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Abstract

This paper mainly focuses on solving the Ulam-Hyers and Ulam—Hyers—JRassias stabil-
ity problem of the linear delay differential equation using Aboodh transform technique. In
addition, the results are extended to investigate the Mittag—Leffler—Ulam—Hyers and Mittag—
Leffler—Ulam—Hyers—JRassias stability of this differential equation. Further, appropriate
examples are illustrated to justify the efficiency of the obtained theoretical results.
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Introduction

An intriguing and celebrated talk presented by Ulam [36] in 1940 triggered the study of
solving stability problems pertaining to functional equations. Hyers [12] presented an affir-
mative partial answer to Ulam’s question concerning the stability of functional equations. In
1950, Aoki [4] and in 1978 Rassias [27] excellently proved the generalization of the Hyers
theorem involving unbounded Cauchy difference. Many investigations ensued to explore the
Ulam stability problem of the different functional and differential equations (see [8, 23-25,
32-35)]).
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The delayed dynamical systems have attracted increasing interest in recent years from
various fields of science and engineering, including sociology, biology, physics, and chem-
istry, as well as control technology, industrial robotics, communication engineering, and
so on [5, 6]. Circuits which include delayed elements have become more important
due to the increase in performance of VLSI systems. The two types of circuits which
include elements with delay are transmission lines [7] and partial element equivalent
circuits [30].

Huang et al. [11], in their research paper, it is described the first-order delay differ-
ential equation with Lipschitz condition by successive approximation method. Zada et
al. [37] discussed the nonlinear delay differential equation under fixed point technique.
In [2] further described the nonlinear delay differential equation of fractional integrable
impulses.

In [15], the authors examined the solution of Blasius differential equation with Adomian
decomposition method using Mohand transform. Rezaei et al. [29] studied the Ulam-Hyers
stability of linear differential equation for nth order via Laplace transform approach. In [3],
the authors dealt with the generalized stability results of the linear differential equation for
higher order. The various types of Ulam stabilities of linear differential equations obtained
through the Laplace transform are available in [18].

Moreover, the solution of Ulam-Hyers stability of various differential equations through
the Mahgoub transform was obtained by Jung et al. [14], Aruldass et al. [26], Deepa
et al. [9] and Murali et al. [19]. In [22], the authors provided the stability problems of
first-order linear differential equations using the method of Fourier transform and Ras-
sias et al. [28], second order linear differential equations using the method of Fourier
transform. Mohanapriya et al. [17] demonstrated the Ulam stability problems under the
method of Fourier transform for the linear differential equation. Also, Mohanapriya et al.
[16] obtained the stability results of second order differential equation through Fourier
transform method. Some effective techniques have been developed, for example, integral
transform [13, 31].

In [10], the authors investigated the linear differential equations using the Shehu
transform and Ulam stability. In [20, 21] have recently focused on the stability result
of first-order and second-order linear differential equations through Aboodh transform
method.

There are no existing previous studies on the Ulam-Hyers stability of linear delay differen-
tial equation with the Aboodh transform. Motivated and inspired by [20], this work employs
Aboodh transform to prove Ulam-Hyers and Ulam-Hyers-JRassias stability of linear delay
differential equation as follows:

V' (0) —av(—1) =B, €))
with the initial conditions
v(0) = 0.

where o and 8 are constants and v : Z — W is a continuously differentiable function of
exponential order, Z = (0, co) denotes an open interval, V¥V denotes either the real field R or
the complex field C. Moreover, we extend the results related to the Mittag-Leffler-Ulam-Hyers
and Mittag-Leffler-Ulam-Hyers-JRassias stabilities of this differential equation. In addition,
appropriate examples are presented to understand the efficiency of the obtained theoretical
results.
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Preparatory Discussions

Here, we refer to some basic concepts related with Aboodh transform that are useful to obtain
the desired results in this study. Throughout this article, VW denotes either the real field R
or the complex field C. A function v : Z — (0, 00) is of exponential order if there exist
constants A, B € R such that [v(£)| < AeB* for all £ > 0.

Definition 1 [1] The Aboodh transform is defined, for a function v(£) of exponential order,
by

1 [e.¢]
A (O} = V(o) = f/ v(0)e ?tde, V£ >0, ki <o <k,
w Jo

where the operator is A called the Aboodh transform operator, w is a variable factor of ¢ and
k1, ky are finite or infinite. If V(w) is Aboodh transform of v(£),then v(£) = A~ Y{V(w)} is
the inverse of A~! is the inverse Aboodh operator.

Definition 2 [1]If A{v(0)} = V(w) and A{g(£)} = G(w), then
Av(w) * g(@)} = A{v(O)} A{g(O)},
Av(w) * g(@)} = oV (0)G (@),

where v(w) * g(w) is defined by
¢
v(w) * g(w) = / v(s)r(€ —s)ds.
0

Lemma 1 [1] If A{v(¥)} = V(w), then
o AP (@)} = V() — 12,
o A ()} = 0®V(w) — v(O) vo
o A® (@)} = 0™V (w) — Y2, F(Ojk

Definition 3 [20] The Mittag-Leffler function of one parameter, denoted by E,, (z), is defined
as

0 k

Z
Ey(z) = ]; m,

where Re(y) > Oand z, y € C. If we put y = 1, then the above equation becomes

oo

Ei(z) = ZF(k+1) Z%:ez.

k=
The generalization of E,, (z) is defined as a function

o k

b4
E, s(z) = -,
s EO T(yk +9)
where Re(y) > 0, Re(§) > 0and z, y,8 € C.
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Definition 4 [28] Let v : Z — W be a continuously differentiable function. Suppose v(£)
satisfies

V(@) —av(t —1)—B| <&, YE>0, 2

then equation (1) is said to have Ulam-Hyers stability and the delay differential equation (1)
has a solution v, : Z — W with the condition that

() —va(O)| = Ze,¥V £ =0,
where ¢ > 0, Z is a non-negative and Ulam-Hyers stability constant.

Definition 5 [28] Let ¢ : Z — (0, 00) be an integrable function. Suppose v : Z — Wis a
continuously differentiable function. If v(¢) satisfies

V() —av(t—1) = B| < p(0)s, V=0, 3

then equation (1) is Ulam-Hyers-JRassias stable and the delay differential equation (1) has a
solution v, : Z — W with the condition that

(&) —va(O] < Z¢(0)e, ¥V £ =0,
where ¢ > 0, Z is a non-negative and Ulam-Hyers-JRassias stability constant.

Definition 6 [28] Let £, (¢) denotes Mittag-Leffler function. Let v : Z — )V be a continu-
ously differentiable function. If v(£) satisfies

v/(Z)—av(E—l)—,B <¢E,(0), V£=0, “4)

then equation (1) has Mittag-Leffler-Ulam-Hyers stability and the delay differential equation
(1) has a solution v, : Z — W with the condition that

() —va(O)| = ZeE, (£),V £ =0,

where ¢ > 0, Z is a non-negative and Mittag-Leffler-Ulam-Hyers stability constant.

Definition 7 [28] Let ¢ : T — (0, 00) is a integrable function and E,, (¢) denotes Mittag-
Leffler function. Let v : Z — W be a continuously differentiable function. If v(£) satisfies

v/(K) —av(l —1) =Bl <p)eE, (L), YI=0, 5)

then equation (1) is Mittag-Leffler-Ulam-Hyers-JRassias stable and the delay differential
equation (1) has a solution v, : Z — W with the condition that

() —va(O)] = Z¢(£)eEy(£),V £ =0,

where ¢ > 0, Z is anon-negative and Mittag-Leffler-Ulam-Hyers-JRassias stability constant.

Main Results

Now, we obtain various types of Ulam stabilities for the equation (1) via Aboodh transform
technique.

Theorem 1 The delay differential equation (1) has Ulam-Hyers stability.
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Proof Letv : Z — Wsatisfies (2), forevery ¢ > 0. Then, there exists a solutionv, : Z — W
of (1) with [v(€) — v,(£)| < Ze, for any £ > 0. Choosing a function d(¢) as follows:

d(t) =v () —av —1) — B. (©6)
Now, applying the Aboodh integral transform on both sides of (6), we obtain

Ald@O)) = A [u’(f) —av(t—1)— ,3} ,

@) =@ - "2 ¢ - L.
w w ()
=V (w) (a)—(x e—) — ﬁz
w ()
Thus,
D)+ &
V(w) = @)

—w :
<w_a ‘ )
w

If we put v, (£) = e~%(0), then v, (0) = v(0) and applying Aboodh integral transform on
Ve 1 T — W, we have

B
Valw) = —2 8)

(a) -« %)
Hence, we get
’ €7w ﬁ
A{va(ﬂ) —avg(—1) — ;8] V) (0—a*—)- 5.
1)
Then, by using (6), we obtain
A{v;(ﬁ) vt~ 1) — ,8} —0.
Since A is one-to-one operator, we have
v (£) —avg(t—1)— B =0.

Hence v, (¢) is a solution of (1). By (7) and (8), we obtain

D(w)
V(w) — Vy(w) = T o
(a) —«a %)
where R(w) = GJ(COTI‘;(U) which given r(¢) = A~! {m] = ¢~ %, These equali-

ties show that
v(l) — v, (&) =d&) xr(L).

Now, applying modulus on both sides, we have

J4
V() —va ()| = V d@)r — s)ds
0

@ Springer



115 Page6of 11 Int. J. Appl. Comput. Math (2023) 9:115

By the inequality (2), |d(£)| < e, we have

‘W@—%@ﬂffqﬂ@
0

r( — s)ds‘

4
< Ze. V>0, z:/ ’r(ﬁ—s)ds‘.
0

Therefore, the equation (1) has Ulam-Hyers stability. O
Theorem 2 The delay differential equation (1) has Mittag-Leffler-Ulam-Hyers stability.

Proof Letv : 7 — Wsatisfies (4), for every ¢ > 0. Then, there exists a solutionv, : Z — W
of (1) with [v(€) — v, (£)| < ZeE, (£), for any £ > 0. Let us consider a functiond : Z — W
as follows:

di) = v/(Z)—av(Z—l)—ﬁ. )
Now, applying the Aboodh integral transform on both sides of (9), we obtain

D) + %

If we put v, (£) = e~*%v(0), then v, (0) = v(0) and applying Aboodh integral transform on
Ve : Z — YV, we obtain

V(w) = (10)

5
Vi) = —2 . (11)

—w
(w_a - )
w

Hence, we get

w

A{v;(e) —av(—1)— /3] = V(o) (a) e Q) _F
Then, by using (9), we obtain
A{u;(e) — vt —1) — ,8} —0.
Since A is one-to-one operator, then
v (6) —avg (£ —1) — B =0.
Hence v, (€) is a solution of (1). By (10) and (11), we obtain

D(w)
V(@) — Va(@) = —
(a) -« %)
where R(w) = %70,) which given r(£) = A~! {m] = ¢! These equali-
w|lw—o

ties show that
v(l) —v, (&) =d&) xr(L).

Now, applying modulus on both sides, then we have

J4
V() —ve (D) = V d@)r — s)ds
0
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By the inequality (4), |[d(£)| < ¢E, (£), we have
4
‘v(ﬂ) _ va(ﬁ)‘ 5/ ‘d(é)‘ ‘r(ﬁ —s)ds‘
0

r(€ —s)ds|.

4
< ZeE,(£), V£ >0, z:/
0

Therefore, the equation (1) has Mittag-Leffler-Ulam-Hyers stability. O
Corollary 1 The delay differential equation (1) has Ulam-Hyers-JRassias stability.

Proof Let ¢ : T — (0, 00) be an integrable function and v : Z — W is satisfies (3), for
every ¢ > 0. Then, there exists a solution v, : Z — W of (1) with [v(£) — v, (£)| < Z¢p({)e,
for any ¢ > 0. Define a functiond : Z — W as follows:

d(0) =v'(£) —av( —1) — B. (12)
Now, applying the Aboodh integral transform on both sides of (12), we obtain
D(w) + &
V(w) = i (13)
(a) —« %)
Thus, applying Aboodh integral transform on v, : Z — WV leads to
%
Vi) = ———. (14)

(o-o5)

In view of (3), we have |d(£)| < ¢ (£)e. By using the same technique as in Theorem 1, we
can easily obtain the rest of the proof. Also, one can prove that

‘v(ﬁ) - va(E)‘ < /OZ ‘d(ﬁ)‘ ‘r(( — s)ds‘

4
< Z¢p{)e, VZZO,Z:/
0

L — s)ds‘.

Therefore, the equation (1) has Ulam-Hyers-JRassias stability. O
Corollary 2 The delay differential equation (1) has Mittag-Leffler-Ulam-Hyers-JRassias sta-
bility.

Proof Let ¢ : Z — (0, 0o) be an integrable function and v : Z — W satisfies (5), for every

& > 0. Then, there exists a solution v, : Z — Wof (1) with [v(£) — v, (O)| < Z¢d(£)eE, (L),
for any £ > 0. Now, consider a function d : Z — W defined as follows:

d(0) =v'(£) —av( —1) — B, (15)

Inview of (5), we have |d (£)| < ¢ (£)eE,, (£). By utilizing the same technique as in Theorem 2,
we can obtain remaining part of the proof. Also, one can easily prove that

[v(© = v = /Z o
0

e — s)ds’

?
< Z¢(O)sE,(0), VL =0, Z =/ ‘r(ﬁ —s)ds‘.
0

Therefore, the equation (1) has Mittag-Leffler-Ulam-Hyers-JRassias stability. O
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Examples

Here, we illustrate appropriate examples to prove the Ulam-Hyers stability of equation (1)
to justify our main results.

Example 1 Consider the following linear delay differential equation

V(@) + v —1)=0, (16)
with initial condition v(0) =0, = 1 and 8 = 0.
Letting d(¢) = n (&) +v(€ — 1) in Theorem 1. Applying the Aboodh transform, we obtain

Ald0)} = A {l/(z) e — 1)} ,

v(0) e v
D(w) = oV(w) — o V(w) —v(0) —v(w)],
e
=V(w) (a) — 7) .
Thus,
V(w) = Lw) (17)

If we put v, (£) = e~v(0), then v, (0) = v(0) and applying Aboodh integral transform on
Vg 1 Z — W as follows:

1
(o-%)
Hence v, (£) is a solution of equation (1). By (7) and (8) that
D(w)
(o= %)
Now, applying modulus on both sides, we have
¢
() —va(O)] = V d0)r( —s)ds|.
0
Let |d(£)| < ¢, we have
¢
[v(® = v = / (| |re = )ds|
0
¢
<Ze V0202 :/ Ir(e = s)ds|.
0
Therefore, the equation (16) has Ulam-Hyers stability.
Example 2 Consider the following linear delay differential equation
V() +ve—1) =2, (19)

with initial condition v(0) = 0,« = 1 and 8 = 2.

@ Springer
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Taking d(¢) = n (€)+v(€—1)—2in Theorem 1 and applying Aboodh transform, we obtain

Ald(0)) = A {u’(e) Fu—1)— 2} ,

v(0) e @ 2
oV () — T - o V() —v(0) —v(w)] — 2

e ® 2
V(w) (a) — —) -—.
w w

D(w)

Thus,

V(w) = 7j (20)
(=)
Applying Aboodh integral transform on v, : Z — W, we have
1
Va(w) = 21

By utilizing the same technique as in Theorem 1, we can obtain the rest of the proof. Also,
one can easily prove that

‘v(z) _ va(Z)‘ < /OZ ‘d(ﬁ)‘ ‘r(é _ s)ds‘

¢
< Ze, VKzO,Z:/
0

r(t— s)ds‘.

Therefore, the equation (19) has Ulam-Hyers stability.

Conclusion

In this paper, we have studied the Ulam-Hyers stability of linear delay differential equations
through Aboodh transform technique. Further, we developed Mittag-Leffler-Ulam-Hyers sta-
bility for the proposed problem. We have illustrated suitable examples to show the efficiency
of the obtained theoretical results. Delay differential equations are commonly used to model
various engineering systems with time delays. They allow for the analysis of stability results
and overall system performance in the presence of delays. This work could recommend inves-
tigating stability of delay differential equations via various integral transforms in future and
propose several physical phenomena through this novel method.
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