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o júri / the jury

presidente / president Professor Doutor V́ıtor Manuel Ferreira dos Santos
Professor Associado com Agregação da Universidade de Aveiro

vogais / examiners committee Professor Doutor Raul Manuel Pereira Morais dos Santos
Professor Associado com Agregação da Escola de Ciências e Tecnologia da

Universidade de Trás-os-Montes e Alto Douro

Doutor Marco Paulo Soares dos Santos
Professor Auxiliar Convidado da Universidade de Aveiro (orientador)





acknowledgements Paulo Coelho once said “When you are enthusiastic about what you do,
you feel this positive energy. It’s very simple.”. I only wish the concept
of electromagnetic energy harvesting systems were that easy. Fortunately,
I have had the privilege of being guided by Professor Marco Santos, to
whom I owe all the patience, knowledge and spectacular mentoring skills
and without whom this thesis would not be pass the form of a mere dream
of an enthusiastic student. All my gratitude goes to you. Another word
of appreciation goes to my co-adviser Professor Jorge Ferreira for his very
useful suggestions on how to improve this work, giving a very important
contribute for shaping it in the final product. I can’t also disregard the
opportunity to acknowledge the care of Renato, who started clearing this
path one year ago and was always ready to help me along the journey. I
would also like to thank my incredible girlfriend, who has had an infinite
and unspeakable amount of patience for the last months. All the smiles
and encouragement words were crucial for me to keep pushing forward. To
my friends, because life can’t always be about work, and who were always
there to fill in the pauses with laughter and companionship. The final word
goes to my family, to whom I can’t thank enough. They have put up with
me in the most stressful situations, loving me, supporting me and rooting
for me even when I could not be as present as I would wish. You are the
best. Behind every great play there is a whole set of fundamental people
that one can easily forget, and this thesis is no exception. Thank you all
for the amazing support and for always believing this would be possible.





palavras-chave Geração de energia, gerador eletromagnético, levitação magnética,
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resumo A importância dos sistemas de geração autónoma de energia tem vindo a
crescer significativamente na comunidade cient́ıfica, visando solucionar a
insatisfação perante as soluções atuais de fornecimento de energia. Este
trabalho foca-se na otimização dos sistemas eletromagnéticos de geração
de energia com arquitetura em levitação magnética. Na literatura estão
descritos diferentes tipos de abordagens para modular, simular e analisar
a dinâmica das componentes mecânica e elétrica destes transdutores.
Contudo, nenhuma metodologia se mostrou adequada para otimizar o
desempenho destes geradores não lineares, principalmente na ocorrência
de excitações diferentes da qual foi geometricamente projetado. O principal
objetivo deste estudo é a maximização do desempenho destes geradores,
através do desenvolvimento de uma metodologia de otimização geométrica.
Desenvolveu-se uma ferramenta de otimização para controlar a dinâmica
do(s) ı́man(es) em levitação, tanto para excitações conhecidas a priori, como
para excitações variáveis. Usando um modelo que aborda analiticamente a
dinâmica fundamental destes geradores, foi variada a frequência, aceleração,
comprimento do gerador e a massa do(s) ı́man(es) em levitação. O
comprimento adaptativo ótimo foi explorado a partir da análise paramétrica,
permitindo deste modo obter maiores eficiências face a variações nos
padrões de excitação.
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abstract The importance of autonomous energy harvesting systems has been rising
among the scientific community. These systems are seen as the answer
for the dissatisfaction felt towards the actual energy harvesting devices.
Different approaches to modulate, simulate, and analyse the mechanical
and electrical dynamics of these transductors are described in the literature.
However, no methodology has been proved effective in the optimization of
these non linear generators’ performance, especially in what the occurrence
of different excitations than the ones to which it was geometrically projected
is concerned. The present thesis focus in the optimization of energy
harvesting from the oscillations of magnetic levitation. The main goal of this
work is to maximize the harvesters’ performance. This was accomplished
through the development of a geometric optimization tool, by means of a
sophisticated method that controls the levitating magnet’s dynamics for
either a priori known or variable frequencies. Based on a model that
analytically approaches the fundamental dynamics of these harvesters, the
frequency, acceleration, length of the generator and mass of the levitating
magnet(s) were varied. The optimal adaptive length was examined, which
allowed a higher efficiency when faced with variations in the excitation
patterns.
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Terminology

a1, a3, a5, a7, electromechanical polynomial coefficients

a9, a11, a13

ac half of depth of a block magnet at the origin

A area of the coil turn

Ac half of depth of a block magnet centered in (αc, βc, γc)

Az external excitation amplitude

bc half of length of a block magnet at the origin

B magnetic field density

Bc half of length of a block magnet centered in (αc, βc, γc)

Br residual magnetic flux density

c total damping coefficient

cair air damping

cc half of height of a block magnet at the origin

ce electrical damping

cfr friction damping

cm mechanical damping

Cc half of height of a block magnet centered in (αc, βc, γc)

d0 distance between the levitating and the bottom/top magnet

E(k) complete elliptic integral of the first kind

fbwn break-away forces for negative ẏ

fbwp break-away forces for positive ẏ

fCOn Coulomb forces for negative ẏ

fCOp Coulomb forces for positive ẏ

F1 excitation amplitude

Fd force of dry friction

Ffr friction force

v



Fg gravity force

Flz Lorentz force

FR repulsive magnetic force

FRd repulsive magnetic force between the moving magnet and the bottom
magnet

FRu repulsive magnetic force between the moving magnet and the top magnet

g acceleration due to gravity

H magnetic field strength

I induced current

J equivalent linear current density

J1 first order Bessel function

k, k3, k5 repulsive magnetic force polynomial coefficients

K(k) complete elliptic integral of the second kind

kvn viscous friction coefficients for negative ẏ

kvp viscous friction coefficients for positive ẏ

l coil length

Li coil impedance

Lm length of the moving magnet

Lmc distance between the moving magnet and coil

Lu length of the top fixed magnet

m mass of the levitating magnet

M saturation magnetization of the block magnet at the origin

M ′ saturation magnetization of the block magnet centered in (αc, βc, γc)

Md saturation magnetization of the bottom fixed magnet

Mm saturation magnetization of the moving magnet

Mu saturation magnetization of the top fixed magnet

N number of coil turns

Ni number of independent multi-turn coils

Nr number of radial turns in a coil

Ny number of vertical turns in a coil

p magnetic spatial period

Q quality factor

ri inner radius of the coil

rm mean coil radius

vi



Rc auxiliary variable as a function of the coil parameters

Rdi radius of the hole of the annuli base magnet

Ri coil internal resistance

Rl load resistance

Rm radius of the levitating magnet

Rmi radius of the hole of the annuli levitating magnet

Ru radius of the top fixed magnet

S section of the wire

Sd distance between the moving magnet and the fixed magnet at the bottom

Su distance between the moving magnet and the fixed magnet at the top

t time

vmin low speed region −vmin < ẏ < vmin, where ẏ = 0 was considered

V electromotive force (voltage)

y reference frame to describe the displacement of the levitating magnet,
relative to the device

ẏ velocity of the levitating magnet

ÿ acceleration of the levitating magnet

y0 initial position of the levitating magnet

z fixed reference frame to describe the motion of the device

z̈ acceleration of the device

α electromechanical coefficient

αc x coordinate of the block magnet centre

αp parity phase equal to 0 or π/2 for an even or uneven number of alternate
magnets, respectively

βc y coordinate of the block magnet centre

γc z coordinate of the block magnet centre

µ coulomb’s friction coefficient

µ0 free space magnetic permeability

µr relative magnetic permeability

ξ damping factor

ρ wire resistivity

τ magnetic moment

ϕ magnetic flux

ω angular frequency

ωn angular ressonant frequency

Ω angular frequency of excitation

vii
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Chapter 1

Introduction

1.1 Context

Nowadays, the concept of energy harvesting system is of progressive importance in the
scientific community [1]. There have been great efforts in the development of micro-systems,
ultra-low power systems and high performance distributed sensor systems. Any of these
generators can be attached to a load and used to power an external system for future
applications in autonomous sensor operation, mobile applications, communication network,
wearable devices and biomedical implants. Nonetheless, current solutions to power supply
those types of equipments still cannot completely satisfy some requirements and the use of
batteries continues to be a problem, as they either have a limited ability to storage energy
or its replacement is impractical or inconvenient. Energy scavenging sources from the
environment is increasingly becoming an interesting option for powering electronic devices,
including the use of batteries with lower energy requirements [2]. Despite presenting
themselves as an interesting alternative, renewable energies, such as the wind and the sun,
are intermittent, leading to a complex network management (non continuous production
expenses, energy storage systems development, expensive devices and installation costs)
that still require improvement. Therefore, the need to exploit and develop better solutions
to the non-intermittent renewable energy production endures.

Mechanical kinetic energy can be converted into useful electric energy through
piezoelectric, electromagnetic, electrostatic and magnetostrictive transduction mechanisms
[3].

This work is focused on the electromagnetic energy harvesting systems using magnetic
levitation architectures. They hold potential for the implementation of high performance
energy harvesting for a wide range of technologies due to their distinctive properties, such as
their easy application, non-complex design and ability to operate autonomously with stable
performances for long periods of time, due to the reduced maintenance requirements [4].

The basic configuration of these systems relies on a hollowed structure tube, 3 permanent
magnets and a coil. The polarity of the magnets is disposed so that the levitating magnet
experiences a repulsive force due to the fixed magnets, which are attached to the extremities
of the container [5]. A portion of the cylinder is wrapped in a multilayer coil around the outer
surface of the container [4]. Several variations of this model have already been proposed
concerning structure geometry (circular, rectangular), number of levitating magnets (up to
4), number of coil windings (up to 5) and geometry of the magnets (spherical, cylindric, block
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and ring). In addition, guidance systems have also been considered in levitation magnets.
When an acceleration is applied to the device, the levitating magnet oscillates in the

guided container, moving relative to the coil and causing the magnetic flux through the coil
to change [6]. In the best-case scenario, the frequency of the moving magnet matches the
resonant frequency and thus the power output is maximized [5]. However, this only happens
for harmonic mechanical inputs with a dominant frequency [7]. Morever, low frequency
excitations add significant challenges to maximize energy harvesting [8]. In fact, it is difficult
to match low frequencies while keeping the structure as minimal as possible [9].

There is no scientific description of a tool that stipulates the harvester’s performance
according to specific constructive measurements and external excitations. The geometrical
optimization is of paramount importance in order to maximize the harvester’s behavior.
Among all the parameters prone to optimization, the generator’s optimal length ought to be
explored, since it can be used to fulfil the adaptability requirements to excitation variations.
Furthermore, it presents itself as a sophisticated method to control the levitating magnet’s
dynamics.

It is important to notice that it is hard to ensure optimal performances if generators
are not intelligently controlled. Since the external excitation are usually not known a priori
and present time-variating patterns, a suitable generator geometry must be designed, so the
levitating magnet can easily vibrate ensuring resonant conditions [10]. When using linear
system models, geometric optimization and adaptative positional control of components prior
to fabrication cannot be carry out, as such systems exhibit highly non-linear behaviour [4].

1.2 Objectives

This study aims to develop an optimization tool to design electromagnetic generators that
will allow: (1) geometrical optimization to a priori known excitations; and (2) controlled
geometrical optimization to variable excitations. In order to accomplish this goal, a method
capable of maximizing the efficiency of these transducers, including for variable excitation
patterns, is presented.

This technological tool must allow to analyse the potential of adjusting the generator
length according to variable excitations, variable damping coefficients and variable levitating
masses, such that energy harvesting can be maximized.

As described in the literature review of the chapter 2, no similar research was already
conducted by the scientific community. Some stages were required to accomplish this study,
which are described in detail below:

� Identify a non-linear model for suitable energy harvesting analysis;

� Identify design parameters that are able to be optimized;

� Identify geometric constrains that must be considered prior to design optimization;

� Analyse the impact of geometric optimization on the dynamics of levitating magnet and
energy harvesting of two manufactured generators.
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Chapter 2

Literature Review

In order to better understand the transduction mechanism of harvesting systems using
magnetic levitation, a summary and explanation of the current state of knowledge is made in
this section. Relevant articles on this scope were selected, whose key findings were highlighted
with the purpose of providing a constructive analysis of the methodologies and approaches
of the researches. Throughout this work it was published a paper that concerns a brief
bibliographic review on this type of electromagnetic generators [11].

Section 2.1 analyses different types of configurations such as the experimental procedures
that validate each model. Section 2.2 is focused on the parameters that play a significant role
on the dynamic governmental differential equations of motion, magnetic field from levitating
magnets, repulsive magnetic force between permanent magnets, induced electromotive force
from the relative motion between coil and magnet, electric current, electromechanical coupling
coefficient, friction and damping forces. Each phenomenon was studied and qualitatively
compacted - empirical, analytical, semi-analytical or through finite element method (FEM)
- on a table that figures in the beginning of section 2.2. Likewise, each phenomenon is
individually analysed, to introduce the main equations used by the authors to characterize
their models.
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2.1 Types of configurations and experimental validation

Constantinou, Mellor and Wilcox [12, 13] proposed an arrangement that consists of three
cylindrical annuli permanent magnets, with similar poles facing each other. The two outer
magnets are fixed and suspend the central magnet. To constrain the levitating magnet, a shaft
is positioned throw the centre axis of the structure. A non-linear spring effect is afforded by
the repulsive forces between magnets. This arrangement is shown in figure 2.1.

Figure 2.1: Schematic representation of the electromagnetic harvester proposed by Constantinou,
Mellor and Wilcox [12, 13].

It is observed that for three different outer magnet separations, the magnet displacement
varies as a function of the frame excitation frequency. It is shown the distinct measured
voltages generated across the coil terminals for different separation distances between fixed
magnets [12].

By comparing measured and computed frequency responses of the absolute velocity when
the system is excited at a sinusoidal frame wave, the mechanical damping term is assumed to
be viscous (the measurements were under open circuit conditions, eliminating any electrical
damping contributions). Besides, under the same conditions and using the same methodology,
the mechanical damping factor was compared from responses to calculated frequencies using a
linear model of suspension, for different shaft materials. The measured and calculated absolute
velocity of levitating magnet for different excitation amplitudes under unloaded conditions,
open circuit voltage harvested under a frame excitation of 2g and frequency of 36 Hz, power
curves at excitation frequencies of 37 and 38 Hz and frame acceleration of 2.1g are compared.
Different parameters were included like the power density, the normalized power density (with
respect to the input acceleration squared) and the effectiveness (a measure of how closely a
specific design approaches its ideal performance and aims to compare the performances of
devices as functions of their overall size) [13].

Similarly, by Mann and Sims [14] and Morgado et al. [6] the device comprises two fixed
and an oriented levitating centre magnet, as one can see in figure 2.2. Moreover, two coils
are wounded around the outer casing. The main difference between the two systems is that
in [14] the ends of the tube are threaded so that, statically, it can be used to vary the spacing
between the magnets.
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Figure 2.2: Schematic representation of the electromagnetic harvester proposed by Mann and Sims
[14].

The model proposed by Mann and Sims [14] was used to perform a series of relative
velocity predictions with frequency for several excitation amplitudes and two damping levels
(there is a significant decrease in relative velocity associated with an increase in damping).
Two important conclusions rely on the fact that those curves show the system nonlinearity
which could potentially be used to provide large relatively velocities over a winder range of
excitation frequencies and that the maximum relative velocity does not always occur at the
location of the linear resonance. Their study also compares the relative velocity responses of
the nonlinear device with those of a linear device. Theoretical predictions are validated with
experimental tests. Obtained velocity predictions show that with low excitation levels, there
is no hysteresis in upward or downward responses. However, the increase of excitation will
cause multiple periodic attractors and hysteresis. The authors also developed an expression
for the excitation frequency where the maximum power occurs.

In the model proposed by Morgado et al. [6], the magnetic force is represented together
with a linear and a cubic polynomial approximation. Here, reasonable approximations
(specially the cubic) on small fitting regions can be obtained, but if the fitting region is
increased, large errors will be expressed by fitting curves. The vector field is presented
where, due to the cylindrical symmetry, only the longitudinal semi-plane is represented.
Also, four experimental curves of the harvested electromotive force together with a
simulated one are given.

A electromagnetic energy harvester using magnetic levitation similar to the structure
previously addressed is presented in [4, 10, 3, 15], but with only one coil instead of two. A
schematic representation of this device is illustred in figure 2.3.

The model presented by Santos et al. [4] was validated comparing the steady-state and
transient responses for the experimental and simulated voltage versus time, for different
amplitude and sinusoidal frequency excitations. Very good agreement of these results
demonstrates that results were achieved with energy errors lower than 15% and
cross-correlations higher than 86%.
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Figure 2.3: Schematic representation of the electromagnetic harvester proposed by Santos et al. [4].

The model proposed by Saha et al. [10] analyses three different types of structures: one
identical to [4]; other similar to [1] in which to increase the flux linkage, two levitating magnets
were used (instead of one); other similar to the latter, but the generator has only one fixed
magnet to increase the displacement.

By Kecik et al. [3] is proposed a new definition of the coupling coefficient (inductive) which
relates mechanical and electrical components. Experimental tests show that this coefficient is
a nonlinear function of the magnet position and highly depends on the magnet coordinate in
the coil (the maximum energy is obtained in the coil ends). It is shown the quasi-static and
the dynamic tests of the coupling coefficient. The authors compared the resonance curves
of magnet’s displacement, velocity and recovered current for the fixed and the proposed
polynomial. It is also showed the bifurcation diagram of the magnet’s displacement versus the
frequency of excitation for three fixed and polynomial values of coupling coefficient. Finally,
it is analysed the bifurcation diagram of the coupling coefficient versus harvested current for
two specific angular frequencies.

By Foisal, Hong and Chung [15] two models with an array of four generators (all of
them resembling the one presented in [4] but arranged as in figure 2.4) are designed to
demonstrate the possibility of harvesting energy from different environmental frequencies. In
the model (a), the structure consists of all generators placed side-by-side while in model (b),
the generators are placed one above the other. Here, it is studied the influence of the magnetic
field intensity of the top and moving magnet on a moving mass and spring constant, and at
resonant frequency. The measured open circuit voltage as a function of the frequency for
different combinations of moving and fixed magnets as well as the measured output power
and rectified voltage at different input frequencies are analysed.
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Figure 2.4: Schematic representation of the electromagnetic harvester array proposed by Foisal, Hong
and Chung [15]: model (a) (top view) and model (b) (cross sectional view).

The new generator proposed by Morais et al. [16] is composed of two external coils wired
in opposite directions with a gap between them. Inside the tube, there is a neodymium
magnet and a spring; at the bottom there is also a magnet that functions as a magnetic
break, as it is displayed in figure 2.5.

Figure 2.5: Schematic representation of the electromagnetic harvester proposed by Morais et al. [16].
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The first prototype was composed by a coil and a magnet. Poor results were obtained
due to the magnet’s smaller length when compared to the coil’s. This phenomena was
mostly explained by the reduced weight of the inertial mass, which could not allow
resonance. Moreover, the proximity of the magnet poles was also having a negative impact
on the results - the coil’s signal had an amplitude, positive and negative, smaller than the
one measured in each separated coil. As a result, the poles of the magnet were working
against each other in what concerns the coil. To reduce or eliminate the opposite effects, the
distance between the poles was increased through the implementation of a longer magnet so
that the magnetic field lines became almost perpendicular to the wiring direction of the coil.
Careful design optimizations led to the construction of a new generator without increasing
the initial volume. The effects on the output voltage were compared in the two
configurations. The transducer’s theoretical and practical voltage and power evolution for a
set of loads and different external excitation frequencies were evaluated.

A new electromagnetic harvester model, with block magnets, was proposed by Berdy,
Valentino and Peroulis [17, 5] and harvest one of the highest reported power densities. This
specific structure’s shape (figure 2.6) allows more flexibility in design compared to the
typical cylindrical magnet devices (allows it to be thinner). It was implemented to harvest
energy through human walking. The fixed magnets could be (optionally) at the top end of
the tube, depending on the orientation of the device with respect to the gravity.

Figure 2.6: Schematic representation of the electromagnetic harvester proposed by Berdy, Valentino
and Peroulis [17, 5].

Berdy, Valentino and Peroulis [17] added a term for dry friction damping to the parasitic
damping (as it is typically modelled as viscous damping). A significant difference is the
inclusion of both viscous and dry friction dampings. The model was implemented and was
computed using Simulink. The static displacement and resonant frequency calculations were
repeated for several different fixed magnets lengths. The modelled and measured open circuit
ringdown waveforms were analysed. In order to evaluate the optimal operating frequency,
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the open circuit voltage amplitude was found frequency at 0.05g excitation acceleration. To
estimate the optimal resistance and frequency to maximize RMS1 power output, the resistive
load was swept while also using several frequencies between 6.3 and 6.6 Hz. Fixing the
frequency in 6.4 Hz, the coil location was swept to certify that the device was assembled in
the best possible way. As expeted the results show a sudden decrease in voltage at frequencies
slightly below the peak. The error was justified due to the simplification of the damping
parameter.

Two main factors were explored in order to improve the device performance by reducing
parasitic damping. Two container sections are studied and consist of a container with and
without a guide rail - the purpose of the guide rail is to minimize the contact area of the
container with the levitating magnet and, consequently, to achieve a lower damping. As the
coefficients of friction vary between materials and the container material is limited to electrical
insulators (conductive materials could induce eddy currents), Berdy, Valentino and Peroulis
[5] made containers of acrylic and polytetrafluorethylene (also known as Teflon). A third effect
studied is the angle of attachment and how does this affects power output and damping. For
that, three different apparatuses on the shaker instrumented with accelerometer: vertical, 15
angle offset and 30 angle offset conditions were tested. For all three containers (acrylic, no
rail; acrylic, with rail; Teflon, with rail) mounted in three different configurations: (i) the
open circuit ringdown waveform was captured; (ii) a resistance was loaded to the device and
the RMS power was found; the resonant frequency was also analysed and the output power
for each device was measured for accelerations between 0.05g to 0.2g. For the first time, the
power output was studied when placed on 10 human participants while walking and running
on a treadmill from 3.2 km/h to up to 7 km/h. An acceleration waveform and its Fourier
transform are shown. The measured and calculated voltage across the load for one participant
are compared, as well as the error between them. There was observed a large variation in
the power harvested between participants and it was validated by ploting the step frequency
as function of walking speed, acceleration amplitude and frequency of the five harmonics of
the step frequency and power versus 3rd harmonic frequency with 3rd harmonic acceleration
amplitude.

The energy transducer proposed by Dallago, Marchesi and Venchi [1] consists of four
magnets, two movable and two fixed, inside a Teflon tube. The generator proposed by Wang
et al. [18] is similar, but it comprises three levitating magnets. In these transducers, the
levitating magnets are disposed so that the opposite poles are facing each other, as one can
see in figure 2.7.

In [1], the damping was estimated on a prototype. Initially, the quality factor was analysed.
The amplitude of the applied acceleration was fixed at 1g and the peak of the induced voltage
was measured, while variating the frequency. In a no-load condition, a comparison was made
between the simulated and the measured voltage and the position and the flux linkage versus
time was plotted. To better understand its behaviour an analysis to the damping factor was
carried out by simulating the frequency response in terms of the peak of the induced voltage at
various damping factors. As Lorentz’s force was considered, and to demonstrate the impact of
this phenomena on model accuracy, the peak load voltage for a given acceleration amplitude
and frequency while variating the load resistance was evaluated. The maximum error between
the measurement and the simulations without the Lorentz’s force varies between 20% and

1root mean square
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80%. Considering an optimum load resistance (similar to coil resistance) the error drops to
6% at resonant frequency. Finally, it is compared the mean power delivered to the load at the
resonant frequency, as function of the load resistance with and without the Lorentz’s force.

Figure 2.7: Schematic representation of the electromagnetic harvester proposed by Dallago, Marchesi
and Venchi [1].

Wang et al. [18] analyse the difference between same pole and opposite pole facing each
other, in terms of the distribution of the magnetic field and generated voltage. They
simulated the voltage responses for forward (maximum relative error lower than 15%) and
reverse frequency sweep (discrepant results in comparison to the numerical results) under
different excitation levels. The voltage responses when the generator is vertically attached
to the leg for three and six levitating magnets were evaluated under different velocities.
Finally, the average output power was analysed for different mass at various motion speeds
when the generator was attached to leg vertically and transversely, for two participants.

By Munaz, Lee and Chung [2] and Pancharoen, Zhu and Beeby [19] a similar configuration
to the latter model is proposed, but with a slight modification: the magnet stack is obtained
by placing several magnets together with same pole facing each other.

For different case scenarios, when the levitating structure comprises one to five magnets
(keeping the aspect ratio same), Munaz, Lee and Chung [2] analyses the magnetic field and flux
lines and obtained better performances when using three magnets with a minimum possible
gap between magnet and coil. The different experimental configurations mentioned previously
are compared with the simulation in order to understand the open circuit voltage harvested.
Also, the load power and voltage are analysed in function of the load resistance. The load
power is also varied with the increase of the air gap distance.

By Arroyo et al. [20] the evolution of the harvested power is studied as a function of its
coupling and loss coefficients and its mechanical quality factor. The evolution of the power
is observed as a function of the normalized angular frequency and load coefficient, for several
modified coupling coefficients and with a defined mechanical quality factor and the product
between modified coupling coefficient - mechanical quality factor and the load coefficient
for several losses coefficient. Additionally, the power and the respective phase difference
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between the mass displacement and the input acceleration is shown. Then, the optimal load
coefficient was analysed as a function of the product between modified coupling coefficient
and mechanical quality factor for several resistive losses. They analyse the levels of power
that can theoretically be harvested. The authors also compared the calculated and measured
power as a function of the load coefficient. Additionally, power is plotted as function of the
losses coefficient, for a defined mechanical quality factor.

By Haroun, Yamada and Warisawa [9] a novel micro-electromagnetic vibration energy
harvester based on free/impact motion is presented, as it can be seen from figure 2.8. The
device consists of a thin walled tube, closed at both ends by two thin washers, comprising a
cylindrical (it can also take other shapes) permanent magnet inside and a small gap in
between. Copper wire is wounded over the tube forming a multiple layer winding. By
driving an input vibration directly connected to the vibration source, the magnet can move
freely and collide with end washers (stoppers) so that electrical voltage is harvested.

Figure 2.8: Schematic representation of the electromagnetic harvester proposed by Haroun, Yamada
and Warisawa [9].

Here, the analysis is made with horizontal vibrations and it is important to notice that
exists four modes of tube/magnet relative motion forms. Sticking mode appears at very low
input accelerations and both tube and magnet move together (no relative motion appears).
Free mode can start by increasing the input acceleration. The relative displacement occurs,
but its amplitude is not large enough to allow the magnet to reach both stoppers periodically.
Increasing the acceleration indicates that the impact mode is activated and the magnet can
reach both stoppers periodically. Besides that, the magnet can also make few impacts on
one stopper followed by other consecutive impacts with the other stopper, which they called
the multiimpact mode. Therefore, the predicted output voltage versus time is shown at
different motion modes and the predicted relative displacement at different input amplitudes
and frequencies. Is also analysed the existence region of each mode of motion according to
the input amplitude and frequency. Frequency and amplitude thresholds of impact mode
decreases by decreasing the magnet stroke. The authors show the evolution of predicted
flux rate with respect to the relative displacement for different coil lengths. At constant
frequency, increasing the amplitude after exceeding the free mode threshold increases the
relative velocity, as well as the relative displacement. It is demonstrated the RMS of the
predicted output voltage and power with the input acceleration, under a known frequency.
The impact and travelling times and how they changed with the input amplitude is showed.
Two experiments were conducted: in the first, four prototypes having identical sizes and coils,
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but different magnet shapes; the second is performed using two different size prototypes, with
the same magnets but different number of coil turns. The RMS voltage and power produced
versus frequency for each prototype are measured. Then the measured and predicted output
voltage over a range of frequencies is compared. Finally the RMS measured power and power
density of each prototype at a defined frequency over the range of input amplitudes is shown.

A new design of the first completely orientation-independent magnetic levitation energy
harvester for low frequency was proposed by Gutierrez et al. [21] and is representated in figure
2.9. A free moving disk magnet lies on a two-dimensional plane allowing radial movement.
A circular sidewall exists to constrain the centre magnet and hold fixed magnets. To provide
a spring force, which returns the free magnet to an equilibrium position, stationary axially
magnetized cuboidal magnets are distributed around the circumference of the sidewall. The
casing is machined out of Teflon for its low friction coefficient.

Figure 2.9: Schematic representation of the electromagnetic harvester proposed by Gutierrez et al.
[21].

The authors compared the simulated and measured ringdown tests conducted at two
starting heights above the centre under open circuit load and conducted at a starting height
above the centre under known load (in this last one, significant electromagnetic damping
from FEM is verified). Error as function of friction parameters was presented. The power
delivered to a known load as function of coil radius and location on the harvester casing is
shown as well as the power output under defined load and frequency as function of radius to
perimeter magnets. It is shown, under constant excitation, the measured and modelled power
delivered to varying load sizes. An analysis to the power transferred to a load as function
of frequency for two acceleration values and as function of maximum excitation acceleration,
under a specific frequency is conducted. Additionally the power evolution to a known load as
function of device rotation was demonstrated.

An electromagnetic energy harvester model that uses two flux-guided magnet stacks to
harvest energy from common-body-induced motions such as hand-shaking, walking and slow
running was proposed by Halim et al. [22]. The design aims to up-convert the low-frequency
vibration generated by human-body-induced motion to a high-frequency vibration by
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mechanical impact of a spring-less structure. Before constructing the prototype, the authors
analysed the best configuration for the levitating magnets by simulating different magnetic
structures: single magnet, two magnet stack without a spacer and two magnet stack with a
spacer (opposite poles facing each other and like-poles facing each other). As shown in figure
2.10, it consist of two front-facing high-frequency generators that are consecutively excited
by a freely-movable inertial mass. Each high-frequency generator is attached to one end of a
helical compression spring and is constituted by a spacer and with same poles facing each
other. The movable mass is a non-magnetic metal ball that couples the low-frequency
vibrations generated and transfers the kinetic energy to the spring-mass-damper systems by
mechanical impact. Figure 2.10 (b) presents a simplified structure.

Figure 2.10: Schematic representation of the electromagnetic harvester proposed by Halim et al. [22].

It was observed that the flux densities of this magnetic structure decrease with the increase
of the spacer thickness. To each individual generator and the series connected generators,
the open circuit voltage waveforms harvested was compared, as well as the RMS voltage and
average power on various load resistances. It is analysed the instantaneous power waveforms
across the optimum load resistance generated by the series connected generators.

The model proposed by Masoumi and Wang [23] investigates the repulsive magnetic
scavenger, which is capable of harvesting ocean waves energy with a unique repelling
permanent magnet array (provides a stronger and more uniform magnet field, compared to
its attracting magnetic counterparts). The levitating magnets are stacked together around a
threaded rod so that the same pole is facing each other, and the two fixed magnets are
arranged as in the usual configuration (it works also as braking mechanism when high
amplitude vibrations occur). The arrangement is exhibited in figure 2.11.

In order to validate the model, due to different gap fillers (material used to fill the gap
between the levitating magnets), a comparison between the normal flux density ranging from
a carbon steel with a very low relative permeability to a 99.95 percent of iron with a high
permeability is made. Metal filling increases the magnetic field intensity more than that of air
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filling; however, there is no noticeable difference between metals with different permeabilities.
The different frequency responses of the device (under the assumption of some parameters for
nondimensional force values and electric damping values) is plotted. The natural frequency
versus maximum displacement of the magnet stack is analysed during the vibration of the
system. The repulsive magnetic scavenger device was tested and the voltage under sinusoidal
excitation force for different excitation frequency for 0.2 s was adressed. Aditionally, the
voltage with different amplitudes and a specific frequency is presented.

Figure 2.11: Schematic representation of the electromagnetic harvester proposed by Masoumi and
Wang [23].

It was proposed a multi-coil multi-magnet multi-spacer configuration of an electromagnetic
harvester system by Saravia, Ramrez and Gatti [24, 25] and Geisler et al. [7]. The main
difference between the previous model [23] and the involved ones is that these have multi-coil
windings wounded around the outer casing, as one can see in figure 2.12.

Figure 2.12: Schematic representation of the electromagnetic harvester proposed by Saravia, Ramrez
and Gatti [24, 25].

Saravia, Ramrez and Gatti [24, 25] made a comparation of the flux variation for four
magnet stack and three spacers configuration vs a seven magnet stack configuration. As
expeted, the magnetic flux changes its shape as the stack moves closer to the end magnet. It
is observed the simulated and measured voltage signals at a specific operative frequency and
viscous damping coefficient for different friction coefficients. The correlation of the voltage
signal between the experimental and the simulation for one period of motion for a specific
frictional damping coefficient was obtained. The same analysis is made setting the viscous
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damping (for a greater base excitation). It is analysed the correlation of the peak voltage for
an known input acceleration, the average power and the peak power between the proposed
computational approach and the physical experiment.

The model proposed by Geisler et al. [7] aims to develop a method to optimize an
electromagnetic harvester which converts the low-frequency body motion to power wireless
body sensors. The maximum peak-to-peak displacement and optimal average electrical power
was observed over the system’s natural frequency in the unconstrained case and with 5 cm
peak-to-peak displacement limitation. Also, it is analysed the optimal electrical damping
coefficients in function of the natural frequency for the unconstrained and constrained cases.
The authors observed: the average load power over simulation frequency, under a constant
acceleration; the average electrical power in the optimal load versus the treadmill running
speed, for various combinations of repulsive magnets; the ’linear model’ figure of merits of the
tested prototype relative to two different mass containments and the optimal electric damping
coefficient associated to the linear generator. Finally, they tested the prototype at different
locations and different running speeds to analyse the average harvested power.

In the work conducted by Nammari and Bardaweel [8] it was investigated some of the
design issues and limitations of traditional magnetic levitation energy harvesters such as
damping schemes and stiffness nonlinearities. The proposed harvester in figure 2.13 consists
of a levitated magnet placed between two stationary top (optional) and bottom permanent
magnets. The main difference is the levitating magnet attached to (linear) mechanical
springs from the wall sides. A stationary coil is fixed around the rest position of the movable
magnet. This has several advantages such as the ability to align the levitated magnet along
the stationary magnet’s common axis. Since the magnetic springs present weak nonlinearity
over moderate displacements, the added oblique springs from the side walls induce a
negative stiffness mechanism while enhancing the total nonlinearity of the energy harvester.

Figure 2.13: Schematic representation of the electromagnetic harvester proposed by Nammari and
Bardaweel [8].

The magnetic force versus displacement considering disc and ring magnets was
evaluated. It is analysed the force and stiffness for different non-dimensional quantities.
Again, the estimated nonlinearity of the system is analysed, varying the linear stiffness
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parameter, nonlinear stiffness parameter and spring inclination. Also, the analysis of the
non-dimensional potential energy varying the same variables was conducted. Finally, it is
analysed the power versus frequency graphic.

The energy transducer proposed by Nammari et al. [26] presents a non-resonant magneto-
mechanical vibration energy harvester (figure 2.14). The levitating magnet is guided using 4
rubber oblique mechanical springs, which introduce geometric, negative and nonlinear stiffness
and improves the harvester’s response towards lower frequency range. The top part contains
latches, air holes and a fixed upper magnet attached to an adjustable screw; the bottom part
contains air holes, springs, a levitated magnet, two coil windings and a fixed lower magnet
attached to an adjustable screw.

Figure 2.14: Schematic representation of the electromagnetic harvester proposed by Nammari et al.
[26].

The authors tested the effect of inclination angle in oblique mechanical spring forces versus
displacement graphic. It is analysed the measured and modelled potential energy as function
of displacement. They also showed the measured and modelled generated voltage and power
as function of the frequency for three different excitation acceleration.
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2.2 Transduction mechanisms

This section aims to presents an intensive analysis to the phenomena that play a significant
influence on the response of the magnetic levitation harvester dynamics.

Twenty one of the twenty four models considered in Section 2.1 were selected (provided
by nineteen authors). The overall analysis of the modeling methodologies considered by all
authors are detailed in table 2.1.

Some models presented in the previous section were not included in the present section,
because their innovative architecture configuration results in slight differences in which the
behaviour of the system is concerned [8, 21, 26]. Consequently, the parameters of these models
cannot be compared to the others. These three models take other factors that are not framed
for this work in consideration. For instance, the model proposed by Gutirrez et al. [21] was
excluded because the authors proposed that the levitating magnet is free to perform axial
and radial movements. Similary, models considerated by Nammari and Bardaweel [8] and
Nammari et al. [26] were excluded because their models were developed considering that the
levitating magnet is attached to mechanical springs from the wall sides, and that inclusion
leads, once again, to slightly different dynamic considerations.
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Table 2.1: Overall analysis of the modulation methodologies considered by all authors

References
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Constantinou,
Mellor, Wilcox [12]

N/D SA N/D N/D A N/D

Constantinou,
Mellor, Wilcox [13]

N/D SA A N/D A SA/E

Saha et al. [10] FEM FEM A N/D N/D SA

Mann and Sims
[14]

E E N/D A SA A

Dallago, Marchesi
and Venchi [1]

FEM FEM A A SA SA/E

Morais et al. [16] E E A N/D N/D N/D

Morgado et al. [6] SA SA A N/D N/D E

Arroyo et al. [20] N/D N/D A A SA N/D

Foisal, Hong and
Chung [15]

SA A A N/D SA A

Munaz, Lee and
Chung [2]

SA/FEM N/D A N/D N/D N/D

Berdy, Valentino
and Peroulis [17]

A A A A A A

Berdy, Valentino
and Peroulis [5]

A A A A A A

Haroun, Yamada
and Warisawa [9]

SA N/D A A N/D A

Halim et al. [22] FEM E A N/D N/D N/D

Santos et al. [4] SA SA SA A SA A

Masoumi and
Wang [23]

FEM E A/FEM N/D SA A

Saravia, Ramı́rez
and Gatti [24]

FEM E/FEM A A N/D A

Saravia and Oberst
[25]

FEM E/FEM A A N/D A

Kecik et al. [3] E E N/D A E E

Geisler et al. [7] SA/FEM SA SA N/D N/D SA

Wang et al. [18] FEM E A/FEM N/D N/D A

Pancharoen, Zhu
and Beeby [19]

SA E A N/D N/D SA

N/A: not defined; SA: semi-analytical; A: analytical; E: empirical; FEM: finite element method.
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2.2.1 Modeling the levitating magnet motion

The governing equations for the mechanical system are the result of a sum of forces in the
vertical direction. According to the Newton’s second law, the modeling include the effects
due to the mass of the mover (m), the damping coefficient (c,used to represent the combined
electrical and mechanical damping) and the constant (k) or variable parameter (FR) that
includes the interaction magnet force between the levitating and the fixed magnets. If the
excitation vibrations are vertically driven, the effect of gravity need to be included in the
analysis. Also, it is important to include the effect of the inertia force. In order to make a
better approximation, some models consider the mechanical coupling coefficient (α), which
relates mechanical and electrical components, while others consider the Lorentz force (Flz),
where the induced current gives rise to a magnetic force that opposes the motion of the
moving magnet. The friction force (Ffr) between the moving magnet and the container’s
inner surface was also considered. All cases have at least two reference frames, one fixed
in space, to describe the motion amplitude and frequency (z), and other that describes the
motion of the centre magnet (y). Some authors provide a system reduction to a Duffing
oscillator under both static and dynamic loads. The Runge-Kutta numerical method was
also used to numerically solve this main equation. The equations of motion used by the
authors are detailed in table 2.2.

Table 2.2: Equations of motion

Equations References

−mz̈ = mÿ + cẏ + ky [2, 10, 16]

mz̈ = mÿ + cẏ + ky + αI [1, 20]

−mz̈ = mÿ + cẏ + FR(y) [7, 12, 15, 18, 23]

−mz̈ = mÿ + cẏ + FR(y) +mg [6, 13, 19, 24, 25]

−mz̈ = mÿ + cẏ + FR(y) + αI +mg [3, 14]

−mz̈ = mÿ + cẏ + Ffr + FR(y) +mg [5, 17]

−mz̈ = mÿ + Flz(I) + Ffr − FR(y) +mg [4]

−mz̈ = cẏ + y
|y| +

ẏ
|ẏ|µmg [9]

ẏ = mAzωne−ξωnt

k
√

1−ξ2
sin(ωn

√
1− ξ2)t [22]
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2.2.2 Modeling the magnetic field

The magnetic field of the levitating magnet was mainly modelled by means of semi
analytical and FEM methodologies; it was also be obtained by experimental procedures. As
the magnetic field variation is the event required to drive the mechanical-electrical
transduction mechanism, it is important that it is well modelled. Only few methods were
proposed to predict this phenomenon, but it was found that the “equivalent” surface current
model (discretization of the magnet into a finite set of current loop elements and then
superimposition of the magnetic fields of each layer result) is the most accurate technique.
The remaining semi-analytic deductions induce errors in the approximation of this
parameter, since they use, for example, the average radius of the winding for its calculation.
Even so, there are still authors who consider magnetic field constant in space. The authors
who use a methodology based on finite element analysis to simulate the behaviour of this
parameter exclusively mention the software used and do not make specifications about the
model design. The equations mentioned by the authors to model the magnetic field are
detailed in table 2.8.

Table 2.3: Equations of magnetic field

Equations References

B =cte [3, 14, 16,
20]

B(y, r) = µ0
Mm
2π

∫ z+y+ 1
2
Lm

z+y− 1
2
Lm

f(y, ẏ)[Zt(y, ẏ)E(k) +K(k)]dẏ (1) [4]

B = Br
2

[
Lmc+Lm√

Rm
2+(Lmc+Lm)2

− Lmc√
Rm

2+Lmc
2

]
[15]

B(y) = Br
2

[
y+Lm√

(y+Lm)2+Rm
2
− y√

y2+Rm
2

] (2)

[19]

B(y) = µ0τ
2

[
1√

rm2+y2
− y2√

(rm2+y2)3/2

]
[9]

B =
1∑

i=0

1∑
j=0

1∑
k=0

(−1)i+j+k M
4πµ0

arctan
[
(x−xi)(y−yi)
(z−zk)ξijk

] (3)
[5, 17]

B = µ0(H +M) [2]

B = ∇×
(

Mm

2

√
Rm

r

[
ξk
(

k2+h2−h2k2

h2k2 K(k2)− 1
k2E(k2) + h2−1

h2 Π(h2|k2)
)ξ+
ξ−

])(4)

[6]
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The authors who appeal to FEM analysis, use the following software:

Table 2.4: Software to simulate magnetic field

Software References

Finite Element Analysis Software [10]

Flux® 2D Software [1]

ANSOFT Maxwell Software [18]

Finite Element Method Magnetics Software [22, 23, 24, 25]

COMSOL Multiphysics® Software [7]

ANSYS Finite Element Analyis Software [2]

(1)

E(k) =

∫ π
2

0

√
1− k2sin2(ϕ)dϕ

K(k) =

∫ π
2

0

1√
1− k2sin2(ϕ)

dϕ

f(y, ẏ) =
1√

(Rm + r)2 + (y − ẏ)2

k =

√
4rRm

(Rm + r)2 + (y − ẏ)2

Zt =
R2

m − r2 − (y − ẏ)2

(Rm − r)2 + (y − ẏ)2

(2)
Br ≈ µ0H

(3)
ξijk =

√
(x− xi)2 + (y − yi)2 + (z − zi)2

(4)

h2 =
4Rmρ

(Rm + ρ)2
; k2 =

4Rmρ

(Rm + ρ)2 + ξ2

ξ± = y ∓ Lm

2
; [F (ξ)]ξ+ξ− = F (ξ+)− F (ξ−)

K(s) =

∫ π
2

0

1√
1− s sin2(θ)

dθ

E(s) =

∫ π
2

0

√
1− s sin2(θ)dθ

Π(s|t) =
∫ π

2

0

1

(1− s sin2 θ)
√
1− t sin2 θ

dθ
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2.2.3 Modeling the repulsive magnetic force

The total magnetic force is given by the sum of the repulsive magnitude forces due to
top and bottom fixed magnets. It is important to notice that changes in the magnet spacing
will modify the stiffness and resonance frequency of the system. In literature, this
phenomenon is commonly deduced empirically by fitting experimental measurements into a
power series. In this type of analysis, the authors find the coefficients using a least-squares
procedure. Another way that was proposed to compute this parameter was to apply Bessel
integral functions of first order. Hybrid approaches were also considered, when analytically
is computed the results from Bessel’s functions and, then, results are fitted using polynomial
technique. Other techniques were also used as the Coulombian or equivalent charge model,
Amperian or equivalent current model, as well as the Maxwell’s stress tensor method to
deduce the force imposed between permanent magnets. The authors who use a methodology
based on finite element analysis to simulate the behaviour of this parameter exclusively
mention the software used and do not make specifications about the model design. The
author’s studies to model the repulsive magnetic force are based on the equations described
in table 2.5.

Table 2.5: Equations of repulsive magnet force

Equations References

k =cte [16, 22]

FRd = 2πRmi

Sd+Lm∫
Sd

JdARm,Rdi
(y)

dy dy + 2πRm

∫ Sd+Lm

Sd

JdARm,Rm (y)
dy dy

+2πRm

∫ Sd+Lm

Sd

JdARdi,Rm (y)

dy dy + 2πRmi

∫ Sd+Lm

Sd

JdARdi,Rdi
(y)

dy dy (1)

[12, 13]

FRu = µ0πRuRmMuMm

∫∞
0 J1(εRu)J1(εRm)[e−ε(Su+Lu)

+e−ε(Su−Lm) − e−ε(Su) − e−ε(Su+Lu−Lm)]ε−1dε (2) [4, 7]

FR = ky + k3y
3 [3, 14, 18, 19,

23]

FR = ky + k3y
3 + k5y

5 [24, 25]

FR = µ0Mm

4π

[
Mu

Su
2 − Md

Sd
2

]
[15]

FR = MM ′

4πµ0

1∑
i=0

1∑
j=0

1∑
k=0

1∑
l=0

1∑
p=0

1∑
q=0

(−1)i+j+k+l+p+qϕ
(3)

y [5, 17]

FRu(y) = −MuMm
2µ0

2∑
i=1

4∑
j=3

a
(1)
i,j a

(2)
i,j a

(3)
i,j (−1)i+jfu

i,j
(4) [6]
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The authors who appeal to FEM analysis, use the following software:

Table 2.6: Software to simulate repulsive magnet force

Software References

FE transient simulation (k=cte) [10]

Flux® 2D Software (k=cte) [1]

Finite Element Method Magnetics Software [24, 25]

(1)

A⃗ =
a⃗ϕµ0Jr

2π

z1+
Lm
2∫

z1−Lm
2

π
2∫

−π
2

sin(ϕ̇)

Rm
dϕ̇dż

J =
Br

µrµ0

1

Rm
=

1

R
√
1 + r2

R2 − 2r
R sin θ sin ϕ̇

(2)

FRu = µ0πRuRmMuMm(I1 + I2 + I3 + I4)

I1 =

∞∫
0

xme−(Su+Lm)xJ1(Rmx)J1(Rux)dx

I2 =

∞∫
0

xme−(Su+Lu)xJ1(Rmx)J1(Rux)dx

I3 =

∞∫
0

xme−SuxJ1(Rmx)J1(Rux)dx

I4 =

∞∫
0

xme−(Su+Lm+Lu)xJ1(Rmx)J1(Rux)dx

(3)

ϕy = −uw ln(r − u)− vw ln(r − v) + uv tan−1 uv

rw
− rw

u = uij = αc + (−1)jAc − (−1)iac

v = vkl = βc + (−1)lBc − (−1)kbc

w = wpq = γc + (−1)qCc − (−1)pcc
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r =
√
u2ij + v2kl + w2

pq

(4)

a
(1)
i,j = yui − yuj

a
(2)
i,j =

(Rm −Ru)
2

(a
(1)
i,j )

2
+ 1

a
(3)
i,j =

√
(Rm +Ru)2 + (a

(1)
i,j )

2

a
(4)
i,j =

4RmRu

(Rm +Ru)2 + (a
(1)
i,j )

2

fu
i,j = K(a

(4)
i,j )−

1

a
(2)
i,j

E(a
(4)
i,j ) +

(
(a

(1)
i,j )

2

(a
(3)
i,j )

2
− 1

)
Π

(
a
(4)
i,j

1− a
(2)
i,j

|a(4)i,j

)
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2.2.4 Modeling the electromotive force

The mechanical energy is converted into electrical energy when the magnetic field changes
through the coil, inducing an electromotive force (EMF). In short, the electromotive induced
force is described by the Faraday’s law of induction. Most of the authors applied this concept
directly, while others associated the electromechanical coupling coefficient with the magnet’s
velocity. When using the Maxwell-Faraday equation very good validation results are obtained
for EMF modeling (open circuit). A semi-analytical approach was also used to model the coil
as a set of single circular turns and a three dimensional surface bounded by a closed contour
defined by each of these turns. The authors who use a methodology based on finite element
analysis to simulate the behaviour of this parameter exclusively mention the software used
and do not make specifications about the model design. The equations mentioned by the
authors to model the electromotive force are detailed in table 2.7.

Table 2.7: Equations of induced electromotive force

Equations References

V = −dϕ
dt [1, 2, 5, 6, 9, 10,

13, 15, 17, 18, 22,
23, 24, 25]

V = −NBlωnA
2ξ [19]

V = BlAzω3√
(ωn

2−ω2)2+(2ξωnω)2
[16]

V = 2π ∂
∂t

(
Ny∑
k=1

Nr∑
j=1

∫ rj
0 Bz(r, yk)rdr

)
[4, 7]

The authors who appeal to FEM analysis, use the following software:

Table 2.8: Software to simulate induced electromotive force

Software References

ANSOFT Maxwell Software [18]

Finite Element Method Magnetics Software [23]
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2.2.5 Modeling the electric current on the coil

The induced current is generally deduced by using the Ohm’s law. There are models that
have taken into account the coil’s inductance and others who did not. In table 2.9 are inserted
the proposed equations to mathematically model this phenomenon.

Table 2.9: Equations of coil induced current

Equations References

I = U
Ri+Rl

[1, 5, 17]

dI
dt = U−I(Ri+Rl)

Li
[3, 4, 9, 24, 25]

dI
dt = U−IRl

Li
[20]

I(t) = −
(

α
Rl+Ri

)
Ωa sin(Ωt− γ) (1) [14]

(1) in which “a” come from the equation 3.9 (p. 33)
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2.2.6 Modeling the electromechanical coupling coefficient

The electromechanical coupling coefficient relates mechanical and electrical components.
In literature, this parameter was usually simplified and taken as constant. This approximation
was considered when the magnetic field density was modelled as constant and this assumption
leads to a coupling factor with a fixed value. Although not accurate, analysis is strongly
simplified. Nevertheless, some authors proposed a method to experimentally determinate α
as a function of the magnet’s position. The equations mentioned by the authors to model the
electromechanical coupling coefficient are detailed in table 2.10.

Table 2.10: Electromechanical coupling coefficient

Equations References

α = Bl [15]

α = NBl [14, 23]

α(y) = 2πrmNB(y) [1]

α =
Nr∑
i=1

Ny∑
j=1

ke ij
(1) [5, 12, 13, 17]

α(y) = a1y + a3y
3 + a5y

5 + a7y
7 + a9y

9 + a11y
11 + a13y

13 [3]

(1)

ke ij = −2πrij
dAij

dz
, with A defined in table 2.5 (p. 22)
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2.2.7 Modeling the damping coefficients

Authors have modelled mechanical and electric dampings. The mechanical damping was
usually related to friction, but other damping sources were also engaged (e.g. air damping). To
avoid air compression, the harvesters normally were designed with tiny holes on the extremities
so that the air flux can leave the inner container, as the magnet moves in it. Even so,
this phenomenon exists and hardly anyone considered it. The frictional force was already
modelled using the Karnopp friction model. The latter model considers, for both negative
and positive speeds the effect of different viscous friction coefficients, different break-away
forces and different Coulomb forces. It also considers a low speed region, where no relative
displacement occurs. Of course that the electric damping force only stands if there is a load
attached to the generator. The induced current creates its own magnetic field centralized
mainly inside the coil, which generates a force that opposes to the motion (plays the role of
an electric damping mechanism), which in turn reduces the levitating magnet speed. This
arises from the energy conservation theorem. The energy conversion must be such that the
mechanical power dissipated by the electromagnetic damping is equal to the power generated.
In general, the models report an analytic formula to calculate the electric damping but do
not mention a formulation to define the mechanical damping. When validating the model,
the damping factor is usually deduced empirically. The equations mentioned by the authors
to model the damping coefficients are detailed in table 2.11.
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Table 2.11: Damping coefficients

Equations References

ce =
α2√

(Rl+Ri)2+(ωLi)2
[13]

ce =
α2

Rl+Ri+jωLi
[15]

ce =
α2

Rl+Ri
[5, 14, 17, 18, 23]

ce =
(dΦ/dy)2

Rl+Ri
[9]

c = cair +
cfr
ẏ +

(
∑

ϕ′
i)

2

Rl+Ri+jωLi
[24, 25]

c(y) = Ni
Rc+Rl

(
2 N
Ny

ϕmax,ave sin
(
πNy

p

))2
cos2

(
2π
p (y0 − y) + αp

) (1)
[7]

c = ξ2mωn [10, 19]

c = ωn
Q [1]

Ffr =
ẏ
|ẏ|Fd [5, 17]

Ffr =



fre if − fbwn < fre < fbwp
(2)

fcop + kvp
dy
dt if dy

dt > vmin

−fcon + kvn
dy
dt if dy

dt < −vmin

[4]

Flz = 2πI
Ny∑
k=1

Nr∑
j=1

Br(rj , yk)rj [4]

(1)

Rc = N
πρ

S

(
NS

Nykc
+ 2ri

)
(2)

fre = mz̈ − Fg − FR − Flz
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Chapter 3

Method

As reviewed, a method that maximizes the generator’s efficiency has not yet been
developed.

3.1 Harvester’s architecture

As noticed in the previous chapter, several configurations have already been proposed.
The architecture assumed for the configuration of the electromagnetic generator is composed
by:

� A hollowed cylindrical tube structure;

� Three cylindrical magnets;

� Two magnets are fixed to the end extremities of the container;

� One magnet is levitating, positioned between the fixed ones;

� A multi-coil-multi-layer is wonded around a portion of the outer container.

This choice, that well demonstrates the process of transduction, relies on its massive use
in the literature (see chapter 2). This is a basic configuration and is suitable to validate the
concept of customizable harvester, since it has all the necessary elements to the transduction
process, but with non-complex architecture.

3.2 Model

The model proposed by Mann and Sims [14] was chosen because:

� It captures the fundamental dynamics/ behavior of the generator;

� It was experimentally validated;

� Presents the analytical resolution of the transduction process. This also provides:

� shorter computing time;

� lower computational cost;

� it allows massive computation (suitable for detailed analysis).
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� It was a study that provide a solid basis to further studies (it was quoted 553 times
until June 30, 2018, according to the scopus database).

3.3 Governing equations

The schematic diagram of the levitation system adopted by the authors is shown in figure
3.1. Two references frames to the model were provided: the reference stated as z is used to
describe the external applied signal, specified in terms of amplitude (Az) and frequency (ω);
and the reference stated as x describes the motion of the levitating magnet.

Figure 3.1: Schematic diagram of the magnetic levitation system proposed by Mann and Sims [14].

They modelled the resulting magnetic force as a cubic nonlinear spring such that the
harvesting system behaves as a Duffing oscillator. So, the equivalent force-displacement curve
is given by a vector summation of the restoring forces (FR) acting on the bottom and top
magnets, according to equation 3.1:

FR = kx+ k3x
3 (3.1)

where k is the linear stiffness and k3 is the non-harmonic term.

The following governing equation is valid for undamped and unforced oscilations:

mẍ+ kx+ k3x
3 = −mg (3.2)

where m is the levitating magnet mass and g is acceleration due to gravity. The static
equilibrium, xe, can be found by setting the acceleration parameter to zero:

xe
3 +

k

k3
xe +

mg

k3
= 0 (3.3)

32



The governing equation for the electrical circuit is obtained through Kirchoff’s law:

I(Rl +Ri)− α(ẋ− ż) = 0 (3.4)

where α = NBl is the electromechanical coupling coefficient, N is the number of coil turns,
B is the average magnetic field density, l is the coil length, z = Az cos(ωt) are harmonic base
excitations, I is the current induced on the coil, Rl is the load resistance and Ri is the coil
internal resistance, according to figure 2.2 (p. 5).

The differential equation that model the mechanical dynamics is given by:

mẍ+ c(ẋ− ż) + k(x− z) + k3(x− z)3 = −mg (3.5)

where c = cm + ce is the total damping coefficient, cm is the mechanical damping and

ce =
α2

Rl +Ri
is the electrical damping.

In order to write the governing equations in terms of the relative displacement between
the levitating magnet and the main structure, a variable change y = x− z is established.

The model that describes the interplay between electrical and mechanical dynamics can
then be expressed as:mÿ + cmẏ + ky + k3y

3 + αI +mg = ω2Az cos(ωt)

I = α
Rl+Ri

ẏ
(3.6)

Before analytically solve this system, it was rewritten as:

ÿ + 2ξωẏ + ω2y + βy3 = F0 + F1 cos(Ωt) (3.7)

Where the new coefficients are denoteted as:

2ξω =
c

m
(3.8a)

ω2 =
k

m
(3.8b)

β =
k3
m

(3.8c)

F0 = g (3.8d)

F1 = Ω2Az (3.8e)

After analysing the previous equation by means of the multiple scales perturbation
technique, and after introducing a polar form (A(τ1) = 1

2a(τ1)e
iϕ(τ1)), they provided an

analytical solution for the nonlinear system dynamics under harmonic base excitation, as
follows [14]: (

3β

8ω

)2

a6 +

(
9β2F 2

0

8ω6
+

3

4
β

(
1− Ω

ω

))
a4

+

((
3βF 2

0

2ω5

)2

+
3βF 2

0

ω4

(
1− Ω

ω

)
+ (Ω− ω)2 + (ξω)2

)
a2 −

(
F1

2ω

)2

= 0

(3.9)
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A 1 MΩ resistence of electrical load was used to compute the electric dynamics. This
was due to the fact that the model that does not take into account the electrical dynamics.
However, the greater the velocity of the levitating magnet, the greater the generated current
and, therefore, the larger the force that opposes the movement. Consequently, one cannot
use low resistance loads when simulating the model proposed by Mann and Sims [14]. It is
important to note that the maximum power is generated if the load resistence equals the
internal resistance of the windings (maximum power transfer theorem). By using a high
magnitude resistance, low current will flow through the circuit, which translates in
significatively low electrical damping. Therefore, Mann and Sims’ [14] approach is only
plausible when high impedance loads are used. As a result, this study will emphasize the
mechanical dynamics, in particular the levitating magnet velocity. By using a high
resistance load, the behaviour of the system enhances its resemblances to an open circuit. It
is expected that the current and power levels in the winding terminals to be low.

The predicted relative velocity over time is due to the term “a”. Hereinafter, for each
frequency, the corresponding velocity is presentad as its maximum absolute value with the
notation |ẏ|, and is calculated from:

|ẏ| = | − Ωa| (3.10)

The formulas to get the current flowing through the electrical load and the electrical
power, for each frequency is computed as:

I = −
(

α

Rl +Ri

)
Ωa (3.11)

P = I2Rl (3.12)

By differentiating equation 3.9 with respect to Ω and a, the frequency of maximum
response (can occur away from the linear ressonance) is found as:

amax =
F1

2ξω2
(3.13)

Ωmax =
3β

8ω
a2max +

3βF 2
0

2ω5
+ ω (3.14)

3.4 Limitations of the model

This analytical solution was achieved using, however, a simplified model since:

� B was considered constant (the average magnetic field strength along the coils was
assumed);

� α was considered constant (according to the previous assumption);

� the magnetic repulsive force is restricted to a third degree polynomial approximation;

� the electrical damping coefficient was statically taken into account;

� the coil inductance was not introduced in the electrical dynamics;

� the analytical solution is only valid for Rl >> Ri.
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Even when its limitations are taken into account, the model developed by Mann and Sims
[14] was used, since it approaches the fundamental dynamics of these harvesters and provides
the first analytical analysis to the problem.

3.5 Parametric analysis

Intensive computation with multiple parameter variation inputs was performed. MATLAB
(v9.0, R2016a, Mathworks) was used to solve equations 3.9, 3.10, 3.11, 3.12, 3.13 and 3.14.
The length, frequency, acceleration and damping factor of the generator, as well as the mass
of the levitating magnet (isolated simulation) were changed. The parametric analysis follows
in detail below.

3.5.1 Constant parameters

The constant model parameters used for this simulation were the same considered by
Mann and Sims and are listed on table 3.1.

Table 3.1: Constant parameters

Parameter Value Units

m 0.0195 kg

k (∆d = 0) 35.0396 N/m

k3 (∆d = 0) 138400 N/m3

d0 37.3 mm

g 9.81 m/s2

α 7.752 Vs/m

Rint 188 Ω

Rload 1 MΩ

3.5.2 Variation of length

� range between its actual size plus [−d0/2 , d0/4] [mm]

� 100 intermediary values from −d0/2 to 0

� 100 intermediary values from 0 to d0/4

The curve that characterizes repulsive magnetic force changes as the structure of the
generator changes. Figure 3.2 shows the force-displacement relationships when the harvester is
shortened and stretched along ∆d. The curve without offsets is also displayed for comparative
purposes.
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Figure 3.2: Force-displacement relationship with the generator length at its normal size (black
solid line), ∆d = −d0/2 (blue dashed line) and ∆d = d0/4 (red dashed line).

A local search algorithm from MATLAB (unconstrained nonlinear optimization using
fminsearch to find the minimum of the squared error function) was used to find k and k3
parameters. After every iteration, ω and β were immediately recalculated, as they depend on
k and k3, respectively.

There are some limitations in the variation of ∆d. It cannot be extended to more than d0/4
mm due to the inexistence of k and k3 coefficients combinations (and, then, the inexistance
of a fitting curve approximation) that correctly describe the magnetic forces for ∆d > d0/4
mm. In the ideal curve, if ∆d mm are added to the length of the generator, the half curve
expressing the force for positive y’s is displaced ∆d/2 mm to the right. The opposite also
occurrs for the region with negative y’s. The central region (−∆d/2 to ∆d/2) will exhibit a
nearly zero force. Either a good approximation is made when the magnets are close to each
other, (and it is inevitable that the coefficients have values such that for positive y’s there
are negative forces near the central zone, which is wrong) or it is taken into account that for
positive y’s only positive forces can preside. This would result in a less inclined curve at the
ends of the graph, which ultimately traduces in the alteration of the magnetic properties.

The length of the transducer cannot also be reduced to less than d0/2 mm, because it
is impossible to find suitable curves (slope at the extremities) with only 2 coefficients. For
∆d < −d0/2 mm, the curve is altered in such a way that it becomes a straight line, which
slope differs from the base curve.

2d0 −
d0
2

⩽ 2d0 ⩽ 2d0 +
d0
4

−d0
2

⩽ ∆d ⩽
d0
4
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3.5.3 Variation of excitation frequency

� range between [0 , 100] [Hz]

� with 3000 intermediary values altogether

In order to have a good resolution, the frequency ranged from 0 to 100 Hz with small
increments.

3.5.4 Variation of the excitation amplitudes

� range between [0.1 , 8.4] [m/s2]

� with an increment of 0.1 m/s2, representing 84 values of excitation amplitudes to
consider

Despite the fact that an analogy is made mainly with 3 accelerations in the model proposed
by Mann and Sims [14], its maximum and minimum values correspond to the limits imposed
in this study. The increment refines the analysis, enabling a detailed analysis to the harvester
dynamics.

3.5.5 Variation of the damping ratio

� range between [0.05 , 0.4]

� with 3 intermediary values, corresponding to 5 values altogether

In the model proposed by Mann and Sims [14], the relative velocity responses were
calculated with the damping ratio set to 0.05 and 0.09; in the experimental validation, only
the damping value of 0.115 was considered. In the present parametric analysis, a wider
range was analysed, since harvesters with higher coefficients than those used by the authors
can be designed.

3.5.6 Variation of the levitating magnet mass

� range between [10 , 500] [g]

� 500 intermediary values

In order to evaluate the impact of the mass of the levitating magnet on the system
dynamics’, it was performed 3 independent simulations. For that, the acceleration was set
to 4 m/s2 and the damping was set to 0.05. The frequency was varied from 0 to 100 Hz with
6000 intermediary small increments and the ∆d was set to -d0/2, 0 and d0/4 mm.

3.6 Results analysis

The velocity response of the levitating magnet in the range [6, 14] [Hz] frequency for two
excitation amplitudes (0.5 and 4 m/s2) is presented in figure 3.3. In the top figure, at a low
excitation level, the harvester behaves as a linear system since the velocity variable has a
single periodic attractor. The bottom figure shows that increasing the external acceleration
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will cause the appearance of multiple periodic attractors and hysteresis. It is noteworthy to
observe the range of large amplitude responses that are provided when the system engages
nonlinearity [14].

The analytical behaviour due to nonlinear phenomenon for upward frequency sweeps follow
an increasing magnet relative velocity up to a maximum velocity (identified with the red
cross point) and then an abrupt decrease of velocity occurs, switching back to the black line.
Conversely, for downward frequency sweeps, velocity values follow the black line (from right
to the left) but suddenly jumping to a maximum velocity identified with the red circle dot
and continuing through the black line. This behaviour was already experimentally validated
[14, 18].

If the excitation is enough to cause hysteresis, the response of the system is represented
by the black line. The red circle dot is a solution achievable in both trajectories (ascending
and descending).
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Figure 3.3: Relative velocity response for different excitation amplitudes: F1 = 0.5m/s2 (top) and
F1 = 4m/s2 (bottom) with the damping ratio set to ξ = 0.05.

3.7 Parameterization

A harvester available in the Automation and Robotics Laboratory of the Department of
Mechanical Engineering of University of Aveiro was parametrized according to the model
proposed by Mann and Sims [14]. A simulation was performed in order to validate the
impact of adjusting the physical structure of the magnetic levitation system. This section
describes not only the architecture of the transducer but also the experimental
measurements conducted to reach the magnetic force-displacement relationship and related
constraints, electromechanical coupling coefficient and damping factor.
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3.7.1 Harvester’s architecture

The harvester’s architecture (figure 3.4) is a combination of various arquitectures already
proposed in the literature. There are similarities with the harvester proposed in [24, 25,
7] (because of its multi-coil-multi-magnet configuration), the harvester developed by [12,
13] (since it also contains cylindrical annuli magnets and a shaft), the model [1] (as the
levitating magnets are disposed with opposite poles facing each other). It can also be stated
that the harvester’s architecture is similar to the transducer in [23], although with different
configuration and number of magnets in the stack. The electromagnetic generator is composed
by:

� acrylic tube for the inner structure: ◦26x30 mm, 104 mm height

� fixed neodymium magnets: N42 magnetization, nickel-plated, 27x16x5 mm ring magnets

� stack: composed by 2 neodymium magnets with opposite poles facing each other, N38
magnetization, nickel, 25xM5x14 mm threaded pot magnets (each one has 7 mm height)

� coils: composed by 3 separated windings, AWG35 wire. Each winding has 20 mm
height, ◦int33 mm, ◦ext47mm.

Figure 3.4: Electromagnetic harvester.

The structure that is assembled to the harvester (right side of figure 3.4) has the purpose
of holding a sensor unit for the position monitoring of the levitating magnet over time.

3.7.2 Experimental apparatus

Sensor

A microsonic® nano 15/CU ultrasonic sensor was used to measure the levitating
magnet position using the assembled external structure. This sensing device has a 20 mm to
350 mm measuring range, 0.069 mm resolution and a 0-10 linear voltage output.

Data acquisition

A control unit, using an Arduino® NANO board, is available to record the data
acquired by the ultrasonic sensor. 1kHz data acquisition was performed to allow high
resolution monitoring.

39



Data storage

The data from experimental tests were written and stored in .txt files using theCoolTerm
software. This program reaches the selected serial port and prints the received information
into a desired format file.

Controller board

The harvester output voltage and the levitating magnet position were monitored by a
DSP controller board (DS1102 from dSPACE). I/O modules of DS1102 were initialized and
configured in Simulink by the Real Time Workshop and Real Time Interface. An application
was developed in ControlDesk to interact with the real-time application [4].

3.7.3 Repulsive magnetic forces

Several experimental tests were conducted to identify the force-displacement behavior
between the levitating magnet and a fixed one. Magnets with different masses were vertically
positioned in order to monitor magnetic repulsive forces. Each red dot describes the force
between the magnets (on the bottom and the corresponding stack position). By repeating
this process 15 times, it was possible to fit those measurements to a power series, as it can
be seen in figure 3.5.
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Figure 3.5: Experimental measurements of the restoring force and respective distance between
magnets (red dots); curve fitting approximation to a cubic polynomial (solid black line); force-
displacement relationship when ∆d = −d0/2 (dashed black line).

The repulsive forces of neodymium magnets cannot accurately be described with a
polynomial approximation. Much better approximation require 1st order Bessel functions
(see table 2.5) [4]. Nevertheless, no significant changes in the mechanical dynamics will
occur if such polynomial approximation is considered.
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The fminsearch tool, available in MATLAB, was used to find the k and k3 that more
properly fitted the experimental measurements. The best approximation is also represented
in the previous figure and matches k = 10.3313 [N/m] and k3 = 98694 [N/m3].

As previously mentioned, this generator has a higher than required length that would
approach it to the one described in Mann and Sims’ model. Therefore, length variation was
considered until −d0/2 (it can only be shortened).

3.7.4 Damping factor

The free-fall test was performed by dropping vertically the levitating magnet from 45
mm above the bottom fixed magnet in order to determine the damping factor. The magnet’s
position over time was stored in CoolTerm software. The walled cylindrical tube was removed
in this measurement to provide zero electromechanical coupling.

The model with neither external excitation nor electric parameters was implemented in
Simulink (v8.7, R2016a, Mathworks), as demonstrated in figure 3.6. The main goal was to
simulate the overall mechanical dynamics (d0 mm above the bottom magnet).

Figure 3.6: Block diagram implemented in Simulink to simulate the mechanical dynamics of the
harvester.

The fminsearch tool was once again used, in addiction to the results obtained in Simulink,
to find the best damping value obtained by the smallest error between the simulated and
the experimentally tested curve. Figure 3.8 highlights the experimental free fall test and
simulation results with ξ = 0.9.
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(red); best approximation with Simulink simulation results, ξ=0.9 (black).

3.7.5 Electromechanical coupling coefficient

A DSP board (DS1102 from DSPACE) was used to monitor both the levitating magnet
position and harvested voltage in a experimental test. The main goal was to obtain an
approximate electromechanical coupling coeficient. The stack’s position was experimentally
varied during 10 seconds.
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Figure 3.8: Stack’s experimental velocity (dashed black line) and output voltage (solid black line);
average electromechanical coupling coefficient (red line).

42



3.7.6 Parametric analysis of parameterized harvester

For the simulation with the parameterized electromagnetic harvester, the total length,
the excitation and frequency were variable parameters. Table 3.3 shows parameters under
analysis and range of analysis. The constant model parameters used for this simulation are
listed in table 3.2.

Table 3.2: Constant parameters - parametrized harvester

Parameter Value Units

m 0.10354 kg

k (∆d = 0) 10.3313 N/m

k3 (∆d = 0) 98694 N/m3

d0 45 mm

g 9.81 m/s2

α 0.737 Vs/m

ξ 0.9 -

Rint 2200 Ω

Rload 1 MΩ

Table 3.3: Variable parameters - parametrized harvester

Parameter Range Units

Ω/2π
[0,300]
6000 generated values

Hz

F1
[0.1, 8.4]
84 generated values

m/s2

∆d
[−d0/2, 0]
200 generated values

mm
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Chapter 4

Results

This chapter is divided in two subchapters: the first one focused on results related to the
approach to the harvester developed by Mann and Sims [14] and the second concerns the
parametrized harverster. The addressed issues in each configuration are the relative velocity
of the central magnet, the current intensitiy and the power dissipated on the resistive load.

4.1 Mann and Sims’ model

The first analysis regards the total length of the harvester. Two-dimensional curves in
the hysteresis zone are shown. A detailed analysis concerning the relative velocity’s response
to the frequency and length of the generator, is presented in a three-dimensional illustration
in figure 4.7.

Figure 4.1 describes the harvester’s response to five length variations, with ∆d between
-d0/2 and 0 mm: the larger the generator’s length, the higher the velocity, with increasingly
smaller frequencies needed to achieve such velocities. Although power behaves slightly
different (given its value of current square), current and power behave similarly to velocity,
as figures 4.2 and 4.3 illustrate. For ∆d=-d0/2 mm, the system acquires a 14 Hz resonance
frequency and a 465 mm/s velocity. For ∆d=0 mm, velocity reaches 830 mm/s when
oscillating with a 9.5 Hz resonance frequency. It can be concluded that a 78% increment in
the velocity and a 32% decrease in frequency are detected when ∆d is increased from -d0/2
to 0 mm. Current and power’s frequency variation is analogous to the velocity’s, to same
∆d variations. From ∆d=-d0/2 to ∆d=0 mm, current intensity rises from 1.9×10−8 to
9×10−8 A, which translates in a 370% increment. Power, on the other hand, evolves from
3.6×10−10 to 8.1×10−9 W, corresponding to a 22.5 gain.

The relative velocity’s pattern to five variations of the generator’s length is described in
Figure 4.4, for 0< ∆d < d0/4 mm. In this range, the larger the length, the higher the velocity,
mainly if the excitation frequency rises significantly, as exhibited in figures 4.5 and 4.6. When
∆d changes from 0 to d0/4 mm, resonance frequency rises from 9.5 to 64 Hz and velocity
grows from 830 to 6250 mm/s, which translates in 7.5 gain. When current is concerned, an
evolvement from 9×10−8 to 7.5×10−7 A can be seen, bearing a 733% increase. Power grows
from 8.1×10−9 to 5.7×10−7 W, defining an 70.4 power gain.

In the three-dimensional graphic (figure 4.7), when ∆d rises from -d0/2 to 0 mm, a small
decrease in the resonance frequency is observed, along with a slight increase in the velocity.
For ∆d variations from 0 to d0/4 mm, a sudden growth in frequency and velocity is noticed.
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The velocity peaks seen as from 1000 mm/s are due to the assumption made in section 3.5
(hysteresis zone is not considered). An abrupt velocity variation zone is highlighted in this
figure. This is the consequence of the used ∆d resolution. In fact, lower resolutions would
have resulted in lower peak-to-peak values. The 93 µm resolution (adopted in the ∆d >0 mm
interval) arises as insufficient to eliminate these variations.

Figure 4.1: Relative velocity response for different ∆d lengths (−d0/2 < ∆d < 0). The F1 was set to
4 m/s2 and ξ was set to 0.05. Parameters from table 3.1 were used.
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Figure 4.2: Electric current for different ∆d lengths (−d0/2 < ∆d < 0). The F1 was set to 4 m/s2

and ξ was set to 0.05. Parameters from table 3.1 were used.
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Figure 4.3: Electric power for different ∆d lengths (−d0/2 < ∆d < 0). The F1 was set to 4 m/s2 and
ξ was set to 0.05. Parameters from table 3.1 were used.
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Figure 4.4: Relative velocity response for different ∆d lengths (0 < ∆d < d0/2). The F1 was set to
4 m/s2 and ξ was set to 0.05. Parameters from table 3.1 were used.

Figure 4.5: Electric current for different ∆d lengths (0 < ∆d < d0/2). The F1 was set to 4 m/s2 and
ξ was set to 0.05. Parameters from table 3.1 were used.
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Figure 4.6: Electric power for different ∆d lengths (0 < ∆d < d0/2). The F1 was set to 4 m/s2 and
ξ was set to 0.05. Parameters from table 3.1 were used.

Figure 4.7: Relative velocity response for every ∆d lengths and frequency. The excitation amplitude
(F1) was set to 4 m/s2 and damping ratio (ξ) was set to 0.05. Parameters from table 3.1 were used.
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The maximum velocity, current and power that are reachable for each frequency and ∆d
are also significant in the design of energy harvesters and control of their performance. Firstly,
the study is conducted using five excitations with constant damping.

Figures 4.8 and 4.9 describe a relevant phenomena: when the structure shortens (-d0/2 <
∆d <0 mm), no significant differences are observed in the maximum velocity and only slightly
changes are noticed as ∆d approaches -d0/2 mm. Minimal ∆d from which the velocity shown
in figure 4.8 starts to decay is different between excitations. For example, ∆d corresponding
to 8 m/s2 is -15 mm; for 6m/s2, a -11 mm ∆d is verified; for 4 m/s2, a -7 mm ∆d is observed;
for an excitation of 2 m/s2, ∆d from which a velocity decay is observed is 0 mm. Nevertheless,
significant increases in magnet velocity will occur as ∆d >5 mm. A similar analysis can be
made for current, as seen in figure 4.10. Significant increases in power arise when ∆d >5 mm,
as described in figure 4.11.

Figure 4.12 labels the frequency associated to figures 4.8, 4.10 and 4.11. These velocity,
current and power gains come with frequency changes. As ∆d is moved away from -d0/2 mm,
a frequency decrease is predicted. In contrast, significant frequency increases are expected
as ∆d approaches d0/2 mm. To -10< ∆d <7 mm harvester’s length values, the resonance
frequency variation appears to be greater between 0.1 e 8 m/s2 (to same ∆d). The greater
the excitation, the greater the associated resonance frequency (to same ∆d). The lowest
frequencies (to which the velocities are maximum) occur for lengths between -5< ∆d <5 mm.
The overall dynamics considering the effects of ∆d, excitations and frequency are illustrated
in figure 4.13.
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Figure 4.8: Maximum relative velocity response in function of ∆d for different excitation amplitudes.
The ξ was set to 0.05. Parameters from table 3.1 were used.
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Figure 4.9: Maximum relative velocity response for every ∆d and excitation amplitudes. The ξ was
set to 0.05. Parameters from table 3.1 were used.
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Figure 4.10: Maximum electric current in function of ∆d for different excitation amplitudes. The ξ
was set to 0.05. Parameters from table 3.1 were used.
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Figure 4.11: Maximum electric power in function of ∆d for different excitation amplitudes. The ξ
was set to 0.05. Parameters from table 3.1 were used.
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Figure 4.12: Matching frequency to maximum relative system response in function of ∆d for different
excitation amplitudes. The ξ was set to 0.05. Parameters from table 3.1 were used.
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Figure 4.13: Matching frequency to maximum relative system response for every ∆d and excitation
amplitudes. The ξ was set to 0.05. Parameters from table 3.1 were used.

Figure 4.14 is an overlap of figure 4.8 and figure 4.12. It presents the maximum velocity in
function of resonant frequency for every ∆d. Figure 4.15 and 4.16 are the analogy for current
(combining figure 4.10 with figure 4.12) and power (combining figure 4.11 with figure 4.12),
respectively.

For growing variations of -d0/2 < ∆d <0 mm, maximum velocities tend to increase and are
followed by the resonance frequencies’ decrease. When ∆d grows between 0< ∆d < d0/4 mm
a large increase is seen in both velocity and frequency. This means that for any excitation,
the maximum velocity/ current / power with the smaller resonant frequency are obtained
with ∆d=0 mm. When ∆d=-d0/2 mm, for an 0.1 m/s2 excitation, the maximum velocity
of 11.5 mm/s is reached at 14 Hz, while for an 8m/s2 excitation, a 14.7 Hz frequency is
needed to achieve maximum velocity (970 mm/s). Hence, there is a 5% increase in frequency
and a 8335% increase in velocity. If ∆d=d0/4 mm, differences are much greater: for 0.1
m/s2 excitations, a 60.7 Hz resonance frequency is observed, corresponding to a 1100 mm/s
velocity; for 8 m/s2 excitations, a 65.8 Hz resonance frequency is observed, which corresponds
to a 8120 mm/s velocity. Therefore, from 0.1 to 8 m/s2, gains of 8.4% in frequency and 638%
in velocity are obtained. For lengths equivalent to ∆d >0 mm, the rate of increase in velocity
and current is greater for greater excitations.
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Figure 4.14: Maximum relative velocity response and combined frequency. Each trajectory describes
the dynamics while varying ∆d from -d0/2 to d0/4 (from black to red triangle; ∆d=0 is identified by
a black circle dot). The ξ was set to 0.05. Parameters from table 3.1 were used.
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Figure 4.15: Maximum electric current and combined frequency. Each trajectory describes the
dynamics while varying ∆d from -d0/2 to d0/4 (from black to red triangle; ∆d=0 is identified by a
black circle dot). The ξ was set to 0.05. Parameters from table 3.1 were used.
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Figure 4.16: Maximum electric power and combined frequency. Each trajectory describes the
dynamics while varying ∆d from -d0/2 to d0/4 (from black to red triangle; ∆d=0 is identified by
a black circle dot). The ξ was set to 0.05. Parameters from table 3.1 were used.

A similar dynamics is observed for constant excitations and variable dampings. Maximum
velocity, current and power to any frequency, in function of the harvester’s ∆d is shown in
figure 4.17, 4.18 and 4.19, respectively.

In general, as damping increases, decreases in velocity, current and power are expected.
When the harvester’s length has a ∆d=0 mm, maximum velocity in the most favourable
scenario (ξ=0.05) is 830 mm/s, while in the least favourable scenario (ξ=0.4) maximum
velocity is 140 mm/s. Thus, damping changes from 0.4 to 0.05 translates in a 493% increase
in velocity. Significant increments in power begin when ∆d >5 mm. The greater velocity
discrepancies to the different damping factors happen when ∆d=d0/4 mm.

The frequency where maximum velocity/ current / power occurs according to ∆d
development is represented in figure 4.20. Resonance frequency variation between different
excitations is greater for -5< ∆d <5 mm length variations.
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Figure 4.17: Maximum relative velocity response in function of ∆d for different damping ratio. The
F1 was set to 4 m/s2. Parameters from table 3.1 were used.
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Figure 4.18: Maximum electric current in function of ∆d for different damping ratio. The F1 was set
to 4 m/s2. Parameters from table 3.1 were used.
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Figure 4.19: Maximum electric power in function of ∆d for different damping ratio. The F1 was set
to 4 m/s2. Parameters from table 3.1 were used.

Figure 4.20: Matching frequency to maximum relative system response in function of ∆d for different
damping ratio. The F1 was set to 4 m/s2. Parameters from table 3.1 were used.
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It is valid to make an association as seen in figure 4.14, 4.15 and 4.16, but specific to the
variations in the damping factor (figure 4.21, 4.22 and 4.23).

The behaviour of the system for higher damping factors translates in lower frequencies
and responses to any ∆d. Similar behaviours are found for ∆d >0 mm (the slope for any
damping value remains the same).
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Figure 4.21: Maximum relative velocity response and combined frequency. Each trajectory describes
the dynamics while varying ∆d from -d0/2 to d0/4 (from black to red triangle; ∆d=0 is identified by
a black circle dot). The F1 was set to 4 m/s2. Parameters from table 3.1 were used.
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Figure 4.22: Maximum electric current and combined frequency. Each trajectory describes the
dynamics while varying ∆d from -d0/2 to d0/4 (from black to red triangle; ∆d=0 is identified by a
black circle dot). The F1 was set to 4 m/s2. Parameters from table 3.1 were used.

Figure 4.23: Maximum electric power and combined frequency. Each trajectory describes the
dynamics while varying ∆d from -d0/2 to d0/4 (from black to red triangle; ∆d=0 is identified by
a black circle dot). The F1 was set to 4 m/s2. Parameters from table 3.1 were used.
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The adjustment of the harvester’s length when facing excitation variations is demonstrated
in figures 4.24, 4.26 and 4.27, in what maximum velocity, current intensity and power in
function of frequency is concerned, respectively. Figure 4.25 highlights the overall dynamics
taking the effects of frequency and excitation on maximum velocity into account (considering
the best ∆d).

In order to draw a curve from figure 4.24, it is first necessary to determine the system’s
response to each ∆d (200 velocity dynamics in function of frequency) to a specific exterior
excitation. The curve is defined by the (200) maximum solutions obtained in the previous
step, for each frequency.

Once again, the multiple abrupt velocity variation zones are emphasized. The ∆d >0 mm
resolution of 93 µm is unsatisfactory. In fact, lower resolutions would have resulted in lower
peak-to-peak values.

With adaptative control, with 0.1, 2, 4, 6 and 8 m/s2, there are velocity gains of 11.2,
6.1, 3.6, 2.2, 1 and 86, 36.9, 23, 17.6, 15.3 to frequencies of 10 and 20 Hz, respectively (when
compared to a harvester that lacks adaptive control). Heavy velocity gains of 196.1, 88.8,
60.5, 79.4, 61.9 apply for a frequency of 60 Hz, when the same described excitations are
concerned.

Regarding current, for excitations of 0.1, 4 and 8 m/s2, gains of 128.5, 13.3, 1 (for a 10
Hz frequency), 7.8×103, 523.8, 233.8 (for a 20 Hz frequency) and 3.5×104, 3.6×103, 3.8×103

(for a 60Hz frequency) are obtained, respectively.
When power is concerned, for excitations of 0.1, 4 and 8 m/s2, gains of 1.6×104, 176.7,

1 (for a 10 Hz frequency), 6.1×107, 2.8×105, 5.4×104 (for a 20 Hz frequency) and 1.3×109,
1.3×107, 1.4×107 (for a 60 Hz frequency) are acquired, respectively.
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Figure 4.24: Maximum relative velocity response (considering the best values of ∆d) according to
the external frequency for different excitation amplitudes. The ξ was set to 0.05. Parameters from
table 3.1 were used.
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Figure 4.25: Maximum relative velocity response (considering the best values of ∆d) according to
the external frequency for every excitation amplitudes. The ξ was set to 0.05. Parameters from table
3.1 were used.
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Figure 4.26: Maximum electric current (considering the best values of ∆d) according to the external
frequency for different excitation amplitudes. The ξ was set to 0.05. Parameters from table 3.1 were
used.
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Figure 4.27: Maximum electric power (considering the best values of ∆d) according to the external
frequency for different excitation amplitudes. The ξ was set to 0.05. Parameters from table 3.1 were
used.

In order to achieve such maximums, figures 4.28 and 4.29 describe the values that ∆d must
take to accomplish the system’s best performance and are in agreement with the previous
analysed graphics.

The best ∆d for any the excitation is always positive. ∆d adopts a value of 3.5 mm for
frequencies very close to zero. Considering an acceleration of 0.1 m/s2, the ideal ∆d decreases
in a linear way to 1 mm until frequencies of 8 Hz are achieved. On the other hand, when an
acceleration of 8 m/s2 is considered, ∆d evolves linearly up to a 10 Hz frequency, reaching
the 0.3 mm value. For higher than mentioned frequencies, there is an offset increase until
∆d reaches its maximum (∆d=d0/4 mm), at a frequency of 60 Hz. Hence, the most efficient
harvester’s configuration for higher than 60 Hz frequencies is achieved when ∆d = d0/4 mm.
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Figure 4.28: Optimized ∆d length for different excitation amplitudes. The ξ was set to 0.05.
Parameters from table 3.1 were used.

Figure 4.29: Optimized ∆d length for every excitation amplitudes. The ξ was set to 0.05. Parameters
from table 3.1 were used.
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Figures 4.30, 4.31 and 4.32 portray the simulated results when fixed acceleration and
variable damping factor are taken in consideration, in which ∆d has optimal values according
to figure 4.33. When 10 and 60 Hz frequency values are considered, the change in the damping
coefficient from 0.4 to 0.05 translates in a 180.4% and 8% increase in velocity, 7.8 and 1.16
current gain improvements and 61.3 and 1.4 power gains, respectively.
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Figure 4.30: Maximum relative velocity response (considering the best values of ∆d) according to
the external frequency for different excitation amplitudes. The F1 was set to 4 m/s2. Parameters from
table 3.1 were used.
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Figure 4.31: Maximum electric current (considering the best values of ∆d) according to the external
frequency for different excitation amplitudes. The F1 was set to 4 m/s2. Parameters from table 3.1
were used.
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Figure 4.32: Maximum electric power (considering the best values of ∆d) according to the external
frequency for different excitation amplitudes. The F1 was set to 4 m/s2. Parameters from table 3.1
were used.
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The conclusion that higher damping values are associated with higher ∆d values for
frequencies lower than 20 Hz can be drawn from figure 4.33. The minimum optimal ∆d is
observed when ξ=0.4 and with a 5 Hz oscillation. The highest difference in ∆ds between
coefficients of 0.4 and 0.05 occurs at 9.5 Hz (which corresponds to 4 mm).
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Figure 4.33: Optimized ∆d length for different excitation amplitudes. The F1 was set to 4 m/s2.
Parameters from table 3.1 were used.

The impact of the mass of the levitating magnet on the system dynamics’ was also studied.
The system response was analysed under three different circumstances for mass variations:

when the generator length has a minimum, zero and maximum offset, which corresponds to a
∆d of -d0/2, 0 and d0/4 mm, respectively. In each individual simulation, a constant damping
of 0.05 and five different accelerations were considered.

The results presented in figure 4.34 refer to a harvester with ∆d = −d0/2 mm and the
mass in the [10, 500] [g] range. For an excitation of 4 m/s2, increases from 10 to 195 g in
mass result in both growth of the levitating magnet’s dynamics (from 300 to 1200 mm/s) and
frequency decrease (from 19 to 7 Hz). For mass variations of 195<m<500 g and regarding the
same excitation, velocity and frequency reach values of 2350 mm/s and 10 Hz, respectively.
Regarding this configuration, the minimal resonance frequency is 5.8 Hz, which corresponds
to an acceleration of 0.1 m/s2.

In which the harvester without offsets is concerned, the maximum relative velocity
progression as a function of frequency is represented in figure 4.35, for masses between 10
and 330 g. For example, for an acceleration of 4 m/s2, the 10<m<19.5 g resonance
frequency decreases from 11 to 9.5 Hz. The lowest resonant frequencies prevail with an
approximated 19.5 g (current mass) and harvester’s length with ∆d=0 mm (current length).
There is a substantial increase in velocity and frequency when m>19.5 g. When m=330 g
(and considering the same ∆d and excitation), velocity reaches 2100 mm/s and frequency
equals 85 Hz. The mass varied until a limit of growth of 330 g, since behaviors beyond the
stipulated frequency limits are not the subject matter of this study.
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For each mass, the course of the maximum relative velocity when ∆d = d0/4 mm is
exposed in figure 4.36 The mass varied from 10 to 25 g in this simulation. With increments
in the mass, an increase in frequency and velocity can be seen. For instance, given a 4 m/s2

excitation, the frequency grows from 27 to 88 Hz and the velocity changes from 2100 to 9300
mm/s.

It is known that when an approach to a linear system is made and there is an increase in
the levitating magnet’s mass, there is a decrease in both frequency and velocity’s dynamics.
More complex dynamics arise when studying a non linear system. These complex dynamics
requires further research.
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Figure 4.34: Maximum relative velocity response and combined frequency. Each trajectory describes
the dynamics while varying mass from 10 to 500 g (from black to red triangle; m=19.5 g is identified
with a black circle dot; m=195 g is identified with a orange circle dot). The F1 was set to 4 m/s2, ξ
was set to 0.05 and ∆d was set to -d0/2. Parameters from table 3.1 were used.
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Figure 4.35: Maximum relative velocity response and combined frequency. Each trajectory describes
the dynamics while varying mass from 10 to 300 g (from black to red triangle; m=19.5 g is identified
with a black circle dot). The F1 was set to 4 m/s2, ξ was set to 0.05 and ∆d was set to 0. Parameters
from table 3.1 were used.
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Figure 4.36: Maximum relative velocity response and combined frequency. Each trajectory describes
the dynamics while varying mass from 10 to 25 g (from black to red triangle; m=19.5 g is identified with
a black circle dot). The F1 was set to 4 m/s2, ξ was set to 0.05 and ∆d was set to d0/4. Parameters
from table 3.1 were used.
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4.2 Parameterized model

The parameterized harvester’s analysis focuses on the same aspects discussed in the
previous section.

Firstly, the relative velocity behaviour for five ∆d variations is shown in figure 4.37. For
a better understanding about the dynamics regarding the frequency and harvester’s length,
a three-dimensional illustration is also presented in figure 4.38. This harvester’s resonance
frequency for a ∆d=0 mm is 225 Hz, which corresponds to a velocity of 3.14×104 mm/s.
When ∆d = −d0/2 mm, a significant reduction in both velocity (decreases 99.7% to 85
mm/s) and frequency (decreases 97.3% to 6.1 Hz) is observed. As expected for this generator
and regarding the same frequencies, current and power’s behavior is directly related to the
velocity’s dynamics. From 0 > ∆d > −d0/2 mm, current evolves from 1.1×10−13 to 1.2×10−11

A (which corresponds to a 106.3 gain) and power goes from 1.2×10−20 to 1.4×10−16 W
(establishing a 1.1×104 gain), as it can be observed from figures 4.39 and 4.40. Due to the
high damping coefficient, the curves never enter the hysteresis zone and have different shapes
than the ones accounted in the previous section. For small lengths and after reaching the
resonant frequency, the velocity decreases less abruptly than in the region to the left of the
resonance zone.

The three-dimensional figure (4.38) highlights an abrupt velocity variation zone that starts
in 5 m/s. This is the consequence of the used ∆d resolution. In fact, lower resolutions
would have resulted in lower peak-to-peak values. The 112 µm resolution (adopted in the
∆d > −d0/2 mm interval) is insufficient to eliminate these variations.

Figure 4.37: Relative velocity response for different ∆d lengths. The F1 was set to 4 m/s2. Parameters
from table 3.2 were used.
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Figure 4.38: Relative velocity response for every ∆d lengths. The F1 was set to 4 m/s2. Parameters
from table 3.2 were used.

Figure 4.39: Electric current for different ∆d lengths. The F1 was set to 4 m/s2. Parameters from
table 3.2 were used.
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Figure 4.40: Electric power for different ∆d lengths. The F1 was set to 4 m/s2. Parameters from
table 3.2 were used.

Figures 4.41, 4.43 and 4.44 show the maximum velocity, current and power reachable for
each frequency and ∆d, for five external excitations. Figure 4.41 and 4.42 shows that for
∆d <-10 mm variations, no significant differences are observed in the maximum velocity and
only slightly changes are noticed as ∆d approaches 0 mm. For example, when ∆d=0 mm, the
maximum velocities for 0.1, 2, 4, 6 and 8 m/s2 excitations are 775, 1.6×104, 3.1×104, 4.2×104,
4.8×104 mm/s, respectively. When faced with the same excitations and ∆d, current and
power are 3.2×10−10, 1.3×10−7, 5.1×10−7, 8.9×10−7, 1.2×10−6 A and 1×10−13, 1.6×10−6,
2.6×10−7, 8×10−7, 1.4×10−6 W, respectively.

Figure 4.45 labels the frequency associated to figures 4.41, 4.43 and 4.44. These velocity,
current and power gains come with frequency changes. As ∆d is moved away from -d0/2
mm, frequency tends to remain approximately constant. In contrast, significant frequency
increases are expected as ∆d approaches d0/2 mm (and ∆d >-12 mm). The lowest frequencies
(to which the velocity is maxim) occur for lengths between −d0/2 < ∆d <-12 mm. The overall
dynamics considering the effects of ∆d, excitations and frequency are illustrated in figure 4.46.
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Figure 4.41: Maximum relative velocity response in function of ∆d for different excitation amplitudes.
Parameters from table 3.2 were used.

Figure 4.42: Maximum relative velocity response in function of ∆d for every excitation amplitudes.
Parameters from table 3.2 were used.
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Figure 4.43: Maximum electric current in function of ∆d for different excitation amplitudes.
Parameters from table 3.2 were used.
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Figure 4.44: Maximum electric power in function of ∆d for different excitation amplitudes.
Parameters from table 3.2 were used.
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Figure 4.45: Matching frequency to maximum relative system response in function of ∆d for different
excitation amplitudes. Parameters from table 3.2 were used.

Figure 4.46: Matching frequency to maximum relative system response in function of ∆d for every
excitation amplitudes. Parameters from table 3.2 were used.
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For higher variations of ∆d, the associated resonant frequency and velocity / current/
power tend to increase as it can be observed from figures 4.47, 4.48 and 4.49.

Figure 4.47: Maximum relative velocity response and combined frequency. Each trajectory describes
the dynamics while varying ∆d from -d0/2 to 0 (from black to red triangle). Parameters from table
3.2 were used.

Figure 4.48: Maximum electric current and combined frequency. Each trajectory describes the
dynamics while varying ∆d from -d0/2 to 0 (from black to red triangle). Parameters from table 3.2
were used.
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Figure 4.49: Maximum electric power and combined frequency. Each trajectory describes the
dynamics while varying ∆d from -d0/2 to 0 (from black to red triangle). Parameters from table
3.2 were used.

The adjustment of the harvester’s length when facing excitation variations is demonstrated
in figures 4.50, 4.52 and 4.53, in what maximum velocity, current intensity and power in
function of frequency is concerned, respectively. Figure 4.51 highlights the overall dynamics
taking the effects of frequency and excitation on maximum velocity into account (considering
the best ∆d).

The next analysis compares the use and the lack of adaptive control. For 0.1, 4 and 8
m/s2 excitations, the velocity gains are 33.6, 33.4, 32.8 for a 10 Hz frequency, 58.6, 62.5, 61.4
for a 50 Hz frequency and 47.7, 60.3, 45.4 for a 100 Hz frequency, respectively. Concerning
0.1, 4 and 8 m/s2 excitations and frequencies of 10, 50 and 100 Hz, the current gains are
1.1×103, 3.4×103, 2.3×103 (for 0.1 m/s2); 1.1×103, 3.9×103, 3.6×103 (for 4 m/s2); 1.1×103,
3.8×103, 2.1×103 (for 8 m/s2), respectively. Regarding the same excitations and frequencies,
the power gains are 1.3×106, 1.2×107, 5.2×106 (for 0.1 m/s2); 1.2×106, 1.5×107, 1.3×107

(for 4 m/s2); 1.2×106, 1.4×107, 4.2×106 (for 8 m/s2), respectively.

76



0 50 100 150 200 250 300
Ω/2π [Hz]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

m
a
x
|
ẏ
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Figure 4.50: Maximum relative velocity response (considering the best values of ∆d) according to
the external frequency for different excitation amplitudes. Parameters from table 3.2 were used.

Figure 4.51: Maximum relative velocity response (considering the best values of ∆d) according to
the external frequency for every excitation amplitudes. Parameters from table 3.2 were used.

77



0 50 100 150 200 250 300
Ω/2π [Hz]

0

0.2

0.4

0.6

0.8

1

1.2

m
a
x
(I
)
[µ

A
]

F1 = 0.1 m/s 2

F1 = 2 m/s 2

F1 = 4 m/s 2

F1 = 6 m/s 2

F1 = 8 m/s 2

Figure 4.52: Maximum electric current (considering the best values of ∆d) according to the external
frequency for different excitation amplitudes. Parameters from table 3.2 were used.
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Figure 4.53: Maximum electric power (considering the best values of ∆d) according to the external
frequency for different excitation amplitudes. Parameters from table 3.2 were used.

78



The ideal ∆d decreases from -15.4 to -15.6 mm, for frequencies up to 2.5 Hz. For higher
than 2.5 Hz values, the best ∆d rises until a frequency of 215 Hz and achieves its maximum.
The optimal ∆d is very similar for different excitations.
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Figure 4.54: Optimized ∆d length for different excitation amplitudes. Parameters from table 3.2
were used.

Figure 4.55: Optimized ∆d length for every excitation amplitudes. Parameters from table 3.2 were
used.
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4.3 Overview - velocity gains

As this study is mainly focused on the dynamics of the levitating magnet, figures 4.56 and
4.57 portray the velocity gains for both generators when taking the effects of frequency and
five excitation considering the best ∆d. The electromagnetic harvester proposed by Mann and
Sims [14] provides higher velocity gains for lower excitation amplitudes. The parametrized
harvester describes the maximum velocity gain (about 65) when vibrating with a frequency
of 50 Hz.
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Chapter 5

Discussion and conclusion

Energy harvesting from the oscilations of a levitating magnet mass have a great
potential in which converting movement in electric energy is concerned. Their wide variety
of functions ranges from implementation in microelectronics, for example, biomedical
devices, to macro purposes, such as the sea. The reduced or zero intermittence that
autonomous energy harvesting systems exhibit, as well as the low maintenance requirements
that arise from the simplicity of both mechanical and electrical architecture result in great
advantages. As a result, the application of these systems emerges as remarkable alternative
to the use of batteries and other conventional non-renewable energy sources. Predictably,
electromagnetic energy harvesters are required to be the most efficient possible. In the
attempt to enhance their efficiency, several configurations have been proposed, regarding
variations of structural geometry (circular or rectangular section), number of levitating
magnets, number of windings, magnet geometry, among others.

Several modulations in the parameters that are directly related to the mechanics of the
system are present in the scientific literature, namely empirical, semi analytical, analytical
and FEM analysis. The degree of accuracy of each model is dependent on how the
constructive parameters are analysed. There is no description of a geometric optimization
tool that maximizes the efficiency of the harvesters.

In the present study, by means of a sophisticated method that controls the levitating
magnet’s dynamics, the length of the generator was made to vary to an optimal value, in
order to adapt to excitation variations. This resulted in a tool that ensued the geometrical
optimization of the harvester’s length to both a priori known and variable excitations.

This methodology allows the maximization of the harvester’s performance, geometrically
optimizing its length prior to its fabrication. It grants adaptive design to no optimized
manufacturing, enabling it to be used in harvesters with both fixed length when manufactured
(a priori known excitation) and variable length (for variable excitations). The adaptive design
of the harvester to excitation changes involves low maintenance and no complex mechanical
systems. All of these advantages warrant the possibility of optimized operation in a wide
range of scenarios and for long time periods.

Nonetheless, this model carries some limitations: both the magnetic field and the
electromechanic coefficient are considered as a constant, the electrical damping coefficient is
managed as static, the coil’s inductance is not introduced in the electrical dynamics, the
final solutions are coherent solely if the resistance load is very high (resembling open circuit
analysis), it is exclusively valid for limited d0 variations and it only enables the optimization
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of a single parameter.
Overall, an analysis that takes more variables into consideration is still of great

importance; the system’s dynamics should also be examined using a more complex model
that includes the electrical dynamics.

Great improvements in velocity, current and power were obtained. The optimized ∆d for
certain excitations was identified.

In the future, a system to control the magnetic levitation harvester’s physical structure
should be developed, in order to magnify the electrical energy produced according to the
harvester’s dynamics. The possibility of controlling multiple variables is of paramount interest
for future researches. Methods to implement this tool ought to be studied relying on a more
complex model, which should take the electric dynamics of the system into consideration.
The variation of the mass requires greater exploration and has potential to be an issue for
future works, since the observed dynamics are not well understood.
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