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Self-interacting dipolar boson stars and their dynamics
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We construct and dynamically evolve dipolar, self-interacting scalar boson stars in a model with
sextic (4+ quartic) self-interactions. The domain of existence of such dipolar Q-stars has a similar

structure to that of the fundamental monopolar stars of the same model.

For the latter it is

structured in a Newtonian plus a relativistic branch, wherein perturbatively stable solutions exist,
connected by a middle unstable branch. Our evolutions support similar dynamical properties of
the dipolar @-stars that: 1) in the Newtonian and relativistic branches are dynamically robust over
time scales longer than those for which dipolar stars without self-interactions are seen to decays;
2) in the middle branch migrate to either the Newtonian or the relativistic branch; 3) beyond the
relativistic branch decay to black holes. Overall, these results strengthen the observation, seen in
other contexts, that self-interactions can mitigate dynamical instabilities of scalar boson star models.

I. INTRODUCTION

As it is by now well-understood, Einstein’s gravity min-
imally coupled to massive scalar fields gives rise to macro-
scopic stable configurations named boson stars (BSs) [I-
6] — see [7, §] for reviews. This class of compact ob-
jects comprises a large group of different models, many
of which proven to be dynamically robust — see [9] for a
review and [I0H22] for specific dynamical analyses, also
for the case of the cousin vector BS (aka Proca) model.

Among the models of BSs are those comprising a
scalar potential free of self-interactions, namely “mini-
BSs” [23], and those possessing self-interactions, such
as “Q-stars” [24H32]. Due to their dynamical robust-
ness, a class of those have shown to be good black
hole (BH) mimickers, in the sense, for instance, of be-
ing able to match the predictions made for the merger of
two BHs and used to interpret real gravitational-wave sig-
nals [33} [34], as well as mimicking the (effective) shadow
of a BH [35H37]. Their role as BHs mimickers in a va-
riety of models [38], and their appeal as candidates for
some of the dark matter in our Universe [39], in particular
within the fuzzy dark matter paradigm [40], 41], support
their astrophysical interest. Moreover, recent advances
in gravitational-wave astronomy, e.g. the increasing pre-
cision of gravitational wave detectors [42H44], place us
on the verge of discovering new and more accurate re-
sults capable of distinguishing the nature and behavior
of these compact objects, which has led to the effort of
building up the first waveform catalog of signals sourced
by exotic compact objects, namely (vector) BSs [45].

Establishing the dynamical robustness of different
models of BSs forms an essential theoretical basis for
their possible occurrence in nature and therefore for their
use in the analysis of experimental data. In this re-
spect, it has been recently observed that scalar field self-
interactions can mitigate the instability, or quench it al-
together, of some excited BSs solutions, namely rotat-

ing [I'7, [46], or radially excited [20, 2I]. It is therefore
natural to ask whether a similar strengthening of dy-
namical robustness can be observed in other models of
excited BSs by virtue of self-interactions.

A less explored model of excited BSs, in particular
concerning their dynamics, is the model of multipolar
BSs [47]. These are static (non-rotating) BSs but which
have a multipolar morphology in their energy distribu-
tion, like hydrogen orbitals have a multipolar distribution
for their probability density, with the spherical orbitals
being a mere special case — the Ns orbitals, N € N. Sim-
ilarly, within the multipolar family, spherical BSs are a
mere special case, containing both the very fundamental
stars and also the radially excited states. The simplest
non-spherical multipolar BSs are the dipolar ones [4§],
akin to p-orbitals. These are two-center solitons, with a
Zs-even metric, defining an equatorial plane above/below
which a scalar lump is found, but with a Zs-odd scalar
field — hence a dipole. They can also be interpreted as
two monopolar BSs in equilibrium, with their gravita-
tional attraction balanced by their scalar repulsion, as a
result of the m phase difference between the north and
south hemispheres [11]. Dipolar BSs can also be made to
spin and, in that case, be in equilibrium with one [49] or
two [50] (also balanced) spinning BHs.

A study of the stability of dipolar BSs was reported
in [I5], wherein the (few) cases studied were shown to
decay to the spherical fundamental stars. Here, we fur-
ther explore the dynamical stability of dipolar stars, via
non-linear dynamical evolutions, focusing on the effect
of adding self-interactions. Specifically, we construct
dipolar Q-stars in a model with sextic (+ quartic) self-
interactions. We show their domain of existence resem-
bles that seen for the monopolar stars of the same model.
Moreover, we provide evidence from our numerical evolu-
tions that the self-interactions can increase the dynamical
robustness of the dipolar stars, as in the case of rotating
BSs and radially excited spherical BSs, and that the sta-



bility of the dipolar solutions bears a resemblance with
that observed for the perturbative stability of monopolar
stars of the same model.

This paper is organized as follows. In Section [}
we discuss equilibrium BSs, reviewing both fundamen-
tal spherical and excited dipolar BSs. As a novel result,
we construct dipolar @Q-stars with sextic (+ quartic) self-
interactions, briefly discussing their main properties and
also discussing the stability of the monopolar stars in the
same model. In Section [[TI} we cover the mathematical
formalism and the computational framework with which
we performed the numerical simulations. We show and
discuss our results for the evolutions in Section[[V] where
we evaluate the dynamical robustness of the dipolar Q-
stars. We close with a discussion and comments in Sec-
tion [V We use natural units ¢ = G = 1 throughout.

II. DIPOLAR @Q-STARS

The action S for Einstein’s gravity minimally coupled
to a complex (massive) scalar field ¢ reads

Sz/H%ww[é;—f%mwm—Uum% )

The corresponding equations of motion are

Rab — %gabR = 87TTab , (2)
ou
O¢ = , 3

where the stress-energy tensor reads

Tab = va¢*vb¢ + vb¢*va¢
— gab [Ved™ Vo + U (|6]*)] (4)

and 0 = V%V,.

The action (1)) is invariant under the global U (1) trans-
formation ¢ — e’®¢, where « is a constant, which implies
the existence of a conserved current, j* = —i(¢*0% —
@0%¢*), with V5% = 0. Therefore, integrating the time-
like component of this 4-current on a spacelike slice ¥
results in a conserved quantity — the Noether charge:

Q:Lf, (5)

which corresponds to the number of scalar particles
(upon quantization).

Together, equations and compose the Einstein-
Klein-Gordon (EKG) system of equations. One family of
solutions of these equations are self-gravitating solitons,
or BSs, of which we now discuss specific members.

BSs in the free-field model,

U (I¢1*) = n?lof (6)

are known as mini-BSs. Their fundamental states cor-
respond to (nodeless) spherically-symmetric scalar field
distributions,

o (7", t) = oo (7") et ’ (7)

where w is the oscillation frequency and ¢ (r) ~

e TV HI—w? /7 the real, radially asymptotic profile func-
tion. These possess an established formation mechanism
[51] while fulfilling also the criteria of dynamical stabil-
ity [23,52] in one branch of the domain of existence, that
connects the Newtonian limit w/p — 1 to the maximal
mass solution — see Fig. [1| (top panel).
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FIG. 1. Mini-BSs (top panel) and Q-stars (bottom panel, for
oo = 0.1,0.2) for both spherical and dipolar BSs. Spherical
mini-BSs are perturbatively stable between the maximal fre-
quency w/p = 1 and the maximal mass at (w/u, M p, ¢o(0)) =
(0.853,0.633,0.192). Spherical Q-stars are perturbatively sta-
ble between the maximal frequency w/p = 1 and the local
maximum of the mass at (for o9 = 0.2) (w/p, M p, ¢o(0)) =
(0.923,0.426,0.031) (Newtonian stable branch) and between
the local minimum of the mass at (w/p, Mu,po(0)) =
(0.802,0.388,0.096) and the global maximum of the mass
at (w/p, Mu, ¢o(0)) = (0.63,0.435,0.159) (relativistic stable
branch). The colour bar gives ¢o(0) for spherical BSs.



On the other hand, BSs whose scalar field obeys a
sextic (+ quartic) self-interacting scalar potential are
dubbed @Q-stars, since for this potential there are flat
spacetime solutions called @-balls [28]. Here we shall
consider a specific model within this sextic class of po-
tentials, namely

U (I6P) = 1 [P [1

where the parameter o2 determines the compactness of
the star. In this model, Q-stars may become very com-
pact and with an almost step-function decay of the scalar
field and the energy density — c¢f. Fig. @l Generically,
spherical, fundamental Q-stars also possess a known for-
mation [53] and stability [54], [55] mechanisms. Their do-
main of existence is now more involved — Fig. [1] (bot-
tom panel). As o decreases and self-interactions become
stronger, the spiral shape seen in Fig. [1| (top panel) shifts
into the “duck-like” curve seen in Fig. [1| (bottom panel,
inset and main), possessing 3 extrema before the mini-
mum frequency is attained. Then, there are two discon-
nected stable branches within a perturbative analysis: a
Newtonian stable branch, connecting the maximum al-
lowed frequency to the first maximum of the ADM mass;
and a relativistic stable branch, connecting a local min-
imum of the mass to the second (global, for the plotted
00) maximum of the mass. In between these branches,
one finds a middle unstable branch, and beyond (for
smaller frequencies) the relativistic branch one finds (at
least) another branch of very compact unstable solutions.
In Fig. 2| we show the result of the corresponding per-
turbative analysis, establishing the above conclusion for
gg = 0.2.
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FIG. 2. Spherical perturbations with frequency §2 of the spheri-
cal Q-stars in Fig.|1| (bottom, inset). 02 changes sign precisely
at the extremes of the mass. Solid (dashed) curves correspond
to Q2 > 0 (Q® < 0), wherein the stars are perturbatively
stable (unstable) against such spherical perturbations. The
setup and a detailed description of these perturbations will
be presented elsewhere [50].

In both models above, there are are also excited BSs,
besides the spherical fundamental ones, which occur in
various guises. Here, we are interested in the static, non-
spherical sector, 7.e. multipolar BSs, introduced in [47] in

the model without self-interactions. We shall focus our
attention on the dipolar stars — see Fig. [1| (top and bot-
tom panels) for the domain existence of dipolar mini-BS
and dipolar Q-stars, compared to the one of the spherical
stars in the same modeﬂ (see [60] for an early discussion
of dipolar BSs). Dipolar stars are described by an ax-
isymmetric scalar field

& (t,r,0) = ¢o (r,0) e ", (9)

which is odd parity, i.e. ¢g (r,60) = —¢o (r,m —0). To
construct the odd-parity static BSs with the poten-
tial , which were not discussed previously in the lit-
erature, the dipolar Q-stars, we use a line-element with
two commuting Killing vector fields, £ and 7, with £ = 0;
1 = 0, in a system of adapted coordinates. We consider
the generic axisymmetric ansatz

d82 _ _eQFO(T',O)dtQ + e2F1(7',9) (dT‘Q + ,’,2d92)

+ e2F2 (1952 in? gdp? | (10)
in terms of the three metric functions F{ ; 2. The equilib-
rium dipolar solutions are constructed by solving numer-
ically the EKG equations, following [48] — see also [61]
for details — with specified boundary conditions that we
now describe.

At the origin, spatial infinity and on the axis, the met-
ric functions and the scalar field profile obey

O0rFo,1.2]r=0 = Orpolr=0 =0,
FO,1,2|T:<>O = ¢O|T‘:OO =0 s
090,12

0=0,m — a9¢0|9:0,7r =0.

Additionally, in accordance to the parity discussed above,
the metric functions are invariant w.r.t. a reflection along
the equatorial plane, § = 7/2, while the scalar field
changes sign. This implies the equatorial boundary con-
ditions

0pF0,1,29=rs2 = Polo=r/> = 0 .

The dipolar BSs are static, globally regular and with-
out an event horizon or conical singularities, and asymp-
totically flat. They possess two global charges. The first
one is the ADM mass M, which can be obtained from
the respective Komar expression [62],

1
7/ Rabnaé-bdva (11)
T Js

where n® is unit normal to ¥ and dV is the natural vol-
ume element on YX. The ADM mass can also be read off

I Axisymmetric “chains” (with more than two centres) of BSs have
also been considered in the literature, with [57, [58] or without
self-interactions [59].
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FIG. 3. Dipolar Q-stars domain of existence. (Left panel) ADM mass (M)/Noether charge (Q) vs. scalar field frequency (w)
diagram. The inset shows the behavior for the region close to the maximal frequency. Regions where the My > Qu? are
expected to be energetically unstable against fission. This occurs near the local minimum of the mass. (Right panel) Proper
distance L between the two components, or poles, of each star as a function of the scalar field frequency w. Notice the (non-
monotonic) trend that the stars become closer when moving from the Newtonian to the relativistic branch. The 12 highlighted
points represent the solutions dynamically evolved below. Solution 12 is higher up on the right panel, outside the plot range.

from the asymptotic sub-leading behavior of the metric
function gy

There is also a conserved Noether charge, computed

from as
Q= 47r/ dr/ df r?sin @ efor2Eitiz62 - (13)
0 0

The energy and Noether charge densities of the differ-
ent solutions are localized in two distinct components,
named poles, located symmetrically on the z-axis and at
r = r.. The proper distance between these components
is defined as,

L= 2/ dr eF1(m0) (14)
0

We now, and for the remainder of this paper, focus on
dipolar Q-stars with op = 0.05, an even smaller value
than those in Fig. I} making the stars even more com-
pact. In Fig. [3| we give an overview of their domain of
existence (left panel), showing both the ADM mass and
the Noether charge vs. the scalar field frequency. One
observes a similar structure as in other self-interacting
BS models, including the monopolar @Q-stars described
above (e.g. [46] [63H65]). Starting from the Newtonian
limit, w/p — 1, wherein BSs typically become very dilute
and thus Newtonian, a first (local) maximum of the mass
occurs at w/p = 0.994. The solutions between these two
frequencies are the Newtonian branch. Then the mass
decreases to a local minimum at w/p = 0.907, whence
it starts increasing again, reaching a global maximum at

w/p = 0.1522. Within these two frequencies is the rela-
tivistic branch and within the Newtonian and relativistic
branch we have the middle branch. The minimum fre-
quency attained, which is below that delimiting the rela-
tivistic branch, occurs for w/p = 0.1520. The right panel
of Fig.[3|shows how the proper distance between the two
centers varies along the domain of existence.

TABLE 1. Selected dipolar Q-stars.

Sol. wip  go(r=rs) puM  p*Q nL

1(2nd) 01900  0.0442  4.149 12910  2.261
2 0.1522  0.0376 6.363 26272  5.277
3 0.1600  0.0369 6.249 25555  6.873
4 0.1900  0.0365  4.880 17.774  8.624
5 0.2500  0.0364 2799 7.996  8.795
6 0.2700  0.0365 2333 6.226  8.550
7 0.7000  0.0372  0.161  0.178  5.554
8 0.8500  0.0319  0.099  0.097  6.449
9 0.8900  0.0286  0.094  0.090  7.108
10 0.9800  0.0097  0.153 0.152  13.741
11 0.9900  0.0038 0223 0221  20.731
12 09970  0.0008  0.185  0.185  42.463

Within the domain of existence we have selected 12
solutions, highlighted in Fig. [3] with their physical prop-
erties detailed in Table [] that shall be considered in
the dynamical evolutions below. The horizontal lines
in the table separate the different branches defined
above. To gain some insight into these solutions, Fig. []
shows the morphology of two illustrative dipolar Q)-stars.
One can appreciate how compact the centers become
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FIG. 4. Two illustrative dipolar Q-stars (Solution 6 (top) and 12 (bottom) in Table[]). (Left panels) 2-dimensional slice of the
scalar field density |¢|2, on the y = 0 plane. (Right panel) Scalar field amplitude ¢o along the z-axis. For the top solution, one
observes the almost step-function profile, in contrast with mini-BSs, which have a less sharp spatial decay, which is approached
here in the Newtonian branch, as illustrated by the bottom solution. These equilibrium solutions are the initial data for the

dynamical evolutions in this paper.

in the relativistic branch, as opposed to the Newtonian
branch. The scalar field profiles along the z-axis are also
shown for seven of the chosen solutions in Fig. [f] Of
the 12 selected solutions, those with smaller frequen-
cies, w/p = {0.1522, 0.16, 0.19, 0.25, 0.27}, comprise
highly compact and localised distributions of the scalar
field. However, as we increase the scalar field frequency,
the solutions become less compact and more dispersed
across space, with each pole acquiring a similar shape to
monopolar mini-BSs [I]. The latter trend is quite natu-
ral; as w/p — 1, the scalar field amplitude decreases and
eventually vanishes. In the scalar potential , higher
power terms of ¢ decrease faster with w/p — 1, meaning
that they are suppressed in the Newtonian limit, making
@-stars similar to mini-BSs in that limit.

III. NUMERICAL FRAMEWORK

To perform numerical evolutions we employ the stan-
dard 341 decomposition [66}67]. The metric line element
is written in the form

ds? = —a2dt® + Vij (dxi + 5idt) (dxj + ﬂjdt) , (15)

where « is the lapse function, 8% is the shift vector, and
7i; is the induced metric in each spatial foliation. We
also introduce the extrinsic curvature

1
Kij= =5 (0= Ls) v (16)
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FIG. 5. z-profile of illustrative dipolar @Q-stars. Real part of
the scalar field along the z-axis, for solutions 1, 6, 8, 10, 11
and 12.

and, analogously, the “canonical momentum” of the com-
plex scalar field ¢

1
Ky= —5- (0= Ls) . (17)

where L is the Lie derivative. In this form, the full EKG
system of equations reads

Ovij = =20k + Lavij (18)
625Kij = —DiajOé + « (R” — QKikKJI»C + KKij)
+ LsKij +4ma[(S — p)vij — 28i5] ,  (19)
Op = —2aKy + Lo, (20)
1
8tK¢ = Oz{KK¢ - i’yljDiaj(z)
1 9] |¢]*
— 1—-8—+12—
+ 2” ¢< o + op }
1
- 5’}/”(91‘058]@5 + EﬁK(ﬁ . (21)

This system of equations is subjected to the set of con-
straints
H=R+K?*—-K;;K" =167mp, (22)
M; = D;K — D’K;; = —8nj; , (23)
where D; denotes the covariant derivative with respect
to the 3-metric «;;. The source terms are given by
— a, b
p= Tabn n-,
ji = = Tapn®
Sij = 'Yai’ybjTab ,
S= WijSij )
where p, j;, S;; and S denote the energy density, mo-
mentum density, stress, and the trace of the stress as

observed by a normal observer (moving along the normal
vector n®), respectively.

For numerical evolutions, the equations above are
rewritten in the strongly hyperbolic BSSN (Baumgarte-
Shapiro-Shibata-Nakamura) scheme [68] [69], and numer-
ically evolved using the EINsTEINToOLKIT (ET) [70] [71]
infrastructure. Our numerical implementation uses the
BSSN evolution system as detailed in Ref. [T2]. The
spacetime metric and scalar field variables are evolved
in time using the LEANBSSNMOL and SCALAREVOLVE
Cactus thorns [73]. We use the CARPET [74] li-
brary for mesh refinement capabilities and AHFIND-
ERDIRECT [75], [76] for finding apparent horizons.

IV. RESULTS

With the framework outlined in the previous section,
we evolve the dipolar Q-stars using the equilibrium solu-
tions described in Sec. [[Il as initial data. The numerical
evolutions are performed in units where pogv/8m = 1.
For the solutions considered herein, we have fixed o¢ =
0.05. All solutions were evolved numerically in a grid
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FIG. 6.

Grid for dipolar Q-stars evolutions.
zoomed out so that the three refinement levels, with res-
olutions of, from the innermost to the outermost, hy =
{0.25, 0.50, 1.00}, can be clearly viewed. Here X = zu and
Z = zp.

The grid is

with three refinement levels — see Fig. [6] for a typical con-
figuration. The grid has a rectangular shape on the two
innermost levels and an overall size of xu, yu € [0, +128]
and zp € [—128, +128]. We impose symmetry on the
x and y-axis given that the solutions are axisymmetric
and the dipole is oriented along the z-axis. For all but
solution 12, the innermost level has a grid spacing of
hp = 0.25. For solution 12, given its large radius and



our numerical limitations, we increased the grid spacing
in the innermost level to hu = 0.5.

In order to verify the agreement between the numerical
and the analytical evolutions (i.e. for a star in equilib-
rium, the phase evolution is dictated by Eq. @), we have
compared the numerical output of the oscillation of the
real part of the scalar field, ¢r, with its analytical coun-
terpart — ¢o(rex) cos(wt), where rex is the distance from
the origin (along the axis) at which the numerical out-
put is extracted. We have observed complete agreement
between the numerical and the analytical data for all 12
solutions. We illustrate this analysis for solution 6 in

Fig.[1
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FIG. 7. Dipolar Q-star solution 6 with w/u = 0.27. Evolution
of the real part of ¢g at rexpr = 10. The analytical expected
value — 0.0365 cos (0.27¢) — is illustrated as the red line while
the numerical evolution is shown by the blue points.

A. Colapsing dipoles beyond the relativistic branch

Let us start with the most compact dipoles, in the
sense of the right panel of Fig. [3] We observe that solu-
tions 1 and 2, placed to the left and on the absolute max-
imum of the mass, respectively — see Fig. [3| (left panel) —
undergo gravitational collapse shortly after the beginning
of the simulation. This can be seen in Fig. 8] where both
the maximum of the scalar field and the minimum of the
lapse function are plotted as functions of time. Typically,
the “collapse of the lapse” (where the lapse function, re-
sponsible for quantifying the proper time between each
spacelike slice, falls exponentially to zero) signals the for-
mation of an apparent horizon. In Fig. [§] we can indeed
see that when the lapse function drops abruptly, so does
the maximum of the scalar field, indicating that matter is
being swallowed by the newly formed BH. This result is
in accordance with what would occur in the correspond-
ing region of the domain of existence for the fundamental
monopolar @-stars of the model. Solution 1 is beyond the
relativistic branch and solution 2 sits on its edge. The in-
stabilities of solutions beyond the relativistic branch have
been observed in other models of self-interacting bosonic
stars and appear to be a general feature — see e.g. [40].
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FIG. 8. Collapsing dipolar Q-stars, Solutions 1 and 2. (Top
panel) Time evolution of the maximum value of the scalar
field. It remains approximately constant up until the instant
of collapse. The dashed lines represent the scalar field at the
center of the poles (the region of maximum density) of each
solution at ¢ = 0. The collapse to a more compact object
is signalled by the slight increase in the scalar field density
followed by its drop to zero, hinting at scalar matter cross-
ing the BH horizon. (Bottom panel) Time evolution of the
minimum value of lapse function. It remains approximately
constant up until the instant of collapse, after which its value
decreases exponentially to zero.

B. Robust dipoles in relativistic and Newtonian
branches

Next, we consider simultaneously the solutions both
in the relativistic branch (3-9) and in the Newtonian
branch (12). These solutions showed no evidence of un-
stable behavior during their simulation time, a minimum
of tp ~ 3500. To illustrate this lack of change, we present
in Fig. [0] the time evolution of both the maximum value
of the scalar field and the Lo norm of the violation of
the Hamiltonian constraint, respectively, for all seven so-
lutions in the relativistic branch. As can be seen, the
scalar field density of each star remains approximately
constant during the simulation time, without dramatic
changes. Note that the simulation time is much larger
than the one where collapse is observed for solutions 1-2

- ¢f. Fig.
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evolution of the maximum value of the scalar field’s density. (Right panel) Time evolution of the L norm of the Hamiltonian

constraint.
Time: 0 273
16
. .
10 0
« i .
| F | _ |
0.0 4.8e-1 9.7e-1 0.0 1.8 37 0.0
Time: 0 5700
120
M1, .
.
-120-
I
0.0 1.9 3.8xe-3

686 1158 10097
.
. .
. .
.
_ | _ | ’
1.7 35 0.0 1.7 34 0.0 1.7 3.5 xe-2
9850 10400 11442
. . o
. .

FIG. 10. Ewolution of unstable dipolar Q-stars. Snapshots of the scalar field density on the y = 0 plane, for solution 10 (top
row) and 11 (bottom row). The horizontal axis of each panel has the same spatial scale as its vertical axis and the color scalar

in the bottom row is the same for all snapshots.

C. Unstable dipoles in middle branch

Now we consider the two illustrative solutions in the
middle branch, within the relativistic and Newtonian
branches (10-11). These solutions present an unstable
behavior, but with two qualitatively different evolutions,
that were followed up to tu ~ 10000. These are exhib-
ited in Fig. where the qualitative distinction can be
appreciated.

Development of the instability

Consider first solution 10. It exhibits a noticeable
change at a fairly short time scale of tu ~ 100. The
two individual centres become more compact, accom-
panied by the ejection of part of the scalar field. The
corresponding newly formed dipole is, however, off bal-
ance, resulting in a dynamical dipole. The scalar field
repulsion between the poles ceases to be able to hold
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FIG. 11. Ewvolution of solution 10: (Top panel) The distance
to the origin, along the z-axis, of one of the poles of solution
10, as a function of time. The maximum distance reached
after each bounce decreases with time due to energy loss via
gravitational radiation. For a simulation time of tu ~ 12500,
solution 10 performed 12 collisions, oscillating roughly within
a distance [4.5, 13.5] from the origin. (Bottom panel) The
real part of the (¢,m) = (2,0) mode of the Newman-Penrose
scalar Wy, describing the gravitational wave emission of solu-
tion 10 extracted at Rexp = 100, as a function of time.

the gravitational pull after the initial readjustment, and
the poles begin to move towards each other. Eventually,
these collide inelastically and rebound back to close (but
not quite) their initial positions, which we define as the
rebound distance, whence they fall back into each other
again, repeating this process a number of times over the
duration of the simulation, with the rebound distance
trending towards a decrease after each collision — Fig.
(top panel). This decrease can be explained by the loss
of linear momentum via gravitational waves emission, as
shown in Fig. [11] (bottom panel). For solution 10, this
process results in 12 collisions for a simulation time of
tp ~ 12500, but a larger number of collisions was ob-
served in the simulations of other dipolar Q-star solutions
near solution 10 (not shown here). The overall evolu-
tion after the dipole becomes dynamical, with sequences
of collisions, is reminiscent of the head-on collisions of
(monopolar) BSs in this model [13].

Solution 11 presents a somewhat opposite behavior to
that of solution 10. The key difference is that the indi-
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FIG. 12. Tracking the evolution endpoint for solution 10.

(Top left panel) The normalised real component of the scalar
field as a function of time for the first Aty ~ 95 (initial pe-
riod) of the evolution. (Top right panel) The normalised real
component of the scalar field as a function of time for the last
Atp ~ 7979 (final period) of the evolution. (Bottom panel)
A clear transition is seen from the initial to the final period,
from a higher to a lower and more dispersed value of the scalar
field frequency. Their values are w/p = 0.9844 for the initial
period and w/p ~ 0.7945 for the final period.

vidual centers become less compact: there is a clear, but
slow, expansion of the scalar field distribution of each
pole that is halted at ¢ ~ 5700. The solution then con-
tracts again, returning to a configuration similar to that
of its initial data before expanding again — Fig. [10] (lower
panel).

Endpoint of the instability

The behaviour indicated for solutions 10 and 11 sug-
gests a migration to other solutions with a different scalar
field frequency w/p and scalar field amplitude ¢p. One
way to probe this migration and attempt to unveil the
endpoint is by analysing the evolution of these quantities,
an analysis we now describe.

We begin by analysing the scalar field frequency and
its amplitude. A Fourier analysis [77] is performed on
the real part of the scalar field, as is shown for the two
solutions in Figs. [[2] and Within the range of va-
lidity, w/p € [0.1522, 1], we find that solution 11 ac-
quires higher oscillation frequencies, within the range of
the Newtonian branch, wherein solution 12 is located,
which was seen as dynamically robust in our analysis. In
contrast, despite displaying several peaks for the oscilla-
tion frequency, which might indicate different frequencies
acquired during its migration, solution 10 acquires an av-
erage frequency well below its initial one and within the
range of the relativistic branch, close to solution number
7, proven stable. An overview of this state of affairs is
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FIG. 13. Tracking the evolution endpoint for solution 11.
(Top left panel) The normalised real component of the scalar
field as a function of time for the first Aty ~ 398 (initial pe-
riod) of the evolution. (Top right panel) The normalised real
component of the scalar field as a function of time for the last
Atp ~ 5805 (final period) of the evolution. (Bottom panel)
A clear transition is seen from the initial to the final period,
from a lower to a higher and less dispersed value of the scalar
field frequency. Their values are w/p = 0.9922 for the initial
period and w/p ~ 0.9957 for the final period.

exhibited in Fig. [I4] where the frequency w of each so-
lution is plotted against its scalar field amplitude ¢y at
the center of one of its poles, at ¢t = 0 (“Initial state”) for
all solutions, and at the end of the numerical evolution
(“Migration”) for solutions number 10 and 11.

This evidence points towards the migration of unsta-
ble solutions to either the relativistic or the Newtonian
branches, wherein solutions show a higher degree of dy-
namical robustness. The initial and final states of every
solution in our analysis are summarized in Table [[I]

V. CONCLUSIONS

In this paper, we have constructed dipolar BSs with
sextic (+ quartic) self-interactions, according to the po-
tential , named dipolar @Q-stars, and analyzed their
dynamics via fully non-linear numerical relativity simu-
lations.

Our motivation was two-fold. Firstly, dipolar BSs
constructed in the scalar model without self-interactions
have exhibited an instability that develops in a timescale
tp < 2000 for the models studied in [I5]. Secondly, since
such dipolar stars can be seen as a type of excited state
(as p-orbitals in hydrogen) — with higher mass than the
corresponding spherical stars with the same frequency
(¢f. Fig ; given the potential scalar self-interactions
have already shown to mitigate dynamical instabilities
of excited models, namely with rotation [16] and radi-
ally excited [20, 2I] (which are akin to Ns-orbitals with

10

N > 1 in hydrogen), it becomes interesting to probe the
impact of self-interactions on the stability of the dipolar
Q-stars.

Our construction of the equilibrium solutions, pre-
sented in Section[[T} showed a domain of existence akin to
that of the monopolar stars in the same model — see Fig.
(bottom panel). In the case of the fundamental monopo-
lar stars, such domain of existence includes a Newtonian
and a relativistic branch wherein (spherical) Q-stars are
stable, separated by a middle branch wherein stars are
unstable — see Fig. Moreover, beyond (to lower fre-
quencies) the relativistic stable branch, @Q-stars become
too compact and unstable, forming BHs.

Here, we have studied the dynamical robustness of
dipolar @Q-stars by presenting a sample of evolutions of
12 illustrative solutions, covering different branches — see
Fig. 3] and Table [ Our evolutions provide evidence of
similar dynamical properties for the dipolar Q)-stars as
the ones observed from the perturbative analysis of their
spherical @-star counterparts, namely: (i) in the Newto-
nian and relativistic branches they are dynamically ro-
bust over time scales longer than those for which dipolar
stars without self-interactions are seen to decay, which
were mentioned above; (4¢) in the middle branch the dipo-
lar @-stars appear to migrate to either the Newtonian
or the relativistic branch; (iii) beyond the relativistic
branch, they decay to BHs.

There are, however, some caveats, in particular con-
cerning the unstable states in the middle branch, that we
should comment on. Solutions 10 and 11 showed evidence
of a possible migration mechanism that allows the mi-
gration to different, dynamically more robust, solutions.
However, at the end of our simulations, the solutions re-
main dynamical. We have no clear evidence for any dra-
matic effect altering the evolution, but we cannot rule
it out either. Moreover, for very long time evolutions it
becomes challenging to disentangle physical effects from
numerical artifacts, sourced by accumulated errors. As
such, the final state still requires further investigation.

It may be that all these dipolar )-stars are mere tran-
sient states. In fact, solutions 8 and 9, for which no
instability was seen, have a slight energy excess, sug-
gesting an energetic instability. This is reminiscent of
an energetic instability seen for rotating BSs with self-
interactions [46], occurring in the putative relativistic
stable branch, but where fragmentation into a binary of
non-rotating stars becomes dynamically favourable. Still,
in our simulations, this possible energetic instability did
not manifest itself and had no impact on the dynamics
in the timescales probed.

On the other hand, what our analysis could estab-
lish is that solutions within the relativistic stable branch
and those in the Newtonian branch present stability
time scales well above those of dipolar BSs without self-
interactions. Moreover, the unstable solutions in the mid-
dle branch remain dipolar, but dynamical ones, when
readjusting their distance and compactness towards a
more favourable configuration. From another perspec-



11

—— Analytical solutions
0.05 - ® Initial state
1 ® Gravitational collapse
Migration
R CRIRX: —7
S, -0 10*
- 8
'S 0.03 9
li, 0.005
<€ 0.004 1 \g11
0.02 A
0.003 A
0.002 A 11 10
0.000 T T T . . 1111*
0.990 0.992 0.994 0.996 0.998 1.000
0.00 A 12¥
0.2 0.4 0.6 0.8 1.0
w/u

FIG. 14. Domain of existence of dipolar Q-stars. Maximum scalar field amplitude (¢o) vs. scalar field frequency (w/u) diagram.
The solutions presented correspond to the final states of all 12 solutions. Migrating solutions 10 and 11 are depicted both in
their initial state (orange circles) and in their provisional final state (blue circles). The inset shows the behaviour for the region
close to the maximal frequency. The error bars for solutions 10 and 11 illustrate the oscillations in the scalar field amplitude due
to their still evolving state, and the standard deviation in the frequency domain due to the detection of a range of frequencies
when applying a Fast Fourier transform to the signal.

TABLE II. Fate of the dipolar Q-star solutions with different values of the scalar field oscillation frequency w.

Solutions Initial branch Initial frequency Simulation duration = Dynamical status  Final frequency Final branch
1 Beyond Relativistic 0.1900 400 Gravitational collapse - -

2 Boundary Relativistic 0.1522 600 Gravitational collapse - -

3 Relativistic 0.1600 5300 Stable 0.1600 Relativistic
4 Relativistic 0.1900 5400 Stable 0.1900 Relativistic
5 Relativistic 0.2500 6500 Stable 0.2500 Relativistic
6 Relativistic 0.2700 5800 Stable 0.2700 Relativistic
7 Relativistic 0.7000 4500 Stable 0.7000 Relativistic
8 Relativistic 0.8500 9000 Stable 0.8500 Relativistic
9 Relativistic 0.8900 7000 Stable 0.8900 Relativistic
10 Middle 0.9800 11000 Migration 0.7983 Relativisti
11 Middle 0.9900 11400 Migration 0.9957 Newtonian
12 Newtonian 0.9970 4500 Stable 0.9970 Newtonian

a At the boundary between the relativistic branch w/u < 0.907 and the middle branch 0.907 < w/u < 0.9924.
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