
Universidade de Aveiro
2022

Rodrigo Miguel Maia
Ferreira

Mineração de dados sociais para classificação de
doenças mentais em fóruns públicos

Social mining for the classification of mental
illnesses in public forums

Universidade de Aveiro
2022

Rodrigo Miguel Maia
Ferreira

Mineração de dados sociais para classificação de
doenças mentais em fóruns públicos

Social mining for the classification of mental
illnesses in public forums

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia Infor-
mática, realizada sob a orientação científica da Doutora Alina Trifan, Pro-
fessora auxiliar convidada do Departamento de Eletrónica Telecomunicações
e Informática da Universidade de Aveiro, e do Doutor José Luís Oliveira,
Professor catedrático do Departamento de Eletrónica Telecomunicações e
Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Carlos Manuel Azevedo Costa
Professor Associado com Agregação da Universidade de Aveiro

vogais / examiners committee Alina Liliana Trifan
Professora Auxiliar Convidada da Universidade de Aveiro

Cátia Luísa Santana Calisto Pesquita
Professora Auxiliar do Departamento de Informática da Faculdade de Ciências da
Universidade de Lisboa

agradecimentos Quero agradecer aos meus familiares e amigos, por todo o apoio moral
que me prestaram nesta fase do meu percurso académico. Quero também
agradecer aos meus orientadores, por estarem sempre disponíveis para me
dar feedback, quando precisei. Por fim, quero agradecer aos organizadores
do eRisk pelo trabalho que têm feito estes anos a organizar estes desafios.

acknowledgments I want to thank my family and friends, for all the support they provided me,
during this stage of my academic journey. I also want to thank my advisors
for always being available to provide feedback whenever I needed it. Finally,
I want to thank the eRisk organizers for all the work they have been doing
throughout these years to organize these shared tasks.

Palavras-chave Mineração de Dados, Aprendizagem de Máquina, Processamento de Lin-
guagem Natural, Saúde Mental

Resumo O aumento de problemas de saúde mental é uma das maiores adversidades
que enfrentamos atualmente, enquanto sociedade, e os métodos de assistên-
cia tradicionais nem sempre conseguem assistir quem precisa.
Neste trabalho implementamos e avaliamos a eficácia de uma ferramenta
de triagem que pode complementar alguns dos pontos fracos dos métodos
tradicionais, ao sinalizar sujeitos em risco de desenvolver doenças mentais,
que podem beneficiar de assistência médica. Esta ferramenta é baseada em
aprendizagem de máquina, e deteta os indivíduos em risco, analisando os
seus dados disponíveis públicamente na rede social Reddit.
Este trabalho teve como base a participação na edição de 2022 do CLEF
eRisk, nos desafios 1 e 2, com o objetivo de detetar sujeitos em risco de
serem jogadores compulsivos, e de desenvolverem depressão respetivamente,
onde tivemos como foco, o uso e comparação de diferentes métodos de ve-
torização de texto. Apesar dos resultados iniciais obtidos no evento não
terem sido os melhores, com afinamentos e experiências adicionais, con-
seguimos obter um bom desempenho, com F1-scores finais de 0.886 e 0.653
para os melhores modelos dos desafios 1 e 2 respetivamente.

Keywords Data mining, Machine Learning, Natural Language Processing, Mental
Health

Abstract The increasing amount of mental health issues is one of the biggest ad-
versities that we face nowadays as a society, and the traditional assistance
methods often fail to help those in need.
In this work, we implement and evaluate the performance of a screening
tool that may complement some of the traditional methods’ weaknesses, by
signalling subjects at risk of developing mental illnesses, that could benefit
from receiving medical assistance. This tool is based on machine learning,
and it detects individuals at risk using their publicly available data from the
social network Reddit. This work was based on our participation in tasks 1
and 2 of the 2022 edition of CLEF eRisk, with the goal of detecting subjects
at risk of pathological gambling and depression respectively, where we had
a special focus on the use and comparison of different text vectorization
methods. Despite the fact that the initial results obtained at the event
were far from those desired, with some tweaks and additional experiments,
we managed to improve them, achieving final F1-scores of 0.886 and 0.653
for the best models of tasks 1 and 2 respectively.

Table of contents

Table of contents i

List of figures iii

List of tables v

List of abbreviations vii

1 Introduction 1
1.1 Motivation . 1
1.2 Mental health . 1

1.2.1 Mental Illnesses and Diagnosis . 2
1.2.2 Social Data/Monitoring . 3

1.3 Objectives . 4
1.4 Outline . 4

2 Background 5
2.1 Machine Learning . 5

2.1.1 Learning Categories . 5
2.1.2 Data Acquisition and Preprocessing 6
2.1.3 Model Training and Testing . 7
2.1.4 Algorithms . 10

2.2 Natural Language Processing . 17
2.2.1 Data Preprocessing . 17
2.2.2 Vector Representations . 19

2.3 Relevant works . 23
2.4 Workshops and Shared Tasks . 28
2.5 Summary . 29

3 Methods 31
3.1 Tools . 31

3.1.1 NLTK . 31
3.1.2 Scikit-learn . 31

i

Table of contents

3.1.3 Gensim . 32
3.1.4 Sentence-transformers . 32
3.1.5 PyTorch . 32
3.1.6 Optuna . 32

3.2 Datasets . 33
3.2.1 Pathological Gambling . 33
3.2.2 Depression . 36

3.3 Feature Engineering Techniques . 38
3.4 Models . 45

3.4.1 Writing Window Classification . 45
3.4.2 User Classification . 51

3.5 Summary . 55

4 Results 57
4.1 Event Evaluation . 57

4.1.1 Task 1: Pathological Gambling . 58
4.1.2 Task 2: Depression . 61

4.2 Post-submission Results . 63
4.2.1 Decision-based Evaluation . 63
4.2.2 Rank-based Evaluation . 66

4.3 Summary . 68

5 Conclusions 71

References 73

ii

List of figures

2.1 ROC curve illustration. 10
2.2 Decision Tree illustration. 13
2.3 Nonlinear SVM illustration. 14
2.4 KNN illustration. 16
2.5 Illustration of a neural network . 16
2.6 Illustration of distributional word embedding properties 20
2.7 Comparison of cBoW and skip-gram . 21
2.8 Illustration of the intuition behind GloVe’s training process 21

3.1 Distribution of activity per days of week in task 1. 36
3.2 Distribution of activity during the day in task 1. 37
3.3 Distribution of activity per days of week in task 2. 39
3.4 Distribution of activity during the day in task 2. 39
3.5 Task 1 TfIdfVectorizer parameter importance. 42
3.6 Task 2 TfIdfVectorizer parameter importance. 43

iii

List of tables

2.1 Confusion matrix illustration . 8
2.2 Raw, stemmed and lemmatized token comparison 19
2.3 Summary of the relevant works analysed . 30

3.1 Composition of the various sets of data for task 1. 35
3.2 Composition of the various sets of data for task 2. 37
3.3 Task 1 optimal Tf-Idf parameters . 41
3.4 Task 2 optimal Tf-Idf parameters . 42
3.5 Initial BoW writing window model performance for Task 1 46
3.6 Initial BoW writing window model performance for Task 2 46
3.7 Initial DSWE writing window model performance for Task 1 48
3.8 Initial DSWE writing window model performance for Task 2 48
3.9 Initial CLME writing window model performance for Task 1 49
3.10 Initial CLME writing window model performance for Task 2 50
3.11 Criterion evaluation using the optimized models for Task 1 54
3.12 Criterion evaluation using the optimized models for Task 2 55

4.1 Validation performance of the first iteration models for Task 1 59
4.2 Validation performance of the first iteration models for Task 2 59
4.3 Official Task 1 decision-based results . 60
4.4 Official Task 1 rank-based results . 61
4.5 Official Task 2 decision-based results . 61
4.6 Official Task 2 rank-based results . 63
4.7 Post-submission Task 1 decision-based results 64
4.8 Post-submission Task 2 decision-based results 65
4.9 Post-submission Task 1 rank-based results 67
4.10 Post-submission Task 2 rank-based results 68

v

List of abbreviations

APA American Psychiatric Association
AUC Area Under the Curve

BERT Bidirectional Encoder Representations from Transformers
BoW Bag-of-Words

cBoW continuous-Bag-of-Words
CCC Consecutive Confidence Criterion
CLEF Conference and Labs of the Evaluation Forum
CLME Contextualised Language Model Embeddings
CV Cross-Validation

DL Deep Learning
DSM-5 Diagnostic and Statistical Manual of Mental Disorders 5th edi-

tion
DSWE Distributional Semantics Word Embeddings
DT Decision Tree

ELMo Embeddings from Language Models
ERDE Early Risk Detection Error
ET Extra-Trees Classifier

FN False Negative
FP False Positive
FPR False Positive Rate

GPT-3 Generative Pre-trained Transformer 3

ICD-11 International Classification of Diseases 11th revision

KNN K-Nearest Neighbors

LDA Latent Dirichlet Allocation
LR Logistic Regression
LSTM Long Short-Term Memory

MCC Multi Confidence Criterion

vii

List of abbreviations

ML Machine Learning

NB Naive Bayes
NDCG Normalized Discounted Cumulative Gain
NLP Natural Language Processing
NN Neural Networks

OOV Out-Of-Vocabulary

P Precision
PHQ-9 Patient Health Questionnaire 9

R Recall
RBF Radial Basis Function
RCC Ratio Confidence Criterion
RF Random Forest
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic

SCC Single Confidence Criterion
SGD Stochastic Gradient Descent
ssToT semi-supervised Topic-modeling over Time
SVM Support-Vector Machine

Tf-Idf Term frequency-Inverse document frequency
TN True Negative
TP True Positive
TPR True Positive Rate

WHO World Health Organization

viii

Chapter 1

Introduction

1.1 Motivation

According to the World Health Organization (WHO), “Mental health is a state of well-
being in which an individual realizes his or her own abilities, can cope with the normal
stresses of life, can work productively, and is able to make a contribution to his or her
community” [1]. Generally speaking, it is related to an individual’s cognitive, behavioural
and emotional state. Mental health disorders, given their not so physical nature compared
to something like muscle, skeletal or organ issues (which can be extracted/poked/seen
through imaging) can be harder to properly diagnose. Sadly, the lack of proper support
surrounding these disorders and the stigma attached to them by society, often prevent
individuals from seeking out help, which may lead to the worsening of their conditions
and to the potential risk of self-harm or even suicidal behaviours. According to statistics
published by the WHO, over 700 000 people die of suicide each year, with many more
having failed attempts [2]. Many of these could be prevented with the appropriate care.

This work’s goal is to develop a tool capable, in theory, of better handling some of
these cases that do not get the help they deserve by signalling users that may benefit
from professional help. It is interdisciplinary in the sense that it involves different areas,
health and computer engineering related, with the goal of providing a better mental illness
screening method. To this end, the main concepts regarding the issue will be introduced
in this chapter while the computational tools and analysis of the research in this field will
be left for the following one.

1.2 Mental health

As the name suggests, mental health is the field concerned with an individual’s emo-
tional, psychological and social well-being. It differs from other fields in medicine from
the fact that diagnoses do not rely as heavily on the subject’s physical properties, which
can make some conditions harder to diagnose. The earlier an individual is diagnosed, the
better, since it allows for healthcare professionals to intervene, often leading to better

1

Chapter 1. Introduction

outcomes.

1.2.1 Mental Illnesses and Diagnosis

There are a lot of catalogued mental illnesses, among the most common types, those
most relevant in the scope of this work are anxiety disorders, mood disorders, eating
disorders and impulse control or addiction disorders, the following list contains a brief
introduction to each of these types:

• Anxiety disorders provide individuals with continuous feelings of anxiousness, worry
or fear, even in situations that would not call for such a response in a healthy
individual. Common examples are generalized anxiety, social anxiety and phobias.

• Individuals with mood disorders suffer with constant disturbances when it comes to
their mood, they might be in a constantly depressive state, constantly manic state, or
present heavy fluctuations between both. Common examples are depression, manic
syndrome and bipolar disorder.

• Eating disorders like anorexia nervosa, bulimia nervosa and binge eating disorder
regard conditions in which the individual develops an unhealthy relationship and
habits with food.

• Impulse control or addiction disorders are those in which individuals are unable to
resist urges or behaviours that can be detrimental to themselves or others. Some
examples are compulsive gambling or kleptomania for impulse control disorders, and
alcohol or drug addiction for addiction disorders.

Regarding the diagnostic process, the Diagnostic and Statistical Manual of Mental
Disorders 5th edition (DSM-5) by the American Psychiatric Association (APA) and the
mental and behavioural disorders chapter of the International Classification of Diseases
11th revision (ICD-11) by the WHO are the standard bodies of knowledge when it comes to
mental health disorders. Diagnostic tools, often in the form of questionnaires are frequently
based on the items or symptoms present in those bodies of knowledge. The traditional
process of diagnosing a mental illness requires the physical presence and honest account of
the patient’s feelings and mental state to the medical entity listening or employing some
screening tool.

This whole setup is far from optimal since it may fail in many different parts. First,
the requirement of the patient’s physical presence may be hard to fulfil due to lack of
access, or due to the naturally secluding nature of many mental illnesses and the social
stigma surrounding them. For the same reasons, the subject might not feel comfortable
being totally honest describing their situation to the healthcare professional. It may also
be the case that the subject does not realise that there is an issue, or they may just not
think of it as something serious enough to warrant a visit to a professional. Patient aside,
it may fail from the lack of experience of the healthcare professional, which is not always a

2

Chapter 1. Introduction

qualified specialist but sometimes only a general health practitioner from a health center or
emergency room for example, that despite their best efforts, sometimes lack the expertise.
Naturally it might also fail from the screening tool used, but those tend to be sturdier
since they are backed up by large bodies of research.

It should come as no surprise that with all these possible failing points, the current
system is not providing optimal results. This is where the idea behind this work comes
into play, since it addresses some of these weak points.

1.2.2 Social Data/Monitoring

Social data corresponds to the data that social media users publicly share in an online
scenario, though it sometimes includes data that the users do not explicitly wish to share
like search query data and post metadata like geographical location, language spoken or
shared links [3]. Social data’s public and easily accessible nature makes it a big facilitator
for a lot of big data applications by substituting or complementing traditional data, which
is harder to acquire. Naturally, it also brings up a fair share of concerns. Despite the fact
that it is public, users might not be comfortable having their data being used for purposes
other than the typical use of social media.

The process of analysing social data with the end goal of understanding some trends,
opinions or behaviours within a population is called social monitoring, it has been used
across many fields with goals such as measuring consumer sentiment, measuring political
sentiment, forecasting sales, estimating traffic congestion, forecasting elections, among
others [3]. It has also been commonly employed in the public health field in use cases like
Influenza surveillance, measuring the prevalence of substance abuse, monitoring cases of
foodborne illness, and monitoring gun violence, among others. To better prevent or tackle
existing issues regarding a population’s well-being.

As we saw earlier, the traditional screening solutions in the mental health field can
fail at various points, a social monitoring approach may be useful since it may be able
to tackle some of the issues found in the traditional methods. Imagining a depression
screening tool employed in social media, one can easily see how the first obstacle of being
physically present with a health specialist is broken (though this should still happen later
on). Since there is no direct interaction with a health specialist, the users might feel more
comfortable to accurately portray their thoughts, as they typically do on social media
platforms. And with a signalling tool like this, the user can be made aware that they may
benefit from seeking professional help. Naturally, this is not a perfect solution as there
are still some concerns, namely regarding the effectiveness of such screening tool and the
public’s acceptance to being subjected to it. In the past, some similar approaches have
faced the public’s backlash due to ethical concerns on the use of personal data.

3

Chapter 1. Introduction

1.3 Objectives

The main objective of this work, upon analysing the available research and tools, is
to be able to implement Machine Learning (ML) models capable of detecting instances of
users suffering or at risk of suffering from mental illnesses using their publicly available
data in a social media context. In other words, the focus is on evaluating the effectiveness
of ML based screening tools in detecting mental illness, not on how such tools would be
implemented in a real life scenario. Additionally, the resulting models will be tailored
for the shared tasks of the 2022 edition of Conference and Labs of the Evaluation Forum
(CLEF) eRisk [4], using the data supplied by the organizers for training and testing
purposes. Both the workshop and the shared tasks are introduced in the following chapter.

1.4 Outline

This document is composed of 5 chapters.

• Chapter 1 provides an introduction to the issue being addressed as well as this
paper’s proposed solution. It explains what the issue is and where it stems from,
why it needs to be fixed, and how the approach we are exploring may be helpful.

• Chapter 2 focuses on the technical side of this work, providing background informa-
tion on the process of implementing ML solutions, going from a general to a Natural
Language Processing (NLP) specific context. There is also a review of some works
that were found to be relevant to this work’s goal, where the main approaches, results
and interesting takeaways are noted. Finally, an introduction is provided of relevant
workshops and shared tasks also responsible for bringing interest and advancements
in this area of research.

• Chapter 3 describes the methodology followed in the experimental stage, building
from the more theory-based content of chapter 2. Tools, procedures and validation
results are shown to explain to the reader how the final models were achieved.

• Chapter 4 goes over the results achieved in our experiments, using various different
metrics and comparing our performance with the results achieved by other partici-
pants in the shared tasks.

• Chapter 5 contains the main conclusions drawn at the final stages of this work,
with some observations made from the final results, different approaches that can
be explored in the future, and the overall effectiveness of our methods.

4

Chapter 2

Background

In this chapter, a contextualisation of the more technical topics will be provided with
the goal of exposing the reader to the fundamental concepts at work when it comes to using
ML algorithms for the classification of mental illnesses from social data. It is structured
in a way where the concepts are introduced generally at first and in a more text-focused,
NLP targeted perspective later on. Related research works are also analysed to understand
what kind of approaches are being used and their respective pros and cons.

2.1 Machine Learning

Recent technological developments have allowed theories and algorithms from the past
century to come to life due to the increases both in available data and computational
power, that allow computer systems to learn and improve on certain tasks with experience
much like humans do. The field dedicated to this is called Machine Learning (ML) and
its application extends over many different areas. One such case is the health field, where
some models are being relied on by health professionals to detect physical abnormalities
such as tumors from medical scans. In this work, we bring focus to the use of ML in the
health field but not applied on such a direct, physical level as in the previous example,
but focusing specifically on language for the assessment of mental health.

In this section, we first take a look at some important concepts in ML, moving on to
the stages common among most of its applications, introducing the general topics within
data acquisition and preprocessing, model training and testing, and finally describing some
specific learning algorithms which will be helpful to achieve a better understanding of the
research that has been getting conducted in this field.

2.1.1 Learning Categories

Before moving on to the actual training and testing of ML systems, we should first
introduce the distinct categories in which these algorithms are divided, which differ in the
way that feedback is provided to the model’s learning system. The correct outputs can be
provided along with the rest of the data (supervised learning), they can be partly omitted

5

Chapter 2. Background

(semi-supervised learning), or omitted altogether (unsupervised learning), feedback may
also be provided as the model interacts with an environment (reinforcement learning). In
this work, we focus mainly on supervised learning since it tends to produce the best results
and it is the most applicable for our use case.

The approach of supervised learning revolves around building a mathematical model
that successfully maps inputs to their correct outputs, to put it simply, we provide a
dataset containing the elements and their correct labels, and train the model based on
those, to be accurate and generalised enough to correctly make predictions on new, unseen
data. Within supervised learning, we can define two types of models, depending on their
outputs. If it is the case that our response variable (the value being predicted) belongs
to a continuous range of values, we call it a regression model, a possible example could
be predicting the probability that it will rain tomorrow (the output will belong to the
continuous range of values between 0 and 1). On the other hand, if the response variable
is of categorical nature, we call it a classification model, an example could be predicting
to which species a fish belongs given its body measurements.

2.1.2 Data Acquisition and Preprocessing

In order to learn, we need data to learn from, it can be extracted from existing
databases, already built datasets, or crawled from the internet with automated scripts
to generate new datasets. Datasets are composed of samples (examples or instances of
data) that normally make up the rows, and features, which are the values for each field or
characteristic, represented in the columns.

It is often the case, that this data does not come in a format that is directly applicable
to training ML models, and thus, some cleaning must be done. In fact, this stage can
oftentimes be the most time consuming for the developers of ML applications. Data
cleaning operations often include the removal of duplicate entries and possible outliers, the
handling of entries with missing features (by either generating a synthetic value, removing
those entries or removing that feature altogether), and mapping non-numeric values to
numbers. Data normalization, or the transformation of some feature’s values to some
fixed scale, can also be performed since it is beneficial for some algorithms to work with
smaller numbers.

As smaller datasets tend to lead to worse predictions, an option that is very useful
in extracting as much information as possible from a small dataset is called data aug-
mentation. It basically introduces new data elements to the existing dataset, generated
by performing a transformation on the original elements. The transformations vary de-
pending on the data at hand, if our dataset contains pictures we can generate new ones
by applying transformations like flipping, zooming, rotating, blurring, among many oth-
ers, to the original pictures. In the case of text, it gets trickier since language is not as
simply defined as a set of pixel values, but we can still perform transformations such as
back translation (translating the existing text to another language and then translating

6

Chapter 2. Background

that result back into the original language), synonym replacement, randomly swapping or
deleting words, etc.

At this stage, dimensionality reduction techniques of two types might be applied if
the data contains too many features. Feature selection based techniques try to find a
subset of the most relevant features, reducing dimensionality by simply discarding some
features, while feature extraction approaches apply transformations to the existing features
to achieve new ones which fit in a space with fewer dimensions.

2.1.3 Model Training and Testing

When the data is completely ready to be used, we can begin the training, this is when
the model’s parameters are tuned in a way that the final model can be tested and trusted
to produce reliable predictions. From a high level we can make the analogy that in general,
training in ML is similar to the way that humans train and learn. Throwing a basketball
at a hoop for example, we throw it from many different locations, evaluate the results
by some metric ("did we score?") and then we try to correct our perceived mistakes by
tuning our parameters for the following attempts (apply more/less force, aim more to the
left/right, and so on) until we get to a point where we can somewhat reliably score from
any location, even those we didn’t train from at all.

We will take advantage of this analogy to introduce some important concepts regarding
models, those of overfitting and underfitting. Sometimes when training a model, we may
get to a point where it can perform good predictions with samples from the data which
it was trained on while failing to do so with new unseen data, this phenomenon is called
overfitting, it means that the model is too focused on the training examples and is not
generalised enough, in a more abstract way, it is memorising the data instead of learning
from it. In our analogy this would be equivalent to our player learning to shoot very well
from the few locations he trained shooting from but failing to do so from new locations.
We may also arrive at a model which completely fails to generalise for unseen data but due
to the fact that it learned too little from training, not capturing the nuances of the training
data, this phenomenon is called underfitting. Again, in our basketball analogy, this would
correspond to the player just not learning enough about how to shoot a basketball and
thus producing poor results. Ideally, we want a model that generalises well, where neither
overfitting nor underfitting occur.

Training

To assess the reliability of our model we need to train it and to perform tests on it
using some evaluation metrics.

But before that, we must answer the question of "what data will we train and test our
model on?". A simple solution would be to train and test on all the data present in our
dataset, without any division. But we simply would not be able to tell if the model is
overfitting in that scenario. To handle this issue, the solution is to divide the full dataset

7

Chapter 2. Background

into subsets to perform training and testing separately, this is called Cross-Validation
(CV). With this approach we are able to test our model with data that it has never seen
before to truly assess its effectiveness. In its simplest form, CV consists of dividing the
dataset into a train and a test set, though in this case, it is a common practise to also divide
the train set further into train and validation set, so that we use the resulting training
set to train the models and the validation set to evaluate and tune the hyperparameters,
once these are optimized, we are free to train a model with the optimal hyperparameters
on the full train + validation sets, using the test set for a final evaluation that emulates a
real world scenario.

To go one step further, we may use what is called K-Fold CV, in this approach, after
splitting the full dataset into train and test sets, instead of dividing the resulting train set
into train and validation once, we can split it into k subsets (or folds) and train/evaluate
k times, using in each iteration k-1 of those subsets for training the models, reserving 1
which is held-out for validating. Once we have executed all k iterations, we aggregate the
results of each (by averaging the resulting metrics for example) to evaluate the choice of
models or hyperparameters used.

Evaluation

In order to evaluate models, objective metrics are required to somehow measure their
performance. A comprehensible solution is to build what is called a confusion matrix, it
can be extended to more classes, but for the sake of simplicity let us think of its simplest
case, a binary classification context with classes Positive and Negative. Let’s say we
trained our model and we ran our test samples and got the outputs, now we can group
them into four categories, visualized in the confusion matrix of table 2.1:

Table 2.1: Illustration of a confusion matrix and its components: True Positives (TP),
False Positives(FP), True Negatives (TN), and False Negatives (FN).

Actual class
Positive Negative

Predicted class Positive TP FP

Negative FN TN

In this case, True Positive (TP) constitutes the number of testing examples where both
the correct label and the predicted label are equal to Positive, likewise True Negative (TN)
represents the number of samples where the correct and the predicted are both Negative.
False Positive (FP) are those examples whose correct label is Negative but the model
predicted to be Positive, and on the other hand, False Negative (FN) are those whose
correct label is Positive but the model predicted to be Negative.

To summarize, TP and TN regard the number of correctly classified examples while
FP and FN regard those that were misclassified. These concepts are often used in many

8

Chapter 2. Background

metrics. One example is accuracy, which ranges from 0 to 1 and has the following formula:

Accuracy = TP + TN

TP + TN + FP + FN

Another two very common metrics that arise from these concepts are Precision (P) and Re-
call (R). Precision shows the percentage of examples assigned positive that were correctly
classified, and is given by the following formula:

Precision = TP

TP + FP

Recall shows the proportion of actual positives that were correctly classified, given by:

Recall = TP

TP + FN

To really evaluate a model, both metrics must be taken into account, though in some
instances one may be more valuable than the other, for example, if for some reason we
really want to avoid FP, precision is a more valuable metric, on the other hand, if FN are
more undesirable in our context, recall is favoured. Since good results on one of these two
metrics often come at the expense of poor results on the other, a solution is to calculate
the very common F1 or F-score measure, which is a weighted average of both measures
that ranges from 0 (worst) to 1 (best), given by the formula:

F1 = 2 × Precision × Recall

Precision + Recall

When training a binary classification model outputting probabilities, we often assign
a threshold on these probabilities to aid in classification, for example with a threshold of
0.5 if a test on some data outputs 0.8 we assign it as Positive since 0.8 > 0.5, likewise a
0.3 would warrant a Negative classification since 0.3 < 0.5, addressing the cases equal to
0.5 to one of the classes. This value, 0.5 in this example , is the decision threshold, and
its adjustment is fundamental for the model to achieve the desirable results (depending
on what we penalize more FP or FN).

The Receiver Operating Characteristic (ROC) curve is a good way to visualize how
different decision thresholds produce different results. For this metric, we must calculate
the True Positive Rate (TPR) which is just another term for Recall and the False Positive
Rate (FPR), given by:

FPR = FP

FP + TN

For each decision threshold, we plot the FPR on the X-axis and the TPR or recall on
the Y-axis. When all points have been plotted for all the tested decision thresholds,
we connect the points, achieving the desired ROC curve, examples of ROC curves are
illustrated in figure 2.1. A good method of comparing different models on the same task
is by comparing their Area Under the Curve (AUC), a value between 0 and 1, where a

9

Chapter 2. Background

Figure 2.1: Illustration of various ROC curves [5].

higher AUC implies a better ability to make correct classifications over a model with a
lower AUC. With an AUC of 1 implying the model is perfectly classifying all examples, in
contrast, an AUC of 0 demonstrates that the model misclassifies every example, and an
AUC of 0.5 implies that the model is the least informative of all (since even in AUC < 0.5
cases, predictions can just be flipped), a model which is not very useful since its predictions
are seemingly random, like a coin flip.

2.1.4 Algorithms

With this general introduction out of the way, we can now move on to a brief description
of some algorithms. To have a general idea of the ML algorithms most commonly applied in
the area, in a review of the research works on the application of data mining algorithms in
mental health in 2018, Alonso et al. [6] presented the most common algorithms employed
in works involving some of the most prevalent mental illnesses like Dementia, Alzheimer,
Schizophrenia and Depression. Though the results vary on the target mental illness, in
the case of depression (among these the most relevant one to the scope of this work), the
studies analysed employed a mix of the following algorithms: Linear Regression, Logistic
Regression, Naive Bayes (NB), Decision Tree (DT), Random Forest (RF), Support-Vector
Machine (SVM), K-Nearest Neighbors (KNN) and Neural Networks (NN). A different
literature review done in 2019 [7] found that the most frequent models used with social
media health data (not limited to the mental health context but it is well represented)
were Logistic Regression, SVM, NB, ensemble methods and Deep Learning (DL).

Given that ML is a very vast area with many algorithms, and it would be impossible
to go into all of them in detail, a high level description of the intuition behind them is
provided for some of those which were found to occur frequently in the literature in this
context, which will consequently be relevant in section 2.3 and the rest of this document.

10

Chapter 2. Background

Logistic Regression

Logistic Regression (LR) is one of the most fundamental ML algorithms, it is a su-
pervised probabilistic classifier. It is considered a linear model since the output depends
on a linear combination of the input features, and a discriminative model, meaning that
it only focuses on distinguishing between classes, not necessarily learning about them (as
in generating a descriptive model of each class). It is normally used in binary classifica-
tion problems, though its multinomial form can be applied for multi-class classification.
It works by finding a decision boundary, composed of a linear combination of the input
features and a weight vector w plus a bias b, passed in a sigmoid function which will return
a probability between 0 and 1 of it belonging to one of 2 classes. The sigmoid function σ

is given by:
σ(x) = 1

1 + e−x

For an input feature vector x, the resulting output h(x) will be given by:

h(x) = σ(xT w + b)

In the general binary classification case with a class Positive and a Negative, a proba-
bility between 0 and 1 is predicted and a decision threshold t is chosen. Results between
t and 1 are assigned Positive and results between 0 and t are assigned Negative. The
model learns by minimising a cost function C, of cross-entropy, also called log-loss, which
compares the predicted output h(x) with the correct one y, given by:

C(h(x), y) = − log h(x) if y = 1

C(h(x), y) = − log (1 − h(x)) if y = 0

This cost function is minimised with the use of gradient descent in order to find the optimal
weights and bias. Gradient descent is useful in finding a minimum value of a function (C
in this case) by determining in which direction the function’s slope rises most abruptly,
and moving the opposite direction since the goal is to minimise C, not to maximise it.
Since in this case, C is convex, it has just one minimum point, meaning the algorithm will
converge to the optimal solution, though in the case of other models, gradient descent can
get stuck in local minimums.

Naive Bayes

Naive Bayes (NB) classifiers consist of a family of classification algorithms working
under the same basic principles, where learning happens by building probabilistic models
that can compute a posterior class probability, the chance that the data element x is of a
certain class c, given its n features. These probabilities are built around the Bayes theorem

11

Chapter 2. Background

and thus, calculating the posterior class probability boils down to computing:

P (Class = c|X = x) = P (x0|c)P (x1|c) ... P (xn|c)P (c)
P (x)

Similarly to LR, NB is a supervised probabilistic model, but instead of being discrimina-
tive, it is generative, meaning that the model captures patterns of each class and classifies
new data by checking which classes’ patterns fit it best. The "naive" part comes from the
fact that the model assumes that each feature has an equal and independent influence on
the outcome. Basically assuming that no pair of features can be considered dependent
on one another, and every feature contributes with the same weight in the prediction
calculation.

Working with small datasets, when computing the prediction for a new piece of data
that contains a feature xi with a value z that was not previously seen in training, this
feature’s part in the formula will be

P (xi = z|c)

but since z was never seen for this feature, the probability will be 0, leading the final
prediction to 0 since it will zero out the whole numerator. A technique called Laplace
smoothing addresses this, assigning by default a small probability to events such as the
one previously mentioned by adding a fixed number to each of the P (xi|c) numerators,
making it so that the prediction will not inevitably lead to 0 for unseen feature values.

Decision Tree

A Decision Tree (DT) is one of the more "readable" machine learning algorithms since
the predictive model produced is often easy to go through even for a human. The name
stems from the fact that the resulting model can be intuitively represented with the struc-
ture of a tree, with a root node on top, that splits into other decision nodes that eventually
split into leaf nodes, those that do not split any further. In this structure, the root node
(also a decision node) represents the entire population or sample, its contents will be split
into sub-populations, meaning other decision nodes, according to the results on a splitting
test. With every split operation the remaining population becomes smaller, and when a
leaf node is reached, the model is ready to assign its elements to a certain class. This is
easier to fully understand with a visual example, as shown in figure 2.2.

Its hyperparameters mainly address how the model decides which features should be
considered to split on and how the splitting condition is chosen, as well as the conditions
for when splitting can or cannot occur.

When training, the algorithm chooses which feature to split on at any point based on
the metrics of the chosen criterion, typically gini impurity or information gain. To put it
simply, these measure the quality or purity of the populations in the decision nodes that
result from a given split, to ensure that at each step, the resulting split divides the initial

12

Chapter 2. Background

Figure 2.2: Illustration of the resulting Decision Tree model predicting the probability of
a given Titanic passenger surviving the accident [8].

population into sub-populations that are homogeneous within themselves but different
when compared with other sub-populations. Afterwards, in order to classify some unseen
data element, one must simply descend the tree from the root node following the decision
nodes whose split condition is satisfied by the features of the data element whose prediction
is being made.

This type of model is simple and understandable though it often get outperformed by
other algorithms on the same tasks, to combat the unreliability of a single DT, a RF or
Extra-Trees Classifier (ET) approach can be taken, where the predictions depend on the
results of multiple DTs, producing more accurate results at the cost of some interpretabil-
ity.

Support Vector Machine

A Support-Vector Machine (SVM) is an algorithm, that when given examples of n-
dimensional labeled data will try to find the best hyperplane (n-1 dimensional) called the
decision boundary, that correctly separates the space into two, one side for each class,
while trying to maximise the distance from the hyperplane to the closest points of either
class, called the margin. Its name comes from the fact that it relies on support vectors, the
hardest points to classify and those closest to the separating hyperplane which influence
it the most.

In some cases, the hyperplane can be arrived at linearly, meaning that the decisions are
based on the result of simple linear combinations of the features. In other cases though,
this separation cannot be achieved in n-dimensions and a mapping to a higher dimensional

13

Chapter 2. Background

space is required. In that new space we may find a decision surface, thus constituting a
non-linear solution and making the SVM also capable of non-linear classification. These
transformations happen implicitly using kernel functions by what is known as the kernel
trick. Since the SVM requires a lot of vector operations, doing so in higher dimensions
would be very computationally expensive, but these kernel functions can simulate the re-
sults produced in higher dimensional spaces while still working in the default n-dimensions
(in the case of non-linear kernels, linear kernels preserve the original dimensionality since
a regular dot product is applied). A visualisation of this mapping to a higher dimension
can be seen in figure 2.3.

Figure 2.3: Illustration of a nonlinear decision surface being found due to the use of a
non-linear kernel [9].

The model’s main hyperparameters regard the kernel function to be used and the
penalty of misclassifying points, both affecting the resulting decision surface. The kernel
function may be linear, polynomial, sigmoid or radial, the latter of which includes the often
used Radial Basis Function (RBF). A higher misclassification penalty results in smaller
margins and more irregular surfaces, it may also lead to overfitting. In the opposite case,
margins can be bigger since the model is more forgiving of errors and thus decision surfaces
are smoother, though this case may lead to underfitting.

When it comes to classifying new data, a SVM is very fast since it must only project
the data point into space, where the side which it falls on in relation to the hyperplane
will dictate the result. In terms of direct use, SVMs can only be applied in problems
where the goal is to find the separation between two classes, but ways have been found to
extend it for multiclass problems (more than two classes). Ways often used for any binary
classifier, the most common approaches are based on dividing the problem into several
sub-problems (and consequently sub-models), where each sub-model will still only work

14

Chapter 2. Background

on separating the space into two but in one of two ways, they may either be trained to find
the separations between one class and all other classes (done once for all existing classes)
called one-vs-all, or they may be trained to find the separation between every possible
combination of two classes (class 1 vs class 2, class 1 vs class 3, and so on) called the
one-vs-one approach.

K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm follows a very simple logic and is capable
of both classification and regression. First, the training data is mapped, often in very
high dimensional feature spaces, then, when we want to make predictions for some new
data element x, we plot it and measure its distance to all other data elements. The
decision is made based on the properties of the k data elements closest to x, in the case of
classification, the most represented class among those k elements will be assigned, while
in the case of regression, the result is the average of the parameter being inferred across
those k data elements.

The main hyperparameters are k, the number of closest neighbors to take into consid-
eration (which is found usually by testing various possible values, since it has a big impact
on results as seen in Figure 2.4), and the distance metric used. Something worth noting
is that in this algorithm, most of the computations are done when making predictions for
unseen data points, earning it the label of "lazy learning". The combination of a large
training dataset (forcing more computations) and a high number of features (making each
computation more expensive) can make it inadequate for larger problems which require
frequent predictions. As a consequence, it greatly benefits from data and dimension re-
duction (essentially summarizing the dataset, and reducing the number of features per
element respectively).

Artificial Neural Networks

Artificial Neural Networks (ANNs), often just called Neural Networks (NNs) are models
capable of capturing complex patterns in data, inspired by the connections of a biological
brain. These models are composed of nodes often called neurons which are arranged in
layers, the first one which receives the input data is naturally named input layer, the last
one which outputs the final result is called the output layer and those in between are
called hidden layers. A NN with more than one hidden layer is considered a Deep Neural
Network (DNN).

Excluding input nodes (those present in the input layer) which receive data directly,
all other nodes in the network receive as input the output of neurons from previous layers
(changed based on the weight of the connection), these connections are illustrated in
figure 2.5. In each node, these numbers are received, summed, added to a local bias and
then passed through an activation function which will determine its output. This is all
done with matrix operations, let us say X is a vector containing the outputs of the neurons

15

Chapter 2. Background

Figure 2.4: Illustration of the KNN algorithm and the impact of different k values. In the
case of k=2, the white circle is assigned class 2 while in the case of k=8 it is assigned class
1.

Figure 2.5: Illustration of the architecture of a Neural Network with n input nodes, 3
hidden layers and n output nodes [10].

16

Chapter 2. Background

in the hidden layer n connected with the weights given by the vector W to the node zi in
the hidden layer n + 1 with bias b and activation function a, this node’s (zi) output h(X)
will be given by:

h(X) = a(XT W + b)

In order to make a prediction, the input must propagate forward through the network,
where each layer will produce results that are used to compute the results of the following
layer. The goal is to tune each node’s weights and bias which are initialised randomly,
to make good predictions. This happens by a process called backpropagation, where by
applying gradient descent (or variations of it) on a cost function with respect to each
neuron’s parameters (starting from those in the last layers) small corrections are made in
each iteration leading to smaller cost function values. Though in this case, the gradient
descent method can get stuck in local minima. The hyperparameters are the network’s
architecture, i.e. number of layers and number of nodes per layer, as well as the activation
functions, learning rate, loss function, and optimizer. Additional hyperparameters regard
the amount of training done and how big the corrections made at each stage are.

There are various types of NNs, in the context of classification in this work, the most
relevant type is the typical feed-forward Neural Network, though as we will see Recurrent
Neural Network (RNN) also appear sometimes since our data is of a sequential nature. In
the feed-forward type, information flows in one direction while in RNNs there are loops,
meaning that output data can be fed back as input (justifying its use with sequential data
since future predictions are affected by past predictions).

2.2 Natural Language Processing

Natural Language Processing is the sub-field of computer science focused on getting
computers to understand human speech. Substantial progress has been made here, from
systems with complex sets of hand-written rules in the second half of the last century,
to systems taking advantage of ML algorithms, which as of late are dominating the field,
mostly based on NNs.

NLP tasks handles unstructured text with different possible goals, some of which be-
ing: Information retrieval: finding in a big collection of documents those more relevant
for a given query given their text contents; Text classification: assigning text to different
classes; Question answering: generating answers for a given question; Sentiment analy-
sis: extracting emotion or affective states from text; Machine translation: the task of
translating text from one language to another.

2.2.1 Data Preprocessing

In the context of natural language, the data must be transformed or preprocessed
into representations appropriate for the machines to work with. The steps usually entail
some form of basic transformations, tokenizing, filtering, stemming/lemmatization and

17

Chapter 2. Background

vectorization.
The basic transformations usually aim at making the data simpler to work with while

trying to avoid the loss of relevant information, examples of this are transforming upper-
case characters to lower case, removing non-English and other irrelevant characters/tokens
depending on the context of the work, like URLs and some forms of punctuation. Some
transformations can also be applied for anonymizing subjects when working with sensitive
data.

In the tokenizing step, text is broken down into smaller units, this is typically done on
a word-level (each word is a unit), by matching the text with regular expressions. Once
we have a list of tokens, derived from the tokenizing step, we might want to filter some
out. A common yet optional procedure is stopword removal, which filters out tokens that
are so common in a given language that they add little information to the text in most
contexts, though they have been found to be useful in others. Common stopwords in the
english language are words like "I", "me", "the", "of", etc.

In order to further simplify our data, one of two somewhat similar operations can be
done to further preprocess it, those being stemming and lemmatization. Stemming reduces
words to their root form, following a rule-based approach, meaning it simply chops off the
suffix leaving a word which might be oversimplified and possibly without any meaning.
It is the faster method of the two and preferred when word meaning is not the focus, for
example in spam detection. Lemmatization on the other hand, also reduces words to their
root form but following a dictionary-based approach which produces a chopped word that
retains its meaning, taking its context into account (results vary depending on whether a
word is used as a verb, noun, adjective, etc), this may be important in tasks like question
answering.

A comparison of both methods can be seen in Table 2.2 using NLTK’s PorterStemmer
and WordNetLemmatizer, where most notably: lemmatization turns "was" to "be" pre-
serving meaning while stemming resulted in "wa", and lemmatization differentiated both
contexts of the variations of the word "finding", as a verb and as a noun.

18

Chapter 2. Background

Table 2.2: Stemming and Lemmatizing comparison on tokens from the sentence "She was
finding it difficult to report her findings".

Raw token Stemming Lemmatizing
she she she
was wa be

finding find find
it it it

difficult difficult difficult
to to to

report report report
her her her

findings find finding

After these procedures, we arrive at the step of vectorization, in other words, the
process representing words with numbers, this topic is critical to the performance of a
NLP application, and thus, the following subsection is fully dedicated to it.

2.2.2 Vector Representations

When find ourselves at this stage, with our final list of tokens, ready to be vectorized,
i.e. turn them into vectors of numeric values, we have to choose among several vectorization
approaches.

Bag of Words

A simple Bag-of-Words (BoW) one-hot encoding can be used here, where there is a
matrix with as many columns as there are words in the vocabulary and as many rows as
there are documents (collections of words), with value 1 if the token of a given column
exists in the document of a given row and 0 otherwise. Here, the rows are document
representations and the columns are token representations. The BoW name comes from
the fact that text is treated exactly as such, simply assessing the presence of the tokens.

It’s easy to see how this would fail to scale properly, if managing a large corpus of text,
huge vectors would be required and they would be comprised mostly of 0’s. Another weak-
ness of this method is that it completely disregards order and thus fails to capture many
relations between words, though this can be somewhat mitigated by having a vocabulary
of n-grams, where each text unit is composed of n-words or n-characters, for example, the
phrase "I like the cold weather" broken into 2-grams of words results in "I like", "like the",
"the cold", and "cold weather".

Something commonly done in these simpler approaches is storing the words counts
or frequencies in the corpus instead of the binary presence/absence, but this means that

19

Chapter 2. Background

words that do not provide a lot of value but appear very frequently dominate the vectors
and may sway results on the NLP task at hand. To counteract this and improve on these
simpler approaches, weighting methods can be applied like the Term frequency-Inverse
document frequency (Tf-Idf), which scores words based on how common they are in a
document compared to the overall corpus, assigning higher weights to words that occur
more often within fewer documents. For a given term t, document d found in corpus D:

Tf(t, d) = occurrences of t in d

total occurrences in d

Idf(t, D) = log |D|
|documents in D with t|

TfIdf(t, d, D) = Tf(t, d) × Idf(t, D)

Distributional Semantics Word Embeddings

More sophisticated methods have surfaced in the last decade, most notably Word2Vec,
GloVe and FastText emerged to generate word representations called distributional se-
mantics word embeddings, that manage to capture their semantic meaning through the
context in which they occur in a large corpus. In the words of the linguist J.R. Firth,
"You shall know a word by the company it keeps". Closely related words are kept closer
together in vector space with interesting relational properties encoded into them as seen
in figure 2.6. It is worth noting that due to the necessity of training with large corpora

Figure 2.6: Illustration of some properties related to word semantic meaning captured by
word embeddings [11].

to find quality word embeddings with any of these methods, all of the following provide
pre-trained word embedding models that can be used in plenty of NLP tasks directly as
a look-up table or after some fine-tuning to better fit the embeddings to the use case at
hand.

Word2Vec [12], developed by Google researchers in 2013 works by training a NN with
either of the skip-gram or continuous-Bag-of-Words (cBoW) approaches over a large un-

20

Chapter 2. Background

labeled corpus, by breaking down the text and building tuples containing a context and a
target. These will serve as the labeled data that the network will train on. From a high
level perspective, the skip-gram model’s NN is trained on the task of finding words that
are likely to appear in the context of a given input word, while the cBoW way of doing
things consists of training the NN to predict a likely target word given the surrounding
context (neighboring words in a phrase) as input. A visual explanation can be seen in
figure 2.7.

Figure 2.7: Comparison of the different learning tasks of the cBoW and skip-gram models
[13].

Later in 2014, GloVe [14] (Global Vectors), developed by a group of Stanford re-
searchers, represented an improvement over Word2Vec due to not being limited to local
information as its predecessor was, it captures both local and global statistics based on
word co-occurrence. The basic idea is to have a word-context co-occurrence matrix (WC)
where each entry (w,c) represents the amount of times that word w occurred with context
c. From this point, a form of matrix factorization is applied to break down the matrix
to the product of two other matrices, a word-feature matrix (WF) and a feature-context
matrix (FC) to achieve something like the illustration in figure 2.8. These WF and FC

Figure 2.8: Illustration of the intuition behind GloVe’s training process [15].

matrices are initialised with random values and trained using Stochastic Gradient Descent
(SGD) to minimise the error in order to get to a point where their multiplication is con-
sidered close enough of an approximation of the WC matrix. The resulting WF matrix

21

Chapter 2. Background

contains the word embeddings which are later used for NLP tasks.
This brings us to 2015 when FastText [16] was initially released by Facebook AI re-

searchers, which improved on the Word2Vec approach by developing a fast and more
adaptable model that can also handle words not seen in training called Out-Of-Vocabulary
(OOV) since it treats every word as a bag of sub-words. Every token is transformed in
a way that signals its beginning and end, for example "where" becomes "<where>" and
from this point n-grams are generated which along with the full word itself will be used
to calculate its representation. To further exemplify, with 3-grams and the word "where",
the resulting tokens would be "<wh", "whe", "her", "ere", "re>", and "<where>", though
it is worth noting that FastText uses n-grams of varying lengths. A word’s representation
is the result of the sum of the representation of all its n-grams. Much like Word2Vec, it
can also be trained on skip-gram or cBoW.

Contextualised Language Models

Research did not stop there, and as of recently there has been an influx of contextu-
alised language models, notably Embeddings from Language Models (ELMo) [17], Gener-
ative Pre-trained Transformer 3 (GPT-3) [18] and Bidirectional Encoder Representations
from Transformers (BERT) [19], that keep the interesting properties of the previously
mentioned Distributional Semantics Word Embeddings (DSWE) of capturing a word’s se-
mantic meaning, while also capturing the context in which they are used. For example, the
token "fair" in "he went to the fair" and "the game is not fair" would be represented by the
same vector with the DSWE methods of the previous section (often called static word em-
beddings), despite obviously having different meanings, Contextualised Language Model
Embeddings (CLME) manage to address these nuances (dynamic word embeddings).

Such language models are derived from an architecture which is very common in NLP,
that of encoder-decoder. This architecture is very used in seq2seq models which are
designed to handle sequential data. Using the case of the machine translation task as an
example, the encoder receives text as input and creates some representation of it, which is
then passed to the decoder which will generate text in the other desired language from the
given representation. Both BERT and GPT-3 make use of the transformer architecture
[20], introduced in 2017 by a team of Google’s DL researchers which discarded the use of
RNNs or RNN-based models like the Long Short-Term Memory (LSTM) (that ELMo is
based on) in encoder and decoder alike, preferring to use just the attention mechanism
as the title of the paper suggests. Since this type of model does not process each token
sequentially as a RNN would, rather processing all in parallel with their position encoded
into them, the whole training process can be done faster than it would with previous
approaches.

We will now briefly describe BERT in specific since it revolutionised the NLP world
by achieving state-of-the-art performance on arrival, while still being relevant today, since
many other models emerged with it as inspiration, such as ALBERT [21], RoBERTa [22]

22

Chapter 2. Background

and XLNet [23]. Some of which outperform the original BERT in various NLP tasks.
BERT [19] is trained on two tasks, the first entails the guessing of masked words (where
around 15% of the tokens are replaced by the "[MASK]" token), i.e. predicting words
that have been purposely hidden given their left and right context (bidirectionally). The
other is next-sequence prediction, given two sequences the model must assess whether
they occur next to each other in the corpus. During training there is a 50% chance of
that the second sequence is the following sentence and consequently, a 50% chance that
it is just some other random sentence. BERT is constructed in a way that makes the
fine-tuning of the pre-trained model to specific NLP tasks easier since it can accept one or
two sequences as input if necessary (useful for question-answering or machine translation
for example) separated by the "[SEP]" token, to add to this, every sequence’s first token is
a special classification token "[CLS]" whose final hidden state can be used as the input’s
representation in classification tasks. It is also worth noting that BERT takes sub-words
as input, finding a medium ground between approaches using words and approaches using
characters as input, to get the best of both worlds, performance from the side using words,
and the capability of handling out-of-vocabulary tokens from the character approach.

2.3 Relevant works

A lot of work has been done with ML in the mental health area, with many works
proposing and implementing models to detect or predict instances of mental illnesses
such as depression, schizophrenia, anxiety and PTSD, as well as related behaviours, like
suicide and self-harm. Though most of the works found tend to focus on the detection of
depression and suicide-risk.

Although studies have been made with different data sourcing approaches, the use of
social media user generated data has been gaining popularity among researchers. The
most popular platforms used, by far, are Reddit and Twitter, likely due to their conver-
sational nature and public APIs. Within studies using social media based data, the type
of features used often varies as well, with some researchers training their models on user
posted images (visual features), user posted text (textual features), user characteristics
(descriptive features), or combinations of them. There has also been a type of feature
gaining popularity recently as we will soon analyse, that of sentiment analysis, which
captures emotions or affective states from text.

For instance, Coppersmith et al. [24] implemented a model trained on social media
data (Twitter) capable of distinguishing users who attempted suicide from their demo-
graphically matched control counterparts with good results (AUC in the 0.89 to 0.94
range depending on the amount of data used). The authors chose to use the original
pre-trained GloVe embeddings as the vectorization tool, later fine-tuned in the training
process (to better capture the language used in social media), along with a NN-based
approach (bidirectional LSTM) to output the likelihood of the author of the analysed text
being at risk of suicidal behaviour. One interesting aspect of this study, is that excluding

23

Chapter 2. Background

more recent data (in the study the data from 90 days prior was removed) and thus con-
sidering only older data (from the past 180 days excluding data from those 90) leads to
roughly comparable results, leading one to conclude that it is capturing mainly suicidal
traits instead of suicidal states, allowing for a longer term screening which is safer and
easier to intervene on rather than relying on a system that would only detect individu-
als in an immediate state of crisis. The decision threshold may be tweaked to address
false positives at the expense of false negatives and vice-versa. Despite the fact that it is
hard to get a fair comparison, the model’s results seem to outperform those of traditional
screening methods, where some studies indicate that 4% to 6% of those who go through
with suicidal behaviours were found to be at risk, compared to the 40% to 60% flagged by
this model (using a 10% or 1% false alarm rate respectively).

Robert Thorstad and Philip Wolff [25] trained and tested a LR model on a Reddit-
sourced dataset to assess how useful a user’s everyday language, in both a clinical and
non-clinical context, is for detecting present or predicting future mental illnesses. Achiev-
ing results better than chance in all experiments, with varying degrees of success. In order
to do this, they gathered posts from several clinical and non-clinical subreddits, and con-
sidering the clinical subreddit each user frequents as a proxy for a diagnosis (e.g. user who
visits r/depression is considered depressed), they trained models capable of assigning a
user to one of the four clinical diagnosis (ADHD, anxiety, bipolar disorder and depression)
in three different scenarios :

• Case 1: taking posts in a clinical context (the corresponding clinical subreddit).

• Case 2: taking posts from the same users but in a non-clinical context (non-clinical
subreddits).

• Case 3: taking posts from the same users in non-clinical contexts, but only those
made prior to the date of the user’s first interaction with a clinical subreddit (con-
sidered a proxy for a diagnosis).

The authors followed a BoW approach with the Tf-Idf weighting methodology to perform
word vectorization. It is also worth mentioning that in the preprocessing stage, explicit
mentions of the mental illnesses were removed from the dataset. Case 1 achieved the best
results, with F1-score=0.77. This was expected since users are more likely to use relevant
language in clinical contexts. The second and third cases performed significantly worse
(but still better than chance), with case 2 achieving F1-score=0.38 and F1-score=0.36 for
case 3. Additionally, a split-half analysis was performed where models were trained with
case 3’s data divided in two groups for each user, one containing recent and the other older
posts. In this experiment the more recent posts performed slightly better than the older
ones (F1-score=0.344 vs F1-score=0.338). An additional analysis was performed on the
models most predictive words for each class, revealing several clusters of words, some of
which coincided with major symptoms present in the DSM-5 of the corresponding illness.

In order to develop a more generalized depression detecting model based on textual

24

Chapter 2. Background

features extracted from social media, Chiong et al.[26], inspired by successful models
developed by other authors in their previously analysed literature, trained different models
on 2 Twitter datasets (training each model separately for each of the 2 datasets) and tested
them on 3 non-Twitter datasets containing only records of the class "depressed", meaning
no non-depressed instances. The first consisting of the text present in the electronic diary
of a depressed 17 year old girl that committed suicide, the second based on Reddit posts,
and the final one on Facebook posts. The experiments were conducted on the 4 best
performing classifiers analysed in previous research, those being LR, Linear Kernel SVM,
Multilayer Perceptron (MLP), and DT. Features were extracted with a BoW approach,
counting the instances of n-gram words with n ranging from 1 to 3 (from unigrams to
trigrams).

Although the results were looking very promising using 10-fold CV on both training
datasets, their performance on the 3 other datasets was subpar, achieving accuracy values
below 50% across the board. Upon further investigation, the researchers found that this
was due to the way that both training datasets were built, the first dataset gathered data
from users that had posts with variations of “I’m/I was/I am/I’ve been diagnosed with
depression” to build the depressed class, while the second gathered data from users with
"depression" in their posts as an indication that they belonged to the depressed class. This
resulted in all the records containing some variation of "depression" or "diagnosis", which
resulted in the models distinguishing both classes mainly on the presence or absence of
such words, which were nowhere nearly as present in the 3 testing datasets leading them
to miss less explicit cues, and consequently, bad accuracy results (0%-13.39% on the diary
dataset, 4.73% - 49.86% on Reddit data and 13.35% - 31.35% on Facebook data).

Upon removal of the words "diagnose" and "depression" in training, the results were far
better in the generalized tests across all models (27.42% turned into 69.19% for the diary
data, 46.17% into 90.40% for Reddit data and 64.30% into 70.44% for Facebook data),
though as expected, there was a decline in performance in the CV performed on the train-
ing datasets. This observation further enforces the importance of carefully tailoring the
training data to minimise the differences with the intended application scenarios (testing
datasets in this case). The authors also tested the effectiveness of under/oversampling in
the twitter training datasets, since one was heavily imbalanced while the other was just
slightly imbalanced. They found that it improved the performance of the models trained
on the heavily imbalanced dataset detecting the less populated class (at the expense of
performance in the most populated class), while having minimal impact in most tests of
the models trained on the slightly imbalanced dataset.

As mentioned previously, sentiment analysis has found its place in mental illness clas-
sification on social media, an example of a paper relying solely on this type of feature to
do so is the one by Chen et al. [27] where the authors collected 1 year worth of tweets
from users that had publicly expressed their depression diagnosis and non-depressed users
alike. This data was used to monitor 8 basic emotions and their changes over time to find
individuals suffering from, or at risk of developing depression. The authors used a tool

25

Chapter 2. Background

called EMOTIVE [28] to extract a strength score for anger, disgust, fear, happiness, sad-
ness, surprise, shame and confusion from tweets, along with a measurement called emotion
overall score which is just the sum of all the emotions’ strengths. From these measures,
2 feature sets were built. A non-temporal one, referred to as EMO, which contains the
measures mentioned found in all tweets of each user (aggregated). The other, taking into
account changes over time (using a day as a unit of time) by creating 9 time series (one for
each measure) per user. Various metrics (mean, standard deviation, entropy, mean mo-
mentum and mean difference) taken from these time series were used as features, creating
the feature set referred to as EMO_TS.

LR, SVM, NB, DT, and RF models were trained using a mix of EMO and features
drawn with LIWC [29]. The best results were achieved by SVM and RF models using
EMO and LIWC features with accuracies around 88%. Given that these were the best
performing models, only these were tested with EMO_TS, where the authors found that
despite a mix of EMO, EMO_TS and LIWC features achieving the best results (accuracies
of 89.71% and 93.06% for SVM and RF respectively), those with just EMO and EMO_-
TS were nearly as good. Suggesting that discrete and temporal emotional data contain
relevant information to capture depression.

Aladag et al. [30] used various different features to detect suicidal forum posts,
by extracting data from the subreddits r/SuicideWatch, r/Depression, r/Anxiety and
r/ShowerThoughts. Data from these subreddits was randomly selected and manually
annotated, labeled with 1 if its author expressed suicidal thoughts, and 0 otherwise. From
here, a mix of LIWC, sentiment analysis and BoW with Tf-Idf features were used to train
LR, RF and SVM models, which were compared with a baseline model that just classified
all posts as suicidal.

Four experiments were made in total. In the first one, the ability to distinguish suici-
dal talk from regular everyday talk was tested by training the models on data only from
r/SuicideWatch and r/ShowerThoughts. The second experiment introduced posts from
r/anxiety and r/depression to the dataset used in experiment 1, some of which were con-
sidered suicidal but in a more subtle manner than those of r/SuicideWatch, to measure if
the models could capture suicidal patterns in text that were not as extreme. Experiment
3 tried to assess whether assuming every post from r/SuicideWatch was suicidal (labeled
1) and every post from r/ShowerThoughts was not suicidal (labeled 0) would still lead to
quality predictions on posts from those subreddits, this allowed the models to be trained
with more data since the training data was not fully annotated. Experiment 4 was ba-
sically testing the models trained in experiment 3 on all annotated posts collected from
all subreddits mentioned in the paper. As expected, the models performed the best in
experiment 1 with F1-scores in the 0.89 to 0.92 range. Experiment 2, due to more dif-
ficult cases, resulted in worse though still decent performance with F1-scores in the 0.73
to 0.81 range. Experiment 3 proved that it was indeed safe to make those assumptions
regarding those 2 subreddits since the models still achieved F1-scores in the 0.83 to 0.92
range. Finally, with the introduction of more difficult cases in experiment 4, there was a

26

Chapter 2. Background

drop in F1-scores across the board but the results were still very respectable, in the 0.75
to 0.79 range. Showing that the features used could in fact capture some nuances in text
to assess the user’s risk of suicide.

Yazdavar et al. [31] adopted a very creative approach of using semi-supervised learning
to monitor depressive symptoms on social media by emulating the Patient Health Ques-
tionnaire 9 (PHQ-9), which incorporates the DSM-5 to evaluate the scale of depression
over 9 items or symptoms: lack of interest, feeling down, sleep disorder, lack of energy,
eating disorder, low self-esteem, concentration problems, hyper/lower activity and suicidal
thoughts.

The study compared the performance of two models, one being a top-down approach,
using Latent Dirichlet Allocation (LDA), an unsupervised method that finds topics in doc-
uments (with topics being based on the distribution of co-occurring words), and the other,
a more bottom-up approach called semi-supervised Topic-modeling over Time (ssToT)
which is based on the previous one but enriched by using words related to those 9 items
as seed terms for the topical clusters and by limiting them to only 1 topic each, to try to
force the topics to correspond to each of those 9 depression items (where they could be
mixed in the first LDA model). Tweets were manually annotated with the 9 depression
symptoms, and for each user, tweets were merged into buckets by time period (of 14 days).
Resulting in 10400 annotated tweets distributed into 192 buckets. The ssToT model was
used to classify a set of symptoms for each bucket. Results varied for each symptom, the
model performed best for "lack of interest" with F1-score=0.9 and worst for "concentra-
tion problems" where F1-score=0.3, but in general the results achieved were good, with
an overall F1-score of 0.68.

Cacheda et al. [32] compared the performance of using a single RF vs a dual RF
model, both trained on descriptive and textual features, to promote the early detection
while penalizing the late detection of depressed users on a dataset sourced from Reddit
for eRisk 2017. The authors found that using two different models with one threshold
function each, where one is tasked with detecting depressed users while the other detects
those of the non-depressed control group, allowed for faster decisions when compared to
a single model with two thresholds, this was due to the fact that three possible outputs
were always competing, those of: Case 1 where there is a final decision and the user is
considered depressed, Case 2 where there is a final decision and the user is considered
non-depressed, and Case 3 where there is no final decision and more data is needed to
successfully classify the user.

With the division of the model in two, the one tasked with finding depressed users will
have as outputs only case 1 and case 3 while the model tasked with finding non-depressed
users will have case 2 and case 3, the overall final decision depends on which of the two
models reaches a final decision first. This finding is important, since in this use case, the
model must be accurate but desirably so in the fastest way possible, requiring the minimum
amount of input (writings) for a reliable answer. It is also worth mentioning that while
analysing the descriptive features of depressed and non-depressed users, the authors came

27

Chapter 2. Background

across some interesting patterns both regarding how the content is posted and when it is
posted. Regarding how each class produces content, the data suggested that: depressed
users tend to reply to existing posts more than they publish their own; non-depressed users
tend to write significantly more in the title area compared to depressed users; depressed
users tend to elaborate more in the text section when compared to non-depressed users.

Regarding when each class produces content, the data suggested that: non-depressed
users tend to post more often than depressed users with 1 day less of average time interval
between 2 posts (4 vs 5), though depressed users show much higher variability; depressed
users tended to publish more than the non-depressed during the weekend + monday,
with the trend being reversed for the rest of the week; the publication rate is also more
homogeneous throughout the whole week for depressed users, where the non-depressed
tend to fall off on the weekend, posting more on weekdays; regarding the hour of posting,
depressed users tended to post more than their counterpart from midnight to midday,
while the control group posted more content than the depressed users in the hours of the
afternoon.

2.4 Workshops and Shared Tasks

It is worth noting, especially since it pertains to the contributions of this work, that
some attention has been brought, and progress has been made in the context of events
such as workshops. It was one of the objectives of this work, to participate in possibly
two events, CLEF eRisk (we did end up participating) and CLPsych (did not participate).
These events’ influence can be seen in the literature, with many authors making use of
the datasets and metrics provided by their organizers.

CLPsych is a computational linguistics and NLP focused workshop that has been
hosted every year since 2014 with the goal of directing the progress in the computational
area of ML towards the subject of psychology and individual behaviour. Every year there
is a shared task that challenges the participant groups to implement models capable of
detecting or predicting mental illness related issues in a social media based dataset. In
2021’s edition, the teams were asked to develop models capable of assessing suicide risk in
two scenarios (subtasks), one using the users tweets from 30 days prior to their reported
suicide attempt, and the other using data from 6 months prior to the attempt.

CLEF’s eRisk presents shared tasks with focus on early risk prediction on the internet
regarding various topics. Every year there is a set of mental health related tasks to
challenge the participants to develop models that can fulfill the task’s objective. The 2021
edition of eRisk presented three tasks as per usual.

The first one, regarding the early detection of signs of pathological gambling (ludoma-
nia), where each subject’s posts were received sequentially, in the same way this could be
applied in real life social media scenarios, and the models had to provide classifications as
early and correctly as possible. This task was "only test" meaning that no training dataset
was provided. In the testing phase, after every post was analysed, models that provided

28

Chapter 2. Background

correct final decisions earlier were rewarded by the Early Risk Detection Error (ERDE)
metric, taken from the work of D. Losada and F. Crestani [33]. Naturally, the more classic
evaluation metrics were also used to evaluate the results. The second task revolved around
early self-harm detection, its structure was similar to that of task 1, but in this case a
training dataset was provided. The third and final task was about estimating the degree
to which an individual suffers from depression, this was done by simulating the answers of
the users present in the dataset to a questionnaire (Beck’s Depression Inventory) to assess
the presence of negative feelings based on their post history.

In the current edition (2022), the three tasks correspond to the early detection of signs
of pathological gambling, the same as last year’s task 1, the early detection of depression,
and the measuring of the severity of signs of eating disorders. The first two regard binary
classification (the user either is or is not at risk of pathological gambling in the first case
or being depressed in the second) while the third task is more complicated, requiring the
estimation of each subject’s answers to the Eating Disorder Examination Questionnaire
(EDE-Q) to discover the severity of the subject’s eating disorder. To further add to this
difficulty, no training dataset is provided for this last task, meaning that the participants
would likely have to build their own.

2.5 Summary

We began this chapter by introducing the basics regarding ML processes and algo-
rithms, moving on the NLP field more specifically, which has also evolved a lot in recent
years. Afterwards, we went through some relevant works, which we summarize in Table
2.3. We observed that many different decisions must be made, at every stage of the im-
plementation pipeline, that affect the end results. From big decisions like what model to
use or what type of feature extraction method to apply, to seemingly smaller decisions like
what words should be filtered out in preprocessing. All of these decisions matter and they
can make or break a ML application’s success. We observed that various feature types
work well, even when mixed together. Regarding the models used, the results showed that
more complex models do not always provide better results, and as such, there are cases
where their use is not justified, as classic models such as LR and SVM tend to perform
well across the board. Regarding the extraction of textual features, we saw that despite
the big advances in DSWE and CLME, plenty of the works analysed relied on simpler
BoW approaches, leaving us wondering how well the same models would perform with
more complex feature extraction tools such as BERT. It is therefore an objective of this
work, to compare the effectiveness of various vectorization methods in the context of this
task.

Overall, using ML systems as screening tools for detecting mental illnesses in forum
posts seems to have potential as far as the classification goes, open to new and creative
approaches. It also brings up some ethical concerns, but that was not the focus of our
analysis.

29

Chapter 2. Background

Table 2.3: Summary of the research analysed.

Paper Detecting Features Model Results Takeaways

Coppersmith et al. [24] Suicide risk Textual (GloVe) NN (LSTM)
AUC ranging from
0.89 to 0.94 depending
on amount of data used

Captures suicidal traits
over suicidal states.

R. Thorstadd, P. Wolff [25]
ADHD, Anxiety
Bipolar disorder
Depression

Textual (Tf-Idf) LR
Case 1: F1-score=0.77
Case 2: F1-score=0.38
Case 3: F1-score=0.36

Similar results with all data
(case 2) and only data prior to
proxy diagnosis (case 3).

Chiong et al. [26] Depression Textual (BoW)

LR
Linear SVM
MLP
DT

Best for each testing set:
Diary: LR Acc=0.69
Reddit: LR Acc=0.9
Facebook: SVM Acc=0.7

Dataset building methodology
must be taken into account.
Under/Oversampling should
be used on heavily imbalanced
datasets

Chen et al. [27] Depression Sentiment analysis,
LIWC

LR
RBF SVM
NB
DT
RF

Best results for 2 best
algorithms:
SVM F1-score=0.87
(EMO and EMO_TS)
RF F1-score=0.92
(EMO_TS, LIWC)

Promising results completely
based on emotion.

Aladag et al. [30] Suicide risk
Textual (Tf-Idf),
LIWC,
Sentiment analysis

LR
RF
SVM

Best results:
Experiment 1 (LR, SVM):
F1-score=0.92
Experiment 2 (LR,):
1F-score=0.81
Experiment 3 (SVM):
F1-score=0.92
Experiment 4 (SVM):
F1-score=0.79

Removing sentiment analysis
and LIWC features did not
have a great impact on
performance.

Yazdavar et al. [31] Depression Textual (BoW) LDA
ssToT

ssToT F1-score for
each PHQ-9 item:
0.90
0.89
0.78
0.68
0.93
0.82
0.30
0.38
0.68

Unsupervised, only used
labeled data for testing.
Some items are captured better.

Cacheda et al. [32] Depression

Textual (BoW),
Semantic
similarity (LSA),
Descriptive

RF

Best singleton model:
ERDE@5=12.89
ERDE@50=11.26
Best dual model results:
ERDE@5=11.88
ERDE@50=8.68

Dividing the problem in 2
using dual models improves
early detection.
There are meaningful statistical
differences on how each class
posts content

30

Chapter 3

Methods

This chapter describes the approaches used in order to address the problem of detecting
subjects at risk of suffering from pathological gambling and depression, corresponding to
tasks 1 and 2 respectively of the 2022 edition of CLEF eRisk. As mentioned in the following
results chapter, several tweaks, corrections and additional experiments have been made
since the submission stage of the event, in this chapter our main focus is to document
the final state of the project, though we do mention some of the changes made post-
submission. In order to get a better overview of what changed, we recommend the reader
to check our official eRisk lab participation paper [34] and to compare the methodology
with the one described here. It is worth noting that the final state of the code used is also
made available in the form of a GitHub repository1.

3.1 Tools

Considering that many third party libraries and frameworks were used throughout
the experimental stage, we saw fit to briefly introduce the most crucial ones, those being
NTLK, Scikit-learn, Gensim, Sentence-transformers, PyTorch and Optuna.

3.1.1 NLTK

NLTK2 stands for Natural Language ToolKit, its goal is to facilitate the development
of programs that use human language data. It provides support for many commonly
used NLP operations. In this work, we relied on it mostly on the preprocessing stage, in
processes like tokenization and lemmatization.

3.1.2 Scikit-learn

Scikit-learn or sklearn3 is a very popular ML library that includes implementations
of many algorithms across different ML application stages such as preprocessing, model

1 https://github.com/rodrigosemicolon/eShrink
2 https://www.nltk.org
3 https://scikit-learn.org/stable/

31

Chapter 3. Methods

selection, dimensionality reduction, clustering, regression and classification. We rely on
it mostly for its implementations of model selection algorithms to split our training data
(namely StratifiedKFold4), its feature extraction tools in the form of the TfIdfVectorizer5

and its implementation of classification models, as we will later see in more detail.

3.1.3 Gensim

Gensim6 is a widely used NLP-focused library, made with practicality, memory inde-
pendence and performance concerns in mind. In this project we used it especially for its
KeyedVectors7 which facilitate the integration (loading and application) of DSWE, in the
training and testing stages of our experiments.

3.1.4 Sentence-transformers

Sentence-transformers8 is a framework dedicated to text and image embeddings, based
on HuggingFace’s Transformers9 and PyTorch10. It offers a wide variety of tools to gener-
ate embeddings that can be used for several ML tasks. It also allows the user to load and
fine-tune pre-trained language models. We chose this framework due to its ease of use,
since we just have to select a pre-trained model, give it text (already cleaned and prepro-
cessed) to encode and it will take care of the specific tokenization requirements specific
to the model selected, run the resulting tokens through the chosen model and output the
resulting embeddings by applying a mean pooling operation.

3.1.5 PyTorch

PyTorch is one of the most popular ML frameworks and it allows us to create and
train NN models both on CPU and on the GPU, it is very pythonic making it intuitive
to work with. It provides implementations of Tensors (its basic data containers), several
types of layers, activation functions, optimizers, loss functions, and other useful classes
like Datasets and DataLoaders11. We use it in our experiments to integrate NNs into our
project.

3.1.6 Optuna

Optuna12 [35] is an optimization framework that works with most ML libraries. It
was heavily used in our experiments, whenever some hyperparameter value needed to be

4 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
5 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extrac-

tion.text.TfidfVectorizer.html
6 https://radimrehurek.com/gensim/
7 https://radimrehurek.com/gensim/models/keyedvectors.html
8 https://www.sbert.net
9 https://huggingface.co/docs/transformers/index

10 https://pytorch.org
11 https://pytorch.org/docs/stable/data.html
12 https://optuna.org/

32

Chapter 3. Methods

optimized. In order to optimize some parameters, we simply create a study object13, pass
it an objective function which we want to maximise or minimise (we maximised the mean
CV F1-score in our use cases), a sampler for the study to decide which parameter value
combinations to test (this can be all possible combinations in the form of grid search,
random combinations in the form of random search, etc) and the amount of trials we want
to perform. We opted to use the TPESampler14 in most situations. It is a sampler built on
the Tree-structured Parzen Estimator, a form of Bayesian optimization that tries to select
the most promising parameter value combinations at each iteration instead of performing
an exhaustive search, or choosing parameter values at random.

3.2 Datasets

In order to address these challenges, we used the official datasets provided by the eRisk
organizers for each task, which we will now describe.

3.2.1 Pathological Gambling

This dataset corresponded to last year’s test dataset for the same task [36]. It was made
available on a dedicated server and it consists of a golden truth text file, that maps subjects
to their corresponding label of 0 or 1 (for control and pathological gamblers respectively),
and a folder containing multiple files in the xml format, one for each subject, containing
information regarding their writings (Reddit posts/comments). In its original state, there
were records of writings for 2348 subjects, 164 of which were labeled 1, and 2184 were
labeled 0.

Naturally, some preprocessing was required, especially since plenty of writings had
artifacts of the extraction process, mostly in the format of html tags. At this stage, a
jupyter notebook was used, to read through the golden truth text file, save the subject
id’s and corresponding labels and then iterate through each of the subject’s xml files. Each
of the writings had the following sequence of transformations applied (performed mostly
with regular expressions15 and contractions16 libraries):

1. Alphabetical characters were converted to lowercase.

2. Html and decimal unicode artifacts were converted to their corresponding symbols.

3. Various types of emojis such as ":)" and ":(" were converted to "smiling emoji" and
"negative emoji" respectively.

4. Mentions of website links, reddit users and subreddits were converted to the tokens
"url", "user" and "subreddit" respectively.

13 https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html
14 https://optuna.readthedocs.io/en/stable/reference/generated/optuna.samplers.TPESampler.html
15 https://docs.python.org/3/library/re.html
16 https://github.com/kootenpv/contractions

33

Chapter 3. Methods

5. Numbers beginning or ending with "€" (Euro) or "$" (Dollar) were substituted by
the token "money".

6. Remaining isolated tokens comprised only of numbers were converted to the token
"number".

7. Contractions of common words were transformed into their original form (for exam-
ple "you’re", "I’m" turn into "you are" and "I am").

8. A dictionary of common internet slang terms was constructed to convert words to
their original form (for example "omg", "ty" turn into "oh my god" and "thank you").

9. Punctuation characters were discarded except for "!.?,", as these tend to be expres-
sive, and can be useful for some of the features extraction methods used.

The resulting writings were put through a FastText language identification model17

[37, 38], and those classified as non-English were discarded, while English writings were
kept. Regarding the language identification, this model was chosen due to its speed and
decent accuracy. With some manual reviewing early on, we saw there was a significant
amount of misclassifications, especially with shorter texts and those containing a lot of
abbreviations and acronyms. In order to improve on this, the script was changed to return
the top 2 most likely languages for each writing, and if English was present in the top 2,
the writing would be kept, and discarded otherwise. With this change, upon some manual
reviewing, the output seemed to be much better, and of 1129560 total writings, 57534
were filtered out. The remaining preprocessed posts were then aggregated in a csv file in
their original, stemmed and lemmatized forms.

The resulting dataset was significantly imbalanced, the control group represented 93%
(2184) of the total subjects vs 7% (164) of pathological gamblers, and 95% (1016947) of
the total writings vs 5% (54915) for pathological gamblers. The method chosen to handle
this imbalance was random undersampling, as it is a very common approach, supported by
some of the works in the relevant literature [26]. We performed undersampling in terms
of users (not writings), to bring the number of control group subjects down to match
the number of positive subjects in a way that results in a somewhat balanced number of
writings for each class (since subjects do not have a fixed amount of writings).

With this approach we end up with a dataset balanced in terms of subjects of each
class (164 each), and nearly balanced in terms of posts from subjects of each class (65266
vs 54915). At this point, the data was split 80%/20% into a training and validation sets
respectively, since the official testing set was only made available at the time of submission.
This was our initial approach, in the final iteration of our experiments these training
and validation sets were grouped and cross-validation was performed in a 5-fold manner
rather than a single train/validate split for more robust evaluations. Regardless of single
training/validation or 5-fold splits, the splitting was performed on subjects, ensuring that

17 https://fasttext.cc/docs/en/language-identification.html

34

Chapter 3. Methods

Table 3.1: Composition of the various sets of data for task 1.

Set Subjects/Writings
Positive Negative Total

Original 164 (7%)/55677 (5%) 2184 (93%)/1073883 (95%) 2348/1129560
Preprocessed 164 (7%)/54915 (5%) 2184 (93%)/1016947 (95%) 2348/1071862
Undersampled 164 (50%)/65266 (54%) 164 (50%)/54915 (46%) 328/102181
Training 131 (50%)/44805 (46%) 131 (50%)/53053 (54%) 262/97858
Validation 33 (50%)/10110 (45%) 33 (50%)/12213 (55%) 66/22323
Testing 81 (4%)/14627 (1%) 1998 (96%)/1014122 (99%) 2079/1028749

any given subject’s writings may only appear in either training or validation sets/folds.
This was made to ensure that there is no information leak and that we can evaluate
the trained models on data belonging to completely new subjects with likely different
vocabularies.

As we said, the official testing set was only made available at the time of submission,
so it was not used in the initial training stage but only afterwards when evaluating, it
is comprised of 81 positive and 1998 control subjects, with 14627 and 1014122 writings
respectively. More information on all mentioned sets of data can be found in Table 3.1.

Data Analysis

Inspired by some works in the literature that performed some analysis on the different
patterns of activity between control and positive subjects, we also decided to see if we
could find meaningful differences in our dataset. We began by analysing the average
number of writings per class, and found that the control group subjects tend to have more
writings available than those of the positive group, with mean values of 465 vs 334, median
values of 239 vs 139, and standard deviations of 509 and 391 writings respectively. We
also analysed the number of tokens per writing, where the mean amount was of 28 vs 46,
with median values of 12 vs 22 and standard deviations of 73 and 76 for classes 0 and
1 respectively. These values seem to suggest that while subjects at risk of pathological
gambling might post less, when they do, they tend to elaborate more with longer posts.

Regarding the time of activity, we divided the analysis in terms of days of the week
and time of the day as was done by Cacheda et al. [32]. Despite not being focused on
the same mental illness, the distributions were surprisingly similar in both cases, perhaps
due to the fact that subjects dealing with pathological gambling and those dealing with
Major Depressive Disorder (MDD), the focus of the work of Cacheda et al., experience
some of the same symptoms. The distribution of writings per day of the week are shown
in figure 3.1, where we notice that positive subjects are more active on the weekend while
control subjects, in general, tend to post more on the remaining days of the week. When
it comes to the time of the day that the writings are published, figure 3.2 shows that
positive users dominate the slot between midnight and 5 AM, and from 6 to 11 AM to a

35

Chapter 3. Methods

Figure 3.1: Distribution of the subjects’ activity in terms of the days of the week in task
1.

lesser degree, while the control group dominates the afternoon slot of midday to 17, and
the evening hours of 18 to 23 to a lesser extent. These results may indicate some trouble
with sleeping patterns on the side of the positive class.

3.2.2 Depression

This dataset’s structure was slightly different than that of the previous task, instead
of using a golden truth text file, the xml files containing each user’s writings were grouped
into positive and negative folders, corresponding to the 1 and 0 labels respectively, also
grouped by year, since the organizers provided data from previous editions of eRisk, in the
form of 2017 eRisk’s training and testing datasets [39] and 2018 eRisk’s testing set [40].
Regarding the individual files the format was the same as in the pathological gambling
task.

Originally, the data from 2017 contained 752 negative and 135 positive subjects. Like-
wise, the 2018 folder contained 741 negative and 79 positive subjects. This comes up
to a total of 1707 subjects, 214 of which are positive (depressed). The preprocessing
was the same as in the previous task, following the same transformations and language
identification methods. Out of 1076582 total writings, 16950 were discarded.

Although not to the extent of the pathological gambling case, this dataset was still
heavily imbalanced, with 87% of the users being labeled as negative and 13% as positive,
and 92% of the writings corresponding to the negative class vs 8% of the positive users.

36

Chapter 3. Methods

Figure 3.2: Distribution of the subjects’ activity in terms of the time of the day when
writings are posted in task 1.

Table 3.2: Composition of the various sets of data for task 2.

Set Subjects/Writings
Positive Negative Total

Original 214 (13%)/90222 (8%) 1493 (87%)/986360 (92%) 1707/1076582
Preprocessed 214 (13%)/89010 (8%) 1493 (87%)/970622 (92%) 1707/1059632
Undersampled 214 (50%)/89010 (42%) 214 (50%)/121917 (58%) 428/210927
Training 171 (50%)/73670 (42%) 171 (50%)/100503 (58%) 342/174173
Validation 43 (50%)/15340 (42%) 43 (50%)/21414 (58%) 86/36754
Testing 98 (7%)/35332 (5%) 1302 (93%)/687228 (95%) 1400/722560

37

Chapter 3. Methods

Naturally, a random undersampling algorithm was employed here as well, to reduce the
amount of control group subjects from 1493 to 214 in order to match the amount of
depressed subjects. As expected, the number of writings also became more balanced, going
from 970622 negative writings to 121917, much closer to the number of positive writings
of 89010. Again, initially this resulting dataset was split into a 80%/20% train/validation
split (later grouped as in task 1), divided by users, leading to a training dataset containing
171 positive and 171 negative subjects, and 73670 positive vs 100503 negative writings.
The validation set contained 43 positive and 43 negative subjects and 15340 positive vs
21414 negative writings. Just like before, we only obtained the testing dataset at the time
of submission, it was comprised of 35332 writings belonging to 98 positive subjects and
687228 belonging to 1302 control subjects. A brief summary of the mentioned sets of data
can be seen in Table 3.2.

Data Analysis

Likewise, we also performed some statistical analysis in this case, with the assumption
that the results would match those of Cacheda et al. even more since we are addressing
issues of the same nature and we might even share some of the same subjects, since they
relied on eRisk data as well. Regarding the number of writings, the mean amounts were
of 649 vs 414, the median amounts were of 386 vs 167, and the standard deviations were
of 633 and 462 writings for the control and positive group respectively. In terms of the
amount of tokens per writing, the mean values were of 34 vs 43, the medians were 15 vs
19 and the standard deviations were of 107 and 80 for the negative and positive classes
respectively. Similar to the pathological gambling case, this suggests that depressive users
post less but tend to elaborate more. Regarding the activity distribution in terms of the
days of the week in which the content is posted, unsurprisingly, the patterns shown match
those observed by Cacheda et al. as seen in figure 3.3. When it comes to the activity in
terms of the time of the day in which content is posted, the results also match very closely
those of Cacheda et al. as we observe in figure 3.4, depressive users tend to be more active
in the 0 to 5 AM and 6 to 11 AM slots while the control group dominates the 12 to 17
slot and 18 to 23 the results are nearly evenly matched. Again, this may indicate some
issues with sleep patterns, where perhaps depressive subjects compensate for their lack of
sleep at night, during the afternoon.

3.3 Feature Engineering Techniques

We must feed data to our ML models in the form of numbers, not text. When it comes
to feature engineering, we saw in the previous chapter that many vectorization approaches
can be used. In this work we rely mostly on textual features, though experiments with
sentiment analysis features were also integrated.

But before deciding how to extract features from each sample, we must first decide

38

Chapter 3. Methods

Figure 3.3: Distribution of the subjects’ activity in terms of the days of the week in task
2.

Figure 3.4: Distribution of the subjects’ activity in terms of the time of the day when
writings are posted in task 2.

39

Chapter 3. Methods

what constitutes a sample. Is it a single writing from a subject, multiple writings grouped
by some criteria (length, time of posting, etc), or perhaps all of the writings of a given
subject? In the very first experiments, user writings were used individually as samples (i.e.
a sample is comprised of a single writing), but this quickly led to subpar results, likely
due to the fact that some writings are extremely short and it is difficult to assess which
class a writing’s author belongs to given only a few words. To overcome this, inspired by
NLP-UNED’s run [41] in 2021’s edition of CLEF eRisk, a k-sliding-window method was
implemented, where each sample consists of the last k writings seen at the time (since
writings are gathered in chronological order) regardless of length. The choice of k is very
important here, in early experiments with single writing samples, essentially equivalent
to employing a sliding window of k=1, results were rather poor, so we experimented with
larger k values as well (3, 5 and 10), resulting in immediate improvements across the
board. Further increasing the k would likely be conducive to better results, at least for
the first feature engineering approach, which we will discuss next, but given the token
limitation of the language models used in approach 3, higher k values would result in
large amounts of text being discarded (by truncation) at each prediction. So in order to
keep approaches comparable, we decided that the final models chosen for each task all ran
on writing windows of the same k, meaning that we have a maximum k of 10, to avoid
going over the token limit of the selected language models, since the writing windows are
constructed prior to the feature extraction process.

The textual features were essentially split into 3 main categories of increasing com-
plexity: Bag-of-Words (BoW) with Tf-Idf weights, pre-trained Distributional Semantics
Word Embeddings (DSWE), and pre-trained Contextualised Language Model Embeddings
(CLME). For the first 2 approaches we opted to lemmatize the tokens of each window,
while for approach 3 we opted to keep tokens in their raw form which is more similar
to the data that the language models were trained on. The previously mentioned Sen-
timent Analysis (SA) features are those of the sentiment analysis tools in Vader18 and
TextBlob19. TextBlob’s tool provides us with 2 scores for each text analysed, regarding
its subjectivity (opinionated or fact based) and polarity (how positive or negative the text
is). Vader’s features consist of 4 values corresponding to scores regarding a text’s nega-
tivity, neutrality, positivity, and a compound value which acts as a single overall measure
of the previous values. Experiments were ran with textual features alone and with the
inclusion of sentiment analysis features (normalized to fit between 0 and 1), to evaluate
their effectiveness in this scenario.

Bag of Words

As we discussed in the previous chapter, BoW with a Tf-Idf weighting methodology
is a simple yet effective approach for many text classification problems, though there are
some parameters that need to be tweaked to optimise performance, such as:

18 https://github.com/nltk/nltk/blob/develop/nltk/sentiment/vader.py
19 https://github.com/sloria/textblob

40

Chapter 3. Methods

• max features: maximum amount of tokens in the learned vocabulary.

• n_gram range: how many tokens to group as a unit in the vocabulary (1-gram being
groups of 1 token, 2-grams 2 tokens, etc), the range takes a min x and max y values
to consider groups of at least x-grams and at most y-grams.

• stopwords list: tokens that are not valid candidates for the learned vocabulary and
are discarded.

• max/min document frequency: a threshold to filter out tokens that occur in
more/less than x documents, for max and min respectively, with x being an ab-
solute value or a fraction.

• sublinear tf: whether to apply a sublinear scaling to the term frequency values.

Thanks to Scikit-learn, this is all implemented in the form of the class TfIdfVectorizer
which allows us to create a vectorizer that given the desired parameters and a training
corpus, can later transform samples of text into number vectors.

To find the optimal Tf-Idf parameter values (of those previously mentioned) to use in
each task, we made use of Optuna’s TPESampler, using 5-fold CV to experiment with
different TfIdfVectorizer parameter combinations, feeding the transformed data into a NB
classifier to evaluate their effectiveness based on the average of the 5 resulting F1-scores.
We used a NB classifier specifically, due to its speed and good results out-of-the-box with
minimal tuning, to facilitate these experiments.

The resulting optimal parameters for the TfIdfVectorizer of task 1 and task 2 and
shown in Tables 3.3 and 3.4 respectively.

Table 3.3: Optimal TfIdfVectorizer parameters for each window size of writings from task
1.

Window size max_features max_df ngram_range stop_words sublinear_tf F1
1 15000 0.75 1,1 NLTK True 0.677
3 15000 0.8 1,1 NLTK True 0.753
5 13000 0.9 1,1 NLTK False 0.783
10 15000 0.6 1,2 NLTK True 0.821

41

Chapter 3. Methods

Table 3.4: Optimal TfIdfVectorizer parameters for each window size of writings from task
2.

Window size max_features max_df ngram_range stop_words sublinear_tf F1
1 15000 1.0 1,3 NLTK False 0.544
3 11000 0.35 1,3 NLTK False 0.616
5 13000 0.5 1,3 NLTK True 0.642
10 13000 0.85 1,2 NLTK True 0.669

It is interesting to see that when checking with Optuna’s visualization tools, the pa-
rameter max_features is consistently considered the most impactful across tasks, as seen
in Figures 3.5 and 3.6, highlighting the importance of acquiring a wide vocabulary in BoW
methods.

Figure 3.5: Parameter importance for the TfIdfVectorizer on data from task 1 for window
size 10.

Distributional Semantics Word Embeddings

In this approach, as previously stated, we use pre-trained DSWE models to represent
the windows of writings.

There were lots of possibilities for pre-trained models but 3 were selected. The first
2 were GloVe [14] models while the last one was a FastText [42] model. The first, a

42

Chapter 3. Methods

Figure 3.6: Parameter importance for the TfIdfVectorizer on data from task 2 for window
size 10.

200 dimensional model20 trained on Twitter data (which we will refer to as GloVe_TT),
chosen due to the reliability of GloVe models (found many times in the literature) and
the similarity between the Twitter and Reddit social networks due to their conversational
nature. The second one was another GloVe model20 but 300-dimensional, and trained on
Common Crawl (referred to as GloVe_CC), chosen again due to the reliability of GloVe
models and due to the fact that Reddit comments were part of this model’s training data.
The final one was a 300 dimensional FastText 21 model also trained on data from Common
Crawl22 (referred to as FastText_CC), selected due to its versatility handling OOV tokens
(since it handles these tokens by breaking them apart).

When testing each pre-trained embedding model’s coverage of the vocabulary for task
1, we got:

• GloVe_TT: covered 76.07% of the vocabulary, and 99.24% of all text.

• GloVe_CC: covered 88.04% of the vocabulary, and 99.61% of all text.

• FastText_TT: covered 100% of the vocabulary, and 100% of all text .

Likewise, for data from task 2:

• GloVe_TT: covered 69.17% of the vocabulary, and 99.40% of all text.

20 https://nlp.stanford.edu/projects/glove/
21 https://fasttext.cc/docs/en/english-vectors.html
22 https://commoncrawl.org/2017/06/

43

Chapter 3. Methods

• GloVe_CC: covered 86.24% of the vocabulary, and 99.77% of all text.

• FastText_TT: covered 100% of the vocabulary, and 100% of all text.

Windows of writings were represented by the mean (across dimensions) of its tokens’
embeddings. For example, with a text containing 3 tokens represented by [1,1,3],[4,2,1]
and [1,0,5], we sum these, resulting in the vector [6,3,9], and then divide each value by the
number of tokens, 3 in this case, resulting in the vector [2,1,3].

Contextualised Language Model Embeddings

As we saw, language models leverage the power of deep learning by training large NNs
to achieve great performance in a variety of NLP tasks. Given the large computational
costs that come with building language models from scratch, we decided to make use of
pre-trained models in this case, which is known as transfer learning.

There was a large variety of models we could have chosen, but we selected two as
possible candidates, both made available with Sentence-transformers, to extract sentence
embeddings with. The all-MiniLM-L6-v223 and the all-mpnet-base-v224, that encode sen-
tences into 384 and 768 dimensional vectors respectively.

This MiniLm model originated as the pre-trained 6 layered version of Microsoft’s
MiniLM-L12-H384-uncased (by keeping every second layer) [43], fine-tuned on a 1B
sentence-pair dataset, where given a sentence from a pair, the model had to select its
correct match from a set of random samples. MiniLM-L12-H384-uncased in turn was
achieved by the process of knowledge distillation from BERT. Knowledge distillation is
the process of compressing large models (also known as teachers in this context) by train-
ing a smaller model (known as student) to imitate their behaviour. Instead of learning
by computing loss from the golden truth labels, the student model uses the output of the
teacher model’s layers as the true label (not necessarily the final layer, as was the case
with MiniLm).

This choice resulted from the fact that despite being a very lightweight model, ac-
cording to the comparison table25 in the Sentence-transformers documentation, the all-
MiniLM-L6-v2 performed rather well across 14 sentence embedding tasks, another relevant
factor was that a large subset of its training data derived from Reddit comments.

The MPNet, also developed by Microsoft [44], is seen as a mix of BERT and XLNet
[23], as it combines both training methods of Masked Language Modeling (MLM) in
BERT and Permutation Language Modeling (PLM) (where tokens are guessed on various
permutations of the original sentence as opposed to the classic left-to-right or right-to-
left) from XLNet to complement each model’s approaches. Despite being a larger and
consequently slower model when compared to the MiniLm, the MPNet was chosen as it
was the top performer in the Sentence-transformers documentation, and its paper claimed

23 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
24 https://huggingface.co/sentence-transformers/all-mpnet-base-v2
25 https://www.sbert.net/docs/pretrained_models.html

44

Chapter 3. Methods

state-of-the-art performance over the top performers like BERT and XLNet, which it was
based on.

With these choices we also intend to see how big of a difference in performance can be
achieved with a smaller vs larger language model.

3.4 Models

We divided the tasks into 2 parts, part one regarding the classification of windows
of writings, to assess whether a certain number of consecutive user writings (a writing
window) is likely to come from a positive subject, and part two where the results of the
window classifications are converted into the subject’s classification, which corresponds to
our end goal.

3.4.1 Writing Window Classification

In order to make the performance of the different feature extraction methods somewhat
comparable, the models used remained mostly the same across experiments, consisting of
sklearn’s implementations of Logistic Regression (LR) and linear Support-Vector Machine
(SVM) both trained using Stochastic Gradient Descent26 (SGD), Naive Bayes27 (NB),
ExtraTrees28 (ET) and Perceptron29 models. It is worth noting that Naive Bayes was
only used in approach 1 due to its inability to deal with negative features, present in
approach 2 and 3. The SGD version of the LR and SVM models and ET (instead of
Random Forest) were chosen due to our large feature space and large amount of samples.

We chose the best model for each window size by performing 5-fold CV on the full
training set (training + validation) mentioned in the dataset section, using the best aver-
age F1-score (from the 5 CV iterations) as the evaluation metric. Once the top performing
models are established, we re-evaluate its performance with the inclusion of the Sentiment
Analysis (SA) features, keeping them moving forward if their inclusion results in an im-
provement of the average F1-score.

It is essential that during the cross-validation process, no subject’s writings are present
in both training and testing folds simultaneously to better imitate the end goal of the mod-
els being developed of classifying completely new subjects, avoiding possible information
leaks that might result from windows in training and testing folds varying by few writ-
ings. For example if a user has 5 consecutive writings A, B, C, D and E and we’re using a
window of size 3, there is a chance that the window containing A, B and C is present in a
training fold while the window containing B, C and D is present in the testing fold. This
is the information leakage we must avoid and that is the reason for our splitting being
based on users.

26 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
27 https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
28 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
29 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html

45

Chapter 3. Methods

Post-evaluation we select the best performing model of each feature type (with or
without SA features depending on how they have performed) and perform hyperparameter
optimisation using Optuna. Finally, when the optimal hyperparameters are found, we train
the best models with the best parameters found, on the whole train + validation data.
These models are later used in the testing stage.

BoW

Regarding the first model evaluation stage, the results are best summarized in Tables
3.5 and 3.6.

Table 3.5: Performance of the best models when trained with sklearn’s default parameters
for every window size for writings of task 1 with BoW features.

Window size Model Avg CV F1 Avg CV F1 (with SA)
1 NB 0.677 0.678
3 NB 0.753 0.759
5 NB 0.783 0.789
10 LR 0.823 0.820

Table 3.6: Performance of the best models when trained with sklearn’s default parameters
for every window size for writings of task 2 with BoW features.

Window size Model Avg CV F1 Avg CV F1 (with SA)
1 NB 0.544 0.542
3 NB 0.616 0.614
5 NB 0.642 0.641
10 NB 0.669 0.669

We selected both of the best models for window size 10 since they achieved the best
performance on both tasks and optimized their hyperparameters. The resulting LR model
(SGDClassifier with "log" loss) for task 1 achieved an average F1-score with 5-fold cross-
validation of 0.824 (a 0.001 improvement), with the following parameters:

• Penalty: L2

• Alpha: 6e−5

• Loss: Log

• Max iterations: 2500

46

Chapter 3. Methods

Since we chose a LR model to optimize, which is considered interpretable, due to its coeffi-
cients being mapped to each of the TfIdfVectorizer’s features (which correspond to words
in the vocabulary), we can analyse which tokens are more influential in a positive classi-
fication. For task 1, the 10 terms with the higher coefficients (influential in classifying a
subject as a pathological gambler) are, from most influential to least: "gambling", "money",
"ill", "bet", "gamble", "lost", "day number", "addiction", "wager", "never". Some of these are
obvious, others not so much, we must also remember that in preprocessing we transformed
various representations of currency like "3.00€" or "5$" into the token "money", the "day
number" term is also affected by the preprocessing since numeric values that were not
explicitly money related were substituted by the "number" token, which affected common
mentions of numbers like dates in this case.

As for task 2, the resulting NB model achieved an average F1-score with 5-fold cross-
validation of 0.669, with the following parameters:

• Alpha: 1.27

• Fit_prior: True.

For task 2, since we optimized a NB model, which is also interpretable by analysing the
feature’s log probabilities, we can also check on the most influential tokens. In this case the
10 most influential terms for classifying depressed users were: "number", "like", "would",
"get", "one", "really", "know", "people", "think", "time".

Distributional Semantics Word Embeddings

The best model’s performances for each window size with this type of feature are shown
in Tables 3.7 and 3.8.

47

Chapter 3. Methods

Table 3.7: Performance of the best models when trained with sklearn’s default parameters
for every window size for writings of task 1 with distributional semantics word embedding
features.

Window size Embeddings Model Avg CV F1 Avg CV F1 (with SA)
GloVe_TT LR 0.673 0.672

1 GloVe_CC LR 0.675 0.673
FastText_CC SVM 0.648 0.649

GloVe_TT LR 0.749 0.749
3 GloVe_CC LR 0.749 0.750

FastText_CC SVM 0.720 0.715
GloVe_TT LR 0.776 0.780

5 GloVe_CC LR 0.777 0.783
FastText_CC ET 0.749 0.749

GloVe_TT LR 0.809 0.809
10 GloVe_CC LR 0.817 0.818

FastText_CC ET 0.775 0.777

Table 3.8: Performance of the best models when trained with sklearn’s default parameters
for every window size for writings of task 2 with distributional semantics word embedding
features.

Window size Embeddings Model Avg CV F1 Avg CV F1 (with SA)
GloVe_TT SVM 0.529 0.526

1 GloVe_CC LR 0.566 0.568
FastText_CC ET 0.509 0.509

GloVe_TT SVM 0.621 0.598
3 GloVe_CC SVM 0.598 0.577

FastText_CC ET 0.579 0.579
GloVe_TT SVM 0.654 0.656

5 GloVe_CC SVM 0.643 0.624
FastText_CC ET 0.606 0.604

GloVe_TT LR 0.664 0.664
10 GloVe_CC LR 0.664 0.664

FastText_CC ET 0.634 0.633

Like before, it seems that window size 10 served the best results in this case too, with
LR including SA features in task 1 and LR without SA features in task 2 (both using
GloVe_CC), which we optimized. The resulting LR model for task 1 achieved an average

48

Chapter 3. Methods

F1-score with 5-fold cross-validation of 0.819, with the following parameters:

• Penalty: L2

• Alpha: 5e−5

• Loss: Log

• Max iterations: 2000

As for task 2, the resulting LR model achieved an average F1-score with 5-fold cross-
validation of 0.683, with the following parameters:

• Penalty: L2

• Alpha: 4e−5

• Loss: Log

• Max iterations: 1000

Contextualised Language Model Embeddings

We followed the same cross-validation approach with Scikit-learn’s default models and
we see in Tables 3.9 and 3.10 that window size 10 is still the best approach when using
CLME as the feature type.

Table 3.9: Performance of the best models when trained with sklearn’s default parameters
for every window size for writings of task 1 with features extracted from language models.

Window size Language model Model Avg CV F1 Avg CV F1 (with SA)
1 MiniLm SVM 0.676 0.670

MPNet SVM 0.697 0.692
3 MiniLm LR 0.757 0.756

MPNet LR 0.767 0.764
5 MiniLm LR 0.787 0.787

MPNet LR 0.796 0.794
10 MiniLm LR 0.819 0.819

MPNet LR 0.823 0.823

49

Chapter 3. Methods

Table 3.10: Performance of the best models when trained with sklearn’s default parameters
for every window size for writings of task 2 with features extracted from language models.

Window size Language model Model Avg CV F1 Avg CV F1 (with SA)
1 MiniLm LR 0.534 0.531

MPNet LR 0.551 0.549
3 MiniLm LR 0.606 0.589

MPNet LR 0.614 0.602
5 MiniLm LR 0.629 0.618

MPNet LR 0.644 0.627
10 MiniLm LR 0.663 0.65

MPNet LR 0.667 0.655

We now describe the optimal hyperparameters found and the resulting performance.
The resulting LR model for task 1 achieved an average F1-score with 5-fold cross-validation
of 0.826, with the following parameters:

• Penalty: L2

• Alpha: 0.0007

• Loss: Log

• Max iterations: 1000

As for task 2, the resulting LR model achieved an average F1-score with 5-fold cross-
validation of 0.670, with the following parameters:

• Penalty: L1

• Alpha: 0.0001

• Loss: Log

• Max iterations: 2500

A more standard approach

Additionally, in order to test a more commonly used approach in current times, we
had to perform experiments with transformer-based features of CLME while using Neural
Networks as classifiers, since these tend to achieve solid performance in many NLP tasks.

We used PyTorch to create the NNs, and Optuna to find the optimal architecture and
other relevant hyperparameters. With the Sentence-transformers library we essentially
freeze all layers of the representation generating language models, on top of which we
build our classifying NN. The language model used for both tasks was MPNet since it

50

Chapter 3. Methods

outperformed the MiniLm.
We performed optimization studies to find good hyperparameters regarding the learn-

ing rate, number of hidden layers, number of nodes per layer and dropout rate at each
layer. The studies consisted of 20 trials and every model was trained for 10 epochs for each
of the 5-fold CV iterations. Consistent across all NN tests were the optimizer, AdamW30

chosen due to its fast convergence times and reliable performance, the classic loss metric
of binary cross entropy and a ReLu activation function on each hidden layer. In order to
speed up the whole process and to allow us to validate the several parameters and archi-
tectures in a more robust way (5-fold vs train/validation split CV), we encode all windows
of writings prior to any training, to avoid the unnecessary and costly vectorizations at
each trial.

The resulting optimized parameters for the NN of task 1 with an average F1-score of
0.807 were:

• Number of layers: 2.

• Nodes per layer: 28 (layer 1) and 17 (layer 2).

• Dropout rate: 0.45 (layer 1) and 0.40 (layer 2).

• Learning rate: 1.04e−5

Likewise, for task 2, achieving an average F1-score of 0.694, the optimized parameters
were:

• Number of layers: 3.

• Nodes per layer: 6 (layer 1), 6 (layer 2) and 5 (layer 3).

• Dropout rate: 0.50 (layer 1), 0.30 (layer 2) and 0.50 (layer 3).

• Learning rate: 4.98e−5

Taking into consideration that the tuning process adopted a 5-fold CV methodology, we
considered it robust enough to train the final models on all of the training + validation
data using the same seed, despite being unable to validate the resulting models prior to
the final testing stage.

3.4.2 User Classification

This part of the problem consists of adopting a criterion or protocol to turn our indi-
vidual classifications of windows of writings into subject classifications, since up until this
point, we were classifying windows of writings and not the authors themselves. Various
choices can be made here, the NLP-UNED team [41] (from which we drew inspiration
for the k-rolling-window method) used a parameter n of consecutive positive windows as

30 https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html

51

Chapter 3. Methods

a signal that the subject should be classified as positive. But there are alternatives like
requiring a fraction or absolute value of positive window classifications up to a certain
point (since writings are retrieved chronologically).

At the time of submission for the event, we followed the latter approach, a threshold
on the decision confidence of the classifiers was applied and a single window positive
classification was enough to make a positive final decision. That is, writing windows are
evaluated individually, and if a model is really confident that at least one of a user’s
windows belongs to a positive subject, we classify the subject as positive. We did end
up performing experiments with all the criteria initially mentioned, we will refer to these
options as Single Confidence Criterion (SCC), Multi Confidence Criterion (MCC), Ratio
Confidence Criterion (RCC) and Consecutive Confidence Criterion (CCC) (NLP-UNED’s
approach). All criterion have their own threshold on the classification confidence, besides
their custom decision threshold (depending on the criterion). We will now explain each
one’s requirement for positive final decisions:

In the case of the SCC, three situations may occur after evaluating a window of writ-
ings:

1. the window of writings is classified as positive and the confidence in the decision
meets the required threshold.

2. the window of writings is classified as positive but the confidence in the decision
does not meet the required threshold.

3. the window of writings is classified as negative.

The subject is only classified with a positive final decision in case 1, where case 2 and 3
lead to a negative classification, meaning that we cannot provide a final decision and need
to analyse more data.

MCC works under the same assumption as SCC, but instead of requiring 1 positive
classification, we require more, with a threshold t > 1. The RCC works by keeping track of
how many of the windows of writings seen so far were classified as positive, if at any point
the ratio of positive classifications divided by the number of different individual posts seen
so far meets the required threshold, the subject is classified as positive, and so, after every
evaluation n, with positive window count p and threshold t, the following process occurs:

1. classify the current window.

2. add the resulting classification to p.

3. if p/n ≥ t, output a positive final decision for this subject.

Finally, the CCC simply keeps track of consecutive positive window classifications, the
counter is reset whenever the latest window is classified as negative, if the amount of
consecutive positive classifications meets the required threshold, the subject is classified
with a positive final decision.

52

Chapter 3. Methods

As stated in the introduction, we are not only concerned with obtaining a correct
classification, but also doing so in a timely manner, with this purpose in mind, we limited
the number of user writings analysed to 100 (resulting in 90 windows since they are size 10).
It makes sense to tune our thresholds to a smaller number of rounds (with the maximum
possible being roughly 2000), since not all subjects in our dataset or in a real-life scenario
have the same number of writings available. As we increase the limit of windows analysed,
we also increase the variability in the amount of windows available per user, for example
if we have 5 users, each with 150, 200, 90, 50 and 140, if we limit the amount of windows
to 200 there is significantly more variation than if we do so with a smaller limit, in the
most extreme case, limiting to 50, all users end up with the same amount of windows in
this example. Naturally, thresholds tuned to a certain limit won’t be as optimal for users
whose maximum amount of windows falls short, but we found that 100 is a decent spot in
the trade-off of minimising variability and response time while maximising the amount of
data analysed.

We followed the same process used to tune the window classification models to find the
optimal thresholds for each criterion. For each criterion, we split the full training (plus
validation) data into 5-folds, training the best model found in the previous section with
the optimized parameters on 4 of the folds and using the remaining fold at each iteration
to test various threshold values. With one important detail, it is very unlikely that in a
real world scenario (simulated with the official testing set), the percentage of positive to
negative users will be as balanced as it is in our undersampled dataset, which makes it
unreliable for finding the optimal thresholds. To address this, on the testing fold of every
5-fold CV iteration, we include the data of the subjects left out by the undersampling
process (limited to the first 100 writings of each user), which consists of a very large
number of control users, providing us with a more realistic distribution. Just as we did
before, we used Optuna’s TPEsampler to arrive at the best values, by maximising the
mean of F1-score achieved in all 5 folds. The optimal thresholds and the corresponding
evaluation scores are shown in Tables 3.11 and 3.12.

53

Chapter 3. Methods

Table 3.11: Performance achieved in task 1, by the previously mentioned best models
when tested in the user classification context with all the criteria.

Model Features Criterion Thresholds Average F1
Confidence Windows

SCC 0.981 1 0.748
LR Tf-Idf MCC 0.967 2 0.736

RCC 0.942 21.7% 0.726
CCC 0.951 7 0.715
SCC 0.992 1 0.312

LR GloVe_CC + SA MCC 0.947 14 0.536
RCC 0.901 50.1% 0.580
CCC 0.916 19 0.522
SCC 0.981 1 0.833

LR MPNet MCC 0.971 2 0.826
RCC 0.909 35.8% 0.730
CCC 0.963 2 0.814
SCC 0.981 1 0.641

NN MPNet MCC 0.979 6 0.635
RCC 0.977 16.8% 0.628
CCC 0.963 10 0.615

54

Chapter 3. Methods

Table 3.12: Performance achieved in task 2, by the previously mentioned best models
when tested in the user classification context with all the criteria.

Model Features Criterion Thresholds Average F1
Confidence Windows

SCC 0.986 1 0.343
NB Tf-Idf MCC 0.984 9 0.334

RCC 0.971 11.9% 0.330
CCC 0.970 10 0.342
SCC 0.961 1 0.239

LR GloVe_CC MCC 0.908 15 0.340
RCC 0.833 59.6% 0.341
CCC 0.838 20 0.328
SCC 0.984 1 0.387

LR MPNet MCC 0.932 12 0.385
RCC 0.840 51.1% 0.397
CCC 0.871 12 0.363
SCC 0.743 1 0.254

NN MPNet MCC 0.694 40 0.324
RCC 0.694 44.8% 0.359
CCC 0.704 14 0.369

The resulting F1-scores are lower than those seen previously but that is to be expected
since the distribution of positive to negative subjects changed drastically, but we can only
make an accurate assessment of the model’s performance on the testing set (also since the
models used to test were trained with more data due to not leaving one fold out).

The event’s server also expected to receive a score estimating each user’s level of risk,
to be used in the rank-based evaluation. Our decision here was to keep record, for each
subject, of the sum of the writing window classifier’s decision confidence whenever its
output was positive, if the corresponding user classifier’s decision was 0, we would send 0
as the estimated risk, in the case that the user classifier’s decision was 1, we would send
that calculated sum as the risk estimation metric. Our goal was to focus on achieving a
correct risk estimation among the subjects we deemed as positive, hence the 0 in case of
negative classifications.

3.5 Summary

Here, we quickly recap the experimental methodology. The problems are divided into
2 stages, writing window classification and user classification, with the former receiving
writing windows as input and providing its output to the latter, to take various windows

55

Chapter 3. Methods

into account when making a final decision, in order to achieve more robust models. In
the writing window classification, we begin by dividing the experiments into 3 feature
types (BoW, DSWE and CLME), using classic ML algorithms of LR, SVM, NB, ET and
Perceptron, and even NNs for CLME. We then perform tests using samples (windows)
containing various amounts of writings (1, 3, 5 and 10) to select the best window size
going forward. We ended up choosing 10 as it provided the best performance across
feature types. We also tested these initial models with the addition of sentiment analysis
features, though it did not have a significant impact in the resulting average F1-scores.
After finding the optimal hyperparameters of the best model of each feature type, we
moved on to the user classification, where we tuned and tested several decision criteria
(SCC, MCC, RCC and CCC) using 5-fold CV with the inclusion of the data left out during
the undersampling process in each of the testing folds.

56

Chapter 4

Results

As previously mentioned, the final state of this project does not match the one at
the time of submission, as a consequence, we have 2 types of results to document, the
official server results achieved on submission, and the unofficial results achieved with the
same testing set but with the tweaks and new experiments incorporated throughout the
training stage. There are also 2 types of evaluations, those of decision-based and rank-
based evaluation. Decision-based evaluation metrics are the focal point of the event and
correspond to those used throughout the development process such as precision, recall and
F1-score, while the organisers included others that take into account the latency involved
in making a final decision for a positive user, since we limited ourselves to the first 100
writings (instead of using the full 2000 available) we decided to not focus on those as
much as our responses were guaranteed to be decently fast by design (100 rounds is our
highest possible latency). Despite not being the focal point of the evaluation process,
the participants’ runs at eRisk 2022 were also evaluated in terms of ranking with classic
information retrieval metrics of Precision and Normalized Discounted Cumulative Gain
(NDCG). Where the decision-based evaluation is focused on the correct classification of
each individual, the rank-based evaluation serves the purpose of assessing how well the
system can estimate their level of risk, by calculating those metrics on the highest scoring
10 or 100 subjects, after sorting them in descending order by their level of estimated risk.

4.1 Event Evaluation

During the event evaluation, data is supplied in rounds. In round 0 we get a list of
all subjects available, and a writing for each. At each round after that, we get another
writing for every subject, or nothing if no more writings are available for a given subject
(we never know when a subject is going to run out of writings). At the end of each round
we are asked to reply with our classifications and risk estimation scores for each subject.
A single positive final decision is absolute, even if followed by negative classifications (we
are asked to keep sending predictions after final decisions because of the risk estimation
metrics).

57

Chapter 4. Results

Despite showing good results in our early experiments, our initial SCC approach proved
ineffective in this evaluation context, mainly due to some implementation errors which we
will soon discuss.

The event allowed up to 5 runs for each task. We decided to take advantage of this
by running the best window classifier found at the time for each approach (BoW, DSWE
and CLME) as the models of the first 3 runs, and ensemble methods reliant on the same
models for runs #4 and #5. The model for run #4 was dependent on the output of
the 3 models (of each textual feature type), its condition to attribute a subject with a
positive final decision, is to have any of the #1, #2 and #3 models classify a given user as
positive. The model for run #5 sums the decision confidence of the #1, #2 and #3 models
if they had a positive final decision (contributing 0 if their classification was negative) then
dividing the summed value by 3 to get an average confidence, if this average confidence
passes a custom threshold, the final decision is positive. Again, these early approaches are
better explained in our participation paper [34].

In summary, in order to output a positive final decision for a given user, the condition
for each run’s models are:

1. classify a writing window as 1 with a confidence higher than a threshold value.

2. classify a writing window as 1 with a confidence higher than a threshold value.

3. classify a writing window as 1 with a confidence higher than a threshold value.

4. have any of the previous models provide a final decision of 1.

5. sum the confidence of the original models that had 1 as a final decision and divide
by 3, this averaged confidence must be higher than a threshold value.

In order to understand the degree of the discrepancy observed between our initial valida-
tion and the event’s results, Tables 4.1 and 4.2 illustrate the thresholds and corresponding
metrics on the held-out validation set of our early experiments, which followed the eval-
uation logic that a single positive window classification at any time is enough to lead to
a positive final decision. It is important to note that at this time the thresholds were
being optimized in a single train/validation split instead of the later adopted 5-fold CV
approach, and the undersampled data was not included here either, skewing the thresholds
to lower values, particularly noticeable in the case of task 1.

4.1.1 Task 1: Pathological Gambling

As mentioned, the official evaluation of the server submissions showed results signifi-
cantly different from those observed during the training and testing stages.

58

Chapter 4. Results

Table 4.1: Performance of the chosen writing window models when classifying users in
task 1, in validation, using the best thresholds found.

Model Features Threshold Precision Recall F1
LR (#1) Tf-Idf 0.80 0.91 0.97 0.94
SVM (#2) GloVe_TT + SA 0.85 0.86 0.97 0.91
LR (#3) MiniLm + SA 0.90 0.73 1.00 0.85
Ensemble 1 (#4) All None 0.61 1.00 0.76
Ensemble 2 (#5) All 0.80 0.97 1.00 0.99

Table 4.2: Performance of the chosen writing window models when classifying users in
task 2, in validation, using the best thresholds found.

Model Features Threshold Precision Recall F1
NB (#1) Tf-Idf 0.90 0.86 0.84 0.85
LR (#2) GloVe_TT + SA 0.98 0.66 0.98 0.79
SVM (#3) MiniLm + SA 0.98 0.81 0.91 0.86
Ensemble 1 (#4) All None 0.52 1.00 0.68
Ensemble 2 (#5) All 0.92 0.78 0.93 0.85

Decision-based Evaluation

The left half of Table 4.3 displays the final precision, recall and F1-score obtained
during the event for task 1, drastically different from those previously seen in our testing,
displayed in Table 4.1.

Initially, when analysing the results, we suspected that this discrepancy may have been
caused by multiple factors:

• The single confidence threshold approach might be too simple and ineffective.

• The approach may work but the thresholds selected were overfitting on the limited,
and skewed (since we enforced a balance between classes) validation data and were
as a result sub-optimal.

• The selected thresholds were tuned for the first 100 windows of writings of the users
in our test set, a big difference from the number of windows received and analysed
from the server (1002).

Immediately upon receiving the results, using the golden truth file received post-
submission, we tested the exact same models in the same conditions, but evaluating only
the first 100 posts. We noticed a clear improvement across the board on F1-scores by sim-
ply reducing the amount of writings evaluated, mimicking the scenario used in the tuning
process. This impact can be explained due to the fact that it takes only one positive writ-
ing window classification for the server to deem the subject as positive (final decision),

59

Chapter 4. Results

Table 4.3: Comparison of the decision-based performance on task 1 upon official evaluation
(processing 1002 posts) vs when mimicking the tuning scenario of only analysing the first
100 writings.

Model Features P R F1 P@100 R@100 F1@100
LR Tf-Idf 0.09 0.99 0.17 0.15 0.95 0.27
SVM GloVe_TT + SA 0.07 1.00 0.13 0.10 0.99 0.19
LR MiniLm + SA 0.05 1.00 0.10 0.06 1.00 0.12
Ensemble 1 All 0.05 1.00 0.10 0.06 1.00 0.11
Ensemble 2 All 0.19 0.99 0.32 0.31 0.91 0.47

and when the amount of writings rises dramatically from the one used in training (roughly
1000 vs 100), it is only natural that some positive classifications might be made where
they should not (especially since the thresholds were not tuned for this amount of writing
windows), resulting in a high number of false positives and high recall at the expense of
a low precision and F1-score that we see here. This effect will become especially obvious
soon, when we see the results of task 2, where half of the writings were processed (roughly
500 vs 1000) and the initial results were much better than those of task 1, despite the op-
posite being observed consistently throughout the training and validation stages (though
as we will see, the choice of stricter thresholds also played a part). The results limited
to the first 100 writings, shown in the right half of Table 4.3, although better, were still
lacking, displaying signs that the other mentioned factors or something else entirely could
be deteriorating our models’ performances.

Rank-based Evaluation

In this case too, most of the rank-based evaluation results were quite poor. Despite
the factors that resulted in subpar decision-based evaluation metrics, there was also a
mistake in the implementation of the risk estimation calculations, that resulted in high
scores (estimated levels of risk) being sent even in some cases when the user was not
deemed to be a positive subject, meaning that our intended risk estimation protocol was
not correctly implemented. These results are shown in Table 4.4.

60

Chapter 4. Results

Table 4.4: Rank-based evaluation results of the submitted models after analysing 100
writings of the official testing set of task 1.

Model Features P@10 NDCG@10 NDCG@100
LR Tf-Idf 0.8 0.87 0.33

SVM GloVe_TT + SA 0.0 0.00 0.00
LR MiniLm + SA 0.4 0.30 0.29

Ensemble 1 All 0.0 0.0 0.10
Ensemble 2 All 0.0 0.00 0.03

Interestingly, despite this incorrect implementation, model 1 in particular still managed
to achieve a good P@10 and NDCG@10, indicating that out of all subjects, it still managed
to correctly rank a significant amount of positive users in the top 10 with highest estimated
risk, the same could not be said for the top 100 though, as seen in its NDCG@100. The
other models performed rather poorly across all the documented metrics.

4.1.2 Task 2: Depression

Since we followed a similar approach in task 2, the disparity between results in testing
and official evaluation was also present.

Decision-based Evaluation

Despite showing worse performance in training, the combination of stricter thresholds
and the reduced number of writings analysed brought better results when compared to
task 1. But the factors we mentioned for task 1 still remained a cause for concern.

Rank-based Evaluation

The previously mentioned mistake was also present for this task’s implementation, so
naturally the rank-based evaluation was far from the best in this case too as seen in Table

Table 4.5: Comparison of the decision-based performance on task 2 upon official evaluation
(processing 503 posts) vs when mimicking the tuning scenario of only analysing the first
100 writings.

Model Features P R F1 P@100 R@100 F1@100
NB Tf-Idf 0.22 0.95 0.36 0.31 0.90 0.46
LR GloVe_TT + SA 0.09 0.97 0.17 0.10 0.95 0.19
SVM MiniLm + SA 0.17 0.97 0.29 0.23 0.89 0.37
Ensemble 1 All 0.09 0.99 0.17 0.10 0.97 0.18
Ensemble 2 All 0.38 0.86 0.53 0.47 0.76 0.58

61

Chapter 4. Results

4.6.

62

Chapter 4. Results

Table 4.6: Rank-based evaluation results of the submitted models after analysing 100
writings of the official testing set of task 2.

Model Features P@10 NDCG@10 NDCG@100
NB Tf-Idf 0.2 0.15 0.15
LR GloVe_TT + SA 0.2 0.25 0.14

SVM MiniLm + SA 0.6 0.60 0.36
Ensemble 1 All 0.2 0.26 0.14
Ensemble 2 All 0.0 0.00 0.04

Though it is worth mentioning that model 3 still performed decently on the metrics
for the top 10 highest estimated risk users (P@10 and NDCG@10), but it faltered when
taking into account a higher range of the top estimated risk metric subjects (NDCG@100).

4.2 Post-submission Results

As we mentioned in the previous section, the performance achieved was far from the one
we hoped for, so we made it our goal to address the multiple factors which we suspected to
be causing issues, and to revisit the whole training/validation process while making some
small tweaks and performing additional experiments. Most of these changes were already
documented in previous chapter, such as the integration of Optuna’s tools to optimise
models along the way, the change in user classification validation (to employ 5-fold CV
and to integrate left-out undersampled data) as well as tests with more pre-trained DSWE
and CLME, since at the time of submission we did not include GloVe_CC nor MPNet
for DSWE and CLME experiments respectively. We also performed experiments with
windows of size 10, which at the time of submission we did not, due to a misunderstanding
with the Sentence-transformers library sequence length limitation, where we thought that
it would be inadequate to use windows larger than 5 writings, but as was shown in the
previous chapter, increasing the size to 10 improved the results considerably.

In summary, the changes in the validation stage addressed the threshold tuning con-
cerns mentioned in the previous section. To address the possible issues with the user
classification protocol, we integrated the MCC, RCC and CCC as we explained in the
previous chapter. And this time, we limited ourselves to 100 writings as intended, and
fixed the estimated risk calculation.

4.2.1 Decision-based Evaluation

The final results achieved on the official testing sets in terms of decision-based metrics
are shown in Tables 4.7 and 4.8, where we also show some of the best runs by other teams.

63

Chapter 4. Results

Table 4.7: Decision-based evaluation results of the final models after analysing 100 writings
of the official testing set of task 1, compared to some of the best runs in eRisk 2022.

Model Criterion P R F1
SCC 0.938 0.741 0.828

LR (Tf-Idf) MCC 0.949 0.691 0.800
RCC 0.968 0.741 0.839
CCC 0.966 0.691 0.806
SCC 0.447 0.679 0.539

LR (GloVe_CC + SA) MCC 0.530 0.654 0.586
RCC 0.610 0.617 0.614
CCC 0.538 0.617 0.575
SCC 0.969 0.778 0.863

LR (MPNet) MCC 0.984 0.765 0.861
RCC 0.969 0.778 0.863
CCC 0.984 0.753 0.853
SCC 0.953 0.753 0.841

Ensemble (All) MCC 0.983 0.728 0.837
(LR + LR + LR) RCC 0.968 0.753 0.847

CCC 0.983 0.716 0.829
SCC 0.971 0.815 0.886

NN (MPNet) MCC 0.970 0.790 0.871
RCC 0.971 0.815 0.886
CCC 0.970 0.790 0.871

UNED-NLP Run #4 0.809 0.938 0.869
SINAI Run #2 0.908 0.728 0.808
UNSL Run #1 0.461 0.938 0.618

64

Chapter 4. Results

Table 4.8: Decision-based evaluation results of the final models after analysing 100 writings
of the official testing set of task 2, compared to some of the best runs in eRisk 2022.

Model Criterion P R F1
SCC 0.637 0.663 0.650

NB (Tf-Idf) MCC 0.639 0.633 0.636
RCC 0.644 0.663 0.653
CCC 0.659 0.592 0.624
SCC 0.193 0.398 0.26

LR (GloVe_CC) MCC 0.294 0.327 0.309
RCC 0.260 0.327 0.290
CCC 0.240 0.378 0.294
SCC 0.714 0.255 0.376

LR (MPNet) MCC 0.720 0.184 0.293
RCC 0.714 0.255 0.376
CCC 0.714 0.153 0.252
SCC 0.639 0.398 0.491

Ensemble (All) MCC 0.688 0.337 0.452
(NB + LR + LR) RCC 0.660 0.357 0.464

CCC 0.642 0.347 0.450
SCC 0.333 0.898 0.486

NN (MPNet) MCC 0.615 0.602 0.608
RCC 0.446 0.806 0.575
CCC 0.667 0.551 0.603

NLPGroup-IISERB Run #0 0.682 0.745 0.712
BLUE Run #0 0.395 0.898 0.548
SCIR2 Run #0 0.396 0.837 0.538

The additional tweaks provided significant improvements in the results, for task 1 the
highest F1-score achieved was of 0.886 with the NN model. At the time of submission
this model would have outperformed any other of those participating in eRisk in terms
of F1-score (the best model reported had F1-score of 0.869 UNED-NLP’s run #4), while
only analysing the first 100 posts, resulting in fast and accurate classifications. In the case
of detecting depressed users, we also see significant improvements, but in this case, the
best model reported, NLPGroup-IISERB’s run #0, would have still outperformed ours
with an F1-score of 0.712, where our best was the BoW model with 0.653.

It seems that the solutions developed with the BoW and CLME features were a suc-
cess while those relying on DSWE not so much, this could be due to our vectorization
approach of transforming documents into vectors by summing each token’s embedding and
then dividing by the total number of tokens across each dimension. Perhaps a solution

65

Chapter 4. Results

where documents were forced to be of a constant length in terms of tokens (with padding
and truncation) would work better by dealing with the variation in the length of the writ-
ing windows. It seems unlikely that the failure was due to the word embedding models
themselves since they have been employed in similar tasks before to greater success, as
seen in the relevant work section of the background chapter.

4.2.2 Rank-based Evaluation

In the official evaluation, P@10, NDCG@10 and NDCG@100 were measured at 1, 100,
500 and 1000 writings. Given that 1 writing is never enough for our models to make an
educated guess of an individual’s level of risk (since the first window is available only at
the time of the 10th writing), and since we do not analyse writings past the 100th, we
re-evaluated the models using the same metrics, but only at 100 writings. In this final
iteration we also fixed our previous risk estimation methodology. Now, we keep a counter
for each subject, at each inference, if the writing window classification output is 0 we
do nothing, but if it is 1, we increment the counter with the model’s confidence in its
prediction. The resulting rank-based performances are displayed in Tables 4.9 and 4.10.

66

Chapter 4. Results

Table 4.9: Rank-based evaluation results of the final models after analysing 100 writings
of the official testing set of task 1, compared to some of the best runs in eRisk 2022.

Model Criterion P@10 NDCG@10 NDCG@100
SCC 1 1 0.997

LR (Tf-Idf) MCC 1 1 0.995
RCC 1 1 0.996
CCC 1 1 0.996
SCC 0.6 0.980 0.913

LR (GloVe_CC + SA) MCC 0.9 1 0.938
RCC 0.9 1 0.933
CCC 1 1 0.943
SCC 1 1 0.999

LR (MPNet) MCC 1 1 0.999
RCC 1 1 0.993
CCC 1 1 0.999
SCC 1 1 0.987

Ensemble (All) MCC 1 1 0.984
(LR + LR + LR) RCC 1 1 0.981

CCC 1 1 0.982
SCC 1 1 0.999

NN (MPNet) MCC 1 1 0.999
RCC 1 1 0.999
CCC 1 1 1

UNSL Run #1 1.0 1.0 0.90
BLUE Run #1 1.0 1.0 0.89

UNED-NLP Run #4 1.0 1.0 0.88

67

Chapter 4. Results

Table 4.10: Rank-based evaluation results of the final models after analysing 100 writings
of the official testing set of task 2, compared to some of the best runs in eRisk 2022.

Model Criterion P@10 NDCG@10 NDCG@100
SCC 0.9 0.950 0.928

NB (Tf-Idf) MCC 0.9 0.950 0.931
RCC 0.8 0.956 0.929
CCC 0.8 0.950 0.934
SCC 0.8 0.917 0.849

LR (GloVe_CC) MCC 0.6 0.879 0.850
RCC 0.6 0.910 0.873
CCC 0.5 0.907 0.866
SCC 0.7 0.776 0.860

LR (MPNet) MCC 0.8 0.993 0.945
RCC 0.8 0.975 0.943
CCC 0.9 0.990 0.948
SCC 0.7 0.973 0.920

Ensemble (All) MCC 0.7 0.991 0.932
(NB + LR + LR) RCC 0.8 0.961 0.932

CCC 0.7 0.972 0.926
SCC 0.9 0.984 0.946

NN (MPNet) MCC 0.8 0.983 0.945
RCC 0.8 0.975 0.940
CCC 0.9 0.977 0.942

BLUE Run #1 0.7 0.64 0.67
Sunday-Rocker2 Run #1 0.9 0.93 0.66

UNSL Run #1 0.6 0.73 0.64

These results suggest that all of our models, even those that performed worse in terms
of final decisions (decision-based evaluation) are very capable of ranking the subjects in
terms of estimated risk, both when looking at the top 10, and more impressively, at the top
100 highest risk subjects. Though this is not only a consequence of our models’ quality,
but also of the risk estimation process chosen.

4.3 Summary

Due to various tuning and implementation mistakes, the initial results were found to
be subpar, but we managed to significantly improve them by introducing some changes
and corrections in the training, validation and testing stages of the experimental process.
In the case of the writing window classifiers:

68

Chapter 4. Results

• Added an additional DSWE pre-trained model (GLOVE_CC) for feature extraction.

• Added an additional CLME pre-trained model (MPNet) for feature extraction.

• Trained NNs alongside the initial classic ML algorithms.

As for the user classification stage:

• Used 5-fold CV (by re-training the models with the optimized parameters for every
iteration) instead of a single train/validation split.

• Included the left-out (due to undersampling) control subject data.

• Tested additional decision criteria (MCC, RCC and CCC).

Regarding the final testing, we also fixed our code to work as initially intended, in
terms of only analysing the initial 100 writings for each subject, and providing the correct
risk estimation for the rank-based evaluation.

Regarding the decision-based metrics, the best model in our final results for task 1
outperformed all of the models used by the other teams participating in eRisk, narrowly
beating UNED-NLP’s run #4 in terms of F1-score. As for task 2 our final models were also
among the top performers of those present in eRisk, though they still get outperformed
by some of the others.

In the case of the rank-based metrics, our models seem to be very good at ranking the
subjects in terms of risk estimation, achieving the best results across all metrics considered
for both tasks.

69

Chapter 5

Conclusions

This project’s goal was to determine how effective machine learning methods can be in
detecting subjects at risk of suffering from mental illnesses, using their writings extracted
from social media platforms. To this end, we participated and published a paper [34] in
2022’s edition of CLEF eRisk, on tasks 1 and 2, concerned with detecting pathological
gambling and depression respectively.

In the experimental section, we made it a goal of ours to compare the effectiveness
of the 3 types of textual features most commonly found in the literature, though we also
performed some experiments including sentiment analysis features. We saw that despite
the different degrees of complexity regarding the various textual features, models trained
with Bag-of-Words and contextualised language model features performed best while those
using features of distributional semantics word embeddings faltered, perhaps due to our
implementation method. The inclusion of sentiment analysis features did not prove to be
very useful in our experiments, despite the fact that it has been employed in the literature
to great success, perhaps more experiments with different sentiment analysis tools or
different integration methods would be required to fully take advantage of the information
they provide.

The results varied significantly for task 1 and 2, with task 2 solutions achieving worse
F1-scores across the board. This may be due to a variety of factors, either originating
from the quality of dataset used, our methods, or perhaps due to an inherent difficulty in
detecting depression from social media speech. It may be the case that depressed subjects
are more subtle in their cues than pathological gamblers, this hypothesis is supported by
the quality of the results achieved in task 1 with BoW features, showing us that the use
of certain specific terms like "gambling", "bet", "wager" or "money" is very relevant when
making the distinction from the control group. While in the case of task 2, the most
influential tokens in the model with BoW features were mostly common terms that would
not necessarily be associated with depression.

There are a lot of different ways to further improve on this work. We could gather
more data to form a new dataset, consider more feature types besides our main 3, by
including descriptive features for instance, since the statistical analysis of our datasets

71

Chapter 5. Conclusions

matched those of works that got good results employing such features. We could also
further invest in the main 3 by experimenting with other pre-trained models or even by
training or fine-tuning some of those ourselves. And last but not least, we could try to
tackle the decision criterion section of the problem in a more ML-based manner rather
than using pre-determined rules, by letting models such as NNs come up with their own
decision protocols learned by analysing large amounts of the writing window models’
output (turning the several confidence values into a classification).

Nevertheless, our experiments proved that ML is a powerful tool to be associated with
more standard/clinical procedures for an early detection of mental health problems, with
varying degrees of success partly depending on the mental issue being addressed.

72

References

[1] Health and Well-Being. Online; accessed January, 2022.
url: https://www.who.int/data/gho/data/major-themes/health-and-well-

being (cit. on p. 1).

[2] Suicide - key facts. Online; accessed January, 2022. 2021.
url: https://www.who.int/news-room/fact-sheets/detail/suicide (cit. on
p. 1).

[3] Michael J. Paul and Mark Dredze. “Social Monitoring for Public Health.” In: Syn-
thesis Lectures on Information Concepts, Retrieval, and Services 9 (5 Aug. 2017),
pp. 1–183. issn: 1947-945X. doi: 10.2200/S00791ED1V01Y201707ICR060. (Cit. on
p. 3).

[4] Fabio Crestani, David E. Losada, and Javier Parapar. “Early Detection of Mental
Health Disorders by Social Media Monitoring.” In: Studies in Computational Intel-
ligence 1018 (2022). Ed. by Fabio Crestani, David E. Losada, and Javier Parapar.
doi: 10.1007/978-3-031-04431-1. (Cit. on p. 4).

[5] Roc Curve. Online; accessed January, 2022. 2018.
url: https://commons.wikimedia.org/wiki/File:Roc_curve.svg (cit. on p. 10).

[6] Susel Góngora Alonso, Isabel de la Torre-Díez, Sofiane Hamrioui, Miguel López-
Coronado, Diego Calvo Barreno, Lola Morón Nozaleda, and Manuel Franco. “Data
Mining Algorithms and Techniques in Mental Health: A Systematic Review.” In:
Journal of Medical Systems 42 (9 Sept. 2018), p. 161. issn: 0148-5598. doi: 10.

1007/s10916-018-1018-2. (Cit. on p. 10).

[7] Zhijun Yin, Lina M. Sulieman, and Bradley A. Malin. “A systematic literature review
of machine learning in online personal health data.” In: Journal of the American
Medical Informatics Association 26 (6 Mar. 2019), pp. 561–576. issn: 1527974X.
doi: 10.1093/JAMIA/OCZ009. (Cit. on p. 10).

[8] Decision Tree - survival of passengers on the Titanic. [Online; accessed January,
2022]. 2020.
url: https://commons.wikimedia.org/wiki/File:Decision_Tree_-_survival_

of_passengers_on_the_Titanic.jpg (cit. on p. 13).

73

https://www.who.int/data/gho/data/major-themes/health-and-well-being
https://www.who.int/data/gho/data/major-themes/health-and-well-being
https://www.who.int/news-room/fact-sheets/detail/suicide
https://doi.org/10.2200/S00791ED1V01Y201707ICR060
https://doi.org/10.1007/978-3-031-04431-1
https://commons.wikimedia.org/wiki/File:Roc_curve.svg
https://doi.org/10.1007/s10916-018-1018-2
https://doi.org/10.1007/s10916-018-1018-2
https://doi.org/10.1093/JAMIA/OCZ009
https://commons.wikimedia.org/wiki/File:Decision_Tree_-_survival_of_passengers_on_the_Titanic.jpg
https://commons.wikimedia.org/wiki/File:Decision_Tree_-_survival_of_passengers_on_the_Titanic.jpg

References

[9] Non-linear SVM. Online; accessed January, 2022. 2015.
url: https://www.researchgate.net/figure/4-Non-linear-SVM-Image-from-

19_fig7_334784703 (cit. on p. 14).

[10] Fundamentals of Neural Networks. Online; accessed January, 2022. 2019.
url: https://wandb.ai/site/articles/fundamentals-of-neural-networks

(cit. on p. 16).

[11] Creating Word Embeddings: Coding the Word2Vec Algorithm in Python using Deep
Learning. Online; accessed January, 2022. 2020.
url: https://towardsdatascience.com/creating-word-embeddings-coding-

the- word2vec- algorithm- in- python- using- deep- learning- b337d0ba17a8

(cit. on p. 20).

[12] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Estimation of
Word Representations in Vector Space.” In: 1st International Conference on Learning
Representations, ICLR 2013 - Workshop Track Proceedings (Jan. 2013).
url: https://arxiv.org/abs/1301.3781v3 (cit. on p. 20).

[13] A Complete Guide To Understand Evolution of Word to Vector. Online; accessed
January, 2022. 2021.
url: https://medium.com/co-learning-lounge/nlp-word-embedding-tfidf-

bert-word2vec-d7f04340af7f (cit. on p. 21).

[14] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global Vec-
tors for Word Representation.” In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162.
url: https://aclanthology.org/D14-1162 (cit. on pp. 21, 42).

[15] Implementing Deep Learning Methods and Feature Engineering for Text Data: The
GloVe Model. Online; accessed January, 2022. 2018.
url: https://www.kdnuggets.com/2018/04/implementing- deep- learning-

methods-feature-engineering-text-data-glove.html (cit. on p. 21).

[16] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. “Enriching
Word Vectors with Subword Information.” In: Transactions of the Association for
Computational Linguistics 5 (July 2016), pp. 135–146. issn: 2307-387X. doi: 10.

1162/tacl_a_00051.
url: https://arxiv.org/abs/1607.04606v2 (cit. on p. 22).

[17] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. 2018.
doi: 10.48550/ARXIV.1802.05365.
url: https://arxiv.org/abs/1802.05365 (cit. on p. 22).

74

https://www.researchgate.net/figure/4-Non-linear-SVM-Image-from-19_fig7_334784703
https://www.researchgate.net/figure/4-Non-linear-SVM-Image-from-19_fig7_334784703
https://wandb.ai/site/articles/fundamentals-of-neural-networks
https://towardsdatascience.com/creating-word-embeddings-coding-the-word2vec-algorithm-in-python-using-deep-learning-b337d0ba17a8
https://towardsdatascience.com/creating-word-embeddings-coding-the-word2vec-algorithm-in-python-using-deep-learning-b337d0ba17a8
https://arxiv.org/abs/1301.3781v3
https://medium.com/co-learning-lounge/nlp-word-embedding-tfidf-bert-word2vec-d7f04340af7f
https://medium.com/co-learning-lounge/nlp-word-embedding-tfidf-bert-word2vec-d7f04340af7f
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://www.kdnuggets.com/2018/04/implementing-deep-learning-methods-feature-engineering-text-data-glove.html
https://www.kdnuggets.com/2018/04/implementing-deep-learning-methods-feature-engineering-text-data-glove.html
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://arxiv.org/abs/1607.04606v2
https://doi.org/10.48550/ARXIV.1802.05365
https://arxiv.org/abs/1802.05365

References

[18] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. “Language Models are Few-Shot Learners.” In: (2020). arXiv:
2005.14165 [cs.CL]. (Cit. on p. 22).

[19] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.” In:
NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies - Proceedings
of the Conference 1 (Oct. 2018), pp. 4171–4186.
url: https://arxiv.org/abs/1810.04805v2 (cit. on pp. 22, 23).

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N. Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention Is All You Need.” In:
Advances in Neural Information Processing Systems 2017-December (June 2017),
pp. 5999–6009. issn: 10495258.
url: https://arxiv.org/abs/1706.03762v5 (cit. on p. 22).

[21] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. ALBERT: A Lite BERT for Self-supervised Learning of Language
Representations. 2019. doi: 10.48550/ARXIV.1909.11942.
url: https://arxiv.org/abs/1909.11942 (cit. on p. 22).

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. 2019. doi: 10.48550/ARXIV.1907.11692.
url: https://arxiv.org/abs/1907.11692 (cit. on p. 22).

[23] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. XLNet: Generalized Autoregressive Pretraining for Language Un-
derstanding. 2019. doi: 10.48550/ARXIV.1906.08237.
url: https://arxiv.org/abs/1906.08237 (cit. on pp. 23, 44).

[24] Glen Coppersmith, Ryan Leary, Patrick Crutchley, and Alex Fine. “Natural Lan-
guage Processing of Social Media as Screening for Suicide Risk.” In: Biomedical Infor-
matics Insights 10 (Jan. 2018). issn: 1178-2226. doi: 10.1177/1178222618792860.
(Cit. on pp. 23, 30).

[25] Robert Thorstad and Phillip Wolff. “Predicting future mental illness from social
media: A big-data approach.” In: Behavior Research Methods 51 (4 Aug. 2019).
issn: 1554-3528. doi: 10.3758/s13428-019-01235-z. (Cit. on pp. 24, 30).

75

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1810.04805v2
https://arxiv.org/abs/1706.03762v5
https://doi.org/10.48550/ARXIV.1909.11942
https://arxiv.org/abs/1909.11942
https://doi.org/10.48550/ARXIV.1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.48550/ARXIV.1906.08237
https://arxiv.org/abs/1906.08237
https://doi.org/10.1177/1178222618792860
https://doi.org/10.3758/s13428-019-01235-z

References

[26] Raymond Chiong, Gregorius Satia Budhi, Sandeep Dhakal, and Fabian Chiong. “A
textual-based featuring approach for depression detection using machine learning
classifiers and social media texts.” In: Computers in Biology and Medicine 135 (Aug.
2021), p. 104499. issn: 0010-4825. doi: 10.1016/J.COMPBIOMED.2021.104499.
(Cit. on pp. 25, 30, 34).

[27] Xuetong Chen, Martin D. Sykora, Thomas W. Jackson, and Suzanne Elayan. “What
about Mood Swings: Identifying Depression on Twitter with Temporal Measures of
Emotions.” In: The Web Conference 2018 - Companion of the World Wide Web
Conference, WWW 2018 (Apr. 2018), pp. 1653–1660. doi: 10 . 1145 / 3184558 .

3191624. (Cit. on pp. 25, 30).

[28] Martin D. Sykora, Thomas W. Jackson, Ann O’Brien, and Suzanne Elayan. “Emo-
tive ontology: Extracting fine-grained emotions from terse, informal messages.” In:
Proceedings of the IADIS International Conference Intelligent Systems and Agents
2013, ISA 2013, Proceedings of the IADIS European Conference on Data Mining
2013, ECDM 2013 (2013), pp. 19–26. issn: 1646-3692. (Cit. on p. 26).

[29] Yla R. Tausczik and James W. Pennebaker. “The Psychological Mean-
ing of Words: LIWC and Computerized Text Analysis Methods:” in:
http://dx.doi.org/10.1177/0261927X09351676 29 (1 Dec. 2009), pp. 24–54. issn:
0261927X. doi: 10.1177/0261927X09351676.
url: https://journals.sagepub.com/doi/10.1177/0261927X09351676 (cit. on
p. 26).

[30] Ahmet Emre Aladag, Serra Muderrisoglu, Naz Berfu Akbas, Oguzhan Zahmacioglu,
and Haluk O. Bingol. “Detecting Suicidal Ideation on Forums: Proof-of-Concept
Study.” In: J Med Internet Res 2018;20(6):e215 https://www.jmir.org/2018/6/e215
20 (6 June 2018), e9840. issn: 14388871. doi: 10.2196/JMIR.9840.
url: https://www.jmir.org/2018/6/e215 (cit. on pp. 26, 30).

[31] Amir Hossein Yazdavar, Hussein S. Al-Olimat, Monireh Ebrahimi, Goonmeet Bajaj,
Tanvi Banerjee, Krishnaprasad Thirunarayan, Jyotishman Pathak, and Amit Sheth.
“Semi-Supervised approach to monitoring clinical depressive symptoms in social me-
dia.” In: Proceedings of the 2017 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, ASONAM 2017 (July 2017), pp. 1191–
1198. doi: 10.1145/3110025.3123028.
url: http://dx.doi.org/10.1145/3110025.3123028 (cit. on pp. 27, 30).

[32] Fidel Cacheda, Diego Fernandez, Francisco J. Novoa, and Victor Carneiro. “Early
detection of depression: Social network analysis and random forest techniques.” In:
Journal of Medical Internet Research 21 (6 June 2019). issn: 14388871. doi: 10.

2196/12554. (Cit. on pp. 27, 30, 35).

76

https://doi.org/10.1016/J.COMPBIOMED.2021.104499
https://doi.org/10.1145/3184558.3191624
https://doi.org/10.1145/3184558.3191624
https://doi.org/10.1177/0261927X09351676
https://journals.sagepub.com/doi/10.1177/0261927X09351676
https://doi.org/10.2196/JMIR.9840
https://www.jmir.org/2018/6/e215
https://doi.org/10.1145/3110025.3123028
http://dx.doi.org/10.1145/3110025.3123028
https://doi.org/10.2196/12554
https://doi.org/10.2196/12554

References

[33] David E. Losada and Fabio Crestani. “A test collection for research on depression and
language use.” In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9822 LNCS
(2016), pp. 28–39. issn: 16113349. doi: 10.1007/978-3-319-44564-9_3. (Cit. on
p. 29).

[34] Rodrigo Ferreira, Alina Trifan, and José Luís Oliveira. “Early risk detection of mental
illnesses using various types of textual features.” In: Working Notes of CLEF 2022 -
Conference and Labs of the Evaluation Forum. 2022. (Cit. on pp. 31, 58, 71).

[35] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. “Optuna: A Next-generation Hyperparameter Optimization Framework.”
In: Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2019. (Cit. on p. 32).

[36] Javier Parapar, Patricia Martín-Rodilla, David E. Losada, and Fabio Crestani.
“Overview of eRisk 2021: Early Risk Prediction on the Internet.” In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 12880 LNCS (2021), pp. 324–344. issn: 16113349.
doi: 10.1007/978-3-030-85251-1_22. (Cit. on p. 33).

[37] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. “Bag of
Tricks for Efficient Text Classification.” In: arXiv preprint arXiv:1607.01759 (2016).
(Cit. on p. 34).

[38] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,
and Tomas Mikolov. “FastText.zip: Compressing text classification models.” In:
arXiv preprint arXiv:1612.03651 (2016). (Cit. on p. 34).

[39] David E. Losada, Fabio Crestani, and Javier Parapar. “eRISK 2017: CLEF lab on
early risk prediction on the internet: Experimental foundations.” In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 10456 LNCS (2017), pp. 346–360. issn: 16113349.
doi: 10.1007/978-3-319-65813-1_30. (Cit. on p. 36).

[40] David E. Losada, Fabio Crestani, and Javier Parapar. “Overview of eRisk: Early
risk prediction on the internet.” In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) 11018 LNCS (2018), pp. 343–361. issn: 16113349. doi: 10.1007/978-3-319-

98932-7_30. (Cit. on p. 36).

[41] E. Campillo-Ageitos, H. Fabregat, L. Araujo, and J. Martinez-Romo. “NLP-UNED
at eRisk 2021: self-harm early risk detection with TF-IDF and linguistic features.”
In: Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum.
2021. (Cit. on pp. 40, 51).

77

https://doi.org/10.1007/978-3-319-44564-9_3
https://doi.org/10.1007/978-3-030-85251-1_22
https://doi.org/10.1007/978-3-319-65813-1_30
https://doi.org/10.1007/978-3-319-98932-7_30
https://doi.org/10.1007/978-3-319-98932-7_30

References

[42] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand
Joulin. “Advances in Pre-Training Distributed Word Representations.” In: Proceed-
ings of the International Conference on Language Resources and Evaluation (LREC
2018). 2018. (Cit. on p. 42).

[43] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou.
MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-
Trained Transformers. 2020. doi: 10.48550/ARXIV.2002.10957.
url: https://arxiv.org/abs/2002.10957 (cit. on p. 44).

[44] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. MPNet: Masked and
Permuted Pre-training for Language Understanding. 2020. doi: 10.48550/ARXIV.

2004.09297.
url: https://arxiv.org/abs/2004.09297 (cit. on p. 44).

78

https://doi.org/10.48550/ARXIV.2002.10957
https://arxiv.org/abs/2002.10957
https://doi.org/10.48550/ARXIV.2004.09297
https://doi.org/10.48550/ARXIV.2004.09297
https://arxiv.org/abs/2004.09297

	Table of contents
	List of figures
	List of tables
	List of abbreviations
	Introduction
	Motivation
	Mental health
	Mental Illnesses and Diagnosis
	Social Data/Monitoring

	Objectives
	Outline

	Background
	Machine Learning
	Learning Categories
	Data Acquisition and Preprocessing
	Model Training and Testing
	Algorithms

	Natural Language Processing
	Data Preprocessing
	Vector Representations

	Relevant works
	Workshops and Shared Tasks
	Summary

	Methods
	Tools
	NLTK
	Scikit-learn
	Gensim
	Sentence-transformers
	PyTorch
	Optuna

	Datasets
	Pathological Gambling
	Depression

	Feature Engineering Techniques
	Models
	Writing Window Classification
	User Classification

	Summary

	Results
	Event Evaluation
	Task 1: Pathological Gambling
	Task 2: Depression

	Post-submission Results
	Decision-based Evaluation
	Rank-based Evaluation

	Summary

	Conclusions
	References

