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In this study, the Group Transformation method is employed to simulate the laminar 

free convection problem involving a viscous incompressible fluid on a vertically 

oriented cone with a uniform heat flux on its surface. The non-dimensional governing 

partial differential equations (PDEs) and their boundary conditions are reduced to 

ordinary differential equations (ODEs) with corresponding appropriate conditions. To 

solve the resulting non-linear ODEs, the Range-Kutta shooting method is applied. The 

temperature and velocity fields are graphically presented for various parameters, such 

as the semi-vertical angle and Prandtl number. Furthermore, the local Nusselt number 

and skin fraction are analyzed numerically. 
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1. INTRODUCTION

Under the effect of gravitational force, the free convection 

flow was estimated most extensively as in most of the 

engineering and science applications as well as in nature, this 

phenomenon occurs more than other. When a fluid comes in 

contact with a heated surface, variations in temperatures 

results in buoyancy force, which furthers stimulates free 

convection. From the past few years, heat flux has been used 

widely in industrial applications, and also in the fields of 

engineering and technology. Heat Flux sensors are connected 

in control systems and are used for industrial measurement. 

Boiler fouling sensor (Fouling detection), flare monitoring and 

furnace monitoring, are a few examples of its application. 

Using heat flux can result in higher efficiency, better 

modelling and system safety. Many researchers have come up 

with a similarity solution for axisymmetric problem of laminar 

natural convection flow on a steady state vertical cone 

applying the Group Method transformation. For similarity 

analysis, Moran and Gaggioli [1] developed systematic group 

formalism. A quasi-linear hyperbolic second order PDE was 

analysed by Frydrychowicz and Singh [2] in their research to 

shows that conformal invariance of PDE’s under multi-

parameter-dimensional group transformation implied the 

conformal in-variance of its characteristics. Heat transfer and 

fluid flow characteristics were studied by Abd-El-Malek and 

Badran [3] for unsteady and steady surfaces respectively, by 

analysing the free laminar convection on a circular vertical 

cylinder applying the Group Method. Another integral method 

was developed by Singh and Queeny [4] to treat the 

combination of heat and mass transfer in porous media by 

natural convection. One-parameter analysis was developed by 

Boutros et al. [5] for group transformation to Laplace equation 

in triangular domain. In this analysis the PDE transformation 

in polynomial form with boundary conditions, of any degree 

is reduced to ODE with its corresponding conditions. A 

general method was presented by Abd-El-Malek et al. [6] to 

apply group transformation with single parameter to multi-

dimension diffusion equation. PDE with boundary condition 

is lowered to ODE with corresponding conditions by applying 

this transformation, and the problem is then solved by using 

the finite non-linear difference technique. Abd-El-Malek et al. 

[7] addressed the problem of drug diffusion via a thin

membrane using a group theoretic method. Using group

methods, in 2004 Abd-El-Malek et al. [8] analysed another

efficient technique for unstable free-convection flow on a

vertical plate, moving continuously. Ece [9] came up with

similarity solutions for temperature and velocity profiles with

boundary layer for determining the magnetic field effect on

surface heat flux and skin friction. Their analysis was also

applied to design a transformation for relating all solutions

linked to the applied mixed thermal boundary conditions. The

“magneto-elastico-viscous flow over a semi-infinite flat plate

with heat transfer was studied using the group approach by

Helal and Abd-El-Malek [10]. Kassem [11] developed a group

theoretical technique which was used to present an unstable

free convection flow from a vertical moving plate exposed to

a constant heat flux. Under the coupled mass and heat

diffusion, El-Kabeir et al. [12] investigated the thermal

radiation effects on mass and heat transfer in hydro-magnetic

natural convection flow across a vertical cone kept under

uniform temperature of wall placed in a non-uniform porous

media. For a convection chemical process, changing with time,

a group similarity transformation method was developed by

Kassem and Rashed [13]. Parmar and Timol [14] provided a

deductive group approach for mass and heat transfer for a
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natural flow of non-Newtonian fluid immersed in porous 

material across a vertical cone. Abdul-Kahar and Kandasamy 

[15] applied the Lie group transformations to illustrate 

evolution of flow over a steady boundary layer, heat 

transmission, and nano-particle volume fraction across a 

porous stretch sheet and nano-fluid for varied values. 

Applying the deductive group method, Uddin et al. [16] 

developed new similarity transformation, as a result for free 

convection flow, the similarity solutions with heat transfer 

adjacent to flat moving plate placed horizontally with 

convective boundary condition. Parmar and Timol [17] 

developed a generic technique for solving the Rayleigh issue 

for an MHD Sisko fluid using a one-parameter general group 

transformation. Using a two-parameter group, Sojoudi et al. 

[18] established an efficient solution for free unstable 

convection, non-Newtonian fluid flow across a vertical plate 

moving continuously and exposed to heat flux constantly. For 

a magnetic nano fluid, the group analysis of its free convection 

flow with chemical reaction problem was by Uddin et al. [19]. 

Pranitha et al. [20] used the Lie scaling group transformation 

to investigate the effects of Soret, varying characteristics, and 

radiation on mixed convection flow over a vertical sheet 

inserted in porous material saturated with a power-law fluid. 

The controlling PDE and boundary conditions are lowered to 

ODE with acceptable boundary conditions, in this solution for 

natural steady laminar convection flow on an isothermal 

vertical cone was analysed by applying the group method 

approach designed by Immanuel et al. [21]. Kannan et al. [22] 

using group method approaches, investigated the influence of 

viscous dissipation on free convection steady flow from a non-

isothermal vertical cone. Hossain and Paul [23] non-similarity 

and similarity solutions were designed by axisymmetric 

problems for natural convection flow on a steady state vertical 

cone. In 1992, Pop and Watanabe [24], and Lin [25] studied 

the flow on a vertical or cone frustum with non-

uniform/uniform surface heat flux and non-porous/porous 

material. Further, the Control Layer Theory was also discussed 

in study [26]. Afify et al. [27] conducted a Lie group analysis 

for a power-law fluid over a stretched surface with MHD and 

also discussed many characteristics related to it. Morgan [28] 

came up with a theory which resulted in improvements in 

standard similarity techniques. To generate similarity 

solutions, Jain et al. [29] developed a group deductive method 

that works with group transformation approach. Rashad [30] 

used the Brinkman-Forchheimer-Darcy extended model for 

studying the natural convection flow on boundary layer around 

a sphere placed in a nano-fluid filled porous media. Garoosi et 

al. [31] discovered that lowering the size of the nano particles 

improves heat transfer rate and optimal particle loading (ϕopt). 

Makulati et al. [32] examined the natural convection of an 

alumina-water nanofluid in an inclined C-shaped enclosure in 

the presence of a magnetic field. Nia et al. [33] investigated 

the Natural Convection Heat Transfer of a Nanofluid in an L-

Shape Enclosure with a Baffle. Numerical Study of MHD 

Nanofluid Natural Convection in a Baffled U-shaped 

Enclosure was created by Ma et al. [34]. Yang et al. [35] 

discovered CFD is used to quantitatively study the heat 

transfer enhancement and surface temperature non-uniformity 

improvement of spray cooling. The simulated results match 

the actual data well under verification conditions, with a 

maximum relative deviation of less than 7%, demonstrating 

the numerical reliability of the two-phase flow model based on 

the Euler-Lagrangian technique. The objective of the present 

work is to study the solution for group method of uniform 

surface heat flux from a vertical cone utilising laminar free 

convection, and the governing PDE and boundary conditions 

are reduced to an ODE with appropriate boundary conditions. 

The acquired differential equations are solved using the 

shooting technique, which has not received any attention in the 

literature. To ensure the accuracy of the numerical results, the 

current results are compared to those of Lin [25], Pop and 

Watanabe [24], which are shown to be in good agreement. 

 

 

2. MATHEMATICAL FORMULATION  

 

The present analysis, a consistent axisymmetric free 

convection of incompressible viscous flow is studied on a 

vertical cone having uniformly applied heat flux on its surface. 

It is assumed that viscous dissipation effects and pressure 

gradient along the boundary layer are negligible.  

 

 
 

Figure 1. Physical model and co-ordinate system 

 
The co-ordinate system is as shown in Figure 1, x signifying 

along the cone surface from the apex (x=0) and y signifying 

the distance normal to a cone surface. Temperature T'w on a 

cone surface is kept same, where temperature value is uniform, 

far from the temperature of cone surface. With the thermal 

buoyancy effect, an upward flow is created for T'w>T'∞. Other 

than the fluctuations in the densities in buoyancy force, where 

fluid properties are kept constant. For energy, momentum and 

continuity, their governing equations of boundary layer with 

Boussinesq approximations are as follows: 

 

( ) ( ) 0x yru rv+ =  (1) 

 
' '( )cosx y yyuu vu g T T u  + = − +  (2) 

 
' ' '

x y yyuT vT T+ =  (3) 

 

The basic and restrictive conditions are as follows: 
 

'

' '

'

( )
( ,0) ( ,0) 0, 0

(0, ) 0, (0, ) 0

( , ) 0, ( , )

w
y

q x
u x v x T at y

k

u y T T at x

u x T x T at y



−
= = = =

=  = =

 =  = →

 
(4) 
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Local Nusselt number Nux and Local skin friction τx are 

given by: 

( )

( )

0

'

' ' 0

x y y

x y
y

w

u

x
Nu T

T T

 
=

=


=

= −
−

(4a) 

Utilization of enclosed dimensionless quantities: 

1

5

1

' '2 1 5

5 5

4

2

, ( ) , , where sin

( )( )
( ) , ( ) ,

/

, Pr

l

l

l l

l

r

r

r r

r

x y r
x y G r r x

l l l

T T Gul vl
u G v G T

ql k

g ql
G

k



 

 



  

− −
 

= = = =

−
= = =

= =

(5) 

Using (5), the reduction of Eqns. (1) to (3) yields the 

dimensionless form as follows: 

( ) ( ) 0
x y

r u r v 

   + = (6) 

cos
x y y y

u u v u T u   

    + = + (7) 

1

Prx y y y
u T v T T   

 + = (8) 

Given the following boundary conditions: 

( ,0) 0, ( ,0) 0, 1 0

(0, ) 0, (0, ) 0 0

( , ) 0, ( , ) 0

y
u x v x T at y

u y T y at x

u x T x as y



    

   

   

= = = − =

= = =

 =  = →

(9) 

From Eq. (4a), the local dimensionless local Nusselt number 

𝑁𝑢𝑥∗ and skin-friction 𝜏𝑥∗ becomes:

( )

( ) *

3/5

0

1/5

0
0

lx y y

l

x y y
y

Gr u

x Gr
Nu T

T

  


 





=



=
=

=

= −
(9a) 

Similarity variables are follows: 

( , )

( , ) ( , )

x r M x y

T x y x T x y

    

    

=

=
(9b) 

In order to reduce the number of equations from 3 to 2, we 

introduce the stream function such that: 

1 1
y x

u and v
r r
  

 

 

−
= = (9c) 

Condition (6) is satisfied via a stream function, and (7) and 

(8) are switched to accompanying conditions.

1 1
cos

y y x y y y y y
x

Tr
r r

            





 

 
− = + 

 
(10) 

( )1 1

Pry x x y y y
T T T

r
      

− = (11) 

Boundary condition (9) communicated as: 

0 0 0
lim 0 lim 0 lim 1

lim 0 lim 0

y x yy y y

yy y

T

T

 



  
  


 

→ → →

→ →

= = = −

= =
(12) 

3. GROUP FORMULATION OF THE PROBLEM

Method of solution depend on the application of a one 

parameter group transformation to the PDE (10) to (11). Under 

this transformation the two independent variables will be 

reduced by one and the differential Eqns. (10) and (11) 

transform into ODE in only one independent variable, which 

is the similarity variable: ℎ: 𝑃 = 𝐶𝑝(𝑏)𝑃 + 𝑘𝑝(𝑏).

3.1 The group systematic formulation 

The procedure is initiated with the group G, a class of one-

parameter ‘b’ of the form: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

x x y y

r r

T T

x C b x k b y C b y k b

C b k b r C b r k b

T C b T k b

  

   

 

 



= + = +


= + = + 


= + 

(13) 

( )
( ) , ,

s

ii i

s

i jij ij

CP P
C

CP P i j x y
C C

=


= =


(14) 

3.2 Transformation 

To transform the differential equation, transformation of 

derivatives is obtained from G via chain rule operations. 

P stands for ω, r*, T. 

Under the (13) and (14), Eqns. (10) and (11) are changed 

invariantly, becomes: 

1

1 1
cos

1 1
( ) cos

y y x yy yyy

x

y y x y y y y y
x

rT
r r

E a r T
r r

     

            





 

 
− − − = 

 

  
− − −  

  

(15) 

( )2

1 1

Pr

1 1
( )

Pr

x y yyy x

y x x y y y

T T T
r

E a T T T
r

 

      

 − − 

 
= − − 

 

(16) 

where, E1(a), E2(a) are functions or Constant. 
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( )
2

2

12

1

1 1 1

cos ( )
( )

1 1
( ) cos

T

y x y y x y yr x y

r T

y y yy

y y x y y y y y
x

C C
r

r r rC C C

C
r C C T A a

C

V a Tr
r r





   

 

     

        



  

       





  





 

 
− − 

 

− − +

  
= − − −  

  

 
(17) 

 

( )

( )

22

2

1 1
( )

Pr ( )

1 1
( )

Pr

T T

y x x y y yr x y y

y x x y y y

C C C
T T T A a

rC C C C

V a T T T
r



 

 

      

     





− − +

 
= − − 

 

 
(18) 

 

where, 

 

( )

( )

2

1 2
1

2 2

2
2

1

cos cos

1 ( ) 1
 A ( )

( )

2 ( ) 1

( )

( )( cos )

r r

m
r

y x y x y yr r x y
n

m
r

y xx y
n

r r r r

k C
a

n rC r C C C

k C
r

n rC r C C C

C k r k C T C k





 

   







        



    

   




=







=



 − 
= −     

 − 
−      

− + +



  
(19) 

 

( )

2

1

1
( )

1

n
r

r
n

T

y x x yr x y

k
A a

n C r

C C
T T

rC C C



 





     




=



 − 
=      

−


 (20) 

 

Invariance of Eqns. (17) and (18) ⇒ 𝐴1(𝑏) = 0 = 𝐴2(𝑏). 
By substituting, the above equations are satisfied. 

 

0r T yk k k
 

= = =  (21) 

 

( )

2

132

( )
( )

( )

r T

r x y y
y

C C C
C C V b

C C C CC

  


   


= = = =  (22) 

 

( )
22
( )

T T

r x y
y

C C C
V b

C C C C



  


= =
 (23) 

 

These yields: 

 

( )
( )

2

2

1
, ,x y r y

y

C C C C C

C

   



= = =  
(24) 

 

Boundary Eqns. (19) and (20) are also invariant: 

 

0, 1r T Tk k C


= = =  (25) 

 

Finally, a limited, exhaustive G that is constantly changing, 

(17) and (18) conditions and the most extreme conditions (19) 

and (20) We get G from the above conditions. 
 

( )

2

2

( )y x

y

y

y

x C x k

y C y

r
G r

C

C k

T T

 
















= +


=




= =


 = +

 =

 (26) 

 

3.3 Group transformation of the boundary layer flow 

equations 

 

Our aim is to make use of group methods ro represent the 

problem in the form of an ODE in a single independent 

variable. Then we have to proceed in our analysis to obtain a 

complete set of absolute invariants.  

If 𝜐 = 𝜐(𝑥∗, 𝑦∗)  is the absolute invariants of the 

independent variables x* and y*, then: 

 

( , , , , , ) ( ( , )) 1,2,3j jm x y r T M x y j      = =  (27) 

 

In group theory, using central assumptions is that if function 

mj (x*, y*, ω, ϕ, r*, T) satisfies the even derivative state of the 

first prompt, then one parameter group is levelled and 

unchanging. It states that: 

 

( )
5

1

0

0, , , , ,

( ) ( )
i i

i i i i

i i

w w

i i

m
w w x y r T

w

C k
where b b

b b

  

 

  

=


+ = =



 
= =

 


 (28) 

 

Since 𝑘𝑟
∗
= 𝑘𝑇 = 𝑘𝑦

∗
= 0. 

From Eq. (23) and using (22) we get: 

 

0 0 0

2 4 5

0

3 2 3 4 5

( ) 0, ( ) 0, ( ) 0

( ) 0 ( ) 0

y r Tk k k
b b b

b b b

k
b i e

b



  

    



  
= = = = = =
  


= = = = = =



 

 

By satisfies the first order linear PDE, υ(x*, y*) is an 

invariant by Eq. (22): 

 

1 1 2( ) 0x y
x y

 
   

 

 
+ + =

 
 (29) 

 

From the above equation we get: 
 

0
x





=


 (30) 

 

Therefore equation: 
 

y =  (31) 

 

Similarly, not changing the analysis of ω, r*, T dependent 

variables: 
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( , )x y   = Г1(x*)M( ), 

( , )r x y   = Г2(x*)E( ), 

( , )T x y  =T(ʋ) 

(32) 

 

where, Г1(x*), Г2(x*), M( ), & E( ) are functions that are 

computed. Since r*(x*, y*) is independent of y*: 
 

0( , )r x y r   =  Г2(x*) (33) 

 

 

4. THE ODE REDUCTION 
 

As the general analysis proceeds, the established form of the 

dependent and independent absolute invariant is used to obtain 

ODEs. Generally, the absolute invariant υ(x*, y*) has the form 

given in condition (31). 

Substitute Eq. (32) into Eq. (17) and after dividing Г1(x*), 

we get: 
 

( )
2

2

1 1 1
(17)

cos 0

y x y y x x y y

y y y

r
r r r

Tr

    

 

       

  



  



 − −

− − =

 

2''' '' '1 1 1 2

2

0 2 0 2 0 2

0 2 3

1

1 1

cos 0

M MM M
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(34) 

 

If we substitute the conditions (26) to (28) into condition 

(13), we get: 
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(35) 
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The above are random coefficients. 

By utilizing above documentations of condition (36), the 

conditions (34) and (35) lessens to: 

 
2''' '' '
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There are corresponding boundary conditions. 
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Case (i) use values, 
1 2 3

3 1
, & 1

4 4
C C C= = = in Eqns. (37) 

and (38) we get: 
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Case (ii) put
1 2 3

7 5
, & 1

4 4
C C C= = = in Eqns. (37) and 

(38) we obtain: 
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With boundary conditions: 
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Using Eqns. 9(b) and 9(c) into Eq. 9(a), the local 

dimensionless Nusselt number and skin friction becomes: 
 

'
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5. RESULTS AND DISCUSSION 
 

Eqns. (40) to (43) with boundary conditions (44) were 

solved by numerically using the fourth-order R-K method. The 

velocity and temperature profiles of the cone for Pr=0.72 are 

displayed in Figure 2 and the numerical values of local skin-

friction 𝜏𝑥∗ , temperature T, for different values of prandtl 

number are shown in Table1 are compared with similarity 

solution of Lin [25] using suitable transformation. It is 

observed that the results are in good agreement with each other. 

It is also noticed that the present result agrees well with those 

of Lin [25] and Pop and Watanabe [24] (as pointed out in Table 

1). 
 

Table 1. Skin-friction and temperature values are Comparison with Lin [25] 
 

 Local skin friction Temperature 

 Lin result [25] Present result Lin result [25] Present result 

Pr M’’(0) (7/4) M’’(0) 𝜏𝑥∗ -T(0) -(7/4) T(0) T 

0.72 0.87830 1.2250 1.2154 1.53213 1.7896 1.7783 

1 0.78336 1.0799 1.0735 1.39071 1.6324 1.6272 

2 0.59251 0.8303 0.8295 1.16102 1.3532 1.3576 

4 0.46507 0.6573 0.6330 0.97802 1.1490 1.1501 

6 0.39700 0.5562 0.5499 0.88910 1.0501 1.0402 

8 0.34963 0.4905 0.4849 0.83251 0.9806 0.9764 

10 0.32645 0.4495 0.4459 0.78910 0.9291 0.9280 

100 0.13071 0.1839 0.1812 0.49013 0.5572 0.5404 
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Figure 2. Velocity and temperature profiles comparison 

Figure 3. Different values of  on velocity profiles 

Figure 4. Different values of  on temperature profiles 

Figure 5. Different Pr. values on velocity profiles 

Figure 6. Different Pr. values on temperature profiles 

Temperate and Velocity profile of a cone for Pr=0.72 is 

graphically represented in Figure 2. The temperature and 

velocity profiles shown in Figures 3-6 with different  and Pr 

parameters. For Pr=0.71, and varying values of , the velocity 

profile is shown in Figure 3. As  increases near a cone’s apex, 

the momentum force on a cone surface decreases. Therefore, 

differences in steady state and temporal maximum velocity 

value lowers as  values of a cone (semi-vertical angle) 

increase. Also, with decreasing velocity, rises. The boundary 

layer momentum becomes thick; hence it increases the time 

required to acquire a steady state for rising value of . For Pr 

=0.71, and varying values of , temperature profiles are given 

in Figure 4. Further thickness and temperature of boundary 

layer also increases. 

At ϕ=10°, different Pr values, the temperature and velocity 

profiles are represented in Figures 5 and 6. Viscosity increases 

and thermal conductivity decreases, when Pr increases. From 

the figure, it can be concluded that with higher Pr, variations 

in the maximum and steady-state value over time decreased 

and local skin-friction and Nusselt number profiles are against 

the  angle of a cone for different Pr values. 

6. CONCLUSIONS

The group technique was used to present numerical 

solutions of steady laminar free convection on a vertical cone 

with a uniform heat flux imposed on a surface. Using R-K 

method, the dimensionless boundary layer equation is solved. 

Following conclusions were made: 

·If the parameters  and Pr are increased, the velocity will

decrease. 

·The temperature rises and decreasing Pr with increasing

value. 

·Increasing , increases the impulse boundary layer.

· Decreasing  and increasing Pr, thins the thermal

boundary layer. 

·The cause of  on local Nusselt number 𝑁𝑢𝑥∗ and local

skin friction 𝜏𝑥∗ is low approximately equal to the cone’s apex

and slowly increases as the distance from apex increases. 

· When Pr or φ value is reduced, local skin-

frictionsincreases. 

·Effect of Increasing  or decreasing Pr, local Nusselt

numbers reduce. 
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