
Universidade de Aveiro
2022

Rui Marcelo
Rodrigues Pereira

Configuração, Implementação e Teste de Redes 5G
Configuration, Deployment and Test of 5G
Networks

Universidade de Aveiro
2022

Rui Marcelo
Rodrigues Pereira

Configuração, Implementação e Teste de Redes 5G
Configuration, Deployment and Test of 5G
Networks

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quesitos necessários à obtenção do grau de Mestre em Engenharia Eletrónica
e Telecomunicações, realizada sob a orientação cient́ıfica do Doutor Ar-
naldo Oliveira, Professor Auxiliar do Departamento de Eletrónica, Teleco-
municações e Informática da Universidade de Aveiro

o júri / the jury

presidente / president Professor Doutor Adão Paulo Soares da Silva
Professor Associado, Universidade de Aveiro

vogais / examiners committee Doutor Lúıs Manuel de Sousa Pessoa
Investigador Sénior, Instituto de Engenharia e Sistemas de Computadores, Tecnolo-

gia e Ciência (arguente)

Professor Doutor Arnaldo Silva Rodrigues de Oliveira
Professor Auxiliar, Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements Em primeiro lugar gostava de agradecer a toda a minha faḿılia, em especial

ao meu pai pelo apoio e força que me tem dado ao longo dos anos, sem ele
não teria conseguido concluir esta etapa da vida.
Queria também agradecer a todos os colegas que ao longo dos anos me têm
acompanhado e proporcionado momentos de boa disposição, em especial
ao Daniel que acompanhou ao longo destes meses na aventura que foi esta
dissertação.
Queria agradecer ao professor Arnaldo pela paciência e o apoio prestado ao
longo do trabalho desta dissertação. Um agradecimento também ao Samuel
Madail, pela confiança depositada em mim ao longo dos últimos meses.

Palavras Chave Redes móveis, 5G, StandAlone, OpenAirInterface, USRP

Resumo As redes móveis têm assumido um papel cada vez mais central ao longo das
últimas décadas, com uma importância crescente a cada nova geração. At-
ualmente encontra-se a ser implementada a quinta geração de redes móveis.
Esta nova geração tem o objetivo de, não só, oferecer melhores serviços ao
utilizador, mas também a assumir um papel central em áreas da sociedade
em que anteriormente a sua presença era menos notória. Assim sendo,
prevê-se que o seu impacto mudará de forma profunda a vida das pessoas,
mudando a maneira como realizamos algumas das atividades do nosso quo-
tidiano. Também na indústria, irá provocar grandes alterações, permitindo
tornar o conceito de Indústria 4.0 uma realidade. Estes são alguns exemplos
de alterações que se esperam nas próximas décadas. No âmbito desta dis-
sertação será feito um estudo sobre redes móveis 5G, seguindo uma arquite-
tura StandAlone (SA). Para tal serão identificados os diferentes elementos
que constituem a rede, analisando as funções realizadas por cada um deles, e
a forma como eles se interligam. Foi também realizada uma implementação
de uma rede 5G com uma arquitetura SA. Para tal recorreu-se ao software
disponibilizado pela OpenAirInterface (OAI). Para a implementação da rede
utilizou-se 2 PC’s, sendo que um ficou responsável por executar o Core, e o
outro por executar o gNodeB (gNB). O PC que executa o gNB tem ligado
a si, via USB, um USRP b210 que é responsável pelas funções de RF, per-
mitindo fazer implementações com uma Largura de Banda de 40MHz. Para
terminal de teste foram utilizados 2 User’s Equipment (UE), o primeiro foi
o OAI UE, que é um UE emulado, cujo software é disponibilizado pela OAI,
para utilizar este UE foi necessário um terceiro PC, e permite a realização
de testes simples à rede. O segundo terminal de teste, utilizou-se o Modem
da Quectel RM500Q, que ao se ligar a um PC permite realizar testes à
rede. Utilizando o Modem, foram realizados testes de desempenho à rede,
para uma largura de banda de 40MHz, obtendo-se velocidades de Downlink
próximas de 100Mbps e velocidades de Uplink próximas de 8Mbps. Na se-
gunda parte desta dissertação foi desenvolvida uma plataforma para trabal-
har em conjunto com a OAI, com o objetivo de melhorar a sua usabilidade.
A utilização da plataforma permite que, quem queira utilizar a OAI possa
realizar tarefas com várias etapas, como a instalação do software da OAI,
o possa fazer indicando apenas as informações sobre o setup que deseja in-
stalar, deixando o processo de instalação à responsabilidade da plataforma,
reduzindo o tempo de instalação e o aparecimento de problemas durante
esse processo. A plataforma permite a configuração e execução da rede
de uma maneira mais amigável, ao contrário da maneira tradicional onde
o utilizador era obrigado a editar diretamente os ficheiros de configuração,
tornando estas tarefas mais rápidas e reduzindo o aparecimento de erros
associados à configuração da rede. Por fim, a plataforma oferece um con-
junto de testes à rede, que permite ao utilizador saber o estado da rede, e
detetar problemas que possam existir.

Keywords Mobile networks, 5G, StandAlone, OpenAirInterface, USRP

Abstract Mobile networks have assumed an increasingly central role over the last few
decades, with increasing importance with each new generation. Currently,
the fifth generation of mobile networks is being implemented. This new
generation aims not only to offer better services to the user, but also to
assume a central role in areas of society where their presence was previously
less noticeable. Therefore, it is predicted that its impact will profoundly
change people’s lives, changing the way we carry out some of our daily
activities. Also in the industry, it will cause major changes, allowing the
concept of Industry 4.0 to become a reality. These are some examples of
changes that are expected in the coming decades. In the scope of this
dissertation, a study will be carried out on 5G mobile networks, following
a StandAlone (SA) architecture. To this end, the different elements that
make up the network will be identified, analyzing the functions performed by
each of them, and how they are interconnected. An implementation of a 5G
network with an SA architecture was also carried out. For this, the software
provided by OpenAirInterface (OAI) was used. For the implementation of
the network, 2 PCs were used, one of which was responsible for running the
Core, and the other for running the gNodeB (gNB). The PC running gNB
has a USRP b210 connected to it via USB, which is responsible for the RF
functions, allowing implementations with a Bandwidth of 40MHz. For the
test terminal, 2 User’s Equipment (UE) were used, the first was the OAI UE,
which is an emulated UE, whose software is provided by the OAI, to use this
UE a third PC was needed, and allows for simple tests the net. The second
test terminal used the Quectel RM500Q Modem, which, when connected to
a PC, allows testing the network. Using the Modem, performance tests were
carried out on the network, for a bandwidth of 40MHz, obtaining Downlink
speeds close to 100Mbps and Uplink speeds close to 8Mbps. In the second
part of this dissertation, a platform was developed to work together with
the OAI, to improve its usability. Using the platform allows anyone who
wants to use the OAI to perform tasks with several steps, such as installing
the OAI software, can do so by simply indicating the information about the
setup they want to install, leaving the installation process to the platform’s
responsibility. , reducing installation time and the appearance of problems
during this process. The platform allows the configuration and execution of
the network in a more friendly way, unlike the traditional way where the user
was forced to directly edit the configuration files, making these tasks faster
and reducing the appearance of errors associated with the configuration of
the network. Finally, the platform offers a set of tests to the network, which
allows the user to know the status of the network, and to detect problems
that may exist.

Contents

Contents i

List of Figures iv

List of Tables x

List of Acronyms xi

1 Introduction 1

1.1 Framework . 1

1.2 Motivation . 3

1.3 Objectives . 5

1.4 Document Structure . 5

2 Fundamental Concepts 6

2.1 Introduction . 6

2.2 5G Core . 7

2.3 5G Radio Access Network (RAN) . 9

2.3.1 Centralised Unit (CU) . 10

2.3.2 Distributed Unit (DU) . 12

2.3.3 Radio Unit (RU) . 15

2.4 Virtualization of RAN Elements . 16

2.5 5G Deployment Platforms Overview . 17

2.5.1 OpenAirInterface (OAI) . 17

2.5.2 Open Networking Foundation (ONF) 18

2.6 Summary and Next Steps . 19

3 Openairinterface Features and Deployment 20

3.1 Introduction . 20

3.2 Implementation Overview . 21

3.2.1 5GC Host . 22

3.2.2 gNB Host . 25

3.2.3 UE . 26

3.2.3.1 OAI UE Emulator . 27

3.2.3.2 Quectel RM500Q UE . 28

3.2.4 USRP B210 . 28

3.3 Setup and Run . 28

i

3.3.1 Core . 28

3.3.2 gNB . 29

3.3.3 OAI UE Emulator . 29

3.3.4 Quectel RM500Q UE . 29

3.4 Summary and Next Steps . 29

4 Platform Implementation 30

4.1 Introduction . 30

4.2 Platform Description . 30

4.2.1 Installation Features and Procedures 33

4.2.1.1 Core . 33

4.2.1.2 gNB . 34

4.2.1.3 OAI UE Emulator . 35

4.2.2 Configuration Features and Procedures 36

4.2.3 Test Features and Procedures . 37

4.3 Summary and Next Steps . 41

5 Results 42

5.1 Introduction . 42

5.2 Test Setup . 43

5.3 Analysis . 43

5.3.1 Implementation Testing . 43

5.3.1.1 Test with OAI UE Emulator 45

5.3.1.2 Test with Quectel RM500Q Modem 46

5.3.2 Platform Results . 47

5.4 Summary and Next Steps . 47

6 Conclusions and Future Work 48

6.1 Conclusions . 48

6.2 Future Work . 49

Bibliography 51

A Platform operation 54

A.1 Installation Features . 54

A.1.1 Core Installation . 54

A.1.2 gNB Installation . 57

A.1.3 OAI UE Installation . 59

A.1.4 Install Core and gNB in different hosts with OAI UE 62

A.1.5 Install Core and gNB in different hosts with COTS UE 65

A.1.6 Install All-in-One (Core and gNB in same host) with OAI UE 69

A.1.7 Install All-in-One (Core and gNB in same host) with COST UE . . . 72

A.2 Setup and execution features . 76

A.2.1 Configure and run setup with core and gnb on different hosts with OAI
UE (Express mode) . 76

A.2.2 Configure and run setup with core and gnb on different hosts with
COTS UE (Express mode) . 79

ii

A.2.3 Configure and run setup All-in-One with OAI UE (Express mode) . . 83
A.2.4 Configure and run setup All-in-One with COTS UE (Express mode) . 86
A.2.5 Configure and run setup with core and gnb on different hosts with OAI

UE (Custom mode) . 90
A.2.6 Configure and run setup with core and gnb on different hosts with

COTS UE (Custom mode) . 94
A.2.7 Configure and run setup All-in-One with OAI UE (Custom mode) . . 98
A.2.8 Configure and run setup All-in-One with COTS UE (Custom mode) . 102

A.3 Test Features . 106
A.3.1 Test configuration . 106
A.3.2 Core Test . 109
A.3.3 UE Connection Test . 112
A.3.4 End-to-End Test . 115
A.3.5 Performance Test . 118

B Software Installations 121
B.1 Install Docker . 121
B.2 Install USRP software . 121

C Configuration Files 122
C.1 docker-compose file . 122
C.2 gNB configuration file . 128
C.3 UE Configuration file . 134

iii

List of Figures

1.1 Evolution of the mobile network (adapted from [1]). 1

1.2 Example of NSA and SA architectures. 2

1.3 Example of RAN, with Base Stations and Small Cells (reproduced from [7]). 3

1.4 gNB elements, with CU, DU and RU. 4

2.1 Structure of a mobile network. 6

2.2 Representation of the SA architecture. 7

2.3 5GC elements, with separation between control plane and user plane elements,
and interfaces used. 8

2.4 Possible network splits (reproduced from [5]). 9

2.5 gNB Units, and the interfaces used in Fronthaul, Midhaul, and Backhaul. . . 10

2.6 CU protocols, layers, and divisions. 11

2.7 DU protocols, layers, and divisions. 12

2.8 Protocols and communication channels. 13

2.9 RU protocols, and layers. 16

2.10 Network diagrams with Light DC and Main DC. 17

2.11 Representation of the OAI project, and their different projects. 18

2.12 Representation of the ONF Platform, and their different projects. 19

3.1 Essential elements of a 5G SA network. 20

3.2 Overview of the setup implemented in the lab. 21

3.3 Photos of the setup components implemented in the laboratory. 22

3.4 Core Host connections, and IP addresses used on NICs. 22

3.5 5G Core Continers, and their IP addresses. 25

3.6 gNB Host connections, and IP address used on NIC. 25

3.7 Connections between OAI UE and the USRP B210. 27

3.8 Connection between PC and Quectel RM500Q Modem. 28

4.1 Schematic representing the way of integration of the platform with the imple-
mented network. 31

4.2 Platform features and options. 32

4.3 Core installation process, performed by the platform. 34

4.4 gNB installation process, performed by the platform. 35

4.5 OAI UE installation process, performed by the platform. 35

4.6 Configuration process and running the network, performed by the platform. . 37

4.7 How the testing process is performed to verify that the Core is working. . . . 38

iv

4.8 How the testing process is performed to verify that the OAI UE connects to
the network. 39

4.9 How the testing process is performed to verify the end-to-end connection. . . 40

4.10 Implementation of the network performance test. 41

5.1 Core AMF logs with a registered user. 44

5.2 Core SMF logs with a registered user. 44

5.3 gNB logs with a UE connected. 45

5.4 UE logs when connected. 45

5.5 Test with OAI UE Emulator. 45

5.6 Quectel RM500Q modem connected to PC. 46

5.7 Performance test, using speed test. 47

A.1 Core installation process 1ª interface. 54

A.2 Core installation process 2ª interface. 55

A.3 Core installation process 3ª interface. 55

A.4 Core installation process 4ª interface. 56

A.5 Core installation process 5ª interface. 56

A.6 gNB installation process 1ª interface. 57

A.7 gNB installation process 2ª interface. 57

A.8 gNB installation process 3ª interface. 58

A.9 gNB installation process 4ª interface. 58

A.10 gNB installation process 5ª interface. 59

A.11 OAI UE installation process 1ª interface. 59

A.12 OAI UE installation process 2ª interface. 60

A.13 OAI UE installation process 3ª interface. 60

A.14 OAI UE installation process 4ª interface. 61

A.15 OAI UE installation process 5ª interface. 61

A.16 Core and gNB installation process on different hosts and OAI UE installation
process 1ª interface. 62

A.17 Core and gNB installation process on different hosts and OAI UE installation
process 2ª interface. 62

A.18 Core and gNB installation process on different hosts and OAI UE installation
process 3ª interface. 63

A.19 Core and gNB installation process on different hosts and OAI UE installation
process 4ª interface. 63

A.20 Core and gNB installation process on different hosts and OAI UE installation
process 5ª interface. 64

A.21 Core and gNB installation process on different hosts and OAI UE installation
process 6ª interface. 64

A.22 Core and gNB installation process on different hosts and OAI UE installation
process 7ª interface. 65

A.23 Core and gNB installation process on different hosts 1ª interface. 65

A.24 Core and gNB installation process on different hosts 2ª interface. 66

A.25 Core and gNB installation process on different hosts 3ª interface. 66

A.26 Core and gNB installation process on different hosts 4ª interface. 67

A.27 Core and gNB installation process on different hosts 5ª interface. 67

v

A.28 Core and gNB installation process on different hosts 6ª interface. 68
A.29 Core and gNB installation process on different hosts 7ª interface. 68
A.30 All-in-One installation process (Core and gNB on the same host) and OAI UE

installation process 1ª interface. 69
A.31 All-in-One installation process (Core and gNB on the same host) and OAI UE

installation process 2ª interface. 69
A.32 All-in-One installation process (Core and gNB on the same host) and OAI UE

installation process 3ª interface. 70
A.33 All-in-One installation process (Core and gNB on the same host) and OAI UE

installation process 4ª interface. 70
A.34 All-in-One installation process (Core and gNB on the same host) and OAI UE

installation process 5ª interface. 71
A.35 All-in-One installation process (Core and gNB on the same host) and OAI UE

installation process 6ª interface. 71
A.36 All-in-One installation process (Core and gNB on the same host) and OAI UE

installation process 7ª interface. 72
A.37 All-in-One installation process (Core and gNB on the same host) 1ª interface. 72
A.38 All-in-One installation process (Core and gNB on the same host) 2ª interface. 73
A.39 All-in-One installation process (Core and gNB on the same host) 3ª interface. 73
A.40 All-in-One installation process (Core and gNB on the same host) 4ª interface. 74
A.41 All-in-One installation process (Core and gNB on the same host) 5ª interface. 74
A.42 All-in-One installation process (Core and gNB on the same host) 6ª interface. 75
A.43 All-in-One installation process (Core and gNB on the same host) 7ª interface. 75
A.44 Configure and run setup with core and gnb on different hosts with OAI UE

(Express mode) 1ª interface. 76
A.45 Configure and run setup with core and gnb on different hosts with OAI UE

(Express mode) 2ª interface. 76
A.46 Configure and run setup with core and gnb on different hosts with OAI UE

(Express mode) 3ª interface. 77
A.47 Configure and run setup with core and gnb on different hosts with OAI UE

(Express mode) 4ª interface. 77
A.48 Configure and run setup with core and gnb on different hosts with OAI UE

(Express mode) 5ª interface. 78
A.49 Configure and run setup with core and gnb on different hosts with OAI UE

(Express mode) 6ª interface. 78
A.50 Configure and run setup with core and gnb on different hosts with OAI UE

(Express mode) 7ª interface. 79
A.51 Configure and run setup with core and gnb on different hosts with COTS UE

(Express mode) 1ª interface. 79
A.52 Configure and run setup with core and gnb on different hosts with COTS UE

(Express mode) 2ª interface. 80
A.53 Configure and run setup with core and gnb on different hosts with COTS UE

(Express mode) 3ª interface. 80
A.54 Configure and run setup with core and gnb on different hosts with COTS UE

(Express mode) 4ª interface. 81
A.55 Configure and run setup with core and gnb on different hosts with COTS UE

(Express mode) 5ª interface. 81

vi

A.56 Configure and run setup with core and gnb on different hosts with COTS UE
(Express mode) 6ª interface. 82

A.57 Configure and run setup with core and gnb on different hosts with COTS UE
(Express mode) 7ª interface. 82

A.58 Configure and run setup with core and gnb on different hosts with COTS UE
(Express mode) 8ª interface. 83

A.59 Configure and run setup All-in-One with OAI UE (Express mode) 1ª interface. 83
A.60 Configure and run setup All-in-One with OAI UE (Express mode) 2ª interface. 84
A.61 Configure and run setup All-in-One with OAI UE (Express mode) 3ª interface. 84
A.62 Configure and run setup All-in-One with OAI UE (Express mode) 4ª interface. 85
A.63 Configure and run setup All-in-One with OAI UE (Express mode) 5ª interface. 85
A.64 Configure and run setup All-in-One with OAI UE (Express mode) 6ª interface. 86
A.65 Configure and run setup All-in-One with COTS UE (Express mode) 1ª interface. 86
A.66 Configure and run setup All-in-One with COTS UE (Express mode) 2ª interface. 87
A.67 Configure and run setup All-in-One with COTS UE (Express mode) 3ª interface. 87
A.68 Configure and run setup All-in-One with COTS UE (Express mode) 4ª interface. 88
A.69 Configure and run setup All-in-One with COTS UE (Express mode) 5ª interface. 88
A.70 Configure and run setup All-in-One with COTS UE (Express mode) 6ª interface. 89
A.71 Configure and run setup All-in-One with COTS UE (Express mode) 7ª interface. 89
A.72 Configure and run setup with core and gnb on different hosts with OAI UE

(Custom mode) 1ª interface. 90
A.73 Configure and run setup with core and gnb on different hosts with OAI UE

(Custom mode) 2ª interface. 90
A.74 Configure and run setup with core and gnb on different hosts with OAI UE

(Custom mode) 3ª interface. 91
A.75 Configure and run setup with core and gnb on different hosts with OAI UE

(Custom mode) 4ª interface. 91
A.76 Configure and run setup with core and gnb on different hosts with OAI UE

(Custom mode) 5ª interface. 92
A.77 Configure and run setup with core and gnb on different hosts with OAI UE

(Custom mode) 6ª interface. 92
A.78 Configure and run setup with core and gnb on different hosts with OAI UE

(Custom mode) 7ª interface. 93
A.79 Configure and run setup with core and gnb on different hosts with OAI UE

(Custom mode) 8ª interface. 93
A.80 Configure and run setup with core and gnb on different hosts with COTS UE

(Custom mode) 1ª interface. 94
A.81 Configure and run setup with core and gnb on different hosts with COTS UE

(Custom mode) 2ª interface. 94
A.82 Configure and run setup with core and gnb on different hosts with COTS UE

(Custom mode) 3ª interface. 95
A.83 Configure and run setup with core and gnb on different hosts with COTS UE

(Custom mode) 4ª interface. 95
A.84 Configure and run setup with core and gnb on different hosts with COTS UE

(Custom mode) 5ª interface. 96
A.85 Configure and run setup with core and gnb on different hosts with COTS UE

(Custom mode) 6ª interface. 96

vii

A.86 Configure and run setup with core and gnb on different hosts with COTS UE
(Custom mode) 7ª interface. 97

A.87 Configure and run setup with core and gnb on different hosts with COTS UE
(Custom mode) 8ª interface. 97

A.88 Configure and run setup with core and gnb on different hosts with COTS UE
(Custom mode) 9ª interface. 98

A.89 Configure and run setup All-in-One with OAI UE (Custom mode) 1ª interface. 98
A.90 Configure and run setup All-in-One with OAI UE (Custom mode) 2ª interface. 99
A.91 Configure and run setup All-in-One with OAI UE (Custom mode) 3ª interface. 99
A.92 Configure and run setup All-in-One with OAI UE (Custom mode) 4ª interface. 100
A.93 Configure and run setup All-in-One with OAI UE (Custom mode) 5ª interface. 100
A.94 Configure and run setup All-in-One with OAI UE (Custom mode) 6ª interface. 101
A.95 Configure and run setup All-in-One with OAI UE (Custom mode) 7ª interface. 101
A.96 Configure and run setup All-in-One with COTS UE (Custom mode) 1ª interface.102
A.97 Configure and run setup All-in-One with COTS UE (Custom mode) 2ª interface.102
A.98 Configure and run setup All-in-One with COTS UE (Custom mode) 3ª interface.103
A.99 Configure and run setup All-in-One with COTS UE (Custom mode) 4ª interface.103
A.100Configure and run setup All-in-One with COTS UE (Custom mode) 5ª interface.104
A.101Configure and run setup All-in-One with COTS UE (Custom mode) 6ª interface.104
A.102Configure and run setup All-in-One with COTS UE (Custom mode) 7ª interface.105
A.103Configure and run setup All-in-One with COTS UE (Custom mode) 8ª interface.105
A.104Test configuration 1ª interface. 106
A.105Test configuration 2ª interface. 106
A.106Test configuration 3ª interface. 107
A.107Test configuration 4ª interface. 107
A.108Test configuration 5ª interface. 108
A.109Test configuration 6ª interface. 108
A.110Test configuration 7ª interface. 109
A.111Core Test 1ª interface. 109
A.112Core Test 2ª interface. 110
A.113Core Test 3ª interface. 110
A.114Core Test 4ª interface. 111
A.115Core Test 5ª interface. 111
A.116UE Connection Test 1ª interface. 112
A.117UE Connection Test 2ª interface. 112
A.118UE Connection Test 3ª interface. 113
A.119UE Connection Test 4ª interface. 113
A.120UE Connection Test 5ª interface. 114
A.121UE Connection Test 6ª interface. 114
A.122End-to-End Test 1ª interface. 115
A.123End-to-End Test 2ª interface. 115
A.124End-to-End Test 3ª interface. 116
A.125End-to-End Test 4ª interface. 116
A.126End-to-End Test 5ª interface. 117
A.127End-to-End Test 6ª interface. 117
A.128Performance Test 1ª interface. 118
A.129Performance Test 2ª interface. 118

viii

A.130Performance Test 3ª interface. 119
A.131Performance Test 4ª interface. 119
A.132Performance Test 5ª interface. 120
A.133Performance Test 6ª interface. 120

ix

List of Tables

2.1 Mapping table between logical channels and transport channels for downlink[20]. 14
2.2 Mapping table between logical channels and transport channels for uplink [20]. 14
2.3 Mapping table between logical channels and transport channels for sidelink [20]. 14
2.4 Mapping table between transport channels and physical channels[25]. 15
2.5 Mapping table between control channels information and physical channels [25]. 16

3.1 Core computer specifications. 23
3.2 Core element addresses. 24
3.3 gNB computer specifications. 26
3.4 Core computer specifications. 27

x

List of Acronyms

3GPP Third Generation Partnership Program

5GC 5G Core

AAA Authentication, Authorization, and Accounting

AF Application Function

AKA Authentication and Key Agreement

AM Acknowledged Mode

AMF Access and Mobility Management Function

ARQ Automatic Repeat Request

AS Access Stratum

AUSF Authentication Server Function

BCCH Broadcast Control Channel

BCH Broadcast Channel

CCCH Common Control Channel

CESC Cloud Enabled Small Cell

COTS Commercial Off-The-Shelf

CP Cyclic Prefix

CPRI Common Public Radio Interface

CU Centralised Unit

DCCH Dedicated Control Channel

DCI Downlink Control Information

DL-SCH Downlink Shared Channel

DN Distributed Network

DNN Data Network Name

DRB Data Radio Bearer

DTCH Dedicated Traffic Channel

DU Distributed Unit

eCPRI Evolved Common Public Radio Interface

eNB evolved Node B

EPC Evolved Packet Core

FFT Fast Fourier transform

gNB Next Generation Node B

HARQ Hybrid Automatic Repeat Request

iFFT Inverse FFT

IMS IP Multimedia Subsystem

xi

IMSI International Mobile Subscriber Identity

MAC Medium Access Control

MCC Mobile Country Code

MNC Mobile Network Code

MIMO Multiple-Input and Multiple-Output

NAS Non-Access Stratum

NEF Network Exposure Function

nFAPI network Functional Application Platform Interface

NF Network Function

NFV Network Functions Virtualization

NIC Network Interface Card

NRF Network Repository Function

NSA Non-Standalone

NSSAAF Network Slice Specific Authentication and Authorization Function

NSSAI Network Slice Selection Assistance Information

NSSF Network Slice Selection Function

OAI OpenAirInterface

ONF Open Networking Foundation

OMEC Open Mobile Evolved Core

O-RAN Open Radio Access Network

PBCH Physical Broadcast Channel

PCH Paging Channel

PCCH Paging Control Channel

PCF Policy Control Function

PDSCH Physical Downlink Shared Channel

PDCCH Physical Downlink Control Channel

PDCP Packet Data Convergence Protocol

PDU Protocol Data Unit

PLMN Public Land Mobile Network

PON Passive Optical Network

PRACH Physical Random Access Channel

PSBCH Physical Sidelink Broadcast Channel

PSCCH Physical Sidelink Control Channel

PSFCH Physical Sidelink Feedback Channel

PSSCH Physical Sidelink Shared Channel

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

QFI QoS flow ID

QoS Quality of Service

RACH Random Access Channel

RAN Radio Access Network

RF Radio Frequency

RLC Radio Link Control

xii

ROC Runtime Operation Control

RRC Radio Resource Control

RU Radio Unit

SA Standalone

SBCCH Sidelink Broadcast Control Channel

SC Small Cell

SCCH Sidelink Control Channel

SCF Small Cell Forum

SCI Sidelink Channel Information

SCP Service Communication Proxy

SDAP Service Data Adaptation Protocol

SDN Software-Defined Networking

SDU Service Data Unit

SFCI Sidelink Feedback Control Information

SL-BCH Sidelink Broadcast Channel

SL-SCH Sidelink Shared Channel

SMF Session Management Function

SRB Signaling Radio Bearer

SST Slice Service Type

STCH Sidelink Traffic Channel

TB Transport Blocks

TM Transparent Mode

UCI Uplink Control Information

UDM Unified Data Management

UDR Unified Data Repository

UE User Equipment

UL-SCH Uplink Shared Channel

UM Unacknowledged Mode

UPF User Plane Functions

USRP Universal Software Radio Peripheral

VNF Virtualized Network Function

vRAN Virtualized Radio Access Network

xiii

xiv

Chapter 1

Introduction

1.1 Framework

The evolution of mobile networks over the last few decades has had a huge impact on
people’s lives, assuming a fundamental role in our society. This evolution has completely
changed the way people live, communicate with each other, the way they work, and even led
to the emergence of new habits that previously did not exist.

From the first generation of mobile networks to the present, successive generations have
been improving existing services, but also responding to new needs, such as the growing
number of users, the technological advancement of the devices itself, which allows them to
have new functionalities and services associated with it. However, these new benefits result
in higher volume of information exchanged, demanding connections with better quality and
more capacity. Figure 1.1 shows the various generations of mobile networks and the services
for each new generation.

Figure 1.1: Evolution of the mobile network (adapted from [1]).

This new generation of mobile networks (5G) will allow the massive connection of various
types of devices, allowing data transmission at higher speeds than the previous generation
and with even lower latency times. 5G will allow devices to connect and communicate with
each other in contexts that in previous generations was not possible or safe in some cases
(critical communications), but now with a very efficient connection both in terms of latency
time and amount of data they that can transmit, making it possible for multiple devices to
work together to perform tasks autonomously or with minimal human presence /intervention.
Therefore, this new generation of mobile networks will have a greater and deeper impact than
previous generations, as it will not only allow a better experience for common users, but

1

will also be fundamental in other areas of society, such as industry, allowing a higher level
of automation that will be reflected in the increase of efficiency in the productive processes,
and greater safety in the workplaces [2]. In the automotive sector, 5G will allow vehicles to
exchange data with each other in real time, which will contribute to an increase in driving
safety and efficiency, and also enable autonomous driving to become a reality [3]. These are
just some of the many areas where 5G will play a key role. All the changes that will be
possible thanks to 5G will establish a new paradigm in the way we work and live in society.

The 5G implementation can have 2 possible architectures, a Non-Standalone (NSA) or a
Standalone (SA) [4], as shown in figure 1.2.

Figure 1.2: Example of NSA and SA architectures.

The NSA architecture is supported by the existing infrastructure of the previous genera-
tion, where the gNodeB (gNB) works together with the eNodeB (eNB) from the 4G, where
the gNB is responsible for the user plane data and the eNB is responsible for the control plane
[5]. In addition, the NSA architecture still uses Evolved Packet Core (EPC), the same core
as the previous generation. Despite the NSA allows operators to provide a 5G network more
quickly to their customers, this architecture is very limited, not allowing all the benefits that
the 5G network can offer, such as network slicing [4]. The SA architecture does not depend
on the infrastructure of the previous generation, relying only on the presence of gNB on the
Radio Access Network (RAN) and in a new 5G Core [4].The SA makes it possible to use the

2

maximum potential that the 5G network has to offer, enabling network slicing, thus being
able to provide a service with network resources adapted to the characteristics and needs
of the connected device, being ideal for devices that perform critical functions and are very
sensitive to some criteria such as latency [4].

1.2 Motivation

For the massive connection of different types of devices (smartphones, cars, appliances,
etc.), the network must be prepared, being necessary an increase in the densification of the
5G RAN.

In a 5G RAN, there are several types of radio access nodes such as macro cells and small
cells, as shown in figure 1.3. Macro cells are large base stations that provide network coverage
for several kilometers. Small cells are small base stations capable of providing coverage in
smaller and more specific areas [6].

Figure 1.3: Example of RAN, with Base Stations and Small Cells (reproduced from [7]).

Small cells are very important to increase network densification, as they are the easiest and
most cost-effective [8] solution for operators, allowing increased flexibility with simultaneous
reduction of network complexity, making it possible to rapidly increase coverage. This solution
also offers flexibility in the application in different types of scenarios where the signal from
macro cells has more penetration difficulties, such as shopping centers, hospitals and others
[7] [9]. The use of small cells in these scenarios improves not only the coverage problems but
also helps macro cells with the huge traffic demand and allows an increase in the efficiency
of spectrum use since the number of users connected to each small cell is smaller than the
number that is connected to a macro cell. Thus, the radio resources are shared by a smaller

3

number of devices, allowing a greater debt for each equipment [7] [10].Another important
aspect is spectrum reuse by different small cells in distinctive smaller areas [11].

The gNB, both in an SA architecture and in an NSA architecture, consists of 3 types of
components, which are Radio Unit (RU), Distributed Unit (DU) and Centralised Unit (CU).
Each small cell can function as a RU, being connected to a DU, which is connected to a
CU [12], as shown in figure 1.4. The network functions executed by the DU and CU can

Figure 1.4: gNB elements, with CU, DU and RU.

be executed by software, not requiring dedicated hardware, being performed as Virtualized
Network Function (VNF) on Commercial Off-The-Shelf (COTS), allowing an increase in the
scalability and flexibility of the network; improvement in the use of network resources; increase
in energy efficiency; and a reduction in the operational costs of the network [13].

Finally, the network architecture based on Open Radio Access Network (O-RAN) has
gained the interest of operators, as there is the benefit that the interfaces used for com-
munication between the different layers of the network are open, which makes it possible
that different components of the network can be provided by different entities/suppliers that
contribute to a more innovative development environment. In this way, the O-RAN architec-
ture allows a greater diversity of solutions on the market, since the operators do not depend
on a particular supplier, unlike what happens when using proprietary technology where the
solutions/products of one supplier do not work with a product from a different supplier [14].

4

1.3 Objectives

The objective of this dissertation is to implement a 5G network with an SA architecture,
using as a work base the open-source code provided by the OpenAirInterface (OAI) platform
created by EURECOM, and open source components for RAN provided by Open Networking
Foundation (ONF). For this, the following specific objectives are traced for this dissertation:

• Study of the different elements of a 5G network following an SA architecture.

• Implementation and testing, in the laboratory, of a 5G SA network, using band78, with a
bandwidth of 40MHZ, using open source software provided by OpenAirInterface (OAI).

• Development of a platform to work together with OAI, to help the use of OAI software,
through the automation of installation, configuration, execution, and network testing
processes.

• Testing of the developed platform.

1.4 Document Structure

In addition to this introductory chapter, this document has 5 more chapters with the
following contents:

• Chapter 2 - “State of the Art”: provides an overview of a 5G network with a Stan-
dAlone architecture, providing the necessary background to carry out the dissertation.

• Chapter 3 - “OpenAirInterface Deployment”: provides information about the im-
plementation process of the 5G SA network based on OAI, identifying the characteristics
of the hosts used, what was necessary to configure and install, and how to run the net-
work.

• Chapter 4 - “Platform Implementation”: describes the platform development pro-
cess, identifies the various features available on the platform, and how each one works.

• Chapter 5 – “Results”: describes the general functioning of the platform, showing the
interfaces, and showing how the user can use the platform.

• Chapter 6 - “Conclusions and Future Work”: an analysis is made of the work
carried out, identifying the objectives that have been met, and indicating what can be
improved in the future.

5

Chapter 2

Fundamental Concepts

This chapter provides an overview of the 5G network with a SA architecture. The different
components of the network are analyzed, being described how they are interconnected and
the functions performed by each of them. A discussion related to the virtualization of network
functions is still covered. In the end, open source platforms are analyzed that can be used to
implement a network.

2.1 Introduction

A mobile network aims to provide a wireless connection to User Equipments (UE’s) that
are, most of the time, moving.

A mobile network can be divided into two structures: Core and RAN, as shown in Figure
2.1. As mentioned in chapter 1, there are different possible architectures to implement a 5G
network, being able to adopt an SA or NSA architecture and, depending on the architecture
that is chosen, the components that constitute the Core and the RAN vary.

Figure 2.1: Structure of a mobile network.

As previously described in chapter 1, the application of an SA architecture enables the use
of the maximum potential that the 5G network has to offer. Therefore, the studies developed
in this dissertation will be focused in the SA architecture. A mobile network based on an SA
architecture, as can be seen in Figure 2.2, is characterized by the use of the new 5G Core
(5GC), and the RAN consists only of gNB’s interconnected through the Xn interface. The
gNB’s communicate with the 5GC using the NG interface and the communication between

6

the UE and the gNB uses the Uu radio interface [5].

Figure 2.2: Representation of the SA architecture.

In the next sections, the main elements of an SA architecture will be presented.

2.2 5G Core

The core network is the structure that allows to establish a connection between the RAN
of a given geographic area and external networks. The 5GC has several functions such as
providing a connection to provide services to UE’s; users authentication; ensuring that the
connection meets the Quality of Service (QoS) requirements; tracking the mobility of the UE
to ensure continuous service.

In this new generation, 5GC adopts a service-based architecture, allowing its network
functions (NFs) to be deployed using Network Functions Virtualization (NFV) techniques
and run them in the cloud. The 5GC consists of a set of elements that can be divided into
two groups, those that perform user plane functions and those that perform control plane
functions. Figure 2.3 shows the 5GC elements, identifying which ones are related to the
control plane and user plane, as well as the interfaces used to communicate [15].

The 5GC elements identified in Figure 2.3 are described in the following.

For the control plane, the below elements are highlighted:

• Access and Mobility Management Function (AMF): The AMF has several
responsibilities, including records management, connection management, mobility
management, authentication, and access authorization.

• Session Management Function (SMF): The SMF is responsible for many functions,
such as the management of each UE session and IP address allocation; selection and
control of UPF functions; controlling part of QoS policy enforcement and downlink data
notification.

• Authentication Server Function (AUSF): AUSF supports authentication for Third
Generation Partnership Program (3GPP) access and untrusted non-3GPP access.

7

Figure 2.3: 5GC elements, with separation between control plane and user plane elements,
and interfaces used.

• Network Slice Selection Function (NSSF): NSSF is responsible for selecting the
Network Slice instances to serve the UE, determining the Network Slice Selection As-
sistance Information (NSSAI) and the AMF to be used to serve the UE based on a list
of available AMF’s provided by the Network Repository Function (NRF).

• Network Repository Function (NRF): NRF works as a repository for NF’s, sup-
porting discovery mechanisms and allowing to know which services are available.

• Network Exposure Function (NEF): NEF is responsible for exposing events and
resources securely to third-party services, translating internal-external information.
Whenever an external application demands internal information, it has to go through
the NEF.

• Policy Control Function (PCF): PCF is responsible for providing the policy rules
applied to control plane functions, supporting a unified policy framework to control
network behavior, and accessing signature information relevant to policy decisions in
the unified data repository.

• Unified Data Management (UDM): UDM is responsible for generating 3GPP Au-
thentication and Key Agreement (AKA) credentials; user identity management; signa-
ture and management and; access authorization based on signature data.

• Application Function (AF): AF is responsible for providing support for application
influence on traffic routing; accessing Network Exposure Function; interacting with the
Policy framework for policy control; and IP Multimedia Subsystem (IMS) interactions
with 5GC.

• Service Communication Proxy (SCP): SCP has the functionalities of message
forwarding and routing to destination NF/NF service; message forwarding and routing

8

to a next hop SCP and; indirect communication.

• Network Slice Specific Authentication and Authorization Function
(NSSAAF): NSSAAF is responsible for providing support Network Slice-Specific Au-
thentication and Authorization with an Authentication, Authorization, and Accounting
(AAA) Server (AAA-S).

For the user plane, the User Plane Functions (UPF) are highlighted, being responsible
for packet routing and forwarding, serving as a point of interconnection to the data network
(DN). The UPF can be considered as the anchor point of radio access technology.

2.3 5G RAN

The RAN is responsible for connecting the UE’s through radio connections, managing
the spectrum in order to be used efficiently and meeting the QoS of each UE. As mentioned
before, a 5G RAN in an SA architecture is constituted only by gNB. 3GPP defined that
gNB is divided into 3 logical nodes, which are CU, DU, and RU. Each of these units will be
able to host the different functions of the protocol stack. 3GPP has defined 8 functional split
options, as shown in figure 2.4.

Figure 2.4: Possible network splits (reproduced from [5]).

In figure 2.5 it is possible to observe the connections of the different units of the gNB,
and the interfaces used. Backhaul corresponds to the connection of the 5GC to one or more
CU’s, and uses the N2 (or NG-C) interface for control plane related traffic and the N3 (or
NG-U) interface for user plane related traffic. Midhaul corresponds to the connection of the
CU to one or more DU’s, and uses the F1 interface for communication between the units.
The fronthaul corresponds to the connection between the DU and one or more RU’s, and
uses the Evolved Common Public Radio Interface (eCPRI) for communication between the
units. Each of these connections has its own requirements and characteristics. In Backhaul,

9

the bandwidth requirements are high and the latency requirements are less stringent than in
Midhaul, presenting a latency time in the order of tens of milliseconds. In midhaul latency
requirements are more stringent than in Backhaul and less stringent than in Fronthaul, pre-
senting a latency time is around 1-2 ms. The fronthaul can be implemented in a Passive
Optical Network (PON) and uses the eCPRI interface for communication between the units.
The use of eCPRI has the advantage of being an open interface, more flexible and efficient
than the Common Public Radio Interface (CPRI), allowing the reduction of latency time and
more efficient use of bandwidth. In fronthaul, the communication latency has to be low, in
the order of microseconds [16],[17],[18].

Each of these links, the interfaces used, and the latency and bandwidth requirements they
have to meet, are critical to achieving 5G goals.

Figure 2.5: gNB Units, and the interfaces used in Fronthaul, Midhaul, and Backhaul.

The gNB elements identified in Figure 2.5 are described below.

2.3.1 Centralised Unit (CU)

The CU is responsible for the upper layers of the protocol stack. In figure 2.6, it is
presented a general representation of the CU, where the protocols Packet Data Convergence
Protocol (PDCP), Service Data Adaptation Protocol (SDAP) and Radio Resource Control
(RRC)) that are executed by the unit are identified, as well the division between the control
and user planes and the interface used to communication between planes. The CU can also
be divided into CU-C and CU-U, in which one part is responsible for the control plane and
the other for the user plane, respectively, and the communication between them is established
through the E1 interface [5] [19].

The protocols mentioned above are described in the following.

10

Figure 2.6: CU protocols, layers, and divisions.

• Radio Resource Control (RRC): RRC belongs to the control plane and has the
functions of: transmitting system information related to Access Stratum (AS) and Non-
Access Stratum (NAS); maintaining and releasing the RRC connection between UE
and RAN; security; establishing Signaling Radio Bearer (SRB) and Data Radio Bearer
(DRB); mobility; QoS management; detection and recovery radio link failure; NAS
message transfer and; sidelink related functions such as, resource allocation, reporting,
measurements and traffic information [20].

The way the RRC works and the functions it performs depends on its state, the RRC
states can be RRC IDLE, RRC INACTIVE, RRC CONNECTED.

• Service Data Adaptation Protocol (SDAP): The SDAP is part of the user plane,
and its function is to map between the QoS flow and the DRB channels, also marking the
uplink and downlink packets with the QoS flow ID (QFI). For sidelink communication,
the SDAP makes mapping between Qos flow and the sidelink data bearer [20].

• Packet Data Convergence Protocol (PDCP): PDCP is part of the user plane
and the control plane. It communicates with the higher protocols (RRC and SDAP)
through DRB channels, and with the lower protocol (RLC) through RLC channels. The
PDCP can be divided into PDCP-C and PDCP-U. Some of the functions of the PDCP
are: uplink and downlink data transfer; handle header compression and decompression;

11

ciphering and deciphering; delivery ordering services; integrity related services; Service
Data Unit (SDU) discard. For sidelink communications, some of the functions performed
by PDCP have restrictions, such as out-of-order delivery [20].

2.3.2 Distributed Unit (DU)

The DU is responsible for hosting layer 1 (PHY-High) and layer 2 protocols (Radio Link
Control (RLC) and Medium Access Control (MAC)), represented in figure 2.7 and described
in the following.

Figure 2.7: DU protocols, layers, and divisions.

12

Figure 2.8: Protocols and communication channels.

• Radio Link Control (RLC): The RLC performs related functions both in the data
plane and in the control plane and is located between PDCP and the MAC in the
protocol stack. The RLC uses the RLC channels to communicate with the PDCP and
uses the logical channels to communicate with the MAC, as shown in figure 2.8. RLC can
support three transmission modes: Transparent Mode (TM), Unacknowledged Mode
(UM) and Acknowledged Mode (AM). The functions performed by the RLC vary with
the transmission mode being used. The RLC has the function of: transferring Protocol
Data Units (PDU’s) from the upper layers, numbering them sequentially independently
of the PDCP (AM and UM); correcting errors through the Automatic Repeat Request
(ARQ) (AM); segmenting the SDU’s (AM and UM); re-segmenting the SDU’s (AM);
reassembly of SDU’s (AM and UM); SDU discard (AM and UM) and; protocol error
detection (AM) [20] [21].

• Medium Access Control (MAC): MAC communicates with RLC using logical chan-
nels and communicates with PHY using transport channels, as shown in figure 2.8. The
MAC has the function of mapping between logical channels and transport channels
(table 2.1, table 2.2 and table 2.3 shows the mapping between channels), multiplexing
SDU’s of one or more logical channels into Transport Blocks (TB) and delivering these

13

TB’s to the transport channels, it also performs the opposite process. The MAC is also
responsible for handling the priorities of each UE through dynamic scheduling, with
priority between logical channels of a UE through channel prioritization. MAC also
performs information reporting scheduling and error correction through Hybrid Auto-
matic Repeat Request (HARQ). In sidelink communications, the MAC has functions
for radio selection and filtering, dealing with priority issues. A logical channel can be
defined by the type of information it transfers and can be classified as control and traffic
channels. A control channel is only used for information related to the control plane.
The control channels are Broadcast Control Channel (BCCH), Paging Control Chan-
nel (PCCH), Common Control Channel (CCCH), Dedicated Control Channel (DCCH)
[20]. The traffic channel only carries information related to the user plane, which is the
Dedicated Traffic Channel (DTCH) [20],[22].

Downlink

Logical channels Transport channels

BCCH BCH
BCCH DL-SCH
PCCH PCH
CCCH DL-SCH
DCCH DL-SCH
DTCH DL-SCH

Table 2.1: Mapping table between logical channels and transport channels for downlink[20].

Uplink

Logical channels Transport channels

CCCH UL-SCH
DCCH UL-SCH
DTCH UL-SCH

Table 2.2: Mapping table between logical channels and transport channels for uplink [20].

Sidelink

Logical channels Transport channels

SCCH SL-SCH
STCH SL-SCH
SBCCH SL-SCH

Table 2.3: Mapping table between logical channels and transport channels for sidelink [20].

14

• PHY-High: PHY-High is responsible for receiving the TB’s of the transport chan-
nels from MAC, as shown in figure 2.8. Among the various functions performed by
this layer, there are the transport channel encoding/decoding operations; the mapping
between the transport channels and the physical channels(table 2.4 shows the map-
ping between channels). It also performs modulation/demodulation operations of the
physical channels, being the QPSK, 16 QAM, 64 QAM and 256 QAM the types of
modulation supported for both uplink and downlink. For the uplink, there is still one
more modulation type that is π/2 BPSK. The behavior of this layer is controlled by the
MAC scheduler, and its functions/operations depend on the type of transport channel.
PHY-High also performs functions related to error detection and scrambling [23],[24].

The mappings performed in this layer are shown in tables 2.4 and 2.5

Downlink

Transport channels Physical channels

DL-SCH PDSCH
BCH PBCH
PCH PDSCH

Uplink

Transport channels Physical channels

UL-SCH PUSCH
RACH PRACH

Sidelink

Transport channels Physical channels

SL-SCH PSSCH
SL-BCH PSBCH

Table 2.4: Mapping table between transport channels and physical channels[25].

2.3.3 Radio Unit (RU)

The RU is the unit closest to the UE’s, establishing the connection between the UE and
the rest of the network. This unit is responsible for having the lowest layer of the protocol
stack and for the radio functions, as shown in Figure 2.9. This unit is implemented using
dedicated hardware. In PHY-Low, resource element mapping (RE Mapping) processes are
performed, which consists of: converting the symbols received from the highest layer of the
PHY into subcarriers; mapping the symbols into resource elements; performing beamforming
processes and; execution of Inverse Fast Fourier transform (iFFT)/Fast Fourier transform

15

Downlink

Control Information Physical channels

DCI PDCCH

Uplink

Control Information Physical channels

UCI PUCCH
UCI PUSCH

Sidelink

Control Information Physical channels

1st-stage SCI PSCCH
2nd-stage SCI PSSCH

SFCI PSFCH

Table 2.5: Mapping table between control channels information and physical channels [25].

(FFT) processes that serve to convert the symbols between the frequency domain and the
time domain. In this layer is also added and removed the Cyclic Prefix (CP) that serves to
distinguish the frames from each other [24]. In the Radio Frequency (RF) part, the conversion
processes between digital and analog signals are performed, as well as the transmission and
reception of signals, using frequency bands FR1 that operates from a frequency of 410MHz
to 7.125GHz, or FR2 that operates from a frequency of 24.25GHz to 52.6GHz (mmWave).

Figure 2.9: RU protocols, and layers.

2.4 Virtualization of RAN Elements

Currently, there is an increasing trend towards virtualization of RAN elements or vRAN.
In the RAN, the NF’s related to DU and CU can be executed using VNF. These VNF are

16

executed by COTS servers in Edge DC that can still be split into two layers, as shown in figure
2.10. The first layer, known as Light data center (Light DC), and like the physical unit (RU
or Small Cell (SC)) is part of the Cloud Enabled Small Cell (CESC) and aims to provide low
latency services by running VNF’s that require low processing power. The second layer is the
Main data center (Main DC) and aims to provide services that require high computational
processing power for the implementation, for example, of Software-Defined Networking (SDN)
controllers, security-related VNF, and mobility management [5].

Figure 2.10: Network diagrams with Light DC and Main DC.

2.5 5G Deployment Platforms Overview

One of the objectives of this dissertation is to implement a 5G network. To carry out the
implementation there are some open source platforms that provide software that can be used.
Some of these platforms are described below.

2.5.1 OpenAirInterface (OAI)

OAI is an open source platform that allows you to emulate 4G/5G networks following
the standards defined by 3GPP. OAI has two project groups, the OAI 5G CN, that aims
to develop the software associated with the 5GC, and the OAI 5G RAN project, that aims
to develop the software associated with the RAN. The source codes are available on EURE-
COM’s Gitlab, and the OAI 5GC source code can be found in the cn5g repository [26] while
the OAI RAN source code can be found in the openairinterface5g repository [27].

The code available in the cn5g repository does not yet have all the elements of a 5GC
implemented, however, in the master branch of the repository, it is already possible to find a
stable version of the core with the ability to support several procedures, having already been
implemented with different gNB (including commercial gNB) and RAN simulators [28]. The
OAI 5GC has two different implementation options, a simple one with the basic elements,
and a more complete one with all the elements of the core developed by OAI until now [28].

The code available in openairinterface5g allows to do the emulation of eNB, gNB (for an
NSA architecture and for an SA architecture), and also allows the emulation of a UE (SA and

17

NSA). However, to implement a 5G SA or NSA network, the develop branch of the repository
must be used, as the master branch only offers the possibility to emulate the eNB. The code
available, until the moment of this work, is not fully developed, resulting in lacking support
for some functions for both the NSA and SA architectures. However, it is possible to carry
out network tests for both architectures. In each of the repositories, it is possible to find
a lot of information related to the code, recommended hardware, and installation tutorials
[29],[30].

The highly flexible software provided by OAI, allows the modification of the source code
to adjust to the needs of each implementation, allowing highly customized implementation
solutions. The figure 2.11 illustrates the features offered by OAI.

Figure 2.11: Representation of the OAI project, and their different projects.

2.5.2 Open Networking Foundation (ONF)

ONF is a non-profit consortium which has dozens of partners, members, and collaborators
that aims to bring together different projects related to the development of open source
solutions, taking advantage of network disaggregation, and SDN/NFV/Cloud technologies.

ONF has projects focused on mobile and 5G solutions, and broadband solutions. In mobile
and 5G solutions it is important to highlight the Aether platform, which is an open source
platform for multi-cloud deployments to provide wireless connectivity. The Aether platform
is divided into two sub-platforms, which are SD-CORE and SD-RAN [31].

SD-CORE allows 4G and 5G NSA/SA deployments. This versatility and flexibility is due
to the fact that the platform has integrated the Open Mobile Evolved Core (OMEC), for 4G
and 5G NSA deployments, and also has integrated free5GC, for SA deployments. SD-CORE
also provides a rich set of APIs for Runtime Operation Control (ROC) [32].

SD-RAN is responsible for the development, testing, and availability of open source com-
ponents for the RAN, such as CU, DU, SDN controller, and even a RAN simulator [33],[34].

On the ONF website it is also possible to find information related to the components
available and some tutorials related to the installation of the various components. ONF has
a large community that includes operators, research institutes and companies, which allows
the constant development of its platforms. The figure 2.12 illustrates the resources offered by
ONF.

18

Figure 2.12: Representation of the ONF Platform, and their different projects.

2.6 Summary and Next Steps

In these first two chapters of the dissertation, several aspects related to 5G mobile networks
were addressed. The first chapter provided an overview of how mobile networks have played
a key role in society over the last few decades, and about their futute impact expected on
society. The possible architectures that can be used were also discussed. In addition, the
importance of small cells in RAN was analyzed, which elements of RAN can be virtualized
and the advantages of doing the virtualization, besides the importance of architecture based
on O-RAN. Finally, the objectives of this dissertation were defined.

With the information gathered in this chapter 2, the various elements that form part a 5G
SA network were known, analyzing the functions performed by each element of the network.
Finally, the different platforms that can be used to implement a network in the laboratory
were analyzed.

The following chapter will be dedicated to the implementation of the network, giving a
more detailed view of the software that will be used to implement it.

19

Chapter 3

Openairinterface Features and
Deployment

This chapter presents the implementation of a 5G SA network based on OAI, where how
it was carried out is described, analyzing the function of each host, its characteristics, and
the changes that had to be made. It also identifies the UE’s used to test the network and
what configurations are required on each one.

3.1 Introduction

As explained in previous chapters, the implementation of a 5G SA network needs a set
of fundamental elements. These elements are the Core and the gNB, and these two elements
establish the connection between the UE’s and the internet, as shown in Figure 3.1.

Figure 3.1: Essential elements of a 5G SA network.

Remembering that each of these elements can be further divided into smaller elements. For
the core, it can be divided into a set of services, known as AMF, SMF, SCP, AUSF, NSSAAF,
NSSF, NEF, NRF, PCF, UDM, UPF, and AF. In the case of gNB, it can be divided into 3
units, which are CU, DU, and RU.

The OAI platform, in the 5G RAN and 5G CORE NETWORK projects, provides all the
software necessary to implement a 5G SA network through the virtualization of the different
elements of the network. The great flexibility offered by the software developed by OAI allows
a set of different possible implementations [26],[27]. The software for the Core, allows the
realization of 3 possible deployments. The software provided for the RAN allows two types of

20

deployment, one using split 8, in which the gNB has a monolithic configuration, and another
using split 2, which allows the division between the CU and the DU.

The possible implementations of greatest interest can be summarized as follows:

UE commercial ↔ gNB(monolithic) ↔ 5GC

OAI UE ↔ gNB(monolithic) ↔ 5GC

UE commercial ↔ DU ↔ CU ↔ 5GC

OAI UE ↔ DU ↔ CU ↔ 5GC

Within the scope of this dissertation, special focus will be given to implementations with
monolithic gNB, varying the test terminal between OAI UE and COTS UE, according to
needs. In the next sections of this chapter, the deployment architecture will be explained in
detail, as how to use OAI software to implement a 5G SA network.

3.2 Implementation Overview

For the implementation of the network, two PC were needed, a PC that was responsible
for hosting and running the network Core, and another PC where gNB was installed and
executed. Finally, a Universal Software Radio Peripheral (USRP) b210 was used, connected
via USB to the PC that runs the gNB, which was responsible for ensuring RF communication
with the test terminal. For the terminals, two types were used. The first terminal was the
OAI UE (emulated UE), which was installed and executed on a third machine, to use this
terminal it was still necessary to use a second USRP b210. The second terminal consisted
of using the Quectel RM500Q modem connected to a personal computer. As exemplified in
figure 3.2.

Figure 3.2: Overview of the setup implemented in the lab.

In figure 3.3 it is possible to see the photos of the different components used in the
implementation in the laboratory.

21

Figure 3.3: Photos of the setup components implemented in the laboratory.

The characteristics of each of the host, the way they communicate with each other, and
what configurations each one of them needs will be explained in detail in the following points
of this chapter.

3.2.1 5GC Host

The first PC to be analyzed is the PC that was responsible for hosting and running the
Core, which must have a connection with the PC that runs the gNB, and must also have
an internet connection, to guarantee a connection between the RAN and the Internet. To
make this possible, the computer had two network cards, one of the cards was responsible for
connecting to the gNB, and the other network card is connected to the outside, to allow the
implementation to have a connection to the outside/internet, as shown in figure 3.4.

Figure 3.4: Core Host connections, and IP addresses used on NICs.

22

In the setup that was implemented in this dissertation, the network card responsible for
communicating with the outside, identified in figure 3.4 by Network Interface Card (NIC)
1, with the name enxf8e43bbb24fe, was assigned the IP address 192.168.81.232. For the
connection with the gNB, the network card, identified in figure 3.4 by NIC2, with the name
enp4s0 was manually configured, with a static IP address of 192.168.1.16.

The PC where Core runs must also meet some requirements that are recommended by
the OAI, such as operating system and hardware requirements. In the setup that was imple-
mented, the host has the following specifications, listed in the following table 3.1:

Specifications

CPU Intel Core i9-12900K

RAM 64 GB

Disk 1 TB

Operational System Ubuntu 18.04.6 LTS

Kernel 5.4.0-126-generic

NIC1 Intel Ethernet 1000 Mbps

NIC2 Intel Ethernet 1000 Mbps

Table 3.1: Core computer specifications.

As previously mentioned, the software provided by OAI for the core has 3 possible im-
plementations, and in the scope of this dissertation, the Core version that was chosen was
the basic version, which has the following elements: AMF, SMF, NRF, UPF(oai-spgwu-tiny),
UDM, AUSF, and UDR.

Core works with docker containers, so to get Core working it is necessary to install Docker
on the host that will run it.

Docker is a platform that allows the virtualized execution of applications/services in iso-
lation within containers. In Docker, each Container runs an application/service, containing
all the necessary dependencies for the correct operation of the application/service, each con-
tainer is isolated at disk, memory, processing and network level. Can run on same host
several containers. The configuration of several Containers can be done using a docker com-
pose file, which allows configuring and initializing several Containers with a single command.
Each Container runs from an image. Container images can be found in repositories such as
Docker-Hub, where developers can place their projects, thus making their images available
for other people to use.

Each of the elements listed above corresponds to a container, for that, it is necessary to
pull the official images from the Docker-Hub.

In addition to the images of each of the elements, for the Core to work it is still necessary
to pull the ubuntu:bionic and mysql/mysql5.7 images. An extra image is still available from
the OAI for testing purposes.

To extract all the necessary images for the Docker-Hub Core, it was necessary to use the
commands indicated below.

$ docker pull ubuntu:bionic

$ docker pull mysql:5.7

$ docker pull oaisoftwarealliance/oai-amf:develop

$ docker pull oaisoftwarealliance/oai-nrf:develop

23

$ docker pull oaisoftwarealliance/oai-smf:develop

$ docker pull oaisoftwarealliance/oai-udr:develop

$ docker pull oaisoftwarealliance/oai-udm:develop

$ docker pull oaisoftwarealliance/oai-ausf:develop

$ docker pull oaisoftwarealliance/oai-spgwu-tiny:develop

$ docker pull oaisoftwarealliance/trf-gen-cn5g:latest

After this process, it was necessary to tag the images, the names must match the names
that were in the docker-compose. The commands below show how it was done.

$ docker image tag oaisoftwarealliance/oai-amf:develop oai-amf:develop

$ docker image tag oaisoftwarealliance/oai-nrf:develop oai-nrf:develop

$ docker image tag oaisoftwarealliance/oai-smf:develop oai-smf:develop

$ docker image tag oaisoftwarealliance/oai-udr:develop oai-udr:develop

$ docker image tag oaisoftwarealliance/oai-udm:develop oai-udm:develop

$ docker image tag oaisoftwarealliance/oai-ausf:develop oai-ausf:develop

$ docker image tag oaisoftwarealliance/oai-spgwu-tiny:develop oai-spgwu-tiny:

develop

$ docker image tag oaisoftwarealliance/trf-gen-cn5g:latest trf-gen-cn5g:latest

It was also necessary to clone the cn5g repository from openairinterface, where the rest of
the software and core configuration files are available, such as docker-compose configuration
files, and the database, which are necessary for the Core to work. The following commands
show how it was done.

$ git clone https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed.git ~/oai-cn5g-fed

The bridge for communication between the different containers is called “demo-oai” cre-
ated with the address 192.168.70.128/26, and all the core containers communicate through
it, as shown in figure 3.5.

Each container has its own associated IP address, and each of these IP addresses is defined
in the Docker compose file. Table 3.2 shows the IP addresses used by containers in the Core
implementation.

Container IP addresses

UDR 192.168.70.136

AMF 192.168.70.132

AUSF 192.168.70.138

UDM 192.168.70.137

SMF 192.168.70.133

UPF 192.168.70.134

NRF 192.168.70.130

Table 3.2: Core element addresses.

24

Figure 3.5: 5G Core Continers, and their IP addresses.

3.2.2 gNB Host

The PC responsible for hosting and running the gNB has to communicate with the Core,
and it needs to have connected itself, via USB 3.0, to a USRP b210. As shown in figure 3.6.

Figure 3.6: gNB Host connections, and IP address used on NIC.

In the setup that was implemented for this dissertation, the network card, identified by
NIC1 in figure 3.6, with the name enxf8e43bbb57d5, was configured with the static IP address

25

192.168.1.15.

The host on which gNB runs has the following specifications, listed in the following table
3.3:

Specifications

CPU Intel Core i9-12900K

RAM 64 GB

Disk 1 TB

Operational System Ubuntu 18.04.6 LTS

Kernel 4.15.0.192-lowlatency

NIC1 USB Type-C to RJ45 Gigabit Ethernet Network Adapter

Table 3.3: gNB computer specifications.

In the scope of this dissertation, as mentioned above, the implementation for the RAN
part was a monolithic gNB.

On the computer where gNB runs, it needs to be configured due to the functions it is
performing. It is necessary to use a low latency kernel, and disable c-states in the BIOS, also
disabling c-states, and p-states in the kernel, and the governor flag needs to be in performance,
to have all CPU cores at 100%, to have the best possible system response time. Then it is
necessary to install the USRP on the machine that runs gNB, for it is necessary to download
and install the software from the EttusRearch repository, the software version used was 4.2.0.0.

Finally, it was necessary to clone the openairinterface5g repository from OAI, and for 5G
SA implementations, the develop branch must be used. By making a clone of the repository, all
the software and configuration files necessary to configure and start gNB are made available.
To obtain and install the OAI software, the following steps were followed. To get the software
and choose the branch:

$ git clone https://gitlab.eurecom.fr/oai/openairinterface5g.git

$ cd openairinterface5g

$ git checkout develop

To compile and install all the software:

$ cd openairinterface5g

$ source oaienv

$ cd cmake_targets

$./build_oai -I

$./build_oai -w USRP --gNB -build-lib all -c

After carrying out all the process described above, the gNB was ready to work.

3.2.3 UE

Regarding the terminals used for testing, the operation of each one will be explained in
more detail below.

26

3.2.3.1 OAI UE Emulator

The PC responsible for hosting and running the OAI UE needs to have a USRP connected
via USB, in the scope of this dissertation for the OAI UE a b210 was used, as shown in figure
3.7, and through it, it is possible to establish a connection with the network.

Figure 3.7: Connections between OAI UE and the USRP B210.

The pc on which the OAI UE runs has the specifications listed in the following table 3.4:

Specifications

CPU Intel Core i9-12900k

RAM 64 GB

Disk 1 TB

Operational System Ubuntu 18.04.6 LTS

Kernel 5.4.0-122-lowlatency

Table 3.4: Core computer specifications.

To obtain the necessary software for the OAI UE, the process is similar to that described
for the gNB. For the USRP, since the model used is the same, the process is the same as the
one done for the gNB. Regarding the OAI software, the obtaining process is the same, making
a git clone of the openairinterface5g repository, the only difference being in the installation
process, which will install UE instead of gNB.

To install OAI UE, the following steps were performed:

$ cd openairinterface5g

$ source oaienv

$ cd cmake_targets

$./build_oai -I

$./build_oai -w USRP --nrUE -build-lib all -c

27

3.2.3.2 Quectel RM500Q UE

Using the Quectel modem, it is necessary to connect to a computer, via USB, as shown
in figure 3.8.

Figure 3.8: Connection between PC and Quectel RM500Q Modem.

The modem allows the computer to which it is connected to establish a connection with
the network that has been implemented. To do so, it is necessary to program a SIM card,
according to the data of the network to be connected, and configure a Data Network Name
(DNN) on the PC.

3.2.4 USRP B210

The network implemented to be able to work needs to use a USRP, which is responsible
for performing the RF functions of the setup.

The USRP model used in this dissertation was a b210, in which some of its characteristics
are continuous RF coverage from 70 MHz to 6 GHz, with maximum bandwidths up to 56
MHz, full duplex, and Multiple-Input and Multiple-Output (MIMO) 2x2.

The USRP has a USB 3.0 type-B output, and it is through this output that it communi-
cates with the pc running gNB.

3.3 Setup and Run

3.3.1 Core

Before running the core it is necessary to ensure that the International Mobile Sub-
scriber Identity (IMSI), KEY and OPC of each user present in the database, located in
the /oai-cn5g-fed/docker-compose/database directory, are equal to the values that are
present in the configuration file of the UE, in case of using the OAI UE, or equal to the values

28

used to program the SIM Card, if using the Quectel Modem. It is also necessary to check the
docker-compose configuration file, located in the /oai-cn5g-fed/dokcer-compose directory,
because you must ensure that the Mobile Country Code (MCC) values are equal to the first
3 digits of the IMSI, and the Mobile Network Code (MNC) values are equal to the fourth
and fifth digits of the IMSI. Also in the docker-compose configuration file, it is necessary to
ensure that the Slice Service Type (SST) and SD values are the same as those used in the
gNB configuration file. Finally, ensure that the DNN is the same as the one in the OAI UE
configuration file, or the one in the Quectel Modem settings.

To run core, use the command

"python3 core-network.py --type stop-basic --scenario 1"

in the

~/oai-cn5g-fed/dokcer-compose directory.

3.3.2 gNB

To configure gNB correctly it is necessary to access the configuration file, and put the
values according to what is intended for the setup.

To run gNB, in the /openairinterface5g/cmake targets/ran build/build directory,
run the following command:

sudo ./nr-softmodem -O config_file_directory --sa -continous-tx -E

3.3.3 OAI UE Emulator

To run OAI UE it is necessary to edit the IMSI, KEY, OPC, and DNN values of the
configuration file to match the desired ones. Once this process is done to run the OAI
UE, in the /openairinterface5g/cmake targets/ran build/build directory, execute the
following command:

sudo -S ./nr-uesoftmodem -r num_prb --numerology 1 --band num_band -C freq

--ue-fo-compensation --sa --nokrnmod -config_file_directory -E

3.3.4 Quectel RM500Q UE

To use the terminal with the modem, after programming the card and configuring the
DNN, just connect to the usb port and wait for it to connect to the network.

3.4 Summary and Next Steps

In this third chapter, it was analyzed how to implement a 5G SA network based on the
software provided by OAI, describing in detail the specifications of each of the hosts used
for the different elements of the network, which must be configured on the different hosts,
the software that is necessary to put in each of these host, and the way they communicate
with each other. In the next chapter, the work carried out will be presented, which aims to
automate much of the work carried out in this chapter as much as possible and make the OAI
implementation process easier.

29

Chapter 4

Platform Implementation

In this chapter, the platform developed within the scope of this dissertation will be pre-
sented, which consists of a platform capable of assisting in the use of the OAI, for the im-
plementation of a 5G SA network, through the automation of many the processes described
in the previous chapter. It will be shown how the platform was built, and how each of the
features that the platform offers to the user was developed.

4.1 Introduction

As can be seen in the previous chapter, the process required to implement a 5G SA
network based on OAI software, and to get this network up and running, is a multi-step and
time-consuming process, which can lead to the emergence of errors. The fact that confirms
the previous statement is that when consulting the Maling List on the OAI website, and
when searching for doubts and difficulties presented by people who are trying to implement
a network, it appears that a substantial part of the problems reported are not related to
problems with the available software, but due to the fact that the usability of the software is
quite complex at some points, and also not very intuitive.

These problems that were enumerated before, constitute one of the biggest problems of
OAI, which makes it a project with great potential, but its difficult usability takes away its
value.

The platform developed within the scope of this dissertation aims to facilitate the instal-
lation and use of the OAI, especially for those who still have little experience, thus making
the use of the software provided by OAI easier, more intuitive, and automated, allowing to
work more efficiently.

The process of developing the different functionalities of the platform will be explained in
the following topics of this chapter.

4.2 Platform Description

The platform was developed with the python language, the choice to use python for the
development of the platform is due to the fact that it is a very rich language in libraries, al-
lowing faster development of the platform, and facilitating the implementation of the various
features of the platform. The platform was developed to run on a machine outside the OAI
setup, communicating and controlling the setup via ssh connections, as shown in figure 4.1.

30

Figure 4.1: Schematic representing the way of integration of the platform with the imple-
mented network.

To implement SSH communication, between the platform and the setup where the network
is implemented, the “paramiko” library was used, this library uses the SSHv2 communication
protocol, thus allowing the execution of commands on a remote host, the transfer of files
between machines is done in a safe way[35].

The developed platform has a graphical interface to allow the user to have an easier, more
comfortable, and intuitive user experience. The “PySimpleGUI” library was used for the
construction of the graphical interface, this library provides a large number of resources, in
a simple way, for the construction of the different interfaces necessary for the platform, thus
constituting a good option to be used in this work [36].

The features that were developed for the platform can be grouped into 3 groups, features
that help the user in the OAI software installation process, automating the process, features
that facilitate the network configuration process, and features that help the user to test the
Setup, as shown in the figure 4.2.

The way in which each of the features was implemented will be described below.

31

Figure 4.2: Platform features and options.

32

4.2.1 Installation Features and Procedures

The first functionality developed was the functionality that is responsible for assisting
and automating the OAI software installation process. As described in the previous chapter,
for the correct installation of the OAI software it is necessary to ensure that a set of other
software is installed, both for obtaining the code and for its correct operation.

The platform allows the user to define the type of setup he wants to install, with options
such as allowing each of the elements to be installed individually, that is, installing only the
Core, gNB, or OAI UE.

It also allows the user to combine the installation of these elements at once, so that he
does not need to install one at a time, thus allowing the user in a single installation process to
have the setup completely installed. Since the possible types of setup are: All-in-One, which
consists of installing Core and gNB on the same host, another possible setup would be to
install Core and gNB on different hosts, and for both setups, the user can still define whether
or not you want to install OAI UE on another host.

Regardless of the setup chosen, the installation processes for each of the components al-
ways follow the same steps. These steps will be listed below, in detail, for each of the elements.

4.2.1.1 Core

To install the Core, the platform works as follows, based on the information provided by
the user, the platform can access it through an SSH connection with the remote host.

The first process performed by the platform is to transfer a shell script to the remote
host. This shell script contains the instructions for various software and packages, which are
as follows, the shell script will install git, which is necessary to obtain the software from the
OAI repository, it also has instructions to install the packages net-tools which provide a set
of tools for network configurations, is also responsible for installing docker, which is essential
for running the images of the different Core elements.

After transferring the shell script to the host, the platform sends the command that will
increase the script’s permissions on the target host, in order to make that script executable.
Having the script the permissions to be able to be executed, the platform sends a command
that executes the shell script.

At the end of the script execution, the PC will restart automatically.

After the machine restarts, the platform sends a second shell script. This second shell
script, after being transferred and increasing its permissions, when it is executed it will pull
the official images of the different elements of the OAI Docker-Hub, namely AMF, NRF,
SMF, UDR, UDM, AUSF, UPF(spgwu-tiny), in addition to these images, the images of
ubuntu:bionic, mysql:bionic, and TRF-GEN-CN5G are also pulled, which are used to perform
network traffic tests. Finally, when all images are available, the script will tag the images.
The processes described above are shown in figure 4.3.

33

Figure 4.3: Core installation process, performed by the platform.

After this process is finished, the core is ready to be used.

4.2.1.2 gNB

For the installation of gNB, the platform works as follows, based on the data provided
by the user, the platform can access the host through an SSH connection. The first step
carried out by the platform is to send a shell script to the host where gNB will be installed.
This shell script is responsible for installing git on the target host, in order to obtain the
EttusReach software for installing the USRP on the host, and for obtaining the OAI software
to be installed on the target host.

Once the shell script transfer is complete, the platform will send a command to increase
the permissions on the target host, after which the platform will send a command to execute
the shell script.

The installation process on the machine running gNB is as follows, after obtaining the
software from the EttusRearch repository, the drivers and software necessary for the USRP
to work on the host will be installed, after this process is finished and the software is obtained

34

from the repository of the OAI, the gNB related software will be compiled and installed on
the host. After this process, the gNB is ready to be used.
The gNB installation process is described in figure 4.4.

Figure 4.4: gNB installation process, performed by the platform.

4.2.1.3 OAI UE Emulator

For OAI UE, the process is similar to what is done for installing gNB, in which a shell
script is also transferred to the target host, which also installs git, software, and driver to run
USRP. The difference with gNB is that now the code that is compiled and installed on the
host is what refers to the OAI UE. The OAI UE installation process is described in figure
4.5.

Figure 4.5: OAI UE installation process, performed by the platform.

35

4.2.2 Configuration Features and Procedures

The second functionality that was implemented for the platform is the functionality that
helps the user in configuring the network and putting the network into operation. This
functionality was developed so that the user has two options to configure the network and to
run the network.

The first option corresponds to the network configuration automatically, where the plat-
form uses a pre-defined configuration, and consists of the following steps, the platform has in
its architecture a folder that contains several Templates, in the /Platform/Template direc-
tory, in this directory, several configuration files are stored, and when this option is selected,
the platform transfers two files to the Core, one relating to the database that is transferred to
the directory /oai-cn5g-fed/docker-compose/database, and a docker-compose file to the
/oai-cn5g-fed/docker-compose directory. After these files are transferred, the platform
sends a command to increase the database permissions. Finally, the platform puts the Core
up and running.

For gNB, the platform transfers from the Template folder to the host where gNB is
running, a configuration file, this configuration file is transferred to the directory
/openairinterface5g/targets/PROJECTS/GENERIC-NR-5G/CONF . After the file has been
downloaded, the platform sends the command to run gNB.

For the UE, there are two possibilities for the platform to function, depending on the
options chosen by the user. If the user has selected the option indicating that the terminal
is the OAI UE, the platform transfers the preconfigured configuration file, for the machine
that runs the OAI UE, to the directory /openairinterface5g/targets/PROJECTS/GENERIC

-NR-5G/CONF. Once the transfer is complete, the platform executes the command to run the
OAI UE. If the user has indicated that he is using a COTS UE, the platform automatically
programs a SIM card, using the software provided by OpenCells, which comes with the
platform.

The second operating option is when the user wants to define the parameters of the
different elements of the network, and then put the network into operation. The process is
carried out as follows: For Core, as described above, the platform also goes to the Template
folder to get the files for the database and the docker-compose file, but before transferring
these two files to the machine where the Core is, updates these files with the configuration
information that the user has introduced, after the platform updates these two files, transfer
the files, and puts the Core in operation, as described above.

For gNB the process is similar, the configuration file is also updated with the information
entered by the user, and then it is transferred to gNB. Finally, the gNB is put into operation.

For the terminal, when the OAI UE is being used, the configuration file is updated accord-
ing to the information given by the user, then it is transferred to the machine that is running
the OAI UE. When the terminal is a COTS UE, the SIM card is programmed according to
the information given by the user. The process of this functionality is described in figure 4.6.

36

Figure 4.6: Configuration process and running the network, performed by the platform.

4.2.3 Test Features and Procedures

The third functionality that was implemented corresponds to the automation of network
tests. The platform has implemented 4 different tests that can be done to the network. The
realization of these tests is all with the OAI UE.

The first test implemented is a test to verify if the Core is working, this test consists of,
the platform sending through the machine that runs gNB, a set of ping’s to the IP address of
the AMF, saving the result in a file. Then the platform will fetch that file, and analyze the
result, and depending on the result, the platform transmits the test results to the user. The
process is described in figure 4.7.

37

Figure 4.7: How the testing process is performed to verify that the Core is working.

The second test implemented is a test to verify that the OAI UE connects to the network,
this test consists after all elements of the network are running, the platform executes an
ifconfig command on the machine on which the OAI is running UE, saving the results to a
file. Then that file is transferred to the platform, and the result is analyzed, checking if any IP
address has been assigned to the OAI UE. Depending on the result, the platform transmits
the test result to the user. The process is described in figure 4.8.

38

Figure 4.8: How the testing process is performed to verify that the OAI UE connects to the
network.

The third test implemented is a test that verifies the end-to-end connection. The process
for implementing this test consists of the following after all elements of the network are
working, the platform sends a command to the OAI UE, forcing it to send a ping to the
address 8.8.8.8 (google) through the created connection over the network, saving that result
in a file, and depending on the result, the platform transmits the test results to the user. The
process is described in figure 4.9.

39

Figure 4.9: How the testing process is performed to verify the end-to-end connection.

The fourth test implemented is a network performance test implemented using iperf, where
after the Core, the gNB, and the OAI UE are up and running, the platform sends a command
to the UE so that it is ready to receive traffic, and a command is simultaneously sent to the
Core to generate traffic in the trf-gen-5gcn container, in the end, the UE results are saved
and transferred to the platform. The process is described in figure 4.10.

40

Figure 4.10: Implementation of the network performance test.

To see the implementation details in python and obtain the platform code that was de-
scribed in this chapter, access the github repository at https://github.com/RuiMRPereira/
OAIPlatform.git

4.3 Summary and Next Steps

This chapter it was explained how the platform integrates and interacts with the OAI
software, how the platform was developed, explaining how each of the features made available
by the platform was implemented. In the next chapter, it will be discussed how to use the
platform and the results of its use.

41

https://github.com/RuiMRPereira/OAIPlatform.git
https://github.com/RuiMRPereira/OAIPlatform.git

Chapter 5

Results

In this chapter, the analysis of the results will be made, first, the results of the implemen-
tation carried out in the first part of the work will be shown. Finally, the developed platform
will be presented, showing the functioning of different functionalities, and their interfaces.

5.1 Introduction

The work done in this dissertation resulted in a first phase in the implementation of a 5G
SA network, and a second phase in the development of a platform to assist the use of the OAI
software. In the first phase, which was the implementation of the network, it was necessary
to carry out the whole process of preparing the different hosts and installing the necessary
software, and the configuration of the different elements that make up the network.

Tests were conducted with two UEs, the OAI UE Emulator, which is provided by OAI and
allows for simpler tests, and the Quectel RM500Q modem which allows for more complete
tests, allowing to replicate a usage closer to reality.

In the second phase of this dissertation’s work, the platform that facilitates the use of
the OAI software was developed. The developed platform can offer the user assistance in the
installation process of the OAI software, automating this process, and is also able to automate
the entire configuration process of all the network elements, or facilitate the configuration of
the same, depending on what the user wants. And finally, it also offers a test suite, which
allows to identify possible problems in the implemented network and test its performance.

The results of the work are divided into two parts. In the first part the results are shown,
where it is possible to see that the network was successfully implemented, and with the result
in the performance test performed on the network. The results obtained in the network
performance tests are similar regardless of whether or not the platform developed in the
second part of the work was used since the focus of the platform is on improving the usability
of the software, and not on improving performance. In the results of the second part of the
work, the different interfaces and the order in which they are presented to the user are shown,
where the comparison between using the platform and not working with the OAI software
will be made.

42

5.2 Test Setup

In the first part of the work done in this dissertation, as shown in previous chapters, the
test setup consisted of a machine where the Core was installed and executed, and this machine
communicated with another machine, via Ethernet cable, where the gNB was installed and
executed. The machine where the gNB is located has a USRP B210 connected to it, which
is responsible for ensuring RF communications. To test the implemented network two UEs,
referred to above, were used. For the OAI UE Emulator a third machine was used where the
software available from OAI to Emulate the UE was installed and executed, this machine also
needed, like the gNB, a USRP B210 to communicate via RF with the network. For the tests
using the Quectel RM500Q modem, an ordinary PC was used, where it was enough to connect
the Modem and configure the DNN, thus allowing the use of the implemented network. The
scenarios described above are shown in Figure 3.2 in Chapter 3.

The implementation used to perform the tests has the following characteristics, Band
78 was used, which corresponds to the frequency range from 3.3GHz to 3.8GHz, using a
Subcarrier Spacing of 30kHz, and a bandwidth of 40MHz.

For the second part of the work, which was the development of the platform, the platform
runs on a machine outside the Setup, which controls the different hosts via SSH. As shown
in Figure 4.1 in Chapter 4.

5.3 Analysis

The following sections will analyze the results obtained in this dissertation.

5.3.1 Implementation Testing

The logs obtained in the Core, and in the gNB are the equal regardless of the UE type
used in the test. Both the OAI UE Emulator and the SIM Card used in the modem have
the same IMSI value, which for this test was 2089900000000000001, and use the same DNN,
called ”oai”. The gNB used for testing was assigned the name ”gNB” and an ID with a value
of ”0xc000”, and these values were used for both UEs. The network was also configured with
an MCC of 208 and an MNC of 99.

In the following figures, it is possible to observe the logs that the system presents when it
is running, with a connected UE.

In the figure 5.1, it is possible to observe the AMF logs when a UE is connected to
the system. It is possible to see that in the information regarding the gNB, the state is
”connected”, presenting the name, ID, MCC, and MNC according to the configurations that
were made. The information about the UE it is possible to see through the state that there
is a UE registered in the Core, presenting Public Land Mobile Network (PLMN) values
equal to the gNB, and by analyzing the first 5 digits of the IMSI, which corresponds to the
concatenation of the MCC and MNC values, which also verifies that they are following what
was expected.

43

Figure 5.1: Core AMF logs with a registered user.

In the figure 5.2 the SMF logs are shown, where is possible to see that the IMSI value is
the same as shown in the AMF logs, the DNN that was configured on the UE agrees with the
Core and the IP address that the Core assigned to the UE, which in this test was 12.1.1.2.

Figure 5.2: Core SMF logs with a registered user.

From the information presented by the AMF and SMF logs, it can be concluded that the
UE is correctly connected to the network.

In figure 5.3, it’s possible to see the logs that the gNB shows when it has a UE connected
to the network, from observing the gNB logs is possible to see that data packets are being
exchanged between the UE and the Core.

44

Figure 5.3: gNB logs with a UE connected.

5.3.1.1 Test with OAI UE Emulator

When using the OAI UE Emulator as a terminal, when connecting to the network the UE
shows the logs that are shown in figure 5.4

Figure 5.4: UE logs when connected.

The tests performed by the OAI UE Emulator served essentially to verify if the network
was well configured and working correctly, in figure 5.5 it is possible to observe one of the tests
performed with this UE, where it is also possible to verify that the UE has the IP address
12.1.1.2, which is in accord with the information shown by the SMF log. The test consisted
in sending a ping to the address 8.8.8.8 (google) through the implemented network, the test
being successful, it can be concluded that the implementation was done correctly.

Figure 5.5: Test with OAI UE Emulator.

45

5.3.1.2 Test with Quectel RM500Q Modem

When the test terminal used was the Quectel RM500QModem, and the network is working
properly, what is observed on the PC where the Modem is connected should be similar to what
is shown in figure 5.6. Where is possible to see that the PC is connected to a mobile network,
with the name ”OpenAirInterface”, which is the name of the network implemented.

Figure 5.6: Quectel RM500Q modem connected to PC.

It was with the Quectel RM500Q Modem that the network performance tests were carried
out, in order to test how it is a real use, it was tried to use in various situations, such as
watching videos varying their quality, to which the network managed to perform satisfactorily.

In the various performance tests performed, the results obtained were DownLink speeds
close to 100 Mbps and UpLink speeds close to 8 Mbps, in figure 5.7 its possible to see a
screenshot of one of these tests. The results obtained for the Downlink and Uplink speeds are
in line with what was expected, according to the information available on the OAI website,
for an implementation with a bandwidth of 40 MHz, and using hardware similar to the one
used in this dissertation.[37][38]

46

Figure 5.7: Performance test, using speed test.

5.3.2 Platform Results

The source code of the developed platform is available in the github repository at https:
//github.com/RuiMRPereira/OAIPlatform.git. The development of the platform had the
objective of getting the platform to do the work carried out in the first part of the work in
the most automated way possible, and thus being able to understand the advantage of its
use. The way the platform works is possible to observe the results in the attached images.
The attached images appear in the order in which the interfaces are presented to the user.

The OAI installation functionalities in an automated way, it is possible to see the 7 possible
installation options, in annexes A.1.1, A.1.2, A.1.3, A.1.4, A.1.5, A.1.6, A.1.7. Comparing
the installation time with the traditional/manual way, the decrease in installation time is
noticeable.

The configuration features and running the network, in annexes A.2.1, A.2.2, A.2.3, A.2.4,
A.2.5, A.2.6, A.2.7, A.2.8, it is possible to observe their operation, and the order in which
each interface is presented to the user. Compared to manually configuring and running the
network, using the platform this process became much faster, and the errors associated with
the configuration process were reduced to zero.

The test features that were developed and their functioning can be seen in annexes A3.1,
A3.2, A3.3, A3.4, and A3.5. This set of tests developed, the information that is transmitted
when using, and the suggestions given by the results of each one, allow the user to be able
to verify the correct functioning of the network that has been implemented. And when the
implemented network presents a problem, the platform, with the information that it shows
to the user, allows him to quickly correct the problem, for that the platform transmits the
possible origin of this problem, giving suggestions for the user to execute other tests to identify
the problem more precisely.

Comparing the use of OAI in a traditional way with the use of OAI together with the
platform, it was clear that the platform allows the user to perform more tasks, tests, and
solve problems in a much more efficient and simple way.

5.4 Summary and Next Steps

In this chapter the results of the different phases of the work were shown, this included
the tests for the implementation and the interfaces of the developed platform. In the next
chapter the conclusions will be made, and an analysis of what can be done in the future.

47

https://github.com/RuiMRPereira/OAIPlatform.git
https://github.com/RuiMRPereira/OAIPlatform.git

Chapter 6

Conclusions and Future Work

In this chapter, conclusions will be drawn about the work carried out, and the future work
that may result from this dissertation. In the conclusions, an analysis will be made of the
work carried out, analyzing its value. In future work, it will be indicated what can still be
done in the work carried out, the aspects that can be improved, and the work that can still
be done.

6.1 Conclusions

This dissertation had as some of the objectives, to make an in-depth study on 5G SA
networks, first studying its architecture, then analyzing the different open-source projects
that make it possible to implement the network.

In the initial phase of this dissertation, a study was made on the architecture of a 5G
SA network, analyzing the function of the Core, and the gNB. For the Core, the function of
each of the services it contains was also studied and described. For the gNB, a study was
carried out in each of the functional units that constitute it, CU, DU, and RU, showing how
the protocol stack was divided by each of these units.

After that, a 5G network with an SA architecture was deployed and tested. From the
analysis of some options available to implement the network, it was decided to use the software
provided by OAI. The choice for the OAI was because it is an open-source project of reference,
and in which more information could be found. Despite that, in the initial phase of the
deployment, the information related to implementations with the SA architecture was still
limited, due to the OAI itself that had only recently enabled implementation of an end-to-end
SA network.

In the last phase of the work of this dissertation, the platform was developed to assist
in the use of the OAI software, the need to develop the platform is because, throughout the
work carried out in this dissertation, it was verified that many of the problems and difficulties
was due to the way of working with the OAI. These problems ranged from misconfigured
parameters, as in some cases the configuration files are quite confusing, to problems with
missing routes configuration on some machines whenever the deployment was changed. In
addition, the time spent whenever it was necessary to change something in the deployment was
a constraint. Due to all this, the platform was developed to solve these problems, automating
as many processes as possible.

The goals regarding features to automate installation, configuration and testing processes

48

have been achieved. However, the functioning of the platform must be improved, as the
platform would need greater robustness in its functioning, and it should be able to transmit
more information to the user. Despite these limitations, the platform is already able to offer
a substantial improvement in the use of OAI.

6.2 Future Work

The developed platform still has several aspects to be improved. In terms of robustness,
the platform is still not in good condition, in case of failures during the execution of some
features, the platform still cannot transmit this information to the user, and it is still necessary
to work to improve that. Another aspect to be improved is the information that the platform
can show the user, mainly information related to the Core, it is necessary to develop the
platform so that the user has access to this information, as in the case of the logs of each
element of Core. Finally, visually there is still work to be done, improving the appearance of
the interfaces that are presented to the user.

49

50

Bibliography

[1] L. Guevara and F. A. Cheein, “The role of 5G technologies: Challenges in smart cities
and intelligent transportation systems,” Sustainability (Switzerland), vol. 12, no. 16,
Aug. 2020, issn: 20711050. doi: 10.3390/SU12166469. [Online]. Available: https://
www.researchgate.net/publication/343577759_The_Role_of_5G_Technologies_

Challenges_in_Smart_Cities_and_Intelligent_Transportation_Systems.

[2] S. K. Rao and R. Prasad, “Impact of 5G Technologies on Industry 4.0,” Wireless Per-
sonal Communications, vol. 100, no. 1, pp. 145–159, 2018, issn: 1572-834X. doi: 10.
1007/s11277-018-5615-7. [Online]. Available: https://doi.org/10.1007/s11277-
018-5615-7.

[3] S. A. Abdel Hakeem, A. A. Hady, and H. Kim, “5G-V2X: standardization, architec-
ture, use cases, network-slicing, and edge-computing,” Wireless Networks, vol. 26, no. 8,
pp. 6015–6041, 2020, issn: 1572-8196. doi: 10.1007/s11276-020-02419-8. [Online].
Available: https://doi.org/10.1007/s11276-020-02419-8.

[4] Non-standalone and Standalone: two paths to 5G - Ericsson, https://www.ericsson.
com/en/blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g-tracks

[Online; accessed 20-Jan-2022].

[5] Ethem Alpaydın, “5G PPP Architecture Working Group: View on 5G Architecture,”
Version 3.0, June 2019, no. June, pp. 21–470, 2019. [Online]. Available: https://5g-
ppp.eu/wp-content/uploads/2019/07/5G-PPP-5G-Architecture-White-Paper_

v3.0_PublicConsultation.pdf.

[6] Macrocell vs. small cell vs. femtocell: A 5G introduction, https://www.techtarget.
com/searchnetworking/feature/Macrocell-vs-small-cell-vs-femtocell-A-5G-

introduction[Online; accessed 10-Jan-2022].

[7] N. Wang, E. Hossain, and V. K. Bhargava, “Backhauling 5G small cells: A radio resource
management perspective,” IEEE Wireless Communications, vol. 22, no. 5, pp. 41–49,
Oct. 2015, issn: 15361284. doi: 10.1109/MWC.2015.7306536.

[8] Tips and Trends: Small Cell 5G Systems - Qorvo, https://www.qorvo.com/design-
hub/blog/tips- and- trends- small- cell- 5g- systems [Online; accessed 10-Jan-
2022].

[9] An Introduction to the 5G Small Cell - LitePoint, https://www.litepoint.com/blog/
an-introduction-to-the-5g-small-cell/ [Online; accessed 10-Jan-2022].

[10] What is a small cell? https://www.techtarget.com/searchnetworking/definition/

small-cell [Online; accessed 10-Jan-2022].

51

https://doi.org/10.3390/SU12166469
https://www.researchgate.net/publication/343577759_The_Role_of_5G_Technologies_Challenges_in_Smart_Cities_and_Intelligent_Transportation_Systems
https://www.researchgate.net/publication/343577759_The_Role_of_5G_Technologies_Challenges_in_Smart_Cities_and_Intelligent_Transportation_Systems
https://www.researchgate.net/publication/343577759_The_Role_of_5G_Technologies_Challenges_in_Smart_Cities_and_Intelligent_Transportation_Systems
https://doi.org/10.1007/s11277-018-5615-7
https://doi.org/10.1007/s11277-018-5615-7
https://doi.org/10.1007/s11277-018-5615-7
https://doi.org/10.1007/s11277-018-5615-7
https://doi.org/10.1007/s11276-020-02419-8
https://doi.org/10.1007/s11276-020-02419-8
https://www.ericsson.com/en/blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g-tracks
https://www.ericsson.com/en/blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g-tracks
https://5g-ppp.eu/wp-content/uploads/2019/07/5G-PPP-5G-Architecture-White-Paper_v3.0_PublicConsultation.pdf
https://5g-ppp.eu/wp-content/uploads/2019/07/5G-PPP-5G-Architecture-White-Paper_v3.0_PublicConsultation.pdf
https://5g-ppp.eu/wp-content/uploads/2019/07/5G-PPP-5G-Architecture-White-Paper_v3.0_PublicConsultation.pdf
https://www.techtarget.com/searchnetworking/feature/Macrocell-vs-small-cell-vs-femtocell-A-5G-introduction
https://www.techtarget.com/searchnetworking/feature/Macrocell-vs-small-cell-vs-femtocell-A-5G-introduction
https://www.techtarget.com/searchnetworking/feature/Macrocell-vs-small-cell-vs-femtocell-A-5G-introduction
https://doi.org/10.1109/MWC.2015.7306536
https://www.qorvo.com/design-hub/blog/tips-and-trends-small-cell-5g-systems
https://www.qorvo.com/design-hub/blog/tips-and-trends-small-cell-5g-systems
https://www.litepoint.com/blog/an-introduction-to-the-5g-small-cell/
https://www.litepoint.com/blog/an-introduction-to-the-5g-small-cell/
https://www.techtarget.com/searchnetworking/definition/small-cell
https://www.techtarget.com/searchnetworking/definition/small-cell

[11] A. Pratap, R. Misra, and S. K. Das, “Resource Allocation to Maximize Fairness and
Minimize Interference for Maximum Spectrum Reuse in 5G Cellular Networks,” 19th
IEEE International Symposium on a World of Wireless, Mobile and Multimedia Net-
works, WoWMoM 2018, Aug. 2018. doi: 10.1109/WOWMOM.2018.8449760.

[12] TSGR, “TS 138 401 - V16.5.0 - 5G; NG-RAN; Architecture description (3GPP TS
38.401 version 16.5.0 Release 16),” 2021. [Online]. Available: https://portal.etsi.
org/TB/ETSIDeliverableStatus.aspx.

[13] What are Virtual Network Functions (VNF)? Management Orchestration, https://
www.thousandeyes.com/learning/glossary/vnf-virtual-network-functions[Online;
accessed 13-Jan-2022].

[14] Open RAN explained: innovation and flexibility - Ericsson, https://www.ericsson.
com/en/openness-innovation/open-ran-explained [Online; accessed 13-Jan-2022].

[15] TSGS, “TS 123 501 - V16.6.0 - 5G; System architecture for the 5G System (5GS)
(3GPP TS 23.501 version 16.6.0 Release 16),” 2020. [Online]. Available: https://
portal.etsi.org/TB/ETSIDeliverableStatus.aspx.

[16] ”5G is here!” How do mobile transport providers get ready? https://www.nokia.com/

blog/5g-here-how-do-mobile-transport-providers-get-ready [Online; accessed
16-Feb-2022].

[17] Why the eCPRI Interface is Critical to 5G — Keysight Blogs, https : / / blogs .

keysight.com/blogs/inds.entry.html/2020/09/30/why_the_ecpri_interf-

TC33.html [Online; accessed 16-Feb-2022].

[18] E. Harstead, D. Van Veen, V. Houtsma, and P. Dom, “Technology roadmap for time-
division multiplexed passive optical networks (TDM PONs),” Journal of Lightwave
Technology, vol. 37, no. 2, pp. 657–664, Jan. 2019, issn: 07338724. doi: 10.1109/JLT.
2018.2881933.

[19] TSGR, “TS 138 401 - V16.3.0 - 5G; NG-RAN; Architecture description (3GPP TS
38.401 version 16.3.0 Release 16),” 2020. [Online]. Available: https://portal.etsi.
org/TB/ETSIDeliverableStatus.aspx.

[20] ——, “TS 138 300 - V16.2.0 - 5G; NR; NR and NG-RAN Overall description; Stage-
2 (3GPP TS 38.300 version 16.2.0 Release 16),” 2020. [Online]. Available: https://
portal.etsi.org/TB/ETSIDeliverableStatus.aspx.

[21] 5G NR RLC, https://devopedia.org/5g-nr-rlc [Online; accessed 14-Feb-2022].

[22] 5G NR MAC, https://devopedia.org/5g-nr-mac [Online; accessed 08-Feb-2022].

[23] ——, “TS 138 202 - V16.1.0 - 5G; NR; Services provided by the physical layer (3GPP
TS 38.202 version 16.1.0 Release 16),” 2020. [Online]. Available: https://portal.
etsi.org/TB/ETSIDeliverableStatus.aspx.

[24] 5G NR PHY, https://devopedia.org/5g-nr-phy [Online; accessed 15-Feb-2022].

[25] ——, “TS 138 212 - V16.2.0 - 5G; NR; Multiplexing and channel coding (3GPP TS
38.212 version 16.2.0 Release 16),” 2020. [Online]. Available: https://portal.etsi.
org/TB/ETSIDeliverableStatus.aspx.

[26] cn5g · GitLab, https://gitlab.eurecom.fr/oai/cn5g [Online; accessed 15-Mar-
2022].

52

https://doi.org/10.1109/WOWMOM.2018.8449760
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://www.thousandeyes.com/learning/glossary/vnf-virtual-network-functions
https://www.thousandeyes.com/learning/glossary/vnf-virtual-network-functions
https://www.ericsson.com/en/openness-innovation/open-ran-explained
https://www.ericsson.com/en/openness-innovation/open-ran-explained
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://www.nokia.com/blog/5g-here-how-do-mobile-transport-providers-get-ready
https://www.nokia.com/blog/5g-here-how-do-mobile-transport-providers-get-ready
https://blogs.keysight.com/blogs/inds.entry.html/2020/09/30/why_the_ecpri_interf-TC33.html
https://blogs.keysight.com/blogs/inds.entry.html/2020/09/30/why_the_ecpri_interf-TC33.html
https://blogs.keysight.com/blogs/inds.entry.html/2020/09/30/why_the_ecpri_interf-TC33.html
https://doi.org/10.1109/JLT.2018.2881933
https://doi.org/10.1109/JLT.2018.2881933
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://devopedia.org/5g-nr-rlc
https://devopedia.org/5g-nr-mac
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://devopedia.org/5g-nr-phy
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://gitlab.eurecom.fr/oai/cn5g

[27] oai / openairinterface5G · GitLab, https://gitlab.eurecom.fr/oai/openairinterface5g/
[Online; accessed 15-Mar-2022].

[28] 5G CORE NETWORK – OpenAirInterface, https://openairinterface.org/oai-
5g-core-network-project/ [Online; accessed 11-Mar-2022].

[29] 5G RAN – OpenAirInterface, https : / / openairinterface . org / oai - 5g - ran -

project/ [Online; accessed 11-Mar-2022].

[30] OpenAirFeatures · Wiki · oai / openairinterface5G · GitLab, https://gitlab.eurecom.
fr/oai/openairinterface5g/-/wikis/OpenAirFeatures [Online; accessed 11-Mar-
2022].

[31] ONF Mobile Projects - Open Networking Foundation, https://opennetworking.org/
onf-mobile-projects/ [Online; accessed 11-Mar-2022].

[32] SD-Core - Open Networking Foundation, https://opennetworking.org/sd-core/
[Online; accessed 11-Mar-2022].

[33] SD-RAN - Open Networking Foundation, https://opennetworking.org/sd-ran/
[Online; accessed 11-Mar-2022].

[34] SD-RAN - Community - Confluence, https://wiki.opennetworking.org/display/
COM/SD-RAN [Online; accessed 11-Mar-2022].

[35] Welcome to Paramiko! — Paramiko documentation, https://www.paramiko.org/
[Online; accessed 3-Sep-2022].

[36] PySimpleGUI, https://www.pysimplegui.org/en/latest/[Online; accessed 3-Sep-
2022].

[37] F. Kaltenberger, “OpenAirInterface RAN Roadmap,” 2020. [Online]. Available: https:
//openairinterface.org/wp-content/uploads/2021/12/Roadmap-5G-end-to-

end-demo.pptx.

[38] ——, “OpenAirInterface RAN Roadmap,” 2020. [Online]. Available: https://openairinterface.
org/wp-content/uploads/2022/07/2022-07-12-EURECOM-RAN-SLIDES.pdf.

53

https://gitlab.eurecom.fr/oai/openairinterface5g/
https://openairinterface.org/oai-5g-core-network-project/
https://openairinterface.org/oai-5g-core-network-project/
https://openairinterface.org/oai-5g-ran-project/
https://openairinterface.org/oai-5g-ran-project/
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/OpenAirFeatures
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/OpenAirFeatures
https://opennetworking.org/onf-mobile-projects/
https://opennetworking.org/onf-mobile-projects/
https://opennetworking.org/sd-core/
https://opennetworking.org/sd-ran/
https://wiki.opennetworking.org/display/COM/SD-RAN
https://wiki.opennetworking.org/display/COM/SD-RAN
https://www.paramiko.org/
https://www.pysimplegui.org/en/latest/
https://openairinterface.org/wp-content/uploads/2021/12/Roadmap-5G-end-to-end-demo.pptx
https://openairinterface.org/wp-content/uploads/2021/12/Roadmap-5G-end-to-end-demo.pptx
https://openairinterface.org/wp-content/uploads/2021/12/Roadmap-5G-end-to-end-demo.pptx
https://openairinterface.org/wp-content/uploads/2022/07/2022-07-12-EURECOM-RAN-SLIDES.pdf
https://openairinterface.org/wp-content/uploads/2022/07/2022-07-12-EURECOM-RAN-SLIDES.pdf

Appendix A

Platform operation

A.1 Installation Features

A.1.1 Core Installation

Figure A.1: Core installation process 1ª interface.

54

Figure A.2: Core installation process 2ª interface.

Figure A.3: Core installation process 3ª interface.

55

Figure A.4: Core installation process 4ª interface.

Figure A.5: Core installation process 5ª interface.

56

A.1.2 gNB Installation

Figure A.6: gNB installation process 1ª interface.

Figure A.7: gNB installation process 2ª interface.

57

Figure A.8: gNB installation process 3ª interface.

Figure A.9: gNB installation process 4ª interface.

58

Figure A.10: gNB installation process 5ª interface.

A.1.3 OAI UE Installation

Figure A.11: OAI UE installation process 1ª interface.

59

Figure A.12: OAI UE installation process 2ª interface.

Figure A.13: OAI UE installation process 3ª interface.

60

Figure A.14: OAI UE installation process 4ª interface.

Figure A.15: OAI UE installation process 5ª interface.

61

A.1.4 Install Core and gNB in different hosts with OAI UE

Figure A.16: Core and gNB installation process on different hosts and OAI UE installation
process 1ª interface.

Figure A.17: Core and gNB installation process on different hosts and OAI UE installation
process 2ª interface.

62

Figure A.18: Core and gNB installation process on different hosts and OAI UE installation
process 3ª interface.

Figure A.19: Core and gNB installation process on different hosts and OAI UE installation
process 4ª interface.

63

Figure A.20: Core and gNB installation process on different hosts and OAI UE installation
process 5ª interface.

Figure A.21: Core and gNB installation process on different hosts and OAI UE installation
process 6ª interface.

64

Figure A.22: Core and gNB installation process on different hosts and OAI UE installation
process 7ª interface.

A.1.5 Install Core and gNB in different hosts with COTS UE

Figure A.23: Core and gNB installation process on different hosts 1ª interface.

65

Figure A.24: Core and gNB installation process on different hosts 2ª interface.

Figure A.25: Core and gNB installation process on different hosts 3ª interface.

66

Figure A.26: Core and gNB installation process on different hosts 4ª interface.

Figure A.27: Core and gNB installation process on different hosts 5ª interface.

67

Figure A.28: Core and gNB installation process on different hosts 6ª interface.

Figure A.29: Core and gNB installation process on different hosts 7ª interface.

68

A.1.6 Install All-in-One (Core and gNB in same host) with OAI UE

Figure A.30: All-in-One installation process (Core and gNB on the same host) and OAI UE
installation process 1ª interface.

Figure A.31: All-in-One installation process (Core and gNB on the same host) and OAI UE
installation process 2ª interface.

69

Figure A.32: All-in-One installation process (Core and gNB on the same host) and OAI UE
installation process 3ª interface.

Figure A.33: All-in-One installation process (Core and gNB on the same host) and OAI UE
installation process 4ª interface.

70

Figure A.34: All-in-One installation process (Core and gNB on the same host) and OAI UE
installation process 5ª interface.

Figure A.35: All-in-One installation process (Core and gNB on the same host) and OAI UE
installation process 6ª interface.

71

Figure A.36: All-in-One installation process (Core and gNB on the same host) and OAI UE
installation process 7ª interface.

A.1.7 Install All-in-One (Core and gNB in same host) with COST UE

Figure A.37: All-in-One installation process (Core and gNB on the same host) 1ª interface.

72

Figure A.38: All-in-One installation process (Core and gNB on the same host) 2ª interface.

Figure A.39: All-in-One installation process (Core and gNB on the same host) 3ª interface.

73

Figure A.40: All-in-One installation process (Core and gNB on the same host) 4ª interface.

Figure A.41: All-in-One installation process (Core and gNB on the same host) 5ª interface.

74

Figure A.42: All-in-One installation process (Core and gNB on the same host) 6ª interface.

Figure A.43: All-in-One installation process (Core and gNB on the same host) 7ª interface.

75

A.2 Setup and execution features

A.2.1 Configure and run setup with core and gnb on different hosts with
OAI UE (Express mode)

Figure A.44: Configure and run setup with core and gnb on different hosts with OAI UE
(Express mode) 1ª interface.

Figure A.45: Configure and run setup with core and gnb on different hosts with OAI UE
(Express mode) 2ª interface.

76

Figure A.46: Configure and run setup with core and gnb on different hosts with OAI UE
(Express mode) 3ª interface.

Figure A.47: Configure and run setup with core and gnb on different hosts with OAI UE
(Express mode) 4ª interface.

77

Figure A.48: Configure and run setup with core and gnb on different hosts with OAI UE
(Express mode) 5ª interface.

Figure A.49: Configure and run setup with core and gnb on different hosts with OAI UE
(Express mode) 6ª interface.

78

Figure A.50: Configure and run setup with core and gnb on different hosts with OAI UE
(Express mode) 7ª interface.

A.2.2 Configure and run setup with core and gnb on different hosts with
COTS UE (Express mode)

Figure A.51: Configure and run setup with core and gnb on different hosts with COTS UE
(Express mode) 1ª interface.

79

Figure A.52: Configure and run setup with core and gnb on different hosts with COTS UE
(Express mode) 2ª interface.

Figure A.53: Configure and run setup with core and gnb on different hosts with COTS UE
(Express mode) 3ª interface.

80

Figure A.54: Configure and run setup with core and gnb on different hosts with COTS UE
(Express mode) 4ª interface.

Figure A.55: Configure and run setup with core and gnb on different hosts with COTS UE
(Express mode) 5ª interface.

81

Figure A.56: Configure and run setup with core and gnb on different hosts with COTS UE
(Express mode) 6ª interface.

Figure A.57: Configure and run setup with core and gnb on different hosts with COTS UE
(Express mode) 7ª interface.

82

Figure A.58: Configure and run setup with core and gnb on different hosts with COTS UE
(Express mode) 8ª interface.

A.2.3 Configure and run setup All-in-One with OAI UE (Express mode)

Figure A.59: Configure and run setup All-in-One with OAI UE (Express mode) 1ª interface.

83

Figure A.60: Configure and run setup All-in-One with OAI UE (Express mode) 2ª interface.

Figure A.61: Configure and run setup All-in-One with OAI UE (Express mode) 3ª interface.

84

Figure A.62: Configure and run setup All-in-One with OAI UE (Express mode) 4ª interface.

Figure A.63: Configure and run setup All-in-One with OAI UE (Express mode) 5ª interface.

85

Figure A.64: Configure and run setup All-in-One with OAI UE (Express mode) 6ª interface.

A.2.4 Configure and run setup All-in-One with COTS UE (Express mode)

Figure A.65: Configure and run setup All-in-One with COTS UE (Express mode) 1ª interface.

86

Figure A.66: Configure and run setup All-in-One with COTS UE (Express mode) 2ª interface.

Figure A.67: Configure and run setup All-in-One with COTS UE (Express mode) 3ª interface.

87

Figure A.68: Configure and run setup All-in-One with COTS UE (Express mode) 4ª interface.

Figure A.69: Configure and run setup All-in-One with COTS UE (Express mode) 5ª interface.

88

Figure A.70: Configure and run setup All-in-One with COTS UE (Express mode) 6ª interface.

Figure A.71: Configure and run setup All-in-One with COTS UE (Express mode) 7ª interface.

89

A.2.5 Configure and run setup with core and gnb on different hosts with
OAI UE (Custom mode)

Figure A.72: Configure and run setup with core and gnb on different hosts with OAI UE
(Custom mode) 1ª interface.

Figure A.73: Configure and run setup with core and gnb on different hosts with OAI UE
(Custom mode) 2ª interface.

90

Figure A.74: Configure and run setup with core and gnb on different hosts with OAI UE
(Custom mode) 3ª interface.

Figure A.75: Configure and run setup with core and gnb on different hosts with OAI UE
(Custom mode) 4ª interface.

91

Figure A.76: Configure and run setup with core and gnb on different hosts with OAI UE
(Custom mode) 5ª interface.

Figure A.77: Configure and run setup with core and gnb on different hosts with OAI UE
(Custom mode) 6ª interface.

92

Figure A.78: Configure and run setup with core and gnb on different hosts with OAI UE
(Custom mode) 7ª interface.

Figure A.79: Configure and run setup with core and gnb on different hosts with OAI UE
(Custom mode) 8ª interface.

93

A.2.6 Configure and run setup with core and gnb on different hosts with
COTS UE (Custom mode)

Figure A.80: Configure and run setup with core and gnb on different hosts with COTS UE
(Custom mode) 1ª interface.

Figure A.81: Configure and run setup with core and gnb on different hosts with COTS UE
(Custom mode) 2ª interface.

94

Figure A.82: Configure and run setup with core and gnb on different hosts with COTS UE
(Custom mode) 3ª interface.

Figure A.83: Configure and run setup with core and gnb on different hosts with COTS UE
(Custom mode) 4ª interface.

95

Figure A.84: Configure and run setup with core and gnb on different hosts with COTS UE
(Custom mode) 5ª interface.

Figure A.85: Configure and run setup with core and gnb on different hosts with COTS UE
(Custom mode) 6ª interface.

96

Figure A.86: Configure and run setup with core and gnb on different hosts with COTS UE
(Custom mode) 7ª interface.

Figure A.87: Configure and run setup with core and gnb on different hosts with COTS UE
(Custom mode) 8ª interface.

97

Figure A.88: Configure and run setup with core and gnb on different hosts with COTS UE
(Custom mode) 9ª interface.

A.2.7 Configure and run setup All-in-One with OAI UE (Custom mode)

Figure A.89: Configure and run setup All-in-One with OAI UE (Custom mode) 1ª interface.

98

Figure A.90: Configure and run setup All-in-One with OAI UE (Custom mode) 2ª interface.

Figure A.91: Configure and run setup All-in-One with OAI UE (Custom mode) 3ª interface.

99

Figure A.92: Configure and run setup All-in-One with OAI UE (Custom mode) 4ª interface.

Figure A.93: Configure and run setup All-in-One with OAI UE (Custom mode) 5ª interface.

100

Figure A.94: Configure and run setup All-in-One with OAI UE (Custom mode) 6ª interface.

Figure A.95: Configure and run setup All-in-One with OAI UE (Custom mode) 7ª interface.

101

A.2.8 Configure and run setup All-in-One with COTS UE (Custom mode)

Figure A.96: Configure and run setup All-in-One with COTS UE (Custom mode) 1ª interface.

Figure A.97: Configure and run setup All-in-One with COTS UE (Custom mode) 2ª interface.

102

Figure A.98: Configure and run setup All-in-One with COTS UE (Custom mode) 3ª interface.

Figure A.99: Configure and run setup All-in-One with COTS UE (Custom mode) 4ª interface.

103

Figure A.100: Configure and run setup All-in-One with COTS UE (Custom mode) 5ª inter-
face.

Figure A.101: Configure and run setup All-in-One with COTS UE (Custom mode) 6ª inter-
face.

104

Figure A.102: Configure and run setup All-in-One with COTS UE (Custom mode) 7ª inter-
face.

Figure A.103: Configure and run setup All-in-One with COTS UE (Custom mode) 8ª inter-
face.

105

A.3 Test Features

A.3.1 Test configuration

Figure A.104: Test configuration 1ª interface.

Figure A.105: Test configuration 2ª interface.

106

Figure A.106: Test configuration 3ª interface.

Figure A.107: Test configuration 4ª interface.

107

Figure A.108: Test configuration 5ª interface.

Figure A.109: Test configuration 6ª interface.

108

Figure A.110: Test configuration 7ª interface.

A.3.2 Core Test

Figure A.111: Core Test 1ª interface.

109

Figure A.112: Core Test 2ª interface.

Figure A.113: Core Test 3ª interface.

110

Figure A.114: Core Test 4ª interface.

Figure A.115: Core Test 5ª interface.

111

A.3.3 UE Connection Test

Figure A.116: UE Connection Test 1ª interface.

Figure A.117: UE Connection Test 2ª interface.

112

Figure A.118: UE Connection Test 3ª interface.

Figure A.119: UE Connection Test 4ª interface.

113

Figure A.120: UE Connection Test 5ª interface.

Figure A.121: UE Connection Test 6ª interface.

114

A.3.4 End-to-End Test

Figure A.122: End-to-End Test 1ª interface.

Figure A.123: End-to-End Test 2ª interface.

115

Figure A.124: End-to-End Test 3ª interface.

Figure A.125: End-to-End Test 4ª interface.

116

Figure A.126: End-to-End Test 5ª interface.

Figure A.127: End-to-End Test 6ª interface.

117

A.3.5 Performance Test

Figure A.128: Performance Test 1ª interface.

Figure A.129: Performance Test 2ª interface.

118

Figure A.130: Performance Test 3ª interface.

Figure A.131: Performance Test 4ª interface.

119

Figure A.132: Performance Test 5ª interface.

Figure A.133: Performance Test 6ª interface.

120

Appendix B

Software Installations

B.1 Install Docker

sudo apt install -y apt-transport-https ca-certificates curl software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

sudo apt update

sudo apt install -y docker docker-ce

sudo usermod -a -G docker $(whoami)

reboot

sudo curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

B.2 Install USRP software

git clone https://github.com/EttusResearch/uhd.git ~/uhd

cd ~/uhd

git checkout v4.0.0.0

cd host

mkdir build

cd build

cmake ../

make -j 4

sudo make install

sudo ldconfig

sudo uhd_images_downloader

121

Appendix C

Configuration Files

Configuration files used for implementation on band 78 with a subcarrier spacing of 30kHz and bandwidth
of 40MHz

C.1 docker-compose file

version: ’3.8’

services:

mysql:

container_name: "mysql"

image: mysql:5.7

volumes:

- ./database/oai_db.sql:/docker-entrypoint-initdb.d/oai_db.sql

- ./healthscripts/mysql-healthcheck2.sh:/tmp/mysql-healthcheck.sh

environment:

- TZ=Europe/Paris

- MYSQL_DATABASE=oai_db

- MYSQL_USER=test

- MYSQL_PASSWORD=test

- MYSQL_ROOT_PASSWORD=linux

healthcheck:

test: /bin/bash -c "/tmp/mysql-healthcheck.sh"

interval: 10s

timeout: 5s

retries: 5

networks:

public_net:

ipv4_address: 192.168.70.131

oai-udr:

container_name: "oai-udr"

image: oai-udr:develop

environment:

- TZ=Europe/Paris

- INSTANCE=0

- PID_DIRECTORY=/var/run

- UDR_NAME=OAI_UDR

- UDR_INTERFACE_NAME_FOR_NUDR=eth0

- UDR_INTERFACE_PORT_FOR_NUDR=80

- UDR_INTERFACE_HTTP2_PORT_FOR_NUDR=8080

- USE_HTTP2=no

- UDR_API_VERSION=v1

- MYSQL_IPV4_ADDRESS=192.168.70.131

122

- MYSQL_USER=test

- MYSQL_PASS=test

- DB_CONNECTION_TIMEOUT=300 # Reset the connection to the DB after expiring the timeout (in second) currently can’t be changed

- MYSQL_DB=oai_db

- WAIT_MYSQL=120

- USE_FQDN_DNS=yes

- REGISTER_NRF=yes

- NRF_IPV4_ADDRESS=192.168.70.130

- NRF_PORT=80

- NRF_API_VERSION=v1

- NRF_FQDN=oai-nrf

depends_on:

- mysql

- oai-nrf

networks:

public_net:

ipv4_address: 192.168.70.136

volumes:

- ./healthscripts/udr-healthcheck.sh:/openair-udr/bin/udr-healthcheck.sh

healthcheck:

test: /bin/bash -c "/openair-udr/bin/udr-healthcheck.sh"

interval: 10s

timeout: 5s

retries: 5

oai-udm:

container_name: "oai-udm"

image: oai-udm:develop

environment:

- TZ=Europe/Paris

- INSTANCE=0

- PID_DIRECTORY=/var/run

- UDM_NAME=OAI_UDM

- SBI_IF_NAME=eth0

- SBI_PORT=80

- SBI_HTTP2_PORT=8080

- USE_HTTP2=no

- UDM_VERSION_NB=v1

- USE_FQDN_DNS=yes

- UDR_IP_ADDRESS=192.168.70.136

- UDR_PORT=80

- UDR_VERSION_NB=v1

- UDR_FQDN=oai-udr

- REGISTER_NRF=yes

- NRF_IPV4_ADDRESS=192.168.70.130

- NRF_PORT=80

- NRF_API_VERSION=v1

- NRF_FQDN=oai-nrf

depends_on:

- oai-udr

networks:

public_net:

ipv4_address: 192.168.70.137

volumes:

- ./healthscripts/udm-healthcheck.sh:/openair-udm/bin/udm-healthcheck.sh

healthcheck:

test: /bin/bash -c "/openair-udm/bin/udm-healthcheck.sh"

interval: 10s

123

timeout: 5s

retries: 5

oai-ausf:

container_name: "oai-ausf"

image: oai-ausf:develop

environment:

- TZ=Europe/Paris

- INSTANCE_ID=0

- PID_DIR=/var/run

- AUSF_NAME=OAI_AUSF

- SBI_IF_NAME=eth0

- SBI_PORT=80

- USE_HTTP2

- SBI_HTTP2_PORT

- USE_FQDN_DNS=yes

- UDM_IP_ADDRESS=192.168.70.137

- UDM_PORT=80

- UDM_VERSION_NB=v1

- UDM_FQDN=oai-udm

- REGISTER_NRF=yes

- NRF_IPV4_ADDRESS=192.168.70.130

- NRF_PORT=80

- NRF_API_VERSION=v1

- NRF_FQDN=oai-nrf

depends_on:

- oai-udm

networks:

public_net:

ipv4_address: 192.168.70.138

volumes:

- ./healthscripts/ausf-healthcheck.sh:/openair-ausf/bin/ausf-healthcheck.sh

healthcheck:

test: /bin/bash -c "/openair-ausf/bin/ausf-healthcheck.sh"

interval: 10s

timeout: 5s

retries: 5

oai-nrf:

container_name: "oai-nrf"

image: oai-nrf:develop

environment:

- TZ=Europe/Paris

- NRF_INTERFACE_NAME_FOR_SBI=eth0

- NRF_INTERFACE_PORT_FOR_SBI=80

- NRF_INTERFACE_HTTP2_PORT_FOR_SBI=8080

- NRF_API_VERSION=v1

- INSTANCE=0

- PID_DIRECTORY=/var/run

networks:

public_net:

ipv4_address: 192.168.70.130

volumes:

- ./healthscripts/nrf-healthcheck.sh:/openair-nrf/bin/nrf-healthcheck.sh

healthcheck:

test: /bin/bash -c "/openair-nrf/bin/nrf-healthcheck.sh"

interval: 10s

timeout: 5s

retries: 5

124

oai-amf:

container_name: "oai-amf"

image: oai-amf:develop

environment:

- TZ=Europe/paris

- INSTANCE=0

- PID_DIRECTORY=/var/run

- MCC=208

- MNC=99

- REGION_ID=128

- AMF_SET_ID=1

- SERVED_GUAMI_MCC_0=208

- SERVED_GUAMI_MNC_0=99

- SERVED_GUAMI_REGION_ID_0=128

- SERVED_GUAMI_AMF_SET_ID_0=1

- SERVED_GUAMI_MCC_1=460

- SERVED_GUAMI_MNC_1=11

- SERVED_GUAMI_REGION_ID_1=10

- SERVED_GUAMI_AMF_SET_ID_1=1

- PLMN_SUPPORT_MCC=208

- PLMN_SUPPORT_MNC=99

- PLMN_SUPPORT_TAC=0x0001

- SST_0=1

- SD_0=1

- AMF_INTERFACE_NAME_FOR_NGAP=eth0

- AMF_INTERFACE_NAME_FOR_N11=eth0

- SMF_INSTANCE_ID_0=1

- SMF_FQDN_0=oai-smf

- SMF_IPV4_ADDR_0=192.168.70.133

- SMF_HTTP_VERSION_0=v1

- SELECTED_0=true

- SMF_INSTANCE_ID_1=2

- SMF_FQDN_1=oai-smf

- SMF_IPV4_ADDR_1=0.0.0.0

- SMF_HTTP_VERSION_1=v1

- SELECTED_1=false

- MYSQL_SERVER=192.168.70.131

- MYSQL_USER=root

- MYSQL_PASS=linux

- MYSQL_DB=oai_db

- OPERATOR_KEY=1006020f0a478bf6b699f15c062e42b3

- NRF_IPV4_ADDRESS=192.168.70.130

- NRF_PORT=80

- EXTERNAL_NRF=no

- NF_REGISTRATION=yes

- SMF_SELECTION=yes

- USE_FQDN_DNS=yes

- EXTERNAL_AUSF=yes

- EXTERNAL_UDM=no

- EXTERNAL_NSSF=no

- USE_HTTP2=no

- NRF_API_VERSION=v1

- NRF_FQDN=oai-nrf

- AUSF_IPV4_ADDRESS=192.168.70.138

- AUSF_PORT=80

- AUSF_API_VERSION=v1

- AUSF_FQDN=oai-ausf

125

- UDM_IPV4_ADDRESS=192.168.70.137

- UDM_PORT=80

- UDM_API_VERSION=v2

- UDM_FQDN=oai-udm

depends_on:

- mysql

- oai-nrf

- oai-ausf

volumes:

- ./healthscripts/amf-healthcheck.sh:/openair-amf/bin/amf-healthcheck.sh

healthcheck:

test: /bin/bash -c "/openair-amf/bin/amf-healthcheck.sh"

interval: 10s

timeout: 15s

retries: 5

networks:

public_net:

ipv4_address: 192.168.70.132

oai-smf:

container_name: "oai-smf"

image: oai-smf:develop

environment:

- TZ=Europe/Paris

- INSTANCE=0

- PID_DIRECTORY=/var/run

- SMF_INTERFACE_NAME_FOR_N4=eth0

- SMF_INTERFACE_NAME_FOR_SBI=eth0

- SMF_INTERFACE_PORT_FOR_SBI=80

- SMF_INTERFACE_HTTP2_PORT_FOR_SBI=9090

- SMF_API_VERSION=v1

- DEFAULT_DNS_IPV4_ADDRESS=dns1

- DEFAULT_DNS_SEC_IPV4_ADDRESS=dns2

- AMF_IPV4_ADDRESS=192.168.70.132

- AMF_PORT=80

- AMF_API_VERSION=v1

- AMF_FQDN=oai-amf

- UDM_IPV4_ADDRESS=192.168.70.137

- UDM_PORT=80

- UDM_API_VERSION=v2

- UDM_FQDN=oai-udm

- UPF_IPV4_ADDRESS=192.168.70.134

- UPF_FQDN_0=oai-spgwu

- NRF_IPV4_ADDRESS=192.168.70.130

- NRF_PORT=80

- NRF_API_VERSION=v1

- USE_LOCAL_SUBSCRIPTION_INFO=yes #Set to yes if SMF uses local subscription information instead of from an UDM

- USE_NETWORK_INSTANCE=no #Set yes if network instance is to be used for given UPF

- NRF_FQDN=oai-nrf

- REGISTER_NRF=yes

- DISCOVER_UPF=yes

- USE_FQDN_DNS=yes

- HTTP_VERSION=1 # Default: 1

- UE_MTU=1500

- DNN_NI0=oai

- TYPE0=IPv4

- DNN_RANGE0=12.1.1.2 - 12.1.1.253

- NSSAI_SST0=1

126

- NSSAI_SD0=1

- SESSION_AMBR_UL0=1000Mbps

- SESSION_AMBR_DL0=1000Mbps

- DEFAULT_CSCF_IPV4_ADDRESS=127.0.0.1 # only needed when ims is being used

- ENABLE_USAGE_REPORTING=no # Set yes if UE USAGE REPORTING is to be done at UPF

depends_on:

- oai-nrf

- oai-amf

volumes:

- ./healthscripts/smf-healthcheck.sh:/openair-smf/bin/smf-healthcheck.sh

healthcheck:

test: /bin/bash -c "/openair-smf/bin/smf-healthcheck.sh"

interval: 10s

timeout: 5s

retries: 5

networks:

public_net:

ipv4_address: 192.168.70.133

oai-spgwu:

container_name: "oai-spgwu"

image: oai-spgwu-tiny:develop

environment:

- TZ=Europe/Paris

- PID_DIRECTORY=/var/run

- SGW_INTERFACE_NAME_FOR_S1U_S12_S4_UP=eth0

- SGW_INTERFACE_NAME_FOR_SX=eth0

- PGW_INTERFACE_NAME_FOR_SGI=eth0

- NETWORK_UE_NAT_OPTION=yes

- NETWORK_UE_IP=12.1.1.0/24

- SPGWC0_IP_ADDRESS=192.168.70.133

- BYPASS_UL_PFCP_RULES=no

- MCC=208

- MNC=99

- MNC03=099

- TAC=1

- GW_ID=1

- THREAD_S1U_PRIO=80

- S1U_THREADS=8

- THREAD_SX_PRIO=81

- SX_THREADS=1

- THREAD_SGI_PRIO=80

- SGI_THREADS=8

- REALM=openairinterface.org

- ENABLE_5G_FEATURES=yes

- REGISTER_NRF=yes

- USE_FQDN_NRF=yes

- UPF_FQDN_5G=oai-spgwu

- NRF_IPV4_ADDRESS=192.168.70.130

- NRF_PORT=80

- NRF_API_VERSION=v1

- NRF_FQDN=oai-nrf

- NSSAI_SST_0=1

- NSSAI_SD_0=1

- DNN_0=oai

depends_on:

- oai-nrf

- oai-smf

127

cap_add:

- NET_ADMIN

- SYS_ADMIN

cap_drop:

- ALL

privileged: true

volumes:

- ./healthscripts/spgwu-healthcheck.sh:/openair-spgwu-tiny/bin/spgwu-healthcheck.sh

healthcheck:

test: /bin/bash -c "/openair-spgwu-tiny/bin/spgwu-healthcheck.sh"

interval: 10s

timeout: 5s

retries: 5

networks:

public_net:

ipv4_address: 192.168.70.134

oai-ext-dn:

image: trf-gen-cn5g:latest

privileged: true

container_name: oai-ext-dn

entrypoint: /bin/bash -c \

"ip route add 12.1.1.0/24 via 192.168.70.134 dev eth0; sleep infinity"

depends_on:

- oai-spgwu

networks:

public_net:

ipv4_address: 192.168.70.135

networks:

public_net:

driver: bridge

name: demo-oai-public-net

ipam:

config:

- subnet: 192.168.70.128/26

driver_opts:

com.docker.network.bridge.name: "demo-oai"

C.2 gNB configuration file

Active_gNBs = ("gNB");

Asn1_verbosity = "none";

gNBs =

(

{

////////// Identification parameters:

gNB_ID = 0xe0;

gNB_name = "gNB";

// Tracking area code, 0x0000 and 0xfffe are reserved values

tracking_area_code = 1;

plmn_list = ({

mcc = 208;

mnc = 99;

mnc_length = 2;

snssaiList = (

{

128

sst = 1;

sd = 1;

}

);

});

nr_cellid = 12345678L;

////////// Physical parameters:

ssb_SubcarrierOffset = 0;

min_rxtxtime = 5;

do_CSIRS = 1;

do_SRS = 1;

pdcch_ConfigSIB1 = (

{

controlResourceSetZero = 12;

searchSpaceZero = 0;

}

);

servingCellConfigCommon = (

{

#spCellConfigCommon

physCellId = 0;

downlinkConfigCommon

#frequencyInfoDL

this is 3600 MHz + 43 PRBs@30kHz SCS (same as initial BWP)

absoluteFrequencySSB = 641280;

dl_frequencyBand = 78;

this is 3600 MHz

dl_absoluteFrequencyPointA = 640008;

#scs-SpecificCarrierList

dl_offstToCarrier = 0;

subcarrierSpacing

0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120

dl_subcarrierSpacing = 1;

dl_carrierBandwidth = 106;

#initialDownlinkBWP

#genericParameters

this is RBstart=27,L=48 (275*(L-1))+RBstart

initialDLBWPlocationAndBandwidth = 28875; # 6366 12925 12956 28875 12952

subcarrierSpacing

0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120

initialDLBWPsubcarrierSpacing = 1;

#pdcch-ConfigCommon

initialDLBWPcontrolResourceSetZero = 12;

initialDLBWPsearchSpaceZero = 0;

#uplinkConfigCommon

#frequencyInfoUL

ul_frequencyBand = 78;

129

#scs-SpecificCarrierList

ul_offstToCarrier = 0;

subcarrierSpacing

0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120

ul_subcarrierSpacing = 1;

ul_carrierBandwidth = 106;

pMax = 20;

#initialUplinkBWP

#genericParameters

initialULBWPlocationAndBandwidth = 28875;

subcarrierSpacing

0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120

initialULBWPsubcarrierSpacing = 1;

#rach-ConfigCommon

#rach-ConfigGeneric

prach_ConfigurationIndex = 98;

#prach_msg1_FDM

#0 = one, 1=two, 2=four, 3=eight

prach_msg1_FDM = 0;

prach_msg1_FrequencyStart = 0;

zeroCorrelationZoneConfig = 13;

preambleReceivedTargetPower = -96;

#preamblTransMax (0...10) = (3,4,5,6,7,8,10,20,50,100,200)

preambleTransMax = 6;

#powerRampingStep

0=dB0,1=dB2,2=dB4,3=dB6

powerRampingStep = 1;

#ra_ReponseWindow

#1,2,4,8,10,20,40,80

ra_ResponseWindow = 4;

#ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR

#1=oneeighth,2=onefourth,3=half,4=one,5=two,6=four,7=eight,8=sixteen

ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR = 4;

#oneHalf (0..15) 4,8,12,16,...60,64

ssb_perRACH_OccasionAndCB_PreamblesPerSSB = 14;

#ra_ContentionResolutionTimer

#(0..7) 8,16,24,32,40,48,56,64

ra_ContentionResolutionTimer = 7;

rsrp_ThresholdSSB = 19;

#prach-RootSequenceIndex_PR

#1 = 839, 2 = 139

prach_RootSequenceIndex_PR = 2;

prach_RootSequenceIndex = 1;

msg1_SubcarrierSpacing = 1,

restrictedSetConfig

0=unrestricted, 1=restricted type A, 2=restricted type B

restrictedSetConfig = 0,

msg3_DeltaPreamble = 1;

p0_NominalWithGrant =-90;

pucch-ConfigCommon setup :

pucchGroupHopping

0 = neither, 1= group hopping, 2=sequence hopping

pucchGroupHopping = 0;

hoppingId = 40;

p0_nominal = -90;

130

ssb_PositionsInBurs_BitmapPR

1=short, 2=medium, 3=long

ssb_PositionsInBurst_PR = 2;

ssb_PositionsInBurst_Bitmap = 1;

ssb_periodicityServingCell

0 = ms5, 1=ms10, 2=ms20, 3=ms40, 4=ms80, 5=ms160, 6=spare2, 7=spare1

ssb_periodicityServingCell = 2;

dmrs_TypeA_position

0 = pos2, 1 = pos3

dmrs_TypeA_Position = 0;

subcarrierSpacing

0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120

subcarrierSpacing = 1;

#tdd-UL-DL-ConfigurationCommon

subcarrierSpacing

0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120

referenceSubcarrierSpacing = 1;

pattern1

dl_UL_TransmissionPeriodicity

0=ms0p5, 1=ms0p625, 2=ms1, 3=ms1p25, 4=ms2, 5=ms2p5, 6=ms5, 7=ms10

dl_UL_TransmissionPeriodicity = 6;

nrofDownlinkSlots = 7;

nrofDownlinkSymbols = 6;

nrofUplinkSlots = 2;

nrofUplinkSymbols = 4;

ssPBCH_BlockPower = -25;

}

);

Dedicated Serving Cell Configuration

servingCellConfigDedicated = ({

BWP-Downlink

BWP 1 Configuration

dl_bwp-Id_1 = 1;

dl_bwp1_locationAndBandwidth = 28875; // RBstart=0, L=106 (40 MHz BW)

subcarrierSpacing

0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120

dl_bwp1_subcarrierSpacing = 1;

BWP 2 Configuration

dl_bwp-Id_2 = 2;

dl_bwp2_locationAndBandwidth = 13750; // RBstart=0, L=51 (20 MHz BW)

subcarrierSpacing

0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120

dl_bwp2_subcarrierSpacing = 1;

BWP 3 Configuration

dl_bwp-Id_3 = 3;

dl_bwp3_locationAndBandwidth = 6325; // RBstart=0, L=24 (10 MHz BW)

subcarrierSpacing

131

0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120

dl_bwp3_subcarrierSpacing = 1;

firstActiveDownlinkBWP-Id = 1; #BWP-Id

defaultDownlinkBWP-Id = 1; #BWP-Id

bwp-InactivityTimer ENUMERATED {ms2, ms3, ms4, ms5, ms6, ms8, ms10, ms20, ms30,

ms40,ms50, ms60, ms80,ms100, ms200,ms300, ms500,

ms750, ms1280, ms1920, ms2560, spare10, spare9, spare8,

spare7, spare6, spare5, spare4, spare3, spare2, spare1 }

UplinkConfig

BWP-Uplink

BWP 1 Configuration

ul_bwp-Id_1 = 1;

ul_bwp1_locationAndBandwidth = 28875; // RBstart=0, L=106 (40 MHz BW)

subcarrierSpacing

0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120

ul_bwp1_subcarrierSpacing = 1;

BWP 2 Configuration

ul_bwp-Id_2 = 2;

ul_bwp2_locationAndBandwidth = 13750; // RBstart=0, L=51 (20 MHz BW)

subcarrierSpacing

0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120

ul_bwp2_subcarrierSpacing = 1;

BWP 3 Configuration

ul_bwp-Id_3 = 3;

ul_bwp3_locationAndBandwidth = 6325; // RBstart=0, L=24 (10 MHz BW)

subcarrierSpacing

0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120

ul_bwp3_subcarrierSpacing = 1;

firstActiveUplinkBWP-Id = 1; #BWP-Id

}

);

------- SCTP definitions

SCTP :

{

Number of streams to use in input/output

SCTP_INSTREAMS = 2;

SCTP_OUTSTREAMS = 2;

};

////////// AMF parameters:

amf_ip_address = ({ ipv4 = "192.168.70.132";

ipv6 = "192:168:30::17";

active = "yes";

preference = "ipv4";

}

);

NETWORK_INTERFACES :

132

{

GNB_INTERFACE_NAME_FOR_NG_AMF = "enxf8e43bbb57d5"

GNB_IPV4_ADDRESS_FOR_NG_AMF = "192.168.1.15/24";

GNB_INTERFACE_NAME_FOR_NGU = "enxf8e43bbb57d5"

GNB_IPV4_ADDRESS_FOR_NGU = "192.168.1.15/24";

GNB_PORT_FOR_S1U = 2152; # Spec 2152

};

}

);

MACRLCs = (

{

num_cc = 1;

tr_s_preference = "local_L1";

tr_n_preference = "local_RRC";

pusch_TargetSNRx10 = 150;

pucch_TargetSNRx10 = 200;

ul_prbblack_SNR_threshold = 10;

ulsch_max_frame_inactivity = 0;

}

);

L1s = (

{

num_cc = 1;

tr_n_preference = "local_mac";

prach_dtx_threshold = 120;

pucch0_dtx_threshold = 100;

ofdm_offset_divisor = 8; #set this to UINT_MAX for offset 0

}

);

RUs = (

{

local_rf = "yes"

nb_tx = 1

nb_rx = 1

att_tx = 12;

att_rx = 12;

bands = [78];

max_pdschReferenceSignalPower = -27;

max_rxgain = 114;

eNB_instances = [0];

#beamforming 1x4 matrix:

bf_weights = [0x00007fff, 0x0000, 0x0000, 0x0000];

clock_src = "internal";

}

);

THREAD_STRUCT = (

{

#three config for level of parallelism "PARALLEL_SINGLE_THREAD", "PARALLEL_RU_L1_SPLIT", or "PARALLEL_RU_L1_TRX_SPLIT"

parallel_config = "PARALLEL_SINGLE_THREAD";

#two option for worker "WORKER_DISABLE" or "WORKER_ENABLE"

worker_config = "WORKER_ENABLE";

}

133

);

rfsimulator :

{

serveraddr = "server";

serverport = "4043";

options = (); #("saviq"); or/and "chanmod"

modelname = "AWGN";

IQfile = "/tmp/rfsimulator.iqs";

};

security = {

preferred ciphering algorithms

the first one of the list that an UE supports in chosen

valid values: nea0, nea1, nea2, nea3

ciphering_algorithms = ("nea0");

preferred integrity algorithms

the first one of the list that an UE supports in chosen

valid values: nia0, nia1, nia2, nia3

integrity_algorithms = ("nia2", "nia0");

setting ’drb_ciphering’ to "no" disables ciphering for DRBs, no matter

what ’ciphering_algorithms’ configures; same thing for ’drb_integrity’

drb_ciphering = "yes";

drb_integrity = "no";

};

log_config :

{

global_log_level ="info";

hw_log_level ="info";

phy_log_level ="info";

mac_log_level ="info";

rlc_log_level ="info";

pdcp_log_level ="info";

rrc_log_level ="info";

ngap_log_level ="debug";

f1ap_log_level ="debug";

};

C.3 UE Configuration file

uicc0 = {

imsi = "208990000000001";

key = "fec86ba6eb707ed08905757b1bb44b8f";

opc= "C42449363BBAD02B66D16BC975D77CC1";

dnn= "oai";

nssai_sst=1;

nssai_sd=1;

}

134

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Framework
	Motivation
	Objectives
	Document Structure

	Fundamental Concepts
	Introduction
	5G Core
	5G RAN
	Centralised Unit (CU)
	Distributed Unit (DU)
	Radio Unit (RU)

	Virtualization of RAN Elements
	5G Deployment Platforms Overview
	OpenAirInterface (OAI)
	Open Networking Foundation (ONF)

	Summary and Next Steps

	Openairinterface Features and Deployment
	Introduction
	Implementation Overview
	5GC Host
	gNB Host
	UE
	OAI UE Emulator
	Quectel RM500Q UE

	USRP B210

	Setup and Run
	Core
	gNB
	OAI UE Emulator
	Quectel RM500Q UE

	Summary and Next Steps

	Platform Implementation
	Introduction
	Platform Description
	Installation Features and Procedures
	Core
	gNB
	OAI UE Emulator

	Configuration Features and Procedures
	Test Features and Procedures

	Summary and Next Steps

	Results
	Introduction
	Test Setup
	Analysis
	Implementation Testing
	Test with OAI UE Emulator
	Test with Quectel RM500Q Modem

	Platform Results

	Summary and Next Steps

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Platform operation
	Installation Features
	Core Installation
	gNB Installation
	OAI UE Installation
	Install Core and gNB in different hosts with OAI UE
	Install Core and gNB in different hosts with COTS UE
	Install All-in-One (Core and gNB in same host) with OAI UE
	Install All-in-One (Core and gNB in same host) with COST UE

	Setup and execution features
	Configure and run setup with core and gnb on different hosts with OAI UE (Express mode)
	Configure and run setup with core and gnb on different hosts with COTS UE (Express mode)
	Configure and run setup All-in-One with OAI UE (Express mode)
	Configure and run setup All-in-One with COTS UE (Express mode)
	Configure and run setup with core and gnb on different hosts with OAI UE (Custom mode)
	Configure and run setup with core and gnb on different hosts with COTS UE (Custom mode)
	Configure and run setup All-in-One with OAI UE (Custom mode)
	Configure and run setup All-in-One with COTS UE (Custom mode)

	Test Features
	Test configuration
	Core Test
	UE Connection Test
	End-to-End Test
	Performance Test

	Software Installations
	Install Docker
	Install USRP software

	Configuration Files
	docker-compose file
	gNB configuration file
	UE Configuration file

