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Palavras Chave comunicações quânticas, codificação na polarização, distribuição quântica de
chaves, estado de polarização, flutuação da polarização.

Resumo A quantidade de informação sensível, desde informação pessoal, financeira, ou
médica, até segredos comerciais ou governamentais, que é transmitida através
da internet teve um crescimento exponencial nos últimos anos. Este crescimento
veio reforçar a necessidade de termos sistemas de encriptação de dados altamente
seguros, nomeadamente na camada física dos sistemas. A distribuição de chaves
quântica (QKD) foi proposta como solução viável e promissora para manter a
segurança dos dados transmitidos, sendo que a segurança de sistemas QKD se
deve à implementação de protocolos criptográficos baseados nos princípios da
mecânica quântica.

Esta dissertação foca-se no estudo de técnicas de monitorização e controlo eletro-
ótico da polarização para ser aplicado em tecnologias quânticas, nomeadamente
em sistemas QKD com codificação na polarização. Inicialmente, as flutuações
aleatórias da polarização presentes em links de fibras óticas foram modeladas
e caracterizadas experimentalmente. A caracterização experimental incorporou
medições no laboratório e em campo. As medições em campo foram realizadas
em duas localidades diferentes: um anel de fibra ótica na cidade de Aveiro (com
um comprimento total de 6.6 km), e um link ótico na cidade de Lisboa (com
um comprimento de 3.1 km). Os resultados mostraram que as flutuações da
polarização são mais elevadas para as medições feitas em laboratório do que
as feitas em campo. De seguida, um algoritmo para a geração automática e
determinística de estados de polarização (SOP), com aplicação direta em sistemas
QKD com codificação na polarização, foi proposto e validado. O algoritmo de
geração de SOPs proposto usa um controlador eletrónico de polarização (EPC),
cujos elementos ativos consistem numa concatenação de várias lâminas de atraso
baseadas na aplicação de pressão na fibra. De forma a apoiar uma avaliação inicial
do algoritmo, realizou-se uma caracterização das lâminas de atraso do EPC. Por
fim, a eficiência do algoritmo foi experimentalmente averiguada utilizando um
sistema QKD com codificação na polarização. Um Arduino Due foi utilizado para
controlar as diferentes lâminas de atraso do EPC e para realizar uma estimação
da taxa de bits quânticos errados (QBER) do sistema. O QBER foi medido por
períodos de 4 horas e 10 horas, respetivamente, aquando da geração de dois ou
quatro SOPs. Considerando ambas as medições, obteve-se um QBER médio de
2%. Os resultados mostram o potencial do método proposto relativamente à
geração automática e determinística de SOPs, assim demonstrando viabilidade
para a sua implementação prática num sistema QKD com codificação na
polarização.





Keywords polarization-encoding, polarization drift, quantum communications, quantum key
distribution, state-of-polarization.

Abstract The amount of sensible information, ranging from personal, financial or health
data to commercial or governmental secrets, that is transmitted through the
Internet has shown exponential growth over the past few years. This growth
increased the need for highly secure encryption systems, namely at the physical
layer. Quantum key distribution (QKD) has been proposed as a viable and
promising solution to keep transmitted data safe, with its security relying on the
implementation of cryptographic protocols involving the principles of quantum
mechanics.

This dissertation focuses on the study of electro-optic polarization monitoring and
control techniques to be applied in quantum technologies, namely in polarization-
encoding QKD systems. Initially, the random polarization drift present in optical
fiber links was modeled and experimentally characterized. The experimental
characterization encompassed both laboratory and field measurements, with the
latter being carried out in two different sites: an optical loop in the city of Aveiro
(with a total fiber length of 6.6 km), and an optical link in the city of Lisbon
(with a fiber length of 3.1 km). The results showed a higher polarization drift for
the laboratory measurements than for the field measurements. After, an algorithm
for the automatic and deterministic state of polarization (SOP) generation
with direct application in polarization-encoded QKD systems was proposed and
validated. The proposed SOP generation algorithm uses an electronic polarization
controller (EPC), whose active elements entail the concatenation of several
fiber-squeezing-based waveplates. To support the initial algorithm assessment, a
full characterization of the waveplates was carried out. After, the effectiveness
of the proposed algorithm was experimentally assessed in a polarization-encoded
QKD testbed. An Arduino Due was used to control the different waveplates of
the EPC through the estimation of the quantum bit error rate (QBER) of the
system. The QBER was measured for periods of 4 hours and 10 hours when
generating two and four SOPs, respectively, with an overall average QBER of 2%.
Results show the potential of the proposed method regarding the generation of
automatic and deterministic SOPs, thus demonstrating viability for its practical
implementation in polarization-encoding QKD systems.
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Chapter 1

Introduction

1.1 Motivation and State-of-the-Art

Information security is nowadays a high important research and development topic, since
our personal, financial, and health data is transmitted over our communications networks.
Moreover, highly sensitive commercial and national secrets are routinely being transmitted
through the Internet [1]. To secure our digital data against an eavesdropper while it is
transmitted, we can encrypt the data using a cryptographic key only known from the le-
gitimate data users. Cryptographic keys are bit strings that should be random in such a
way that no third party can determine the key [2]. The digital data that is encrypted with
those keys can only be recovered using the original cryptographic key. An eavesdropper
unknowing the cryptographic key will not be able to infer anything useful about the original
data. In symmetric-key systems, the same key is shared by the transmitter and the receiver.
In practice, the sender encrypts the sensible information using a random bit string, sends
the encrypted data to the receiver, and the receiver decrypts the information using the
same key. Notice that this process requires a preliminary stage where the encryption key
is shared between the two parties [3]. However, this method presents a fundamental issue,
namely, how the receiver will have access to the random cryptographic key generated by
the transmitter. The process of sharing the key between the receiver and the transmitter is
called key distribution [4]. This key transit, between the transmitter and the receiver, can be
intercepted without the knowledge of the legitimate entities, enabling a third party to decode
the information shared between them. In this context, Quantum Key Distribution (QKD)
systems use the laws of quantum mechanics to enable the secure exchange of cryptographic
keys. This is in contrast with conventional cryptography, whose security is based on the
complexity of computational and mathematical algorithms. In QKD, the existence of an
eavesdropper on a given communication channel is revealed since one cannot clone with
maximum fidelity an unknown quantum state [5].

The development of QKD started in the 70s, while the first quantum cryptography
protocol Bennett-Brassard 1984 (BB84) was proposed in 1984 [6]. Only in the late 80s,
the practical implementation of this type of protocol was started [7]. Nevertheless, only
during this century, its use in communication networks for sensitive information security
started to be implemented, demanding a new era of communication technologies. Moreover,
the practical evolution of quantum computers over the last few years has also stressed the
need to increase the research of QKD systems [8]. This, mainly because the classical public
key cryptography that is used in current networks will be deeply compromised by the possible
forthcoming of a quantum computer running the Shor and/or Grover algorithms [9–11]. In
this light, QKD systems have turned out to be a promising solution for secret data sharing,
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offering unconditional security [12].
Information exchange is possible using optical fibers and free-space optical communication

channels [13]. The BB84 protocol for QKD was implemented using the State of Polarization
(SOP) of single photons [6]. Over the years more physical degrees-of-freedom of the electro-
magnetic field have been used for the same purpose, giving rise to more encoding methods
in quantum cryptography, e.g. phase coding [3], frequency coding [14], polarization entan-
glement [15], and energy-time entanglement [3].

Polarization encoding presents advantages over the other mentioned encoding methods,
namely for free-space optics applications [16]. When we consider an optical fiber as the
quantum channel, maintaining a constant State of Polarization (SOP) of an optical signal
has been the main issue for this encoding method [17]. The intrinsic residual birefringence
presented in optical fibers, which is related to a loss of circular symmetry of the fiber-optic
core [18], originates an undesired SOP drift, while extrinsic mechanisms cause that drift to
be random over time, according to the environmental conditions in which the fiber is located,
compromising the data transmission [19]. Some polarization drift compensation schemes have
already been developed reducing the impact of this issue [20, 21]. Nevertheless, polarization
encoding/decoding QKD systems are simpler to implement when compared with the phase
or frequency encoding system counterparts.

Until now, the research activities addressing the optic fiber-based QKD systems have
shown promising results regarding key metrics, e.g. the reach, key-rates, and practical
implementations [22,23]. This increased the efforts to develop efficient polarization encoding
and decoding units to support the implementation of QKD protocols, e.g. the BB84 protocol
[16]. The simplest way to generate the different SOPs, required to encode the quantum bits
(qubits), is the use of multiple lasers, each one with a different SOP. However, this method
suffers from side-channel information leakage [24]. Therefore, the development of efficient
methods to generate stable polarization states is now of great importance, ensuring the quality
of future polarization QKD systems. Several SOP generation schemes have been proposed, for
example, using balanced Mach-Zehnder interferometers [25], or fiber-based Sagnac loops [24],
among others. Even though the Mach-Zehnder scheme is simple to implement, it is highly
unstable because of its sensitivity to environmental perturbations [24]. On the other hand,
fiber-based Sagnac interferometers can generate highly stable SOPs, however, they present a
complex experimental implementation [24].

This dissertation presents a new scheme for stable SOP generation using an Electronic
Polarization Controller (EPC). The use of EPCs for SOP generation schemes presents a viable
solution given their low insertion loss, low cost, small size, wavelength insensitivity, and plug
and play versatility, overcoming several problems presented by other SOP generation schemes
[16]. Also, a study of the mentioned SOP drift in optical links in differing environmental
conditions is performed. This study is carried out to ensure the viability of polarization
encoding methods. To quantify the SOP drift, a new parameter, designated as polarization
linewidth [26], is calculated for different environments in this dissertation. The study of the
SOP drift increases the understanding of the mechanisms that originate it, helping to find
viable and efficient compensation solutions.

1.2 Dissertation Outline

This dissertation consists of five chapters. The thematics addressed in this work are
divided as follows:

Chapter 1: This first chapter incorporates a state-of-the-art, in which a description of
the development of QKD systems is made, mentioning previous works done on the subject,
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referring to the motivation of this dissertation, the advantages of the methods used, and some
objectives of this work.

Chapter 2: The second chapter addresses the theoretical formalisms, concepts, physical
effects, and devices used in this work. First, the concept of light polarization is briefly
introduced, with two of its most used mathematical description formalisms being presented
and explained. Then, an explanation of how the polarization of light can be used to encode
and decode information is made. After, the operation principle of QKD systems is briefly
introduced. The SOP evolution in optical fibers is described, namely through the presentation
of the mechanisms that cause the SOP drift and through the presentation of a theoretical
evolution model that statistically describes the SOP drift in optical fibers.

Chapter 3: The third chapter initiates the experimental part of this dissertation, where
some of the experimental techniques, such as the used apparatus and experimental setups,
are specified and explained. The experimental conditions in which the measurements were
made are also pointed out, and the experimental results for different environments are then
presented. Lastly, a discussion of the results presented in this chapter is made.

Chapter 4: The fourth chapter focuses on the SOP generation based on EPCs, compris-
ing both hardware and software implementations. This includes a theoretical description of
the method used to generate different SOPs. Moreover, the mathematical description of an
EPC and its experimental characterization is made. Also, the integration of the developed
algorithm into a practical QKD system is presented.

Chapter 5: The fifth chapter summarizes the main results of this work, presents the
main conclusion, and points out some future work.

1.3 Main Contributions
The most important contributions of this dissertation, compared to other studies in the

field, are:

• Characterization of the polarization time drifts in two in-field experiments.

• Development, implementation, and validation of a new algorithm for SOP generation
using an EPC.

• Integration of the proposed algorithm into a Discrete-Variable (DV) QKD system with
polarization encoding.

1.4 Publications Related With This Work
S. T. Mantey, M. F. Ramos, N. A. Silva, A. N. Pinto, N. J. Muga, Algorithm for State-of-

Polarization Generation in Polarization-Encoding Quantum Key Distribution, Accepted for
presentation in the Telecoms Conference (ConfTELE), Leiria, 11–12 February 2021.

N. J. Muga, M. F. Ramos, S. T. Mantey, N. A. Silva, A. N. Pinto, FPGA-Assisted
State-of-Polarization Generation for Polarization-Encoded Optical Communications, IET
Optoelectronics, Vol. 14, No. 6, pp. 350–355, 2020.

N. J. Muga, M. F. Ramos, S. T. Mantey, N. A. Silva, A. N. Pinto, Deterministic State-of-
Polarization Generation for Polarization-Encoded Optical Communications, Microwave and
Optoelectronics Conference (IMOC) SBMO/IEEE MTT-S International, Aveiro, 2019.
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Chapter 2

Theoretical Background

This chapter will briefly present the main theoretical concepts addressed in this disserta-
tion. As the polarization of light is one of the main focus, this will be the first physical concept
to be explained. Moreover, two polarization representation formalisms to describe the State
of Polarization (SOP) will be presented. Further on, an explanation of how polarization is
used to encode information to be applied in Quantum Key Distribution (QKD) systems will
be introduced. Finally, a brief description of the evolution of the SOP in optical fibers will
be presented.

2.1 Polarization Representation Formalisms

Light is an electromagnetic wave and polarization is one of the different observables that
characterizes it, such as the intensity or the wavelength [27]. A fundamental difference
between polarization and the intensity, or wavelength, of an electromagnetic wave is that the
polarization is not a scalar quantity. The vectorial nature of light is what is called polarization
[27]. Therefore, the polarization of light refers to the behavior of the electromagnetic field
vector over time, observed at a fixed point in space [28].

An electromagnetic wave is said to be transverse when its electric field is perpendicular to
the direction of wave propagation. The direction of the electric field defines the polarization
of light, and the polarization in a given time instance in space is called the SOP. Considering
Fresnel’s wave theory, the electric field consists of two orthogonal components [29], the x
and y components, which are the projection of the electric field vector on the x- and y-axis,
respectively. The most general SOP is the elliptical polarization, where each component is
defined by a given amplitude and phase [29]. Linear and circular polarization are specific cases
of elliptical polarization. When the orientation of the electric field remains constant over time,
linear polarization is observed, whereas, for an electric field orientation that varies, and if the
amplitudes of the two components are equal, we observe a circular polarization. For QKD
systems, linearly and circularly polarized light can be used to encode the information, given
that these polarizations are mutually unbiased [30]. The QKD and polarization encoding
systems will be explained in the following sections.

The two most used formalisms to describe the SOP are the Jones and the Stokes formal-
isms. The Jones formalism is obtained from the mathematical description of the phase and
amplitude of the light being analysed, whereas the Stokes formalism is based on intensity
measurements of the same light [31]. As the Jones formalism uses the phase and amplitude,
this method can be used to study the combination of two non-coherent waves, for example
in interferometers. The Stokes formalism, on the other hand, does not allow that study,
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only the combination of coherent beams, for example, in a situation where we have various
independent light sources, and where the beams are not superposed [27]. Another difference
between these two methods is the ability to handle different degrees of polarization. While
the Stokes formalism can describe light in its natural state, from a partially polarized state
up to a full polarized state, the Jones formalism can only describe full polarized light [27].
When light is referred to as being in its natural state, it is meant that it is unpolarized
so that the direction of the polarization fluctuates randomly and, on average, no particular
direction is predominant. On the other hand, full polarized light is when only one direction of
polarization is present, while partially polarized light consists in a intermediate state between
full polarized and unpolarized light. In this section, both of the formalisms will be presented
such as their mathematical description.

2.1.1 Jones Formalism

The Jones formalism describes the SOP by a two-dimensional complex vector that con-
tains the phase and amplitude of light of both x and y components of the electric field,
Ex(z, t) and Ey(z, t), respectively. Thus, the Jones vector can be written as follows [27]:

E =
(
Ex(z, t)
Ey(z, t)

)
=
(
E0xe

i(wt−kz+δx)

E0ye
i(wt−kz+δy)

)
, (2.1)

where t represents the time, z is the propagation distance, w is the optical frequency, k is the
wave vector, δx and δy are the phases of the x and y components of the wave, respectively,
and E0x and E0y represent the amplitudes of the x and y components, respectively. After
suppressing the propagation term wt−kz in equation (2.1), the Jones vector can be rewritten
as [27]:

E ≡ |E〉 =
(
Ex
Ey

)
=
(
E0xe

iδx

E0ye
iδy

)
. (2.2)

Ex and Ey are complex quantities, the Jones vector acquires its imaginary component through
the exponential term. To normalize the vector represented in (2.2) it is assumed that the
intensity of the wave is given by I = E2

0x + E2
0y = E2

0 , where E2
0 is usually considered equal

to 1 when properly normalized [27].
Taking as an example the linear horizontal polarization, where there is no electric field

along the y-axis, see Fig. 2.1, the respective Jones vector is written as:

|E〉 =
(
E0xe

iδx

0

)
, (2.3)

Normalizing the vector in (2.3), considering E2
0x = 1, and as eiδx has a norm of 1, the

Jones vector for horizontal polarization can be rewritten as shown in (2.4) by |H〉. Similarly,
the Jones vectors for the vertical (|V 〉), diagonal (|+45〉), anti-diagonal (|−45〉), right-hand
circular (|R〉), and left-hand circular (|L〉) SOP can be determined as follows:
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|H〉 =
(

1
0

)
, (2.4)

|+45〉 = 1√
2

(
1
1

)
, (2.5)

|R〉 = 1√
2

(
1
i

)
, (2.6)

|V 〉 =
(

0
1

)
, (2.7)

|−45〉 = 1√
2

(
1
−1

)
, (2.8)

|L〉 = 1√
2

(
1
−i

)
. (2.9)

Figure 2.1: Schematic representation of the time evolution of an optical field linearly polarized
along the x-axis.

The Jones matrices describe the polarization variation that an optic component induces
and, therefore, they represent the transfer function of such an optical component, relating
the input SOP with the output SOP. Given that the Jones matrices have dimension 2 × 2,
and as the elements of the matrices are complex, there are eight variables to describe the
eight existing types of polarization behavior [27]. To determine the Jones matrices it is
assumed that the output components of the light beam that arises from the optical elements
are linearly related to the incident beam. Therefore, one can write the following relation [27]:

|E′〉 =
(
E′x
E′y

)
≡ J |E〉 =

(
jxx jxy
jyx jyy

)(
Ex
Ey

)
, (2.10)

where |E′〉 represents the output electric field, E′x and E′y are the components of the electric
field at the output of the optical element, Ex and Ey are the components at its entrance, and
J is the Jones matrix representing the optical element, whose complex entries are given by
jxx, jxy, jyx, and jyy.

Hereafter, we will use kets (|·〉) to represent the Jones vectors.

2.1.2 Stokes Formalism

One alternative polarization description method to the Jones formalism is the Stokes
formalism [32]. This formalism describes the SOP using four quantities called the Stokes
parameters. The Stokes parameters are directly obtained from intensity measurements of
the light beam, being this way real quantities, on the contrary of what happens in the Jones
formalism. Mathematically these parameters can be represented as follows [27]:
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S0 = E2
0x + E2

0y, (2.11)
S1 = E2

0x − E2
0y, (2.12)

S2 = 2E2
0xE

2
0y cos(δ), (2.13)

S3 = 2E2
0xE

2
0y sin(δ), (2.14)

where E0x and E0y are the same as defined in (2.2), in the previous section, δ is the phase
difference of the wave such that δ = δy − δx. From the above-written equations, it is possible
to verify that S0 is the total intensity of the light beam, S1 quantifies the light with linear
horizontal versus with linear vertical polarization, which can be obtained by calculating the
difference between intensities of the signal measured after it passes through a linear horizontal
and a linear vertical polarizer, S2 describes the quantity of linear +45◦ or −45◦ polarized
light, obtained from the difference between intensities of the signal measured after it passes
through a linear +45◦ and −45◦ polarizer, and, lastly, S3 describes the quantity of light
with right- or left-hand circular polarization, in this case, obtained from the difference of
intensities of the signal measured after it passes through of a right- and left-hand circular
polarizer [33, 34]. Considering the above description of the Stokes parameters, the Stokes
vector is written as a 4-dimensional vector:

S =


E2

0x + E2
0y

E2
0x − E2

0y
2E2

0xE
2
0y cos(δ)

2E2
0xE

2
0y sin(δ)

 . (2.15)

Considering again the linear horizontal polarization as an example, where E2
0y = 0, the Stokes

vector (2.15) is written as:

SH = I


1
1
0
0

 , (2.16)

where I is the total intensity of the beam and I = E2
0x. From (2.15), by normalizing the

Stokes vector to I it is possible to define a 3-dimensional normalized Stokes vector, s, whose
entries are given by si = Si/S0, with i = 1, 2, and 3 [34].

A key advantage of this formalism is the representativeness of the SOP on the Poincaré
sphere, as shown in Fig. 2.2. To represent a Stokes vector on the Poincaré sphere the three
Stokes parameters, s1, s2, and s3, have to be seen as the coordinates of a point over the
surface of the sphere. Using this representation, every existing SOP can be represented by
a single point on the surface of this sphere. The equator of the Poincaré sphere holds for
all the linear SOPs (that is, for s3 = 0), while the poles hold for the circular polarization
(right-hand circular on the north pole and left-hand circular on the south pole), the points
lying between the equator and the poles represent elliptic SOPs [29].

The Stokes formalism can also represent the interaction of optical components with light
through matrices. It is assumed that the Stokes vector of the incident beam, S, characterized
by the Stokes parameters Si, with i = 0, 1, 2 and 3, exhibits a linear dependency with the
output Stokes vector, S′, after interacting with an optical component. This linear dependency
can be written as [27]:
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Figure 2.2: Poincaré sphere with the 6 SOPs: |H〉 - horizontal; |V 〉 - vertical; |+45〉 - diagonal;
|−45〉 - anti-diagonal; |R〉 - right-hand circular; |L〉 - left-hand circular.

S′0 = m00S0 +m01S1 +m02S2 +m03S3, (2.17)
S′1 = m10S0 +m11S1 +m12S2 +m13S3, (2.18)
S′2 = m20S0 +m21S1 +m22S2 +m23S3, (2.19)
S′0 = m30S0 +m31S1 +m32S2 +m33S3, (2.20)

where mji, with i, j = 0, ..., 3, are the Muller coefficients. By writing the system of equations
from (2.17) to (2.20) in the matrix form, the following is obtained:

S′0
S′1
S′2
S′3

 =


m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33



S0
S1
S2
S3

 ≡ S′ = M · S, (2.21)

whereM is the Mueller matrix, with dimension 4×4. On the Poincaré sphere, a SOP change
is translated into a rotation of the point on the sphere, therefore, the Mueller matrices are also
known as rotation matrices with dimension 3×3. Notice that for a system that only presents
unitary transformations, i.e. no gain and no polarization-dependent losses, the matrix M
can be written as a 3× 3 dimension matrix, instead of 4× 4 [35].

The transfer matrices of the two presented formalisms, Jones and Stokes, can be related
using Pauli’s spin matrices. For instance, the elements of the Mueller matrix can be deter-
mined from the Jones matrix using the following expression [34,36]:

mij = 1
2Tr(JσjJTσi), (2.22)

where Tr(x) denotes the trace of the matrix x, the superscript T denotes the conjugate, and
σi, with i = 1...3, are the Pauli matrices, defined as [27]:
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σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.23)

In both formalisms, Jones and Stokes, an optical system comprised by the concatenation
of various optical components can be mathematically represented by the product of the n
matrices that characterize the different optical components of the system. In the Stokes
formalism, such a system can be described by the following expression [36]:

M = MnMn−1 . . .M2M1. (2.24)

2.2 Polarization in QKD systems
This section addresses the use of the SOP of an optical signal to encode information

in quantum systems. For particular polarizations, we present the polarization encoding and
decoding subsystems, how they can be applied in a QKD system, and the Quantum Bit Error
Rate (QBER) as a metric to quantify the quality of the qubit transmission.

2.2.1 Polarization Encoding and Decoding

In a quantum information transmission system, there is an emitter (usually called Alice),
a receiver (usually called Bob), and a quantum channel, where the information is transported
by qubits. To describe these systems mathematically, the state of the qubit is represented as
|Φ〉, such that [37]:

|Φ〉 = α |0〉+ β |1〉 . (2.25)

The base |0〉 , |1〉 represent two eigenstates in which the qubit can be measured. The
probability of measuring each one of the states (|0〉 or |1〉) is equal if |α| = |β| = 1√

2 .
When information is encoded in the SOP the bases used for encoding are mutually non-

orthogonal, however, the two eigenstates that can be measured in each base are orthogonal.
The polarization is a Hilbert space with dimension 2. In that space, it is possible to
define three mutually non-orthogonal bases. The rectilinear base (+), that is defined by
the horizontal polarization, as represented in (2.4), and by the vertical polarization, as
represented in (2.7). The diagonal base (×), non-orthogonal to the rectilinear base, defined
by the diagonal polarization, represented in (2.5), and by the anti-diagonal polarization, as
represented in (2.8). The circular base (#), non-orthogonal to the other two bases mentioned
above, that is defined by the left-hand circular polarization, as represented in (2.9), and by
the right-hand circular polarization, as represented in (2.6) [3].

After the previous agreement regarding the bases to be used in the selected quantum
protocol, Alice can now send qubits to Bob through the quantum channel, typically an optical
fiber. The quantum protocols, e.g. the QKD, take advantage of the uncertainty principle
of Heisenberg and the no-cloning theorem [3]. The uncertainty principle and the no-cloning
theorem make a QKD system unconditionally secure, preventing a third entity, usually called
Eve, to read the transmitted information without being detected. The no-cloning theorem
postulates that it is impossible to create an identical replica of a given state, being this way
directly related to the uncertainty principle. This principle states that it is impossible to
know some given pairs of physical properties, X and Y , with arbitrary precision, being the
respective uncertainties, ∆X and ∆Y , related as follows [38]:

∆X2∆Y 2 ≥ 1
4
∣∣〈[X,Y ]〉∣∣2 , (2.26)
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Figure 2.3: Schematic representation of a possible setup for a polarization decoding system.
Polarization encoded photons are aligned by a PC with one base (rectilinear or diagonal).
After, a PBS separates the differently polarized photons and directs them to the SPDs.

where [X,Y ] ≡ XY − Y X is the commutator. Because of the uncertainty principle, it is not
possible to know all characteristics of a given state, and as a result, the cloning of that state
is impossible.

The decoding process in polarization-based QKD systems requires a method to determine
the polarization of the incoming polarized photons. That can be done using a polarization
decoding system, see Fig. 2.3, comprised by a Polarization Controller (PC), that aligns the
receiver with the base in which the measurement will be made, a Polarization Beam Splitter
(PBS), and two Single-Photon Detector (SPD)s, making it possible to distinguish between
horizontal, vertical, diagonal and anti-diagonal polarization. After the PC, the PBS splits
the beam into two polarized beams and directs them to the SPDs. Whether the SPD1 or the
SPD2 clicks determines how the detected photon was polarized and allows to distinguish if a
0 or a 1 was sent.

2.2.2 Brief Description of a QKD System

In 1984, Bennett and Brassard proposed the first QKD protocol, presenting a new idea
for an innovating key distribution system for cryptography purposes. That pioneering QKD
protocol is known as the BB84 [6]. The proposed protocol was based on the idea of encoding
the information in the SOP of single photons. Any eavesdropper would not be able to access
the information without remaining undetected by Alice and Bob given the no-cloning theorem
and the uncertainty principle. Fig. 2.4 illustrates the BB84 protocol.

The BB84 works as follows: Alice chooses a sequence of random bits and a random
sequence of polarization basis, rectilinear (+) or diagonal (×), to encode each bit. She
encodes the bits with the respective base using polarized photons and sends them to Bob
over a quantum channel. Each base contains two polarization states, the rectilinear base
contains the |H〉 and the |V 〉 polarization state, while the diagonal base contains the |+45〉
and |−45〉 polarization state. Usually, |H〉 and |+45〉 represent a binary zero, and |V 〉 and
|−45〉 represent a binary one.

Bob chooses one base randomly, and independently from Alice, to measure each received
photon. He interprets the measurements as zero or one and records the information and the
respective base he used to measure each photon. After sending and measuring the qubits,
Alice and Bob use a classical channel to share the bases used in the coding/decoding process.
Therefore, if Bob measures a given photon with the wrong base, for example, a rectilinear
photon with a diagonal base, the information of that photon is discarded during the bases
agreement phase of the protocol. Therefore, as Bob’s choice of basis is random, only half of the
photons Bob receives represent meaningful information, corresponding to the measurements
where Bob did the right base guess [6].
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Figure 2.4: Schematic representation of the principle of the BB84 protocol. Alice chooses
a random bit string and a random sequence of bases that is composed out of two possible
polarization bases (rectilinear and diagonal). Each base has two polarization states, one
corresponding to a binary one and the other to a binary zero. Alice encodes the bits and
sends the polarized photons to Bob, who receives the photons and measures their polarization
using, also, a randomly chosen basis for each photon. The basis that Bob used to obtain his
bit sequence is then compared with the basis Alice used. The bits for which Bob chose the
right basis compose the secret key. Eve represents the eavesdropper.

Over a public (classical) channel, that is considered to be susceptible to eavesdropping
but not to alterations of the sent message, Alice and Bob determine which photons were
effectively received. This verification is necessary given that some photons might get lost over
the transmission or, as the detectors are not perfect, some photons might not be detected.
After this step, Alice and Bob, remain with a secret key only known to them. Some of these
bits can be transmitted using a classical channel, to compare them and verify if they agree.
These control bits can be used to measure the quality of the transmission, by calculating, for
example, the QBER, which will be explained in the next subsection.

2.2.3 Quantum Bit Error Rate

The QBER is a measure of the quality of the information transfer in a quantum com-
munication system. This parameter is obtained by the ratio of wrong bits received, Nwrong,
to the total received bits (Nwrong + Nright), as written, in terms of ratios, in the following
equation [3]:

QBER = Nwrong
Nwrong +Nright

= Rerror
Rerror +Rsift

, (2.27)

where Rerror is the rate of error and Rsift corresponds to the rate of the sifted key, which
relates to the raw key rate as Rsift = 1/2Rraw, given that, statistically, Alice and Bob only
make compatible base choices in half of the raw key [3]. The raw key rate and the sifted key
rate can be written as:

Rsift = 1
2Rraw = 1

2frepµtlinkη, (2.28)

where frep is the pulse rate, µ is the mean number of photons per pulse, tlink is the proba-
bility of a photon arriving at the detector, that is, the transmission efficiency, and η is the
probability of the photon being detected by the SPD [3].

There are three main identifiable contributions to the total error rate [3]:
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• Ropt - This rate accounts for the probability of a photon going to the wrong detector,
popt. Ropt can be calculated by the product of Rsift by the mentioned probability, such
that:

Ropt = Rsiftpopt. (2.29)

• Rdet - This rate arises from dark counts of the detector, which corresponds to counts
that were registered without any incident light. Only dark counts that occur in the
short period in which a photon is expected to be detected, are accounted for this rate.
Rdet can be written such that:

Rdet = 1
4freppdarkn, (2.30)

where pdark is the probability of a dark count occurring, in one detector and one short
period and n is the number of detectors. The 1

4 has to do with the 50% probability of
the dark count occurring in the right detector, plus, the 50% probability of the dark
count occurring when Alice and Bob chose incompatible bases.

• Racc - The last contribution to the total error rate arises due to imperfect photon
sources. However, these error counts only occur in systems that handle entangled
photons, which is not the case in this work, therefore, this rate will not be considered.

Finally, the total QBER can be expressed as follows:

QBER =Ropt +Rdet
Rsift

(2.31)

=popt + pdarkn

2µtlinkη
(2.32)

=QBERopt + QBERdet. (2.33)

The first term of (2.33), QBERopt, is not affected by the transmission efficiency of the fiber
link. This parameter can be used as a measure of the optical quality of the used setup and
is usually around 1%, however, this value can be difficult to maintain given the polarization
fluctuations and depolarization that can occur along the optical link. On the other hand,
the second term, QBERdet, depends on the transmission efficiency given that the dark count
rate increases with distance.

2.3 Evolution of the SOP in Optical Fibers

Currently, QKD systems are mainly supported by optical fibers that act as the quantum
channel. Optical fibers are made of silica and are composed by a core, in which the light is
guided, embedded in an outer cladding with a slightly lower refractive index. Such refractive
index difference permits the total internal reflection of light inside the core, enabling the
transmission of light through the fiber for long distances with a typical attenuation value
around 0.2 dB/km in the 1550 nm spectral window [39]. In general, the optical signal
propagation in this waveguide is affected by several effects, such as attenuation, dispersion,
polarization effects, and nonlinear effects. However, the dispersion and the nonlinear effects
are negligible in quantum links. On the other hand, attenuation plays a key role in fiber-
optic QKD systems as it limits the reach of QKD systems. Regarding the polarization
effects, they represent a compromising factor for polarization-encoded QKD as they may
lead to misalignment between the polarization referential of Alice and Bob. There are many
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effects that change the polarization of a signal when propagating in an optical fiber. The
most relevant effect is the birefringence. As some of the birefringence mechanisms are due
to non-predictable environmental perturbations, stochastic evolution models must be used to
assess the effect of such mechanisms on the polarization [26].

2.3.1 Birefringence Mechanisms

A perfectly isotropic fiber would not exhibit birefringent effects, therefore, the polarization
of the output signal would be the same as the polarization of the input signal [40]. However,
the fibers installed in the field are not perfect, exhibiting non-negligible values of birefringence.

There are two types of mechanisms causing birefringence in fibers: intrinsic and extrinsic
mechanisms. The main difference between these two types of birefringent mechanisms lays
in their dependence on time: intrinsic mechanisms are, usually, constant over time, while
extrinsic mechanisms vary over time. The intrinsic mechanisms can occur due to imper-
fections of the fiber possibly caused by the fabrication process, for example, core ovality,
internal stress, micro-bubbles, or impurity concentrations, as schematically represented by
Fig. 2.5 (a) i), ii) and iii), respectively [31]. The extrinsic mechanisms, on the other hand,
induce imperfections to the fiber because of environmental perturbations. For example, wind,
temperature variation, mechanic stress, among others, cause tensions that can curve, squeeze,
or twist the fiber, as schematically shown by Fig. 2.5 (b) i), ii) and iii), respectively [34]. These
last-mentioned mechanisms fluctuate over time.

(a)

(b)

Figure 2.5: (a) Intrinsic birefringence mechanisms in optical fibers; i) Core ovality; ii) Internal
stress; iii) Micro-bubbles or impurity concentrations; (b) Extrinsic birefringence mechanisms
in optical fibers; i) Squeezing; ii) Bending; iii) Twisting. Adapted from [31] and [34].

The above-mentioned fiber imperfections cause a loss of symmetry of the fiber core, such
that the two orthogonal directions x and y will have different effective refractive indexes.
This refractive index anisotropy leads to polarization changes [40].

Extrinsic mechanisms are therefore the most problematic birefringence mechanisms, par-
ticularly for polarization-encoding QKD systems, given that they depend on many variables
that alter the input SOP in a non-predictable way. Given the huge amount of variables that
induce birefringence over time and space, the SOP variation can be considered random and
needs to be described by stochastic evolution models [26].
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2.3.2 Stochastic Evolution Modeling

To model the evolution of the SOP we are going to use the Stokes formalisms, taking
advantage of the easier visualization of the SOP change on the Poincaré sphere. This
evolution model emulates a random walk on the Poincaré sphere, accounting for random
polarization drifts, based on a method described by [26]. There are other models that emulate
the random polarization drift, however, most of them introduce deterministic changes in the
SOP [41–44], or use a constant randomly chosen SOP for polarization demultiplexing [45–48],
and do not study the behavior of an unbiased SOP. Moreover, there are statistical models
to describe the differential group delay and polarization-mode dispersion, however, using
intensity modulation or single-polarization phase shift keying formats, which are not affected
by the SOP drift [49]. Literature also presents some works where direct measurements of
fast SOP changes were made, however, these SOP changes were induced in a dispersion
compensating module in the laboratory and do not consider the random drift of the SOP
in an entire optical link [50]. The model presented by [26] is the first one that emulates
the random drift of the SOP, it assumes that the polarization drift can be described by a
succession of random Jones or Mueller matrices, depending on the formalism used, where
each one of the transfer matrices is parametrized by three random parameters that follow a
normal distribution.

As described in section 2.1.2, a unitary propagation of the optical field can be described
by a 3× 3 Muller matrixM . The evolution of the SOP vector is considered to be as follows:

rk = Mkuk , (2.34)

where rk is the output SOP after the actuation of the evolution Mueller matrix Mk on
the input SOP, uk , and k denotes the iteration number. The Mueller matrix in (2.34) can
be written as Mk = M(αk), where M(·) is expressed as an exponential function, with
α = (α1, α2, α3) being a vector of parameters that model the random fluctuations of the
SOP, such that [26]:

M(α) = exp(2K(α)) (2.35)
= exp(2θK(a)) (2.36)
= I3 + sin(2θ)K(a) +

[
1− cos(2θ)

]
K(a)2, (2.37)

where I3 is the identity matrix with dimension 3× 3, θ is the length of α, so θ =‖α‖, being
also the angle of rotation of the Poincaré sphere that represents the SOP transformation, a is
a unit vector, such that a = (a1, a2, a3) represents the direction of α. These three parameters
can be related such that α = θa. In (2.35)–(2.37) K(a) denotes [26]:

K(a) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (2.38)

The time evolution of Mk is described as:

Mk = M(α̇k)Mk−1, (2.39)

where M(α̇k) is a random innovation matrix and α̇k is a random vector with a zero mean
normal distribution, such that α̇k ∼ N (0, σ2

pI3), with σ2
p being the variance of the distribution.

The variance, σ2
p, can be defined as follows [26]:

σ2
p = 2π∆pT, (2.40)
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where ∆p is the polarization linewidth, which quantifies the speed of the SOP drift, and T
is the sampling period.

For the simulations, the vector α was generated using the randn(3, k) function of Matlab,
which creates a 3×k array of normally distributed random numbers, to simulate the randomness
of the SOP drift. In a first analysis, we have used a variance of σ2

p = 6×10−4 (∆p = 4×10−5),
a period of 2.2 hours, and the initial Stokes vector was assumed to be (0, 0, 1)T . Figs. 2.6
and 2.7 show the evolution of the modeled SOP for (a) 300 iterations, (b) 1500 iterations
and (c) 3000 iterations. While Fig. 2.6 represents the Stokes parameters time drift on the
Poincaré sphere, Fig. 2.7 shows the same of each parameter s1, s2 and s3. The color gradient
in Fig. 2.6 represents the time evolution, such that the initial SOPs are represented as red
dots and at the end as yellow dots. From Figs. 2.6 and 2.7, it is possible to observe the

Figure 2.6: Stochastic evolution of the SOP drift, represented on the Poincaré sphere,
obtained by (2.34), with σ2

p = 6 × 10−4, a period of 2.2 hours, and using an input Stokes
vector of (0, 0, 1)T . The evolution model was made for: (a) 300 iterations; (b) 1500 iterations;
(c) and 3000 iterations. The color variation from red to yellow represents the time evolution,
where red is the beginning SOP and yellow the end SOP.

Figure 2.7: 2D time evolution of the Stokes parameters presented in Fig. 2.6, for a variance of
σ2
p = 6× 10−4, a period of 2.2 hours, using an input Stokes vector of (0, 0, 1)T and a number

of iterations of: (a) 300, (b) 1500, and (c) 3000.

randomness of the polarization drift, where each SOP is independent of the previous SOP
and has an equal probability for every direction. The speed of the drift can be characterized
by the variance that is set by the polarization linewidth parameter, ∆p, as referred to in
(2.40).
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In order to assess the real impact of the parameter ∆p on the speed of the SOP drift, we
have performed a set of simulations considering different values for this parameter. Figs. 2.8
and 2.9 show the obtained SOPs represented on the Poincaré sphere and its 2D representation,
respectively, for different variance values: (a) σ2

p = 6×10−5 (∆p = 4×10−6), (b) σ2
p = 6×10−4

(∆p = 4 × 10−5), and (c) σ2
p = 6 × 10−3 (∆p = 4 × 10−4). The three plots have the same

number of iterations: 1500. A period of 2.2 hours was used and the initial Stokes vector was
(0, 0, 1)T . Results show that higher values of the variance induce faster time drifts in the
SOP of the optical signal.

Figure 2.8: Stochastic evolution of the SOP drift, represented on the Poincaré sphere,
obtained by (2.34), with 1500 iterations, a period of 2.2 hours, and using an input Stokes
vector of (0, 0, 1)T . The evolution models were made for a variance of: (a) σ2

p = 6× 10−5, (b)
σ2
p = 6× 10−4, and (c) σ2

p = 6× 10−3. The color variation from red to yellow represents the
time evolution, where red is the beginning and yellow the end.

Figure 2.9: 2D time evolution of the Stokes parameters presented in Fig. 2.8, with 1500
iterations, a period of 2.2 hours, using an input Stokes vector of (0, 0, 1)T and a variance of:
(a) σ2

p = 6× 10−5, (b) σ2
p = 6× 10−4, and (c) σ2

p = 6× 10−3.

2.3.3 Polarization Linewidth and Autocorrelation Function

As referred in the previous Section 2.3.2, the polarization linewidth parameter, ∆p,
determines the speed of the SOP drift and it is dependent on the details of the system. Thus,
to characterize the random SOP drift of a given system during the information transmission
process using optical fibers, the parameter ∆p can be used. Hence, the ∆p can be deter-
mined by calculating the Autocorrelation Function (ACF) between the various SOPs, using
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the definition presented in [26]. The ACF quantifies the correlation that exists between a
pair of samples taken at different time instances of a random process and it is obtained
by calculating the expected value of the product of two Stokes vectors corresponding to two
samples. Using the Stokes formalism, the ACF of the random drift of SOPs can be determined
as follows [26]:

ACF(l) = E[rTk rk+l] (2.41)
= E[(Mku)TMk+lu] (2.42)

= ‖u‖2
2(1− 4σ2

p) exp(−2σ2
p) + 1

3

|l|, (2.43)

where E[·] denotes the expected value, r = Mku, u being the input SOP, k is the iteration, l is
the normalized time separation between samples such that lT is the absolute time separation,
and Mk is the transfer function matrix. In (2.43), σ2

p is the variance of the zero-mean
Gaussian adjustment distribution for the SOPs time evolution. When σp � 1, the following
approximations are possible [26]:

exp(−2σ2
p) ≈ 1− 2σ2

p, (2.44)
σ4
p ≈ 0, (2.45)

(1− 8π|l|T∆p/|l|)|l| ≈ exp(−8π|l|T∆p). (2.46)

By using the three previous approximations into (2.43), the ACF can be written as [26]:

ACF(l) ≈‖u‖2 exp(−8π|l|T∆p). (2.47)

Equation (2.47) was used in order to adjust an exponential curve to the numerical data.
After obtaining the equation of the adjusted curve it is possible to extract the respective ∆p
parameter. In conclusion, this model can be used to characterize the SOP stability of certain
fiber-optic links, and, therefore, it is useful to support polarization encoded QKD systems.
In the next chapter, we are going to use this technique to calculate the ∆p parameter of two
fiber links installed in two different cities.

Fig. 2.10 shows the representation of several ACFs, obtained from a set of five runs. The
simulated ACF curves were determined from simulated data that was obtained using the
method described in Section 2.3.2, using the same parameters: a variance of σ2

p = 6× 10−4,
a T = 2.2 hours, and 3001 iterations. However, the ACF was determined only for 1/4 of the
generated SOPs, corresponding to |l| = 0, ..., 750. Higher fractions would cause imprecisions.
It is possible to see that the simulated ACF curves, oscillate around the theoretical curve,
that was obtained using (2.47).
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Figure 2.10: Theoretical ACF, (2.47), with T = 2.2 hours, a variance of σ2
p = 6 × 10−4 and

3000 iterations. The simulated ACFs were obtained from a set of five runs using the same
parameters as the theoretical ACF.
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Chapter 3

Experimental Assessment of
Polarization Drift in Quantum
Links

In this chapter, the practical implementation of the polarization drift measurements
for the assessment of quantum links will be discussed. Initially, a brief description of the
experimental techniques and apparatus will be presented. Regarding the experimental SOP
drift results, we will start by presenting the measurements obtained in the laboratory and
after we will present the field measurements in two different locations.

3.1 Electro-Optic and Polarization Techniques
In order to accomplish the experimental part of this dissertation, several techniques

and apparatus were used. Hence, before presenting the experimental results, the most
relevant techniques and apparatus used for the polarization drift measurements, such as the
polarimeter and the Optical Time-Domain Reflectometer (OTDR), will be briefly described.

3.1.1 Polarimeter

A polarimeter is an opto-electronic device that allows measuring the Stokes parameters
of an optical field. This device comprises three fundamental elements, a rotating Quarter
Waveplate (QWP), a Linear Polarizer (LP), and a p-i-n Photodiode (PIN), arranged in
proper order, as shown in Fig. 3.1. In the following section, the working principle of these
elements is described.

Figure 3.1: Representative scheme of the polarimeter, where the input signal focuses on the
rotating QWP, then on the LP, and lastly on the PIN.
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Waveplates

In practice, a waveplate is a crystalline material placed in the path of the light, inducing
an additional phase shift between the two orthogonal components of the optical field, as
schematically shown in Fig. 3.2. The crystal is cut so that its surface is parallel to the
optic axis (axis for which the light does not suffer birefringence [51]). The component of the
electric field that is aligned with the optical axis will travel with a different velocity than the
perpendicular component, due to the difference between the refractive indexes.

Figure 3.2: Schematic representation of the operation principle of a waveplate. A linear
diagonal polarized signal passes through the crystalline material that delays one of the
components of the signal in relation to the other component. The figure represents a Half
Waveplate (HWP) as one of the components of the signal is delayed by λ0/2 (π radians)
with respect to the other, making the output signal polarization to be linear anti-diagonal.
Adapted from [51].

The final phase difference, ∆ϕ, between the two components depends on the width of the
crystal, and the difference between the refractive indices [34,52]:

∆ϕ = 2π
λ0
d∆n, (3.1)

where λ0 is the vacuum wavelength, d is the thickness of the medium, and ∆n is the difference
between the refractive indices, which can be defined as ∆n = |no − ne|, with no and ne
standing for the ordinary and extraordinary refractive indices, respectively [51]. Using the
definition of the optic path difference between the two components Λ = d∆n, equation (3.1)
can be rewritten as [34,52]:

∆ϕ = k0Λ, (3.2)

where k0 is the vacuum wavenumber.
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In the specific case of a QWP, the resultant relative phase difference between the two
components is ∆ϕ = π/2. One can obtain that result when Λ is written in terms of
wavelength fractions, such that Λ = λ0/m, with m = 4 for a QWP. By replacing Λ by
λ0/4 in (3.2), a phase difference of ∆ϕ = π/2 is obtained. The general waveplate matrix can
be mathematically represented by the following Muller matrix:

MWP =


1 0 0 0
0 cos2 2θ + sin2 2θ cosφ (1− cosφ) sin 2θ cos 2θ − sin 2θ sinφ
0 (1− cosφ) sin 2θ cos 2θ sin2 2θ + cos2 2θ cosφ cos 2θ sinφ
0 sin 2θ sinφ − cos 2θ sinφ cosφ

 , (3.3)

where φ represents the phase retardation, and θ stands for the fast axis orientation of the
waveplate.

Notice that if the QWP is rotated, the alignment of its optical axis will be changed
accordingly. Such a rotating waveplate will transform a fixed input SOP into an output SOP
that is continuously changing. The resulting output will focus on a polarizer, see Fig. 3.1.

Linear Polarizer

A LP is an optical device that takes a given input signal and transmits only the light
that is polarized in the direction of the axis of the polarizer. An ideal polarizer transmits
100% of the light parallel to its axis, while it blocks the orthogonal polarization state. In the
case of real polarizers, as they are not perfect, they can be characterized by the polarization
efficiency, P [53]:

P = Tmax − Tmin
Tmax + Tmin

, (3.4)

where Tmax and Tmin are the maximum and minimum transmittance of a polarizer, respec-
tively. The maximum transmittance can be obtained when a polarized light beam is focused
on a polarizer with its axis parallel to the polarization of the light, while the minimum
transmittance is obtained when the polarized light is perpendicular to the axis of the polarizer,
as schematically shown in Fig. 3.3.

(a) (b)

Figure 3.3: Schematic representation of the transmittance of a polarizer: (a) when the
polarization of the incident light is parallel to the transmission axis of a LP the transmittance
at the output is maximized; (b) when the polarization of the incident light is perpendicular
to the transmission axis of a LP the transmittance at the output is minimized.
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Measurement of the Stokes Parameters

The photocurrent is detected by the photodiode at the output of the polarizer, as shown
in Fig. 3.1. This photocurrent is proportional to the optical power, i.e. to the square of the
electric field [54]. After the detection in the photodiode, the signal is Fourier transformed,
resulting in three components, a DC component, a component with the double of the rotation
frequency of the rotating waveplate, and a component with the quadruple of the waveplate
rotation frequency, with a phase shift [54]. For elliptical polarizations, none of the components
will be zero. On the other hand, circular polarization will only produce the component with
the double frequency, whereas linear polarization will only produce the component with the
quadruple frequency [54]. The values of these components will be used to determine the
Stokes parameters.

In the following, we describe how the mentioned components are determined and how
they serve to determine the Stokes parameters. An electromagnetic wave, after passing
through a waveplate, where the y-component is subjected to a retardation φ regarding to the
x-component, and then through a polarizer, can be written as [55]:

E(θ, φ) = Ex cos θ + Eye
iφ sin θ, (3.5)

where θ is the orientation of the linear polarizer. One can derive the intensity of the same
wave as follows [55]:

I(θ, φ) = 〈E(θ, φ)E∗(θ, φ)〉 (3.6)
= Jxx cos2 θ + Jyy sin2 θ + Jxye

−iφ cos θ sin θ + Jyxe
iφ sin θ cos θ, (3.7)

where 〈E(θ, φ)E∗(θ, φ)〉 denotes the time average between E(θ, φ) and its conjugate transpose,
and Jxx, Jxy, Jyy and Jyx are the elements of the following matrix [55]:

J =
[
〈ExE∗x〉 〈ExE∗y〉
〈EyE∗x〉 〈EyE∗y〉

]
. (3.8)

From (3.7), it is possible to calculate the angle θ and the retardation φ needed to obtain the
constants Jxx, Jyy, Jxy, and Jyx:

Jxx = I(0, 0), (3.9)
Jyy = I(90, 0), (3.10)

Jxy = 1
2
[
I(45, 0)− I(135, 0)

]
+ 1

2 i
[
I(45, π/2)− I(135, π/2)

]
, (3.11)

Jyx = 1
2
[
I(45, 0)− I(135, 0)

]
− 1

2 i
[
I(45, π/2)− I(135, π/2)

]
. (3.12)

To determine Jxx, Jyy, and the real parts of Jxy and Jyx, one needs a polarizer that is
properly oriented in such a way that allows transmitting the components of the azimuthal
axis with θ = 0◦, θ = 45◦, θ = 90◦, and θ = 135◦. To obtain the imaginary parts of the same
matrix elements the waveplate is necessary to induce a phase shift of λ/4 between the x and
y components of the electric field [55].

The generic Stokes parameters, that were mentioned above in (2.14), can be written
according to the previously defined constants, in (3.9) to (3.12), such that [55]:

S0 = Jxx + Jyy = I(0, 0) + I(90, 0), (3.13)
S1 = Jxx − Jyy = I(0, 0)− I(90, 0), (3.14)
S2 = Jxy + Jyx = I(45, 0)− I(135, 0), (3.15)
S3 = i(Jyx − Jxy) = I(45, π/2)− I(135, π/2). (3.16)
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When a quarter waveplate is used that can be rotated through an angle θ, the intensity
of the optical beam on the detector is [56]:

I(θ) = 1
2
[
S0 + S1 cos2(2θ) + S2 cos(2θ) sin(2θ) + S3 sin(2θ)

]
. (3.17)

Equation (3.17) can be rewritten using the trigonometric half-angle formulas as [56]:

I(θ) = 1
2
[
A+B sin(2θ) + C cos(4θ) +D sin(4θ)

]
, (3.18)

where A, B, C, and D are as follows:

A = S0 + S1
2 , (3.19)

B = S3, (3.20)

C = S1
2 , (3.21)

D = S2
2 . (3.22)

Equation (3.18) is a truncated Fourier series [56], consisting of the three components men-
tioned above (a DC component, a component with the double of the rotation frequency
of the rotating waveplate, and a component with the quadruple of the waveplate rotation
frequency, with a phase shift [54]). Following Nyquist’s sampling theorem [57], eight or more
data points must be taken to determine the Stokes parameters. Given that discreet intensities
are measured (3.18) is rewritten as [56]:

In = 1
2 =

[
A+B sin(2θn) + C cos(4θn) +D sin(4θn)

]
, with n = 1, 2, ..., N, (3.23)

with N ≥ 8. The coefficients A, B, C, and D are determined from Fourier analysis, and are
given by [56]:

A = 2
N

N∑
n=1

In, (3.24)

C = 4
N

N∑
n=1

In cos(4θn), (3.25)

B = 4
N

N∑
n=1

In sin(2θn), (3.26)

D = 4
N

N∑
n=1

In sin(4θn). (3.27)

For the intensity measurements, the θ intervals should be equally spaced, such that θn+1−
θn = 180◦/N . After the coefficients A, B, C, and D are measured, the Stokes parameters
can be determined by the following equalities [56]:

S0 = A− C, (3.28)
S1 = 2C, (3.29)
S2 = 2D, (3.30)
S3 = B. (3.31)

Therefore, as mentioned above, the system to determine the Stokes parameters consists of a
rotating QWP, a LP, and a photodiode, as shown in Fig. 3.1.

3.1.2 OTDR

An OTDR is an optoelectronic device used to characterize an optical fiber having access
to just one fiber termination. In particular, it can detect and characterize discontinuities in
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the fiber caused by folds, breaks, connectors, or other types of irregularities that cause the
light to be scattered [58]. The operation principle of an OTDR is based on the Rayleigh
scattering effect and the Fresnel reflection effect [59]. The Rayleigh scattering occurs when a
light pulse, that travels along a fiber, comes across small variations of the refractive index of
the fibers material. These discontinuities cause the light to scatter in all directions of space.
A small portion of the light is scattered in the opposite direction of the initial light beam,
this phenomenon is called Rayleigh backscattering [59].

The Fresnel reflection, on the other hand, occurs when the light beam sent through the
fiber comes across abrupt changes of density in the material. These density variations can
be caused by connectors or breaks that insert an air layer in the fiber. Because of these
irregularities, a significant portion of the light is reflected, compared with the portion that
is backscattered when the Rayleigh effect occurs. The intensity of the reflected beam is
proportional to the greatness of the difference between refractive indexes, making it possible
to distinguish what kind of irregularity caused the reflection or if the end of the fiber was
reached by the light beam. Therefore, the portion of the light that is backscattered is detected
and analyzed by the OTDR by measuring, in specific time intervals, the power of the signal,
characterizing the events that occur along the fiber. The fiber length, D, can be calculated
using the following expression [59]:

D = c

n
× ∆t

2 , (3.32)

where c is the speed of light in vacuum, n is the refractive index of the fiber core and ∆t is
the time interval between the emission and the reception of the signal.

3.2 Laboratory Polarization Drift Measurements

In a first attempt to validate the polarization drift model presented in the previous
chapter, we have carried out a set of measurements in the laboratory. The experimental setup
used in such measurements is represented in Fig. 3.4. This setup comprises a transmitter,
a receiver, and an optical channel. At the transmitter side, a laser source (model: IQ-2400,
from Thorlabs) emitted a signal with a wavelength of 1550.00 nm. The signal was conducted
through an optical fiber to the receiver. Two different fiber lengths were used for the optical
channel, those lengths are specified in Table 3.1. At the receiver, the signal was detected by
a polarimeter (model: TXP5004 with an optical head, model: PAN5710IR3, from Thorlabs),
which, in turn, was connected to a computer with an acquisition software.

Measurements were obtained using one and two spans of fiber, with a total length of
80 km and 160 km. The environmental conditions of the lab were maintained as constant as
possible, nevertheless, in order to change the distance and make some other adjustments to
the experimental setup, given the many variables that can influence the polarization drift, it
can be fallacious to make a direct comparison of the measurements.

In the experiments, we have used different sampling periods (time between measure-
ments: 15 and 10 min). The total acquisition time was adjusted according to the speed
of the polarization drift. As the drift is faster for longer fiber lengths, we used shorter
total acquisition times for the longer fiber links. The measurements performed with the
different parameters are discriminated in Table 3.1. Using the Stokes parameters provided
by the polarimeter, we have computed the Autocorrelation Function (ACF) following the
method presented in Sec. 2.3.3 in order to obtain the polarization linewidth. Due to software
incompatibilities, the polarimeter had several flaws that caused him to skip some measure-
ments, i.e. during the total period of measurements, the Stokes parameters were not measured
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at certain instants of time. In this regard, we have developed a Matlab algorithm in order to
correct these lacks, estimating the values of the Stokes parameters of the missing measure-
ments. The algorithm used the function interp1, with spline interpolation. This interpolation
method is based on a cubic interpolation that uses various values at neighboring grid points
in each respective dimension.

The time evolution of the measured Stokes parameters is represented on the Poincaré
sphere in Fig. 3.5, for the 80 and 160 km optical links. In the figure, the first column
corresponds to the measurements using the 80 km optical link, with a sampling period of
15 min, the second column corresponds to the 160 km optical link, with a sampling period of
15 min, and the last column corresponds also to the 160 km fiber link, but with a sampling
period of 10 min. The ACF and the respective fit, obtained using (2.47), are plotted in the
third line of each column of Fig. 3.5.

The Stokes parameters represented in the first line of Fig. 3.5 show a noticeable drift
increase with the increase of fiber link length. Such polarization drift increase is also visible
in the second line, where the Stokes parameters are represented on the Poincaré sphere. The
ACF function, shown in the third line of Fig. 3.5, presents a faster fall for higher fiber lengths.
Longer fibers increase the speed of the ACF fall given that the longer the fiber is, the greater
will be its exposure to environmental perturbations that cause the random polarization drift
due to the birefringence mechanisms discussed in Sec. 2.3.1.

Table 3.1: SOP laboratory measurement parameters used for the several fiber lengths and
the respective ∆p results.

Fiber
length (km)

Sampling
period (min)

Wavelength
(nm)

Total acquisition
time (days)

∆p
(s−1)

80 15 1553.33 3.9 1.7× 10−6

160 15 1553.33 2.7 3.5× 10−6

160 10 1550.00 2.6 5.7× 10−6

Table 3.1 contains the various ∆p values obtained from the lab measurements. Consid-

Figure 3.4: Schematic diagram of the setup used to measure the SOP drift. The transmitter
(Tx) is comprised by the laser that sends an optical signal through the optical channel to the
receiver (Rx). At the receiver, the optical head of the polarimeter detects the signal. The
polarimeter is connected to a computer with the polarimeter acquisition software. The inset
shows the fiber coil used in the laboratory measurements, as well as the optical head of the
polarimeter.
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Figure 3.5: Results of the laboratory measurements of the Stokes parameters. The first
and second lines show a two and three-dimensional representation of the Stokes parameters,
respectively, and the third line shows the estimated ACF curve and the respective fit obtained
with (2.47). The first column corresponds to a 80 km fiber link with a sampling period (T )
of 15 min, the second column corresponds to a 160 km fiber link with a sampling period
of 15 min, and the third column also corresponds to a 160 km fiber link, however, with a
sampling period of 10 min.

ering that these measurements were done in the same environmental conditions, one can
conclude that fiber-optic length influences the properties of the SOP time drift. An increase
in length causes a decrease in correlation between the SOPs, given that the ∆p obtained for
the 80 km optical link is smaller than the ∆p obtained for the 160 km optical link. The two
∆p obtained for the same length can be explained by some variation of the environmental
perturbations.

3.3 In-Field Polarization Drift Measurements

The characterization of the SOP time drift was also performed in two in-field experiments.
The first one was carried out in the city of Aveiro, where an optical loop was established
between the Instituto de Telecomunicações building and an Altice Labs datacenter (via
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CTT-Aveiro). To establish this link, four parallel dark fibers connecting the two buildings
were properly interconnected (see Fig. 3.6). The second in-field experiment was carried
out in Lisbon, using a dark fiber connecting two sites belonging to the national public
administration. This experiment was developed in the context of a collaboration between the
Instituto de Telecomunicações and the Portuguese Ministry of National Defence to design a
framework envisioning the establishment of QKD-enabled secure links in Lisbon.

Figure 3.6: Schematic representation of the setup used for the field measurements. The
optical link used in Aveiro comprised two optical loops, with the transmitter and the receiver
located at the same site (IT Aveiro), as shown in the map. In the Lisbon measurements, the
link was comprised by a single fiber connecting two sites belonging to the national public
administration.

In the case of the Aveiro field measurements, as the exact length of the optical links
was unknown, it was necessary to perform measurements with an OTDR (model: AXS-100
from EXFO), explained in Section 3.1.2, to determine the length of the tested fibers and
consequently the total length of the established optical loop. The results obtained with the
OTDR are shown in Fig. 3.7. First, we measured the link length for only one round trip,
and after we measured the link length for two round trips. In Fig. 3.7, the green and red
lines represent the measurements for just one round trip, and the blue line represents the
measurements for two round trips. The measurements were performed with an optical pulse
larger than the optimal pulse width, however, the only parameter of interest was the length
of the optical link. From the results shown in Fig. 3.7, we can conclude that the optical link
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had a total length of 6.6 km. For the Lisbon setup, the length of the optical link was a known
parameter, 3.1 km.

Figure 3.7: Graph obtained with the OTDR to determine the exact length of the used optical
link in Aveiro city. The green line represents the result of the measurement of one of the loops,
the red line is the second loop and the blue line represents the measurement of both loops
together.

The parameters used for the field measurements are discriminated in Table 3.2. The
Stokes parameters measured in Aveiro and Lisbon, are represented on the Poincaré sphere,
in Fig. 3.8, where the first column corresponds to the measurements made in Aveiro, and
the second column corresponds to the measurements performed in Lisbon. The first and
second lines show the two- and three-dimensional representation of the Stokes parameters,
respectively, while the third line shows the estimated ACF curve and the respective fit,
obtained with (2.47).

The problem caused by software incompatibilities that lead the polarimeter to skip some
measurements was solved with the solution presented in Sec. 3.2, i.e. using a Matlab script to
estimate the value of the skipped measurements. The values obtained for the ∆p parameter
in the field measurements are also presented in Table 3.2.

Table 3.2: SOP field measurement parameters used for the several fiber lengths and the
respective ∆p values.

Fiber
length (km)

Sampling
period (min)

Wavelength
(nm)

Total acquisition
time (days)

∆p
(s−1)

3.1 (Lisbon) 10 1550.00 6.9 1.1× 10−8

6.6 (Aveiro) 10 1550.00 4.8 8.1× 10−9

Results show a smaller value for the ∆p parameter in the Aveiro measurements, meaning
that this optical link exhibits the highest correlation between the SOPs, i.e. and consequently
a slower time drift. This corresponds to what is observed in the first column of Fig. 3.8,
where it is possible to see that the Stokes parameters remain almost constant with time. The
ACF also shows a slow decrease, reflecting that the correlation between subsequent Stokes
parameters is high. These results may be due to the location of the fiber, as it is underground,
the environmental perturbations are minimal.

The value obtained for the ∆p parameter in the Lisbon measurements is slightly higher
than the one obtained in Aveiro, but much smaller when compared with the ones obtained in
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Figure 3.8: Result of the field measurements of the Stokes parameters. The first and second
lines show a two- and three-dimensional representation of the Stokes parameters, respectively,
and the third line shows the estimated ACF curve and the respective fit obtained with (2.47).
The first column corresponds to the measurements made in Lisbon (3.1 km), while the second
column corresponds to the measurements made in Aveiro (6.6 km). The measurements in both
locations were done with a sampling period of 10 min. A complete list of the measurement
parameters are presented in Table 3.2.

the lab. On the other hand, the Lisbon measurements show very-high frequency oscillations
(second column of Fig. 3.8) that were not observed in the Aveiro measurements. The origin
of these oscillations is related to the positioning of the optical head of the polarimeter, which
was placed in an environment that had some working vibrating device. This conclusion was
taken after a short measurement was made at the same position of the previously taken data
and then away from any possibly vibrating devices, we concluded that the oscillation was, in
fact, due to the polarimeters optical head location. Removing these oscillations, the Stokes
parameters present few variations with time, leading to a small decrease of the ACF, as can
be seen in the second column and third line of Fig. 3.8.
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Chapter 4

Polarization Encoding for QKD

As polarization-encoded Quantum Key Distribution (QKD) systems have shown promis-
ing results, the need to develop time-efficient and stable polarization encoding and decoding
units has increased. The encoding units would consist of a system that can easily generate
the necessary State of Polarization (SOP) to encode the qubits. Therefore, this chapter is
dedicated to polarization control, namely to develop a method that allows to generate and
send a specific SOP through an optical fiber.

The first section discusses the polarization controller properties, detailing the operation
principle of the polarization controller used in this dissertation. The next section proposes
a new method to generate four SOPs. Then, the experimental assessment and results of the
developed method are presented. Lastly, the developed method is integrated into a QKD
system in order to validate it performance in a realistic scenario.

4.1 Electronic Polarization Controller (EPC)

Polarization controllers are optical devices that allow changing an arbitrary input SOP
of an optical beam into any desired output SOP. There are several polarization control
devices based on electro-optic crystals [60], rotational phase plates [61], electromagnetic
fiber squeezers [62], Faraday rotators [63], fiber-coil based devices [64, 65], among others.
In laboratories, the most used polarization control devices are the fiber-coil based ones
[65], which typically comprise three waveplates and whose orientation angles are adjusted
manually.

When an optical fiber is submitted to mechanical stress, its length varies, hence, the
refractive index changes. This phenomenon is called the elasto-optic effect. Most polarization
control schemes use the elasto-optic properties of silica, regulating the polarization by squeez-
ing the fiber [62,66], or by bending it [64] in a controlled way.

In this dissertation, an Electronic Polarization Controller (EPC) (model: PolaRITE III,
from General Photonics) is used to deterministically generate different deterministic SOPs.
This EPC comprises four waveplates inline to change polarization by squeezing the fiber, see
Fig. 4.1. In this case, the fiber squeezing mechanism includes a piezoelectric material, to
which a voltage is applied. The pressure applied on the fiber is proportional to that voltage,
meaning that by applying a voltage to the waveplate, the fiber is squeezed and the refractive
index in one direction of the fiber changes. The four waveplates of the EPC are arranged so
that the fast axis of the second and the fourth waveplate are oriented 45◦ relatively to the
fast axis of the first and third waveplate, as schematically shown in Fig. 4.1.

The EPC, composed of four waveplates, can be mathematically described by the matrix
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Figure 4.1: Schematic representation of the EPC, where the blocks represent the waveplates,
being that the fast axis of the second and fourth ones are oriented at 45◦ relatively to the
first and third ones. Adapted from [67].

MEPC(V1, V2, V3, V4), which results from the product of the individual waveplate matrices as
a function to the voltage applied on each of them [68]:

MEPC(V1, V2, V3, V4) = M45(V4)M0(V3)M45(V2)M0(V1), (4.1)

where M0(Vi), with i = 1, 3, and M45(Vj), with j = 2, 4, are the matrices that represent the
waveplates that are oriented at 0◦ and at 45◦, respectively. The voltages V1, V2, V3 and V4
can be expressed in terms of the retardation phase, φ, of each waveplate. The conversion is
done using the following equation:

V = φ · Vπ
π

, (4.2)

where Vπ is the half-wave voltage, that is, the voltage required to induce a change of 180◦
between the phase of two orthogonally polarized light waves. When representing the SOP in
the Stokes space, this voltage makes a particular SOP to rotate half a circle on the Poincaré
sphere. The matrices M0(φ) and M45(φ) can be obtained from (3.3) by using θ = 0◦ and
θ = 45◦, respectively [27]:

M0(φ) =


1 0 0 0
0 1 0 0
0 0 cosφ − sinφ
0 0 sinφ cosφ

 , (4.3)

M45(φ) =


1 0 0 0
0 cosφ 0 sinφ
0 0 1 0
0 − sinφ 0 cosφ

 , (4.4)

where φ is the retardation phase of the waveplate (the same as in (4.2)). The EPC matrix,
represented by (4.1), establishes the relationship between the input and output SOPs, as
follows:

Sout = MEPC(V1, V2, V3, V4)Sin, (4.5)

where Sin is the input SOP and Sout is the output SOP.
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4.1.1 EPC Characterization Setup

In order to develop a method capable of generating different deterministic SOP, it is
important to perform a full characterization of the EPC. In particular, it is crucial to assess
the linearity between the induced phase and the applied voltage. This characterization of the
EPC should determine the equation that best fits the response between the two parameters.

The setup used to characterize the EPC in terms of its response to the applied voltage
is shown in Fig. 4.2. After the EPC, a 50/50 Beam Splitter (BS) divides the power of the
optical signal by two, so that we have a monitor signal at one output of the BS and the other
output allows the signal to follow to the QKD quantum channel, as shown further in Sec. 4.4.
This component does not affect the polarization, reducing the optical power to half of the
initial value. After the BS, a PBS divides the incoming optical signal into its horizontal and
vertical polarization components. The arm that carries the horizontally polarized photons
is then guided to a p-i-n Photodiode (PIN) that converts the optical power into a voltage.
Since the voltage values applied on the four waveplates of the EPC induce a certain rotation
in its output SOP, the polarization components aligned with the principal axes of the PBS
will change their magnitudes. This, in turn, will change the optical power in each arm of the
PBS and consequently the electric signal at the output of the PIN. Notice that the performed
characterization would also be possible by using a Linear Polarizer (LP) instead of a PBS
(which in practice acts as two LPs rotated at 90◦).

Figure 4.2: Schematic representation of the setup used to characterize the EPC.

4.1.2 Characterization Setup Modeling

A theoretical analysis was performed by considering the mathematical representation of
the different components that integrate the setup used for the EPC characterization. In this
analysis, we assumed that only the second 45◦ oriented waveplate of the EPC is actuated
(with a voltage V4) in order to change the output SOP. After the EPC, we used a 50/50 BS
to divide the power of the main optical signal by two, where one of the outputs of the BS
follows the quantum channel and the other follows to the PBS to the SOP monitoring setup.
The PBS divides the main signal into two orthogonal polarization components (H and V),
and the output corresponding to the horizontal polarization follows to a PIN. The matrix of
the horizontal output of the PBS is as follows [69]:

MPBS = 1
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 . (4.6)

Using (4.6) and (4.1), the SOP at the horizontal output of the PBS can be written as follows:
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Sout = MPBSMEPC(0, 0, 0, V4)Sin = 1
4


Sin,0 + Sin,1 cos(V4·π

Vπ
) + Sin,3 sin(V4·π

Vπ
)

Sin,0 + Sin,1 cos(V4·π
Vπ

) + Sin,3 sin(V4·π
Vπ

)
0
0

 . (4.7)

In the previous equation, the 1/4 factor consists out of two 1/2 factors, one that corresponds
to the PBS matrix, and the other corresponding to the BS effect on the intensity of the optical
signal. As the PIN only measures the intensity of the optical signal, the Stokes parameter S0
is used to represent the evolution intensity at the output of the PBS:

Sout,0 = Sin,0 + Sin,1 cos
(
V4 · π
Vπ

)
+ Sin,3 sin

(
V4 · π
Vπ

)
. (4.8)

Equation (4.8) can therefore be used to test the EPC waveplate behavior, namely by com-
paring it with experimental data obtained with the setup represented in Fig. 4.2.

4.1.3 Characterization Results

To understand the behavior of the EPC, (4.8) was fitted to the experimental data, see
Fig. 4.3. The experimental data was obtained applying a voltage range of [0− 4] V to the
fourth waveplate of the EPC, using a step voltage of 0.01 V.

Figure 4.3: Voltage received at the PIN as a function of the voltage applied on the fourth
waveplate (V4) of the EPC. Two fits were made, one for a voltage range applied on the fourth
waveplate from 0 to 4 V (Fit 1) and the other with a voltage range from 0 to 2 V (Fit 2). The
fitting was made using (4.8). The parameters of (4.8) obtained for each fit are also presented.

For a voltage range of [0− 4] V, we observe a mismatch between the experimental data
and the theoretical model (Fit 1) for certain sub-ranges of voltages V4, see Fig. 4.3. However,
if the fitting range is reduced to [0− 2] V, a better result is obtained (Fit 2). This leads to
the conclusion that the response of the EPC waveplate is not linear for large voltage ranges.

33



Due to the PBS placed right before the PIN, the values received by the PIN are a
projection of the S1 axis, as mentioned before. Therefore, a step-by-step increasing voltage
applied on one of the waveplates should result in a sine function with a defined period,
measured by the PIN. However, it was noticed that the measured curves do not present a
constant period, given that the curves show different curve apertures, most noticeable between
the first and the second maxima. This can be seen in Fig. 4.4. This lack of reproducibility
can be related to the fact that the used EPC uses piezoelectric materials. These materials
might not apply a linear pressure on the fiber as already mentioned.

Figure 4.4: Experimental results for the fourth waveplate characterization. The graph shows
the optical power received by the PIN as a function of the voltage applied to the fourth
waveplate. Five runs were made in the same conditions to assess the reproducibility of the
system. The points represented in the figure, referred to as |H〉, |R〉, |V 〉, and |L〉, correspond
to the horizontal, right-hand circular, vertical, and left-hand circular SOP, respectively.

From the results shown in Fig. 4.4, it is possible to conclude that two different values of
Vπ should be considered given the poor linearity of the EPC. For the first three polarization
states (horizontal, right-hand circular, and vertical) a Vπ of 0.83 V should be used, while for
the last state (left-hand circular) a smaller value should be used: about 0.73 V.

After this characterization, the theoretical model of how to generate the four output SOPs
will be explained in detail in further subsections.

4.2 SOP Generation Method

As mentioned previously, the EPC must be able to generate four different SOPs in order to
be integrated into a QKD polarization-encoding sub-system. The four SOPs should form two
non-orthogonal bases, with each base defined by two orthogonal SOPs. One of those states
is used to encode a "0" and the other a "1". In order to efficiently obtain those four states,
we developed an algorithm to automatically compute the required voltages to be applied to
the EPC waveplates. This way, the four output SOPs can be written as a function of four
voltages, one for each waveplate:
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Figure 4.5: Schematic representation of the experimental setup used to deterministically
generate four SOPs with an EPC. Sin and Sout are the input and output signals, respectively,
and Vi is the voltage that the Arduino sends to the waveplate i.

Sout,j = MEPC(V1,j , V2,j , V3,j , V4,j)Sin, (4.9)

where Vi,j , with i = 1, ..., 4, are the voltages applied to the waveplates in order to obtain
the output SOP Sout,j , that can be written in terms of angles, as described by (4.2). The
algorithm assumes a feedback system where the PIN voltage is used to control the EPC, as
shown in Fig. 4.5.

The operation principle of the setup used to generate the four output SOPs starts by
sending an optical signal; in the implementation, we used a tunable laser source, with a
wavelength of 1547.72 nm. The signal SOP at the output of the laser is tuned by a manual
PC before entering in the Mach-Zehnder Modulator (MZM), which is operated as a amplitude
modulator in order to generate a pulsed signal. At the MZM output, an Optical Filter (OF)
is used to eliminate the optical noise from the laser. Then, the optical signal passes through
another PC and a LP to ensure that the signal that enters the EPC has a known, deterministic,
and stable polarization. After that, the signal enters the EPC. After the EPC, the optical
signal passes through a 50/50 BS that divides the signal into two arms. One of the arms
of the BS leads to the polarization control setup that includes a PBS. The PBS separates
the horizontally polarized photons from the vertically polarized ones. One of those output
beams, of the PBS, is guided to a PIN. The PIN converts the optical signal into an electrical
signal, which is sent to an Arduino Due. The Arduino Due runs the proposed algorithm that
computes the values received from the PIN to generate the voltages to be applied on the
EPC.

Notice that the waveplates with different orientation angles cause different rotations of
the SOP on the Poincaré sphere. By applying a voltage on the first or third waveplate
(oriented at 0◦) causes a rotation of the SOP around the S1 axis, while applying it on the
second or fourth waveplate (oriented at 45◦) causes a rotation around the S2 axis, as shown
in Fig. 4.6a [70]. This property can be explored to transform an arbitrary input SOP into
any desired output SOP. In the light of this, the four different SOPs will be generated using
the combination of those two types of waveplates. In a first stage, no voltage is applied to
the first three waveplates, while a step voltage is applied on the fourth waveplate so that the
SOP, step-by-step, makes one complete turn around the S2 axis of the Poincaré sphere. In
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Figure 4.6: (a) Schematic representation of the Poincaré sphere rotations induced when
voltages are applied to the two types of waveplates (oriented at 0 and 45◦) of the EPC [70].
(b) Schematic representation of the curves that are obtained from the PIN as a function of the
voltage, V4, applied on the fourth waveplate. Each curve is obtained for a particular voltage,
V1, applied on the first waveplate. The maximum amplitude curve is used to calculate the
voltages needed for each SOP to be generated.

each step, the voltage received from the PIN is registered by an Arduino Due. The array of
values registered by the Arduino will result in a sinusoidal curve. Using such information, the
algorithm computes the maximum and the minimum values of that curve in order to calculate
the total voltage difference, ∆V , i.e. the amplitude of the curve representing the PIN voltage
as a function of the voltage applied to the fourth waveplate, as shown in Fig. 4.6b.

In the next stage, the voltage applied to the first waveplate is increased by a small step,
and then the fourth waveplate is again actuated making the SOP do a complete turn around
the S2 axis. Again, the values are registered in each step so the second ∆V is calculated.
Notice that the goal is to maximize the value of ∆V .

After the third iteration, where an incremented value of voltage was applied to the first
waveplate and a third ∆V is determined, the three ∆V s are compared. For the cases where
the ∆V is decreasing, increasing or if a minimum is reached, the algorithm continues, until
a maximum is found. If a maximum is found, the voltage applied to the first waveplate is
not increased anymore. When the ∆V converges to the maximum voltage that means that
the SOP has reached the S1OS3 plane, defined by the black dots in Fig. 4.7. After this,
the maximum and minimum of the array obtained from the PIN are computed. The applied
voltage leading to a maximum value at the PIN output will correspond to the point (1, 0, 0)
on the Poincaré sphere, i.e. the horizontal polarization state. Similarly, the applied voltage
that leads to a minimum value at the PIN output corresponds to the point (−1, 0, 0) on
the Poincaré sphere, i.e. the vertical polarization state. From the voltage values found to
generate the horizontal and vertical states, we can easily determine the voltages to generate
the right- and left-hand circular states. The midpoint between the voltage that induces the
horizontal state and the voltage that induces the vertical state corresponds to the voltage
that induces the right circular polarization, represented by the point (0, 0, 1) on the Poincaré
sphere. Likewise, the voltage that induces the left circular polarization state (point (0, 0,−1)
on the Poincaré sphere), is obtained by calculating the midpoint between the voltage that
induces the vertical state and the voltage that induces the horizontal state. These four states
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Figure 4.7: Schematic representation of the SOP rotations used by the algorithm to determine
the voltages to generate four output SOPs. Voltage is applied to the first waveplate in order
to rotate the SOP to the S1OS3 plane, with help from the fourth waveplate. After that
rotation, the four output SOPs can be generated using only the fourth waveplate. Adapted
from [70].

are denoted by the yellow stars in Fig. 4.7.
Notice that the Vπ value corresponds to the voltage required to induce a rotation of π

radians. That is, Vπ is the voltage needed to change a horizontal SOP to a vertical SOP. Since
this value can change due to environmental conditions, e.g. temperature, this parameter is
computed every time the algorithm is executed. At this point, we must take into consideration
the characterization results presented in Sec. 4.1, where we observed that the parameter Vπ
may present some fluctuations. In the light of this, the voltage that has to be used to generate
the circular polarization state must be carefully adjusted. After this point, the algorithm can
output the voltage values to be applied on each waveplate in order to generate each of the
four SOPs. Although applying a set of four voltages, a constant voltage will be applied to
the three first waveplates, and only the fourth waveplate is required to be actuated with
different voltages along the time to generate the desired SOPs, i.e the qubits to send through
the quantum channel. This way, (4.2) can be simplified:

Sout,i = MEPC(V1, V2, V3, V4,i)Sin. (4.10)

A flowchart of the algorithm is shown in Fig. 4.8.

4.3 Experimental Assessment of the Proposed Method

The method explained in the previous section was experimentally tested with the setup
shown in Fig. 4.9. First, we tested the searching process of the maximum ∆V , where an
Arduino Due sent incremented values of voltage to the first waveplate. Next, the fourth
waveplate sent, step-by-step, an array of voltages so that the SOP makes one turn around
the S2 axis, as shown in Fig. 4.10a.

Each curve presented in Fig. 4.10a corresponds to a particular voltage applied to the first
waveplate, while every single point of the different curves corresponds to the voltage applied
to the fourth waveplate. The curves show a slight side drift in relation to each other. This
curve translation occurs because the referential of the EPC is not perfectly aligned with the
referential of the PBS. As the ∆V s of the last two curves were not increasing anymore, the
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Figure 4.8: Flowchart of the algorithm (implemented in the Arduino), where i is the waveplate
number, n is the index that determines the voltage applied to the waveplate, i.e. n × ∆θ,
with ∆θ being the predefined voltage increment, and k determines if a comparison between
∆V s can be made.

algorithm stopped because the SOP reached the plane S1OS3 on the Poincaré sphere, see
Fig. 4.10b.

Results show that there are some differences between the theoretical model presented in
Sec. 4.2 and the practical implementation. For instance, the number of waveplates that was
effectively used. Given that only two types of rotations are performed, one around the S2
axis and the other around the S1 axis, only two waveplates were used. However, using the
full capacity of the EPC might decrease the total time used to output the four SOPs but

Figure 4.9: Image of the experimental setup used to test the algorithm. The colored lines
describe the path of the optical (continuous lines) and electric signal (dashed lines).
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(a) (b)

Figure 4.10: (a) PIN voltages as a function of the voltage applied to the fourth waveplate,
considering different voltage values applied to the first waveplate. (b) Plot of ∆V as a function
of the voltage applied to the first waveplate.

does not necessarily increase the precision of the output.

4.4 Integration in a QKD System

In order to assess the SOPs generated by the algorithm, we have integrated the proposed
technique into a QKD system. The SOP generator was placed at the QKD transmitter, where
different SOPs have to be generated according to the employed quantum protocols. The
performance of the overall systems was assessed through Quantum Bit Error Rate (QBER)
measurements.

4.4.1 Description of the QKD System

The QKD system implemented in the laboratory consists of the transmitter, the receiver,
and the quantum channel between them, see Fig. 4.11. The transmitter (Alice) is connected
to the receiver (Bob) via a quantum channel, used to send the information, and via a classical
channel, used to estimate the quality of the communication by calculating the QBER.

At the transmitter, two signals are prepared. One is modulated to encode the information
in the SOP and the other is used as a reference clock signal. The reference clock signal serves
as a trigger clock for the receiver so that the gate of the Single-Photon Detector (SPD)s opens
at each rising edge of the clock. The SPDs output a digital signal, where value 1 corresponds
to a single-photon detection and the value 0 to no single-photon detection when the gate is
open. The proposed SOP generation method explained in Sec. 4.2, is how the main optical
signal, used to send the information, is prepared at the transmitter. Both signals, that are
generated with different wavelengths, are combined by a Wavelength-Division Multiplexer
(WDM) at the output of the transmitter, allowing us to send them through the same optical
fiber to the receiver.

At the receiver, apart from opening the gates of the SPDs, the trigger signal also inputs
an FPGA in order to process the measurements. The other signal is received by the detection
setup, to distinguish between the possible SOPs.
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Figure 4.11: Schematic representation of the setup used for QBER measurement using two
SPDs (D1 and D2). The square denominated Alice represents the transmitter, while the
square denominated Bob represents the receiver. Part of the transmitter consists out of the
setup proposed for SOP generation. Adapted from [71].

TheQBER was estimated using the QKD setup shown in Fig. 4.11. Part of the transmitter
consists out of the proposed SOP generation system already presented in the previous sections,
and corresponds to the first box in Fig. 4.11, denominated “Pol. State Control". The second
box is where the signal is prepared, denominated as “Pol. State Generation" in the figure.
The combination of the first and the second boxes correspond to the same setup as the
one presented in Fig. 4.5, being that part responsible for the SOP generation. The reference
signal, mentioned above, is represented in the third box of the transmitter, where an External
Cavity Laser (ECL) emits a signal with a wavelength of 1510.00 nm.

The optical signal, carrying the SOP, is attenuated to a quantum level (around 2.8 photons
per pulse) by a Variable Optical Attenuator (VOA). The main optical signal and the reference
signal are combined and sent through the optical channel. At the receiver, the reference and
the quantum signal are wavelength demultiplexed. The reference signal follows to a PIN to
set the trigger clock. The quantum signal is guided to an OF that eliminates noise from
the reference classical signal, to a manual PC, and then to a PBS that divides horizontally
polarized photons from vertically polarized ones. The horizontally polarized photons that
arrive at the PBS induce a click on detector D1, while the vertically polarized photons induce
a click on detector D2. If the photons are otherwise polarized, for example, specifically with
right- or left-hand circular polarizations, the probability of each one of the detectors to click
lies at 50%.

For the QBER estimation at the receiver, a manual PC is used to align the incoming
beam with the PBS horizontal and vertical polarization outputs of the PBS. If the receiver
is calibrated with horizontal polarization, only the detector at the horizontally polarized
PBS output should detect photons. This way, if horizontally polarized photons are sent by
the transmitter, the QBER should be around 0%, while if the transmitter sends vertically
polarized photons, the QBER should be around 100% and, consequently, right-hand circular
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or left-hand circular polarized photons should originate a QBER of about 50%. On the other
hand, if the receiver is calibrated with vertical polarization, the opposite occurs. Meaning
that if vertically polarized photons are sent, the QBER should be around 0%. The QBER
was estimated using the method proposed in [20].

4.4.2 QBER Results

QBER measurements were performed for manually and automatically generated SOPs.
By a manual SOP generation, it is meant that we measure the SOP with a polarimeter
directly connected to the upper arm of the BS, (see Fig. 4.11). By observing the polarimeter,
the voltages are chosen until the SOP is guided to the wished polarization point on the
Poincaré sphere. The results for the horizontal and vertical SOPs are shown in Fig. 4.12.
These measurements were taken for two hours, for each state. Fig. 4.12a shows the QBER
results when the receiver was aligned with horizontal polarization, while in Fig. 4.12b the
receiver was aligned with vertical polarization. The red and blue markers represent the
QBER for the horizontal and vertical states generated by the algorithm, respectively, and the
black continuous line represents the QBER obtained for those states with manual operation.
For the manually generated SOPs, the transmitter was calibrated at the beginning of the
measurements and two hours after (before the state transition), while for the automatically
generated SOPs, the transmitter was calibrated only at the beginning of the measurements.
Therefore, the estimated QBER for the manually generated states, in Fig. 4.12, is not a
continuous line.

The raw QBER, that has not undergone any post-processing, obtained for the state that
was not used for the calibration of the receiver (which corresponds to the vertical state in
Fig. 4.12a, and to the horizontal state in Fig. 4.12b) should be around 100%. For a better
visualization the QBER of Figs. 4.12 and Fig. 4.15, was subjected to post-processing where

(a) (b)

Figure 4.12: QBER estimation obtained for the |H〉 and |V 〉 states, during two hours each.
The red and blue markers represent the automatically generated |H〉 and |V 〉 states, re-
spectively, while the black line represents the manually generated states. The receiver was
manually aligned with: (a) horizontal polarization; (b) vertical polarization. For the manually
generated SOPs the transmitter calibrated at the beginning of the measurements and two
hours after, while for the automatically generated SOPs the transmitter was calibrated only
at the beginning of the measurements.
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the QBER of the state not used for the calibration of the receiver is subtracted from 100.
For the circular state measurements, the obtained QBER is subtracted from 50.

The QBER results of the automatically generated SOPs represented in Fig. 4.12a show
periodic oscillations due to environmental perturbations on the quantum channel and due
to instabilities of the EPC. These perturbations were weaker when the measurements of
Fig. 4.12b were performed. The environmental perturbations are mainly caused by vibrations
induced by the air conditioning, working devices, and people moving around. The oscillations
in these measurements are not related to the developed algorithm itself, but rather with
the environmental perturbations, polarization drift, and EPC instabilities. Similarly, the
difference between oscillations of the QBER for the automatically generated SOPs of Fig. 4.12a
and Fig. 4.12b does not mean that calibrating the receiver with the vertical state improves
the stability. By comparing the QBER obtained with the electronic and manual procedures,
one can see that the initial value of the manually and automatically generated states is close,
corresponding to a similar generation accuracy between both methods.

The next QBER results were taken alternating between the horizontal and vertical SOPs.
Each state was measured for five minutes. The receiver and the transmitter were only
calibrated at the beginning of the measurements. These results are shown in Fig. 4.13.
As one can see, the horizontal state QBER stays relatively constant, while the vertical state
oscillates. The QBER values in the middle of the plot, that correspond to values between
about 10 and 85% correspond to the transitions between states. As the buffer that registers
the values before calculating the QBER does not reset between the state transitions, some
values are calculated with the QBER of the state before and the upcoming state, resulting
in QBER values in between.

These same measurements were taken, alternating 5 minutes each state, but with more
calibrations of the transmitter, as shown in Fig. 4.14a and Fig. 4.14b. Fig. 4.14a shows the
QBER results with a calibration between each state transition, so every 5 minutes, while in
Fig. 4.14b one calibration was made for every two transitions, that is, every 10 minutes. The
calibration period of each measurement is shown in Fig. 4.14a and Fig. 4.14b as black vertical
lines. As in Fig. 4.13, the QBER results of the vertical states are shown near the top of the
plot, while the QBER results of the horizontal state are at the bottom.

By comparing Fig. 4.13 with Fig. 4.14a and Fig. 4.14b one can see that the QBER for the
vertical state improved with a higher number of calibrations. However, the state generation

Figure 4.13: QBER obtained for horizontal and vertical states alternating, with one
calibration at the beginning of the measurements. Each state was measured for 5 minutes.
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(a) (b)

(c) (d)

Figure 4.14: (a) QBER obtained for horizontal and vertical states, alternating, with
calibrations at every state transition. Each state was measured for 5 minutes; (b) QBER
obtained for |H〉 and |V 〉 states, alternating, with calibrations at every second state transition.
Each state was measured for 5 minutes; (c) Voltages applied for each state in each calibration
of Fig. 4.14a; (d) Voltages applied for each state in each calibration of Fig. 4.14b.

seems to be more accurate when a calibration is done only every 10 minutes.
To provide better visualization in Fig. 4.14a and Fig. 4.14b, the calibration points were

taken out. With Fig. 4.14c and Fig. 4.14d it is possible to observe which voltages originated
the states and how these voltages vary with time. The voltages applied on the fourth
waveplate, to generate the horizontal and vertical states are shown in Fig. 4.14c and Fig. 4.14d.
In Fig. 4.14c the voltage to generate the horizontal SOP varied between 1.04 and 1.13 V,
while the vertical state varied between 0.11 and 1.93. The reason for such a difference in the
voltage of the vertical state seems to be that the array of values received from the PIN had
two minima. As the values have slight oscillations, the minimum detected by the algorithm
is sometimes associated with a value of about 0.11, corresponding to the first minimum, and
other times about 1.93, corresponding to the second minimum. The difference between those
two values divided by two, i.e. 0.91 V, corresponds to the Vπ mentioned above. On the other
hand, in Fig. 4.14d, just one minimum and one maximum were detected, causing only slight
voltage oscillations, except for one voltage value, for both states. The fifth voltage determined
by the algorithm shows a sudden increase compared with the other voltages. This increase
is also visible in Fig. 4.14b, where the QBER value also shows a noticeable variation. This
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outlier might have been caused by an environmental perturbation.
QBER measurements were also performed with the system generating four different SOPs

using the proposed method. The results are shown in Fig. 4.15. In this case, the voltages
associated with the two circular polarization states were calculated from the voltages deter-
mined to generate the two linear states. These measurements were taken for 10 hours and
each state was measured during periods of 30 min. An average QBER of 2% was achieved.
These measurements also show some QBER fluctuations. Part of the fluctuations can be due
to environmental perturbations, or due to the EPC itself. The continuous voltage change
applied to the EPC waveplates might also be a cause for SOP fluctuations. Despite the
observed perturbations, results show that the system can be properly calibrated in order to
generate four different SOPs to encode the qubits.

Figure 4.15: QBER measurements for the SOPs generated by the proposed algorithm. The
four states, |H〉, |V 〉, |R〉 and |L〉 were measured for half an hour each, for a total acquisition
time of 10 hours. The receiver was manually aligned on the horizontal SOP.
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Chapter 5

Discussion and Conclusions

Quantum Key Distribution (QKD) systems rely on the exchange of single quantum
states between two entities. This exchange can be implemented by using single photons as
information carriers, where the information itself is encoded in one of the degrees of freedom
of the single photons, such as the polarization. Polarization encoding allows for simpler
quantum protocols and security proofs, which is a great advantage when envisioning its
practical implementation. The practical implementation of polarization-encoded systems lead
to diverse studies of the polarization drift during fiber propagation, and it was observed that
the State of Polarization (SOP) presents a non-deterministic drift with time, inducing a high
Quantum Bit Error Rate (QBER) [22]. Therefore, to enable the deployment of polarization-
encoded QKD systems it was necessary to find efficient tools to both characterize and
compensate for this random drift [21]. Different methods have been proposed to model and
characterize the random polarization drift. Here, we have explored a model that defines the
polarization linewidth parameter, ∆p, as a single parameter to characterize the polarization
evolution in fibers.

In this dissertation, we have carried out a set of experiments, in the laboratory, and
on the field to characterize the polarization drift. For the lab measurements, we used two
different fiber lengths, 80 and 160 km, and for the field measurements, we explored two sites,
an optical loop in the city of Aveiro (with a fiber length of 6.6 km), and an optical link in
the city of Lisbon (with a fiber length of 3.1 km). The results show that the ∆p obtained
in the lab has a much higher value than the one obtained for the field measurements (the
80 and 160 km lab results yield a ∆p of 1.7 × 10−6s−1, and 5.7 × 10−6s−1, respectively,
while for the field measurement in Aveiro and Lisbon we obtained a ∆p of 8.1 × 10−9s−1

and 1.1 × 10−8s−1). This means that the polarization drift is much faster in the lab than
in the field because the correlation between SOPs drops faster to zero. This, given that
the fiber length in the laboratory is much longer than the fiber in the field. This leads
to a high decorrelation of the SOP. The difference between the observed ∆p values can be
explained by the different environmental conditions. In the lab, the experimental setup,
including the fiber-optic coils, was placed on a table, thus being more exposed to vibrations
and other kinds of perturbations, while the optical link of the field measurements was buried
underground, where the environmental conditions are more stable. The random drift of the
polarization, even though it is smaller on the field, requires accurate compensation stages.
This compensation can be done, for instance, by using Electronic Polarization Controllers
(EPC), which is a work still in progress.

In the second part of this dissertation, we presented an algorithm to automatically
generate four SOP, to be used in polarization-encoding quantum communication systems.
The presented method uses an EPC with four waveplates, allowing us to deterministically
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generate four SOPs to be used, for instance, in the Bennett-Brassard 1984 (BB84) protocol.
The experimental implementation of the algorithm used an Arduino Due, which ran the
algorithm and applied the voltages to the waveplates of the EPC. Several QBER measure-
ments were performed, namely, for the horizontal and vertical polarization states during two
hours each state. Alternating measurements were also made, with intermediate calibrations
of the transmitter, where the horizontal and vertical polarization states were alternated five
in five minutes. Finally, QBER measurements when encoding the horizontal, vertical, right-
hand circular, and left-hand circular polarization states were made, with the results showing
an average QBER of 2%. The QBER results showed that the proposed method is a viable
solution for QKD systems. However, as the polarization drift is a critical issue in fiber-based
polarization-encoding quantum communication systems, hereafter, a real-time calibration
mechanism should be developed and implemented to stabilize the QBER below the threshold
values required by the quantum protocols.

As future work, several aspects can be improved namely the precision of the voltages
required to generate the circular SOPs. As mentioned in Sec. 4.2, the circular states are
computed by the algorithm and are not determined as the rectilinear states. Therefore, the
voltages to generate the circular states are more susceptible to deviations. To overcome this
issue, a second path should be included after the Beam Splitter (BS). This branch should have
a Quarter Waveplate (QWP) at a 45◦ angle to transform the circular states to rectilinear
states. Then, a Linear Polarizer (LP) or a Polarization Beam Splitter (PBS) should be
placed, and then a photodiode, similarly to the setup shown in Fig. 4.5. This way, both
rectilinear and circular states can be determined with more precision. Besides, the use of
electro-optic polarization controllers would also increase the precision of the SOP generation.
The extension of the algorithm proposed in this work for the use of electro-optic polarization
controllers would also be an improvement to this system. Another improvement to the
presented SOP generation method would be to extend the presented algorithm to generate
up to six SOPs, adding the generation of the diagonal SOPs. This way, the developed
method can be used in a higher number of quantum protocols. Finally, another aspect to be
improved would be to adapt the existing algorithm to compensate for the polarization drift
that increases the QBER. This adaptation should be a real-time self-compensating algorithm,
that ideally, does not need transmission to be interrupted to re-calibrate.
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