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Palavras-chave 

 

EEG, ICM, Dor Crónica 

 

Resumo 

 

A lesão da medula espinal está associada a uma alta prevalência 

de dor crónica. Vários estudos indicam que padrões específicos 

de atividade neuronal registada por eletroencefalografia (EEG) 

podem estar associados à dor, sugerindo que terapias capazes 

de modular a mesma possam melhorar o controlo da dor. As 

Interfaces Cérebro-Máquina (ICM) podem ajudar a recuperar 

capacidades perdidas devido a lesões neurológicas e gerar 

efeitos neuroplásticos benéficos, tendo potencial na 

neuroreabilitação. Recentemente, foi demonstrada que a 

utilização de uma ICM multimodal num paciente com lesão 

medular resultou numa redução variável nos níveis de dor. No 

presente estudo, foi analisada a relação entre os níveis de dor, 

relatados em três diferentes escalas, e os sinais fisiológicos 

registados por EEG num paciente com lesão medular ao longo 

de sessões de ICM. Os resultados indicaram que ocorreu 

modelação da atividade neuronal nas bandas de frequências 

delta e teta em dois elétrodos associados ao córtex 

sensoriomotor e área occipital. Nestes mesmos elétrodos 

verificou-se que a variação da dor estava correlacionada com 

atividade nas bandas de frequência delta e beta, podendo estas 

vir potencialmente servir como um biomarcador da dos níveis 

de dor.   



 
 

 

 

 

 

  

 

Keywords 

 

EEG, BMI, Chronic Pain 

 

Abstract 

 

Spinal cord injury (SCI) is associated with a high prevalence of 

pain. Research indicates that specific EEG activity patterns 

may be associated with chronic pain, suggesting that therapies 

targeting EEG activity modulation could improve pain 

management. Brain-Machine Interfaces (BMI) may help repair 

capacities lost due to neurologic injury and generate beneficial 

neuroplastic effects, suggesting an immersive potential for 

neurorehabilitation. Recently, it has been shown that the use of 

a multimodal BMI in a patient with spinal cord injury led to a 

variable reduction in pain levels.  In the present case study, the 

relation between the levels of pain, reported in three different 

scales, and the physiological signals, registered through EEG, 

in a SCI patient using a BCI, were analyzed. The results 

indicated that modulation of neuronal activity occurred in the 

delta and theta frequency bands in two electrodes associated 

with the sensorimotor cortex and occipital area. In these same 

electrodes, it was observed that the variation in pain was 

correlated with activity in the delta and beta frequency bands, 

suggesting that these could potentially serve as biomarkers of 

pain levels. 
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1. Introduction  

This dissertation aims to investigate the neural correlates of self-reported pain in a spinal cord injury 

(SCI) patient during multiple sessions of controlling a brain-machine interface (BMI). This 

interdisciplinary subject requires a thorough understanding of various concepts and techniques 

presented in this introduction. The first topic is a description of SCI and its evaluation methods. The 

second comprises the characterization of pain and how it becomes chronic, with the classification 

and available treatment options regarding this condition. The third section, regarding the 

fundamentals of BMI, includes their rationale, categorization, brief historical perspective, and 

applications. Since electroencephalography (EEG)-based BMIs are the most widely used BMIs, the 

previous section also includes a description of the basic concepts of this technique. Lastly, having 

defined SCI, chronic pain, and BMIs; a state-of-the-art regarding the EEG activity patterns associated 

with chronic pain in individuals with SCI will be detailed. 

 

1.1.Spinal cord injury 

SCI is an injury to the spinal cord characterized by temporary or permanent alterations in its function 

(at the motor, sensory, or autonomic level) that has an estimated yearly worldwide incidence of 40 

to 80 occurrences per million people.1,2 Traumatic injuries related to vehicle accidents, falls, sports, 

and acts of violence are the main causes of SCI. 2 (Figure 1) A widely-used method for assessing 

and classifying individuals with SCI, created by the American Spinal Injury Association (ASIA), is 

the ASIA Impairment Scale (AIS). 3 The AIS is based on motor, sensory and anorectal examinations 

and allows the designation of an injury severity level. There are five levels, ranging from ASIA A to 

E. Complete SCI, or ASIA A, is defined as the absence of all motor and sensory functions, including 

the sacral roots, below the site of injury. ASIA B to E levels are further classified as incomplete, with 

some degree of motor or sensory function activity, as described in Table 1.3  

Figure 1- Spinal cord injury health outcomes and chronic pain treatment. 
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Following SCI, individuals are at risk of developing several health conditions that, directly or 

indirectly, physically or psychologically, are driven by the presence of the disability.4 These 

conditions, known as secondary health conditions (SHCs), have significant impacts on many factors 

affecting the overall quality of life and are significant contributors to morbidity and mortality.5 SCI-

related SHCs include cardiovascular and respiratory difficulties, bowel and bladder abnormalities, 

pressure sores, muscle spasms, contractures, osteoporosis, loss of sexual function, sleep dysfunction, 

and chronic pain.4–6 Among these SHCs, pain is the most prevalent one, affecting more than 60% of 

individuals with SCI. 5,7  

Currently, pharmacological and non-pharmacological options are available for the management of 

the different manifestations of pain. As pharmacological therapies are often non-sufficient and may 

lead to a variety of side effects, several research avenues are attempting to find non-pharmacological 

therapeutics capable of modulating/stimulating neural activity aiming to improve both primary and 

secondary outcomes of SCI.8,9 

Table 1- ASIA Impairment Scale.3 

Neurological Injury Level Clinical Description 

ASIA A Complete No motor or sensory function is preserved in the sacral segments S4–

S5. 

ASIA B Incomplete Only sensory function preserved below the neurological level 
(including the sacral segments S4–S5). 

ASIA C Incomplete Less than muscle grade 3 motor function is preserved below the 

neurological level. 

ASIA D Incomplete Muscle grade of 3 or more motor function is preserved below the 

neurological level. 

ASIA E Incomplete/Normal Normal motor and sensory functions. 

 

1.2. Pain  

Pain is currently defined by the International Association for the Study of Pain (IASP) as an 

“unpleasant sensory and emotional experience associated with, or resembling that associated with, 

actual or potential tissue damage”.10 Depending on the onset and duration, pain can be classified in 

acute or chronic. Acute pain typically results from a noxious stimulus and plays a crucial role as a 

protective mechanism of our bodies. Since the source can be usually identified and easily treated, 

acute pain lasts for short periods of time. Pain, however, can persist and become chronic, losing its 

protective role, and evolving into its own disease, even after the initial cause is resolved. Since 

chronic pain is induced not only from physical injuries but also by a combination of psychological, 

social, and physical disorders, it is difficult to identify the causes underlying this condition.11,12  
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1.2.1.  Pain perception  

The experience of pain is an intricate process implicating many areas of the nervous system, from 

the recognition of the noxious stimuli in the peripheral nervous system (PNS) to the perception of 

pain in the central nervous system (CNS). Nociception, which is the process by which the body 

detects and responds to harmful stimuli, involves four major processes: transduction, transmission, 

modulation, and perception. 12,13 

  

Transduction refers to the activation of nerve endings after being provoked by a noxious stimulus. 

The second process, transmission, is responsible for carrying the input from the injury site toward 

the spine and then up to the brain.12,13 Once a painful trigger occurs, such as a thermal, chemical, or 

mechanical one, a variety of inflammatory mediators are locally released, and pain receptors, known 

as nociceptors, are stimulated. Upon interaction with the released substances, nociceptors generate 

an action potential within the afferent sensory nerve fibers, whose cell bodies are located in the dorsal 

root ganglion (DRG). There are two main classes of these nerve fibers: unmyelinated C fibers, which 

transmit pain intensity and terminate in the most superficial laminas (I and II) of the dorsal horn 

(DH), and fast-conducting myelinated Aδ fibers, responsible for the initial perception of pain that 

end in laminas I, and III-V.14,15 Another important peripheral nerve fiber is the Aβ, which is activated 

by non-nociceptive stimuli such as touch. These peripheral sensory neurons comprehend the first 

component of the transmission system as they transmit impulses from the transduction site at their 

peripheral terminal to the spinal cord. In the DH, two predominant types of second-order nociceptive 

spinal neurons have been identified: wide dynamic range (WDR) neurons and nociceptive-specific 

(NS) neurons. Besides differing in their location (NS neurons are mostly present in laminas I and II 

and WDR on laminas III to V), they also respond to different stimuli. While NS neurons specifically 

respond to a noxious stimulus, WDR are primarily activated in the presence of an innocuous stimulus, 

brought on by Aβ fibers.13 After synapsing, these second-order neurons (representing the second 

component of the transmission system) decussate at the ventral commissure and transmit projections 

via the anterolateral system to a variety of supraspinal regions. The anterolateral system encompasses 

three pathways: the spinothalamic, spinoreticular, and spinomesencephalic tracts. In the lateral 

spinothalamic tract, projections end in the ventral posterolateral nuclei of the thalamus. After 

synapsing with thalamic neurons, which form the third component of the transmission network, the 

impulse is delivered to the primary somatosensory cortex for additional processing and pain 

perception. In the spinoreticular and spinomesencephalic pathways, both pain and touch signals are 

sent to regions involved in memory and affective aspects of pain, such as the amygdala, 

hypothalamus, and periaqueductal gray (PAG).16 
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Figure 2- The non-pathological pain pathway involves the peripheral nervous system, spinal cord, thalamus, 

and somatosensory cortex. Pain signals are detected by nerve endings in the periphery, transmitted to the spinal 

cord, processed, and modulated in the brain, relayed through the thalamus, and ultimately perceived in the 

somatosensory cortex. Created with BioRender.com.  

Modulation refers to the process by which neural activity may be altered along the transmission 

pathway described above. This process encompasses several mechanisms that either facilitate or 

inhibit pain perception, including the gate control theory, descending monoaminergic pathways, and 

endogenous opioid system, among others.17 An important site of pain modulation is the DH, as it 

contains inhibitory interneurons capable of blocking the first synapse of the transmission pathway.13 

In 1965, Melzack and Wall proposed the gate-control theory18 that infers that in the presence of non-

noxious stimuli, such as touch or pressure, Aβ fibers stimulate the inhibitory interneurons present in 

the DH. This stimulation leads to the prevention of signal transmission to supraspinal regions.13,17,19 

Descending pathways refer to neural pathways that involve the transmission of signals from higher 

brain centers, such as the cortex and brainstem, to the spinal cord. One of the main areas involved in 

these pathways is the periaqueductal gray (PAG), implicated in pain control and other emotional 

responses. The PAG sends projections to the rostral ventromedial medulla (RVM), which in turn 

projects to the spinal cord, where it can inhibit the transmission of pain signals by releasing 

neurotransmitters. These include serotonin, capable of both antinociceptive and pronociceptive 

effects, and norepinephrine which exclusively inhibits pain perception by stimulating the inhibitory 

interneurons present in the DH.12,14,20,21 The endogenous opioid system is a system of 

neurotransmitters and receptors involved in the body's natural pain-relieving mechanisms. The main 

substances present in this system are endorphins, enkephalins, and dynorphins, which are peptides 
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produced by neurons in the brain and spinal cord. These neuromodulators bind to their respective 

receptor along the ascending pathway inhibiting pain perception.17,22,23 

The final stage in the nociceptive process is perception, which refers to the brain's interpretation of 

the pain signal. When the brain receives the signal from the transmission pathway, it activates a pain 

network, which includes various areas such as the thalamus, the somatosensory cortex, and the 

insular cortex. The stimulus’ duration and intensity, the individual's previous pain experiences, and 

their emotional and psychological condition are all factors that can influence pain perception. For 

this reason, perception is considered a subjective experience since different people perceive the same 

stimulus differently.13,24,25 

 

Several neuroimaging studies have linked many cortical areas to nociception. As a result, regions 

including the somatosensory, insular, and cingulate cortices—which function as a network across the 

perception of pain—have come to be known as the "pain matrix".26 Some authors tend to group the 

brain structures according to their involvement in different aspects27 or stages14,28 of pain processing. 

For instance, some authors differentiate the structures based on their anatomical locations and, 

consequently, their different functions in pain perception, leading to the medial-lateral pain system. 

In this model,  the medial structures (such as the anterior/mid cingulate cortex) are implicated in the 

affective and emotional aspects of pain, whereas the lateral structures (such as the somatosensory 

cortex) are more involved in the sensory-discriminative pain elements.27 As for the division regarding 

the pain processing steps, there are essentially two groups: the nociceptive cortical matrix (first-order 

processing) and the second-order perceptual matrix (processing from nociception to pain 

perception)14, with some authors adding a third group of structures called third-order networks 

(processing from immediate perception to pain memories)28. The nociceptive cortical matrix involves 

the initial detection and transmission of pain signals from the spinothalamic tract, consisting of the 

posterior insula, medial parietal operculum, and mid-cingulate cortex. The processing of nociceptive 

inputs in the brain, that results in the conscious perception of pain, involves the second-order 

processing matrix, which comprises the mid and anterior insula, anterior cingulate and prefrontal 

cortices, as well as the PAG and RVM.14,28 Lastly, the third-order networks, which refer to structures 

in higher-order cortical regions beyond the conventional pain matrix, are involved in the integration 

of pain perception with other cognitive and emotional processes.28 

1.2.2. From acute to chronic pain 

Under normal circumstances, pain perception ends once the underlying cause is resolved, and the 

body has completely recovered from the tissue damage. However, continuous, or recurring 

nociceptive stimulation leads to several pathologic alterations in pain processing, ultimately resulting 
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in chronic pain.14 The complex changes associated with this chronic state include modifications to 

the nociceptors' sensitivity as well as alterations in the transmission, processing, and interpretation 

of pain signals along the nociceptive system. The increased sensitivity of nociceptors and the high 

excitability of neurons are characteristics of a process known as sensitization. This process can occur 

at various levels, from the periphery, where the stimulus is detected, to the brain, where it is 

interpreted.29 Peripheral sensitization is marked by a reduction of the pain threshold in the primary 

afferent neurons, amplifying the sensibility to stimuli and consequently increasing the susceptibility 

of an individual to experience pain from any innocuous stimuli. This process is believed to occur due 

to an inflammatory response at the site of the injury.  At the central nervous system level, this process 

is called central sensitization and unlike the peripheral one, it may persist even after the stimulus is 

removed and the tissue has fully recovered. Central sensitization may be initially maintained by 

peripheral sensitization but is also strongly associated with other mechanisms such as the impairment 

of descending modulatory pain pathways, resulting in an increment of the pain intensity 

experience.12,30 Glial cells (i.e., non-neuronal cells crucial for the homeostasis and protection of 

neurons) such as microglia and astrocytes, play a role in both peripheral and central sensitization.31 

Upon activation, these cells can release several substances, including cytokines, inflammatory 

mediators, and growth factors, which affect neuronal function in multiple ways, tipping the balance 

towards an exacerbated excitable sensitized state.16,32 Another major contributor to chronic pain 

reported is reduced inhibitory activity in the spinal cord DH. This may result from glial activation or 

dysregulation along the descending modulatory pathway described in the previous sections. Both 

epigenetics modulation and psychological factors such as stress, anxiety, and depression have also 

been associated with the development and maintenance of a chronic pain state.11,33  

Even though there are some theories and potential mechanisms reported in the literature, chronic pain 

is still a broad area of active research as it is a very complex and multifactorial subject.   

 

1.2.3.  Chronic Pain  

Chronic pain is defined as any type of pain that persists for more than 12 weeks, and according to 

Siddall and his colleagues, there are three key points that might reflect how pain affects a person 

with SCI.5,34 These are: its prevalence, the prognosis for the long term, and the repercussions that 

pain has.34 Several studies have recognized pain as a critical element in rehabilitation and its 

outcomes being highly related to psychological disorders, such as depression, and therefore altering 

the quality of life of patients with SCI. 7,35,36  

 



14 

 

1.2.3.1.Classification   

Given the many different types of pain experienced after SCI and the subsequent amount of 

classification strategies described in the literature, the International Spinal Cord Injury Pain (ISCIP) 

has provided a standardized system to classify them (Table 2). This system is organized into three 

tiers: the first divides pain according to its type (nociceptive, neuropathic, other pain, and unknown 

pain), the second into subtypes, and the last is related to the primary pain source.37  

Table 2- International Spinal Cord Injury Pain (ISCIP) Classification. 

Pain Type Pain Subtype Primary pain source and/or pathology 

Nociceptive Pain 

Musculoskeletal pain 

e.g., glenohumeral arthritis, lateral epicondylitis, 

comminuted femur fracture; quadratus lumborum 

muscle spasm 

Visceral pain 
e.g., myocardial infarction, abdominal pain due to 

bowel impaction, cholecystitis 

Other nociceptive pain 
e.g., autonomic dysreflexia headache, migraine 

headache, surgical skin incision 

Neuropathic Pain 

At-level SCI pain 
e.g., spinal cord compression, nerve root 

compression, cauda equina compression 

Below-level SCI pain 
e.g., spinal cord ischemia, spinal cord- 

compression 

Other neuropathic pain 
e.g., carpal tunnel syndrome, trigeminal neuralgia, 

diabetic polyneuropathy 

Other Pain  

e.g., fibromyalgia, Complex Regional Pain 

Syndrome Type I, interstitial cystitis, irritable 

bowel syndrome 

Unknown Pain   
 

An injury to a somatic structure, such as the skin, muscles, tendons, bones, or joints, results in 

nociceptive pain.38 Nociceptive pain is further divided into musculoskeletal, visceral and other. 

Recently, using the ISCIP classification system, Hunt et. al conducted a meta-analysis aiming to 

estimate the prevalence of chronic pain following SCI. From the studies included, the pooled 

prevalence of musculoskeletal pain was 56% and visceral pain about 20%. 39 Musculoskeletal pain 

manifests itself in areas with some intact sensibility, such as the shoulders, wrists, and back. 40,41 

When chronic, this type of pain is associated with cumulative stresses over time of upper limb 

overuse or abnormal loading of joints.40 Visceral pain, on the other hand, presents in the abdomen, 

thorax, or pelvis and is thought to be mainly originated in visceral structures.40,41 Pain resulting from 

constipation, urinary tract infection, and ureteral calculus, are some examples of this class of 

nociceptive pain.37 

Neuropathic pain has a prevalence of 58%, and is caused by damage to or dysfunction of the 

somatosensory nervous system.38,39 Being broadly perceived as the most severe, neuropathic pain is 

further divided into three subtypes: at-level, below-level, or others.7,37 This type of SCI pain may be 
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associated with alterations in the brain, spinal cord, and peripheral nervous system.34 For instance, 

at-level pain may occur in response to damage to the cauda equina or other spinal nerve roots, which 

can cause peripheral pain however, if the lesion is in the spinal cord, then central neuropathic pain 

can arise.  The nerve roots may sustain direct damage at the time of the accident or later as a result 

of disease, degeneration, or unstable vertebrae.40,41 A central pain brought on by the spinal lesion, if 

spread below the level of injury to the nervous system, is known as below-level neuropathic pain. It 

frequently appears months or even years after the initial injury and is described as the most agonizing 

form of SCI pain.40,42 

1.2.3.2.Existing Treatments  

Chronic pain is a complex condition that requires a heterogenous treatment strategy, typically 

combining pharmacological, physical, and psychological elements.43 However, for neuropathic pain, 

available treatments may only provide partial pain relief rather than complete remission. 44,45 

Pharmacological options often follow the World Health Organization (WHO) analgesic ladder, 

originally designed for cancer pain, and then adapted for chronic non-cancer pain. The ladder consists 

of three steps, starting with non-opioid analgesics such as aspirin or non-steroidal anti-inflammatory 

drugs (NSAIDs), then weak opioids like codeine, and eventually recommending strong opioids like 

morphine and oxycodone.46 However, and regarding the remarkable increase in the number of deaths 

due to the intake of these substances, Bryce et al. proposed that these should not be prescribed to 

relieve chronic pain.47,48 The first argument relies on the missing literature supporting opioids as 

being beneficial for these conditions, the second is that they can lead to serious adverse effects such 

as cognitive deficits and hormonal depression. Lastly, these narcotics and their overuse may also lead 

to addiction (use disorder) and further on to an opioid-overdose.47 Also described in the ladder are 

the so called ‘adjuvants’, i.e., additional drugs that could be used in any step of the ladder. These 

adjuvants include anxiolytics, hypnotics, and muscle relaxants to reduce pain-related anxiety, 

insomnia, and muscle spasms, respectively.46 Antiepileptic and antidepressant drugs are currently 

among the main classes of pharmaceuticals available for SCI-related chronic pain, with pregabalin, 

gabapentin, and tricyclic antidepressants having the most literature supporting their use.48  There is 

increasing interest in alternative options for chronic pain relief, such as in components of the plant 

Cannabis Sativa, especially in cannabidiol (CBD). Nabiximols (Sativex®) is a highly standardized 

pharmaceutical product, containing both CBD and the Δ9-tetrahydrocannabinol (THC) that has been 

assessed in various clinical trials and have shown promising results.43,49  

Even though pharmaceuticals are the first line of treatment; SCI-related chronic pain is frequently 

unresponsive to this treatment since medications result in just 50% pain reduction for merely 30% of 
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the individuals. Besides, long-term drug therapies often lead to severe side effects such as 

constipation or toxicity and an increased risk of addiction or abuse. 5,44 In terms of physical 

treatments, options include physiotherapy46, chiropractic care50, massage therapy 51, acupuncture52 

and neurostimulation techniques53. Previous neuroimaging and neurophysiological studies have 

suggested that maladaptive plastic alterations are on the basis of SCI-related chronic pain 

mechanisms.54 After establishing the possibility of modulating nerve activity through electricity in 

the late 1700s, several methods of neurostimulation have been designed to improve both primary and 

secondary outcomes of SCI, such as restoring motor function and reducing spasticity.9 These non-

pharmacological therapies can be both non-invasive and invasive, but it is important to note that 

overall, they have negligible or no side effects.8 Noninvasive techniques stimulate the brain by 

focusing on various structures, for instance, repetitive transcranial magnetic and transcranial direct 

current stimulations target the primary motor cortex, while transcutaneous electrical nerve 

stimulation induces localized activity in peripheral nerves. Spinal cord and motor cortex stimulations 

are examples of invasive techniques.8 Although some studies have shown that these treatments can 

successfully reduce pain, the effectiveness can vary depending on the patient and the particular 

condition being treated. Psychologically based interventions for pain management include cognitive 

behavioral therapy (CBT), behavioral therapy55, acceptance and commitment therapy (ACT)56, 

Mindfulness therapy57 and biofeedback58. Overall, while these studies have shown modest reductions 

in pain compared to other interventions, they can still be valuable components of a comprehensive 

pain management plan, as by combining them with different therapies, individuals may achieve better 

pain outcomes.  

1.3.Brain-machine interfaces 

A BMI, also referred as brain-computer interface, is a system that translates central nervous system 

signals, captured by neural signal recordings such as electroencephalogram (EEG), into executable 

commands using computer algorithms.59 A BMI system consists mainly of five functional 

components that interact with one another to optimize its efficiency60, as summarized in Figure 2. 

The first component, signal acquisition, uses one or more methods, including EEG, 

magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), near-infrared 

spectroscopy (NIRS), intracortical neuron recording, electrocorticography (ECoG), to record, 

amplify and digitize the users' brain signals. Each of these methods has its advantages and 

disadvantages. For instance, ECoG and intracortical recordings, which involve placing electrodes 

directly on the surface and inside the brain tissue, respectively, provide remarkable spatial and 

temporal resolutions but also implicate risks associated with the procedures such as infections or 

seizures. MEG, which detects magnetic brain activity, also has good spatial and temporal resolutions. 
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On the other hand, similarly to fMRI, its equipment is sizeable, expensive, and therefore unfeasible 

for general use. fMRI and NIRS, which measure brain activity by detecting changes in blood flow 

and oxygenation levels in the brain, have good spatial resolutions but poor temporal ones. Lastly, 

EEG, which captures the brains' electrical activity on the scalp, has a low spatial resolution but has 

advantages such as its high temporal resolution, non-invasive nature, and the fact that it is relatively 

inexpensive, easy to use, and portable.61,62 

The signals obtained from EEG recordings are often tainted with artifacts and noise. These can arise 

from electrical interference from the heart (ECG artifact), power supply noise (power-line noise), 

eye movements (EOG artifact), muscle tension (EMG artifact), or other physiological processes. 

Signal pre-processing is the second module of the system and is responsible for cleaning and 

preparing the raw brain signals for further analysis. This step includes several techniques such as 

removing noise, artifact rejection, and filtering.60 There are two types of filtering techniques used in 

BMI systems: spectral and spatial. Spectral filtering, applied in the frequency domain, eliminates 

unwanted noise signals like slow drifts and line noise from the EEG signals. Spatial filtering, in 

contrast, combines signals from multiple electrodes to target brain activity in a specific location, is 

applied in the spatial domain, and is used to emphasize or discard signals based on their origin site.61 

Figure 2- Main functional Components of an EEG-based BMI system. Adapted from.63 

The following component is feature extraction, a process used to identify and separate features that 

represent the intention (i.e., the brain signals indicative of the user's intent or mental state) from the 

remaining brain impulses. Recently, Pawar and colleagues reviewed several techniques used to 

extract features from EEG signals for BMI. They highlighted commonly used methods such as the 

time-domain, frequency-domain, and time-frequency domain features. Their findings indicate that 

each method has its advantages and disadvantages, therefore, the best feature extraction technique 

highly depends on the specific application.64 The two mostly adopted features are the time-domain 

and the frequency band power features, the last referring to the power of EEG signals within a 
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specific frequency band. Since each frequency band (delta, theta, alpha, beta, gamma) is associated 

with a certain type of brain activity, the power within each band can provide information about the 

state of the brain. 60 Once the relevant elements are extracted, they are used in the classification stage, 

which assigns the features to one of the predefined classes or categories. Several types of 

classification algorithms have been described in the literature, from linear and non-linear Bayesian 

classifiers to the recently developed deep learning and adaptive classifiers. Linear classifiers use 

linear functions to separate the feature vectors of different classes. Examples of this algorithm include 

linear discriminant analysis (LDA), regularized LDA, and support vector machines (SVMs). SVM 

and LDA are the most popular linear classifiers for EEG-based BMIs due to their computational 

efficiency, robustness, good performance, interpretability, easy implementation, and ability to handle 

non-linearly separable data. Nonetheless, the choice of the classifier should ultimately depend on the 

nature of the data, features, and the specific task of the BMI system. 61,65,66 

The last component of a BMI system, accountable for the final translation of the brain signals into 

meaningful actions, is the output device. The physical components of these devices are typically 

actuators that allow the user to interact with their environment. Actuators can take many forms, 

including haptic feedback devices67, virtual reality environments68, functional electrical stimulation 

(FES)69, prosthetic devices, exoskeletons70, and other types of interfaces that allow the BMI system 

to interact with the environment.60 

Feedback can be included as an additional component in the BMI model, as it is often used to adjust 

the system's response based on the user's current brain activity. This process sustains and enhances 

the accuracy and speed of the intended outcome, such as communication or motor execution.71,72 

Based on whether subjects receive feedback, BMI systems can be classified as open- or closed-loop. 

In closed-loop, also known as feedback control systems, the feedback is provided in real-time as the 

subject performs the action or task. These systems allow for active adjustments of the device response 

based on the user’s current brain activity. On the other hand, open-loop BMI is a system where no 

direct feedback is provided to the user. Also referred to as non-feedback or feedforward systems, 

these rely on a pre-defined mapping between brain activity and actions or commands.73,74 

1.3.1. Classification 

BMIs can be classified in various ways depending on different characteristics, as summarized in 

Table 3. These include the method used to generate brain responses75, the invasiveness of the 

neuroimaging techniques used, how the input data is processed 76, the type of task that the user must 

perform to control the device77, and the dependency on output pathways to generate and transmit 

control signals 76. 
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Based on the method used to generate brain responses, BMIs can typically be classified into active, 

reactive, or passive. The first two groups differ on whether the brain activity markers extracted are 

voluntarily generated by the user (active) or measured as a response to an external stimulus (reactive). 

Active BMIs thereby require the users to actively engage with the system by performing specific 

tasks or actions, such as motor imagery or P300, to produce responses capable of controlling the 

system. Reactive systems detect changes in the user's brain activity triggered by external events, such 

as an error or changes in the environment. Some examples of reactive BMIs include error-related 

potential (ErrP)-based and Hybrid BMIs. On the other hand, passive BMIs do not require the user to 

produce a specific brain activity instead, they drive their outputs from spontaneous brain activity. 

For example, a passive BMI might use brain activity associated with attention or relaxation to control 

the device. 75,78,79  

Different neuroimaging techniques can be used to acquire electrical brain signals for BMI systems. 

Based on the level of invasiveness of these methods, they can be categorized as invasive, partially 

invasive, or non-invasive. Invasive techniques involve the surgical placement of devices or 

electrodes directly into the brain. This method allows the recording of neural activity from deep 

within the brain, resulting in high-quality signals. However, it is associated with scar tissue build-up 

over time which leads to a gradual degradation of the recorded signals. 77,80 Some authors distinguish 

the partially invasive category as one that involves the insertion of electrodes into the brain but not 

as deep as invasive methods.76 An example of such technique is ECoG, also known as intracranial 

EEG, where electrodes are placed on the surface of the brain (typically under the skull but above the 

dura mater). On the other hand, non-invasive methods capture brain activity externally, without the 

need to penetrate the skull. These methods are of lower quality and can be affected by noise and 

artifacts from external sources; however, they are able to measure the large-scale neuronal activity 

of the entire brain near the skull in a cost-effective and safe way. Examples of these techniques 

include MEG, fMRI, NIRS, and the most widely used EEG.77,80 

BMI systems can also be classified based on how they process input data, which can be either 

synchronous or asynchronous. Synchronous BMI systems analyze brain activity during specific, pre-

determined time frames. Advantages of this process include the anticipation of mental activity and 

its association with a particular cue, and the avoidance of artifacts (e.g., eye movements). As for 

asynchronous BMI, the subject can execute mental tasks at any time, with the system reacting to the 

respective mental activities. Due to the users' freedom from time restrictions, this method enables a 

more natural interaction between the user and the machine. However, it can also be more complex 

and computationally demanding, as the system must be able to react to the users' mental activity at 

any time.81,82 
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Table 3- Classification of BMIs and respective description based on different characteristics. 

Characteristic Classification Description 

Invasiveness 

Non-invasive Devices are placed on the scalp (e.g., EEG) 

Partially invasive Devices are inserted in the skull on the top of human brain 

Invasive 
Devices are inserted directly into the human brain by a critical 

surgery 

Control 

Active 
Requires the user to actively produce a specific brain activity or 

pattern to control the device or computer 

Reactive 
Requires external stimuli to produce specific brain activity or pattern 

to control the device or computer 

Passive 
Use involuntary status of the brainwaves, for example on emotional 

states such as meditation, excitement, and stress 

Synchrony 
Synchronous 

The user can only send commands during specific, predetermined 
time windows 

Asynchronous 
Allows the user to execute mental tasks at any time, with the system 

reacting to the respective mental activities 

Task 

Paradigms 

Motor imagery 
Use the brain activity associated with the imagination of movement 

to control a computer or external device 

External 
Stimulation 

Use specific brain responses to external stimuli, such as visual, 
auditory, or somatosensory stimuli to control a computer or external 

device. 

ErrP 
Use the brain activity associated with errors to control a computer or 

external device 

Hybrid 
Use multiple types of brain signals, such as EEG and EMG, in 

combination to control the computer or external device 

Dependability 

Dependent 
Requires the use of some muscle control to produce the neural 

activity used for communication or control 

Independent 
Rely solely on the brain's inherent signals for communication or 

control 

Type of 

application 

Medical 
Developed for medical reasons to help patients to communicate, 
grasp objects, move around and support in other daily activities. 

(Rehabilitation, prosthetic control) 

Non-medical Used for entertainment, art, as well as some other areas. 

BMIs can be classified according to the specific task the user must perform to generate the brain 

signals, also referred to as the task paradigm. The most used EEG-based BMI paradigms are motor-

imagery, external stimulation, ErrP, and the hybrid paradigm.77 The concept of motor imagery 

involves envisioning a movement rather than physically performing it. Studies have shown that this 

mental process activates the same brain regions as when an actual movement is executed.83 This task 

paradigm is particularly popular in BMI research as it offers high-resolution control signals, is 

intuitive to use, and has applicability in a range of applications.83–85 External stimulation-based 

paradigms are also commonly used in BMI due to their high accuracy and reliability. These involve 

influencing brain activity through external stimuli, like flashing lights or sounds, and then decoding 

it to control output devices. Examples of these paradigms are the Visual evoked potential (VEP), 

which uses visual stimuli; the P300 and steady-state visual evoked potential (SSVEP), which are 

based on visual evoked potentials; and Electrooculography (EOG) and Electromyography (EMG)-

based BMI, which use eye movements and muscle activity, respectively, as a control signal.77,86 
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Another BMI paradigm is the error-related potential (ErrP), a component of the event-related 

potential (ERP), generated by the brain in response to errors, specifically when the subject's intended 

action does not match the response produced by the BMI system.77,87 Lastly, hybrid paradigms refer 

to the combination of various physiological measures. EEG is typically included, along with others 

signals such as ECG, EOG, and fNIRS. This paradigm enables the use of multiple sources of 

information, improving the accuracy and reliability of the BMI system.77,88 

Based on how a BMI depends on the brain's normal output pathways (i.e., peripheral nerves and 

muscles) to generate and transmit control signals, they can be dependent or independent. Dependent 

BMI systems rely on muscle control to produce neural activity that is then used for communication 

or control. An example of these systems is the SSVEP, which relies on gaze control and muscle 

activity to produce the necessary neural activity. In contrast, an independent BMI does not rely on 

the brain's normal output pathways for communication, being the signal generated solely by the user's 

intention or imagination, without the need for actual physical movement. This type of BMI allows 

users to communicate their mental tasks without controlling their limbs.71,89,90 

1.3.2. History and Applications 

Research on BMI systems began in the 1970s, limited by the computer capabilities of that era and 

the level of understanding of brain physiology.91 In 1973 Jacques Vidal published a paper entitled 

“Toward Direct Brain-Computer Communication”, one of the first to investigate the possibility of 

using brain activity to control computers, creating a direct link between the brain and technology, 

similar to a prosthetic device.92 Another early attempt at this direct communication was accomplished 

in 1988 when Farwell and Donchin used the P300 event-related potential to allow healthy volunteers 

to spell words on a computer screen.93 With the advancement in technology over time, the 

interdisciplinary field of BMI has evolved tremendously, with an increase in research teams 

interested in this area and its vast array of applications. Prashant et. al. 94 proposed four main factors 

that led to this improvement in the BMI research field. The noteworthy first one is related to one of 

the main goals of BMI, which is its potential to improve the lives of individuals with severe motor 

impairments (e.g., patients with locked-in syndromes and SCI). The second factor is the improved 

knowledge of the basis, purpose, and relationship between EEG and associated neural activity. The 

last two factors refer to the development and accessibility of low-cost microelectronics and the 

improvements in machine learning and decision-making techniques. These two factors allow BMI 

users to execute complex tasks via integrated circuits and further expand the potential of brain-

controlled applications.94 Since the ultimate purpose of BMI systems initially was to give people 

with severe motor limitations the ability to communicate and control their environment, Nicolas-
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Alonso and his colleagues outlined three primary target populations that may benefit the most from 

BMI applications. These include Complete Locked-In State (CLIS) patients (i.e., individuals with 

complete paralysis), Locked-In State (LIS) patients, and people with considerable neuromuscular 

control (mainly speech and/or hand control).95  

BMI applications can be classified in medical or non-medical (Table 3). The potential use of BMI 

in healthcare is vast, covering several applications such as prevention, detection, and 

neurorehabilitation.96 In the prevention field, BMIs can be used to detect and prevent seizures in 

epileptic individuals, as well as to detect and prevent car accidents caused by drowsiness or 

exhaustion. For instances, Maksimenko et al. developed a closed-loop brain-stimulation algorithm 

implemented in a BMI system capable of controlling absence seizures in epileptic patients, leading 

to a 72% reduction in seizure activity and an improvement in the patients' quality of life.  97 Another 

area of investigation is road safety and the prevention of fatigue while driving, as it is a significant 

contributing factor that can lead to deadly accidents. Fatima et al. proposed a wireless EEG-based 

BMI system capable of providing real-time biofeedback to the driver when a drowsy state occurs. 

This system offers numerous benefits, such as the use of wireless communication to transfer data, 

eliminating therefore, the need for cables, its adaptability for use in a vehicle, and its low cost and 

ease of implementation.98 BMI technologies can also be used to detect and early diagnose certain 

diseases or pathological states, such as epilepsy, depression 99, and attention-deficit/hyperactivity 

disorder (ADHD).100 Depression is a condition that is typically diagnosed through clinical 

observations or self-reported information from patients. However, since BMI technologies can obtain 

emotional data from the users, they have the potential to diagnose the disease in an early stage, 

allowing for a more suited course of treatment.99 Another condition that can be currently diagnosed 

and monitored through BMI systems is ADHD. Recently, Serrano-Barroso and colleagues designed 

a single-channel BCI headset that assessed the attention levels of both children with and without 

ADHD while playing a video game. The study showed that the system has the potential to be used 

in clinical settings as an early screening tool for attentional features, controlling their progression.100 

One crucial treatment component for those with neurological disabilities, such as stroke or SCI, is 

rehabilitation, that aims to help individuals to regain lost motor or cognitive functions and learn to 

adapt to their disabilities, leading to an improved quality of life. Neurorehabilitation has its 

foundations in the principles of neuroplasticity, which refers to the brain's ability to reorganize and 

form new neural connections in response to changes in the environment, learning, and experience.101 

BMIs offer a new and innovative approach to neurorehabilitation, providing a way to directly 

interface with the brain and potentially facilitate faster and more effective rehabilitation outcomes.96 

Regarding this, BMIs can be further classified into assistive and rehabilitative devices. Assistive 

BMIs intend to replace or compensate for lost functions in impaired individuals by using brain signals 
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to control external devices, allowing them to perform specific tasks such as communication or 

mobility.102 This type of BMI should be easily accessible and operable by users without requiring 

any medical expertise, allowing them to control external devices using their brain signals whenever 

needed.103 Rehabilitative BMIs, on the other hand, focus on restoring or improving impaired 

functions through targeted neuroplasticity-based training.102 These BMIs are typically used during 

treatment sessions with certified therapists since the purpose is to produce long-term 

modifications.103 

In the following sections, we will briefly explore some of the examples of assistive and rehabilitative 

BMIs and their applications in communication, motor, and cognitive rehabilitations. In the field of 

communication, assistive BMIs are designed to help individuals with communication impairments, 

such as those with amyotrophic lateral sclerosis (ALS), locked-in syndrome, or severe speech and 

motor disabilities. They allow these individuals to communicate with others using brain signals, 

which are then translated into text or speech output.102 There have been several remarkable 

developments of assistive BMIs for communication, such as the P300-based BMI spellers104, Eye-

tracking BMIs105, Brain Gate System106, and most recently the Handwriting BMI107. The P300-based 

BMI spellers use the P300 wave, an event-related potential in the brain, to select letters or words 

from a computer screen. They are among the most widely studied BMIs for communication and have 

been used in various applications, including helping individuals with ALS to communicate.104 The 

Eye-tracking BMIs use eye movements to control external devices, including communication aids 

like a high-speed text entry system in virtual reality. They are particularly useful for individuals with 

severe motor disabilities who are unable to use traditional input devices, such as a keyboard or 

mouse.105 The Brain Gate System has been used to enable individuals with paralysis to control a 

computer cursor, robotic arm, or other devices using their thoughts. It has been studied extensively 

in both preclinical and clinical trials and has shown promising results in restoring communication 

and mobility to individuals with severe paralysis.106 Lastly, the Handwriting BMI is a new assistive 

technology that enables individuals to communicate by writing using their brain signals. A recent 

study conducted by Willett et al. demonstrated the system's potential by showing that a participant 

with a paralyzed hand due to SCI was capable of writing messages by imagining the movement of 

doing so on a piece of paper. The study results were promising, as the participant was able to write 

at speeds comparable to those of a healthy subject using a smartphone keyboard. 107 One of the main 

areas of focus is motor rehabilitation, where BMI systems can be both assistive, by enabling patients 

to produce more reliable motor brain signals and used them to control external devices that assist 

with movement; or rehabilitative as they may help train persisting cortical connections to execute 

motor output of the motor-impaired limb.102 An example of an assistive BMI for motor rehabilitation 

is the MyoPro. This system uses surface electromyography (EMG) sensors to detect muscle activity 
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in the arm and translate those signals into movements of a robotic arm brace. It is designed to assist 

individuals with upper limb paralysis due to conditions such as stroke, spinal cord injury, and 

multiple sclerosis.108 As previously mentioned, rehabilitative BMIs operate by providing real-time 

feedback to an individual's brain signals, encouraging the brain to reorganize and relearn motor skills. 

These devices, which usually focus on either the upper or lower limbs, are designed based on clinical 

evidence that suggests the potential for neural plasticity through intensive, repetitive, task-oriented 

movements. This approach promotes the formation of new neural connections allowing the 

restoration of movement and functionality of affected body parts, even in patients with neurological 

disorders.109 Examples of upper limb rehabilitation devices include the Neofect Smart Glove110 and 

the Armeo Spring exoskeleton111, developed to improve hand function, and to regain arm and hand 

functions, respectively. Examples of rehabilitative BMIs for lower limb rehabilitation include the 

ReStore Exo-Suit 112 and the ExoAtlet 113. Both are exoskeleton devices that use advanced sensors 

and algorithms to provide real-time feedback and assistance to users during rehabilitation. The 

ReStore Exo-Suit is a lightweight and comfortable exoskeleton specifically designed for stroke 

rehabilitation. It is a soft, wearable device that can be used for extended periods to help individuals 

improve their gait and balance.112 In contrast, the ExoAtlet is a more rigid exoskeleton designed for 

the rehabilitation of individuals with lower limb disabilities due to spinal cord injury, stroke, or other 

neurological conditions. It provides more support and stability during walking and standing to help 

individuals regain their mobility.113 Another field of rehabilitation is the cognitive one where 

rehabilitative BMIs are designed to help individuals with cognitive impairments caused by 

neurological disorders such as stroke, traumatic brain injury, and Alzheimer's disease. These BMIs 

aim to improve cognitive function, including attention, memory, language, and executive function. 

One type of cognitive rehabilitation BMI is neurofeedback (NFB) training, which uses real-time 

monitoring of brain activity to help individuals learn to self-regulate their brain function. This type 

of BMI helps individuals with ADHD, traumatic brain injury (TBI), and other neurological 

disorders.114 

While BCIs have primarily been developed for medical applications, there are also non-medical 

applications for this technology. One example is in the field of entertainment and gaming, where 

BMIs can be used to provide a more immersive and interactive experience for users. BMIs can also 

be used for enhancing human performance, such as in sports training or driving simulators. 

Additionally, BMIs have potential applications in the field of communication and human-machine 

interfaces, such as in the development of smart homes and personal assistant devices. The 

possibilities for non-medical applications of BMIs are vast, and ongoing research in this area is 

expected to lead to even more innovative uses in the future.72,91,115 
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1.3.3. EEG-based BMIs  

1.3.3.1.EEG Basics 

The electroencephalogram (EEG) is a non-invasive technique that uses electrodes attached to the 

scalp to record electrical activity in the brain. This electrical activity is produced by the movement 

of charged particles, across the membranes of active neurons during synaptic transmission. 116  At the 

scalp level, only synchronous brain activity (i.e., summation of various brain signals) can be detected. 

This is due to the signals' attenuation, which results from the distance between the source and the 

electrodes, and their spatial smoothing, which is a consequence of the head's tissues' high-volume 

conductance (mostly the brain, cerebral fluid, skull, and scalp).117 

EEG recordings can be conducted repeatedly over a long period to evaluate recovery in 

neurorehabilitation processes. The electrode placement is crucial since the slightest change in their 

location may lead to alterations in the measured evoked potentials and, consequently, in the overall 

recovery assessment.118 For this reason, several methods describing the locations of the EEG scalp 

electrodes and guaranteeing equal inter-electrode spacing have been proposed. The 10-20 system, 

presented in Figure 3, was proposed by Herbert Jasper in 1958, and is one of the most internationally 

recognized methods that allows electrode placement to be proportional to skull shape and size. It is 

called the 10-20 system because electrodes are placed at sites 10% and 20% from four anatomical 

locations on the scalp: the nasion and inion (front-back direction) and the two preauricular points 

(right-left direction).119,120 Different methods include expanded versions of the 10-20 system, such 

as the 10-10 and 10-5 systems. These systems use additional electrodes between the existing system, 

resulting in a higher density measurement. The knowledge of these systems and the methods behind 

them allows for consistent and replicable EEG recordings.121,122 When using the 10-20 system, each 

electrode is named using a combination of letters and numbers. The letters F, T, P, and O indicate 

the lobe of the brain where the electrode is placed (frontal, temporal, parietal, and occipital lobes, 

respectively). C denotes the central region, and z the midline section. Frontal-polar electrodes are 

annotated with ‘Fp’ and typically associated with activity in the prefrontal cortex. Odd-numbered 

electrodes are placed on the left side of the head, while even-numbered ones are on the right side.123  
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Figure 3- The 10-20 International system of EEG electrode placement. Cerebral areas are colored in purple 

(Frontal regions), blue (central), pink (temporal), yellow (parietal) and green (occipital). 

EEG oscillations contribute to cognitive functions differently based on their location in the brain and 

various parameters like amplitude, frequency, phase, and coherence. This concept is grounded  on 

the idea that distinct brain areas perform specific functions and that the frequency and coherence of 

EEG oscillations can provide information about the scale and organization of neural activity involved 

in cognitive processes.124 For instances the cerebral cortex, i.e., the area of the brain captured by the 

EEG electrodes, is divided into four lobes with different functions associated with each one. The 

frontal lobe, which is the largest one including the prefrontal and motor cortices, is responsible not 

only for motor control but also for several cognitive processes, also referred to as executive functions, 

such as decision-making, problem-solving, working memory, and attention.125,126 The temporal lobe, 

which encloses structures like the hippocampus and amygdala, is associated with functions such as 

auditory processing, language comprehension, and memory.127 The parietal lobe includes the 

somatosensory cortex and is therefore involved in tactile processing and pain perception, also has a 

role in language processing and the coordination of movement and spatial awareness functions.128,129 

Lastly, the occipital lobe includes the structure of the visual cortex, being mostly responsible for 

processing visual information.130 The frequency of EEG oscillations can provide insights into the 

size and organization of the neural activity involved in cognitive processes. For instance, low-

frequency oscillations are believed to represent the activity of large-scale neuronal assemblies 

connecting distant brain regions, whereas high-frequency oscillations are more likely to reflect the 

activity of local smaller neuronal populations.119 As for the coherence, i.e., synchronization between 

the EEG signals in a particular frequency band, it may provide information about the possible 

communication between different brain regions. When there is a high coherence in a specific 

bandwidth, the brain regions involved in that band may be part of a larger network supporting a 

specific cognitive function.124 

There are five main types of brainwaves, i.e., the oscillating electrical voltages in the brain that 

produce the EEG signal, each with its characteristic frequency range and the associated state of mind. 

Different brain areas generate different types of oscillations simultaneously, and the unique pattern 
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of the brainwave activity can provide insights into an individual's cognitive and emotional states.131 

These neural oscillations are the delta, theta, alpha, beta, and gamma waves, and Table 4 summarizes 

their respective frequencies, typical locations, and state of occurrence. 

Table 4- EEG rhythms and their respective frequency range132, typical brain location133 and associated state 

of mind.131,134–136 

EEG 

Rhythms 

Frequency 

Range (Hz) 

Typical Brain Location Associated State of Mind 

Delta (δ) 0.5-4 Frontal regions Deep sleep 

Theta (θ) 4-8 Temporal and Parietal 
regions 

Deeply Relaxed, inward focused, 
Subconscious 

Alpha (α) 8-13 Occipital and Parietal 

regions 

Relaxed wakeful awareness, Passive 

attention 

Beta (β) 13-30 Frontal and Parietal 

regions 

Focused, Alert, Active thinking 

Gamma (γ) 30-100 Various Hyper alertness, Concentration, Integration 

 

Delta waves have the slowest frequency range observed in EEG recordings, from 0.5 to 4Hz, and the 

highest amplitude, with values ranging between 20 and 200µV.133,137 While these may be observed 

in other brain regions, they are most noticeable in the frontal cortex.132,133 Delta waves are most 

observed during deep, dreamless, and unconscious sleep, known as non-rapid eye movement (non-

REM) sleep. Abnormalities in this frequency band have been associated with certain neurological 

disorders, such as dementia and traumatic brain injury.134,135,138 Theta waves, with a frequency range 

of 4 to 8Hz and amplitudes of over 20µV, are mainly present in the temporal and parietal lobes.133,137 

These rhythms are linked to subconscious activity and are observed during states of deep relaxation, 

meditation, daydreaming, and early drowsiness. They also play a role in cognitive processes such as 

memory formation and retrieval.133–135 Representing the white matter of the brain are alpha waves, 

with a frequency between 8 and 13Hz with an amplitude ranging from 30 to 50µV.137 These neural 

oscillations, primarily recorded from the posterior regions of the brain, specifically the occipital and 

parietal lobes, act as a bridge between the conscious and subconscious mind.132,133 They are 

associated with states of relaxed awareness (without attention or concentration), good mood, 

peacefulness, focus, and learning new information.135 With a frequency of 13-30Hz are the beta 

waves, occurring typically in both sides of the frontal and parietal lobes and with a small amplitude 

of 5-30µV.132,137 These bandwidth patterns are associated with sensory perception, including sight, 

touch, smell, taste, and hearing. Additionally, they are commonly observed during conscious 

activities such as problem-solving, decision-making, and judgment.134,135 Finally, gamma waves are 

the highest frequency signals, ranging between 30 and 100Hz, and with small amplitudes of less than 

5μv.137 These neural oscillations, which typically occur in various cortical sites of the brain, are 

associated with hypervigilance and the integration of sensory information, as well as a range of 
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cognitive functions such as consciousness, intellect, empathy, self-control, and cognitive 

tasks.132,133,135 

1.3.3.2.EEG signatures in Chronic Pain  

Currently, the benchmark for assessing the severity of chronic pain are the self-reported scales, such 

as the Numeric Rating and Visual Analog Scales (NRS and VAS, respectively). However, the 

validity of these subjective methods can be compromised by various factors, including the patient's 

physiological and psychological state and the examiner's propensities. As a result, there has been a 

growing interest in developing objective pain assessment methods, particularly in the neuroimaging 

field.139 Mouraux A. et al.140 proposed three main ideas that advocate using functional neuroimaging 

techniques for measuring pain objectively. The first is that this approach could allow the development 

of brain biomarkers that could efficiently quantify the pain severity and possible treatment outcomes. 

Accordingly, neuroimaging could assist in diagnosing pain based on its mechanisms, thereby 

enabling the prediction of individual treatment responses, and ultimately allowing for personalized 

treatment strategies. Lastly, by describing their effects on CNS pain circuits, neuroimaging, and 

electrophysiology could help discover novel pain-relieving pharmaceuticals.140 

One of the earliest research papers on EEG activity patterns and their possible association with 

chronic pain was published by Gücer et al. in 1978. 141 Since then, a significant number of research 

papers on the potential association between specific EEG signatures, such as alterations in frequency 

bands and connectivity patterns, and the presence and/or intensity of chronic pain, have been 

published (Table 4). Different study designs can lead to the identification of different types of 

biomarkers. For instance, cross-sectional studies, which examine a population at a single point in 

time comparing patients with healthy participants, typically focus on identifying diagnostic 

biomarkers. Longitudinal studies, on the other hand, track changes in a population over time which 

can identify monitoring and/or, predictive biomarkers. As for descriptive studies, which seek to 

characterize a population or disease in more detail, biomarkers found may have both diagnostic and 

monitoring purposes.142 Twenty-eight research papers that studied EEG signatures associated with 

various types of chronic pain are briefly reviewed in Table 4. Overall, the selected studies have a 

cross-sectional design, except four whose design was observational143, descriptive144–146, 

longitudinal/descriptive or comparitive147–152, and a case series153 and report154. The main EEG 

parameters analyzed in those studies were power spectra143–146,155–165 (n = 15), peak frequency (n = 

5)143,159,160,163,166, and connectivity patterns (n=3)149,164,167. The analyses of power spectra revealed that 

chronic pain patients displayed decreased alpha power143,155,156,160,163,167, and increased delta146, 

theta156–159,161,164,168, beta155,158,159, and gamma164,165 powers. Even though these results had the most 

evidence support, there is also evidence that chronic pain might be associated with increased 
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alpha157,159,161 and decreased beta160,165. The main relevant finding from studies that analyzed the peak 

frequency of the power spectra in the averaged EEG signal was a shift towards lower frequencies in 

chronic pain patients compared to healthy controls. 143,159,160,163,166 Several of the studies additionally 

found correlations between brain activity and pain intensity. For instance, significant negative 

correlations were found between alpha144,145,151,156 and low beta165 powers. On the other hand, delta146, 

theta146,157, beta157 , and gamma168 powers have been shown to be positively correlated with pain 

intensity. Four studies152,157,158,167 further investigated the pain matrix in patients with chronic 

neuropathic pain and found an overactivation in brain areas such as the thalamus, anterior and 

posterior insula, cingulate, somatosensory, and prefrontal cortices. Additionally, some found that this 

overactivation was specific for frequency ranges, such as theta and low beta 152,158,167, and that it could 

decrease along with pain reduction 152,157,158. Thirteen of the included studies investigated the 

influence of interventions on chronic pain and how brain activity changed accordingly. Four of these 

studied the effect of NFB protocols on chronic pain and concluded that the treatment resulted in a 

reduction of pain, accompanied by a decrease of theta147,153,162, and beta162 powers and an increase in 

the alpha147,151 frequency. The remaining studies assessed the effects of therapeutic lesions in the 

thalamus (central lateral thalamotomy, CLT)157–159, DRGS coupled with tDCS169, several 

pharmacological152, such as ketamine150, and psychological therapies148,170, and one additionally 

assessed interdisciplinary multimodal pain therapies149.  

 
Table 4- Studies on EEG signatures associated with chronic pain. Information about the authors, design of the 

study, the type of pain and the associated condition, the type of intervention assessed, and the main results 

regarding the EEG activity of the subjects with chronic pain. (NP- neuropathic) 

Author, 

Year 

Study 

Design 
Condition 

Type 

of pain 
Intervention Main Results 

Braden155 
2011 

Cross-
sectional 

SCI NP  More relative β-wave activity 
Less α-wave activity 

Boord166 
2008 

Cross-
sectional 

SCI NP  Decrease in peak θ-α frequency 

Camfferman
144 2017 

Descriptive Mixed Mixed  
Correlation (-) between α-wave 
activity and pain intensity, in 

frontal and parietal areas 

Day148 2021 
Longitudinal 

descriptive 

Low back 

pain 
Mixed 

Cognitive therapy 
(CT), Mindfulness-

meditation (MM), and 

Mindfulness-based 
cognitive therapy 

(MBCT) 

After treatments: Reduction in 
θ- and α -wave in the left 

frontal area; and in β-wave in 
all regions 

Doruk143 
2017 

Observational SCI NP  

Less α-wave activity 
Lower alpha/theta ratio 

Peak frequency significantly 
lower Correlation (+) between 

α-wave activity and VAS 
scores 
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Feng145 
2021 

Descriptive 
Low back 

pain 
Mixed  

Correlation (-) between α-wave 

activity and pain intensity in 
central regions 

Hasan162 
2016 

Randomized 

Controlled 
Trial (RCT) 

SCI NP NFB 
Decrease in β- and θ-wave 

activity after NFB  

Heitmann149 
2022 

Longitudinal 
descriptive 

Mixed Mixed 
Interdisciplinary 
multimodal pain 

therapy 

Increase in global network 
efficiency at θ frequencies after 

intervention 

Jensen147 
2013 

Longitudinal 
descriptive 

SCI NP 
NFB (different 

protocols) 

Decrease in pain after NFB 
treatment. 

Decrease in θ activity after 
NFB. 

Increase in α activity after NFB 

Jensen156 

2013 

Cross-
sectional 

observational 
SCI Mixed  

More θ-wave activity 
Less α-wave activity 

Correlation (-) between pain 
intensity and α activity in 

frontal regions 

Jensen170 
2021 

RCT Mixed Mixed 

Hypnosis focused on 
pain reduction (HYP), 

hypnotic cognitive 
therapy (HYP-CT), 

CT, and Education 
(ED) control condition 

Decrease in θ-wave activity 
after ED 

Michels157 
2011 

Cross-
sectional 

observational, 
Longitudinal 
descriptive 

NP pain of 

various 
etiologies 

NP 
Central lateral 

thalamotomy (CLT) 

Higher θ- and α-wave activity 
Correlation (+) between θ and 
β activity and pain intensity. 
After CLT: normalization of 
power in all frequency bands 

(for HPC patients), and in low-
frequency bands (for LPR 

patients) 

Oga150 2002 
Longitudinal 
descriptive 

NP pain of 
various 

etiologies 

NP 
low-dose ketamine 

HCl 

Lower α-wave activity after 
ketamine 

Correlation (+) between 
ketamine-induced effects on 

pain relief and α-power (right 
central electrode) 

Parker169 
2021 

RCT 
NP pain of 

various 
etiologies 

NP 

dorsal root ganglion 

stimulation (DRGS) + 
transcranial direct 
current stimulation 

(tDCS) 

Increased cortical β activity in 
both frontal and parietal 

regions during acute pain relief 
(after both interventions) 

Patel151 
2021 

Longitudinal 
comparative 

Mixed Mixed 
Alpha-neurofeedback 

(a-NFB) 

Trend of increase in α state 
parameters such as fractional 

occupancy, dwell time 

distribution and transition 
probability. Correlation (-) of α 
state parameters with changes 

in VAS pain rating.  

Prichep152 
2011 

Longitudinal 
descriptive 

Root and or 
nerve 

compression 
or trauma 

NP 
Different 

pharmacological 

treatments 

Higher activity levels in very 
narrow bands within the α- or 
low β-waves (for 3 Patients).  

Maxima activity in the θ-wave 
(2 Patients) 

Prichep167 

2018 

Cross-
sectional 

observational 
Mixed Mixed  Higher θ and low α-wave 

activity Higher θ connectivity  
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Sarnthein159 
2006 

Cross-

sectional 
observational, 
Longitudinal 
descriptive 

NP pain of 
various 

etiologies 
NP CLT 

Higher spectral power over the 

whole frequency range (2–25 
Hz) 

Reduction of θ-wave power 
after CLT 

Simis160 
2022 

Cross-
sectional 

SCI NP  

Less α- and β-wave activity 
Decreased peak α-θ frequency. 

Correlation between θ-wave 
and DPIS activity 

Stern158 
2006 

Cross-
sectional 

observational, 
Longitudinal 

descriptive 

NP pain of 
various 

etiologies 
NP CLT 

Higher activity in the high θ 
and low β-wave frequency 

ranges 
After CLT: significant 

reduction in activation in 
cingulate and insular cortices 

Ta Dinh164 
2019 

Cross-
sectional 

observational 

Mixed Mixed  

Higher θ and γ connectivity in 
frontal regions 

Decrease in global efficiency 
in γ frequencies  

Teixeira165 

2021 

Cross-
sectional 

observational 

NP pain of 
various 

etiologies 
NP  

Lower β-wave activity 
Correlation (-) between low β 

power and VAS 

Teixera146 
2022 

Descriptive 
Low back 

pain 
Mixed  

Correlation (+) between pain 

intensity and relative δ- and θ- 
power, in central area 

Vanneste168 
2021 

Cross-
sectional 

observational 

NP pain of 
various 

etiologies 
NP  

Higher θ- and γ-wave activity 

in somatosensory cortex (SSC) 
Correlation (+) between pain 

intensity and γ activity, in SSC 

Vuckovic161 
2014 

Cross-
sectional 

SCI NP  
More α-wave activity 

Larger θ-wave activity in 
frontal and occipital regions 

Vučković153 
2019 

Case series SCI NP NFB 

More α-wave activity 
associated with decrease of 

pain. 
(Some participants also 

showed a decreased in θ-wave 
activity) 

Wydenkelle

r163 2009 

Cross-

sectional 
SCI NP  

Less α-wave activity 
Peak theta–alpha frequency 

decreased 

Yoshida154 
2016 

Case Report SCI NP BCI 
Increased β-wave activity after 

SMR training 

 

Since our case-study will be based on a patient that besides chronic pain is suffering from SCI, in the 

next section the results from the research papers that included populations with SCI will be discussed. 

Two of the studies155,160 compared SCI populations with and without pain; five of them 143,156,161,163,166, 

additionally compared these two groups with a group of healthy volunteers. The studies that evaluate 

the effect of an intervention only worked with SCI patients with chronic pain.147,153,154,162 Although 

there were some contradictory findings, the most common EEG signatures found among chronic pain 

SCI patients was a higher power in theta bandwidths156,161  and lower activity of the alpha 
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waves143,155,156,160,163. Three of which additionally found significant correlations between the EEG 

signals and other parameters such as pain intensity143,156 and the activity of the descending pain 

inhibitory system (DPIS).160 Regarding the correlation with pain intensity levels, Doruk et al. found 

a positive correlation between alpha activity in the occipital areas and the VAS pain scores  143. On 

the other hand, Jensen et al. found a negative correlation between the alpha activity from frontal 

regions and the pain intensity, measured on a 0–10 numerical scale, proposed that this might be 

related to drowsiness or the possible involvement of frontal brain structures in the suppression of 

pain, meaning that the increase of alpha activity in these areas may be a result of less successful pain 

suppression156. By using conditioned pain modulation (CPM) efficiency as an index of the DPIS, 

Simis et. al found a correlation between the increase in theta activity and the decrease in CPM 

efficiency. 160 Four of the studies included, evaluated the effect of an intervention, namely 

NFB147,153,162 or BCI154 training, for the chronic pain treatment. The NFB protocols used were mostly 

focused on increasing the alpha activity and decreasing both theta and beta powers. 147,153,162  Yoshida 

et al.154 used a BCI system with sensorimotor (SMR) feedback, which measures and provides 

feedback on the sensorimotor rhythm, a specific pattern of electrical activity observed over the 

sensorimotor cortex and associated with lower beta frequency bands. The study specifically focused 

on event-related desynchronization (ERD); a pattern characterized by decreased SMR amplitudes. 

Since all these interventions resulted in a decrease in pain levels, neurofeedback, either as a 

standalone intervention 147,153,162 or inserted in a BCI system 154, has the potential to be a promising 

approach for alleviating chronic pain after spinal cord injury.  

 

1.4.Objectives 

Based on this literature reports we hypothesized that the BMI training employed in this study could 

decrease the pain levels reported by our subject and consequently modulate his neural activity, 

ultimately leading to the identification of EEG signatures capable of identifying chronic pain 

biomarkers. To this end, we’ll focus on the electrodes and bandwidths that are most reported in the 

literature. 

2. Materials and Methods  

2.1.Subject and Timeline of Experiment 

The present case-study was conducted in compliance with the ethical principles outlined in the 

Declaration of Helsinki by the World Medical Association for research involving humans and 

received approval from the Ethics Committee of CES- Hospital Senhora da Oliveira (no. 15/2020). 
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Informed consent was obtained from the participating subject, a 52-year-old male with an AIS 

complete T4 SCI stabilized (32 years), and a history of chronic low back pain following surgery (5 

years). Data collection took place between June 2021 and July 2022 at the Hospital Senhora da 

Oliveira in Guimarães, Portugal. The study involved two distinct BCI training protocols, 

distinguished as passive and active according to the participant's control over the VR avatar. The 

passive protocol comprised ten training sessions over five weeks, with two sessions per week, 

followed by a final evaluation and a 12-week follow-up. This protocol aimed to evaluate the 

participant's comfort level while experiencing illusory lower limbs, without introducing additional 

stress resulting from low performance in real-time neural decoding feedback. Subsequently, the 

participant underwent an active BCI training protocol, comprising 22 sessions, followed by a final 

evaluation at week 41 and a follow-up 33 weeks later. The specific details and timeline of these 

training protocols are presented in Figure 4. 

 

Figure 4- Timeline. The study procedures began with obtaining informed consent from the participant and conducting a 

pre-intervention assessment. Throughout the intervention, the participant's comfort levels with embodiment experiences, 

VR side effects, self-reported pain levels, and the use of thermal-tactile sleeves were assessed. The post-intervention 

assessment was conducted after seven weeks and included a re-evaluation of self-reported pain levels. This follow-up 

assessment also served as the pre-intervention assessment for the second training protocol. Notably, the active protocol 

differed from the passive protocol in that the participant was able to control the VR avatar using neural activity.  Adapted 

from171 

2.2.Sessions and Clinical Measures  

The intervention consisted of 33 sessions, conducted by a team of 2-4 researchers to ensure proper 

equipment functioning and minimize experiment setup time. Each session lasted between 70–90 min, 
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which included periods of equipment setup (Figure 5 (A)), assessment of the participant comfort, 

interaction with the VR environment, and questionnaire administration. The initial period, usually 

lasting approximately 10 min, served to evaluate the comfort of the subject with the equipment as 

well as to collect information regarding pain and stress experienced at home or work between 

sessions. The VR interaction phase (Figure 5 (B)), lasting between 20-25min, consisted of three 

sequential phases: (a) habituation, (b) acquisition of baseline EEG data and neural activity recording; 

(c) online period marked by real-time neural decoding and control of the VRs avatar.  

 

Figure 5- Setup and Session Phases. (A) Equipment and Setup. (B)VR interaction phases: Habituation, Acquisition and 

Online. 

During the habituation phase, the subject was instructed to choose a VR scenario and interact with it 

using hand controllers, controlling the movements of the avatar within the VR environment. This 

interaction provided the participant with various types of feedback, including visual cues, audio 

stimulation, through the VR headset, and thermal tactile sensations, through the thermal-tactile 

sleeves. This phase aimed at optimizing the setup by making any necessary adjustments to the 

sleeves, VR environment, or wheelchair position. During the neural data acquisition phase, the 

subject was presented with visual cues that specifically instructed them to "Walk" (green cues) or 

"Stop" (red cues). For the green cues, the participant was instructed to imagine one leg rising and 

stepping on the ground, while for the red cues, to remain still and enjoy the scenario. After data 

acquisition, a common spatial filter and classifier were trained, and training proceeded when the true 

positive values exceeded 70% for each category. If the threshold was not met, the neural data 

acquisition phase was repeated. In the last phase, named as the “online” phase neural decoding was 

performed in real-time. As previously mentioned, for the first 10 sessions that composed the passive 

rehabilitation protocol, motor imagery was only used to train the participant, not providing any 

control of the avatar nor immediate feedback on his performance. This means that, independently of 

the subject’s neural activity, the avatar would move when a green visual cue (Walk) appeared, and 

the remain still when the red (Stop) visual cue appeared. In the active rehabilitation protocol, the 
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subject had actual control of the avatar and immediate feedback on his performance (i.e., upon a 

green cue, the avatar would still move, but different auditory feedback was delivered when neural 

activity encoded “walk” and “not walk” cues). 

The clinical measures used were subjective pain scales administered via a questionnaire at the end 

of each session. These scales consisted of the Faces Pain Scale (FPS), the Verbal Pain Intensity Scale, 

and the Visual Analog Scale (VAS) Pain Scale. The subject was instructed to rate his pain level on 

each scale by indicating a number on the VAS pain scale ranging from 0 (representing ‘no pain’) to 

10 (representing the ‘worst possible pain’), selecting a facial expression corresponding to their pain 

level on the FPS, and choosing a word on the verbal pain scale ranging from “no pain” to “unbearable 

pain”. 

2.3.EEG Recordings and Analysis   

EEG recordings were acquired using a 16-channel EEG cap (V-Amp, actiCAP; Brain Products 

GmbH, Gilching, Germany) placed according to the 10-20 system. Signals were recorded using the 

Brain Vision Recorder and analyzed using Brain Vision Analyzer, MATLAB, and Excel. In the Brain 

Vision Analyzer, during the data pre-processing stage, an Infinite Impulse Response (IIR) notch filter 

was applied, ocular movements were removed using the Gratton and Coles algorithm, and a Fast 

Fourier Transformation (FFT) was performed to obtain frequency spectra for further analysis. The 

mean power for each bandwidth (delta (0.5-3.5 Hz), theta (4-7.5 Hz), alpha (8-12.5 Hz), beta (13-30 

Hz), and gamma (30.5-100 Hz) for each of the 16 channels were analyzed.  EEG data was acquired 

in a total of 32 sessions; however, due to technical issues, four sessions (sessions 2, 26, 28 and 32) 

were excluded from the analysis, resulting in a final dataset of 28 sessions (Table 5). The acquisition 

period encompassed a total of 10 sessions dedicated to passive BMI training, while the remaining 

sessions focused on active BMI training. It is important to note that during the online period, six 

additional sessions (sessions 3, 4, 5, 6, 7, and 19) were not available for analysis, resulting in a 

reduced dataset for the online period (22 sessions in total). 
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Table 5- Available EEG data and respective sessions. The first 10 sessions belong to the passive BMI training protocol 
and EEG data was available for all sessions except session 2 (Recorded on 30th June 2021)for the acquisition period and 

sessions 2 and 7 (Recorded on the 21st of July 2021) for the online period. The active BMI protocol was performed in 22 
sessions, three of which (Sessions 26, 28 and 32) had no available EEG records for either the recording phases (acquisition 
and online). For session 19 on the 19 of November 2021, EEG data recorded in the online period was also not available. 
All in all, the total of available data consisted of 28 and 22 sessions, for the acquisition and online periods, respectively.  

 

2.4.Statistical Analysis 

Results are presented as mean ± standard deviation. Arbitrary units (a.u.) were used as units for the 

different questionnaires. A z-score normalization was applied to the EEG data. This method allowed 

the standardization of the EEG measurements, ensuring comparability across different recording 

sessions. For the subsequent analysis, the data was divided into subsets based on the sessions. To 

investigate potential changes over time, the sessions were grouped into two sets: the initial group 

sessions and the final group sessions. Furthermore, considering that the acquisition data included 

more sessions, it was additionally categorized based on the type of BMI utilized. The first set of 

sessions corresponded to the passive BMI training, while the second set pertained to the active BMI 

training. The permutation test (with 1000 permutations) was used to assess the presence of any 

statistically significant distinction in these data sets. Additionally, the Mann-Kendall test was 

employed to identify trends, determining if there was a significant upward or downward trend. 

Spearman’s rho coefficient and adjusted p-values were calculated between the EEG data and the 

variation of pain scores to investigate the possible relationship between these variables. An alpha 

value of 5% was considered significant for all hypothesis testing. 
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3. Results  

In this section, the results will be presented in three different parts. First an exploratory analysis with 

all the available EEG data will be conducted, assessing the possible differences between the 

acquisition and online periods datasets. Second, the modulation of neural activity with time will be 

studied. Finally, the third subsection will include the results of the self-reported pain levels and their 

potential association with the neurophysiological signals.  

3.1.Power Spectra of EEG Recordings 

Power spectrums were obtained in Brain Vision Analyzer, Figure 6 (a), shows a typical EEG 

spectrum from a time frame of a session recorded on the 15th of October 2021. After the pre-

processing all data was normalized. To assess the differences between session periods, acquisition 

and online, only EEG data common to both was included, resulting in a total of 22 sessions. Figure 

6 (b) presents a power spectra of electrode C4, showing alterations in the activity in different 

frequency ranges between the acquisition and online periods of the session mentioned above. 

To ensure data consistency and reliability, after the EEG data underwent normalization, the spectral 

profile across all sessions were examined. This process aimed to eliminate sessions with unusual 

values or spectral characteristics that indicate potential errors or artifacts, enhancing the validity of 

the EEG data and ensuring its integrity for subsequent analyses. From the 22 sessions common to 

both periods five of them showed aberrant spectrum, such as outliers suggestive of noise in a specific 

frequency band and across multiple channels, being subsequently removed.  

Afterwards, to evaluate the possible differences between the two periods, the permutation test was 

applied for between the means of each channel and frequency band. Statistically significant 

differences were found in all electrodes and frequency bands, except for the Fp1 and F4 electrodes 

in the delta and beta frequency bands respectively. Apart from these, all electrodes presented 

significantly higher power values in the delta and alpha frequencies band for the online period and 

theta, beta, and gamma frequencies for the acquisition period. (Table A1)  



38 

 

Figure 6- a) Spectra obtained in brain vision analyzer after ocular correction from session on 15 of October 

2021. b) Spectra of the normalized power values same session between the acquisition (blue) and online 

(orange) period in electrode C4. Frequency bands are highlighted above with delta ranging from 0.5-3.5Hz, 

theta: 4-7.5Hz, alpha: 8-12.5Hz, beta: 13 to 30Hz and gamma: 30.5 to 50Hz (only for better visualization 

purposes, in the analysis gamma ranged between 30.5 to 100Hz).  

From this point on, as the data sets are significantly different in almost all electrodes and frequency 

bands, the analysis of neural activity modulation and its relationship with pain levels will be done 

separately for the two periods. By doing so, the 28 sessions available from the acquisition period will 

now be taken into consideration.  

3.2.Neural activity and chronic pain  

Given the focus of this study on exploring the potential impact of BMI on pain and its modulation of 

neural activity, in the next sections we directed our attention toward electrodes located in the pre-

frontal, frontal, motor, parietal and occipital regions. These brain regions are often associated with 

processes such as motor function and pain perception, being mentioned in most literature related to 

this subject. 144–146,156,161,169 Additionally, in the context of chronic pain associated with spinal cord 
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injury (SCI), previous research has primarily emphasized alterations in the delta, theta, alpha, and 

beta frequency bands 143,155,156,160,161,163  , consequently leading us to exclude the gamma bandwidth 

from subsequent analysis (Figure 7b).  

3.2.1. Neural activity alterations with time  

To study the possible changes of neural activity across sessions, each of the datasets (acquisition and 

online) were first divided in half and tested for differences between the initial vs final set of sessions. 

In this analysis the acquisition period includes a total of 25 sessions after three of them being 

eliminated in the quality control assessment mentioned above.  

The first part of the sessions, i.e., the acquisition period, was divided into two subsets for analysis 

(figure 7 a). The first subset, meant to assess the possible variation of brain activity through time, 

disregarding other factors, was divided into two subsets: the initial 12 sessions (from June to October 

2021) and the last 13 sessions (from October 2021 to April 2022). The second subset, which aimed 

to study if the alterations in the EEG activity through time were due to the type of BMI training, was 

divided into passive BMI training (9 sessions) and active BMI protocol (16 sessions). Regarding the 

EEG recordings from the online period,  which included only 17 sessions (with only 3 from the 

passive BMI training), the initial set consisted of 8 sessions (June to October 2021), and the final set 

comprised 9 sessions (October 2021 to April 2022). 

Figure 7- Overview of the studied subsets. Each data set, acquisition and online, are divided into subset 1 

consisting of an initial and final group of sessions. Additionally, the acquisition data set is further grouped into 

subset 2 divided into passive vs active BMI training sessions. All the analysis focused on the delta, theta, alpha 

and beta activity in electrodes from the pre-frontal (Fp1 and Fp2), frontal (F3 and F4), motor (C3 and C4) and 

occipital (O1 and O2) areas.  

Permutation tests were performed to evaluate the temporal changes within each channel (Fp1, Fp2, 

F3, F4, C3, C4, O1, and O2) and frequency band (delta, theta, alpha, and beta) for each set of 

comparison. After the correction for multiple comparisons only the acquisition period data showed 

significant results. When comparing between the initial and final sessions, two electrodes showed 
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significance, electrode C4 in the theta bandwidth (adjusted p-value= 0.040) and O2 in both delta and 

theta frequencies (adjusted p-value= 0.027 and 0.030, respectively) and electrode O1 presented a 

tendency towards significance in the theta bandwidth (adjusted p-value=0.056). When alterations 

between BMI protocols were studied, only electrode C4 showed significance in the delta frequency 

band (adjusted p-value= 0.032) and showing a trend towards significance in the theta band (adjusted 

p-value=0.053) (Table A2). Afterward, the Mann-Kendall test was employed to examine the nature 

of the observed changes in the data. This statistical test aimed to assess whether the changes exhibited 

a consistent trend over time or if they displayed abrupt transitions between data points. The results 

of the Mann-Kendall test yielded significant outcomes for all electrodes (Figure 8), indicating that 

the observed changes in the data were characterized by a continuous and statistically significant 

upward trend across the analyzed electrodes. 

Figure 8- Alterations of neural activity from the acquisition period throughout the sessions. The Mann-Kendall 

test was applied between the mean values of the initial and final sessions in a) theta bandwidth electrode C4, 

and in delta (b) and theta (c) waves in electrode O2. d) Shows the alteration of neural activity in the delta 

frequency band in electrode C4 between the passive and active BMI protocol.  
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3.2.2. Correlation between neural activity and pain    

The following section provides the results of the pain assessment using three distinct pain scales: 

Visual Analog Scale (VAS), Faces Pain Scale, and Verbal Pain Scale. The pain scores, collected in 

questionnaires administered in a total of 34 sessions (Figure 9 (a)), provide valuable insights into 

the subject's perceived pain levels. To gain a comprehensive understanding of the variations in pain 

levels during the intervention, mean values were computed for sessions involving the passive and 

active BMI protocols separately (Figure 9 (b)). All three scales showed a decrease in pain scores. At 

the pre-intervention session, the subject reported a pain score of 10 on the Faces Scale, an 8 on the 

VAS, and as "severe" on the verbal pain scale. During the passive BMI protocol sessions, the mean 

pain scores were 7.1 (Faces), 5.8 (VAS), and rated as "moderate" on the verbal scale. During the 

active BMI sessions, the mean pain scores were 6.7 (Faces), and 5 (VAS), and again as "moderate" 

on the verbal scale. These findings consistently demonstrate a reduction in pain levels, implying the 

potential efficacy of the BMI intervention in alleviating pain.  

Figure 9- Overview of the pain scores. (a) Pain variation measured in the VAS (green), Faces (blue) and the 

Verbal (orange) pain scales throughout the 34 sessions. (b) Mean pain scores in the pre-intervention; the first 

10 sessions that employed the passive BMI training protocol and the second set of sessions (17 sessions with 

available EEG data) that employed the Active BMI protocol.  

These results prompt further investigation into whether the observed changes in pain could be 

associated with EEG activity. For this Spearman’s rho correlation coefficients were calculated for 

the same electrodes and frequency bands as in the previous section, both in acquisition and online 

periods. To diminish the number of comparisons, we initially computed the correlation between the 

pain scales (VAS and Faces). Given that we observed significant results (Rho = 0.621; p-value=  

8.886e-05), we chose to solely utilize the VAS scale scores, considering its widespread usage in 

EEG-related studies. Furthermore, to enhance the interpretability of the association between neural 
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activity and pain fluctuations, we elected to correlate the power values of the specific channels and 

frequency bands with the variations in the VAS pain scale scores.  

All the rho and respective p-values obtained for all the electrodes in all selected bandwidths are listed 

in Table A3. Only two statistically significant correlations were obtained (Figure 10). In the 

acquisition period, electrode O2 showed a statistically strong negative correlation in the beta 

frequency band (rho= -0,515; adjusted p-value=0.028). However, from the online data, electrode C4 

showed a strong positive correlation in the delta bandwidth  (rho= 0.733 ; adjusted p-value= 0.026).  

Figure 10- Spearman’s rank correlation between the variation of the VAS pain scale scores and a) the delta 

frequency band in electrode C4 from the online data and b) the beta frequency band in electrode O2 from 

acquisition data. 

 

4. Discussion  

In the present study, the neural activity and self-reported pain levels of an SCI patient were analyzed 

during the implementation of a 14-month neurorehabilitation protocol. The analysis revealed a 

consistent and significant reduction in the patient's reported pain levels, accompanied by observable 

alterations in the EEG signal. Electrodes C4 and O2 showed plasticity in both delta and theta 

frequency bands. Additionally, these electrodes were strongly correlated with the variation of pain 

levels in the delta and beta frequency bands. These results support the notion that the implementation 

of a neurorehabilitation protocol combining a motor imagery-based BMI with highly immersive 

virtual reality scenarios resulted in a decrease in pain levels that was maintained throughout the 

testing period. 

BMI periods and neural activity   

In this study a distinct pattern of frequency bands was found between the acquisition and online 

periods of the BMI sessions. As previously mentioned, during the acquisition period, the avatar 
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moved independently while the subject received visual cues to train specific mental states with the 

desired actions (e.g., thinking about walking during green cues and thinking about not walking during 

the red cue). In the online phase, the subject received real-time feedback based on EEG activity to 

control the avatar's movements. 

Neural oscillations in the beta and gamma frequency ranges are closely associated with conscious 

activities and cognitive functions.134,135 The observed increase of activity in these frequencies during 

the acquisition period of the BMI training may reflect heightened cognitive engagement and 

attention-related processes. On the other hand, delta waves, primarily observed during sleep, have 

been implicated in the brain's reward systems.172 The increase of this neural oscillation during the 

online period may be related to the possible enhancement of motivation/ pleasure because of the real-

time feedback, particularly, when accurately performing the task and achieving the desired outcome. 

Considering that this data was from an SCI patient suffering from chronic pain, the changes between 

the two periods might be related to shifts in the processing of sensory information, and emotional 

states. For instance, from the literature, most EEG signatures associated with chronic pain are 

increased power in theta frequencies 156,161 and decreased alpha levels 143,155,156,160,163. This could be 

indicative that perhaps during the acquisition period, in which the theta activity showed higher 

values, the subject experienced more pain and on the other hand, during the online phase, where 

alpha oscillations were higher, the real-time feedback and engagement in the BMI task could have 

provided a distraction from the experience of chronic pain compared to the acquisition period. 

However, since the self-reported pain scale scores were only acquired after the intervention further 

studies would be needed to confirm this hypothesis.  

BMI influence on neuroplasticity 

The analysis of neural activity focused on four electrode groups that have been frequently implicated 

and shown alterations in chronic pain conditions.144–146,156,161,169 These included electrodes in the 

prefrontal and frontal regions (Fp1, Fp2, F3, and F4), central electrodes (C3 and C4), parietal 

electrodes (P3 and P4), and electrodes in the occipital regions. Additionally, since the existing 

literature on SCI-related chronic pain primarily highlights changes in the delta, theta, alpha, and beta 

frequency bands143,155–161,163–165,167,168, and aiming to simplify the analysis and reduce the number of 

comparisons, the gamma frequency band was excluded from the subsequent analysis. When 

assessing the alterations of neural activity with time in the selected electrodes, electrodes C4 and O2 

showed significant alterations in both delta and theta frequency range.     

The occipital lobe, responsible for visual processing, has been associated with heightened delta and 

theta oscillatory activity during cognitive tasks, suggesting its involvement in cognitive processes 
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beyond vision.175 In a recent study utilizing a SSVEP-BCI, an increase in delta activity in the occipital 

region was observed during a mental focus task, contrasting with a 'lost-in-thought' state.176 Building 

upon these findings, our results regarding the sustained increase in delta and theta oscillations in 

electrode O2 may shed light on the active involvement of the occipital cortex in cognitive tasks, 

emphasizing the significance of these neural oscillations.  

Since our BCI training protocol focused on motor imagery, the possible modulation of neural activity 

associated with the motor cortex was reasonable. The motor cortex plays a crucial role in motor 

control and recovery processes. Low-frequency brain oscillations (LFOs), such as delta and theta 

waves, have been suggested to be related with motor recovery in stroke patients. 177,178 Considering 

the similarity in motor impairment between stroke and SCI, the observed alterations in delta and 

theta activity may indicate a potential mechanism associated with motor recovery. 

These findings suggest that BMI training can potentially induce neuroplastic changes associated with 

cognitive processes and motor recovery. However, further research is needed to fully understand the 

underlying mechanisms and validate this interpretation. 

BMI influence on Chronic Pain  

Studies have provided evidence supporting the potential use of BCIs, including neurofeedback, as a 

treatment for chronic pain. 147,153,154,162 In line with these findings, our data revealed that the subject 

self-reported pain levels decreased throughout the intervention period. These results led us to further 

investigate the potential relation between neural activity and the fluctuation of pain levels, which 

were found to be negatively correlated in the beta frequency band of electrode O2 and positively in 

the delta bandwidth of electrode C4.  

In the context of chronic pain, it is known that there is an imbalance between inhibitory and excitatory 

mechanisms, eventually leading to sensitization, i.e., increased responsiveness of neurons to pain 

signals, resulting in amplified pain perception. 29 One of the suggested mechanisms associated with 

this is the disruption of GABAergic inhibition, that has been shown to be decreased in the context of 

chronic pain. Beta waves are mainly produced by inhibitory interneurons, such as the GABAergic 

interneurons, and are conversely decreased in chronic pain states.179,180 In this study, no significant 

alterations were observed regarding this frequency, however, a strong negative correlation was found 

between the beta wave activity in electrode O2 and the variation of the VAS pain scale. To the best 

of our knowledge this negative correlation has only been reported in frontal areas160, or associated 

with the global power spectrum165 (i.e., regarding all electrodes). 

While there may be contradictory reports in the literature regarding EEG signatures associated with 

chronic pain, one of the most recurrent ones is the fact that chronic pain patients present an increased 
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power at lower EEG frequencies compared to patients without pain.143,159,160,163,166 It is believed that 

chronic pain is associated with thalamocortical dysrhythmia. This abnormal activity in the thalamus- 

results in hyperpolarization of thalamic cells causing them to fire at lower frequencies, potentially 

explaining the association with increased delta oscillations.159,181 In this study we found a positive 

correlation between the delta activity in electrode C4 and the variation of the VAS pain scale during 

the online BMI period, which is in line with the findings reported by Teixeira et. al146, where the 

same correlation was found in central brain regions of patients with chronic low back pain. This 

finding further supports the hypothesis that the increases in delta activity may not have been products 

of pain but connected to interoceptive attentiveness or reward processes as the levels of pain 

experienced by our subject reduced throughout the intervention. Nonetheless, since this correlation 

was obtained regarding the variation of the pain values rather than the actual pain scores, further 

investigation is needed to confirm the validity of the relationship between the delta oscillations and 

their relationship with chronic pain.   

Limitations and Future Perspectives 

This study presents several limitations that should be considered. First, since it was a case study, i.e., 

with only one subject, and there is inherent variability in neural activity among individuals, the 

possibility to generalize the results to a larger population is limited. Accordingly, the absence of 

control subjects, such as healthy individuals or SCI patients with and without pain, limits the ability 

to compare and draw assertive conclusions about the observed neural activity alterations. Another 

limitation of this study is the 16-electrode setup, which may lead to spatial under sampling.123 For 

this reason, these results should be considered within the associations with the electrode locations 

rather than the respective underlying cortical regions.  

These limitations highlight the need for future studies with larger sample sizes and appropriate 

control groups to provide a more comprehensive understanding of the relationship between neural 

activity, BMI interventions, and chronic pain in spinal cord injury. 

 

5. Conclusion  

In conclusion, this study provides valuable insights into the neural activity patterns associated with 

a BMI intervention in an individual with spinal cord injury and chronic pain. The findings indicate 

potential neuroplastic changes in the delta and theta frequency bands within electrodes recording 

above the motor cortex and occipital areas that could be related to motor recovery and cognitive 

processes. Furthermore, significant correlations between the delta and beta powers in electrodes C4 
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and O2, respectively, and the variation in VAS pain scores were observed. Despite a small number 

of limitations, this study contributes to the understanding of the complex relationship between the 

effects of BCI in  neural activity and chronic pain in reduction the context of spinal cord injury, 

highlighting the need for further research in this area. 
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Appendix  

Table A1- Permutation test results. Observed differences and respective adjusted p-values between the mean 

values of each electrode and frequency band in acquisition and online period.  

Channel Frequency band Observed Difference Effect Size p-value Adjusted p-value 

Fp1 

Delta -3,299 -9,313 0,001 0,080 

Theta 0,896 3,100 0,001 0,040** 

Alpha -0,595 -3,897 0,001 0,027** 

Beta 0,090 1,165 0,001 0,002** 

Gamma 0,134 3,129 0,001 0,020** 

Fp2 

Delta -3,420 -11,218 0,001 0,016** 

Theta 0,936 4,134 0,001 0,013** 

Alpha -0,492 -5,264 0,001 0,011** 

Beta 0,091 0,644 0,031 0,042** 

Gamma 0,130 4,236 0,001 0,010** 

F3 

Delta -3,403 -12,380 0,001 0,009** 

Theta 0,906 3,880 0,001 0,008** 

Alpha -0,583 -4,041 0,001 0,007** 

Beta 0,086 1,080 0,003 0,002** 

Gamma 0,139 3,233 0,001 0,007** 

Fz 

Delta -3,428 -11,890 0,001 0,006** 

Theta 0,679 2,322 0,001 0,006** 

Alpha -0,766 -2,953 0,001 0,005** 

Beta 0,088 1,211 0,001 0,003** 

Gamma 0,165 3,192 0,001 0,005** 

F4 

Delta -3,108 -5,069 0,001 0,005** 

Theta 0,959 3,961 0,001 0,004** 

Alpha -0,567 -4,415 0,001 0,004** 

Beta 0,053 0,232 0,740 0,711 

Gamma 0,128 1,885 0,001 0,004** 

T3 

Delta -3,308 -9,841 0,001 0,004** 

Theta 0,878 2,198 0,001 0,004** 

Alpha -0,546 -4,372 0,001 0,003** 

Beta 0,101 2,674 0,001 0,003** 

Gamma 0,129 3,196 0,001 0,003** 

C3 

Delta -3,292 -7,526 0,001 0,003** 

Theta 0,914 3,638 0,001 0,003** 

Alpha -0,595 -2,728 0,001 0,003** 

Beta 0,117 1,642 0,001 0,003** 

Gamma 0,126 2,282 0,001 0,003** 

Cz 

Delta -3,339 -9,641 0,001 0,003** 

Theta 0,702 1,797 0,001 0,002** 

Alpha -0,622 -3,931 0,001 0,002** 
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Beta 0,096 1,658 0,001 0,002** 

Gamma 0,147 3,056 0,001 0,002** 

C4 

Delta -3,039 -7,383 0,001 0,002** 

Theta 0,792 1,956 0,001 0,002** 

Alpha -0,851 -1,868 0,001 0,002** 

Beta 0,066 0,753 0,042 0,043** 

Gamma 0,151 2,164 0,001 0,002** 

T4 

Delta -3,261 -10,213 0,001 0,002** 

Theta 1,019 4,310 0,001 0,002** 

Alpha -0,504 -4,125 0,001 0,002** 

Beta 0,073 0,849 0,007 0,011** 

Gamma 0,122 3,874 0,001 0,002** 

P3 

Delta -3,269 -8,411 0,001 0,002** 

Theta 0,848 3,652 0,001 0,002** 

Alpha -0,683 -2,170 0,001 0,002** 

Beta 0,103 1,144 0,001 0,002** 

Gamma 0,138 2,329 0,001 0,002** 

Pz 

Delta -3,515 -9,698 0,001 0,002** 

Theta 0,700 2,352 0,001 0,002** 

Alpha -0,726 -3,053 0,001 0,002** 

Beta 0,093 1,707 0,001 0,002** 

Gamma 0,164 3,719 0,001 0,002** 

P4 

Delta -3,201 -7,084 0,001 0,002** 

Theta 0,762 2,070 0,001 0,001** 

Alpha -0,757 -2,687 0,001 0,001** 

Beta 0,092 0,965 0,005 0,005** 

Gamma 0,148 2,189 0,001 0,001** 

O1 

Delta -3,285 -7,251 0,001 0,001** 

Theta 0,450 0,924 0,007 0,011** 

Alpha -0,790 -2,434 0,001 0,001** 

Beta 0,080 1,106 0,002 0,003** 

Gamma 0,175 3,089 0,001 0,001** 

O2 

Delta -3,391 -9,033 0,001 0,001** 

Theta 0,413 0,904 0,012 0,010** 

Alpha -0,753 -3,040 0,001 0,001** 

Beta 0,092 1,416 0,001 0,001** 

Gamma 0,177 3,180 0,001 0,001** 

TP10 

Delta -3,290 -9,299 0,001 0,001** 

Theta 0,899 3,098 0,001 0,001** 

Alpha -0,592 -3,813 0,001 0,001** 

Beta 0,093 1,179 0,001 0,002** 

Gamma 0,132 3,016 0,001 0,001** 
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Table A2- P-values and respective adjusted p-values obtained in the permutation test conducted between the 

initial and final sessions of both acquisition and online periods, and the passive and active BMI protocols. 

Statistically significant p-values before (*) and after (**) the adjustment for multiple comparisons. 

Channel Fband 

Acquisition Online 

Initial vs. Final Passive vs Active Initial vs. Final 

p-value adj p-value p-value adj p-value p-value adj p-value 

Fp1 

Delta 0.205 0.390 0.776 0.862 0.003 * 0.120 

Theta 0.201 0.402 0.643 0.780 0.051 0.255 

Alpha 0.574 0.741 0.795 0.860 0.206 0.457 

Beta 0.961 1.039 0.407 0.678 0.272 0.543 

Fp2 

Delta 0.067 0.223 0.298 0.567 0.007 * 0.140 

Theta 0.233 0.405 0.411 0.657 0.044 * 0.293 

Alpha 0.777 0.888 0.912 0.912 0.113 0.376 

Beta 0.130 0.273 0.026 0.148 0.161 0.402 

F3 

Delta 0.046 * 0.167 0.035 * 0.140 0.021 * 0.280 

Theta 0.419 0.620 0.496 0.708 0.093 0.338 

Alpha 0.635 0.770 0.411 0.632 0.362 0.579 

Beta 0.436 0.622 0.283 0.565 0.972 0.972 

F4 

Delta 0.013 * 0.074 0.026 * 0.130 0.945 0.969 

Theta 0.077 0.205 0.083 0.184 0.372 0.572 

Alpha 0.330 0.527 0.545 0.682 0.228 0.480 

Beta 0.101 0.224 0.016 * 0.160 0.444 0.612 

C3 

Delta 0.068 0.209 0.071 0.167 0.634 0.746 

Theta 0.370 0.569 0.500 0.666 0.491 0.654 

Alpha 0.696 0.819 0.900 0.947 0.918 0.966 

Beta 0.090 0.225 0.035 * 0.127 0.392 0.559 

C4 

Delta 0.002 * 0.080 0.001 * 0.040** 0.050 0.285 

Theta 0.002 * 0.040** 0.004 0.053 0.145 0.386 

Alpha 0.562 0.757 0.742 0.848 0.509 0.637 

Beta 0.848 0.942 0.534 0.690 0.672 0.768 

P3 

Delta 0.015 * 0.067 0.051 0.127 0.335 0.582 

Theta 0.098 0.230 0.304 0.552 0.086 0.382 

Alpha 0.963 1.014 0.379 0.658 0.858 0.928 

Beta 0.605 0.757 0.261 0.549 0.695 0.773 

P4 

Delta 0.013 * 0.065 0.003 * 0.060 0.023 * 0.184 

Theta 0.023 * 0.092 0.043 * 0.115 0.359 0.598 

Alpha 0.259 0.431 0.908 0.931 0.134 0.382 

Beta 0.505 0.697 0.711 0.837 0.532 0.645 

O1 

Delta 0.010 * 0.067 0.031 * 0.138 0.317 0.576 

Theta 0.007 * 0.056 0.035 * 0.117 0.021 0.356 

Alpha 0.983 1.008 0.498 0.686 0.384 0.568 

Beta 0.074 0.211 0.016 * 0.128 0.282 0.537 

O2 
Delta 0.002 * 0.027** 0.023 * 0.153 0.205 0.482 

Theta 0.003 * 0.030** 0.041 * 0.117 0.089 0.356 
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Alpha 0.986 0.401 0.468 0.693 0.505 0.652 

Beta 0.221 0.986 0.035 0.108 0.118 0.363 

 

 

Figure A2- Spearman's rank correlation between the Faces and the VAS Pain Scale. Note that to visualize the 

presence of multiple data points with similar values, a slight centesimal difference was introduced to one of 

the variables. 

 

Table A3- Spearman's Rank Correlations Coefficients (Rho) and correspondent p-values between the power 

values from the electrodes and frequency bands selected and the variation of the VAS scores.  

Channel Fband 
Acquisition Online 

Rho p-value adj p-value Rho p-value adj p-value 

Fp1 

Delta -0.164 0.432 0.720 0.335 0.189 0.420 

Theta -0.095 0.652 0.767 0.301 0.240 0.458 

Alpha -0.100 0.634 0.793 0.132 0.615 0.683 

Beta -0.160 0.444 0.710 -0.379 0.133 0.355 

Fp2 

Delta -0.071 0.737 0.797 0.457 0.065 0.374 

Theta -0.136 0.516 0.737 0.296 0.249 0.452 

Alpha -0.118 0.573 0.790 0.281 0.275 0.440 

Beta -0.536 0.006 * 0.076 -0.582 0.014 * 0.190 

F3 

Delta 0.092 0.662 0.797 0.263 0.308 0.474 

Theta -0.165 0.430 0.748 0.134 0.608 0.532 

Alpha -0.259 0.212 0.605 -0.225 0.386 0.695 

Beta -0.396 0.050 * 0.287 -0.394 0.117 0.335 

F4 

Delta 0.097 0.645 0.782 0.331 0.194 0.408 

Theta 0.253 0.222 0.593 0.434 0.081 0.326 

Alpha 0.262 0.206 0.633 0.086 0.743 0.762 

Beta -0.448 0.025 * 0.164 -0.566 0.018 * 0.178 

C3 
Delta 0.220 0.291 0.646 0.081 0.757 0.757 

Theta 0.116 0.582 0.751 0.230 0.375 0.555 
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Alpha -0.144 0.491 0.727 -0.415 0.098 0.301 

Beta -0.518 0.008 0.079 -0.433 0.082 0.300 

C4 

Delta 0.295 0.152 0.551 0.733 0.001 * 0.032 ** 

Theta 0.177 0.396 0.754 0.424 0.090 0.300 

Alpha -0.060 0.776 0.795 -0.097 0.712 0.749 

Beta -0.207 0.321 0.643 -0.287 0.264 0.460 

P3 

Delta 0.076 0.717 0.797 0.340 0.182 0.429 

Theta 0.005 0.980 0.980 0.200 0.442 0.589 

Alpha -0.288 0.163 0.544 -0.456 0.066 0.328 

Beta -0.243 0.242 0.606 -0.191 0.462 0.596 

P4 

Delta 0.333 0.104 0.417 0.665 0.004 * 0.072 

Theta 0.209 0.316 0.665 0.470 0.057 0.380 

Alpha 0.061 0.772 0.812 0.285 0.267 0.445 

Beta 0.150 0.475 0.731 0.350 0.169 0.421 

O1 

Delta 0.225 0.279 0.658 0.228 0.379 0.541 

Theta 0.174 0.406 0.738 0.158 0.545 0.642 

Alpha -0.363 0.074 0.372 -0.163 0.531 0.644 

Beta -0.565 0.003 * 0.065 -0.529 0.029 * 0.233 

O2 

Delta 0.345 0.091 0.405 -0.123 0.638 0.689 

Theta 0.118 0.574 0.766 -0.180 0.488 0.610 

Alpha -0.474 0.017 * 0.134 -0.303 0.237 0.474 

Beta -0.631 0.001 * 0.028 ** -0.456 0.066 * 0.293 
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