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Abstract: Future generation communication systems are aiming to provide a tremendous high data
rate with low-latency high reliable and three-dimensional coverage. To achieve such a challenging
goal, it is required to have very precise location information related to the mobile terminal. The
advancement of signal processing techniques and communication technologies enables the path for
improving localization performance. Recently, intelligent reflecting surface (IRS) has been widely
considered as the key element for the future generation of wireless communication. Over the past
few years, the performance of IRS-assisted networks is extensively investigated from the point of
view of communication purposes and its improvement. However, by virtue of its potential, IRS
finds its application for wireless localization. In this paper, we discuss and summarize the works
that have already been carried out targeting localization performance improvement. In addition,
we figured out the associated challenges and the opportunities to scale up the localization accuracy.
Particularly in this paper, the authors have discussed the challenging issues such as channel modeling,
channel estimation, system architecture, hardware impairment, IRS deployment strategies, phase
optimization, mobility management, and near-field environments. Although these challenges are
associated with opportunities to make the IRS-assisted system more effective and efficient.

Keywords: IRS; localization; MIMO; microwave; mmWave; TeraHertz (THz)

1. Introduction

IRS represents a breakthrough technology to fulfill the goals of the future generation
communication and localization system by exploiting its capability to actively modify
the incident electromagnetic wave [1]. The IRS is basically a collection of IRS units and
these units/elements are responsible for changing the behavior of the incident signals by
independently controlling the amplitude, phase frequency, and polarization of the incident
signals [2–5]. A pictorial representation of such a system is represented in Figure 1. Through
numerous research works it has been already demonstrated that a very directive and high
gained beam-formation can significantly improve the signal quality or can be utilized
for interference nulling. These benefits can be utilized to extract the wireless localization
information with minimum errors. In addition, the IRS provides resounding benefits, such
as that it is very cost-effective and low in energy consumption.
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Figure 1. Basic architecture of IRS [6].

The localization of devices is an important aspect to ensure seamless connectivity in a
network. Particularly, in sensor networks, localization information is of utmost importance
to ensure reliable multi-hop connectivity. Similarly, location information is very impor-
tant for efficient network planning and dynamic resource allocation in order to enhance
link quality. With the growing demand and the advancement in society, its find lots of
applications such as the industrial Internet of Things (IIoT), the intelligent transportation
system (ITS), simultaneous wireless information and power transfer (SWIPT), location-
aware communication system, radar, robot localization and extended reality, etc. [7]. Over
the past few years, lots of works have been carried out and several approaches have been
proposed to improve the localization accuracy. In this regard, IRS provides an extra de-
gree of freedom to improve the localization information. Such a platform can be used in
indoors and outdoors. This motivates the researchers to explore the possibilities of IRS for
localization. In [8] the authors have demonstrated that the position error bounds (PEB)
and orientation error bounds (OEB) can be significantly improved by utilizing IRS. It also
improved the multi-user location by improving the signal strength with the help of IRS [9].
Apart from signal strength-based measurement, time-delay can be exploited as the same
is presented in [10]. Here, the authors have optimized the PEB by optimizing the phase
distribution for the IRS elements and their selection. Furthermore, the IRS can be utilized
as a reflector or lens for sensing and localization purpose. The same is reported, in [11] IRS
for assisting sensing applications and in [12–14] IRS lens for the localization. The impact of
the IRS size, IRS deployment strategies, and related impairments are discussed in [12]. The
impact of IRS quantization on the localization performance is reported in [13]. In [14], the
authors have demonstrated the possibilities of utilizing IRS for 3D localization. Therefore,
the IRS has the great potential to significantly improve the localization performance, and
this motivates the authors of this paper to explore the research works carried out in this
field and summarized the possible challenges and opportunities.

The major outlines of this paper are presented as follows:

• a brief discussion of the wireless localization system;
• an extensive review on the IRS-assisted localization systems;
• brief mathematical model related to the IRS-assisted communication and localiza-

tion system;
• an extensive discussion on the relevant challenges and opportunities.

The remainder of this paper is as follows. A brief overview on the wireless localization
system is presented in Section 2. Section 3 discusses the works carried out on IRS-assisted
localization. This section particularly highlights the IRS-assisted microwave, millimeter-wave,
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THz, and airborne mobile network localization. This is followed by the discussion on the
relevant challenges and opportunities in Section 4. Finally, the conclusion is in Section 5.

2. Overview on the Wireless Localization

Wireless Localization System is a system to locate the desired object. This can be
achieved using the local area networks such as Wi-fi, cellular area networks, or using GNSS.
The nomenclature given to the target object is AgN(AgN) or mobile user whose location
is completely unknown and the reference nodes whose locations are known are referred
to as anchor nodes (ANs) or landmarks. The wireless localization is used to estimate the
position of the AgNs with reference to the ANs and it locates the estimated position on a
coordinate of a map where several ANs are placed.

Generally, a localization system build with two major ingredients: (i) a set of ANs
[whose location details are known]; (ii) an estimation unit (EU) that can be deployed on the
AgN/AN or at some other remote location.

The localization process can be broadly summarized as:

1. A reference signal is transmitted from the AN or the AgN and the same is measured
at the other end of the link to have certain location-based information such as RSS,
AoA/AoD, ToA, and TDoA, etc.

2. All the information received at step (1) is used by the local estimation unit (LEU) to
approximate the location of the AgN/AN.

Localization systems can be grouped on the basis of location-based algorithms [15] or
location infrastructures [16]. However, self-localization and remote localization systems
are considered the most popular ones.

Self-localization: Referring to Figure 2, the AgN which is embedded with LEU re-
ceives reference signals from different ANs. The AgN is efficient enough to perform signal
measurement based on which its own location is determined.

AN

AN

Reference
Signal

AgN with LEU

Figure 2. Self-Localization.

Self localization has several advantages. Some of them are mentioned below:

• Since all the localization algorithm depends only on the AgN, the computational
efficiency of the AgN will determine the speed of operation. Hence, a small change or
update of hardware/software at the AgN may increase the system’s overall perfor-
mance. No need to change the entire network infrastructure.

• Since all the localization algorithm is implanted at the AgN, the possibility of leaking
the information reduces as ANs act as only a transmitter with all authorization access
limited to the AgN only.

• Dynamic localization scenarios can be further implanted on the AgNs to provide some
motion information so that the accuracy can be improved further [17].

However as mentioned above, the AgN requires high computational efficiency and
thus can be deployed only on devices enriched with powerful computational capability.
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Remote Localization: As shown in Figure 3, the reference signal is transmitted from
the AgN to the ANs. Once all the ANs receive the signal, it forwards the same to the central
station for location estimation.

AN

AN

Reference
Signal

AgN with LEU

Central Station with
LEU

Figure 3. Remote Localization.

The advantage of this system over self-localization is, the pressure on the AgN is
reduced and thus all the computational work is done at the central station sometimes
referred to as base stations (BS). Therefore, this kind of mechanism is considered more
useful for resource-limited devices such as IoT, and sensor nodes.

Unlike self-localization where all the location-based information is stored only at the
AgN, in this method the central station stores the location information of several AgNs.
The security becomes a major concern as a single central station is processing and storing
the location information of several AgNs.

The basic localization technique is broadly classified into direct localization [18] and
two-step localization [19]. In direct localization, the received signal is processed for the
location estimation of the AgN, whereas the information from, e.g., RSS, ToA, AoA, and
TDoA, is extracted at first in case of two-step localization. These information is utilized
for the location estimation of the AgN. In terms of efficiency, the direct localization tech-
nique is proved better over the two-step localization; however, if system complexity and
implantation constraints are considered, then two-step localization is preferred in most
of the practical applications. Going further, The two-step localization is categorized as
(1) geometric based localization, (2) scene analysis, and (3) proximity approach.

Geometric based localization(GBL): As the name suggests, it uses geometric properties
such as trilateration and triangulation of a triangle to estimate the location of the AgN.
Trilateration, also called as ranging uses the distance-related information from different
ANs to estimate the location of the AgN [20–22]. On the contrary, triangulation measures
the AoAs of the received signal from different ANs and the AgNs and estimates the location
at the intersection of the angle direction lines [23].

Scene Analysis/Fingerprinting-based Localization: The efficiency of GBL reduces to a
lower extent in complex environments. Thus, an alternative approach has to be looked out
based on scene analysis or fingerprint [24–27]. Such methods are used to collect data from
different sensors such as cameras, wireless apps, etc., and extract specific information such
as geotagged signatures (fingerprints), and then estimates the location of the AgNs.

Proximity-Based Localization: This technique works on proximity constraints [28]. It
depends on the location of the actual ANs, thus the efficiency relies on the density of the
ANs. The efficiency of the technique is directly proportional to the number of ANs. This
method is simple to implement, however, as the performance depends on the density of
ANs; therefore, it finds its application where the location accuracy can be compromised.

3. IRS-Assisted Radio Localization and Mapping (RLM)

Improved RLM of mobile units (MUs) and other Internet of Things (IoT) devices using
IRS is a key ingredient of 6G systems. The coexistence and cooperation between sensing,
localization, and communication aims to boost security and trust in 6G connectivity in
indoor and outdoor scenarios.
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3.1. IRS Asisted Microwave/Millimeter-Wave Localization

As the world is moving towards the 5G and beyond (5GB) communication system, it
is evident to have better localization accuracy due to its higher frequencies of operation.
At a higher frequency, it is very much likely to have a blockage in the line-of-sight (LoS)
path between the transmitter and the receiver. Under such circumstances, it is required
to explore the multipath-aided localization. Therefore, at a higher frequency, IRS comes
out as a potential solution by providing a guaranteed coverage when the LoS is blocked as
presented in Figure 4.

Figure 4. Localization in absences of LoS path [29].

The intelligent controlling capability of the propagation environment makes IRS an
attractive research topic for localization and mapping.

Figure 5 represents the required components for developing an efficient localization
and mapping system.

Figure 5. Components of a localization and the mapping system.

The introduction and advancement of the IRS improve the system performance sig-
nificantly. This is because of the measurement accuracy of the RSS, ToA, AoD, PoA, AoA,
and the Doppler shift defense of the nature of the wave and the channel. The inclusion
of the IRS provides an additional degree of freedom. In the case of an IRS-assisted RLM
system, the measurement accuracy can be increased significantly by optimizing the power
allocation, beam formation etc. [12,30]. As in [31], the authors proposed an alternative
optimization method and a GDM-based algorithm to optimize the reflect beamforming
in order to estimate the mobile station position more accurately. Along with the passive
element reflecting surface, active large intelligent surfaces (LISs) are also exploited to en-
hance localization. As in [12,32], authors investigated the distributed and centralized LIS
systems in terms of Cramer–Rao lower bounds (CRLB) of all the dimensions. The proposed
scheme aims to increase the robustness by subdividing the reflecting surface area into
smaller units and to increase the coverage to have improved positioning. From the point
of view of positioning, RSS plays an important role. With the of improving the RSS for
the mobile users, authors in [33], have proposed Spherical LIS systems, which have Lower
CRLB compared to planar LIS.

A large amount of works have been imparted towards the enhancement of the wireless
localization using IRS-assisted network and the same is summarized in the Tables 1 and 2.
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Table 1. Summary of works: IRS-assisted Localization (Part-I).

Ref. Year Environment IRS-Assisted System
Configuration Performance Matrix Significant Observations

[12] 2018 With perfect LoS component Large intelligent surface
(LIS)-mMIMO

Fisher-information matrix
(FIM) and CRLB

It compare the centralized and distributed deployments of the LIS and established that the distributed deployments
extend the coverage of terminal-positioning and improved the average CRLBs for all dimensions.

[30] 2020 mmWave channel with
obstructed LoS path.

mmWavw MIMO-OFDM
system.

Positioning accuracy and
data rate.

It highlights the importance of proper phase design and proposed an adaptive phase shifter design based on
hierarchical codebooks and feedback from the mobile station (MS).

[31] 2020 mmWave channel with
obstructed LoS. mmWave MIMO system. CRLB (MS position estimate)

It proposed the gradient decent method (GDM) based Reflect Beamforming with Alternative Optimization Method
at the IRS to reduce the localization error. It also demonstrates that by utilizing the IRS, decimeter-level or even
centimeter-level positioning can be achieved with a large number of reflecting elements.

[10] 2020 mmWave channel with LoS
component.

OFDM system with
IRS-assisted network.

FIM, Position Error Bound
(PEB)

It proposed a two-step optimization technique to select the best phase shift combination of the IRS to improve the
wireless localization performance.

[34] 2020 mmWave channel with LoS
component.

mmWave MIMO-OFDM
system. Impact of phases on CRB. It provides the theoretical CRBL for positioning, and analyzed the impact of the number of LIS elements and the

value of phase shifters on the position estimation accuracy.

[35] 2020
Indoor(office)/outdoor (Street
Canyon)channel with LoS and
NLoS components.

mmWave MIMO system. Data Rate It highlights the importance of the deployment of IRS and provide useful analysis regarding efficient positioning of
the IRS-assisted communication systems.

[8] 2020
Near field/far field
propagation environment with
3D scattering channel model.

MIMO-OFDM system.

CRLB, geometric dilution of
precision (GDOP), PEB and
orientation error bound
(OEB).

It highlights the impact of the deployment geomertric of IRS and optimal phase design on the positioning
information. The positioning performation is evaluated in terms of PEB and OEB, considering both near- and
far-field propagation conditinon.

[36] 2020 Indoor environment Access point (AP)-IRS
combined system Localization error

It proposed a heuristic state selection (HSS) algorithm for selecting the optimal IRS configuration subset and a
machine learning feature selections (ML-FS) algorithm for enhancing localization accuracy and position acquisition
time with reduced complexity.

[9] 2020 mmWave indoor environment. MetaRadar based
localization system. Localization error and map

IRS aided multi-user localization protocol was proposed, based on signal strength measurements. As demontrated
the proposed system with a 0.48 m2 metasurface can achieve a centimeter localization accuracy with up to 2 m
localization range for single user and multiple users without obstruction.

[37] 2021 Indoor environment UWB CRLB of the position
estimates. The combination of IRS and UWB signals can be used to aquair accurate indoor positioning with a single access point.

[14] 2021 mmWave with Near Field
propagation environment

mmWave positioning
system with IRS based lens Position Error Bounds (PEBs) It demontrated the location estimation performance by exploiting the wavefron curvature of the IRS lens.

[38] 2021 mmWave channel with LoS
and NLoS components.

mmWave MISO OFDM
system

Root mean squared error
(RMSE) on the estimation and
CRLB of the estimation error.

It proposed direct ML estimator for the position and clock offset. Furthermore, it also proposed a low complex
relaxed ML-based estimator (RML) that can obtain suboptimal performance in absence of optimized beamforming
and IRS control matrix.

[39] 2021 mmWave channel with LoS
blockage. mmWave MIMO system. RMSE of the estimated

position. It proposed a parallel adaptive multi-target localization algorithm based on the hierarchical codebook concept.

[40] 2021
Multipath-channel both LoS
and NLoS components under
near and far field condition.

SISO multi-carrier system. PEB It demonstrate the impact of the wavefront curvature under near field conditions.

[41] 2021 Outdoor environment with
LoS component. SISO OFDM system. Estimation error and PEB It proposed a low-complex 3D localization and synchronization method. It also demonstrated that the localization is

possible by AoD estimation from the IRS.

[42] 2022 Indoor environment Multi-IRS-assisted Sensing
system. PEB It demonstrated a ML-based localization method with multiple IRSs having single RF chain. The proposed scheme

depends on the beamspace OMP technique for AoA estimation and LS-based line intersection.
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Table 2. Summary: IRS-assisted Indoor/Outdoor Localization (Part-II).

Ref. Year Area Number of
IRS

IRS Deployment
Strategies Outcome Localization Accuracy Limitation

[12] 2018 Indoor/
Outdoor

Single/
multi(4)-IRSs

Centralized/
Distributed
deployment

Extend the coverage
of terminal-
positioning.

-
The proposed analysis is
based on the assumption of
perfect LoS environment.

[30] 2020 Outdoor Single Fixed single IRS
between BS and UE.

Improved accuracy
and Data rate - There is perfect knowledge

of IRS position to the BS.

[31] 2020 Outdoor Single Fixed large IRS Improved accuracy

decimeter-level/centimeter-
level with IRS with a large
number of reflecting
elements.

The large no of IRS elements
leads to the increase in the
complexity in estimation.

[10] 2020 Outdoor Multiple IRSs
Fixed linear array of
multiple IRSs on
wall.

Improved coverage
and accuracy

For single IRS,PEB is less
than 5 m whereas with 5
IRSs PEB is less than 2.5 m.

The uncertainty of UE
location should also be
considered.

[35] 2020 Indoor/
Outdoor Single

Indoor:mounted on
side wall. Outdoor:
facade of a building.

Improved rate Accurate modeling of the
composite channel.

[8] 2020 Indoor Single Mounted on wall Improved PEB,OEB

The localization accuracy
strongly depends on the
geometry and the orientation
of the UE.

Performance limits in
presence of multiple IRSs.

[36] 2020 Indoor Single Mounted on wall Improved accuracy Oder of meter with 22
elements in IRS.

Analysis with mixed
environment (LoS and NLoS)
and multiple IRSs.

[9] 2020 Indoor Single Mounted on wall Improved accuracy

A centimeter scale accuracy
with up to 2 m range for
single user and multiple
users without obstruction.

Analysis on the impact of
interference in case of
multi-user scenario.

[37] 2021 Indoor Single Mounted on wall Improved accuracy

The positioning accuracy can
be improved significantly by
adopting ToA in comparison
to AoA.

Analysis under multi-user
scenario.

[14] 2021 Indoor Single
Single receiver
comprising of IRS
lens.

Improved accuracy.
A decimeter-level accuracy
achieved within 3 m to the
lens.

Analysis in presence of
multi-path and multi-user
scenario.

[40] 2021 Indoor Multiple Mounted on wall Improved accuracy
Under near field condition
number of elements in IRS
significantly improve the
accuracy.

Analysis of multi-user
environment and with
uncertainty in UE location.

[42] 2022 Indoor Multiple Mounted on side
wall Improved accuracy

Accuracy upto 0.07 m can be
possible with 4-IRSs (64
elements each).

Impact of multi-user on the
localization accuracy.

3.2. IRS Asisted THz Localization

For future generation communication systems, Terahertz (THz) communications are
the key players for converged localization. It enjoys more precise localization and high
angular resolution [29]. As in [43], the authors demonstrated that with identical total
transmission power and time, THz-based localization is approximately 5 (20) times more
accurate than the mmWave-based localization without (with) prior position information.
Although the severe path losses in THz band make the localization and the mapping more
difficult. Due to the strong directionality, the THz waves hardly cover the blind areas, and
therefore, with the blocked LoS path, the localization problem becomes more challenging.

Lots of works have been carried out in this field but mostly in the microwave and
mmWave frequency bands. A thorough analysis of THz localization, related challenges,
and possible approaches are discussed in [44–46]. As discussed the biggest problems in
THz localization are path/penetration losses and lower scattering profile. To get rid of
such a problem, the use of coherent array processing and relay networks seems to be not
useful. Under such a situation, IRS provides the breakthrough by converting the channel
into a favorable environment [44,45]. Particularly, the IRS deployments can thus solve these
issues as depicted in Figure 6.
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Figure 6. IRS-assisted THz localization.

The size of the IRSs at THz bands and its controlled scattering feature make it the
most feasible and effective solution. Moreover, IRSs could enable tracking/surveillance
applications in NLoS communications and autonomous localization. As discussed in [46],
the localization performance of the SLAM system can be improved by utilizing the high-
resolution THz images but at the cost of a complex model. However, the THz localization
system enables us not only to have the fine-grained location information but also to enrich
us with electromagnetic properties and material types in the target objects.

3.3. IRS-Assisted Airborne Mobile Networks Localization

Unmanned Aerial Vehicles (UAVs) have gained lots of attention from the research
community due to their mobility and easily deployment. UAV-assisted communication
networks to gain significant importance in scenarios where LoS links are obstructed due to
the presence of physical structures. The main motivation behind the UAV-assisted airborne
mobile networks is to extend the coverage by avoiding the coverage blind spot.

From the point of view of the key performance matrix energy efficiency (EE) and
as influencing fact, the trajectory of the UAVs have a direct impact on the reliability and
seamless connectivity of the airborne network [47,48]. Considering the opportunities
created with the advancement of IRS, its deployment in airborne platforms is gaining
significant attention from researchers around the world. By exploiting the potential of IRS,
a combination of IRS with UAV-assisted [49] communication networks can improve the
overall network performance in terms of high precision localization, extended coverage,
high energy efficiency, security, and low-cost network densification. The potential uses of
IRS-assisted airborne platforms can be types as presented in Figure 7.

IRS - High-
Altitude Platform

Stations
(HAPSs)  

IRS with Tethered
Balloons  

IRS - UAVs  

Figure 7. IRS-Assisted Airborne Mobile Networks.
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4. Mathematical Model

This section represents the mathematical model for IRS with single user and multi
user system. In addition, also it highlights the IRS-assisted localization system.

4.1. System Model
4.1.1. Single-IRS Single User

Figure 8 shows an IRS-assisted simple (downlink) communication system with single
IRS supporting a user. Here, the IRS is with Nr discrete elements, the user terminal is with
Nu antennas and BS with Nbs antennas. As depicted, there exist a line of sight (LoS) and a
reflected path (NLoS). In the above figure, hBU ∈ CNbs×Nu represents the channel matrix
corresponding to the user to BS. In addition, hRU ∈ CNbs×Nr denotes the channel matrix
between the user and IRS. Similarly, hBR ∈ CNr×Nu is the channel matrix related to the path
between the IRS and BS. The received signal at the user corresponding to the transmitted
signal s can be expressed as

y = (hBU + hRUψhBR)ps + n (1)

y = (hBUps)
Uncontrollable

+ (hRUψhBR)ps
Controllable

+ n (2)

where, n denotes the complex valued AWGN and p represents the precoding matrix
corresponding user employed by BS. As in the figure, the path (hBU) is uncontrollable
whereas the reflected path can be controlled by exploiting the reconfigurable (ψ).

BS
UE

IRS

hBR

hBU

hRU

Uncontrollable
Channel Response

Control Variable

Figure 8. IRS-assisted Communication System: Single IRS and Single User.

4.1.2. Multi-IRS Multi User

Figures 9 and 10 represent the IRS-assisted uplink/downlink communication system
with multiple IRSs and under multiuser scenario. As in figure, it consists of M IRSs with Nr
discrete elements, K users with Nu antennas and BS with Nbs antennas. It is assumed that
there is a direct link between the users and the BS. In addition, there is a cascaded channel
via the reflection at the IRS.

In Figure 9, hUBk ∈ CNbs×Nu represents the channel matrix corresponding to kth user
to BS. In addition, hm

URk
∈ CNr×Nu denotes the channel matrix between the kth user and mth

IRS. Similarly, hm
RB ∈ CNbs×Nr is the channel matrix related to the path between the mth IRS

and BS. Therefore, the channels hm
URk

and hm
RB formed cascaded channel model. The benefits

of IRS can be exploited by proper design of the phase matrix and the phase shift matrix
ψ = ρ diag

(
ejφ1 , ., ejφNr

)
, where φi ∈ [0, 2π], i = 1, ., Nr, is the phase-shift corresponding

to the ith elements of IRS and ρ ∈ [0, 1] is the reflection coefficient. The phase matrix
corresponding to the lth IRS is denoted byψm. Considering the system as in Figure 6 the
received signal at BS corresponding to the transmitted signal sk from the kth user is
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y =
K

∑
k=1

(
hUBk +

M

∑
l=1

hm
RBψmhm

URk

)
pksk + n (3)

where, n denotes the complex valued additive white Gaussian noise and pk represents the
precoding matrix corresponding to the kth user. The signal can be estimated (ŝ) at the BS
by utilizing appropriate filter (W), i.e., ŝ = WHy.

BS
UE1

IRS1

UEK

IRSM

s1

sK

Figure 9. IRS-assisted Uplink Communication System: Multi-IRS and Multi-User.

BS UE1

IRS1

UEK

IRSM

sK

s1

Figure 10. IRS-assisted Downlink Communication System: Multi-IRS and Multi-User.

Here, BS allocate Ns,k streams for each users and sk is the signal transmitted towards
the kth user. In above figure, hBUk ∈ CNbs×Nu represents the channel matrix corresponding
to kth user to BS. In addition, hm

RUk
∈ CNbs×Nr denotes the channel matrix between the kth

user and lth IRS. Similarly, hm
BR ∈ CNr×Nu is the channel matrix related to the path between

the mth IRS and BS. Similarly, considering the system as in Figure 10 the received signal at
the kth user corresponding to the transmitted signal su can be expressed as

yk =

(
hBUk +

L

∑
m=1

hm
RUk

ψmhl
BR

)
K

∑
k=1

pksk + nk (4)
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where n denotes the complex valued AWGN and pk represents the precoding matrix
corresponding to the kth user employed by BS. The signal corresponding to each user can
be estimated (ŝk) by utilizing appropriate filter (Wk), i.e., ŝk = WH

k yk.
Section 4.1 represents a basic signal processing model for IRS assisted system. Con-

sidering its application for communication and localization, there are opportunities to
develop new signal processing algorithms addressing the scaling laws, near-field propaga-
tion challenges, channel modeling considering the sparsity, mutual coupling, IRS mobility,
etc. Overall the signal processing research challenges include system modeling, algorithmic
design, and optimization to achieve maximum gain.

4.2. Localization Estimation: Near-Field

The target localization becomes more challenging under near-field conditions. The far-
field methods are not applicable as in the near-field region the signal wavefront is spherical.
The localization estimation techniques are broadly classified [50] into maximum likelihood
(ML)-based methods [51,52] and the subspace-based methods [53,54]. All these methods
provide high performance but from the application of view, these methods are limited for
their typical hardware requirements [50]. In addition, these methods also assume that there
exists a LoS link for the localization. However, in the practical scenario that may not be
always true and that gives rise to the requirement of new technology. In this context, IRS has
been considered to be a promising technology to enhance localization performance. In [50],
the authors proposed IRS-assisted methods for the localization services for all targets in an
area of interest (AOI) by avoiding the problems associated with traditional methods.

A simplestic model for IRS-assisted localization system (RALS) is presented in Figure 11.
Here, IRS consists of Nr passive elements, which are distributed in an uniform linear array
(ULA) and same times of consideration can be found in liturature [55,56]. As in Figure 11,
there is no direct link between the anchor node (S) and the target node (T) due to the
existance of blockage in between. The location information is extracted by utilizing th
ereflected signal from the IRS. Let pa = [pa,x, pa,y]T , pr = [pr,x, pr,y]T and pt = [pt,x, pt,y]T

represents the position of the S, IRS and T within the AOI respectively.

IRS

S

T

AOI
x

Figure 11. IRS-assisted Localization System.

The localization information is extracted by processing the received signal (y) corre-
sponding to the transmitted (x) positioning reference signal (PRS). As in [50], for a perfectly
synchronous system the position information of the target node can be extracted from the
time of arrival (τrt), angle of departure (ϕrt), and path loss coefficient (ρ).

The goal of the RALS is to maximize the localization accuracy by constructing a
reflection-coefficients vector Γ by virtue of proper phase design. The performance eval-
uation of the localization accuracy can be obtained by exploiting squared position error
bound (SPEB) and it can be defined as
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ξ(pt; Γ) , tr
{

J−1(pt; Γ)
}

(5)

where J−1(pt; Γ) denotes the Fisher information matrix (FIM) associated with the reflection-
coefficients vector Γ and the position parameters. Now the position parameters (ToA, AoD
and path loss) can be extracted using the ML criteria and the estimation problem can be
defined as

(ϕ̂rt, τ̂rt) = arg min
ϕrt ,τrt

L(ϕrt, τrt) (6)

where L(ϕrt, τrt) ,
∥∥y−√ρ

√
PthTx

∥∥2 is the compressed form of the log-likelihood function.
Here, Pt is the power corresponding to RRS and h denotes the channel vector. More detailed
analysis cab be found in [50]. The generalized approch can be summarized as follows,

• Detrmination of the channel parameters (τrt, ϕrt and ρ) and finding out the FIM of the
said parameters.

• Determination of position parameters corresponding the Jacobian J and extract the
FIM of the position parameters.

• After the extraction of the position parameters, finally the PEB is to be computed to
evaluate the location estimation accurecy.

5. Relevant Challenges and Opportunities

This section highlights the relevant challenges and opportunities for researchers for
designing an effective IRS-assisted network for future generation localization systems (see
Figure 12).

Lots of efforts have been imparted and research is continuously going on but several
challenges exist towards the realization of a highly accurate localization system. These
involve understanding the physical design, dealing with the hardware impairment, the
number of IRS elements and their segmentation and deployment strategies, etc. From
the perspective of the UAV/Drone assisted airborne network the analysis of mobility and
effective estimation and design of motion trajectory is a hot research topic.

IRS and channel
modeling/ Channel

estimation  

System
Architecture &
Mitigation of

Hardware
Impairment  

Relevant
Challenges and
Opportunities

Near-field
propagation  

IRS control  /
Mobility

Management

Waveform
design /Optimized

Beamforming/
Phase shift  

Deployment
Strategies

Figure 12. Challenges.

5.1. IRS and Channel Modeling/Channel Estimation

In terms of IRS physical structure modeling, coupling between the IRS elements,
impedance matching, reflection, and refraction losses plays a significant role in the system
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performance. Therefore, the IRS model should be designed considering the accurate model
for the meta-surfaces and its interaction with the EM waves. In addition to the IRS geome-
try, its element segmentation [57], and periodicity need to be taken into account. Having
knowledge about the channel is always beneficial for any communication localization sys-
tem [45,46]. Efforts are imparted toward this direction, but still, there are some limitations
such as experimental validation of the channel model and fading characteristic [58,59].
Therefore, the channel modeling and the estimation protocol are important and immediate
challenges to hit on. Particularly under highly dynamic channel conditions, channel state
information plays a significant role. Therefore, exploration of multiple-antenna nodes,
spatial scattering modulation, beam index modulation, resource allocation, understanding
and analysis of correlated channels, and system performance analysis under different
fading environments, etc., appears to be interesting research topics.

With the increase in frequency, the wireless environment becomes sparse and becomes
dependent on the geometric configuration (related to BS, UE, and IRS). In addition to prior
location information corresponding to UE and IRS, location and orientation significantly
influence the localization accuracy. However, the uncertainty of UE location makes the
estimation more challenging and it brings an opportunity to develop a proper model
for RLM.

5.2. System Architecture and Mitigation of Hardware Impairment

The localization information can be extracted from the uplink, downlink, or sidelink
signal by exploiting the corresponding architecture [29,60]. The uplink localization can
exploits the processing power at the base station, whereas downlink localization can make
use of the high-power downlink pilots to gather the information. It also requires less UE
power. The sidelink signals can be utilized to have the relative localization and for the same
bistatic and monostatic architecture can be utilized. However, for successful realization of
the IRS-assisted localization, hardware impairment-related problems need to be addressed.
Certainly, the quantized phase in IRS is the main limiting factor. Thus more robust physical
layer architecture is required along with its in-depth analysis in the presence of hardware
impairment [61,62].

Although the hardware impairment has a significant impact on the system perfor-
mance but higher number of the elements in an IRS can be exploited to suppress. Therefore,
researchers can exploit the judicious segmentation of the IRS elements, optimized beam-
forming to overcome such problem.

5.3. Deployment Strategies

As discussed, IRSs have the ability to create virtual LoS link and proved to be beneficial
for improving the system performance. From the point of view of localization, the deploy-
ment strategy of IRSs is also a significant point of concern. Available research works suggest
that, as part of the strategy, researchers are looking for cooperative deployment [63,64],
centralized/distributed deployment [65,66], stochastic geometry-based deployment [67,68],
and machine learning-based deployment [69]. Considering the importance of the deploy-
ment, one can explore the deep learning, reinforcement learning-based soft computing
approach for the development of low complex optimized deployment strategies to improve
wireless localization.

5.4. Waveform Design/Optimized Beamforming/Phase Shift

The beam formation algorithm [12] should be robust to account for location estimation
errors, which include both position and orientation [70]. In order to optimize beam forma-
tion, the channel state information and locational information can be exploited. Moreover,
beam formation algorithm with practical discrete phase-level constraints at the IRS is an-
other research area, and it is required to address the critical problem of joint optimization to
minimize the localization error. The hierarchical codebook-based design can be explored in
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this regard. As further extension joint designs of both waveforms at the BS and codebooks
at the IRS should be flexible enough to support accurate estimation of angle or delay.

5.5. IRS Control/Mobility Management

IRS control is the most significant and critical factor as it is fundamentally responsible
to change the impedance of the surface to change the beam orientation [29]. However, the
material and hardware properties put a limitation on the accuracy and the speed of the
operation. Therefore, it is very much evident that it has a significant role in localization
accuracy, continuity. In addition, the IRS control allows an incident signal to be reflected
towards multiple directions simultaneously, providing multiuser localization support. In
the case of localization, mobility management is also a point of concern and it needs to
be addressed. In the highly dynamic condition, particularly for vehicular localization,
UAV- based localization, maintaining the connection between the BS, IRS, and users be-
comes very challenging. The issue can be resolved with the help of an agile mobility
management scheme.

5.6. Near-Field Propagation

The near field propagation aspect is particularly important as it is proportional to the
surface area of the IRS. In addition, it accounts for wavefront curvature [14]. This should
be taken into account during IRS, channel modeling, and estimation. Particularly PoA can
be exploited directly in terms of spherical wave localization. Therefore, dedicated signal
processing approaches should be explored for near-field localization and mapping.

6. Conclusions

In this article, the authors have first provided an overview on the basics of wireless
localization then an extensive overview of IRS-assisted wireless localization. It also high-
lights the inherent challenges and also pointed out the opportunities. The localization
accuracy can be improved significantly with the help of the IRS. However, before exploiting
the true potential, we have to overcome many challenges and we have summarized them
in this paper. The concept of IRS can be a revolutionary idea for localization applications.
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SPEB Squared Position Error Bound
RLM Radio Localization and Mapping
MU Mobile Units
LoS Line-of-Sight
NLoS Non-Line-of-Sight
LISs large intelligent surfaces
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CRLB Cramer–Rao lower bounds
RSS Received Signal Strength
AoA Angle of Arrival
ToA Time of Arrival
PoA Phase of Arrival
TDoA Time Difference of Arrival
AoD Angle-of-Departure
GMD Geometric Mean Decomposition
MIMO Multi Input and Multi Output
SISO Single Input and Single Output
mmWave Millimeter Wave
UWB Ultra Wide Band
OFDM Orthogonal Frequency Division Multiplexing
UAV Unmanned Aerial Vehicle
EE Energy Efficiency
SE Spectral Efficiency
AWGN Additive White Gaussian Noise
ML Maximum Likelihood
AOI Area of Interest
ULA Uniform Linear Array
FIM Fisher Information Matrix
UE User Equipment
EM Electromagnetic
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