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Abstract

In this paper we study optimal control problems for nonholonomic systems defined on Lie alge-

broids by using quasi-velocities. We consider both kinematic, i.e. systems whose cost functional

depends only on position and velocities, and dynamic optimal control problems, i.e. systems whose

cost functional depends also on accelerations. The formulation of the problem directly at the level

of Lie algebroids turns out to be the correct framework to explain in detail similar results appeared

recently [20]. We also provide several examples to illustrate our construction.
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I. INTRODUCTION

The principles of analytical mechanics established by D’Alembert, Lagrange, Gauss and

Hamilton can also be contemplated from additional mathematical perspectives providing

us methods for understanding Nature’s law from new viewpoints which may be helpful in

solving specific problems and clarifying the way in which Nature behaves. The traditional

techniques were only applied to very simple models but current technology needs efficient

algorithms in areas ranging from robotics to spacecraft design. Furthermore the computer

development with the corresponding capability of computation suggests the convenience of

analysing different formulations to yield the differential equations for multibody dynamics

that involve a certain number of constraints.

There exist different techniques to deal with such constrained systems. The geometric

framework of manifolds replacing Euclidean spaces allows us to give a formulation for sys-

tems with holonomic constraints in terms of generalised coordinates and free of Lagrange

multipliers. However it is not clear how to choose generalised coordinates improving compu-

tational efficiency: Kane’s method [14, 15] or the Maggi equations formulation [6]. Another

recent alternative formulation is given in [13].

Nonholonomic constraints are very relevant and appear in many problems in physics and

engineering, and in particular in control theory. Such nonholonomic constraints restrict

possible virtual displacements and when taking into account such constraints d’Alembert-

Lagrange principle leads to Boltzmann–Hamel equations [7, 9, 20–22].

The concept of quasi-velocity (or generalised velocity) [3] is of a great relevance in the

study of mechanical systems, mainly in nonholonomic ones because the conditions of non-

holonomic constraints can be expressed in a simpler form. Boltzmann-Hamel equations,

Gibbs–Appell and Gauss principles, for instance, make use of quasi-coordinates (also called

nonholonomic coordinates) and the Hamel symbols [16]. The use of quasi-velocities in the

dynamics of nonholonomic system with symmetry has recently been investigated under

different approaches in [2, 7–9] and Hamel’s equations have been recovered from this per-

spective.

It has been shown in recent papers [3, 7, 8] that the appropriate geometric framework for

studying systems with linear nonholonomic constraints is the framework of Lie algebroids.

The geometric approach to mechanics uses tangent bundles in the Lagrangian formula-
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tion and tangent bundles are but particular instances of algebroids. The usual geometric

approach to Lagrangian formalism was then developed in this extended framework of Lie

algebroids [5, 17, 18, 24] the main advantage being that such structure arises in reduction

processes from tangent bundles when the vertical endomorphism character is not projectable

[4]. The geometrical construction (see [17]) is based on the generalization of the usual sym-

plectic description of Lagrangian (or Hamiltonian) mechanics on tangent (or cotangent)

bundles. The dynamics is then defined by a function of a Lie algebroid (for the Lagrangian

formalism) or its dual (for the Hamiltonian one). Considering, for the sake of simplicity,

only the Lagrangian case now, the solutions of the dynamics correspond to the analogue

of the concept of SODE (considered as the section of the bundle T (TM) for a Lagrangian

defined on TM). But in the Lie algebroid case the concept of second tangent bundle is

subtle to define and the notion of prolongation of a Lie algebroid is necessary:

Definition I.1 Let (E, [[ , ]], ρ) be a Lie algebroid (τ : E → M) over a manifold M and

ν : P →M be a fibration. For every point p ∈ P we consider the vector space

T E
p P = { (b, v) ∈ Ex × TpP | ρ(b) = Tpν(v) } ,

where Tν : TP → TM is the tangent map to ν and ν(p) = x . The set T EP =
⋃

p∈P T E
p P

has a natural vector bundle structure over P , the vector bundle projection τEP being just the

projection τEP (b, v) = τP (v).

The vector bundle τEP : T EP → P can be endowed with a Lie algebroid structure (see

[17]). The Lie algebroid T EP is called the prolongation of ν : P → M with respect to E

or the E-tangent bundle to ν.

When we consider the case P = E, the resulting entension generalizes the notion of second

tangent bundle to the Lie algebroid framework and the sections of this bundle represent the

analogue of SODEs in the usual case.

By using this notion, the symplectic formalism of Lagrangian systems in geometric me-

chanics is easily extended to this more general setting. In a similar way, Hamiltonian me-

chanics and discrete mechanics can be also generalized to the new framework.

It is also well known from geometric control theory that many of the techniques of classical

mechanics can be used in control theory [7, 9, 19]. The theory of Lie algebroids can be applied

to deal with control problems and the application of such geometric tools is very useful for
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a better understanding of different control problems. This is our motivation for developing

the theory of optimal control theory using the properties of Lie algebroid theory which is

going to be the appropriate approach to Boltzmann–Hamel equations.

Throughout the paper, we consider a Lie algebroid τ : E → M with anchor mapping

ρ : E → TM . When coordinates are required, we consider a local basis {xi} for the base

manifoldM , and a basis of sections {eα} for the bundle E which provides a set of coordinates

(xi, yα) for the Lie algebroid. The anchor mapping is then represented by the set of functions

{ραi } and the Lie algebra structure by the structure functions {Cγ
αβ}. When considering the

dual bundle E∗, the dual basis of sections {eα} is chosen and the corresponding coordinates

are denoted as (xi, µα). The corresponding exterior differential d : Sec
∧k E∗ → Sec

∧k+1E∗

defines the corresponding algebroid cohomology, with respect to which the concept of sym-

plectic or presymplectic form can be defined. This concept will be used later on when

providing the geometrical framework for the maximum principle.

Finally, we consider the coordinate functions for the extensions of the Lie algebroid E by

a bundle P . We consider the general case although in practice we use only the case P = E

and the case P = D ⊂ E, for D a subbundle of the Lie algebroid. In any case, considering

local coordinates (xi, uβ) on P and a local basis {eα} of sections of E, we can define a local

basis {Xα,Vβ} of sections of T EP by

Xα(p) =
(

p, eα(ν(p)), ρ
i
α

∂

∂xi

∣

∣

∣

p

)

and Vβ(p) =
(

p, 0,
∂

∂uβ

∣

∣

∣

p

)

.

If z = (p, b, v) is an element of T EP , with b = zαeα, then v is of the form v = ρiαz
α
∂

∂xi
+

vβ
∂

∂uβ
, and we can write z = zαXα(p)+ v

βVβ(p).Vertical sections are linear combinations of

{VA}. Analogously, when considering the dual object, T EP ∗, we use a local basis {Xα,Pβ},

where {Pβ} are the sections corresponding to the vertical elements Pβ(p) =
(

p, 0,
∂

∂νβ

∣

∣

∣

p

)

,

for {(xi, νβ)} being a set of coordinates for the bundle P ∗.

This article is organized in the following way. We address the interested reader to [7, 9, 19]

for a detailed description of Lie algebroids and the construction of general optimal control

systems. We provide a short review of those results in Sections II to IV while incorporating

the formalism of quasi-velocities on them: Section II deals with the optimal control theory

and the Pontryagin maximum principle [19], kinematic optimal control is studied in Section

III and dynamical aspects are the aim on Section IV. The theory is illustrated in Section V

with several examples.
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II. OPTIMAL CONTROL THEORY

As it is well known, optimal control theory is a generalization of classical mechanics. The

central result in the theory of optimal control systems is Pontryagin maximum principle.

The reduction of optimal control problems can be performed within the framework of Lie

algebroids, see [19]. This was done as in the case of classical mechanics, by introducing a

general principle for any Lie algebroid and later studying the behavior under morphisms of

Lie algebroids. See also [11] for a recent direct proof of Pontryagin principle in the context

of general algebroids.

Pontryagin maximum principle [19]

By a control system on a Lie algebroid τ : E → M with control space π : B → M we

mean a section of σ : B → E along π. A trajectory of the system σ is an integral curve of

the vector field ρ ◦ σ along π.

E

τ

��

ρ
// TM

τM
||yy

y
y
y
y
y
y

B

σ
>>

}
}

}
}

}
}

}
}

π
// M

Given a cost function L ∈ C∞(B) we want to minimize the integral of L over some

set of trajectories of the system satisfying some boundary conditions. Then we define the

Hamiltonian function H ∈ C∞(E∗ ×M B) by H(µ, u) = 〈µ, σ(u)〉−L(u) and the associated

Hamiltonian control system σH (a section along pr1 : E
∗ ×M B → E∗ of T EE∗ ) defined on

a subset of the manifold E∗ ×M B, by means of the symplectic equation

iσH
Ω = dH, (2.1)

where Ω is the canonical symplectic form defined on the bundle E (i.e. a section of the

bundle
∧2E∗ which is closed for the differential calculus defined on the Lie algebroid). The

integral curves of the vector field ρ(σH) are said to be the critical trajectories.

In the above expression, the meaning of iσH
is as follows: Let Φ: E → E ′ be a morphism

of the bundle T → M over a map ϕ : M → M ′ and let η be a section of E ′ along ϕ. If

ω a section of
∧pE ′∗ then iηω is the section of

∧p−1E∗ given by (iηω)m(a1, . . . , ap−1) =

ωϕ(n)(η(m),Φ(a1), . . . ,Φ(ap−1)) for every m ∈ M and a1, . . . , ap−1 ∈ Em. In our case, the
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map Φ is the prolongation T pr1 : T
E(E∗ ×M B) → T EE∗ of the map pr1 : E

∗ ×M B → E∗

(this last map fibered over the identity in M), and σH is a section along pr1. Therefore,

iσH
Ω− dH is a section of the dual bundle to T E(E∗ ×M B).

It is easy to see that the symplectic equation (2.1) has a unique solution defined on the

following subset

SH = { (µ, u) ∈ E∗ ×M B | 〈 dH(µ, u) , V 〉 = 0 for all V ∈ KerT pr1 } .

Therefore, it is necessary to perform a stabilization constraint algorithm to determine the

submanifold where integral curves of σH do exists.

In local coordinates, the solution to the above symplectic equation is

σH =
∂H

∂µα

Xα −

[

ρiα
∂H

∂xi
+ µγC

γ
αβ

∂H

∂µβ

]

P
α,

defined on the subset where
∂H

∂uA
= 0, and therefore the critical trajectories are the solution

of the differential-algebraic equations

ẋi = ρiα
∂H

∂µα

; µ̇α = −

[

ρiα
∂H

∂xi
+ µγC

γ
αβ

∂H

∂µβ

]

; 0 =
∂H

∂uA
. (2.2)

Notice that
∂H

∂µα

= σα.

One can easily see that whenever it is possible to write µα = piρ
i
α then the above dif-

ferential equations reduce to the critical equations for the control system Y = ρ(σ) on TM

and the function L. Nevertheless it is not warranted that µ is of that form. For instance

in the case of a Lie algebra, the anchor vanishes, ρ = 0, so that the factorization µα = piρ
i
α

will not be possible in general.

III. KINEMATIC OPTIMAL CONTROL

Let τ : E → M be a Lie algebroid and D a constraint distribution. Given a cost function

κ : E → R, we consider the following kinematic optimal control problem: we can control

directly all the (constrained) velocities, and we want to minimize some cost functional

I(a) =

∫ β

α

κ(a(t)) dt,

for a : [α, β] ⊂ R → E over the set of admissible curves taking values in D. We use coordi-

nates (xi, ya) to denote the elements of this bundle, where ya will represent the coordinates
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with respect to some basis of section for D, as in the last section. We use capital indices

A,B,C, . . . to represent the coordinates {yA, yB, . . .} corresponding to the elements of the

fiber of E not contained in D. Analogously, {µA, µB, . . .} represent the coordinates for the

fiber elements in E∗ not corresponding to sections dual to the elements in D.

Remark 1 Whenever the cost function κ is a quadratic function defined on D, the problem

that we are considering is just the problem of sub-Riemannian geometry. In the case of a

degree 1 homogeneous cost function this is sub-Finslerian geometry, and in the more general

case this problem can be called sub-Lagrangian problem.

Since we can control directly the velocities or pseudovelocities, the control bundle is

B = D and the system map σ : D → E is just the canonical inclusion σ(a) = a.

E

τ

��

ρ
// TM

τM
||yy

y
y
y
y
y
y

D

σ
>>

}
}

}
}

}
}

}
}

// M

Pontryagin Hamiltonian is a function H ∈ C∞(E∗ ×M B) defined as H(µ, b) = 〈µ, σ(b)〉 −

κ(b), which in coordinates reads

H(xi, µa, µA, u
a) = µau

a − κ(xi, ua). (3.1)

The Maximum principle imposes the choice of the control functions such that

µa =
∂κ

∂ua

(

from
∂H

∂ua
= 0

)

. (3.2)

Under appropriate regularity conditions the set SH of solutions of this equation is a sub-

manifold of E∗ ×M B, which we call the critical submanifold. Frequently, this set is but the

image of a section of E∗ ×M B → E∗, locally given by

ua = ua(x, µ). (3.3)

Thus the set SH is diffeomorphic to E∗ and the optimal Hamiltonian, with local expression

H(xi, µα, u
a(x, µ)), defines via the canonical symplectic form a Hamiltonian system on E∗.

The restriction of the Pontryagin-Hamilton equations to this submanifold provides us

with the control system

ẋi = ρiau
a (3.4)
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and the dynamics of the momenta

µ̇a = −

[

ρia
∂H

∂xi
+ µcC

c
abu

b + µBC
B
abu

b

]

(3.5)

µ̇A = −

[

ρiA
∂H

∂xi
+ µcC

c
Abu

b + µBC
B
Abu

b

]

. (3.6)

These are the equations to be solved and to be used to determine, by using the mapping

(3.3), the control functions defining the solution optimizing the value of the cost function.

By substitution of µa =
∂κ

∂ua
into these equations, and taking into account that

∂H

∂xi
= −

∂κ

∂xi
,

we get

ẋi = ρiau
a; d

dt

(

∂κ

∂ua

)

− ρia
∂κ

∂xi
+
∂κ

∂uc
Cc

abu
b + µBC

B
abu

b = 0;

µ̇A + µBC
B
Abu

b − ρiA
∂κ

∂xi
+
∂κ

∂uc
Cc

Abu
b = 0. (3.7)

These equations are also obtained in [20, 21] for the case E = TM .

Remark 2 For simplicity we are considering only normal extremals. For abnormal ex-

tremals we just have to consider the Hamiltonian function to be H = µau
a and solve the

same equations, i.e.

µa = 0; ẋi = ρiau
a; µBC

B
abu

b = 0; µ̇A + µBC
B
Abu

b = 0. (3.8)

with (µA(t)) 6= (0) for all t.

Remark 3 In the particular case when D = E and σ = idE we recover the Euler-Lagrange

equations on the Lie algebroid E for the Lagrangian L = κ. Also when D ( E we get the

so-called vakonomic equations for the Lagrangian L = κ (see [12])

IV. DYNAMIC OPTIMAL CONTROL

In the dynamic problem, we can control directly the motion on a nonholonomic system,

with the exception of the constraint forces, of course. For instance, we can consider the

equations of motion to be δL(z)|D = u, with u ∈ D∗ the control variables representing the

external (generalized) forces acting on the system. Another possibility would be to consider

systems on which the accelerations are the control variables.
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In both kinds of problems the state space is the manifold D and the control bundle

π : B → D is

B =
{

(z, ν) ∈ T D
D×D

∗
∣

∣ z ∈ Adm(E) and δL(z)|D = ν
}

. (4.1)

An element (z, ν) of B is of the form z = (a, a, v) with a ∈ D and v ∈ TaD and where ν is

determined by the equations 〈ν, b〉 = 〈δL(z), b〉 for every b ∈ D.

When we consider the forces as control variables, since we are assuming that the con-

strained Lagrangian system is regular, we can identify B with pr1 : D ⊕ D∗ → D, via

(a, a, v; ν) ≡ (a, ν), because the vector v is determined by the point a and the equation

δL(z)|D = u.

When we consider the accelerations as controls we can identify B with T DD∩Adm(E) →

D, via (a, a, v; ν) ≡ (a, a, v) because ν is determined by ν = δL(z)|D.

From a formal point of view both problems are equivalent, since the relation between

them is one-to-one and thus it is possible to use the optimal solution written in terms of

accelerations to determine the optimal forces and viceversa. In other words, they are related

by a feedback transformation.

However, from the practical point of view the second problem produces simpler expres-

sions. Therefore, we can identify B with T DD ∩ Adm(E) and take coordinates (xi, ya, va)

where va are the acceleration coordinates, i.e. our control variables.

On this set we also need to specify a control system where the optimization will be built.

Such a system is specified by giving a section σ : B → T ED, i.e. the resulting system

must always define an admissible velocity and acceleration. The Lie algebroid relevant for

this case is the E-tangent to D. An element of T ED is of the form z = (a, b, w) with

a ∈ D, b ∈ E, with τ(a) = τ(b) and w ∈ TaD with ρ(b) = Tτ(w). Taking a local

basis {ea} for D, and completing a local basis {ea, eA} for E, we can write a = yaea,

b = zaea + zAeA, and w = (ρiaz
a + ρiAz

A)
∂

∂xi
+ wa ∂

∂ya
. By taking coordinates (xi) in the

base, we have coordinates (xi, ya, za, zA, wa) on T ED. A local basis of sections of T ED → D

is {Xa,XA,Va} and the element z can be written z = zaXa(x, y) + zAXA(a, y) + wa
Va(a, y),

and ρ1(z) = w = (ρiaz
a + ρiAz

A)
∂

∂xi
+ wa ∂

∂ya
. The corresponding coordinates on the dual

bundle (T ED)∗ will be denoted (xi, ya, µa, µA, πa).

If we choose to control the accelerations of the system {ua}, the map σ : B → T ED is

9



given by the natural inclusion σ(z) = z,

T E
D

τ

��

ρ1
// TD

τD
{{xx

x
x
x
x
x
x
x

B

σ
==

z
z

z
z

z
z

z
z

// D

which in coordinates corresponds to σ(xi, ya, ua) = (xi, ya, ya, 0, ua).

Given a cost function κ : B → R we take the Pontryagin Hamiltonian H ∈ C∞((T ED)∗×

B), defined as H(µ, z) = 〈µ, σ(z)〉 − κ(z) which in coordinates is

H(xi, ya, µa, µA, πa, u
a) = µay

a + πau
a − κ(xi, ya, ua),

where the control functions are the accelerations ua.

From
∂H

∂ua
= 0, we get

πa =
∂κ

∂ua
. (4.2)

These equations determine the optimal submanifold SH in (T ED)∗ ×D B, which in this

case is a section of the projection (T ED)∗ ×D B → B, locally given by the equations

ua = ua(xi, ya, πa). On SH , the equations of motion are the following. From ẋ = ρ
∂H

∂µ
, since

in this case the base variables are (x, y), we get the original control system

ẋi = ρiay
a + ρiA0 = ρiay

a ẏa = ua. (4.3)

Also, the equations of motion for πa, written as π̇a = −
∂H

∂ya
=

∂κ

∂ya
− µa, because all the

structure functions involved vanish (i.e. Va commute with all the others). Therefore we get

µa =
∂κ

∂ya
−

d

dt

(

∂κ

∂ua

)

=
∂κ

∂ya
− π̇a,

which is the combination that appear in [20], equation (11), for the case E = TM , under

the notation κJ and without a justification.

The equation of motion for µa is

− µ̇a = ρia
∂H

∂xi
+ µcC

c
aby

b + µCC
C
aby

b = −ρia
∂κ

∂xi
+ µcC

c
aby

b + µCC
C
aby

b, (4.4)

and the equation of motion for µA is

− µ̇A = ρiA
∂H

∂xi
+ µcC

c
Aby

b + µCC
C
Aby

b = −ρiA
∂κ

∂xi
+ µcC

c
Aby

b + µCC
C
Aby

b. (4.5)

These two last equations correspond to equations (18) and (19) obtained in [20] for the case

E = TM .
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Remark 4 As in the previous case, we have considered only normal extremals. For abnor-

mal extremals we just have to take the cost function κ = 0 and solve the same equations for

κ = 0, that is

µa = 0; πa = 0; ẋi = ρiay
a; µBC

B
aby

b = 0; µ̇A + µBC
B
Aby

b = 0. (4.6)

with (µA(t)) 6= (0) for all t. Interestingly, we get exactly the same equations (plus πa = 0)

as in the kinematic case.

V. EXAMPLES

First we discuss from the point of view of the theory of Lie algebroids an example studied

in [21]. The result is naturally analogous to the results obtained there, but within the new

framework the treatement of dynamical control systems becomes much more natural. After

that, we study a few other examples of systems relevant for their applications and whose

solutions, obtained in more involved ways, can be found in the literature.

A. Dynamic optimal control of the vertical rolling disc

For such a system, the state space manifold corresponds to M = R2 × S1 × S1, and we

will use the coordinates x = (x1, x2, x3, x4), where x1 = x, x2 = y, x3 = θ, and x4 = φ.

The rolling without slipping condition of the motion on the plane leads to a pair of

nonholonomic constraints

ẋ1 − cos(x4)ẋ3 = 0 and ẋ2 − sin(x4)ẋ3 = 0.

We can define then a set of coordinates adapted to these constraints and write a set of

coordinates {y} for the new velocities. Thus the quasi-velocities correspond to:

y1 = ẋ1 − cos(x4)ẋ3, y2 = ẋ2 − sin(x4)ẋ3, y3 = ẋ3, y4 = ẋ4.

Analogously the inverse transformation allows us to write:

ẋ1 = y1 + cos(x4)y3, ẋ2 = y2 + sin(x4)y3, ẋ3 = y3, ẋ4 = y4.

The local basis of sections of TM determined by the quasi-velocities turns out to be:

e1 =
∂

∂x1
, e2 =

∂

∂x2
, e3 = cos(x4)

∂

∂x1
+ sin(x4)

∂

∂x2
+

∂

∂x3
, e4 =

∂

∂x4
.
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The Lie algebroid structure is the usual one for the tangent bundle. But in the basis above,

the anchor mapping is written as:

ρ(e1) =
∂

∂x1
, ρ(e2) =

∂

∂x2
, ρ(e3) = cos(x4)

∂

∂x1
+ sin(x4)

∂

∂x2
+

∂

∂x3
, ρ(e4) =

∂

∂x4
.

The Lie algebra structure is obtained also as [e3, e4] = sin(x4)e1−cos(x4)e2, all other elements

being zero. We can read then the Hamel symbols γǫαβ in [3, 20] .

In what regards the control part, we are considering a situation where we control the

external forces in the directions of the admissible velocities. Thus, as the velocities on the

constrained system are of the form

y1 = y2 = 0, y3 = ẋ3 and y4 = ẋ4,

the natural coordinates are a = (x1, x2, x3, x4, y3, y4) = (x, ya). The control bundle B

becomes thus D ⊕ D
∗ and we take as coordinates (xi, y3, y4, u3, u4), where u3 = 3

2
ẏ3 and

u4 =
1
4
ẏ4 for ua = (δL)a.

The cost function corresponds to κ(a, u) = 1
2
(u23 + u24) and the control system is defined

as:

ẋ1 = cos(x4)ẋ3, ẋ2 = sin(x4)ẋ3, u3 =
3

2

d2x

dt2

3

, u4 =
1

4

d2x

dt2

4

.

The Pontryagin Hamiltonian H ∈ C∞((T ED)∗ ×D B) corresponds now to

H(a, p, u) = 〈p, σa(u)〉 − κ(a, u) = µIy
I + πI

uI
cI

−
1

2
(u23 + u24),

with c3 = 3/2 and c4 = 1/4.

The Maximum principle is encoded as

∂H

∂u3
= 0 ⇔ u3 =

2
3
π3 and

∂H

∂u4
= 0 ⇔ u4 = 4π4,

and the Pontryagin equations (optimal dynamical control equations) correspond to:

ẋ1 = cos(x4)y3, ẋ2 = sin(x4)y3, ẋ3 = y3, ẋ4 = y4

ẏ3 =
2

3
u3, ẏ4 = 4u4, π̇3 = −µ3, π̇4 = −µ4,

µ̇1 = 0, µ̇2 = 0,

µ̇3 = [−µ1sin(x
4) + µ2cos(x

4)]y4, µ̇4 = [µ1sin(x
4)− µ2cos(x

4)]y3.
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Since y3 = ẋ3, y4 = ẋ4 and ẏI = uI , then µ3 = −9
4
d3x
dt3

3
and µ4 = − 1

16
d3x
dt3

4
. Thus, we can

reduce the set of equations to:

ẋ1 = cos(x4)ẋ3, ẋ2 = sin(x4)ẋ4,

d4x

dt4

3

=
4

9
[µ1sin(x

4)− µ2cos(x
4)]ẋ4,

d4x

dt4

4

= 16[−µ1sin(x
4) + µ2cos(x

4)]ẋ3,

where µ1, µ2 are constants.

B. Optimal control problems of rotational motion of the free rigid body

Consider the problem of rotational motion of the free rigid body. As configuration man-

ifold we take the Lie group SO(3) and choose the type-I Euler angles (x1, x2, x3) as local

coordinate system. We consider the canonical Lie algebroid structure of the tangent bundle

TSO(3), whose anchor map is ρ = idTSO(3). Let {e1, e2, e3} be the set of sections for the

bundle

e1 = sec(x2)sin(x3)
∂

∂x1
+ cos(x3)

∂

∂x2
+ tan(x2)sin(x3)

∂

∂x3
,

e2 = sec(x2)cos(x3)
∂

∂x1
− sin(x3)

∂

∂x2
+ tan(x2)cos(x3)

∂

∂x3
,

e3 =
∂

∂x3
,

whose Lie algebra structure is determined by the relations [e1, e2] = e3, [e2, e3] = e1, [e3, e1] =

e2. The anchor and the Lie bracket are locally determined by the functions

ρ11 = sec(x2)sin(x3), ρ21 = cos(x3), ρ31 = tan(x2)sin(x3),

ρ12 = sec(x2)cos(x3), ρ22 = −sin(x3), ρ32 = tan(x2)cos(x3),

ρ13 = 0, ρ23 = 0, ρ33 = 1;

and C3
12 = −C3

21 = C1
23 = −C1

32 = C2
31 = −C2

13 = 1.

We consider now the rigid body subject to the constraint ẋ1cos(x2)sin(x3)+ẋ2cos(x3) = 0.

This implies that the constraint distribution D is the 2-dimensional subbundle of TSO(3)

generated by e2 and e3.
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1. Constrained kinematic problem

Let us study the kinematic constrained system, i.e., the system with admissible velocities

belonging to the subbundle D ⊂ TSO(3) defined by the condition y1 = 0. Thus the system

is

ẋ1 = sec(x2)cos(x3)u2, ẋ2 = −sin(x3)u2, ẋ3 = tan(x2)cos(x3)u2 + u3, (5.1)

The cost function corresponds to the energy provided by the controls k(xi, ua) =

1
2
[I2(u

2)2 + I3(u
3)2]. The Hamiltonian in this case is written as

H = µ2u
2 + µ3u

3 −
1

2

[

I2(u
2)2 + I3(u

3)2
]

.

Optimality conditions defining the submanifold SH given in (3.2) are µ2 = I2u
2;µ3 = I3u

3.

Using the representation u2 = u2(x, µ) and u3 = u3(x, µ) for SH , the equations (3.5) become

then the control system (5.1) together with

µ̇2 + µ1u
3 = 0, µ̇3 − µ1u

2 = 0, µ̇1 + (I3 − I2)u
2u3 = 0.

In the case of the completely symmetric rigid body we get µ̇2+µ1u
3 = 0; µ̇3−µ1u

2 = 0

and µ̇1 = 0, which are equivalent to the equations obtained by Sastry and Montgomery in

[23].

2. Constrained dynamic problem

Finally let us study the case of dynamic control for the constrained system. From the

geometrical point of view, the control bundle B corresponds to T DD ∩ Adm(TSO(3)) and

the system can be described as

ẋ1 = sec(x2)cos(x3)y2, ẋ2 = −sin(x3)y2, (5.2)

ẋ3 = tan(x2)cos(x3)y2 + y3, ẏ2 = u2, ẏ3 = u3 (5.3)

We consider now as cost function, the restriction to D of the cost function

k(xi, ya, ua) = 1
2
[(I2)

2(u2)2 + (I3)
2(u3)2 + (I3 − I2)

2(y2)2(y3)2] ,

where we assume that the control functions are the components of the admissible angular

accelerations of our system u2 = v2 and u3 = v3.
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Optimality condition leads to the submanifold W defined as π2 = (I2)
2u2 π3 = (I3)

2u3.

Then W is defined by specifying u2 = u2(x, y, π) and u3 = u3(x, y, π). The motion on W

corresponds then to the control system (5.2) and

π̇2 =
(M1)

2

y2
− µ2, π̇3 =

(M1)
2

y3
− µ3, µ̇2 + µ1y

3 = 0, µ̇3 − µ1y
2 = 0,

µ̇1 + µ3y
2 − µ2y

3 = 0,

where M1 = (I3 − I2)y
2y3 is a torque on D.

In the case of the completely symmetric rigid body we obtain

π̇2 = −µ2, π̇3 = −µ3, µ̇2 + µ1y
3 = 0, µ̇3 − µ1y

2 = 0, µ̇1 + µ3y
2 − µ2y

3 = 0.

This system gives the following equations obtained by Crouch and Silva Leite in [10], Ex.

6.4, Case II

d3y

dt3

2

− µ1y
3 = 0,

d3y

dt3

3

+ µ1y
2 = 0, µ̇1 −

d2y

dt2

3

y2 +
d2y

dt2

2

y3 = 0.

C. Systems with symmetry and constraints: quasi-coordinates for the Atiyah al-

gebroid

Consider a ball rolling without sliding on a fixed table (see Example 8.12 in [8]). The

configuration space is Q = R2×SO(3), where SO(3) is parameterized by the Eulerian angles

θ, φ and ψ. In quasi-coordinates (x, y, θ, φ, ψ, ẋ, ẏ, ωx, ωy, ωz) the energy may be expressed

by T = 1
2
[ẋ2+ ẏ2+k2(ω2

x+ω
2
y+ω

2
z)], where ωx, ωy and ωz are the components of the angular

velocity of the ball.

The system is invariant under SO(3) transformations, and thus it is natural to consider

the corresponding formulation on the Atiyah algebroid E = TQ/SO(3) ≡ TR2 × R3. On

that system we must still implement the nonholonomic constraint arising from the rolling-

without-sliding conditions ẋ1 − rω2 = 0 and ẋ2 + rω1 = 0.

For the configuration space we can choose coordinates M = Q/G = R2 ∋ x = (x1, x2),

with x1 = x and x2 = y. In what regards the fiber, we can choose thus a transformation

mapping the set of fiber coordinates {ẋ1, ẋ2, ω3, ω1, ω2} onto a new set {yα}. These quasi-

velocities become then yi = ẋi, y3 = ω3, y4 = ẋ1 − rω2, y5 = ẋ2 + rω1.
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Analogously we can consider the inverse transformation. Thus the original velocities can

be written in terms of the quasi-velocities as

ẋi = yi, ω3 = y3, ω1 = −
1

r
y2 +

1

r
y5, ω2 =

1

r
y1 −

1

r
y4

The local basis of sections of E determined by the quasi-velocities turns out to be

f1 = e′1 +
1

r
e′4, f2 = e′2 −

1

r
e′3, f3 = e′5, f4 = −

1

r
e′4, f5 =

1

r
e′3

where {e′1, e
′

2, · · · , e
′

5} is the local basis defined in [8], page 36.

With respect to this basis, the structure constants and the anchor mapping of the Lie

algebroid structure become

[f2, f1] = [f1, f5] = [f4, f2] = [f5, f4] =
1

r2
f3,

[f3, f1] = [f4, f3] = f5[f2, f3] = [f3, f5] = f4,

ρ(f1) = ∂x, ρ(f2) = ∂y,

the remaining elements being zero.

The set of admissible velocities becomes thus the fiber of the distribution D, which

corresponds to D = {(xi, yα) ∈ E | y4 = y5 = 0}. The coordinates for these points are

therefore a = (x1, x2, y1, y2, y3) = (xi, yα), where in terms of the original set of coordinates

these correspond to y1 = ẋ1 = u1, y2 = ẋ2 = u2, y3 = ω3 = u3 and y4 = 0 = y5.

The dynamical system on the algebroid is defined by a Lagrangian function on E, which

can be written in terms of the velocities as L(x, y, ẋ, ẏ, ω1, ω2, ω3) =
1
2
[ẋ2+ ẏ2+k2(ω2

1 +ω
2
2 +

ω2
3)], and in terms of the quasi-velocities

L(xi, yα) =
1

2

[

(y1)2 + (y2)2+

k2r−2((y1)2 + (y2)2 + (y4)2 + (y5)2 − y2y5 − y1y4) + k2(y3)2
]

. (5.4)

1. Kinematic Control Problem

Consider the following problem: determine the minimal value among the set of admis-

sible solutions a : R → E, of the controlled Euler-Lagrange equations of the form δL(a(t)) =

0, a(t) ∈ D, where the cost fuction is κ(xi, ua) = 1
2

{

(u1)2 + (u2)2 + k2

r2
[(u2)2 + (u1)2] + k2(u3)2

}

.
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The control bundle is D, and the section we consider σ : (xi, ua) ∈ D → (xi, ua, 0, ua) ∈ E

is the canonical inclusion. Please notice that we use the notation ua to denote the elements

of the fiber of D when considered as the control bundle.

The Pontryagin Hamiltonian is then written as a function H ∈ C∞(E∗ ×R2 D). The

optimality conditions of the Maximum principle on this function imply

∂H

∂ua
= 0 ⇔ µa = cau

a, (5.5)

where c1 = c2 = 1 + k2/r2 and c3 = k2.

If we write the set of Pontryagin equations we see:

ẋi = yi, µ̇1 = µ3
µ2

c2r2
+ µ5

µ3

c3
, µ̇2 = −µ4

µ3

c3
− µ3

µ1

c1r2
,

µ̇3 = −µ5
µ1

c1
+ µ4

µ2

c2
, µ̇4 = −µ3

µ2

c2r2
− µ5

µ3

c3
, µ̇5 = µ4

µ3

c3
+ µ3

µ1

c1r2
.

Thus we can use (5.5) and the above equations to define the resulting system on D:

d2x

dt2

1

=
1

c1
(d2ω3 − ẋ2ω3),

d2x

dt2

2

=
1

c2
(ẋ1ω3 − d1ω3), ω̇3 =

1

c3
(d1ẋ

2 − d2ẋ
1),

with d1, d2 constants and c1 = c2 = 1 + k2/r2 and c3 = k2.

2. Dynamic Optimal Control Problem

Let us consider now a different control problem, where we are able to control the forces

acting on the system, i.e. we consider a system corresponding to (δL)a = ua, where L is

defined as (5.4) and δ represents the variational derivative. In this case, for the Lagrangian

given above, this implies that ẏa =
ua
ca
, a = 1, 2, 3; where again c1 = c2 = 1 + k2/r2 and

c3 = k2 (see equations 1.9.13 in [1]).

The control system is thus defined as a section σ : (xi, ya, ua) ∈ D⊕D
∗ 7→ (xi, ya, ya, 0, ua/ca) ∈

T ED. The cost function now is the energy provided by the control functions: κ(xi, ua) =

1
2

∑

a u
2
a. As a result, the Pontryagin Hamiltonian H ∈ C∞((T ED)∗ ×D B) reads now

H(xi, ya, µα, πa, ua) = µay
a + πa

ua

ca
− 1

2

∑

a u
2
a. The maximum principle applied to this

function results
∂H

∂ua
= 0 ⇔ ua =

πa
ca
, with a = 1, 2, 3.
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Then the optimal manifold correponds to this submanifold of (T ED)∗ ×D B.

The Pontryagin equations on (T ED)∗ ×D B are:

ẋi = yi, ẏa =
ua
ca
, π̇a = −µa

µ̇1 = µ3
y2

r2
+ µ5y

3, µ̇2 = −µ4y
3 − µ3

y1

r2
, µ̇3 = −µ5y

1 + µ4y
2,

µ̇4 = −µ̇1, µ̇5 = −µ̇2.

But if we restrict them to the optimized submanifold we obtain the reduced system:

d4x

dt4

1

= [
c3
c1r

]2ẋ2
d2ω

dt2 3
− ω3

d3x

dt3

2

−
e2
c21
ω3,

d4x

dt4

2

= −[
c3
c2r

]2ẋ1
d2ω

dt2 3
+ ω3

d3x

dt3

1

+
e1
c22
ω3,

d3ω3

dt3
= [

c2
c3
]2ẋ1

d3x

dt3

2

− [
c1
c3
]2ẋ2

d3x

dt3

1

+
e2
c23
ẋ1 −

e1
c23
ẋ2,

where c1 = c2 = 1 + k2/r2, c3 = k2 and e1, e2 are arbitrary constants.
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