (2.1), SW is its Stieltjes–Markov matrix function, and

{
Y L
n

}
n∈N,{

Y R
n

}
n∈N the corresponding left and right fundamental matrices, respectively. Then,

the following are equivalent:

(i) There exist a scalar polynomial ϕ and two matrix polynomials ψ1, ψ2 such that,
the Stieltjes–Markov matrix function SW satisfies (2.4).

(ii) There exists a matrix polynomial Ln (whose degree does not depend on n) such
that the Sylvester matrix differential equation (2.15) holds for all n ∈ N.

(iii) There exists a matrix polynomial Rn (whose degree does not depend on n) such
that the Sylvester matrix differential equation (2.16) holds for all n ∈ N.

Moreover, the matrices Ln and Rn are connected by (2.17), for all n ∈ N.

Proof. From Theorem 2.4 we know that (ii) and (iii) are equivalent propositions.
Moreover, we can see that (ii) implies (i). In fact, taking n = 0 in the (1.2) entry
of (2.15), i.e.

ϕ(z)(QL
0)

′(z)−QL
0(z)ψ2(z) = L110 Q

L
0 − L120 C−1Q

L
−1.

Now, taking into account that QL
0(z) = SW (z) and QL

−1(z) = C−1
−1 we get

ϕ(z)S ′
W (z)− SW (z)ψ2(z) = ψ1(z)SW + η(z),

where ψ1(z) = L110 and η = −L120 .

From here we see that, to finish the proof, we only have to show that (i) implies (ii).
Multiply the equation (2.4) from the left by P L

n and on the right by PR
n , i.e.

ϕP L
nS

′
WP

R
n = P L

nψ1SWP
R
n + P L

nSWψ2P
R
n + P L

nηP
R
n .(2.39)

We write the left hand-side of (2.39) as

ϕ(z)P L
nS

′
W (z)PR

n (z) = ϕ(z)
(
(P L

n (z)SW (z))′ − (P L
n )

′(z)SW (z)
)
PR
n (z),

then using the Hermite–Padé formulas (1.20) and (1.21), we transforms (2.39) into,(
ϕ(QL

n)
′ −QL

nψ2

)
PR
n −

(
P L
nψ1 + ϕ(P L

n )
′)QR

n = ΘL
n(2.40)

where

ΘL
n :=

(
ϕ(P

L,(1)
n−1 )

′ − P
L,(1)
n−1 ψ2 + P L

nη
)
PR
n −

(
ϕ(P L

n )
′ + P L

nψ1

)
P

R,(1)
n−1 ,(2.41)

is a polynomial whose degree does not depend on n, as the left hand side of (2.40)
shows. In fact, by using the assymptotic expansions near infinity (1.14) and (1.15) of
QL
n and QR

n, respectively, the expansion of P L
n and PR

n in powers of z and considering
the fact that SW = QL

0 it follows that,

(2n+ 1)ϕ(z)C−1
n

z2
+
ψ1(z)C

−1
n

z
+
C−1
n ψ2(z)

z
+ higher power of

1

z
; |z| → +∞.

Then, the highest degree in the expression of ΘL
n comes from

(2n+ 1)ϕ(z)C−1
n

z2
+
ψ1(z)C

−1
n

z
+
C−1
n ψ2(z)

z
.
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If we denote k = max
{
deg ϕ − 2, degψ1 − 1, degψ2 − 1

}
then degΘL

n ≤ k.
Now, using (1.40), and writing ΘL

n = ΘL
nCn−1

(
P L
n−1Q

R
n − QL

n−1P
R
n

)
in (2.40), it fol-

lows that,(
ϕ(QL

n)
′ −QL

nψ2 +ΘL
nCn−1Q

L
n−1

)
PR
n =

(
ϕ(P L

n )
′ + P L

nψ1 +ΘL
nCn−1P

L
n−1

)
QR
n,

and taking into account (1.41) we arrive to

(2.42)
(
ϕ(QL

n)
′ −QL

nψ2 +ΘL
nCn−1Q

L
n−1

)(
QL
n

)−1

=
(
ϕ(P L

n )
′ + P L

nψ1 +ΘL
nCn−1P

L
n−1

)(
P L
n

)−1
=: ΩL

n.

In the same way, using (1.44) and writing ΘL
n = ΘL

nCn−1

(
P L
n−1P

R,(1)
n−1 −P L,(1)

n−2 P
R
n

)
in (2.41)

to get,(
ϕ
(
P

L,(1)
n−1

)′ − P
L,(1)
n−1 ψ2 + P L

nη +ΘL
nCn−1P

L,(1)
n−2

)
PR
n

=
(
ϕ
(
P L
n

)′
+ P L

nψ1 +ΘL
nCn−1P

L
n−1

)
P

R,(1)
n−1 ,

and by (1.42), we arrive to

(2.43)
(
ϕ
(
P

L,(1)
n−1

)′ − P
L,(1)
n−1 ψ2 + P L

nη +ΘL
nCn−1P

L,(1)
n−2

) (
P

L,(1)
n−1

)−1

=
(
ϕ
(
P L
n

)′
+ P L

nψ1 +ΘL
nCn−1P

L
n−1

) (
P L
n

)−1
= ΩL

n.

With ΩL
n defined by (2.42). Hence, equations (2.42) and (2.43) reads as

ϕ
(
P L
n

)′
+ P L

nψ1 +ΘL
nCn−1P

L
n−1 = ΩL

nP
L
n ,(2.44)

ϕ(QL
n)

′ −QL
nψ2 +ΘL

nCn−1Q
L
n−1 = ΩL

nQ
L
n,(2.45)

ϕ
(
P

L,(1)
n−1

)′ − P
L,(1)
n−1 ψ2 + P L

nη +ΘL
nCn−1P

L,(1)
n−2 = ΩL

nP
L,(1)
n−1 .(2.46)

To see that ΩL
n is a matrix polynomial whose degree does not depend on n, we multi-

ply equation (2.44) and (2.46) on the right by −PR,(1)
n−2 and PR

n−1, respectively, adding
the resulting expressions and applying (1.43) to get

ΩL
nC

−1
n−1 =

(
ϕ
(
P

L,(1)
n−1

)′ − P
L,(1)
n−1 ψ2 + P L

nη +ΘL
nCn−1P

L,(1)
n−2

)
PR
n−1

−
(
ϕ
(
P L
n

)′
+ P L

nψ1 +ΘL
nCn−1P

L
n−1

)
P

R,(1)
n−2 ,

as well as, multiplying (2.44) by −QR
n−1 and (2.45) by PR

n−1, respectively, adding the
resulting expressions and applying (1.39)

ΩL
nC

−1
n−1 =

(
ϕ(QL

n)
′ −QL

nψ2 +ΘL
nCn−1Q

L
n−1

)
PR
n−1 −

(
ϕ
(
P L
n

)′
+ P L

nψ1 +ΘL
nCn−1P

L
n−1

)
QR
n−1.

From the two last equations we conclude that the degree of ΩL
n are bounded by

t = max
{
deg ϕ − 1, degΘL

n − 1, degψ1, degψ2 − 2
}

. To end the proof we only have to
recall Theorem 2.4. □
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From Theorem 2.7 we see that the Theorems 2.4 and 2.6 the equations are valid
for all n ∈ N. This is a great achievement that will open new avenues for these
systems of semiclassical matrix orthogonal polynomials, as will be seen in Chapter 4.
Now, we will see a characterization of semiclassical matrix orthogonal polynomials
using zero curvature formula.

Theorem 2.8. Let W be a regular matrix weight function together with the
boundary conditions (2.1), admitting the factorization W = W LWR and the constant
jump fundamental matrices, ZL

n, ZR
n . The following are equivalent:

(i) W is semiclassical i.e. (2.3) takes place.
(ii) The left zero curvature formula

ϕ(z)
(
T L
n

)′
(z) = Ln+1(z)T

L
n (z)− T L

n (z)Ln(z), n ∈ N,(2.47)

holds, with initial condition L0(z) =

[
ψ1(z) η(z)
0 −ψ2(z)

]
.

(iii) The right zero curvature formula

ϕ(z)
(
TR
n

)′
(z) = TR

n (z)Rn+1(z)− Rn(z)T
R
n (z), n ∈ N,(2.48)

holds, with initial condition R0(z) =

[
ψ2(z) 0
η(z) −ψ1(z)

]
.

Proof. We know, by Theorem 2.6 that W is semiclassical if and only if, we have
(2.37) and (2.38) for n ≥ max{deg ϕ − 1, degψ2}. Moreover, from Theorem 2.7 we
know that (2.37) and (2.38) holds true for n ∈ N. Hence, if we prove that (2.37) is
equivalent to (2.47), and (2.38) is equivalent to (2.48), for n ∈ N we finish the proof.

We begin with the direct proof. Taking (2.37) for n+1, and applying the recurrence
relation (2.36), we get

ϕ(z)
(
T L
n (z)Z

L
n(z)

)′
= Ln+1(z)T

L
n (z)Z

L
n(z),

hence

ϕ(z)
(
T L
n

)′
(z)ZL

n(z) + T L
n (z)ϕ(z)

(
ZL
n

)′
(z) = Ln+1(z)T

L
n (z)Z

L
n(z).

Now, apply (2.37) to find{
ϕ(z)

(
T L
n

)′
(z) + T L

n (z)Ln(z)− Ln+1(z)T
L
n (z)

}
ZL
n(z) = 0,

and because detZL
n(z) =

detW L(z)
detWR(z)

̸= 0, we arrive to (2.47). Using the same ideas we
derive (2.48). In fact, taking (2.38) for n + 1, and applying the second recurrence
relation in (2.36), we get

ϕ(z)
(
ZR
n (z)T

R
n (z)

)′
= ZR

n (z)T
R
n (z)Rn+1(z),

hence

ϕ(z)
(
ZR
n

)′
(z)TR

n (z) + ZR
n (z)ϕ(z)

(
TR
n

)′
(z) = ZR

n (z)T
R
n (z)Rn+1(z).
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Now, apply (2.38) to find

ZR
n (z)

{
ϕ(z)

(
T L
n

)′
(z) + Rn(z)T

R
n (z)− TR

n (z)Rn+1(z)
}
= 0,

and because detZL
n(z) =

detWR(z)
detW L(z)

̸= 0, we arrive to (2.48).

For the initial condition of Ln and Rn, we take n = 0 in (2.37) and in (2.38), respec-
tively.

We analyze the reciprocal. Multiplying (2.47) from the right by ZL
n, applying the

recurrence relation (2.36), and then adding ϕ(z)T L
n (z)

(
ZL
n

)′
(z) on both sides of the

resulting expression, we obtain

ϕ(z)
(
ZL
n+1

)′
(z)− Ln+1(z)Z

L
n+1(z) = T L

n (z)
{
ϕ(z)(ZL

n)
′(z)− Ln(z)Z

L
n(z)

}
.

Thus

ϕ(z)(ZL
n+1)

′(z)− Ln+1(z)Z
L
n+1(z) = T L

n (z) · · ·T L
0 (z)

(
ϕ(z)(ZL

0 )
′(z)− L0(z)Z

L
1 (z)

)
.

Taking into account that
(
ZL

0

)′
(z) = L0(z)Z

L
0 (z), we arrive to (2.37).

In the same manner, multiplying (2.48) from the left by ZR
n , applying the recur-

rence relation (2.36), and then adding ϕ(z)
(
ZR
n

)′
(z)TR

n (z) on both sides of the result-
ing expression, we obtain

ϕ(z)(ZR
n+1)

′(z)− ZR
n+1(z)Rn+1(z) =

{
ϕ(z)(ZR

n )
′(z)− ZR

n (z)Rn(z)
}
TR
n (z).

Thus

ϕ(z)(ZR
n+1)

′(z)− ZR
n+1(z)Rn+1(z) =

(
ϕ(z)(ZR

0 )
′(z)− ZR

0 (z)R0(z)
)
TR
0 (z) · · ·TR

n (z).

Taking into account that
(
ZR

0

)′
(z) = ZR

0 (z)R0(z), we arrive to (2.38). □

Corollary 2.2. Let W be a semiclassical matrix weight function, admitting the
factorization W = W LWR and the constant jump fundamental matrices, ZL

n, ZR
n .

Then, we have, for all n ∈ N, the second order zero curvature formulas

ϕ(z)
{(
T L
n

)′
(z)Ln(z) + Ln+1(z)

(
T L
n

)′
(z)
}
= L2n+1(z)T

L
n (z)− T L

n (z)L
2
n(z),(2.49)

ϕ(z)
{(
TR
n

)′
(z)Rn+1(z) + Rn(z)

(
TR
n

)′
(z)
}
= TR

n (z)R
2
n+1(z)− R2

n(z)T
R
n (z).(2.50)

Proof. By Theorem 2.8 we know that (2.47) and (2.48) takes place. Hence multi-
plying (2.47) on the right by Ln (respectively, (2.48) on the left by Rn), we get

ϕ(z)
(
T L
n

)′
(z)Ln(z) = Ln+1(z)T

L
n (z)Ln(z)− T L

n (z)L
2
n(z),

ϕ(z)Rn(z)
(
TR
n

)′
(z) = Rn(z)T

R
n (z)Rn+1(z)− R2

n(z)T
R
n (z),

and applying again (2.47) we get (2.49) (respectively, (2.48) to get (2.50)). □
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5. Geronimus characterization for classical matrix orthogonal polynomials

It was shown in [19], analogously to the scalar situation (cf. [80]), the orthogo-
nality of the derivatives is equivalent to a Pearson type equation ϕW ′ = ψ1W for the
corresponding weight matrix, as well as, an expression of Pn in terms of a linear
combination of the polynomials derivatives P ′

n, P
′
n−1 and P ′

n+1 takes place.

Below we describe the features in a more general context. More precisely, if the
Pearson equation (2.3) is satisfied and so non-commutativity is strongly involved. In
this setting, we prove that the orthogonality of sequence of derivatives

{(
P L
n+1

)′}
n∈N

with respect to ϕW is replaced by the orthogonality of
{ (
P L
n+1W

L
)′ }

n∈N with respect

to ϕWR.

We start by stating the following theorem.

Theorem 2.9. Let C be a simple closed curve (circle for example) negatively
oriented (clockwise where a and b the starting and end points of γ, respectively),
such that a and b are in the interior of C. Let W be a semiclassical matrix weight
that admits the factorization W = W LWR such that (2.3) takes place, and {ZL

n}n∈N,
{ZR

n}n∈N, are its sequence of constant jump fundamental matrices. Then,∫
γ

(
P L
n+1W

L
)′
ϕWRPR

k

d t

2π i
= 0, k = 0, 1, . . . , n− p,(2.51) ∫

γ

ϕP L
kW

L
(
WRPR

n+1

)′ d t

2π i
= 0, k = 0, 1, . . . , n− q,(2.52) ∫

C

(
QL
n+1(W

R)−1
)′
ϕWRPR

k

d t

2π i
= 0, k = 0, 1, . . . , n− p,(2.53) ∫

C

ϕP L
kW

L
(
(W L)−1QR

n+1

)′ d t

2π i
= 0, k = 0, 1, . . . , n− q,(2.54)

where p = max{deg ϕ− 1, degψ2} and q = max{deg ϕ− 1, degψ1}.

Proof. We will prove (2.51) and (2.53), then the proof of (2.52) and (2.54) are very
similar. Using boundary condition, orthogonality (1.1) and Pearson equations (2.3)∫

γ

(
P L
n+1W

L
)′
ϕWRtk

d t

2π i
= −

∫
γ

P L
n+1W

(
ψ2t

k + (ϕtk)′
) d t

2π i
= 0,

for k = 0, 1, . . . , n− p and n ∈ N. The quasi-orthogonality follows for
{
(P L

n+1W
L)′
}
n∈N.∫

C

(
QL
n+1(W

R)−1
)′
ϕWRtk

d t

2π i
= −

∫
C

QL
n+1(W

R)−1
(
ϕWRtk

)′ d t

2π i

= −
∫
C

QL
n+1

(
ψ2t

k + (ϕtk)′
) d t

2π i

= −
∫
C

(∫
γ

P L
n+1(ϵ)

ϵ− t
W (ϵ)

d ϵ

2π i

)(
ψ2t

k + (ϕtk)′
) d t

2π i
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We use now Fubini’s Theorem then Cauchy’s integral formula,∫
C

(
QL
n+1(W

R)−1
)′
ϕWRtk

d t

2π i

= −
∫
γ

(∫
C

P L
n+1(ϵ)

ϵ− t
W (ϵ)

(
ψ2t

k + (ϕtk)′
) d t

2π i

) d ϵ

2π i

= −
∫
γ

P L
n+1(ϵ)W (ϵ)

(∫
C

ψ2t
k + (ϕtk)′

ϵ− t

d t

2π i

) d ϵ

2π i

= −
∫
γ

P L
n+1(ϵ)W (ϵ)

(
ψ2(ϵ)ϵ

k + (ϕ(ϵ)ϵk)′
) d ϵ
2π i

= 0, k = 0, . . . , n− p, n ∈ N,
as we wanted to prove. □

Corollary 2.3. Let C be a simple closed curve (circle for example) negatively ori-
ented (clockwise where a and b are the starting and end points of γ, respectively),
such that a and b are in the interior of C. Let W be a classical matrix weight that ad-
mits the factorization W = W LWR such that (2.3) takes place, and {ZL

n}n∈N, {ZR
n}n∈N,

are its sequence of constant jump fundamental matrices. Then, the following are
dual sequences:

(i)
{
ϕP L

nW
L
}
n∈N and

{(
WRPR

n+1

)′}
n∈N, defined on γ,

(ii)
{
ϕP L

nW
L
}
n∈N and

{(
(W L)−1QR

n+1

)′}
n∈N, defined on C,

(iii)
{(
P L
n+1W

L
)′}

n∈N and
{
ϕWRPR

n

}
n∈N, defined on γ,

(iv)
{(
QL
n+1(W

R)−1
)′}

n∈N and
{
ϕWRPR

n

}
n∈N, defined on C,

are dual sequences.

Proof. Under the assymptions above, we get p = q = 1. Equations (2.52) and
(2.54) leads to the left dual while equations (2.51) and (2.53) gives the right dual. □

This result together with Theorem 1.9 we get that the dual sequences{(
WRPR

n+1

)′}
n∈N,

{(
(W L)−1QR

n+1

)′}
n∈N,

{(
P L
n+1W

L
)′}

n∈N, and
{(
QL
n+1(W

R)−1
)′}

n∈N, also
satisfies three term recurrence relations.

Theorem 2.10. Let C be a simple closed curve (circle for example) negatively
oriented (clockwise where a and b are the starting and end points of γ, respectively),
such that a and b are in the interior of C. Let W be a regular matrix weight, to-
gether with the boundary conditions (2.1), that admits the factorization W = W LWR,
and {ZL

n}n∈N, {ZR
n}n∈N, are its sequence of constant jump fundamental matrices.

Then, the following are equivalent:

(i) The weight matrix W is classical.
(ii) The following linear relations holds

P L
nW

L =
n+1∑

k=n−1

Ank
(
P L
kW

L
)′
, QL

n(W
R)−1 =

n+1∑
k=n−1

Ank
(
QL
k(W

R)−1
)′
.(2.55)
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Proof. (i)=⇒(ii). As we have said before this theorem, we know from Corollary 2.3
that the sequence

{(
P L
n+1W

L
)′}

n∈N satisfies a three term recurrence relation of type

z
(
P L
n+1W

L
)′
= ϵ̃Ln

(
P L
n+1W

L
)′
+ β̃L

n

(
P L
n+1W

L
)′
+ γ̃Ln

(
P L
nW

L
)′
,(2.56)

for some sequences of matrix (ϵ̃Ln), (β̃
L
n), (γ̃

L
n), with ϵ̃Ln, γ̃

L
n, n ∈ N invertible matrices.

Moreover, Theorem 1.9 asserts that the sequence {P L
n}n∈N is defined by (1.6) (by its

left orthogonality). Multiplying, (1.6) on the right by W L and taking derivatives(
P L
n+1W

L
)′
= P L

nW
L + (z − βL

n)
(
P L
nW

L
)′ − γLn

(
P L
n−1W

L
)′
.

From this relation, we see that
{(
P L
n+1W

L
)′}

n∈N satisfies (2.56) if and only if, there
exists Ank , k ∈ {n− 1, n, n+ 1} such that,

P L
nW

L =
n+1∑

k=n−1

Ank
(
P L
kW

L
)′
,(2.57)

where
(
Ann−1 − γLn

)
are for each n ∈ N, invertible matrices.

We will prove that the second expression in (2.55) takes place. In fact, multiply-

ing (2.57) from the right by
ϕ(t)WR(t)

2π i(t− z)
then integrating,

∫
γ

ϕ(t)P L
n (t)W (t)

t− z

d t

2π i
=

n+1∑
k=n−1

Ank

∫
γ

(
P L
k (t)W

L(t)
)′ϕ(t)WR(t)

t− z

d t

2π i
(2.58)

= −
n+1∑

k=n−1

Ank

∫
γ

P L
k (t)W

L(t)
(ϕ(t)WR(t)

t− z

)′ d t

2π i

= −
n+1∑

k=n−1

Ank

(∫
γ

P L
kW

t− z
(ϕ′ + ψ2)

d t

2π i
−
∫
γ

ϕP L
kW

(t− z)2
d t

2π i

)
.

We will simplify separately the integrals,∫
γ

P L
kW

t− z

(
ϕ′ + ψ2

) d t

2π i
=

∫
γ

P L
kW

t− z

{
(ϕ′ + ψ2) (t)− (ϕ′ + ψ2)(z)

} d t

2π i
+QL

k(ϕ
′ + ψ2)(z)

= QL
k

(
ϕ′ + ψ2

)
(z), k ≥ 1.

In a similar way, we prove that∫
γ

P L
k (t)ϕ(t)W (t)

(t− z)2
d t

2π i
= ϕ′(z)QL

k(z) + ϕ(z)
(
QL
k

)′
(z), k ≥ 1.

Then, follows ∫
γ

ϕ(t)P L
n (t)W (t)

t− z

d t

2π i
= ϕ(z)QL

n(z), n ≥ 2,(2.59)

now, replacing (2.59) in (2.58) we get

ϕ(z)QL
n(z) = −

n+1∑
k=n−1

Ank
(
QL
k(z)ψ2 − ϕQL

k(z)
)
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=
n+1∑

k=n−1

Ank
(
ϕQL

k(z)−QL
k(z)

(
ϕ(WR)−1(WR)′

))
Simplify by ϕ then multiply this relation from the right by (WR)−1, it follows that

QL
n(W

R)−1 =
n+1∑

k=n−1

Ank
(
QL
k(W

R)−1
)′
.

Now, we will show that (ii)=⇒(i). Equations (2.55) could be written as,

ZL
n+1 =

[
An+1
n+2 −An+1

n+1C
−1
n+1

0 CnA
n
n+1C

−1
n+1

] (
ZL
n+2

)′
+

[
An+1
n 0

−CnAnn CnA
n
n−1C

−1
n−1

] (
ZL
n

)′
=

[
An+1
n+2 −An+1

n+1C
−1
n+1

0 CnA
n
n+1C

−1
n+1

] (
T L
n+1Z

L
n+1

)′
+

[
An+1
n 0

−CnAnn CnA
n
n−1C

−1
n−1

]((
T L
n

)−1
ZL
n+1

)′
After simplification we get,

(2.60)

{
I−
[
An+1
n+2 −An+1

n+1C
−1
n+1

0 CnA
n
n+1C

−1
n+1

] (
T L
n+1

)′ − [ An+1
n 0

−CnAnn CnA
n
n−1C

−1
n−1

] (
(T L

n )
−1
)′}

ZL
n+1

=

{[
An+1
n+2 −An+1

n+1C
−1
n+1

0 CnA
n
n+1C

−1
n+1

]
T L
n+1 +

[
An+1
n 0

−CnAnn CnA
n
n−1C

−1
n−1

]
(T L

n )
−1

}(
ZL
n+1

)′
Taking,

HL
n : = I−

[
An+1
n+2 −An+1

n+1C
−1
n+1

0 CnA
n
n+1C

−1
n+1

] (
T L
n+1

)′ − [ An+1
n 0

−CnAnn CnA
n
n−1C

−1
n−1

]
(T L

n )
−1

GL
n : =

[
An+1
n+2 −An+1

n+1C
−1
n+1

0 CnA
n
n+1C

−1
n+1

]
T L
n+1 +

[
An+1
n 0

−CnAnn CnA
n
n−1C

−1
n−1

]
(T L

n )
−1

ϕn := det(GL
n), Ln,1 := adj(GL

n)H
L
n,

where adj(GL
n) is the adjugate of the matrix GL

n, we get that (2.60) becomes,

ϕn
(
ZL
n+1

)′
= Ln,1ZL

n+1(2.61)

We will prove now that ϕn does not depend on n. In fact, by one hand

ϕn+1

(
ZL
n+2

)′
= ϕn+1

(
T L
n+1Z

L
n+1

)′
= ϕn+1

{
T L
n+1

(
ZL
n+1

)′
+
(
T L
n+1

)′
ZL
n+1

}
and using (2.61) we get that

ϕn+1

(
ZL
n+1

)′
= Ln,2ZL

n+1 with Ln,2 =
(
T L
n+1

)−1 {Ln+1,1T
L
n+1 − ϕn+1

(
T L
n+1

)′ }
.(2.62)

Since the first order differential equation for ZL
n+1 is unique, up to a multiplicative

factor, the equations (2.61) and (2.62) implies the existence of a scalar polynomial vn
such that ϕn+1 = vnϕn. Thus, ϕn = vn×· · ·×v1×ϕ1. Since the degree of ϕn is bounded
by a number independent of n, then the degree of the v′ns are zero and we get

ϕ1

(
ZL
n+1

)′
= Ln+1Z

L
n+1

where, Ln+1 = (vn × · · · × v1)
−1 Ln,1. □
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6. Riccati type equation

Now we state a characterization for the semiclassical matrix orthogonal polyno-
mials in terms of a Riccati differential equation for the ratio of matrix orthogonal
polynomials and second kind matrix functions. In some sense we reinterpret the
Corollary of the Theorem 1.11 for the case that the weights belongs to the semiclas-
sical class.

Theorem 2.11. Let W be a regular matrix weight, together with the boundary
conditions (2.1), that admits the factorization W = W LWR, and {ZL

n}n∈N its sequence
of left constant jump fundamental matrix. The following are equivalent:

i) W is semiclassical, i.e. (2.2) takes place.
ii) there exists a polynomial matrix (whose degree does not depend on n), Ln, such

that the corresponding left constant jump fundamental matrix ZL
n satisfies, for

each n ∈ N, the Sylvester matrix differential equations, (2.37).
iii) The sequence of functions fL

n = P L
n

(
P L
n−1

)−1
, satisfies, for each n ∈ Z+, the Riccati

type equation

ϕ
(
fL
n

)′
= L1,1n fL

n − fL
nC

−1
n−1L

2,2
n Cn−1 + fL

nC
−1
n−1L

2,1
n fL

n − L1,2n Cn−1.(2.63)

iv) The sequence of functions gLn = QL
n

(
QL
n−1

)−1
satisfies, for each n ∈ Z+, the Riccati

type equation

ϕ
(
gLn
)′
= L1,1n gLn − gLnC

−1
n−1L

2,2
n Cn−1 + gLnC

−1
n−1L

2,1
n gLn − L1,2n Cn−1.(2.64)

Proof. We know, from Theorem 2.8 that i) is equivalent to ii). Lets start by ii) =⇒
iii). We recall that (2.37) is the matrix reinterpretation of (2.19), (2.23), (2.20), (2.24).
Multiply (2.19) from the right by

(
P L
n−1W

L
)−1

and (2.23) from the right by
(
P L
n−1W

L
)−1

and from the left by −fL
nC

−1
n−1 the sum, we obtain (2.63). Now, multiply (2.20) from

the right by
(
QL
n−1(W

R)−1
)−1

and (2.24) from the right by
(
QL
n−1(W

R)−1
)−1

and from
the left by −gLnC−1

n−1 then sum, we obtain (2.64), and so i) =⇒ iii).

To prove iii) =⇒ ii). Suppose that the equations (2.63) and (2.64) holds. Using the
the three terms recurrence relation (1.6) we get,

z I−βL
n−1 = fL

n + γLn−1

(
fL
n−1

)−1
(2.65)

Taking derivative in (2.65) leads to

I =
(
fL
n

)′ − γLn−1

(
fL
n−1

)−1 (
fL
n−1

)′ (
fL
n−1

)−1
.

Hence,

ϕ
(
fL
n+1

)′
= ϕ I+γLn

(
fL
n

)−1(
ϕ(fL

n)
′)(fL

n

)−1

= ϕ I+γLn
(
fL
n

)−1 (
L1,1n fL

n − fL
nC

−1
n−1L

2,2
n Cn−1 + fL

nC
−1
n−1L

2,1
n fL

n − L1,2n Cn−1

) (
fL
n

)−1

= ϕ I+γLn
(
fL
n

)−1
L1,1n − γLnC

−1
n−1L

2,2
n Cn−1

(
fL
n

)−1
+ γLnC

−1
n−1L

2,1
n

− γLn
(
fL
n

)−1
L1,2n Cn−1

(
fL
n

)−1
.
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Replace γLn
(
fL
n

)−1
from (2.65),

ϕ
(
fL
n+1

)′
= ϕ I+C−1

n L2,1n − C−1
n L2,2n Cn

(
z I−βL

n

)
+
(
z I−βL

n

)
L1,1n

−
(
z I−βL

n

)
L1,2n Cn

(
z I−βL

n

)
− fL

n+1

{
L1,1n − L1,2n Cn

(
z I−βL

n

)}
− fL

n+1L
1,2
n Cnf

L
n+1 +

{
C−1
n L2,2n Cn +

(
z I−βL

n

)
L1,2n Cn

}
fL
n+1

So fL
n+1 verifies a Riccati equation. Using (2.63) we obtain by compatibility the sys-

tem,

ϕ I−L1,2n+1Cn = C−1
n L2,1n − C−1

n L2,2n Cn
(
z I−βL

n

)
+
(
z I−βL

n

)
L1,1n −

(
z I−βL

n

)
L1,2n Cn

(
z I−βL

n

)
−L2,2n+1Cn = −L1,1n + L1,2n Cn

(
z I−βL

n

)
−L1,2n Cn = C−1

n L2,1n+1

L1,1n+1 = C−1
n L2,2n Cn +

(
z I−βL

n

)
L1,2n Cn.

This system, after simplification, collapses to the curvature formula (2.47). Now,
from Theorem 2.8 we get that W is semiclassical. In the same way we can see that
iii) implies i). □

Similar considerations lead to Riccati equations for the right case.

Theorem 2.12. Let W be a regular matrix weight, together with the boundary
conditions (2.1), that admits the factorization W = W LWR, and {ZR

n}n∈N its sequence
of right constant jump fundamental matrices. The following are equivalent:

i) W is semiclassical, i.e. (2.2) takes place.
ii) there exists a polynomial matrix (whose degree does not depend on n), Rn, such

that the corresponding left constant jump fundamental matrix ZR
n satisfies, for

each n ∈ N, the Sylvester matrix differential equations, (2.38).

iii) The functions fR
n =

(
PR
n−1

)−1
PR
n satisfies, for each n ∈ Z+, the Riccati type equa-

tion

ϕ
(
fR
n

)′
= fR

nR
n
1,1 − Cn−1R

n
2,2C

−1
n−1f

R
n + fR

nR
n
1,2C

−1
n−1f

R
n − Cn−1R

n
2,1.

iv) The functions gRn =
(
QR
n−1

)−1 (
QR
n

)
satisfies, for each n ∈ Z+, the Riccati type

equation

ϕ
(
gRn
)′
= gRnR

n
1,1 − Cn−1R

n
2,2C

−1
n−1g

R
n + gRnR

n
1,2C

−1
n−1g

R
n − Cn−1R

n
2,1.



CHAPTER 3

Riemann–Hilbert analysis

1. Introduction

In Chapter 2 we have studied different characterizations of semiclassical matrix
orthogonal polynomials with regard to a matrix weight function satisfying a matrix
Pearson type equation (2.2), where ψ1 and ψ2 are matrix polynomials.

Depending on the degree and the roots of ϕ, we get that every classical matrix
weight function belongs, up to afine transformations of z, to one of the following
canonical types:

(1) Hermite: ϕ(z) = 1.
(2) Laguerre: ϕ(z) = z.
(3) Jacobi: ϕ(z) = z(1− z).
(4) Bessel: ϕ(z) = z2.

Let us mention that for matrix versions of Laguerre, Hermite and Jacobi polyno-
mials, the scalar-type Rodrigues’ formula [47, 48] and a second order differential
equation [10, 42, 46] has been discussed. It also has been proven [50] that oper-
ators of the form D=∂2F2(t)+∂1F1(t)+∂0F0 have as eigenfunctions different infinite
families of matrix orthogonal polynomials. A new family of matrix orthogonal poly-
nomials satisfying second order differential equations, whose three term recurrence
relation coefficients do not behave asymptotically as the identity matrix, was found
in [10]; see also [19].

In this chapter, we will look at matrix orthogonal polynomials with regard to a
weight matrix, which will satisfy a more generic Pearson type equation, i.e. ϕ is
one of the four cases mentioned above, ψ1 and ψ2 are replaced by entire functions hL

and hR, respectively. To be more specific, we suppose W to be a N×N weight matrix
with support on a smooth oriented non self-intersecting unbounded curve γ in the
complex plane C, i.e. W (j,k) is, for each j, k ∈

{
1, . . . , N

}
, a complex weight with

support on γ. In addition to boundary conditions (2.1), we assume that the right and
left logarithmic derivative

hL(z) := ϕ(z)
(
W L(z)

)′(
W L(z)

)−1
, hR(z) := ϕ(z)

(
WR(z)

)−1(
WR(z)

)′
(3.1)

exist and are entire functions. In such a setting, the weight matrix factors out as
W (z) = W LWR. As well, (3.1) holds, and so by Theorem 2.1 we have

ϕ(z)W ′(z) = hL(z)W (z) +W (z)hR(z).(3.2)

43
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We obtain Sylvester systems of differential equations for the orthogonal polynomials
and its second kind functions, directly from a Riemann–Hilbert problem, with jumps
supported on appropriate curves in the complex plane. The differential properties
for the weight function are fundamental. In this case we consider a Pearson type
differential equation for the weight matrix. In order to get first and second order
matrix differential operators we present, in addition to the left and right constant
jump fundamental matrix defined in (2.33) and (2.34), the important structure ma-
trices.

For each factorization W = W LWR, we recall the constant jump matrices defined
in (2.33) and (2.34). In the next theorem it is explained the name we gave to these
matrix functions.

Theorem 3.1. For each factorizationW = W LWR, the constant jump fundamental
matrices ZL

n and ZR
n are, for each n ∈ N, characterized by the following properties:

(i) They are holomorphic on C \ γ.
(ii) We have the following asymptotic behaviors for z → ∞,

ZL
n(z) =

(
I+O(z−1)

) [znW L(z) 0
0 I z−n(WR(z))−1

]
,

ZR
n (z) =

[
znWR(z) 0

0 (W L(z))−1z−n

] (
I+O(z−1)

)
.

(iii) They present the following constant jump condition on γ(
ZL
n(z)

)
+
=
(
ZL
n(z)

)
−

[
I I
0 I

]
,

(
ZR
n (z)

)
+
=

[
I 0
I I

] (
ZR
n (z)

)
−,

for all z ∈ γ in the support on the weight matrix.

Proof. We only give the proofs for the left case because their right ones follows
from (2.35).

(i) As the W L and WR are matrices of entire functions the holomorphity properties
of ZL

n is inherit from that of the fundamental matrices Y L
n .

(ii) It follows from the asymptotic of the fundamental matrices.
(iii) From the definition of ZL

n we have(
ZL
n(z)

)
+
=
(
Y L
n (z)

)
+

[
W L(z) 0

0 (WR(z))−1

]
,

and taking into account Theorem 1.8 we arrive to(
ZL
n(z)

)
+
=
(
Y L
n (z)

)
−

[
I W L(z)WR(z)
0 I

] [
W L(z) 0

0 (WR(z))−1

]
;

now, as[
I W L(z)WR(z)
0 I

] [
W L(z) 0

0 (WR(z))−1

]
=

[
W L(z) 0

0 (WR(z))−1

] [
I I
0 I

]
,

we get the desired constant jump condition for ZL
n. □
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Now, we introduce what we call structure matrices given in terms of the left and
right logarithmic derivatives, respectively by,

ML
n(z) :=

(
ZL
n(z)

)′(
ZL
n(z)

)−1
, MR

n (z) :=
(
ZR
n (z)

)−1(
ZR
n (z)

)′
, n ∈ N.(3.3)

We will study, for each Riemann–Hilbert problem, the analytic properties of these
functions. As can be seen from their definition in (3.3), these functions are pretty
much connected to the left and right matrices, Ln and Rn, studied in Chapter 2 (cf. for
example Theorem 2.6).

As the constant jump fundamental matrices, ZL
n and ZR

n , are connected by (2.35)
it can be shown that,

MR
n (z) =

[
0 I
− I 0

]
ML

n(z)

[
0 I
− I 0

]
, n ∈ N.(3.4)

Theorem 3.2. The following formulas hold:

i) The zero curvature formulas[
I 0
0 0

]
=ML

n+1(z)T
L
n (z)− T L

n (z)M
L
n(z), n ∈ N,(3.5) [

I 0
0 0

]
= TR

n (z)M
R
n+1(z)−MR

n (z)T
R
n (z), n ∈ N.(3.6)

ii) The second order zero curvature formulas holds for all n ∈ N,[
I 0
0 0

]
ML

n(z) +ML
n+1(z)

[
I 0
0 0

]
=
(
ML

n+1(z)
)2
T L
n (z)− T L

n (z)
(
ML

n(z)
)2
,(3.7) [

I 0
0 0

]
MR

n+1(z) +MR
n (z)

[
I 0
0 0

]
= TR

n (z)
(
MR

n+1(z)
)2 − (MR

n (z)
)2
TR
n (z).

Proof. It follows from the definition of ZL
n that

T L
n (z) = Y L

n+1(z)
(
Y L
n (z)

)−1
= ZL

n+1(z)
(
ZL
n(z)

)−1
.

Taking derivatives on Tn(z) we get(
T L
n (z)

)′
=
(
ZL
n+1(z)

)′(
ZL
n(z)

)−1 − ZL
n+1(z)

(
ZL
n(z)

)−1(
ZL
n(z)

)′(
ZL
n(z)

)−1
, n ∈ N,

and so, taking into account that(
ZL
n+1(z)

)′(
ZL
n(z)

)−1
=
(
ZL
n+1(z)

)′(
ZL
n+1(z)

)−1
ZL
n+1(z)

(
ZL
n(z)

)−1
=ML

n+1(z)T
L
n (z),

we get (3.5). Using the same ideas we derive (3.6).

Now, multiplying (3.5) on the left by ML
n+1 we get

ML
n+1(z)

[
I 0
0 0

]
=
(
ML

n+1(z)
)2
T L
n (z)−

(
ML

n+1(z)T
L
n (z)

)
ML

n(z),

and again by (3.5) applied to the term ML
n+1T

L
n we get (3.7). □
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2. Hermite type weights

In [15], the Hermite case is thoroughly examined, providing us with inspiration
and motivation to delve into the study of Laguerre, Jacobi, and Bessel weights. As a
starting point for our own discoveries, this section aims to present a comprehensive
overview of the main definitions and results from that reference.

In this section, we suppose that the support γ of W has no finite end points.
Special attention is paid to non-Abelian Hermite biorthogonal polynomials on the
real line, understood as those whose weight matrix is a solution of a Pearson type
equation with given first order matrix polynomial coefficients, i.e. W satisfies (3.1)
with ϕ = 1, or equivalently(

W L
)′
(z) = hLW L(z),

(
WR
)′
(z) = WR(z)hR(z),

then the matrix Pearson type equation (3.2) transforms into

W ′(z) = hL(z)W (z) +W (z)hR(z),

with boundary conditions (2.1), i.e.

lim
z→+∞

W (z) = 0, and lim
z→−∞

W (z) = 0.

Now, we state a theorem on Riemann–Hilbert problem for the Hermite type weights.
The results in this Section 2 for the Hermite case are taken from [15].

2.1. Riemann–Hilbert problem for the Hermite type weights.

Theorem 3.3. The matrix function

Y L
n (z) :=

[
P L
n (z) QL

n(z)

−Cn−1P
L
n−1(z) −Cn−1Q

L
n−1(z)

]

respectively, Y R
n (z) :=

[
PR
n (z) −PR

n−1(z)Cn−1

QR
n(z) −QR

n−1(z)Cn−1

]
,

is, for each n ∈ N, the unique solution of the Riemann–Hilbert problem; which con-
sists in the determination of a 2N × 2N complex matrix function such that:

(RH1): Y L
n (z) (respectively, Y R

n (z)) is holomorphic in C \ γ;

(RH2): has the following asymptotic behavior when z → ∞,

Y L
n (z) =

(
I+O(z−1)

) [I zn 0
0 I z−n

]
;

respectively, Y R
n (z) =

[
I zn 0
0 I z−n

] (
I+O(z−1)

)
;

(RH3): satisfies the jump condition for all z ∈ γ,(
Y L
n (z)

)
+
=
(
Y L
n (z)

)
−

[
I W (z)
0 I

]
,
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respectively,
(
Y R
n (z)

)
+
=

[
I 0

W (z) I

] (
Y R
n (z)

)
−.

2.2. Sylvester differential equations for the fundamental matrices. Now
we will study the analytic character for the structure matrices.

Theorem 3.4. The structure matrices ML
n and MR

n , defined in (3.3) are, for each
n ∈ N, matrices of entire functions in the complex plane.

Proof. We only give the proofs for the left case: (ML
n)+ =

(
(ZL

n)
′)

+

(
(ZL

n)
−1
)
+

, and
applying the constant jump condition we get

(ML
n(z))+ =

(
(ZL

n)
′)

−

[
I I
0 I

]−1 [
I I
0 I

] (
(ZL

n)
−1
)
− = (ML

n(z))−,

and so the result follows. □

The differential structure determined by the Pearson equation for the weight ma-
trix induces a corresponding Sylvester differential equations for the fundamental
matrices as follows.

Theorem 3.5 (Sylvester differential linear equations). In the conditions of
Proposition 2.1, the left fundamental matrix Y L

n and the right fundamental matrix Y R
n

satisfy, for each n ∈ N, the following Sylvester matrix differential equations,(
Y L
n (z)

)′
=ML

n(z)Y
L
n (z)− Y L

n (z)

[
hL(z) 0
0 −hR(z)

]
,(3.8)

(
Y R
n (z)

)′
= Y R

n (z)M
R
n (z)−

[
hR(z) 0
0 −hL(z)

]
Y R
n (z),(3.9)

respectively.

Proof. As ML
n(z) =

(
ZL
n(z)

)′(
ZL
n(z)

)−1
is the right derivative of the constant jump

structure matrix from (2.33) we get (3.8). Now, (3.9) is proven analogously. □

2.3. Second order differential operators. We firstly derive, as a consequence
of the Sylvester differential linear systems, second order differential equations ful-
filled by the fundamental matrices. We reinterpret these results in terms of matrix
biorthogonal polynomials as well as in terms of the corresponding second kind func-
tions.

Following the standard use in Soliton Theory, given a matrix of holomorphic func-
tions A we define its Miura transform by

M(A) = A′(z) + (A(z))2.(3.10)

Observe that when A is a logarithmic derivative, A = w′w−1 or A = w−1w′, we have
M(A) = w′′w−1 or M(A) = w−1w′′, respectively.
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Theorem 3.6 (Second order linear differential equations). In the conditions of
Theorem 2.1, the sequence of fundamental matrices,

{
Y L
n

}
n∈Z+

and
{
Y R
n

}
n∈Z+

, satisfy(
Y L
n (z)

)′′
+ 2
(
Y L
n (z)

)′ [hL(z) 0
0 −hR(z)

]
+ Y L

n (z)

[
M
(
hL(z)

)
0

0 M
(
− hR(z)

)]
= M

(
ML

n(z)
)
Y L
n (z),

(3.11)

(
Y R
n (z)

)′′
+ 2

[
hR(z) 0
0 −hL(z)

] (
Y R
n (z)

)′
+

[
M
(
hR(z)

)
0

0 M
(
− hL(z)

)]Y L
n (z)

= Y R
n (z)M

(
MR

n (z)
)
,

(3.12)

where M is defined by (3.10).

Proof. We prove (3.11). First, let us take a derivative of (3.8) to get(
Y L
n (z)

)′′
+
(
Y L
n (z)

)′ [hL(z) 0
0 −hR(z)

]
+ Y L

n (z)

[(
hL(z)

)′
0

0 −
(
hR(z)

)′]
=
(
ML

n(z)
)′
Y L
n (z) +ML

n(z)
(
Y L
n (z)

)′
but again by (3.8)

ML
n(z)

(
Y L
n (z)

)′
=
(
ML

n(z)
)2
Y L
n (z)−ML

n(z)Y
L
n (z)

[
hL(z) 0
0 −hR(z)

]
and if we substitute

ML
n(z)Y

L
n (z) =

(
Y L
n (z)

)′
+ Y L

n (z)

[
hL(z) 0
0 −hR(z)

]
we finally get

ML
n(z)

(
Y L
n (z)

)′
=
(
ML

n(z)
)2
Y L
n (z)−

(
Y L
n (z)

)′ [hL(z) 0
0 −hR(z)

]
− Y L

n (z)

[
hL(z) 0
0 −hR(z)

]2
,

and the result follows. □

Definition 3.1. For the next corollary we need to introduce the following C2N×2N

valued functions in terms of the difference of two Miura maps

HL
n(z) =

[
HL

1,1,n(z) HL
1,2,n(z)

HL
2,1,n(z) HL

2,2,n(z)

]
= M(ML

n(z))−M
([
hL(z) 0
0 −hR(z)

])
,

HR
n(z) =

[
HR

1,1,n(z) HR
1,2,n(z)

HR
2,1,n(z) HR

2,2,n(z)

]
= M(MR

n (z))−M
([
hR(z) 0
0 −hL(z)

])
.

Corollary 3.1. The second order matrix differential equations (3.11) and (3.12)
split in the following differential relations(

P L
n

)′′
(z) + 2

(
P L
n

)′
(z)hL(z) + P L

n (z)M(hL(z))

=
(
M(hL(z)) + HL

1,1,n(z)
)
P L
n (z)− HL

1,2,n(z)Cn−1P
L
n−1(z),(

QL
n

)′′
(z)− 2

(
QL
n

)′
(z)hR(z) +QL

n(z)M(−hR(z))
=
(
M(hL(z)) + HL

1,1,n(z)
)
QL
n(z)− HL

1,2,n(z)Cn−1Q
L
n−1(z),
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PR
n

)′′
(z) + 2hR(z)

(
PR
n (z)

)′
(z) +M(hR(z))PR

n (z)

= PR
n (z)

(
M(hR(z)) + HR

1,1,n(z)
)
− PR

n−1(z)Cn−1H
R
2,1,n(z),(

QR
n

)′′
(z)− 2hL(z)

(
QR
n

)′
(z) +M(−hL(z))QR

n(z)

= QR
n(z)

(
M(hR(z)) + HR

1,1,n(z)
)
−QR

n−1(z)Cn−1H
R
2,1,n(z).

Proof. Is a direct consequence of Theorem 3.6. □

3. Laguerre type weights

In this section the Riemann–Hilbert problem, with jump supported on an appro-
priate curve on the complex plane with a finite end point at the origin, is used for
the study of the corresponding matrix biorthogonal polynomials associated with La-
guerre type matrices of weights, which are constructed in terms of matrix Pearson
equation (3.1) with ϕ(z) = z, i.e.

z
(
W L
)′
(z) = hL(z)W L(z), z

(
WR
)′
(z) = WR(z)hR(z),(3.13)

then the matrix Pearson type equation (3.2) transforms to

zW ′(z) = hL(z)(z)W (z) +W (z)hR(z)(3.14)

Definition 3.2 (Laguerre type weights). We say that a regular weight matrix,

W =

W
(1,1) · · · W (1,N)

...
. . .

...
W (N,1) · · · W (N,N)

 ∈ CN×N is of Laguerre type if

1) The support of W is a non self-intersecting smooth curve on the complex plane
with beginning point at 0 and ending point at ∞, and such that it intersects the
circles |z| = R, R ∈ (0,+∞), once and only once ( i.e., it can be taken as a deter-
mination curve for arg(z)).

2) The entries W (j,k) of the matrix weight W can be written as

W (j,k)(z) =
∑
m∈Ij,k

Am(z)z
αm logpm(z), z ∈ γ,(3.15)

where Ij,k denotes a finite set of indexes, Re (αm) > −1, pm ∈ N and Am is Hölder
continuous and bounded. Here the determination of logarithm and the powers
are taken along γ. We will request, in the development of the theory, that the
functions Am have an holomorphic extension to the whole complex plane.

In this work, for the sake of simplicity, γ = (0,+∞) and the finite end point of
the curve γ is taken at the origin, c = 0, with no loss of generality, as a similar
arguments apply for c ̸= 0. In [46] different examples of Laguerre weights for the
matrix orthogonal polynomials on the real line are studied.
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3.1. The Riemann–Hilbert problem for the Laguerre type weights. We be-
gin this subsection stating a general theorem on Riemann–Hilbert problem for the
Laguerre general weights. A preliminary version of this can be found in [16].

Theorem 3.7. Given a regular Laguerre type weight matrix W with support on γ
we have: The matrix function

Y L
n (z) :=

[
P L
n (z) QL

n(z)

−Cn−1P
L
n−1(z) −Cn−1Q

L
n−1(z)

]
,

respectively, Y R
n (z) :=

[
PR
n (z) −PR

n−1(z)Cn−1

QR
n(z) −QR

n−1(z)Cn−1

]
is, for each n ∈ N, the unique solution of the Riemann–Hilbert problem, which con-
sists in the determination of a 2N × 2N complex matrix function such that:

(RH1) Y L
n (z) (respectively Y R

n ) is holomorphic in C \ γ.
(RH2) Has the following asymptotic behavior when z → ∞,

Y L
n (z) ∼

(
I+

∞∑
j=1

(z−j)Y j,L
n

)[I zn 0

0 I z−n

]
,

respectively, Y R
n (z) ∼

[
I zn 0

0 I z−n

](
I+

∞∑
j=1

(z−j)Y j,R
n

)
.

(RH3) Satisfies the jump condition on z ∈ γ \ {0},(
Y L
n (z)

)
+
=
(
Y L
n (z)

)
−

[
I W (z)

0 I

]
, respectively,

(
Y R
n (z)

)
+

=

[
I 0

W (z) I

] (
Y R
n (z)

)
−.

(RH4) Y L
n (z) =

[
O(1) sL1(z)

O(1) sL2(z)

]
, respectively, Y R

n (z) =

[
O(1) O(1)

sR1 (z) sR2 (z)

]
, as z → 0,

lim
z→0

zsLj (z) = 0, lim
z→0

zsLj (z) = 0, lim
z→0

zsRj (z) = 0, j = 1, 2, and the O conditions

are understood entrywise.

Proof. Using Theorem 1.8 it follows that the matrices Y L
n and Y R

n satisfy (RH1)–
(RH3). The entries W j,k of the matrix weight W are given in (3.15). It holds (cf. [57])
that in a neighborhood of z = 0 the Cauchy transform

ϕm(z) =
1

2π i

∫
γ

p(ζ)Am(ζ)ζ
αm logpm(ζ)

ζ − z
d ζ,

where p(ζ) denotes any polynomial in ζ, that satisfies lim
z→0

zϕm(z) = 0. Then, (RH4)

is fulfilled by the matrices Y L
n and Y R

n , respectively. To prove the unicity of both
Riemann–Hilbert problems let us consider the matrix function

G(z) = Y L
n (z)

[
0 I

− I 0

]
Y R
n (z)

[
0 − I

I 0

]
.
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It can easily be proved that G(z) has no jump or discontinuity on the curve γ and
that its behavior at the end point 0 is given by

G(z) ∼

[
O(1)sL1(z) + O(1)sR2 (z) O(1)sL1(z) + O(1)sR1 (z)

O(1)sL2(z) + O(1)sR2 (z) O(1)sL2(z) + O(1)sR1 (z)

]
, z → 0,

so, it holds that, lim
z→0

z G(z) = 0 and we conclude that the end point 0 is a removable

singularity of G. Now, from the behavior for z → ∞,

G(z) ∼

[
I zn 0

0 I z−n

][
0 I

− I 0

][
I zn 0

0 I z−n

][
0 − I

I 0

]
=

[
I 0

0 I

]
,

hence the Liouville theorem implies thatG(z) = I. To prove the unicity of the solution
of (RH1)–(RH3) let Ỹ L

n be any solution of the left Riemann–Hilbert problem. Then

Ỹ L
n (z) =

([
0 I

− I 0

]
Y R
n (z)

[
0 − I

I 0

])−1

.

Hence any solution of this left Riemann–Hilbert problem is equal to the inverse of a
fixed matrix, and the uniqueness follows. We obtain the uniqueness of the solution
of the right Riemann–Hilbert in a similar way. □

We can give the following result from the literature [91].

Theorem 3.8 (Solution at a regular singular point). Let the matrix function hL(z)
be entire. Then, for the solutions of the Pearson equation (3.13) we have:

(1) If AL := hL(0) has no eigenvalues that differs from each other by positive inte-
gers then, the solution of the left matrix differential equation in (3.13) can be
written as W L(z) = HL(z)zA

L
W L

0 , where HL is an entire and nonsingular matrix
function such that HL(0) = I, and W L

0 is a constant nonsingular matrix.
(2) If the matrix function AL has eigenvalues that differs from each other by positive

integers, then the solution of the left matrix differential equation in (3.13) can
be written as

W L(z) = HL(z)zÃ
L

W L
0 , where, in this case, HL(z) = S̃L(z)ΠL(z),

and S̃L is a finite product of factors of the form TiS
L
i , with Ti a nonsingular matrix

and SL
i is a shearing matrix, i.e. a matrix given by blocks as

SL
i (z) =

[
Ini

0

0 z Imi

]
,

for some positive integers ni,mi, and ΠL is an entire and nonsingular matrix func-
tion such that ΠL(0) = I, ÃL is a constant matrix built from the matrix AL, where
the eigenvalues of this matrix are decreased in such a way that the eigenvalues
of the resulting matrix do not differ by a positive integer and W L

0 is a constant
nonsingular matrix.
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We can get analogous results for the right matrix differential equation in (3.13)
and we will denote the solution as

WR(z) = WR
0 z

AR

HR(z).

Notice that given a matrix A, and the oriented curve γ, the matrix of functions zA =
eA log(z) is a matrix of holomorphic functions in C \ γ, and(

zA
)
− =

(
zA
)
+
e2π iA = e2π iA

(
zA
)
+
, z ∈ γ.

We also adopt the convention that
(
W L(z)WR(z)

)
+

= W (z), i.e. the weight matrix
is obtained from the limit behavior of the right side of the curve γ of the matrix
function W LWR.

It is necessary, in other to consider the Riemann–Hilbert problem related to the
weight matrix W satisfying (3.14), to study the behavior of W around the origin. For
that aim, let us consider J , the Jordan matrix similar to the matrix A, i.e. there exists
a nonsingular matrix P such that A = PJP−1. It holds zA = PzJP−1 so if

J = (λ1 Im1 +N1)⊕ (λ2 Im2 +N2)⊕ · · · ⊕ (λs Ims +Ns)

where mk is the order of the nilpotent matrix Nk, we have that

zJ = zλ1 Im1 +N1 ⊕ zλ2 Im2 +N2 ⊕ · · · ⊕ zλs Ims +Ns

where zλk Imk
+Nk = zλk ImkzNk . It is straightforward that zλk Imk = zλk Imk

and

zNk = eNk log(z) = Imk
+ log(z)Nk +

log2(z)

2!
N2
k + · · ·+ logmk−1(z)

(mk − 1)!
Nmk−1
k ,

where we have used the nilpotency of N j
k = 0 for j ≥ mk. So we can conclude that

the entries of zA are linear combinations of zλj with polynomials coefficients in the
variable log(z).

3.2. Constant jump fundamental matrices and structure matrices. The fol-
lowing theorem explicit the constant jump condition for the constant jump funda-
mental matrices ZL

n and ZR
n defined in (2.33) and (2.34), respectively.

Theorem 3.9. The constant jump fundamental matrices ZL
n and ZR

n satisfies the
following constant jump condition on γ(

ZL
n(z)

)
+
=
(
ZL
n(z)

)
−

[
(W L

0 )
−1 e−2π iAL

W L
0 (W L

0 )
−1 e−2π iAL

W L
0

0 WR
0 e2π iAR

(WR
0 )

−1

]
,

(
ZR
n (z)

)
+
=

[
WR

0 e−2π iAR
(WR

0 )
−1 0

WR
0 e−2π iAR

(WR
0 )

−1
W L

0
−1

e2π iAL
W L

0

] (
ZR
n (z)

)
−,

for all z ∈ γ.

Proof. From the definition of ZL
n we have(

ZL
n(z)

)
+
=
(
Y L
n (z)

)
+

[(
W L(z)

)
+

0

0
(
WR(z)

)−1

+

]
,
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and taking into account Theorem 1.8 we successively get

(
ZL
n(z)

)
+
=
(
Y L
n (z)

)
−

[
I
(
W L(z)WR(z)

)
+

0 I

][(
W L(z)

)
+

0

0
(
WR(z)

)−1

+

]

=
(
Y L
n (z)

)
−

[(
W L(z)

)
− 0

0
(
WR(z)

)−1

−

][(
W L(z)

)−1

− 0

0
(
WR(z)

)
−

][(
W L(z)

)
+

(
W L(z)

)
+

0
(
WR(z)

)−1

+

]

=
(
ZL
n(z)

)
−

[(
W L(z)

)−1

−

(
W L(z)

)
+

(
W L(z)

)−1

−

(
W L(z)

)
+

0
(
WR(z)

)
−

(
WR(z)

)−1

+

]

=
(
ZL
n(z)

)
−

[
(W L

0 )
−1 e−2π iAL

W L
0 (W L

0 )
−1 e−2π iAL

W L
0

0 WR
0 e2π iAL

(WR
0 )

−1

]
.

Hence, we get the desired constant jump condition for ZL
n. To complete the proof we

only have to use that (2.35) holds. □

Now, we discuss the holomorphic properties of the structure matrices already
introduced in (3.3).

Theorem 3.10. The structure matrices ML
n and MR

n are, for each n ∈ N, mero-
morphic on C, with singularity located at z = 0, which happens to be a removable
singularity or a simple pole.

Proof. Let us prove the statement for ML
n , for MR

n one should proceed similarly.
From (3.3) it follows that ML

n is holomorphic in C \ γ. Due to the fact that ZL
n has a

constant jump on the curve γ, the matrix function
(
ZL
n

)′
has the same constant jump

on the curve γ, so the matrix ML
n has no jump on the curve γ, and it follows that at

the origin ML
n has an isolated singularity. From (3.3) and (2.33) it holds

ML
n(z) =

(
ZL
n

)′
(z)
(
ZL
n(z)

)−1
(3.16)

=
(
Y L
n

)′
(z)
(
Y L
n (z)

)−1
+

1

z
Y L
n (z)

[
hL(z) 0

0 −hR(z)

] (
Y L
n (z)

)−1
,

where

Y L
n (z) =

[
P L
n (z) QL

n(z)

−Cn−1P
L
n−1(z) −Cn−1Q

L
n−1(z)

]
.

Each entry of the matrix QL
n is the Cauchy transform of certain function f , where

f(z) =
∑
i∈I

ϕi(z)z
αi logpi(z), ϕi is an entire function, Re (αi) > −1, pi ∈ N ∪ {0}, and I

is a finite set of indices. It is clear that lim
z→0

zf(z) = 0. Now, see [57, §8.3-8.6]

and [83], its Cauchy transform g(z) =

∫
γ

f(t)

t− z

d t

2π i
also satisfies the same property
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lim
z→0

zg(z) = 0. We can also see that lim
z→0

z2g′(z) = 0. Indeed,

zg′(z) =

∫
γ

zf(t)

(t− z)2
d t

2π i
=

∫
γ

(z − t)f(t)

(t− z)2
d t

2π i
+

∫
γ

tf(t)

(t− z)2
d t

2π i
,

= −
∫
γ

f(t)

t− z

d t

2π i
− tf(t)

2π i(t− z)

]
∂γ

+

∫
γ

(tf(t))′

t− z

d t

2π i

= − tf(t)

2π i(t− z)

]
∂γ

+

∫
γ

tf ′(t)

t− z

d t

2π i
.

From the boundary conditions, the first term is zero and we get zg′(z) =

∫
γ

tf ′(t)

t− z

d t

2π i
.

and from the definition of f we get that tf ′(t) is a function in the class of f , that we
denote by v and, consequently, lim

z→0
z2g′(z) = 0. From these considerations it follows,

(
Y L
n

)′
(z) =

[
O(1) rL1(z)

O(1) rL2(z)

]
,

(
Y L
n (z)

)−1
=

[
rL3(z) rL4(z)

O(1) O(1)

]
, z → 0,

where lim
z→0

z2rLi (z) = 0, for i = 1, 2, and lim
z→0

zrRi (z) = 0, for i = 3, 4, so it holds that

lim
z→0

z2
(
Y L
n

)′
(z)
(
Y L
n

)−1
= lim

z→0
z2

[
O(1)rL1(z) + O(1)rL3(z) O(1)rL1(z) + O(1)rL4(z)

O(1)rL2(z) + O(1)rL3(z) O(1)rL2(z) + O(1)rL4(z)

]
= 0.

Similar considerations leads us to the result that

lim
z→0

zY L
n (z)

[
hL(z) 0

0 −hR(z)

] (
Y L
n (z)

)−1
= 0,

so we obtain that lim
z→0

z2ML
n(z) = 0, and hence the matrix function ML

n has at most a

simple pole at the point z = 0. □

3.3. Differential relations from the Riemann–Hilbert problem. We are in-
terested in the differential equations fulfilled by the biorthogonal matrix polynomials
determined by Laguerre type matrices of weights. Here we use the Riemann–Hilbert
problem approach in order to derive these differential relations. We use the notation
for the structure matrices

M̃L
n(z) = zML

n(z), M̃R
n (z) = zMR

n (z),

with M̃L
n and M̃R

n matrices of entire functions.

Theorem 3.11 (First order differential equation for the fundamental matrices Y L
n

and Y R
n ). It holds that

z
(
Y L
n

)′
(z) + Y L

n (z)

[
hL(z) 0

0 −hR(z)

]
= M̃L

n(z)Y
L
n (z),(3.17)
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z
(
Y R
n

)′
(z) +

[
hR(z) 0

0 −hL(z)

]
Y R
n (z) = Y R

n (z)M̃
R
n (z).(3.18)

Proof. Equations (3.17) and (3.18) follows immediately from the definition of the
matrices ML

n and MR
n in (3.3). □

We introduce the N transform, N (F (z)) = F ′(z) +
F 2(z)

z
.

Theorem 3.12 (Second order differential equation for the fundamental matrices).
It holds

z
(
Y L
n

)′′
+
(
Y L
n

)′ [2hL + I 0

0 −2hR + I

]
+ Y L

n (z)

[
N (hL) 0

0 N (−hR)

]
= N (M̃L

n)Y
L
n ,(3.19)

z
(
Y R
n

)′′
+

[
2hR + I 0

0 −2hL + I

] (
Y R
n

)′
+

[
N (hR) 0

0 N (−hL)

]
Yn

R(z) = Y R
n N (M̃R

n ).(3.20)

Proof. Differentiating in (3.3) we get successively(
ZL
n

)′′(
ZL
n

)−1
=

(
M̃L

n

)′
z

− M̃L
n

z2
+

(M̃L
n)

2

z2
,

z
(
ZL
n

)′′(
ZL
n

)−1
+
(
ZL
n

)′(
ZL
n

)−1
=
(
M̃L

n

)′
+

(M̃L
n)

2

z
.

Now, using (2.33) and (3.13), we get the stated result (3.19). The equation (3.20)
follows in a similar way from definition of MR

n in (3.3). □

We introduce the following C2N×2N valued functions

HL
n =

[
HL

1,1,n HL
1,2,n

HL
2,1,n HL

2,2,n

]
:= N (M̃L

n), HR
n =

[
HR

1,1,n HR
1,2,n

HR
2,1,n HR

2,2,n

]
:= N (M̃R

n ).

It holds that the second order matrix differential equations (3.11) and (3.12) split in
the following differential relations

z
(
P L
n

)′′
+
(
P L
n

)′(
2hL + I

)
+ P L

nN (hL) = HL
1,1,nP

L
n − HL

1,2,nCn−1P
L
n−1,

z
(
QL
n

)′′
+
(
QL
n

)′(− 2hR + I
)
+QL

nN (−hR) = HL
1,1,nQ

L
n − HL

1,2,nCn−1Q
L
n−1,

z
(
PR
n

)′′
+
(
2hR + I

)(
PR
n

)′
+N (hR)PR

n = PR
n H

R
1,1,n − PR

n−1Cn−1H
R
2,1,n,

z
(
QR
n

)′′
+
(
− 2hL + I

)(
QR
n

)′
+N (−hL)QR

n = QR
nH

R
1,1,n −QR

n−1Cn−1H
R
2,1,n.

4. Jacobi type weights

In this part we deal with regular weight matrix W where its support, is a non self-
intersecting smooth curve, γ, on the complex plane with two end points at a, b ∈ C,
and such that it intersects the circles |z| = R, R ∈ R+, once and only once (i.e., it
can be taken as a determination curve for arg(z)).

In the current paragraph, we focus on Jacobi type examples.
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Definition 3.3. We say that a N ×N weight matrix W with support γ is of Jacobi
type if the entries W (j,k) of the matrix weight W can be written as

W (j,k)(z) =
∑
m∈Ij,k

φm(z)(a+ z)αm(b− z)βm logpm(a+ z) logqm(b− z), z ∈ γ,(3.21)

where Ij,k denotes a finite set of indexes, Re(αm), Re(βm) > −1, pm, qm ∈ N, a ̸= b real
numbers and φm is Hölder continuous, bounded and non-vanishing on γ.

We assume that the determination of logarithm and the powers are taken along γ.
We will request, in the development of the theory, that the functions φm have a
holomorphic extension to the whole complex plane.

This definition includes the non scalar examples of Jacobi type weights given in
the literature [2, 23, 25, 26, 68, 86], and as far as we know it was not been studied
elsewhere in all its generality.

In this work, for the sake of simplicity, the finite end points of the curve γ is taken
at the origin, a = 0 and b = 1 with no loss of generality, as a similar arguments apply
for a ̸= 0 or b ̸= 1. In [46] different examples of Jacobi matrix weights for the matrix
orthogonal polynomials on (0, 1) are studied.

4.1. Riemann–Hilbert problem for the Jacobi type weights. Now, we state
a theorem on Riemann–Hilbert problem for the Jacobi type weights.

Theorem 3.13. Given a regular Jacobi type weight matrix, W , with support on γ
we have the matrix function Y L

n and Y R
n , defined by (1.22) and (1.23) is, for each

n ∈ N, the unique solution of the following Riemann–Hilbert problem, which consists,
respectively, in the determination of a 2N × 2N complex matrix function such that:

(RH1): Y L
n and Y R

n is holomorphic in C \ γ.

(RH2): Satisfies the jump condition(
Y L
n (z)

)
+
=
(
Y L
n (z)

)
−

[
I W (z)
0 I

]
,

(
Y R
n (z)

)
+
=

[
I 0

W (z) I

] (
Y R
n (z)

)
−, z ∈ γ.

(RH3): Has the following asymptotic behavior, as |z| → ∞

Y L
n (z) = (I+O(1/z))

[
zn I 0
0 z−n I

]
, Y R

n (z) =

[
I zn 0
0 I z−n

](
I+O(1/z)

)
.

(RH4): Y L
n (z) =

[
O(1) sL1(z)

O(1) sL2(z)

]
, Y R

n (z) =

[
O(1) O(1)
sR1 (z) sR2 (z)

]
, as z → 0, with

lim
z→0

zsLj (z) = 0 and lim
z→0

zsRj (z) = 0, j = 1, 2.

(RH5): Y L
n (z) =

[
O(1) rL1(z)

O(1) rL2(z)

]
, Y L

n (z) =

[
O(1) O(1)
rR1 (z) rR2 (z)

]
, as z → 1, with

lim
z→1

(1 − z)rLj (z) = 0 and lim
z→1

(1 − z)rRj (z) = 0, j = 1, 2. The sLi , s
R
i (respectively, rLi

and rRi ) could be replaced by o(1/z), as z → 0 (respectively, o(1/(1− z)), as z → 1).
The O and o conditions are understood entrywise.
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Proof. Very similar to the proof of Theorem 3.7. □

4.2. Pearson equation and constant jump fundamental matrices. Here we
consider a weight matrix W satisfying a matrix Pearson type equation

z(1− z)W ′(z) = hL(z)W (z) +W (z)hR(z),(3.22)

with entire matrix functions hL, hR. If we take a matrix function W L such that

z(1− z)(W L)′(z) = hL(z)W L(z),(3.23)

then there exists a matrix function WR such that W (z) = W L(z)WR(z) with

z(1− z)(WR)′(z) = WR(z)hR(z).(3.24)

The reciprocal is also true as shown in Theorem 2.1.

The solution of (3.23) and (3.24) will have possibly branch points at 0 and 1, cf.
[91]. This means that there exists constant matrices, CL

j , C
R
j , with j = 0, 1, such that

(W L(z))− = (W L(z))+C
L
0, (WR(z))− = CR

0 (W
R(z))+, in (0, 1),(3.25)

(W L(z))− = (W L(z))+C
L
1, (WR(z))− = CR

1 (W
R(z))+, in (1,+∞).(3.26)

The constant jump fundamental matrices ZL
n and ZR

n satisfy, for each n ∈ N, the
following properties:

• Are holomorphic on C \ [0,+∞).
• Present the following constant jump condition on (0, 1)(
ZL
n(z)

)
+
=
(
ZL
n(z)

)
−

[
CL
0 CL

0

0 I

]
,

(
ZR
n (z)

)
+
=

[
I 0

CR
0 CR

0

] (
ZR
n (z)

)
−.

• Present the following constant jump condition on (1,+∞)(
ZL
n(z)

)
+
=
(
ZL
n(z)

)
−

[
CL
1 0

0 CR
1

]
,

(
ZR
n (z)

)
+
=

[
CR
1 0

0 CL
1

] (
ZR
n (z)

)
−.

Now, we will explicit the constant jump matrix in the special case when we have
the following decompositions for the weight matrix, W (z) = W L(z)WR(z), with:

z
(
W L
)′
(z) = h̃L(z)W L(z), (1− z)

(
WR
)′
(z) = WR(z)h̃R(z),(3.27)

where hL and hR are entire functions. Therefore, the matrix W (z) = W L(z)WR(z) is
such that,

z(1− z)W ′(z) = hL(z)W (z) +W (z)hR(z),

where hL(z) = (1− z)h̃L(z) and hR(z) = zh̃R(z).

General solutions W L and WR of (3.27) are given explicitly (cf. [91]) by

W L(z) = HL(z)zαW L
0 , WR(z) = WR

0 (1− z)βHR(z),(3.28)

where HL and HR are entire and nonsingular matrix functions, and α, β are constant
matrices, as well as W L

0 and WR
0 are constant nonsingular matrices.
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It is easy to see that W , within this decomposition, is a Jacobi type weight matrix
defined by (3.21). From (3.28), the constant jump fundamental matrices ZL

n and ZR
n

have the following constant jump condition on (0, 1)(
ZL
n(z)

)
+
=
(
ZL
n(z)

)
−

[
(W L

0 )
−1 e−2π iαW L

0 (W L
0 )

−1 e−2π iαW L
0

0 I

]
,

(
ZR
n (z)

)
+
=

[
I 0

I (W L
0 )

−1 e2π iαW L
0

] (
ZR
n (z)

)
−,

as well as, the constant jump condition on (1,+∞)(
ZL
n(z)

)
+
=
(
ZL
n(z)

)
−

[
(W L

0 )
−1 e−2π iαW L

0 0

0 WR
0 e2π iβ(WR

0 )
−1

]
,

(
ZR
n (z)

)
+
=

[
WR

0 e−2π iβ(WR
0 )

−1 0

0
(
W L

0

)−1
e2π iαW L

0

] (
ZR
n (z)

)
−.

In fact, from the definition of ZL
n we have(

ZL
n(z)

)
+
=
(
Y L
n (z)

)
+

[
(W L(z))+ 0

0 (WR(z))−1
+

]
,

and taking into account Theorem 3.13 we successively get(
ZL
n(z)

)
+
=
(
Y L
n (z)

)
−

[
I (W L(z)WR(z))+
0 I

] [
(W L(z))+ 0

0 (WR(z))−1
+

]
=
(
Y L
n (z)

)
−

[
(W L(z))− 0

0 (WR(z))−1
−

] [
(W L(z))−1

− 0
0 (WR(z))−

] [
(W L(z))+ (W L(z))+

0 (WR(z))−1
+

]
=
(
ZL
n(z)

)
−

[
(W L(z))−1

− (W L(z))+ (W L(z))−1
− (W L(z))+

0 WR(z)−(W
R(z))−1

+

]
.

Similarly over (1,+∞) we have(
ZL
n(z)

)
+
=
(
Y L
n (z)

)
−

[
(W L(z))+ 0

0 (WR(z))−1
+

]
=
(
Y L
n (z)

)
−

[
(W L(z))− 0

0 (WR(z))−1
−

] [
(W L(z))−1

− 0
0 (WR(z))−

] [
(W L(z))+ 0

0 (WR(z))−1
+

]
=
(
ZL
n(z)

)
−

[
(W L(z))−1

− (W L(z))+ 0
0 WR(z)−(W

R(z))−1
+

]
.

To complete the proof we only have to see that(
W L
)
− = HL e2π iα zαW L

0 ,
(
WR
)
− = WR

0 e2π iα(1− z)βHR,

and then use (2.34).

Now, we discuss the holomorphic properties of the structure matrices (3.3).

Theorem 3.14. Let W be a regular Jacobi matrix weight that satisfies a Pearson
type equation (3.22) that admits a factorization W (z) = W L(z)WR(z), where W L
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and WR satisfies (3.23) and (3.24). Then, the structure matrices ML
n and MR

n are, for
each n ∈ N, meromorphic on C, with singularities located at z = 0 and z = 1, which
happens to be a removable singularity or a simple pole.

Proof. Let us prove the statement for ML
n . The matrix function ML

n is holomorphic
in C \ [0,+∞) by definition, cf. (3.3). Due to the fact that ZL

n has a constant jump on
(0, 1)∪ (1,+∞), cf. (3.25) and (3.26), the matrix function

(
ZL
n

)′
has the same constant

jump on (0, 1)∪ (1,+∞), so that the matrix ML
n has no jump on (0, 1)∪ (1,+∞), and it

follows that at z = 0 and z = 1, ML
n has an isolated singularity.

From (2.33) and (3.3) it holds

ML
n(z) =

(
ZL
n

)′
(z)
(
ZL
n(z)

)−1
(3.29)

=
(
Y L
n

)′
(z)
(
Y L
n (z)

)−1
+

1

z(z − 1)
Y L
n (z)

[
hL(z) 0
0 −hR(z)

] (
Y L
n (z)

)−1
,

where Y L
n is given in (1.22). Each entry of the matrix QL

n is the Cauchy transform of
certain function, f , of type

f(z) =
∑
j∈I

φj(z)z
αj(1− z)βj logpj(z) logqj(1− z),

where φj is, for each j ∈ I, an entire function with Re(αj), Re(βj) > −1, pj, qj ∈ N,
and I is a finite set of indices. It’s clear that

lim
z→0

zf(z) = 0 and lim
z→1

(1− z)f(z) = 0.

By [57, §8.3-8.6] and [83], we deduce that the Cauchy transform of f have the same
properties:

lim
z→0

z

∫ 1

0

f(t)

t− z

d t

2π i
= 0 and lim

z→1
(1− z)

∫ 1

0

f(t)

t− z

d t

2π i
= 0.(3.30)

Now, we will prove that

lim
z→0

z2
(∫ 1

0

f(t)

t− z

d t

2π i

)′

= 0 and lim
z→1

(1− z)2
(∫ 1

0

f(t)

t− z

d t

2π i

)′

= 0.(3.31)

In fact,

z(1− z)

(∫ 1

0

f(t)

t− z

d t

2π i

)′

=

∫ 1

0

z(1− z)f(t)

(t− z)2
d t

2π i

=

∫ 1

0

(t− z)(t+ z − 1)f(t)

(t− z)2
d t

2π i
+

∫ 1

0

t(1− t)f(t)

(t− z)2
d t

2π i
,

=

∫ 1

0

t+ z − 1

t− z
f(t)

d t

2π i
− t(1− t)f(t)

2π i(t− z)

]1
0

+

∫ 1

0

(t(1− t)f(t))′

t− z

d t

2π i
.

From the boundary conditions, the first term is zero and we get

z(1− z)

(∫ 1

0

f(t)

t− z

d t

2π i

)′

= −
∫ 1

0

f(t)
d t

2π i
+

∫ 1

0

t(1− t)f ′(t)

t− z

d t

2π i
.
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We return back to (3.31), and see that this is equivalent to prove that

lim
z→0

z2(1− z)

(∫ 1

0

f(t)

t− z

d t

2π i

)′

= 0.

This follows from the fact that the Stieltjes–Markov matrix function of z(1−z)f ′(z), i.e.∫ 1

0

t(1− t)f ′(t)

t− z

d t

2π i
,

is of the same type of f . Then,

lim
z→0

z

(∫ 1

0

t(1− t)f ′(t)

t− z

d t

2π i

)
= 0, lim

z→1
(1− z)

(∫ 1

0

t(1− t)f ′(t)

t− z

d t

2π i

)
= 0,

and (3.31) follows.

Now, as each entry of the matrix QL
n is a Cauchy transform of certain function f

described previously, by using (3.30) and (3.31) we have that,(
Y L
n

)′
(z) =

[
O(1) o( 1

z2
)

O(1) o( 1
z2
)

]
,

(
Y L
n (z)

)−1
=

[
o(1

z
) o(1

z
)

O(1) O(1)

]
, z → 0,

(
Y L
n

)′
(z) =

[
O(1) o( 1

(1−z)2 )

O(1) o( 1
(1−z)2 )

]
,

(
Y L
n (z)

)−1
=

[
o( 1

1−z ) o( 1
1−z )

O(1) O(1)

]
, z → 1.

This implies that

lim
z→0

z2
(
Y L
n

)′
(z)
(
Y L
n (z)

)−1
= lim

z→0
z2
[
o(1

z
) + o( 1

z2
) o(1

z
) + o( 1

z2
)

o( 1
z2
) + o(1

z
) o( 1

z2
) + o(1

z
)

]
= lim

z→0
z2
[
o( 1

z2
) o( 1

z2
)

o( 1
z2
) o( 1

z2
)

]
= 0,

and lim
z→1

(1− z)2
(
Y L
n

)′
(z)
(
Y L
n (z)

)−1
= lim

z→1
(1− z)2

[
o( 1

(1−z)2 ) o( 1
(1−z)2 )

o( 1
(1−z)2 ) o( 1

(1−z)2 )

]
= 0.

Straightforward calculation and similar considerations lead us to

lim
z→0

zY L
n (z)

[
hL(z) 0
0 −hR(z)

] (
Y L
n (z)

)−1
= 0,

lim
z→1

(1− z)Y L
n (z)

[
hL(z) 0
0 −hR(z)

] (
Y L
n (z)

)−1
= 0.

Finally we arrive to

lim
z→0

z2ML
n(z) = 0 and lim

z→1
(1− z)2ML

n(z) = 0.

By analogous arguments we get the results for MR
n . □

4.3. Differential relations from the Riemann–Hilbert problem. Our objec-
tive is to derive differential equations satisfied by the biorthogonal matrix poly-
nomials associated to regular Jacobi type matrices of weights. Here we use the
Riemann–Hilbert problem approach in order to derive these differential relations.

Let us define a new matrix functions,

M̃L
n(z) = z(1− z)ML

n(z), M̃R
n (z) = z(1− z)MR

n (z),
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then M̃L
n and M̃R

n are matrices of entire functions, cf. Theorem 3.14.

Theorem 3.15 (First order differential equation for the fundamental matrices).
In the conditions of Theorem 3.14 we have that

z(1− z)
(
Y L
n

)′
(z) + Y L

n (z)

[
hL(z) 0
0 −hR(z)

]
= M̃L

n(z)Y
L
n (z)(3.32)

z(1− z)
(
Y R
n

)′
(z) +

[
hR(z) 0
0 −hL(z)

]
Y R
n (z) = Y R

n (z)M̃
R
n (z).(3.33)

Proof. Equations (3.32) and (3.33) follows immediately from the definition of the
matrices ML

n and MR
n in (3.3). □

Now, we introduce the N map, N (F (z)) = F ′(z) +
F 2(z)

z(1− z)
.

Theorem 3.16 (Second order differential equation for the fundamental matrices).
In the conditions of Theorem 3.14 we have that

z(1− z)
(
Y L
n

)′′
(z) +

(
Y L
n

)′
(z)

[
2hL(z) + (1− 2z) I 0

0 −2hR(z) + (1− 2z) I

]
(3.34)

+ Y L
n (z)

[
N (hL(z)) 0

0 N (−hR(z))

]
= N (M̃L

n(z))Y
L
n (z),

z(1− z)
(
Y R
n

)′′
(z) +

[
2hR(z) + (1− 2z) I 0

0 −2hL(z) + (1− 2z) I

] (
Y R
n

)′
(z)(3.35)

+

[
N (hR(z)) 0

0 N (−hL(z))

]
Yn

R(z) = Y R
n (z)N (M̃R

n (z)).

Proof. Differentiating in (3.3) we get

(
ZL
n

)′′ (
ZL
n

)−1
=

(
M̃L

n

)′
z(1− z)

− (1− 2z)
M̃L

n

z2(1− z)2
+

(
M̃L

n

)2
z2(1− z)2

,

so that

z(1− z)
(
ZL
n

)′′ (
ZL
n

)−1
+ (1− 2z)ML

n =
(
M̃L

n

)′
+

(
M̃L

n

)2
z(1− z)

= N (M̃L
n).

Now let us see that

(1− 2z)ML
n = z(1− z)

(
Y L
n

)′
(Y L

n )
−1

+ Y L
n

[
hL 0
0 −hR

]
(Y L

n )
−1
.

From (3.23) we have

z(1− z)
(
W L
)′′(

W L
)−1

=
(hL)

2

z(1− z)
− 1− 2z

z(1− z)
hL +

(
hL
)′
,

z(1− z)
(
(WR)−1

)′′
WR =

(hR)
2

z(1− z)
+

1− 2z

z(1− z)
hR −

(
hR
)′
.
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Since

z(1− z)
(
ZL
n

)′′ (
ZL
n

)−1
= z(1− z)(Y L

n )
′′
Y L
n +

( (
Y L
n

) )′ [2hL 0
0 −2hR

]
(Y L

n )
−1

+ Y L
n

[
z(1− z)

(
W L
)′′(

W L
)−1

0

0 z(1− z)
(
(WR)−1

)′′
WR

]
(Y L

n )
−1
,

we get the stated result (3.34). The equation (3.35) follows in a similar way from
definition of MR

n in (3.3). □

We introduce the following C2N×2N valued functions

HL
n =

[
HL

1,1,n HL
1,2,n

HL
2,1,n HL

2,2,n

]
:= N (M̃L

n), HR
n =

[
HR

1,1,n HR
1,2,n

HR
2,1,n HR

2,2,n

]
:= N (M̃R

n ).

It holds that the second order matrix differential equations (3.34) and (3.35) split in
the following differential relations

z(1− z)
(
P L
n

)′′
+
(
P L
n

)′(
2hL + (1− 2z) I

)
+ P L

nN (hL) = HL
1,1,nP

L
n − HL

1,2,nCn−1P
L
n−1,

z(1− z)
(
QL
n

)′′ − (QL
n

)′(
2hR − (1− 2z) I

)
+QL

nN (−hR) = HL
1,1,nQ

L
n − HL

1,2,nCn−1Q
L
n−1,

z(1− z)
(
PR
n

)′′
+
(
2hR + (1− 2z) I

)(
PR
n

)′
+N (hR)PR

n = PR
n H

R
1,1,n − PR

n−1Cn−1H
R
2,1,n,

z(1− z)
(
QR
n

)′′ − (2hL − (1− 2z) I
)(
QR
n

)′
+N (−hL)QR

n = QR
nH

R
1,1,n −QR

n−1Cn−1H
R
2,1,n.

5. Bessel type weights

Within this section, we use the Riemann–Hilbert problem in the context of jump
supported on a suitably chosen curve situated on the complex plane and possessing
a finite end point at the origin. Our aim is to investigate the matrix biorthogonal
polynomials associated with Bessel type matrices of weights, which are constructed
in terms of matrix Pearson equation (3.1) with ϕ(z) = z2, i.e.

z2
(
W L
)′
(z) = hL(z)W L(z), z2

(
WR
)′
(z) = WR(z)hR(z),(3.36)

then the matrix Pearson type equation (3.2) transforms into

z2W ′(z) = hL(z)W (z) +W (z)hR(z).(3.37)

We deal with regular weight matrix W where its support, is a non self-intersecting
smooth closed curve γ with beginning point at 0 and ending point at ∞, and such
that it intersects the circles |z| = R, R ∈ R+, once and only once (i.e., it can be taken
as a determination curve for arg(z)).

In the current paragraph, we focus on Bessel type examples.

Definition 3.4. We say that a N ×N weight matrix W with support γ is of Bessel
type if the entries W (j,k) of the matrix weight W can be written as

W (j,k)(z) =
∑
m∈Ij,k

φm(z)(a+ z)pm logqm(a+ z) e
−λm
a+z , z ∈ γ,(3.38)
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where Ij,k denotes a finite set of indexes, Re(λm) ≥ 0, Re(pm) > −1, qm ∈ N and
φm is Hölder continuous, bounded and non-vanishing on γ. In the development of
the theory, that the functions φm have an holomorphic extension to the whole com-
plex plane.

In this section, for the sake of simplicity, γ = (0,+∞) and the pole is taken at the
origin, a = 0 with no loss of generality, as a similar arguments apply for a ̸= 0.

5.1. Riemann–Hilbert problem for the Bessel type weights on (0,+∞).
Now, we state a theorem on Riemann–Hilbert problem for the Bessel type weights.

Theorem 3.17. Given a regular Bessel type weight matrix W with support on γ
we have the matrix function Y L

n and Y R
n , defined by (1.22) and (1.23) is, for each n ∈

N, the unique solution of the following Riemann–Hilbert problems, which consists,
respectively, in the determination of a 2N × 2N complex matrix function such that:

(RH1): Y L
n and Y R

n are holomorphic in C \ (0,+∞).

(RH2): Satisfies the jump condition(
Y L
n (z)

)
+
=
(
Y L
n (z)

)
−

[
I W (z)
0 I

]
,

(
Y R
n (z)

)
+
=

[
I 0

W (z) I

] (
Y R
n (z)

)
−, z ∈ γ.

(RH3): Have the following asymptotic behavior, as z → ∞

Y L
n (z) = (I+O(1/z))

[
zn I 0
0 z−n I

]
, Y R

n (z) =

[
I zn 0
0 I z−n

](
I+O(1/z)

)
.

(RH4): Y L
n (z) =

[
O(1) sL1(z)

O(1) sL2(z)

]
, Y R

n (z) =

[
O(1) O(1)
sR1 (z) sR2 (z)

]
, as z → 0, with

lim
z→0

zsLj (z) = 0, lim
z→0

zsRj (z) = 0, j = 1, 2.

Proof. (RH1), (RH2) and (RH3) follows from Theorem 1.8. We will prove (RH4)
and the unicity. The entries W j,k of the matrix weight W are given in (3.38). It holds
(cf. [57]) that in a neighborhood of z = 0 the Cauchy transform

ϕm(z) =
1

2π i

∫
γ

p(t)φm(t)t
αm logpm(t) e−

λm
t

t− z
d t,

where p denotes a polynomial, that satisfies lim
z→0

zϕm(z) = 0. Then, (RH4) is fulfilled by

the matrices Y L
n and Y R

n , respectively. To prove the unicity of both Riemann–Hilbert
problems let us consider the matrix function

G(z) = Y L
n (z)

[
0 I

− I 0

]
Y R
n (z)

[
0 − I

I 0

]
.
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The function G has no jump or discontinuity on the curve γ and its behavior at the
end point 0 is given by

G(z) ∼

[
sL1(z) + sR2 (z) sL1(z) + sR1 (z)

sL2(z) + sR2 (z) sL2(z) + sR1 (z)

]
, z → 0,

so it holds that lim
z→0

zG(z) = 0 and we conclude that the end point 0 is a removable

singularity of G. Now, from the behavior for z → ∞,

G(z) ∼

[
I zn 0

0 I z−n

][
0 I

− I 0

][
I zn 0

0 I z−n

][
0 − I

I 0

]
=

[
I 0

0 I

]
,

the Liouville Theorem implies that G(z) = I. To prove the unicity of the solution, we
consider another solution Ỹ L

n of the left Riemann–Hilbert problem. Then

Ỹ L
n (z) =

([
0 I

− I 0

]
Y R
n (z)

[
0 − I

I 0

])−1

.

Hence any solution of this left Riemann–Hilbert problem is equal to the inverse of a
fixed matrix, and the uniqueness follows. We obtain the uniqueness of the solution
of the right Riemann–Hilbert in a similar way. □

5.2. Constant jump fundamental matrices. The solution of (3.36) will have
possibly branch point at 0, cf. [91]. This means that there exists constant matrices,
CL
j , C

R
j , with j = 0, 1, such that

(W L(z))− = (W L(z))+C
L
0, (WR(z))− = CR

0 (W
R(z))+, in (0,+∞)(3.39)

The constant jump fundamental matrices ZL
n and ZR

n satisfy, for each n ∈ N, the
following properties:

• Are holomorphic on C \ [0,+∞).
• Present the following constant jump condition on (0,+∞)(
ZL
n(z)

)
+
=
(
ZL
n(z)

)
−

[
CL
0 CL

0

0 I

]
,

(
ZR
n (z)

)
+
=

[
I 0

CR
0 CR

0

] (
ZR
n (z)

)
−.

Now, we discuss the holomorphic properties of the structure matrices (3.3).

Theorem 3.18. Let W be a regular Bessel matrix weight that satisfies a Pearson
type equation (3.37) with ϕ(z) = z2, that admits a factorization W (z) = W L(z)WR(z),
where W L and WR satisfies (3.36). Then, the structure matrices ML

n and MR
n are, for

each n ∈ N, meromorphic on C, with singularity located at z = 0, which happens to
be a pole of degree at most two.

Proof. Let us prove the statement for ML
n . The matrix function ML

n is holomorphic
in C \ [0,+∞) by definition, cf. (3.3). Due to the fact that ZL

n has a constant jump on
(0,+∞), cf. (3.39), the matrix function

(
ZL
n

)′
has the same constant jump on (0,+∞),
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so that the matrix ML
n has no jump on (0,+∞), and it follows that at z = 0, ML

n has
an isolated singularity.

From (2.33) and (3.3) it holds

ML
n(z) =

(
ZL
n

)′
(z)
(
ZL
n(z)

)−1

=
(
Y L
n

)′
(z)
(
Y L
n (z)

)−1
+

1

z2
Y L
n (z)

[
hL(z) 0
0 −hR(z)

] (
Y L
n (z)

)−1
,

where Y L
n is given in (1.22). Each entry of the matrix QL

n is the Cauchy transform of
certain function, f , of type

f(z) =
∑
j∈I

φj(z)z
pj logqj(z) e−

λ
z ,

where φj is, for each j ∈ I, an entire function with Re(λj) ≥ 0, Re(pj) > −1, qj ∈ N,
and I is a finite set of indices. It’s clear that lim

z→0
zf(z) = 0. By [57, §8.3-8.6] and [83],

we deduce that the Cauchy transform of f have the same properties:

lim
z→0

zg(z) = 0, where g(z) :=

∫ 1

0

f(t)

t− z

d t

2π i
.

We can also see that lim
z→0

z3g′(z) = 0. Indeed,

z2g′(z) =

∫
γ

z2f(t)

(t− z)2
d t

2π i
=

∫
γ

(z − t)(z + t)f(t)

(t− z)2
d t

2π i
+

∫
γ

t2f(t)

(t− z)2
d t

2π i
,

= −
∫
γ

(z + t)f(t)

t− z

d t

2π i
− t2f(t)

2π i(t− z)

]
∂γ

+

∫
γ

(t2f(t))′

t− z

d t

2π i

= −z
∫
γ

f(t)

t− z

d t

2π i
− tf(t)

t− z

]
∂γ

+

∫
γ

t2f ′(t)

t− z

d t

2π i
+

∫
γ

tf(t)

t− z

d t

2π i
.

From the boundary conditions, tf(t)
2π i(t−z)

]
∂γ

is zero and we get

z2g′(z) = −z
∫
γ

f(t)

t− z

d t

2π i
+

∫
γ

t2f ′(t)

t− z

d t

2π i
+

∫
γ

tf(t)

t− z

d t

2π i
,

and from the definition of f we get that t2f ′(t) and tf(t) are functions in the same
class of f . Moreover, their Cauchy transforms verify,

lim
z→0

z

∫
γ

t2f ′(t)

t− z

d t

2π i
= 0, lim

z→0
z

∫
γ

tf(t)

t− z

d t

2π i
= 0;

consequently, lim
z→0

z3g′(z) = 0. From these considerations it follows,

(
Y L
n

)′
(z) =

[
O(1) rL1(z)

O(1) rL2(z)

]
,

(
Y L
n (z)

)−1
=

[
rL3(z) rL4(z)

O(1) O(1)

]
, z → 0,
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where lim
z→0

z3rLi (z) = 0, for i = 1, 2, and lim
z→0

z3rRi (z) = 0, for i = 3, 4, so it holds that

lim
z→0

z3
(
Y L
n

)′
(z)
(
Y L
n

)−1
= lim

z→0
z3

[
rL1(z) + rL3(z) rL1(z) + rL4(z)

rL2(z) + rL3(z) rL2(z) + rL4(z)

]
= 0.

Similar considerations leads us to

lim
z→0

z Y L
n (z)

[
hL(z) 0

0 −hR(z)

] (
Y L
n (z)

)−1
= 0,

so we obtain that lim
z→0

z3ML
n(z) = 0, and hence the matrix function ML

n has at most

a pole of degree 2 at the point z = 0. By analogous arguments we get the results
for MR

n . □

5.3. Differential relations from the Riemann–Hilbert problem. Our objec-
tive is to derive differential equations satisfied by the biorthogonal matrix polynomi-
als associated to regular Bessel type matrices of weights.

Let us define a new matrix functions,

M̃L
n(z) = z2ML

n(z), M̃R
n (z) = z2MR

n (z),

then M̃L
n and M̃R

n are matrices of entire functions, cf. Theorem 3.18.

Theorem 3.19 (First order differential equation for the fundamental matrices).
In the conditions of Theorem 3.18 we have that

z2
(
Y L
n

)′
(z) + Y L

n (z)

[
hL(z) 0
0 −hR(z)

]
= M̃L

n(z)Y
L
n (z)(3.40)

z2
(
Y R
n

)′
(z) +

[
hR(z) 0
0 −hL(z)

]
Y R
n (z) = Y R

n (z)M̃
R
n (z).(3.41)

Proof. Equations (3.40) and (3.41) follows immediately from the definition of the
matrices ML

n and MR
n in (3.3) and taking into account Theorem 3.18. □

Now, we introduce the N map, N (F (z)) = F ′(z) +
F 2(z)

z2
.

Theorem 3.20 (Second order differential equation for the fundamental matrices).
In the conditions of Theorem 3.18 we have that

z2
(
Y L
n

)′′
+
(
Y L
n

)′ [2hL + 2z I 0
0 −2hR + 2z I

]
+ Y L

n (z)

[
N (hL) 0

0 N (−hR)

]
= N (M̃L

n)Y
L
n ,

z2
(
Y R
n

)′′
+

[
2hR + 2z I 0

0 −2hL + 2z I

] (
Y R
n

)′
+

[
N (hR) 0

0 N (−hL)

]
Yn

R(z) = Y R
n N (M̃R

n ).

Proof. Very similar to the previous cases. □



CHAPTER 4

Structure matrices and Painlevé discrete matrix equations

1. Introduction

The study of equations for the recursion coefficients of orthogonal polynomials on
the real line or on the unit circle constitutes a subject of current interest. The ques-
tion of how the expression of the weight and its properties (for example if it satisfies
a Pearson type equation), translate to the recursion coefficients has been treated in
several places, for a review see [89].

In 1976, Freud [56] studied weights in R of exponential variation of type w(x) =
|x|ρ exp(−|x|m), ρ > −1 and m > 0. For m = 2, 4, 6 he constructed relations among
them as well as determined its asymptotic behavior. However, Freud did not find the
role of the discrete Painlevé I, that was discovered later by Magnus [79].

For the unit circle and a weight of the form w(θ) = exp
(
k cos(θ)

)
, k ∈ R, Periwal

and Shevitz [84, 85], in the context of matrix models, found the discrete Painlevé II
equation for the recursion relations of the corresponding orthogonal polynomials.
This result was rediscovered later and connected with the Painlevé III equation [69].

In [6] the discrete Painlevé II was found using the Riemann–Hilbert problem given
in [7], see also [88]. For a nice account of the relation of these discrete Painlevé
equations and integrable systems see [32], and for a survey on the subject of differ-
ential and discrete Painlevé equations cf. [29]. We also mention the recent paper [30]
where a discussion on the relationship between the recurrence coefficients of or-
thogonal polynomials with respect to a semiclassical Laguerre weight and classical
solutions of the fourth Painlevé equation, can be found. Also, in [31] the solution of
the discrete alternate Painlevé equations is presented in terms of the Airy function.

In [20] the Riemann–Hilbert problem for this matrix situation and the appearance
of non-Abelian discrete versions of Painlevé I were explored, showing singularity
confinement (see also, [22]). The singularity analysis for a matrix discrete version of
the Painlevé I equation was performed. It was found that the singularity confinement
holds generically, i.e. in the whole space of parameters except possibly for algebraic
subvarieties. The situation was considered in [21] for the matrix extension of the
Szegő polynomials in the unit circle and corresponding non-Abelian versions discrete
Painlevé II equations.

In this chapter, we begin by reviewing some results for the classical families of
orthogonal polynomials and their associated functions in a scalar setting, where hL

67
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and hR are scalar polynomials of degree one. Next, we revisit previous results related
to Hermite type weights from [15]. In that work, various nonlinear matrix relations
were discovered for the recursion coefficients when the degree of hL is one, two, or
three, and the role of hR is deleted for simplicity.

Moving on to weights of Laguerre [11], Jacobi [12], and Bessel types [14], we
derive Painlevé equations for the three-term recurrence relation coefficients of the
monic orthogonal polynomials, when hL is a matrix polynomial of degree two. It is
important to note that when the degree of hL is one, the recursion coefficients satisfy
a nonlinear equation.

2. Classical matrix orthogonal polynomials

Here we investigate the classical case when max
{
deg hL(z), deg hR(z)

}
= 1 in full

generality. A scalar second order differential equation is recovered for Hermite,
Laguerre, Jacobi and Bessel polynomials. We take

hL(z) = ALz +BL, hR(z) = ARz +BR.

2.1. Hermite case. The results in this subsection are taken from [15].

Theorem 4.1. for arbitrary matrices AL, BL, AR, BR ∈ CN×N , with AL, AR definite
negative matrices. Thus, the weight matrix W is a solution of the following Pearson
equation (a Sylvester linear differential equation)

W ′(z) = (ALz +BL)W (z) +W (z)(ARz +BR).

For simplicity we take γ = R. Hence, the structure matrices have the following form

ML
n(z) =

[
ALz +BL +

[
p1L,n, A

L
]

C−1
n AR + ALC−1

n

−Cn−1A
L − ARCn−1 −ARz −BR −

[
q1L,n−1, A

R
]
,

]
Corollary 4.1. The scalar Hermite second order differential equation is satisfied

in such way

P ′′
n (z)− 2zP ′

n(z) = −2γnPn(z)

Q′′
n(z)− 2zQ′

n(z) = (2− 2γn)Qn(z)

Proof. For W L(z) = WR(z) = e−
1
2
z2 we get AL = AR = −1 and BL = BR = 0. Using

Theorem 4.1 then plot these data on (3.11). □

2.2. Laguerre case.

Theorem 4.2. Let hL(z) = ALz+BL and hR(z) = ARz+BR be two first degree ma-
trix polynomials. The left and right fundamental matrices are given respectively by,

ML
n(z) =

1

z

[
ALz + [p1L,n, A

L] + n I+BL ALC−1
n + C−1

n AR

−Cn−1A
L − ARCn−1 −ARz + [p1R,n, A

R]− n I−BR

]
,(4.1)
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MR
n (z) =

1

z

[
ARz − [p1R,n, A

R] + n I+BR −Cn−1A
L − ARCn−1

ALC−1
n + C−1

n AR −ALz − [p1L,n, A
L]− n I−BL

]
.(4.2)

Proof. By considering (3.16) in the proof of Theorem 3.10, the asymptotic expan-
sion at infinity of the fundamental matrix Y L

n and QL
n, cf. Theorem 1.8, and using

the identities p1R,n = −q1L,n−1 and p1L,n = −q1R,n−1 (4.1) follows. The relation (3.4) leads
to (4.2). □

From now on let us concentrate in the following general matrix Laguerre weight

W (z) = eA1z zα eA2z, z ∈ C,

defined in C \ [0,+∞) with support on γ = [0,+∞). Here α, A1, A2 ∈ CN×N are
matrices such that [α,A1] = [α,A2] = 0, with spectrum σ(α), Re (σ(α)) ⊂ (−1,+∞).
This class of weights contains in the Hermitian case some of the cases studied in the
literature [19, 47, 48, 49, 50].

For this class of Laguerre weights, we get, using analytic arguments, an alterna-
tive formula for the residue matrix with the simple pole at z = 0 of the left fundamen-
tal matrix. In a similar manner we could get the result for the right fundamental ma-
trix. Notice that the fundamental matrix is completely determined in Theorem 4.2,
where AL, AR, is substituted respectively by A1, A2, and BL, BR by α

2
. This alterna-

tive formula enables us to make an important simplification in the equation (3.19)
previously obtained.

Accordingly, we choose

W L(z) = eA1z z
α
2 , WR(z) = z

α
2 eA2z .

Straightforward calculation shows that hL and hR appearing in (3.14) are given by,

hL(z) = A1z +
α

2
, hR(z) = A2z +

α

2
.

Theorem 4.3. The structure matrix ML
n defined in (4.1) has a simple pole given

by the yielding expression,

i) If Re (σ(α)) ⊂ (−1,+∞) and σ(α) ∩ N = ∅, then

ML
n(z) =

1

z
F L
n (0)

[
α
2

0

0 −α
2

] (
F L
n (0)

)−1
+O(1), z → 0,

where F L
n (0) is defined as follows

F L
n (0) = Ŷ L

n (0)

[
P 0
0 P

]
[

IN+ 0N+×N−

0N−×N+ 0N−

] [
0N+ 0N+×N−

0N−×N+ e− iπJ−

]
[

0N+ 0N+×N−

0N−×N+ IN− − e2 iπJ
−

] [
eiπJ

+ − e− iπJ+
0N+×N−

0N−×N+ 0N−

]
[P 0

0 P

]−1

.
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where α has the yielding canonical Jordan form, α = PJP−1 with

J =

[
J+ 0N+×N−

0N−×N+ J−

]
,

and N+ (respectively, N−) being the sum of the algebraic multiplicities associ-
ated with eigenvalues having positive (respectively, negative) real part and in J+

(respectively, J−) we gather together the Jordan blocks of all eigenvalues with
positive (respectively, negative) real part, and Ŷ L

n (z) being given by

Ŷ L
n (z) := Y L

n (z)

[
z−α 0

I− e2 iπα zα

]−1

.

ii) If α = m I,m ∈ N

ML
n(z) =

1

z
F L
n (0)

[
m
2
I − zm

2π i
I

0 −m
2
I

] (
F L
n (0)

)−1
+O(1), z → 0,

where F L
n (0) = Ŷ L

n (0)

[
0 1

2π i
I

−2π i I 0

]
, with

Ŷ L
n (z) := Y L

n (z)

[
(log(z))−1 I 0

−2π i I log(z) I

]−1

.

Remark 4.1. In the first case, F L
n (0) have a simpler form if Re (σ(α)) are all posi-

tive or all negative

(1) If Re (σ(α)) ⊂ (0,+∞), then F L
n (0) = Y L

n (0)

[
I 0

0 eiπα− e− iπα

]
.

(2) If Re (σ(α)) ⊂ (−1, 0), then F L
n (0) = lim

z→0
Y L
n (z)

[
0 zα e− iπα

zα
(
I− e2 iπα

)
eiπα− e− iπα

]
.

Proof. It can be seen that the matrix function ZL
n defined by

ZL
n(z) = Y L

n (z)C(z), where C(z) =

[
W L(z) 0

0 (WR(z))−1

]
,

with W L(z)WR(z) = W (z), satisfies

• ZL
n is holomorphic in C \ [0,+∞).

•
(
ZL
n(z)

)
+
=
(
ZL
n(z)

)
−

[
e− iπα e− iπα

0 eiπα

]
over (0,+∞).

Let’s start with the first case: Re (σ(α)) ⊂ (−1,+∞) and σ(α) ∩ N = ∅. In this case

the constant jump matrix

[
e− iπα e− iπα

0 eiπα

]
can be block diagonalized. For that aim we
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consider the matrix

P =

[
I e− iπα

0 eiπα− e− iπα

]
such that

[
e− iπα e− iπα

0 eiπα

]
P = P

[
e− iπα 0

0 eiπα

]
.

So, over the interval (0,+∞), we have

(
ZL
n(z)P

)
+
=
(
ZL
n(z)P

)
−

[
e− iπα 0

0 eiπα

]
.

For z ∈ C \ [0,+∞), let us define the matrix

ψ(z) :=

[
z

α
2 0

0 z−
α
2

]
,(4.3)

which satisfies, over (0,+∞), the following jump condition

(
ψ(z)

)
+
=
(
ψ(z)

)
−

[
e− iπα 0

0 eiπα

]
.

Consequently, the matrix

F L
n (z) := ZL

n(z)Pψ
−1(z),

has no jump in the interval (0,+∞). The matrix function F L
n has an isolated sin-

gularity at the origin which, as we will show now, is a removable singularity, i.e.
lim
z→0

zF L
n (z) = 0. From its definition we have that

zF L
n (z) =

[
O(z) zsL1(z)

O(z) zsL2(z)

][
eA1z z

α
2 0

0 e−A2z z−
α
2

][
I e− iπα

0 eiπα− e− iπα

][
z−

α
2 0

0 z
α
2

]

=

[
O(z) zsL1(z)

O(z) zsL2(z)

][
eA1z eA1z e− iπα zα

0 e−A2z(eiπα− e− iπα)

]
, z → 0,

and as zsL1, zs
L
2 → 0 as z → 0 and O(z)zα → 0, as z → 0 (because the eigenvalues

of α are bounded from below by −1) we conclude that zF L
n (z) → 0, for z → 0. Hence,

F L
n (z) is a matrix of entire functions.

Now, we want to compute F L
n (0) = lim

z→0
F L
n (z). For this fact, we will discuss with

respect to the sign of the real part of spectrum of α. Notice that,

F L
n (0) = lim

z→0
Y L
n (z)

[
eA1z eA1z e− iπα zα

0 e−A2z(eiπα− e− iπα)

]
,

where the limit of each factor do not need to exist.

We separately compute F L
n (0) in the cases, when Re (σ(α)) ⊂ (0,+∞) and when

Re (σ(α)) ⊂ (−1, 0), and then we give F L
n (0) in general.
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Case Re (σ(α)) ⊂ (0,+∞) and Re (σ(α)) ∩ N = ∅. When the real part of all the
eigenvalues of α are strictly positive then each limit exists and

F L
n (0) = Y L

n (0)

[
I 0

0 eiπα− e− iπα

]
.

Case Re (σ(α)) ⊂ (−1, 0) and σ(α) ∩ N = ∅. We cannot proceed as before. How-
ever, as the limit exists, if we are able to rewrite

Y L
n (z)

[
eA1z eA1z e− iπα zα

0 e−A2z(eiπα− e− iπα)

]
= Ŷ L

n (z)f(z),

in terms of two matrix factors Ŷ L
n (z) and f(z), a nonsingular matrix, with f having

a well defined limit for z → 0, also being a nonsingular matrix, we can ensure the
existence of lim

z→0
Ŷ L
n (z), and F L

n (0) =
(
lim
z→0

Ŷ L
n (z)

)(
lim
z→0

f(z)
)
. This can be achieved by

considering

Ŷ L
n (z) := Y L

n (z)

[
z−α 0

I− e2 iπα zα

]−1

,

f(z) :=

[
z−α 0

I− e2 iπα zα

][
eA1z eA1z e− iπα zα

0 e−A2z(eiπα− e− iπα)

]

=

[
z−α eA1z eA1z e− iπα

(I− e2 iπα) eA1z (− eA1z +e−A2z)(eiπα− e− iπα)zα

]
.

So that,

lim
z→0

f(z) =

[
0 e− iπα

I− e2 iπα 0

]
, F L

n (0) = Ŷ L
n (0)

[
0 e− iπα

I− e2 iπα 0

]
.

General case Re (σ(α)) ⊂ (−1,+∞) and σ(α) ∩ N = ∅. Recalling the canonical
Jordan form, we can write α = PJP−1 with

J =

[
J+ 0N+×N−

0N−×N+ J−

]
,

and N+ (respectively, N−) being the sum of the algebraic multiplicities associated
with positive (respectively, negative) eigenvalues and in J+ (respectively, J−), we
gather together the Jordan blocks of all positive (respectively, negative) eigenvalues.
Hence,[

eA1z eA1z e− iπα zα

0 e−A2z(eiπα− e− iπα)

]
=

[
P 0

0 P

][
eA1z eÃ1z e− iπJ zJ

0 e−Ã2z(eiπJ − e− iπJ)

][
P 0

0 P

]−1

with Ãj = P−1AjP , j = 1, 2.
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Now, as we did in the previous case, with negative eigenvalues only, we left mul-
tiply by the following nonsingular matrix

S(z) :=

[
P 0
0 P

]
[

IN+ 0N+×N−

0N−×N+ z−J
−

]
0[

0N+ 0N+×N−

0N−×N+ IN− − e2 iπJ
−

] [
IN+ 0N+×N−

0N−×N+ zJ
−

]
[P 0

0 P

]−1

,

to get

[ P 0
0 P ]



[
IN+ 0N+×N−

0N−×N+ z−J−

]
eÃ1z

[
IN+ 0N+×N−

0N−×N+ z−J−

]
eÃ1z

 e− iπJ+
zJ

+
0N+×N−

0N−×N+ e− iπJ−
zJ

−


[

0N+ 0N+×N−

0N−×N+ IN−−e2 iπJ−

]
eÃ1z

[
0N+ 0N+×N−

0N−×N+ IN−−e2 iπJ−

]
eÃ1z

 e− iπJ+
zJ

+
0N+×N−

0N−×N+ e− iπJ−
zJ

−


+

[
IN+ 0N+×N−

0N−×N+ zJ
−

]
e−Ã2z

 eiπJ+ − e− iπJ+
0N+×N−

0N−×N+ eiπJ− − e− iπJ−



 [ P 0
0 P ]

−1

which for z → 0 has a well defined limit, being a nonsingular matrix, given by

[
P 0
0 P

]
[

IN+ 0N+×N−

0N−×N+ 0N−

] [
0N+ 0N+×N−

0N−×N+ e− iπJ−

]
[

0N+ 0N+×N−

0N−×N+ IN− − e2 iπJ
−

] [
eiπJ

+ − e− iπJ+
0N+×N−

0N−×N+ 0N−

]
[P 0

0 P

]−1

.

Thus,

F L
n (0) = Ŷ L

n (0)

[
P 0
0 P

]
[

IN+ 0N+×N−

0N−×N+ 0N−

] [
0N+ 0N+×N−

0N−×N+ e− iπJ−

]
[

0N+ 0N+×N−

0N−×N+ IN− − e2 iπJ
−

] [
eiπJ

+ − e− iπJ+
0N+×N−

0N−×N+ 0N−

]
[P 0

0 P

]−1

.

By definition,

ML
n =

(
ZL
n

)′(
ZL
n

)−1
=
(
F L
n

)′(
F L
n

)−1
+ F L

nψ
′ψ−1

(
F L
n

)−1
,

as detF L
n (z) ̸= 0, we know that

(
F L
n

)′(
F L
n

)−1
has no singularities, while

F L
nψ

′ψ−1
(
F L
n

)−1
=

1

z
F L
n

[
α
2

0

0 −α
2

] (
F L
n

)−1
.

Consequently, ML
n has a simple pole at the origin with

ML
n(z) =

1

z
F L
n (0)

[
α
2

0

0 −α
2

] (
F L
n (0)

)−1
+O(1), z → 0.

Let us move to the proof of the second case, i.e. α = m I, m ∈ N.

It can be seen that the matrix function ZL
n satisfies over (0,+∞) the following jump

condition (
ZL
n(z)

)
+
=
(
ZL
n(z)

)
−

[
(−1)m I (−1)m I

0 (−1)m I

]
.
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For z ∈ C \ [0,+∞), instead of (4.3), let us define the matrix

ψ(z) :=

[
z

m
2 I − 1

2π i
z

m
2 log(z) I

0 z−
m
2 I

]
,

where we take the branch of the logarithmic function defined in C \ [0,+∞), which
satisfies, over (0,+∞), the same jump condition(

ψ(z)
)
+
=
(
ψ(z)

)
−

[
(−1)m I (−1)m I

0 (−1)m I

]
.

Consequently, the matrix

F L
n (z) := ZL

n(z)ψ
−1(z)

has no jump in the interval (0,+∞). The matrix function F L
n has an isolated singular-

ity at the origin which, as we will show now, is a removable one, i.e.

zF L
n (z) =

[
O(z) zsL1(z)

O(z) zsL2(z)

][
O(1) 0

0 O(1)

][
O(1) O(log(z))

O(1) O(1)

]

=

[
O(z) + zsL1(z) O(z log(z)) + zsL1(z)

O(z) + zsL2(z) O(z log(z)) + zsL2(z)

]
, z → 0,

and as zsL1, zs
L
2 → 0 as z → 0, we conclude that zF L

n (z) → 0, as z → 0. Hence, F L
n (z)

is a matrix of entire functions. To compute F L
n (0) we notice that,

F L
n (0) = lim

z→0
Y L
n (z)

[
eA1z 1

2π i
zm log(z) eA1z

0 e−A2z

]
.

For m = 1, 2, . . . it holds that F L
n (0) = Y L

n (0). For m = 0 the limit of each factor inside
the limit does not need to exist. As the limit exists, let us write

Y L
n (z)

[
eA1z 1

2π i
log(z) eA1z

0 e−A2z

]
= Ŷ L

n (z)f(z),

with

Ŷ L
n (z) := Y L

n (z)

[
(log(z))−1 I 0

−2π i I log(z) I

]−1

,

f(z) :=

[
(log(z))−1 I 0

−2π i I log(z) I

][
eA1z 1

2π i
log(z) eA1z

0 e−A2z

]

=

[
(log(z))−1 eA1z 1

2π i
eA1z

−2π i eA1z − log(z)(eA1z − e−A2z)

]
.

So that,

lim
z→0

f(z) =

[
0 1

2π i
I

−2π i I 0

]
, F L

n (0) = Ŷ L
n (0)

[
0 1

2π i
I

−2π i I 0

]
.
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Using the same kind of reasoning as above we get that, ML
n has a simple pole at the

origin with

ML
n(z) =

1

z
F L
n (0)

[
m
2
I − zm

2π i
I

0 −m
2
I

] (
F L
n (0)

)−1
+O(1), z → 0,

which ends the proof. □

Theorem 4.4. The structure matrix ML
n has the yielding expression

ML
n(z) =

1

z

[
A1z + [p1L,n, A1] + n I+α

2
A1C

−1
n + C−1

n A2

−Cn−1A1 − A2Cn−1 −A2z + [p1R,n, A2]− n I−α
2

]
.

Proof. Substituting AL, AR, respectively by A1, A2, and BL, BR by α
2

in (4.1)
and (4.2) we get the result. □

Theorem 4.5. Let α, A1 and A2, such that [α,A1] = [α,A2] = 0, and the real part
of spectrum of α, σ(α), is contained on (−1,+∞) with σ(α) ∩

{
N
}
= ∅. If there exists

λ ∈ (0,+∞) such that α2 = λ I, or α = m I, for some m ∈
{
0, 1, 2, . . .

}
, then the second

order differential equation is simplified to

z
(
Y L
n

)′′
+
(
Y L
n

)′ [α + I+2A1z 0

0 I−α− 2A2z

]
+Y L

n

[
A1 + A1α + A1

2z 0

0 −A2 + A2α + A2
2z

]

=

[
A1 + [p1L,n, A

2
1] + (n I+α)A1 + A2

1z A2
1C

−1
n − C−1

n A2
2

−Cn−1A
2
1 + A2

2Cn−1 −A2 − [p1R,n, A
2
2] + (n I+α)A2 + A2

2z

]
Y L
n (z).

Proof. If we take into account that M̃L
n(z) = M̃L

n(0) + z(M̃L
n)

′(0) and that

N (M̃L
n(z)) = (M̃L

n)
′(0) + (M̃L

n(0))
21

z
+ (M̃L

n)
′(0)M̃L

n(0) + M̃L
n(0)(M̃

L
n)

′(0) +
(
(M̃L

n)
′(0)
)2
z,

we get that (3.11), the second order differential equation that the fundamental ma-
trix satisfies, can be written as

z
(
Y L
n

)′′
+
(
Y L
n

)′ [α + I+2A1z 0

0 I−α− 2A2z

]

+ Y L
n

[
A1 +

1
2
A1α + 1

2
αA1 + zA1

2 0

0 −A2 +
1
2
A2α + 1

2
αA2 + zA2

2

]
+

1

z
Y L
n

[
(α
2
)2 0

0 (α
2
)2

]

=
(
(M̃L

n)
′(0) + (M̃L

n(0))
21

z
+ (M̃L

n)
′(0)M̃L

n(0) + M̃L
n(0)(M̃

L
n)

′(0) +
(
(M̃L

n)
′(0)
)2
z
)
Y L
n (z).

Under the restriction that the real part of the spectrum of α is contained on (−1,+∞)

and σ(α) ∩
{
N
}
= ∅ the matrix ML

n =
(
ZL
n

)′(
ZL
n

)−1
has a pole of order 1 at z = 0, with

residue given by

M̃L
n(0) = F L

n (0)

[
α
2

0

0 −α
2

] (
F L
n (0)

)−1
.
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If we now also assume on the matrix α that α2 = λ I, we get

(M̃L
n(0))

2 = F L
n (0)

[(
α
2

)2
0

0
(
α
2

)2
] (
F L
n (0)

)−1
=
λ

4
I .

In the case that α = m I, for some m ∈ N, we get that

(M̃L
n(0))

2 = F L
n (0)

[(
m
2

)2
0

0
(
m
2

)2
] (
F L
n (0)

)−1
=
m2

4
I

In both cases we have

z
(
Y L
n

)′′
+
(
Y L
n

)′ [α + I+2A1z 0

0 I−α− 2A2z

]

+ Y L
n

[
A1 + A1α + A1

2z 0

0 −A2 + A2α + A2
2z

]
=
(
(M̃L

n)
′(0) + (M̃L

n)
′(0)M̃L

n(0) + M̃L
n(0)(M̃

L
n)

′(0) +
(
(M̃L

n)
′(0)
)2
z
)
Y L
n (z).

and substituting

M̃L
n(z) =

[
A1z + [p1L,n, A1] + n I+α

2
A1C

−1
n + C−1

n A2

−Cn−1A1 − A2Cn−1 −A2z + [p1R,n, A2]− n I−α
2

]
.

the result follows. □

Remark 4.2. We remark that if the spectrum of α is contained in (−1,+∞) \ Z+

when |λ| < 1 the ±λ are admissible eigenvalues for α, and when |λ| > 1 only positive
and bigger than 1 eigenvalues are admissible for α, and then α = λ I.

Corollary 4.2. Let us consider N = 1 (i.e the scalar case). If A1 = A2 = −1
2
, and

α > −1 then the second order equation for
{
P L
n

}
n∈N and

{
QL
n

}
n∈N is given by

zP ′′
n (z)− (z − α− 1)P ′

n(z) = −nPn(z),
zQ′′

n(z) + (z − α + 1)Q′
n(z) = −(n+ 1)Qn(z).

Proof. In the scalar case this equation reduces to

z
(
Y L
n

)′′
+
(
Y L
n

)′ [α + 1 + 2A1z 0

0 1− α− 2A1z

]
+Y L

n

[
A1 + A1α + A1

2z 0

0 −A1 + A1α + A1
2z

]

=

[
A1 + (n+ α)A1 + A2

1z 0

0 −A1 + (n+ α)A1 + A2
1z

]
Y L
n (z),

as A2
1C

−1
n = C−1

n A2
1 and A1 = A2 = −1

2
, and so

z
(
Y L
n

)′′
+
(
Y L
n

)′ [α + 1− z 0

0 1− α + z

]
+ Y L

n

[
−1

2
0

0 1
2

]
=

[
−n+1

2
0

0 −n−1
2

]
Y L
n (z),
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now, considering the (1, 1) and the (1, 2) entry of this differential matrix equation the
result follows. □

2.3. Jacobi case.

Theorem 4.6. In the conditions of Theorem 3.14. If hL(z) = ALz + BL and hR(z)
= ARz +BR, then the left and right fundamental matrices are given respectively by,

M̃L
n(z) =

[(
AL − n I

)
z + [p1L,n, A

L] + p1L,n + n I+BL ALC−1
n + C−1

n AR − (2n+ 1)C−1
n

−Cn−1A
L − ARCn−1 + (2n− 1)Cn−1

(
n I−AR

)
z + [p1R,n, A

R]− p1R,n − n I−BR

]
,(4.4)

M̃R
n (z) =

[(
AR − n I

)
z − [p1R,n, A

R] + p1R,n + n I+BR −Cn−1A
L − ARCn−1 + (2n− 1)Cn−1

ALC−1
n + C−1

n AR − (2n+ 1)C−1
n

(
n I−AL

)
z − [p1L,n, A

L]− p1L,n − n I−BL

]
.(4.5)

Proof. Taking |z| → +∞ in (3.29) we have that

Y L
n =

[
I zn + p1L,nz

n−1 + · · · −C−1
n

(
I z−n−1 + q1L,nz

−n−2 + · · ·
)

−Cn−1

(
I zn−1 + p1L,n−1z

n−2 + · · ·
)

I z−n−2 + q1L,n−1z
−n−3 + · · ·

]
,

(
Y L
n

)−1
=

[
I z−n−2 + q1R,n−1z

−n−3 + · · ·
(
I z−n−1 + q1R,nz

−n−2 + · · ·
)
C−1
n(

I zn−1 + p1R,n−1z
n−2 + p2R,n−1z

n−3 + · · ·
)
Cn−1 I zn + p1R,nz

n−1 + p2R,nz
n−2 + · · ·

]
.

Hence, as |z| → +∞

z(1− z)
(
Y L
n

)′ (
Y L
n

)−1

=

[
−n I z + n I−(nq1R,n−1 + (n− 1)p1L,n) −(2n+ 1)C−1

n

(2n− 1)Cn−1 n I z − n I+np1R,n + (n+ 1)q1L,n−1

]
+O(1/z),

Y L
n (z)

[
hL(z) 0
0 −hR(z)

] (
Y L
n (z)

)−1

=

[
ALz + ALq1R,n−1 + p1L,nA

L +BL ALC−1
n + C−1

n AR

Cn−1A
L + ARCn−1 −ARz − ARp1R,n − q1L,n−1A

R −BR

]
+O(1/z).

Using the Liouville Theorem for M̃L
n , and by considering the identities p1R,n = −q1L,n−1

and p1L,n = −q1R,n−1, then (4.4) follows. The relation (3.4) leads to (4.5). □

Using the calculation made in (4.4) We want to recover here some known formulas
in the scalar case.

Example 4.1. Let us consider the weight W (z) = zα(1 − z)β, with α, β scalars in
(−1,∞). Then, the scalar second order equation for

{
P L
n

}
n∈N and

{
QL
n

}
n∈N (cf. for

example [87]) is given by

z(1− z)P ′′
n (z) +

(
1 + α− (α + β + 2)z

)
P ′
n(z) + n(α + β + n+ 1)Pn(z) = 0,(4.6)

z(1− z)Q′′
n(z) +

(
1− α + (α + β − 2)z

)
Q′
n(z) + (n+ 1)(α + β + n)Qn(z) = 0.(4.7)

In fact, from (4.4)

M̃L
n(z) =

[
−(α+β

2
+ n)z + p1n + n+ α

2
−C−1

n (α + β + 2n+ 1)

Cn−1(α + β + 2n− 1) (α+β
2

+ n)z − p1n − n− α
2

]
,
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it is easy to see that(
M̃L

n(z)
)2

=

(
−(
α + β

2
+ n)z + p1n + n+

α

2

)2

− γn
(
(α + β + 2n)2 − 1

)
I,

and also,
(
M̃L

n(z)
)′
=

[
−α+β

2
+ n 0

0 α+β
2

− n

]
. Using now Theorem 3.16 we get

z(1− z)P ′′
n (z) +

(
1 + α− (α + β + 2)z

)
P ′
n(z)− n(α + β + n+ 1)Pn(z)

=

(
n(α + n) + p1n(α + β + 2n)

1− z
+

α2

4
−
(
p1n +

α
2
+ n
)2

+ γn ((α + β + 2n)2 − 1)

z(1− z)

)
Pn(z).

By equalizing poles between left and right hand side on 0 then on 1 we have(
α2

4
−
(
p1n +

α

2
+ n
)2

+ γn
(
(α + β + 2n)2 − 1

))
Pn(0) = 0(

n(α + n) + p1n(α + β + 2n)
)
Pn(1) = 0

which, taking into account Pn(0), Pn(1) ̸= 0, leads to the representation of p1n and γn,
as well as (4.6). The equation (4.7) for the {Qn}n∈N follows from the above consider-
ations.

2.4. Bessel case. Here we want to give explicitly the structure matrix when a
Pearson equation is satisfied with polynomial coefficients of degree one. Inside this
class we can consider W (z) = W L(z)WR(z), with

W L(z) = ZαL

e−
βL

z and WR(z) = ZαR

e−
βR

z ,

where [αL, βL] = 0, [αR, βR] = 0, Re
(
σ
(
αL,R

))
> −1 and Re

(
σ
(
βL,R

))
> 0.

Theorem 4.7. If hL(z) = ALz + BL and hR(z) = ARz + BR, then the left and right
fundamental matrices are given respectively by,

M̃L
n(z) =

[ (
AL + n I

)
z − p1L,n +BL ALC−1

n + C−1
n AR + (2n+ 1)C−1

n

−Cn−1A
L − ARCn−1 − (2n− 1)Cn−1 −

(
n I+AR

)
z + p1R,n −BR

]
,(4.8)

M̃R
n (z) =

[ (
n I+AR

)
z − p1R,n +BR −Cn−1A

L − ARCn−1 − (2n− 1)Cn−1

ALC−1
n + C−1

n AR + (2n+ 1)C−1
n −

(
AL + n I

)
z + p1L,n −BL

]
.

Proof. Very similar to the proof of (4.4) and (4.5). □

We aim to utilize the previously performed computation (4.8) to derive familiar
formulas in the context of scalar scenarios.

Example 4.2. Let us consider the weight W (z) = za−2 e
−b
z , with a is not a neg-

ative integer or zero and b is not zero. Then, the scalar second order equation for{
P L
n

}
n∈N (cf. for example [73]) and

{
QL
n

}
n∈N is given by

z2P ′′
n (z) +

(
az + b

)
P ′
n(z)− n(a+ n− 1)Pn(z) = 0,(4.9)
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z2Q′′
n(z) +

(
(4− a)z − b

)
Q′
n(z)−

(
n(a+ n− 1) + 2− a

)
Qn(z) = 0.(4.10)

Proof. If we consider W L = WR = z
a
2
−1 e

−b
2z then W (z) = W LWR = za−2 e

−b
z . In fact,

from (4.8)

M̃L
n(z) =

[
(a−2

2
+ n)z − p1n +

b
2

C−1
n (a+ 2n− 1)

−Cn−1(a+ 2n− 3) −(a−2
2

+ n)z + p1n − b
2

]
,

it is easy to see that(
M̃L

n(z)
)2

=

(
(
a− 2

2
+ n)z − p1n +

b

2

)2

− γn
(
(a+ 2n− 2)2 − 1

)
I,

and also,
(
M̃L

n

)′
(z) =

[
a−2
2

+ n 0
0 −a−2

2
+ n

]
. Using now Theorem 3.20 we get

z2P ′′
n (z) +

(
az + b

)
P ′
n(z)− n(a+ n− 1)Pn(z)

=

(
nb− p1n(a+ 2n− 2)

z
+
p1n (p

1
n − b)− γn ((a+ 2n− 2)2 − 1)

z2

)
Pn(z).

By equalizing poles between left and right hand side on 0 we obtain(
p1n
(
p1n − b

)
− γn

(
(a+ 2n− 2)2 − 1

) )
Pn(0) = 0

which, taking into account Pn(0) ̸= 0, then(
nb− p1n(a+ 2n− 2)

)
Pn(0) = 0

leads to the representation of p1n and γn, as well as (4.9). The equation (4.10) for the
{Qn}n∈N follows from the above considerations. □

3. Nonlinear difference equations for the recursion coefficients

Using the Riemann–Hilbert approach we will derive in this section nonlinear ma-
trix difference equations fulfilled by the recursion coefficients, some of them are
identified as a non-abelian extension of Painlevé scalar equations.

3.1. Hermite case. The results in this subsection are taken from [15]. We now
explore the simplest case when max

{
deg hL(z), deg hR(z)

}
= 1 in full generality.

We take

hL(z) = ALz +BL, hR(z) = ARz +BR,

for arbitrary matrices AL, BL, AR, BR ∈ CN×N , with AL, AR definite negative matrices.
Thus, the weight matrix W is a solution of the following Pearson equation

W ′(z) = (ALz +BL)W (z) +W (z)(ARz +BR).

For simplicity we take γ = R. Hence, the structure matrices have the following form

ML
n(z) = ALz +KL

n, AL =
[
AL 0
0 −AR

]
, KL

n =

[
BL+
[
p1L,n,A

L
]

C−1
n AR+ALC−1

n

−Cn−1AL−ARCn−1 −BR−
[
q1L,n−1,A

R
] ] ,
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The Sylvester differential system (3.8) for the left fundamental matrix is(
Y L
n (z)

)′
+
[
Y L
n (z),

[
ALz+BL 0

0 −ARz−BR

]]
=

[ [
p1L,n,A

L
]

C−1
n AR+ALC−1

n

−Cn−1AL−ARCn−1 −
[
q1L,n−1,A

R
] ] Yn(z), n ∈ Z+,

that is, for all n ∈ Z+,

(P L
n )

′ +
[
P L
n , A

Lz +BL
]
=
[
p1L,n, A

L
]
P L
n −

(
C−1
n AR + ALC−1

n

)
Cn−1P

L
n−1,(4.11)

Cn−1(Q
L
n−1)

′ −
[
Cn−1Q

L
n−1, A

Rz +BR
]

=
(
Cn−1A

L + ARCn−1

)
QL
n −

[
q1n−1, A

R
]
Cn−1Q

L
n−1,

(4.12)

Cn−1(P
L
n−1)

′ + Cn−1Pn−1

(
ALz +BL

)
+
(
ARz +BR

)
Cn−1P

L
n−1

=
(
Cn−1A

L + ARCn−1

)
P L
n −

[
q1L,n−1, A

R
]
Cn−1P

L
n−1,

(4.13)

(QL
n)

′ −QL
n

(
ARz +BR

)
−
(
ALz +BL

)
QL
n

=
[
p1n, A

L
]
QL
n −

(
C−1
n AR + ALC−1

n

)
Cn−1Q

L
n−1.

(4.14)

Taking the (n−1)-th z power of the (4.11), the −n-th of (4.12), the −(n−1)-th of (4.13)
and the −(n+ 1)-th of (4.14) we get, for all n ∈ Z+,

n I+
[
p1L,n, B

L
]
+
[
p2L,n, A

L
]
=
[
p1L,n, A

L
]
p1n −

(
C−1
n AR + ALC−1

n

)
Cn−1,

n I+
[
q1n−1, B

R
]
+
[
q2L,n−1, A

R
]
= −

(
Cn−1A

L + ARCn−1

)
C−1
n +

[
q1L,n−1, A

R
]
q1L,n−1,

Cn−1B
L +BRCn−1 + Cn−1

[
p1L,n−1, A

L
]
= −

(
Cn−1A

L + ARCn−1

)
βL
n−1 −

[
q1L,n−1, A

R
]
Cn−1,

BRCn + CnB
L +

[
q1L,n, A

R
]
Cn = −Cn

[
p1L,n, A

L
]
−
(
ARCn + CnA

L
)
βL
n.

After some cleaning we reckon that the system is, for all n ∈ Z+, equivalent to

I −

[
βL
n, B

L −
[ n−1∑
k=0

βL
k , A

L
]
+ ALβL

n

]

= C−1
n Cn−1A

L − C−1
n+1A

RCn − ALC−1
n+1Cn + C−1

n ARCn−1,

Cn−1B
L +BRCn−1 − Cn−1

[ n−2∑
k=0

βL
k , A

L
]

= −
(
Cn−1A

L + ARCn−1

)
βL
n−1 −

[ n−1∑
k=0

Ckβ
L
k(Ck)

−1, AR
]
Cn−1.

3.1.1. A matrix extension of the alt-dPI. We now discuss the case

max
{
hL(z), hR(z)

}
= 2,

but we perform a strong simplification as we take hR = 0 and hL = λ + µz + νz2,
with λ, µ, ν ∈ CN×N arbitrary matrices but for ν being negative definite nonsingular
matrix. Thus, the Pearson equation will be

W ′(z) = (λ+ µz + νz2)W (z).(4.15)
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We obviously drop off the notation that distinguish left and right polynomials and
only describe the results for the left case. The integrals are taken along γ, a smooth
curve for which we have a simple Riemann–Hilbert problem as depicted in the fol-
lowing diagram (taken from [15] with the permission of the authors):

C

π
3

γ

x

y

Branch of the hyperbola 3x2 − y2 = 3

The structure matrix, cf. (3.3), is a second order polynomial Mn(z) = M0
nz

2 +M1
nz +

M2
n with

M0
n =

[
ν 0
0 0

]
, M1

n =

[
µ−

[
ν, p1n

]
νC−1

n

−Cn−1ν 0

]
,

M2
n =

[
λ−

[
β, p1n

]
−
[
ν, p2n

]
+ ν
(
p1n
)2 − p1nν p

1
n + νC−1

n Cn−1

(
µ−

[
ν, p1n

]
+ γβn

)
C−1
n

−Cn−1

(
µ+ p1n−1ν − νp1n

)
−Cn−1ν C

−1
n

]
.

Theorem 4.8 (Matrix alt-dPI system). The recursion coefficients βn, γn of the
matrix orthogonal polynomials with weight matrix a solution of the Pearson equa-
tion (4.15) are subject to the following system of equations, for all n ∈ Z+,(

µ+
[
ν,

n−1∑
k=0

βk

]
+ γ(βn + βn+1)

)
γn+1 = −(n+ 1) I,(4.16)

λ+ γ
(
γn + γn+1 + β2

n

)
− µβn +

[
µ,

n−1∑
k=0

βk

](
I+βn

)
+
[
ν,

n−1∑
m=1

γm −
∑

0≤k<m≤n−1

βmβk

]
+
[
ν,

n−1∑
k=0

βk

] n−1∑
k=0

βk = 0.

(4.17)
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Proof. Given the asymptotics about ∞,

−CnQn(z) = I z−n−1 + q1nz
−n−2 + · · · ,

we read the coefficient of z−n−1 coming from

Cn−1Q
′
n−1(z) = −Mn

2,1(z)Qn(z) +Mn
2,2(z)Cn−1Qn−1(z),

with Mn
2,1 = −Cn−1νz−Cn−1

(
µ+p1n−1ν−νp1n

)
, Mn

2,2 = −Cn−1νC
−1
n , we get (4.16); and

from

Q′
n(z) =Mn

1,1Qn(z)−Mn
1,2(z)Cn−1Qn−1(z),

with

Mn
1,1 = νz2 +

(
µ−

[
ν, p1n

])
z +

(
λ−

[
µ, p1n

]
−
[
ν, p2n

]
+ ν
(
p1n
)2

+ νC−1
n Cn−1 − p1nν p

1
n

)
Mn

1,2 = νC−1
n z +

(
µ−

[
ν, p1n

]
+ νβn

)
C−1
n ;

we deduce (4.17) from the z−n−1-coefficient. □

Another form of writing this result is

Theorem 4.9 (Matrix alt-dPI system). Given matrix orthogonal polynomials with
weight matrix W supported on γ, solution of the Pearson equation (4.15), the recur-
sion coefficients γn can be expressed directly in terms of the recursion coefficients
βn, for all n ∈ Z+,

γn+1 = −(n+ 1)
(
β +

[
γ,

n−1∑
k=0

βk

]
+ γ(βn + βn+1)

)−1

.

The coefficients βn fulfill, for all n ∈ Z+, the following non-Abelian alt-dPI,

λ+ ν
(
γn + γn+1 + β2

n

)
− µβn +

[
β,

n−1∑
k=0

βk

](
I+βn

)
+
[
ν,

n−1∑
m=1

γm −
∑

0≤k<m≤n−1

βmβk
]
+
[
ν,

n−1∑
k=0

βk

] n−1∑
k=0

βk = 0.

Proof. From (4.16) we get the γn in terms of βn, plugged this relation into the
second one gives the following nonlinear equation for the matrices βn. □

If we assume that ν = − I as expected strong simplifications occur. In the first
place we find that

γn+1 = −(n+ 1)(µ− βn − βn+1)
−1,

and, secondly, we derive the following simplified version of a non-Abelian alt-dPI
equation

λ− β2
n + n(β − βn−1 + βn)

−1 + (n+ 1)(µ− βn − βn+1)
−1 − µβn = −

[
µ,

n−1∑
k=0

βk

](
I+βn

)
.
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Moreover, when we choose ν = −I and µ = 0 the non local terms disappear and the
equation simplifies further to

−n(βn−1 + βn)
−1 − (n+ 1)(βn + βn+1)

−1 + β2
n = λ.

Let us remind the reader how the alt-dPI equation appeared for the first time. Going
back to the scalar context, in Magnus’ work [78], associated with the weight func-
tions solution of the Pearson equation W ′(z) =

(
z2+t

)
W (z), we can find the following

scalar alternate discrete Painlevé I system

γn + γn+1 + β2
n + t = 0,

n+ γn
(
βn + βn−1

)
= 0,

which can be written as

− n

βn + βn−1

− n+ 1

βn + βn+1

+ β2
n + t = 0.

3.1.2. The matrix dPI system. We now increase further the degree of the polyno-
mials appearing in the Pearson equations. We consider the case with

max
{
hL(z), hR(z)

}
= 3,

but we perform a strong simplification we take hR = 0 and hL = µz + νz3, with
µ, ν ∈ CN×N arbitrary matrices but for ν being negative definite nonsingular matrix.
Now we take γ = R. Observe that we have now taken the more general possible poly-
nomial of degree three, but an odd one, with well defined parity on z, this simplifies
widely the computations.

The associated Pearson type equation for a weight matrix of Freud type:

W ′(z) = (µz + νz3)W (z)(4.18)

The structure matrix, cf. (3.3), is a third order polynomial, that we write as follows

Mn(z) =M0
nz

3 +M1
nz

2 +M2
nz +M3

n

with

M0
n =

[
ν 0
0 0

]
, M1

n =

[
0 µC−1

n

−Cn−1µ 0

]
,

M2
n =

[
ν + [p2n, ν] + µC−1

n Cn−1 0
0 −Cn−1νC

−1
n

]
, M3

n =

[
0 ξnC

−1
n

−Cn−1ξn−1 0

]
,

where ξn = µ+ [p2n, ν] + ν(C−1
n Cn−1 + C−1

n+1Cn), n ∈ Z+.

With this at hand we find.

Theorem 4.10 (Matrix dPI equation). The recursion coefficients γn of the matrix
orthogonal polynomials with weight matrix satisfying the Pearson equation (4.18)
fulfill the following non-Abelian dPI equation(

µ+ ν(γn+2 + γn+1 + γn) +
[
ν,

n−1∑
k=1

γk
])
γn+1 = −(n+ 1) I, n ∈ Z+.
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Proof. Compare the coefficients of z−n−1 in the ODE for the second kind functions
we get directly (without additional computations) the MdPI equations for the three
term relation coefficients of

{
Pn(z)

}
n∈Z+

. □

Notice the appearance again of non local terms, that disappear if we take ν = − I
and the matrix dPI reads

γn+1 = nγ−1
n − γn − γn−1 − µ, n ∈ Z+,

which was derived in the matrix context for the first time in [20] and the confine-
ment of singularities for this relation was proven in [22, 20], see also [65]. In
1995, Alphonse P. Magnus [78] for the Freud weight satisfying the Pearson equation
W ′(z) = −

(
z3+2tz

)
W (z) presented the following scalar discrete Painlevé I equation

γn
(
γn−1 + γn + γn+1

)
+ 2tγn = n.

3.2. Laguerre case.

3.2.1. Matrix discrete Painlevé IV. We can consider, using the notation intro-
duced before, the matrix weight measure W = WLWR such that

z(W L)′(z) = (hL0 + hL1z + hL2z
2)W L(z), z(WR)′(z) = WR(z)(hR0 + hR1 z + hR2 z

2).

From Theorem 3.10 we get that the matrix

M̃n = zML
n

is given explicitly by(
M̃L

n

)
11

= C−1
n hR2Cn−1 + (hL0 + hL1z + hL2z

2) + hL1q
1
R,n−1 + p1L,nh

L
1

+ z(hL2q
1
R,n−1 + p1L,nh

L
2) + hL2q

2
R,n−1 + p2L,nh

L
2 + p1L,nh

L
2q

1
R,n−1 + n I,(

M̃L
n

)
12

= (hL1 + hL2z + hL2q
1
R,n + p1L,nh

L
2)C

−1
n + C−1

n (hR1 + hR2 z + hR2p
1
R,n + q1L,nh

R
2 ),(

M̃L
n

)
21

= −Cn−1(h
L
1 + hL2z + hL2q

1
R,n−1 + p1L,n−1CL)

− (hR1 + hR2 z + hR2p
1
R,n−1 + q1L,n−1h

R
2 )Cn−1,(

M̃L
n

)
22

= −Cn−1h
L
2C

−1
n − (hR0 + hR1 z + hR2 z

2)− hR1p
1
R,n − q1L,n−1h

R
1

− z(hR2p
1
R,n + q1L,n−1h

R
2 )− hR2p

2
R,n − q2L,n−1h

R
2 − q1L,n−1h

R
2p

1
R,n − n I .

From the three term recurrence relation for {P L
n}n∈N we get that p1L,n − p1L,n+1 = βL

n

and p2L,n − p2L,n+1 = βL
np

1
L,n + γLn where γLn = C−1

n Cn−1. Consequently,

p1L,n = −
n−1∑
k=0

βL
k , p2L,n =

n−1∑
i,j=0

βL
i β

L
j −

n−1∑
k=0

γLk .

In the same manner, from the three term recurrence relation for {QL
n}n∈N we deduce

that q1L,n − q1L,n−1 = βR
n := Cnβ

L
nC

−1
n and q2L,n − q2L,n−1 = βR

nq
1
L,n + γRn , where γRn = CnC

−1
n+1.
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If we consider that W = W L and WR = I, and use the representation for
{
P L
n

}
n∈N

and {QL
n}n∈N in z powers, the (1, 2) and (2, 2) entries in (3.17) read

(2n+ 1) I+hL0 + hL2(γ
L
n+1 + γLn + (βL

n)
2) + hL1β

L
n

= [p1L,n, h
L
2]p

1
L,n+1 − [p2L,n, h

L
2]− [p1L,n, h

L
1],

βL
n = γLn

(
hL2(β

L
n + βL

n−1) + [p1L,n−1, h
L
2] + hL1

)
−
(
hL2(β

L
n + βL

n+1) + [p1L,n, h
L
2] + hL1

)
γLn+1.

We can write these equations as follows

(4.19) (2n+ 1) I+hL0 + hL2(γ
L
n+1 + γLn)) + (hL2β

L
n + hL1)β

L
n

=
[ n−1∑
k=0

βL
k , h

L
2

] n∑
k=0

βL
k −

[ n−1∑
i,j=0

βL
i β

L
j −

n−1∑
k=0

γLk , h
L
2

]
−
[ n−1∑
k=0

βL
k , h

L
1

]
,

(4.20) βL
n − γLn

(
hL2(β

L
n + βL

n−1) + hL1
)
+
(
hL2(β

L
n + βL

n+1) + hL1
)
γLn+1

= −γLn
[ n−1∑
k=0

βL
k , h

L
2

]
+
[
−

n−1∑
k=0

βL
k , h

L
2

]
γLn+1.

We will show now that this system contains a noncommutative version of an instance
of discrete Painlevé IV equation, as happens in the analogous case for the scalar
scenario.

We see, on the r.h.s. of the nonlinear discrete equations (4.19) and (4.20) nonlocal
terms (sums) in the recursion coefficients βL

n and γLn, all of them inside commutators.
These nonlocal terms vanish whenever the three matrices {hL0, hL1, hL2} conform an
Abelian set. Moreover, {hL0, hL1, hL2, βL

n, γ
L
n} is also an Abelian set. In this commutative

setting we have

(2n+ 1) I+hL0 + hL2(γ
L
n+1 + γLn)) + (hL2β

L
n + hL1)β

L
n = 0,

βL
n − γLn

(
hL2(β

L
n + βL

n−1) + hL1
)
+
(
hL2(β

L
n + βL

n+1) + hL1
)
γLn+1 = 0.

In terms of ξn :=
hL0
2

+ n I+hL2γn and µn := hL2β
L
n + hL1 the above equations are

βL
nµn = −(ξn + ξn+1), βL

n(ξn − ξn+1) = −γnµn−1 + γn+1µn+1.

Now, we multiply the second equation by µn and taking into account the first one we
arrive to

−(ξn + ξn+1)(ξn − ξn+1) = −γnµn−1µn + γn+1µnµn+1

and so

ξ2n+1 − ξ2n = γn+1µnµn+1 − γnµn−1µn.

Hence,

ξ2n+1 − ξ20 = γn+1µnµn+1 and βL
nµn = −(ξn + ξn+1)(4.21)
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coincide to the ones presented in [9] as discrete Painlevé IV (dPIV) equation. In fact,
taking νn = µ−1

n we finally arrive to

νnνn+1 =
hL2
(
ξn+1 − hL0/2− n I

)
ξ2n+1 − ξ20

and ξn + ξn+1 =
((
hL2
)−1

hL1 −
(
hL2
)−1

ν−1
n

)
ν−1
n .

If we take hL1 = 0 in (4.21) then µn = hL2β
L
n, and so

(βL
n)

2hL2 = −(ξn + ξn+1).

Now, taking square in the first equation in (4.21) we get

(
ξn + ξn+1

)(
ξn+1 + ξn+2

)
=
((
ξn+1 −

hL0
2

− n I
)−1(

ξ2n+1 − ξ20
))2

,

which is an instance of dPIV by Grammaticos, Hietarinta, and Ramani (cf. [60]).

Thus, (4.19) and (4.20) for BL = 0 may be considered as non-Abelian extension of
this instance of dPIV.

We have just seen that,

Theorem 4.11 (Non-Abelian extension of the dPIV). When BL = 0, the follow-
ing nonlocal nonlinear non-Abelian system for the recursion coefficients is fulfilled

(2n+ 1) I+hL0 + hL2(γ
L
n+1 + γLn)) + hL2(β

L
n)

2

=
[ n−1∑
k=0

βL
k , h

L
2

] n∑
k=0

βL
k −

[ n−1∑
i,j=0

βL
i β

L
j −

n−1∑
k=0

γLk , h
L
2

]
,

βL
n − γLn

(
hL2(β

L
n + βL

n−1)
)
+
(
hL2(β

L
n + βL

n+1)
)
γLn+1

= −γLn
[ n−1∑
k=0

βL
k , h

L
2

]
+
[
−

n−1∑
k=0

βL
k , h

L
2

]
γLn+1.

Moreover, this system reduces in the commutative context to the standard dPIV
equation.

3.3. Jacobi case. We can consider, using the notation introduced before, the
matrix weight measure W (z) = WL(z)WR(z) such that

z(1− z)(W L)′(z) = (hL0 + hL1z + hL2z
2)W L(z),

z(1− z)(WR)′(z) = WR(z)(hR0 + hR1 z + hR2 z
2).
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From Theorem 3.14 we get the matrix M̃n = z(1− z)ML
n is given explicitly by

(M̃L
n)11 = C−1

n hR2Cn−1 + (hL0 + hL1z + hL2z
2) + hL1q

1
R,n−1 + p1L,nh

L
1

+ z(hL2q
1
R,n−1 + p1L,nh

L
2) + hL2q

2
R,n−1 + p2L,nh

L
2 + p1L,nh

L
2q

1
R,n−1 + n I−zn I+p1L,n,

(M̃L
n)12 = (hL1 + hL2z + hL2q

1
R,n + p1L,nh

L
2)C

−1
n + C−1

n (hR1 + hR2 z + hR2p
1
R,n + q1L,nh

R
2 )

− (2n+ 1)C−1
n ,

(M̃L
n)21 = −Cn−1(h

L
1 + hL2z + hL2q

1
R,n−1 + p1L,n−1h

L
2)

− (hR1 + hR2 z + hR2p
1
R,n−1 + q1L,n−1h

R
2 )Cn−1 + (2n− 1)Cn−1,

(M̃L
n)22 = −Cn−1h

L
2C

−1
n − (hR0 + hR1 z + hR2 z

2)− hR1p
1
R,n − q1L,n−1h

R
1

−z(hR2p1R,n + q1L,n−1h
R
2 )− hR2p

2
R,n − q2L,n−1h

R
2 − q1L,n−1h

R
2p

1
R,n − n I+zn I−p1R,n.

Using the three term recurrence relation for {P L
n}n∈N we get that p1L,n − p1L,n+1 = βL

n

and p2L,n − p2L,n+1 = βL
np

1
L,n + γLn where γLn = C−1

n Cn−1. Consequently,

p1L,n = −
n−1∑
k=0

βL
k , p2L,n =

n−1∑
i,j=0

βL
i β

L
j −

n−1∑
k=0

γLk .

In the same manner, from the three term recurrence relation for {QL
n}n∈N we deduce

that q1L,n − q1L,n−1 = βR
n := Cnβ

L
nC

−1
n and q2L,n − q2L,n−1 = βR

nq
1
L,n + γRn , where γRn = CnC

−1
n+1.

Now, we consider that W = W L and WR = I, and then use the representation for{
P L
n

}
n∈N and

{
QL
n

}
n∈N in z powers, the (1, 2) and (2, 2) entries in (3.32) read

(2n+ 1)(I−βL
n) + hL0 + hL2(γ

L
n+1 + γLn + (βL

n)
2) + hL1β

L
n

= [p1L,n, h
L
2]p

1
L,n+1 − [p2L,n, h

L
2]− [p1L,n, h

L
1]− p1L,n − C−1

n p1L,n+1Cn,

βL
n − (βL

n)
2 = γLn

(
hL2(β

L
n + βL

n−1) + [p1L,n−1, h
L
2] + hL1 − (2n− 1) I

)
−
(
hL2(β

L
n + βL

n+1) + [p1L,n, h
L
2] + hL1 − (2n+ 3) I

)
γLn+1 − [p1L,n, p

1
L,n+1].

We can write these equations as follows

(2n+ 1) I+hL0 + hL2(γ
L
n+1 + γLn) +

(
hL2β

L
n + hL1 − (2n+ 1) I

)
βL
n +

n−1∑
k=0

βL
k(4.22)

+ C−1
n

n∑
k=0

βL
kCn =

[ n−1∑
k=0

βL
k , h

L
2

] n∑
k=0

βL
k −

[ n−1∑
i,j=0

βL
i β

L
j −

n−1∑
k=0

γLk , h
L
2

]
−
[ n−1∑
k=0

βL
k , h

L
1

]
,

βL
n − (βL

n)
2 − γLn

(
hL2(β

L
n + βL

n−1) + hL1 − (2n− 1) I
)
+
(
hL2(β

L
n + βL

n+1) + hL1(4.23)

− (2n+ 3) I
)
γLn+1 = γLn

[ n−2∑
k=0

βL
k , h

L
2

]
−
[ n−1∑
k=0

βL
k , h

L
2

]
γLn+1 −

[ n−1∑
k=0

βL
k ,

n∑
k=0

βL
k

]
.

We will show now that this system contains a noncommutative version of an instance
of discrete Painlevé IV equation.

We see, on the r.h.s. of the nonlinear discrete equations (4.22) and (4.23) nonlocal
terms (sums) in the recursion coefficients βL

n and γLn, all of them inside commutators.
These nonlocal terms vanish whenever the three matrices {hL0, hL1, hL2} conform an
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Abelian set, so that {hL0, hL1, hL2, βL
n, γ

L
n} is also an Abelian set. In this commutative

setting we have

(2n+ 1) I+hL0 + hL2(γ
L
n+1 + γLn)) +

(
hL2β

L
n + hL1 − (2n+ 1) I

)
βL
n + p1L,n + p1L,n+1 = 0,

βL
n − (βL

n)
2 − γLn

(
hL2(β

L
n + βL

n−1) + hL1 − (2n− 1) I
)
+
(
hL2(β

L
n + βL

n+1)

+ hL1 − (2n+ 3) I
)
γLn+1 = 0.

In terms of

ξn :=
hL0
2

+ n I+hL2γn + p1L,n and µn := hL2β
L
n + hL1 − (2n+ 1) I,

the above equations reads as

−µnβL
n = ξn + ξn+1 and βL

n(ξn − ξn+1) = µn+1γn+1 − γnµn−1.

Now, we multiply the second equation by µn and taking into account the first one we
arrive to

−(ξn + ξn+1)(ξn − ξn+1) = −γnµn−1µn + γn+1µnµn+1,

and so

ξ2n+1 − ξ2n = γn+1µnµn+1 − γnµn−1µn.

Hence,

ξ2n+1 − ξ20 = γn+1µnµn+1 and βL
nµn = −(ξn + ξn+1)

coincide to the ones presented in [9] as discrete Painlevé IV (dPIV) equation. In fact,
taking νn = µ−1

n we finally arrive to

νnνn+1 =
hL2
(
ξn+1 − hL0/2− n I−p1L,n

)
ξ2n+1 − ξ20

,

ξn + ξn+1 =
((
hL2
)−1

hL1 −
(
hL2
)−1

ν−1
n − (2n+ 1)

(
hL2
)−1
)
ν−1
n .

Now, we are able to state that,

Theorem 4.12 (Non-Abelian extension of the dPIV). Equations (4.22) and
(4.23) defines a nonlocal nonlinear non-Abelian system for the recursion coefficients.

3.4. Bessel case. We can consider, using the notation introduced before, the
matrix weight measure W (z) = WL(z)WR(z) such that

z2(W L)′(z) = (hL0 + hL1z + hL2z
2)W L(z), z2(WR)′(z) = WR(z)(hR0 + hR1 z + hR2 z

2).
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The matrix M̃n = z2ML
n is given explicitly by

(M̃L
n)11 = C−1

n hR2Cn−1 + (hL0 + hL1z + hL2z
2) +

[
p1L,n, h

L
1

]
+ z

(
n I+

[
p1L,n, h

L
2

])
+
[
p2L,n, h

L
2

]
− p1L,nh

L
2p

1
L,n − p1L,n,

(M̃L
n)12 = (hL1 + hL2z − hL2p

1
L,n+1 + p1L,nh

L
2)C

−1
n

+ C−1
n (hR1 + hR2 z + hR2p

1
R,n − p1R,n+1h

R
2 ) + (2n+ 1)C−1

n ,

(M̃L
n)21 = −Cn−1(h

L
1 + hL2z − hL2p

1
L,n + p1L,n−1h

L
2)

− (hR1 + hR2 z + hR2p
1
R,n−1 − p1R,nh

R
2 )Cn−1 − (2n− 1)Cn−1,

(M̃L
n)22 = −Cn−1h

L
2C

−1
n − (hR0 + hR1 z + hR2 z

2) +
[
p1R,n, h

R
1

]
− z

(
n I+

[
hR2 , p

1
R,n

])
+
[
p2R,n, h

R
2

]
+ p1R,nh

R
2p

1
R,n + p1R,n.

Taking hR = 0

(M̃L
n)11 = (hL0 + hL1z + hL2z

2) +
[
p1L,n, h

L
1

]
+ z

(
n I+

[
p1L,n, h

L
2

])
+
[
p2L,n, h

L
2

]
− p1L,nh

L
2p

1
L,n − p1L,n,

(M̃L
n)12 = (hL1 + hL2z − hL2p

1
L,n+1 + p1L,nh

L
2)C

−1
n + (2n+ 1)C−1

n ,

(M̃L
n)21 = −Cn−1(h

L
1 + hL2z − hL2p

1
L,n + p1L,n−1h

L
2)− (2n− 1)Cn−1,

(M̃L
n)22 = −Cn−1h

L
2C

−1
n − zn I+p1R,n.

If we consider that W = W L and WR = I, and use the representation for
{
P L
n

}
n∈N and

{QL
n}n∈N in z powers, the (1, 2) and (2, 2) entries read

(2n+ 1)βL
n + hL0 + hL2(γ

L
n+1 + γLn + (βL

n)
2) + hL1β

L
n

= [p1L,n, h
L
2]p

1
L,n+1 − [p2L,n, h

L
2]− [p1L,n, h

L
1] + p1L,n + C−1

n p1L,n+1Cn,(
βL
n

)2
= γLn

(
2n− 1 + hL2(β

L
n + βL

n−1) + [p1L,n−1, h
L
2] + hL1

)
−
(
2n+ 3 + hL2(β

L
n+1 + βL

n) + [p1L,n, h
L
2] + hL1

)
γLn+1.

In this commutative setting we have

−
(
hL2β

L
n + hL1 + (2n+ 1) I

)
βL
n = hL0 + hL2

(
γLn+1 + γLn

)
− p1L,n − p1L,n+1,

(βL
n)

2 +
(
hL2(β

L
n + βL

n+1) + hL1 + (2n+ 3) I
)
γLn+1

− γLn
(
hL2(β

L
n + βL

n−1) + hL1 + (2n− 1) I
)
= 0.

In terms of

yn :=
hL0
2

+ hL2γn − p1L,n and µn := hL2β
L
n + hL1 + (2n+ 1) I,

the above equations reads as

−µnβL
n = yn + yn+1 and βL

n(yn − yn+1) = γn+1µn+1 − γnµn−1.

Now, we multiply the second equation by µn and taking into account the first one we
arrive to

−(yn + yn+1)(yn − yn+1) = γn+1µnµn+1 − γnµn−1µn,
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and so

y2n+1 − y2n = γn+1µnµn+1 − γnµnµn−1.

Hence,

y2n+1 − y20 = γn+1µnµn+1 and βL
nµn = −(yn + yn+1)

coincide to the ones presented in [9] as discrete Painlevé IV (dPIV) equation. In fact,
taking xn = µ−1

n we finally arrive to

xnxn+1 =
hL2
(
yn+1 − hL0/2 + p1L,n+1

)
y2n+1 − y20

,

yn + yn+1 =

(
hL2
)−1

xn

(
hL1 + (2n+ 1)− 1

xn

)
.
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